WO2017075847A1 - 基于阻抗匹配的对无线信号无阻挡的装置 - Google Patents
基于阻抗匹配的对无线信号无阻挡的装置 Download PDFInfo
- Publication number
- WO2017075847A1 WO2017075847A1 PCT/CN2015/094993 CN2015094993W WO2017075847A1 WO 2017075847 A1 WO2017075847 A1 WO 2017075847A1 CN 2015094993 W CN2015094993 W CN 2015094993W WO 2017075847 A1 WO2017075847 A1 WO 2017075847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impedance matching
- wireless signal
- present
- based device
- impedance
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/02—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/02—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
- E04B2002/0256—Special features of building elements
- E04B2002/0273—Adhesive layers other than mortar between building elements
- E04B2002/0278—Adhesive layers other than mortar between building elements forming a unity with the building elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2103/00—Material constitution of slabs, sheets or the like
- E04B2103/02—Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2103/00—Material constitution of slabs, sheets or the like
- E04B2103/04—Material constitution of slabs, sheets or the like of plastics, fibrous material or wood
Definitions
- the present invention relates to a wall through which a wireless signal can pass, and more particularly to a device based on impedance matching that does not block wireless signals.
- the existing method for transmitting wave enhancement of a wireless signal such as a Wi-Fi signal or a 4G signal is mainly to enhance at a signal source or to add a corresponding device. Since the Wi-Fi signal or the 4G signal of the mobile phone is always blocked by the brick concrete wall during the transmission process, mainly because the wall impedance and the air impedance do not match, the current method of enhancing the Wi-Fi signal through the wall is mainly Wi-Fi parameters are set to 802.11N, MIMO enhanced mode, etc. to enhance Wi-Fi signals from the source, or to add power cats and wireless APs (Access Points) for relay expansion during signal propagation, but In this way, equipment investment is relatively expensive.
- Wi-Fi parameters are set to 802.11N, MIMO enhanced mode, etc.
- the transmission frequency of existing Wi-Fi is 2.4GHz and 5GHz. Since the ordinary wall is mainly constructed of concrete and brick, the impedance often does not match the air seriously, so the Wi-Fi channel is blocked, but the source is selected. The effect of boosting Wi-Fi signals is minimal, and the higher the frequency of the signal, the shorter the wavelength, the harder it is to bypass the wall;
- the presenter actively researches and innovates in order to create a new type of structure based on impedance matching for wireless signals without blocking, making it more industrially valuable.
- the object of the present invention is to design a microwave frequency band, a wide angle, and a polarization-independent ultra-transparent composite material, which is based on the impedance matching principle, realizes ultra-permeability in a wide angle range, has a wide frequency response, and is easy to prepare. It has good environmental tolerance and low maintenance cost. It can not only be used as a wall-to-house partition, but also can be used as a tangible Wi-Fi transparent wall to achieve signal coverage without additional funds to add relay equipment. Reduce construction costs.
- the technical solution adopted by the present invention is to provide a device for blocking wireless signals based on impedance matching, which is formed by periodically stacking two building materials of different dielectric constants in one direction.
- the two building materials are respectively polypropylene and concrete.
- the two building materials are periodically stacked in an alternating manner.
- the impedance matching-based wireless signal non-blocking device of the present invention can be designed as a wall body, which can improve the microwave wave transmission, so that the wireless signal is not blocked at any angle, and the wireless signal is realized.
- the material forming the wall is polypropylene and concrete, which extends from microscopic circuit electronics to macro wall applications compared to the precious metal array series, while greatly reducing manufacturing costs.
- Figure 1 is a schematic view of the structure of the present invention
- Figure 3 is an isometric curve distribution of the minimum periodic structure of the present invention in a quarter of a k-space
- Figure 4 is an isometric graph corresponding to the impedance curve distribution of Figure 3;
- Fig. 5(a) is a structural simulation diagram
- Fig. 5(b) shows the full-angle transmission response and frequency response when only ⁇ 1 is contained
- Fig. 5(c) shows the transmission of the angle and frequency response when only ⁇ 2 is included
- Figures 5(d) and (e) are frequency versus angular response transmissions of the composite under both TE(a) and TM(b) polarizations.
- the upper layers are periodically stacked in an alternating manner.
- Broadband, wide-angle ultra-transparent composite means that its impedance can be perfectly matched with the background impedance. Due to the choice of a symmetrical structure, the electric field (or magnetic field) is evenly distributed at its boundary. Definition, using the following relationship to determine the impedance of electromagnetic waves entering the composite
- Z represents the impedance
- E and H represent the electric field and magnetic field strength
- x represents the incident direction
- y represents the direction perpendicular to the incident direction
- z is perpendicular to the xy plane
- PC represents the photonic crystals of the material.
- the air impedance can be obtained by Maxwell's equations.
- w represents the circular frequency, which represents the magnetic permeability in vacuum.
- FIG. 5(a) shows the full-angle transmission response and the frequency response (10-layer transmission) when only ⁇ 1 is contained, and FIG. 5(c) shows the angle when only ⁇ 2 is included. Transmission with frequency response (again 10 layers of transmission).
- the transmission is not continuous in only two media, and the angle of the high-transmission portion is also narrow, and when the two media are arranged in a periodic structure as shown in Fig. 5(a) ( 10 layers of stacking), the transmission discontinuity between frequencies can eliminate a part, and the corresponding ultra-transparent angle range is also widened, as shown in Figures 5(d) and (e), near the Wi-Fi transmission frequency of 2.4 GHz, whether TE or TM wave can achieve ultra-transparent near 0° to 90°, realize “invisibility” of Wi-Fi on this frequency, and the frequency response of this structure is also wide, which can cover 4G signals of China's three major carriers. Band.
- Concrete as a wall building material has good durability, good plasticity and high strength, while PP plastic (ie polypropylene) has low density, good formability, mechanical properties and resistance to bending fatigue, and is non-toxic and resistant to voltage and heat.
- Anti-corrosion, with basic wall material characteristics, the price of both is also very cheap, the process of preparing the structure is not difficult (multi-layer stacking, depending on the specific wall thickness), which can greatly reduce the construction cost.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
- Building Environments (AREA)
Abstract
本发明涉及一种基于阻抗匹配的对无线信号无阻挡的装置,由两种不同介电常数的建筑材料在一个方向上周期性堆叠形成。本发明的基于阻抗匹配的对无线信号无阻挡的装置可设计成墙体,能够提高微波的透波性,使得任意一个角度都不会阻挡无线信号,实现了无线信号的无阻碍传输;另外,形成墙体的材料为聚丙烯和混凝土,相比贵金属孔阵系列,从微观的电路电子器件扩展到宏观墙体应用,同时大大降低了制造成本。
Description
本发明涉及一种可供无线信号穿过的墙体,尤其涉及一种基于阻抗匹配的对无线信号无阻挡的装置。
近年来,对微波的透波增强性研究主要集中于周期性金属结构。研究发现,当电磁波入射到亚波长金属孔/缝结构和周期褶皱结构上时,电磁波仍然可以透过金属,且在特定的频率出现了透波增强现象。目前除了亚波长孔阵列,在对亚波长单孔,如狭缝、圆孔、环形空中的研究也发现了透波增强现象。这些增强效应主要来自于小孔边界处激发的局域表面等离子体模式,从而对亚波长单孔产生的透波增强。但这些器件的材料主要取自贵金属,制备成本较高,相应也需要一定的维护措施,同时大多只适用于小型微波器件,如微带天线、微波集成电路等方面,缺少更为宏观的应用。
现有的对无线信号如Wi-Fi信号或4G信号的透波增强方法,主要是在信号源处进行增强,或是增设相应的设备。由于Wi-Fi信号或是手机4G信号在传输过程中,始终会受到砖头混凝土墙体的阻隔,主要是因为墙体阻抗与空气阻抗不匹配,目前增强Wi-Fi信号透墙的方法主要是将Wi-Fi参数设置成802.11N、选择MIMO增强模式等从源头加强Wi-Fi信号,或是在信号传播过程中增配电力猫及无线AP(Access Point,接入点)进行中继扩展,但此种做法设备投入较为昂贵。
现有技术的主要缺点在于:
1、现有Wi-Fi的发射频率有2.4GHz和5GHz两种,鉴于普通墙体主要由混凝土与砖头建造,阻抗往往与空气严重不匹配,故而造成Wi-Fi信道被阻,但选择从源头处提升Wi-Fi信号效果甚微,而且频率越高的信号波长越短,越难绕过墙体;
2、其他增强微波透波的方法如亚波长金属孔阵列,它的单孔形状、孔的大小数量以及阵列的周期、金属厚度、孔中介质的介电常数都会影响周期孔阵列的透波效应,但主要依托的机理是让金属孔表面的等离子体产生共振,增强透波,这类材料一般用于微型电子器件研制,价格昂贵;
3、其他如在传播途中添加一些中继设备,如电力猫或是无线AP,虽然对于普通家庭来说投入资金或许不多,但对大公司企业来说,不光设备数目增加,线路铺设也必须重新规划,需要投入较多的人力物力。
有鉴于上述的缺陷,本设计人,积极加以研究创新,以期创设一种新型结构的基于阻抗匹配的对无线信号无阻挡的装置,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是设计微波频段、宽角度、偏振无关的超透复合材料,该复合材料基于阻抗匹配原理,实现大角度范围内的超透,频率响应较宽且易于制备,对环境耐受性好,维护成本也较低,它不仅可以作为墙体对住宅分区,还能作为一堵有形的Wi-Fi透明墙实现信号覆盖而不需投入额外资金增设中继设备,降低建造成本。
为了达到上述目的,本发明采用的技术方案是提供一种基于阻抗匹配的对无线信号无阻挡的装置,由两种不同介电常数的建筑材料在一个方向上周期性堆叠形成。
进一步的,两所述建筑材料分别为聚丙烯、混凝土。
进一步的,两所述建筑材料按交替方式周期性堆叠。
借由上述方案,本发明的基于阻抗匹配的对无线信号无阻挡的装置可设计成墙体,能够提高微波的透波性,使得任意一个角度都不会阻挡无线信号,实现了无线信号的无阻碍传输;另外,形成墙体的材料为聚丙烯和混凝土,相比贵金属孔阵系列,从微观的电路电子器件扩展到宏观墙体应用,同时大大降低了制造成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
图1是本发明的结构示意图;
图2是本发明的最小周期的结构示意图;
图3是本发明的最小周期结构在四分之一个k空间中的等阻抗曲线分布;
图4是图3等阻抗曲线分布对应的等频率曲线图;
图5(a)是结构模拟图,图5(b)表示仅含ε1时的全角度透射响应与频率响应,图5(c)表示仅含ε2时的角度与频率响应的透射情况,图5(d)、(e)是复合材料在TE(a)和TM(b)两种偏振波下的频率与角度响应透射图。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明一较佳实施例所述的一种基于阻抗匹配的对无线信号无阻挡的装
置,由聚丙烯(介电常数ε1=2.3)与混凝土(介电常数ε2=9)在一个方向上按交替方式周期性堆叠形成。如图1所示,聚丙烯与混凝土排布为ABABABABA·······,只在z方向上呈周期排列,dAB=a,a指周期长度。
为测试电磁波进入本发明的复合材料时的阻抗,用COMSOL Multiphysics软件来进行理论模拟,它是一款以有限元法为基础的多物理场模拟软件。
为简化运算,我选取出一个最小周期性重复单元来进行研究,如图2所示。
宽频、宽角度的超透复合材料即意味着其阻抗能与背景阻抗完全匹配,由于选取的是一种对称结构,电场(或磁场)在其边界处的分布是均匀的,依据电动力学对阻抗的定义,用如下关系式来求出电磁波进入该复合材料时的阻抗
Z表示阻抗,E、H分别表示电场和磁场强度,x表示入射方向,y表示垂直于入射方向,z垂直于xy平面,PC表示该材料的简称光子晶体(Photonic Crystals)。同时空气阻抗可以通过麦克斯韦方程组求得
w表示圆频率,表示真空中的磁导率,图3为该周期结构在四分之一个k空间中的等阻抗曲线分布,可以看到,黑色最深处的区域即代表光子晶体阻抗与空气阻抗相等的地方,对应到该结构的等频率曲线中,如图4所示,其中颜色深浅表示频率大小,黑实线表示阻抗完全匹配时的频(f=8*c=2.4GHz,c=3e8),在图4横轴上0.25至0.75范围内的频率也几乎可以使得其阻抗与空气基本匹配,实现在光频段对光波的宽角度宽频无偏振透射。
参见图5(a)所示的是结构模拟图,ε1=2.3,ε2=9,周期a=4.25cm,其
中浅灰色表示ε1部分,d1=0.6a,深灰色表示ε2部分,d2=0.4a,θ表示入射角,图5(b)表示仅含ε1时的全角度透射响应与频率响应(10层透射),图5(c)表示仅含ε2时的角度与频率响应的透射情况(同样是10层透射)。可以看到在2GHz至2.7GHz,仅两种介质时的透射并不连续,高透部分的角度也很窄,而当把两种介质排布成如图5(a)这样的周期结构时(10层堆叠),频率间的透射不连续可以消除一部分,相应的超透角度范围也变宽,如图5(d)和(e)所示,在Wi-Fi发射频率2.4GHz附近,无论是TE还是TM波都能实现近0°到90°的超透,实现对该频率Wi-Fi的“隐形”,另外该结构的频率响应也较宽,基本可以涵盖中国三大通信商的4G信号波段。
同时,用来制备该结构的材料在日常生活中也十分常见,主要是聚丙烯(ε1=2.3),混凝土(ε2=9),均是常用的建筑材料。混凝土作为墙体建筑材料具有良好的耐久性能,可塑性好强度高,而PP塑料(即聚丙烯)则具有低密度,良好的成型性能、力学性能以及抗弯曲疲劳性能,且无毒抗电压耐热防腐蚀,具有基本的墙体材料特性,二者的价格也很便宜,制备该结构的工艺也并不困难(多层堆叠,可视具体墙厚而定),能大大降低建造成本。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
Claims (3)
- 一种基于阻抗匹配的对无线信号无阻挡的装置,其特征在于:由两种不同介电常数的建筑材料在一个方向上周期性堆叠形成。
- 根据权利要求1所述的基于阻抗匹配的对无线信号无阻挡的装置,其特征在于:两所述建筑材料分别为聚丙烯、混凝土。
- 根据权利要求2所述的基于阻抗匹配的对无线信号无阻挡的装置,其特征在于:两所述建筑材料按交替方式周期性堆叠。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/580,068 US10344473B2 (en) | 2015-11-04 | 2015-11-19 | Device without blocking wireless signals based on impedance matching |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510740921.6 | 2015-11-04 | ||
CN201510740921.6A CN105401669B (zh) | 2015-11-04 | 2015-11-04 | 基于阻抗匹配的对无线信号无阻挡的装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017075847A1 true WO2017075847A1 (zh) | 2017-05-11 |
Family
ID=55467389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/094993 WO2017075847A1 (zh) | 2015-11-04 | 2015-11-19 | 基于阻抗匹配的对无线信号无阻挡的装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10344473B2 (zh) |
CN (1) | CN105401669B (zh) |
WO (1) | WO2017075847A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022016400A1 (zh) * | 2020-07-22 | 2022-01-27 | 南京星隐科技发展有限公司 | 透波结构及透波装置 |
CN111864402B9 (zh) * | 2020-07-22 | 2022-08-12 | 南京星隐科技发展有限公司 | 透波结构及透波装置 |
CN112582783A (zh) * | 2020-10-27 | 2021-03-30 | 西安交通大学 | 一种集成aip组件、终端设备及终端设备外壳 |
CN115144963B (zh) * | 2021-03-31 | 2023-11-10 | 南京星隐科技发展有限公司 | 波导结构、制备方法及应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072145A (zh) * | 2007-05-31 | 2007-11-14 | 中国移动通信集团广东有限公司 | 无线局域网室内覆盖系统 |
CN201243307Y (zh) * | 2008-07-02 | 2009-05-20 | 福建先创电子有限公司 | 无线网络新型节能室分系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792077A (zh) * | 1971-11-29 | 1973-03-16 | Ici Australia Ltd | |
US6942915B1 (en) * | 1999-03-19 | 2005-09-13 | Toray Industries, Inc. | FRP roofing material, manufacturing method, and its connecting structure and connecting method |
US20040161595A1 (en) * | 2003-02-19 | 2004-08-19 | Baines John B. | Method of and apparatus for concrete construction |
US20060032166A1 (en) * | 2004-08-10 | 2006-02-16 | Devalapura Ravi K | High strength composite wall panel system |
US7810293B2 (en) * | 2006-08-15 | 2010-10-12 | Gibbar James H | Multiple layer polymer foam and concrete system for forming concrete walls, panels, floors, and decks |
CN102223162B (zh) * | 2011-05-18 | 2013-11-20 | 中国联合网络通信集团有限公司 | 合分路器、电梯移动信号覆盖的方法及其系统 |
US8555584B2 (en) * | 2011-09-28 | 2013-10-15 | Romeo Ilarian Ciuperca | Precast concrete structures, precast tilt-up concrete structures and methods of making same |
US9493946B2 (en) * | 2013-12-13 | 2016-11-15 | Iconx, Llc | Tie system for insulated concrete panels |
US9303404B2 (en) * | 2014-07-09 | 2016-04-05 | Lehigh University | Insulated structural panel connector |
CN104917991A (zh) * | 2015-06-24 | 2015-09-16 | 吴春海 | 一种室内信号传输系统 |
-
2015
- 2015-11-04 CN CN201510740921.6A patent/CN105401669B/zh active Active
- 2015-11-19 US US15/580,068 patent/US10344473B2/en active Active
- 2015-11-19 WO PCT/CN2015/094993 patent/WO2017075847A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072145A (zh) * | 2007-05-31 | 2007-11-14 | 中国移动通信集团广东有限公司 | 无线局域网室内覆盖系统 |
CN201243307Y (zh) * | 2008-07-02 | 2009-05-20 | 福建先创电子有限公司 | 无线网络新型节能室分系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105401669A (zh) | 2016-03-16 |
US10344473B2 (en) | 2019-07-09 |
CN105401669B (zh) | 2018-12-14 |
US20180298607A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9601820B2 (en) | Dielectric waveguide comprised of a core surrounded by a cladding and forming integrated periodical structures | |
WO2017075847A1 (zh) | 基于阻抗匹配的对无线信号无阻挡的装置 | |
KR101521211B1 (ko) | 메타물질을 이용한 광대역 전자파 흡수체 | |
Ayop et al. | Triple band circular ring-shaped metamaterial absorber for x-band applications | |
CN105789905A (zh) | 一种基于金属薄膜反结构的旋磁衬底超表面 | |
Zhang et al. | Efficient propagation of spoof surface plasmon polaritons supported by substrate integrated waveguide with bandpass features | |
Wang et al. | 140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process | |
Capet et al. | Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays | |
Guo et al. | A new dual‐band microstrip antenna array with high isolation by waveguided metamaterial structure | |
Yurduseven et al. | Triangular-shaped single-loop resonator: a triple-band metamaterial with MNG and ENG regions in S/C bands | |
CN101847772A (zh) | 双频微波谐振器 | |
Palreddy | Wideband electromagnetic band gap (EBG) structures, analysis and applications to antennas | |
Couture et al. | Design of a size-independent zero-permittivity rectangular resonator and possible antenna applications | |
Liu | Suppression of the mutual coupling between microstrip antenna arrays using negative permeability metamaterial on LTCC substrate | |
Lerosey et al. | Hybridization band gap based smart antennas: Deep subwavelength yet directional and strongly decoupled MIMO antennas | |
Capet et al. | Metamaterial waveguide with reduced cross section | |
CN102723606B (zh) | 一种宽频低色散超材料 | |
Benosman et al. | Multi-band meta-material structures based on hexagonal shaped magnetic resonators | |
Jiang et al. | Multi-layer corrugated terahertz horn antenna based on MEMS technology | |
Biginton et al. | Microwave transmission through an array of ring slots in a metal sheet capped with concentric metal rings | |
Plonis et al. | Investigation of anisotropic cylindrical semiconductor-dielectric waveguides | |
Ueda et al. | Leaky wave radiation from left-handed transmission lines composed of a cut-off parallel-plate waveguide loaded with dielectric resonators | |
Kumar et al. | Mutual coupling reduction between array elements using 3D EBG | |
Michishita et al. | Evanescent-mode dielectric metamaterial structure excited by NRD guide and its application to leaky wave antenna | |
Madany et al. | Study and investigation of harmonics resonance frequency for embedded composite right/left handed transmission line (CRLH-TL) array and its application in microstrip antenna design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15907689 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15580068 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15907689 Country of ref document: EP Kind code of ref document: A1 |