WO2017074152A1 - Microparticles containing color nanocomposite and method for manufacturing same - Google Patents

Microparticles containing color nanocomposite and method for manufacturing same Download PDF

Info

Publication number
WO2017074152A1
WO2017074152A1 PCT/KR2016/012347 KR2016012347W WO2017074152A1 WO 2017074152 A1 WO2017074152 A1 WO 2017074152A1 KR 2016012347 W KR2016012347 W KR 2016012347W WO 2017074152 A1 WO2017074152 A1 WO 2017074152A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
nanocomposite
particles
nanoparticles
microparticles
Prior art date
Application number
PCT/KR2016/012347
Other languages
French (fr)
Korean (ko)
Inventor
김철암
류지영
김하영
하정미
주재현
이인숙
오진호
차진성
Original Assignee
주식회사 나노브릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160123792A external-priority patent/KR101840260B1/en
Priority claimed from KR1020160139796A external-priority patent/KR101880908B1/en
Application filed by 주식회사 나노브릭 filed Critical 주식회사 나노브릭
Publication of WO2017074152A1 publication Critical patent/WO2017074152A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a color nanocomposite and a method for manufacturing the same, a microparticle containing the color nanocomposite and a method for manufacturing the same, and more particularly, a color nanocomposite and a method for producing the color change in response to an electric or magnetic field and
  • the core includes the color nanocomposite and the shell (shell) relates to the microparticles made of a high elastic and hard polymer material and a method of manufacturing the same.
  • Nanoparticles exhibit unique properties that are not found in particles larger than micron size by the effect of quantum size, and exhibit excellent luminescent properties, magnetic properties, catalytic properties, etc., due to their relatively large surface area, even when they have the same properties as the bulk state.
  • the superparamagnetic nanoparticles are normally dispersed without showing the general magnetic properties, but the magnetic field moments of the nanoparticles are arranged in the same direction by the external magnetic field, so that the spacing between the nanoparticles can be controlled.
  • the particle size of the monodisperse superparamagnetic nanoparticle clusters prepared by the above process is controlled to about 150 nm and stably dispersed to apply a magnetic field so that the color of the dispersed colloid changes according to the strength of the magnetic field, and brown color increases as the strength of the magnetic field increases. Nanoparticle colloids become blue, making them a versatile color-variable application.
  • various colors may be changed through magnetic field discoloration compared to a display layer without a magnetic layer pattern.
  • the color change material may further improve color change and color diversity by realizing the discoloration effect by the proximity of an external magnetic material
  • the color display material includes a separate material layer such as a magnetization material instead of a medium of the color display material.
  • the microparticles are often applied because of the difficulty in manufacturing a general printing apparatus and a film therefor.
  • photonic crystal is an example of nanoparticles that must include a liquid solvent in realizing material properties.
  • the nanoparticles move directly and reflect the color corresponding to a specific wavelength as the arrangement and spacing of the particles change.
  • Inks containing photonic crystal nanoparticles or nanocomposites that change color in response to external magnetic fields are in a liquid state and thus have limited applications.
  • it is essential to prevent leakage of ink and to maintain its properties, and at the same time, it is required for easy storage for a long time and low elasticity and rigid properties of the wall covering the ink so that it can be easily printed on various substrates.
  • the coacervation method uses a highly flexible gelatinous polymer as the wall material of the particles, thus easily forming a closed packing structure between the particles, thereby facilitating the production of the film.
  • Long-term storage is poor due to the phenomenon, it is difficult to apply to silk screen printing applicable to various substrates.
  • hydrophobic ink is used as a wall material such as silica (SiO 2 ) in an aqueous solution, it has process limitations such as hardening of the wall material and difficulty in controlling particle size.
  • In-situ polymerization method is simple in the process step and because the high degree of hardening of the wall material constituting the particles produced, there is little cohesion phenomenon between the particles when stored in the water phase, it is easy to dry and stored even in the powder state.
  • silk screen printing is possible on various substrates, such as paper, porcelain surfaces, cloth, and the like.
  • Korean Patent Laid-Open Publication Nos. 10-2013-0093438 and 10-2014-0120219 disclose a method for preparing a capsule including a photonic crystal dispersion, but the photonic crystal dispersion is physically applied to the photonic crystal particles as a wall material. Since it shows the effect of supporting by using a polymeric material, it has not been disclosed until the method of obtaining micro-particles that can be easily printed by producing a particle form having a wall material having a low elasticity and a hard and deformable shape of the capsule itself.
  • microparticles having a low elasticity and hardening of the wall material to facilitate storage and printability of the nanocomposite whose color is changed by application of an electric or magnetic field.
  • the present invention has been made to solve the problems of the prior art as described above, and an object thereof is to provide a color nanocomposite having a uniform particle distribution and a method of manufacturing the same.
  • the present invention exhibits a characteristic in which the color difference ( ⁇ E * ab ) before and after application of the electric or magnetic field according to the color coordinates of the CIE color system is 2.2 or more and the full width at half maximum (FWHM) of the particle size distribution curve is 30 nm or less.
  • Another object is to provide a color nanocomposite having a large color change and a very uniform particle size by applying a magnetic field.
  • Another object of the present invention is to provide a microparticle including the nanocomposite in a core and a shell having a low elasticity and a hard polymer material, and a method of manufacturing the same.
  • another object of the present invention is to provide long-term storage in the water phase or the microparticles including the nanocomposite discolored by the application of an electric or magnetic field or to be dried at a high temperature to have a storage even in the powder state.
  • Another object of the present invention is to provide microparticles that can be applied to various types of printing or coating processes through microparticles including color nanocomposites capable of realizing various colors.
  • the color nanocomposite according to the present invention relates to a color nanocomposite whose color is varied by application of an electric or magnetic field, wherein the color nanocomposite has a color difference ( ⁇ E * ab ) before and after application of an electric or magnetic field according to a color coordinate of a CIE color system.
  • ⁇ E * ab color difference
  • FWHM full width at half maximum
  • the zeta potential value of the water dispersion state of the color nanocomposite is more than four times compared to the water dispersion state of the nanoparticles It is characterized by flying.
  • the color nanocomposite may be dispersed in a polar or nonpolar medium and rearranged or changed in charge state by application of an electric or magnetic field, wherein the medium may include a dye or a pigment.
  • the color nanocomposite of the present invention may be a mixture of colorant particles and nanoparticles coated with a hydrophobic material, may be composed of nanoparticles coated with a colorant, and may be particles in which colorant particles and nanoparticles are aggregated.
  • Method for producing a color nanocomposite comprises the steps of preparing a mixture by mixing the colorant particles and nanoparticles; Mixing a hydrophobic material in the mixture to form a miniemulsion; And polymerizing the miniemulsion and a monomer.
  • the monomer is styrene (pyridine), pyridine (pyrrole), aniline (aniline), pyrrolidone (pyrrolidone), acrylic acid (acrylate), urethane (urethane), thiophene, carbazole It may be any one or more of (carbazole), fluorene (fluorene), vinyl alcohol (vinylalcohol), ethylene glycol (ethylene glycol), ethoxy acrylate (ethoxy acrylate).
  • the polymerization may be carried out by adding a droplet of the miniemulsion to the medium, and may be carried out by preparing a suspension of the hydrophobic material and the colorant particles, and then adding an initiator.
  • preparing a nanoparticle surface-modified ( ⁇ ) surface of the nanoparticles with a material containing a reactive group Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles; It can be prepared, including; the surface-modified nanoparticles and the adsorption reaction of the colorant particles.
  • modifying the surface of the nanoparticles and colorant particles Preparing a dispersion by mixing the colorant particles and the nanoparticles; It may be prepared, including; the step of causing the adsorption reaction of the colorant particles and nanoparticles.
  • mixing the nanoparticle cluster and the colorant particles may be prepared to include; a step of causing an aggregation reaction of the nanoparticle cluster and the colorant particles.
  • the nanoparticle cluster and the colorant particles are characterized in that the difference ( ⁇ D50) and the difference ( ⁇ Dm) of the average particle diameter according to the particle size distribution curve is 5nm or less.
  • the nanoparticles are silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb) ), Aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr) or one or more metals thereof
  • the colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles.
  • the dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes
  • the pigment particles are pigmented titanium oxide (titanium dioxide), Zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium ( cardmium red, molybdate chrome orange, milori blue, pressian blue, iron blue, cobalt blue, chrome green, chrome hydroxide, zinc green ),
  • the microparticles of the present invention are microparticles containing color nanocomposites rearranged by application of an electric or magnetic field, wherein the microparticles have a pencil hardness of 4 B or less in a dry powder state and a specific surface area using nitrogen gas.
  • the pore volume in the region of 5 nm or less is characterized in that less than 20% of the total pore volume.
  • the microparticles are made of a core material including the color nanocomposite and a shell material made of a polymer or a copolymer.
  • the color nanocomposite may include nano particles and colorant particles surface-modified with a material containing a reactive group, and a material including nano-particles and reactive groups with a surface modified with a material containing a reactive group. It may contain the colorant particle
  • the preparation method of the microparticles containing the color nanocomposite of the present invention may be an in-situ polymerization using an oil phase / water emulsion, and a coacervation approach. It may also be an interfacial polymerization (interfacial polymerization).
  • the print media, the printing method, the display element, and the display method of the present invention are characterized by comprising micro particles containing the color nanocomposite.
  • the color nanocomposite according to the present invention has a very uniform particle distribution and has a large color change by application of an electric or magnetic field, and thus can be applied to various display devices.
  • the microparticles using the color nanocomposite have low elasticity and hard properties of the organic polymer constituting the wall material, and unlike the capsules, there is little agglomeration between the particles, and physical phases such as stirring or rotation in the water phase It can be stored for a long time even if it is left without applying force.
  • the microparticles according to the present invention have low shape deformation of the wall material, the micro particles exhibit an effect of performing a printing process such as silk printing, which can be easily mixed with various adhesives and easily coated on a desired substrate.
  • micro-particles according to the present invention can be stored in a powder form by drying at a high temperature, excellent storage stability and ease of storage, excellent visibility (visibility) can be used in various printing, coating process.
  • the stability of the wall structure surrounding the nanocomposite and the uniformity of the particle size ensure the macroscopic uniformity of the color nanocomposite rearranged by application of an electric or magnetic field, the change in color and the vividness of the color to be realized The effect can be further improved.
  • FIG. 1 is a conceptual diagram illustrating a color nanocomposite according to various embodiments of the present disclosure.
  • FIG. 2 is a process chart showing a method of manufacturing a color nanocomposite according to an embodiment of the present invention.
  • FIG. 3 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • Figure 4 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • FIG. 5 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a nanocomposite prepared by surface modification.
  • FIG. 7 is a conceptual diagram showing a nanocomposite (below) prepared by aggregation.
  • FIG. 8 is a conceptual diagram illustrating a manufacturing process of the iron oxide-Prussian blue nanocomposite.
  • iron oxide nanoparticles (a), iron oxide-Prussian blue nanocomposites (b) reacted with 16 g of K 4 Fe (CN) 6 to 3 g of iron oxide nanoparticles (b), and K 4 Fe (CN) for 3 g of iron oxide nanoparticles.
  • iron oxide nanoparticles (a), iron oxide-Prussian blue nanocomposites (b) reacted with 16 g of K 4 Fe (CN) 6 to 3 g of iron oxide nanoparticles (b), and K 4 Fe (CN) for 3 g of iron oxide nanoparticles. It is a photograph comparing the powder phase (left) and the water dispersion state (right) of the iron oxide-Prussian blue nanocomposite (c) which reacted 6 32 g.
  • iron oxide nanoparticles (a), and iron oxide nanoparticles for 3g K 4 Fe (CN) iron oxide was reacted with 6 16g - K 4 Fe (CN ) for the Prussian blue nanocomposite (b), iron oxide nanoparticles 3g This is the zeta potential measurement result measured in the state of being dispersed in distilled water of the iron oxide-Prussian blue nanocomposite (c) reacted with 6 32g.
  • FIG. 12 is a process chart showing the manufacturing process of the microparticles according to an embodiment of the present invention.
  • 15 is an optical microscope photograph of an aqueous phase of the microparticles (a) of the example and the microparticles (b) of the comparative example.
  • 16 is an optical micrograph of the dry powder of the microparticle (a) of the Example and the microparticle (b) of the Comparative Example.
  • 17 is a photograph showing color development when a magnetic field is applied to microparticles.
  • 19 is an optical micrograph of the microparticles (a) of the example and the microparticles (b) of the comparative example after high temperature storage.
  • FT-IR Fourier transform infrared spectroscopy
  • the color nanocomposite according to an embodiment of the present invention is color-variable by application of an electric or magnetic field, the color difference ( ⁇ E * ab ) before and after application of the electric or magnetic field according to the color coordinates of the CIE color system is 2.2 or more, and the particle size distribution curve
  • the full width at half maximum (FWHM) is characterized in that less than 30nm.
  • the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles.
  • the color difference ⁇ E * ab indicates the degree of change in color (color caused by reflected light or transmitted light) through the rearrangement or change of charge state of the color nanocomposite before and after application of an electric or magnetic field.
  • the color difference 2.2 or more, preferably 3.0 or more, more preferably 3.2 or more as an index, it means that the color change of the degree which can visually clearly confirm the change of color is meant.
  • the half width of the particle size distribution curve is an index indicating uniformity of particles
  • the half width of the peak is 30 nm or less, preferably 20 nm or less, more preferably around D50 of a single peak measured by particle size analysis.
  • the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles.
  • the zeta potential value measured in the water dispersion state tends to be relatively low in the case of nanoparticles, which is directly related to insufficient water dispersion and the lack of arrangement characteristics and color implementation characteristics due to the application of electric or magnetic fields.
  • the color nanocomposite according to the present invention is excellent in water dispersibility and excellent in color change characteristics by application of electric or magnetic fields because the zeta potential value is more than four times higher than that of the nanoparticles. Since the color difference can be achieved, it becomes an index for determining the improved characteristics of the color nanocomposite.
  • the principle that the color nanocomposite realizes the color may be realized through the intrinsic color of the particles due to the colorant particles contained in the nanocomposite, and at the same time, the nanocomposite may be reapplied by application from the outside of an electric or magnetic field.
  • colors may be realized by transmitting or reflecting light of a specific wavelength.
  • the color nanocomposite should have a very uniform particle size and high mobility in a medium for easy color rearrangement for color realization through rearrangement or change of charge state of particles.
  • the color nanocomposites of the present invention may be dispersed and present in a medium, or may be dispersed and present in the form of charged particles.
  • the color nanocomposite may be composed of a core-cell structure or a multi-core-cell structure.
  • the color nanocomposite of the present invention exhibits a uniform size in the particle size of 50 to 1000 nm, preferably 100 to 500 nm, more preferably 100 to 300 nm.
  • the uniformity of the particles may be more important than the particle size, and thus may be out of the range of the particle size.
  • the color nanocomposite of the present invention comprises nanoparticles, wherein the nanoparticles can be conductive particles, metal particles, organometallic particles, metal oxide particles, magnetic particles, hydrophobic organic polymer particles, and by the application of external energy. It may be a particle exhibiting photonic crystal properties imparting regularity to the arrangement and spacing of the particles.
  • the organic material nanoparticles may be made of a high molecular material such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, particles whose surface is modified by an organic compound having a hydrocarbon group, carboxyl group, ester group, ah. Particles whose surface is modified by an organic compound having any one or more of the actual groups, particles whose surface is modified by a complex compound containing a halogen element, and whose surface is modified by a coordination compound containing amines, thiols, and phosphines
  • grains which form a radical in the surface and have an electric charge are mentioned.
  • the nanoparticles may be particles imparting electrical polarization characteristics. That is, as the external magnetic field or electric field is applied to polarize the medium, the polarization of ions or atoms is further induced to increase the amount of polarization, and the residual polarization amount exists even when the external magnetic field or the electric field is not applied and the magnetic or electric field is applied. It can contain ferroelectric materials that remain hysteresis along the direction, and when an external magnetic or electric field is applied, an additional ionic or atomic polarization is induced to increase the amount of polarization greatly, but no external magnetic or electric field is applied. In this case, it may include a paraelectric material and a superparaelectric material in which residual polarization and hysteresis remain.
  • Such materials may include materials having a perovskite structure.
  • Ie ABO 3 Examples of the material having a structure include PbZrO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , SrTiO 3 , BaTiO 3 , (Ba, Sr) TiO 3 , CaTiO 3 , LiNbO 3, and the like.
  • the nanoparticles may be made of particles containing single or different types of metals, oxide particles or photonic crystal particles.
  • a metal in the case of a metal, a metal nitrate compound, a metal sulfate compound, a metal fluoracetoacetate compound, a metal halide compound, a metal perchloroate compound, a metal sulfamate compound, a metal styrate compound and an organometallic compound
  • Magnetic precursors selected from the group consisting of: alkyl trimethylammonium halide-based cationic ligands, alkyl acids, trialkylphosphines, trialkylphosphine oxides, neutral ligands such as alkylamines, alkylthiols, sodium alkyl sulfates, sodium alkylcarboxylates
  • the amorphous metal gel may be prepared by adding a ligand selected from the group consisting of anionic ligands such as sodium alkyl phosphate, sodium acetate, and the like to a solvent to dissolve it, and heating the phase to crystalline particles.
  • the magnetic properties of the particles finally obtained by containing heterogeneous precursors may be enhanced, or various magnetic materials such as superparamagnetism, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and diamagnetic may be obtained.
  • the color nanocomposites of the present invention may be dispersed in a medium and rearranged by application of an electric or magnetic field.
  • a medium may be a polar or nonpolar medium.
  • a medium for example, water, methanol, ethanol, propanol, butanol, propylene carbonate, toluene, benzene, hexane, chloroform, halocarbon oil, perchloroethylene, trichloroethylene, isopar-G which is a kind of isoparaffin oil, isopar-M
  • isopar-G which is a kind of isoparaffin oil
  • isopar-M One or more of, isopar-H can be used.
  • the color nanocomposite of the present invention may have its own intrinsic color and may represent colors by rearrangement of particles, and in addition, various colors may be realized by applying a predetermined color to the medium.
  • the medium may comprise a dye or a pigment.
  • the dye may be azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes, and the like, and the pigments include titanium dioxide, zinc oxide, and lithopone.
  • Zinc sulfonate Carbon black, Graphite, Chrome yellow, Zinc chromate, Red oxide of iron, Red lead, Cardmium red, Molybdate chrome orange, Royal blue, pressian blue, iron blue, Cobalt blue, Chrome green, Chrome hydroxide, Zinc green Inorganic pigments such as aluminum powder, bronze powder, fluorescent pigment, pearl pigment, or insoluble azo, soluble azo, phthalocyanine, quinacridone, dioxazine, isoindolinone, and dry dye Organic compounds such as phyllocholine, fluorine-based, quinophthalone-based and metal complexes There used to be
  • various methods may be applied to the method of manufacturing the color nanocomposite of the present invention.
  • various methods of preparing nanocomposites according to the formation of an emulsion may include various methods as shown in Table 1 below.
  • Figure 1 shows a colored nanocomposite according to various embodiments.
  • the nanocomposite of the present invention may be formed by mixing colloidal particles and dyes or pigments (FIG. 1A), and may further include an expression material to form nanocomposites (FIG. 1B), and a cured material.
  • the nanocomposite may be additionally included (FIG. 1C), or the nanocomposite may be formed additionally including a hardening material and an expression material (FIG. 1D).
  • FIG. 2 is a process chart showing a method of manufacturing a color nanocomposite according to an embodiment of the present invention.
  • the nanocomposite comprises the steps of preparing a mixture by mixing the colorant particles and nanoparticles; Mixing a hydrophobic material in the mixture to form a miniemulsion; And polymerizing the miniemulsion and a monomer.
  • an anionic surfactant in order to form a miniemulsion, an anionic surfactant, a cationic surfactant, or a nonionic surfactant is included to maintain the dispersion of the colloidal particles.
  • the emulsion may be prepared by a chemical method using interfacial chemical properties or by physical methods such as ultrasonic dispersion, rotary stirring, colloid mill, homogenizer and the like.
  • the step of polymerization may be carried out by adding a droplet of the miniemulsion to the medium, after preparing a suspension of the hydrophobic material and the colorant particles, it may be carried out by adding an initiator.
  • the monomers applied to the miniemulsion of the present invention are styrene, pyridine, pyrrole, aniline, pyrrolidone, acrylic acid, urethane, Thiophene, carbazole, fluorene, fluorene, vinyl alcohol, vinyl alcohol, vinyl glycol, ethylene glycol, ethoxy acrylate may be one or more.
  • FIG. 3 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • the nanocomposite comprises the steps of preparing a nanoparticle surface-modified ( ⁇ ) the surface of the nanoparticles with a material containing a reactive group; Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles; It can be prepared, including; the surface-modified nanoparticles and the adsorption reaction of the colorant particles.
  • the surface modification is to make the surface of the nanoparticles with a reactive group such as a hydroxyl group (-OH), an amine group (-NH), etc., for example, by coating the nanoparticles with a silica containing a hydroxyl group which is a reactive group may cause surface modification. have. It can also be modified with an amine group (-NH) through the coating of aminosilane.
  • a reactive group such as a hydroxyl group (-OH), an amine group (-NH), etc.
  • the type of surface group depends on the type of colorant to be adsorbed. For example, when the carbon nanoparticles are used as the colorant, the surface is replaced with a hydroxyl group and adsorbed. When dye particles such as methylene blue are used as the colorant, the surface may be replaced with an amine group.
  • graphene oxide grafted with ethylene diamine may be used instead of the carbon nanoparticles, or carbon nanoparticles modified with a hydroxyl group may be used to increase the adsorption reaction efficiency.
  • Figure 4 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • the color nanocomposite is a step of modifying the surface of the colorant particles; Preparing a dispersion by mixing the colorant particles and the nanoparticles; It is prepared, including; causing the adsorption reaction of the colorant particles and nanoparticles.
  • 5% of graphene oxide is mixed with ethanol and then dispersed with an ultrasonic disperser for 2 hours, and the dispersion is placed in a reactor and adjusted to pH 11 with ammonia while stirring. Then, aminosilane is added to convert the surface of graphene oxide into an amine group. After washing this, mixed with silica-coated iron oxide nanoparticle cluster colloid aqueous solution, the temperature was raised to 80 ° C. and stirred for 12 hours to generate an adsorption reaction, and the zeta potential of -45 mV to -50 mV had a positive value or a negative value. It can be confirmed that adsorption is good even if the charge is very low.
  • 10 to 30nm class carbon black particles may be acid treated to modify the surface with a hydroxyl group and then react with the iron oxide nanoparticle cluster colloid modified with an amine group.
  • the nanocomposite may be prepared by using an iron oxide nanoparticle cluster coated with silica and surface modified with a hydroxyl group and methylene blue modified with an amine group.
  • the dispersed iron oxide nanoparticle cluster colloid is adjusted to pH 11 using ammonia, mixed with an ethanol solution in which 1% methylene blue is dissolved, and stirred for 12 hours to prepare a nanocomposite, and the zeta potential value is -7 to Measured at +10 mV. This can be confirmed that the reaction occurs firmly compared with the zeta potential value of -48 to -35mV of the general iron oxide nanoparticle cluster coated with silica.
  • FIG. 5 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
  • the color nanocomposite may include mixing nanoparticle clusters and colorant particles; And agglomeration reaction of the nanoparticle clusters and the colorant particles.
  • the nanoparticle cluster and the colorant particles should satisfy a range of 5 nm or less in the difference between the median particle diameter ( ⁇ D50) and the average particle diameter ( ⁇ Dm) according to the particle size distribution curve.
  • the particle size distribution curve is symmetric about D50, there is no difference between D50 and Dm.However, if the particle size distribution curve is asymmetric, the difference between D50 and Dm occurs. The larger the difference, the less uniform the particle size distribution is. Means that.
  • ⁇ D50 is an index indicating the size of two kinds of particles, and when 5 nm or less, two kinds of particles may be uniformly mixed to substantially the same size to form a nanocomposite.
  • ⁇ Dm is an index indicating particle uniformity and particle size difference between two kinds of particles, and simultaneously satisfies a value of 5 nm or less of ⁇ D50 and ⁇ Dm, so that the particle size is uniform and the particle size difference is substantially the same. It will be used as an indicator.
  • the nanocomposite is prepared by oxidizing the surface of 20 to 50nm grade carbon black, surface modification with a hydroxyl group to be easily dispersed in an ethylene glycol solvent, and then mixed with iron oxide nanoparticle clusters. As the concentration was increased, the color of the surface was changed to black, and it was confirmed that the color can be adjusted according to the ratio of mixing two kinds of particles.
  • the difference between the manufacturing method by the surface modification and the manufacturing method by the aggregation will form a nanocomposite prepared by the surface modification (FIG. 6) and a nanocomposite prepared by the aggregation (FIG. 7).
  • a negative ( ⁇ ) charge is applied to a surface by coating a material (eg, silica) capable of imparting a reactor to the surface of the nanoparticles (2),
  • a material eg, silica
  • the dye particles are physically adsorbed or chemisorbed on the surface of the nanoparticles to form nanocomposites (3).
  • the nanoparticles 1 and the oxidized carbon black particles 2 are dispersed in an ethylene glycol solvent and then flocculated (3) under oil / water phase conditions. Nanocomposites are formed.
  • the intrinsic color of the nanocomposite changes depending on the amount of carbon black mixed, the color can be adjusted according to the use.
  • the colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles.
  • the dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes
  • the pigment particles are pigments titanium oxide (titanium dioxide), Zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium ( cardmium red, molybdate chrome orange, milori blue, pressian blue, iron blue, cobalt blue, chrome green, chrome hydroxide, zinc green ),
  • Example 2 the iron oxide-Prussian blue nanocomposite was prepared.
  • 1N-HCl solution was used to titrate pH 2 to the mixed dispersion solution prepared through the above procedure, and stirred vigorously at 500 rpm for 1 hour.
  • the prepared turquoise dispersion solution was washed five times with distilled water while applying a magnetic field using a permanent magnet, and then dried in an oven at 70 ° C. to obtain a turquoise powder.
  • the Prussian blue is coated on the surface by increasing the particle size in the iron oxide-Prussian blue nanocomposite when compared to the iron oxide nanoparticles (a).
  • the content of K 4 Fe (CN) 6 is increased, the surface roughness of the particles tends to increase, indicating that it is necessary to react the nanoparticles with the pigment at an appropriate ratio depending on the type of nanoparticles or pigments. .
  • the zeta potential value of the iron oxide nanoparticles is relatively low as 8 mV.
  • the dispersion state was very stable at 35 to 40 mV (FIG. 11).
  • iron oxide-Prussian blue nanocomposite of the present invention exhibits excellent properties as photonic crystals under magnetic field application conditions.
  • a high zeta potential value may result in the nanocomposite of the present invention exhibiting a distinct color change by application of an electric or magnetic field.
  • the rearrangement characteristics of the nanocomposite are greatly improved by applying electric or magnetic fields. Can be.
  • the color nanocomposite of the present invention can be applied to various fields such as color variable glass, color variable wallpaper, color variable solar cell, color variable sensor, color variable paper, color variable ink, anti-counterfeiting tag, and the like by applying to a labeling device.
  • a magnetic field by applying a color nanocomposite of the present invention comprising a display area formed on a surface of a substrate or a corresponding object, and dispersed in a curing medium to the display area At least one of the reflected light and the transmittance is changed, and when a specific energy is applied, an expression material expressing predetermined characteristics may be separately present in the curing medium.
  • the microparticles of the present invention are microparticles containing color nanocomposites that are rearranged by application of an electric or magnetic field, wherein the microparticles have a pencil hardness of 4B or less, and the pores according to specific surface area measurement using nitrogen gas. It is characterized in that the pore volume in the region of 5 nm or less in the pore size distribution is 20% or less of the total pore volume.
  • the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles.
  • the microparticles of the present invention have lower elasticity and harder properties of wall materials than conventional capsules. Therefore, it is excellent in the storage of the color nanocomposite contained in the particles, unlike the capsule is easy to print because the particles are not destroyed during printing.
  • the colored nanocomposite exhibiting these properties exhibits a pencil hardness of 4 B or less, preferably 3 B or less, in a dry powder state.
  • the conventional microcapsule has a pencil hardness of 9B or more and the strength of the wall material is very weak, it can be seen that the microparticles of the present invention greatly improve the wall material strength.
  • the strength of the wall material of such microparticles can be inferred from the void volume of the micropores present in the wall material.
  • Pore volume can be measured by BET specific surface area measurement using gas adsorption-desorption method. In this case, the surface area is measured by adsorption-desorption of gases such as nitrogen, argon, krypton, oxygen, helium and carbon monoxide.
  • the micropores are pores of 5 nm or less, and the higher the density of the polymer constituting the wall material, the smaller the pore volume of the micropores. Therefore, the pore volume of the micropore region tends to be inversely proportional to the strength of the wall material, and in order to obtain sufficient strength of the microcapsules in the present invention, the pore volume in the region of 5 nm or less must satisfy 20% or less of the total pore volume. When the pore volume in the 5 nm or less region exceeds 20% of the total pore volume, the wall is observed to be formed of an aggregate of polymers, which is associated with a tendency to decrease the volume of the micropore region.
  • the microparticles according to the present invention may be prepared through a reaction process of forming an emulsion and core-cell structuring.
  • the core material is prepared by dispersing the color nanocomposite in a dispersion medium (S110).
  • the color nanocomposite may be dispersed at a ratio of 0.1 to 25% by weight based on the dispersion medium, but may be dispersed in a larger amount as needed.
  • the dispersion of the shim material is dispersed using an ultrasonic disperser or homogenizer.
  • a polymer precursor capable of exhibiting low elasticity and rigid properties may be used.
  • a copolymer such as urea-formaldehyde, melamine-formaldehyde, methylvinyl ether commaleic anhydride, gelatin, polyvinyl Polymers such as alcohol, polyvinylacetate, cellulosic derivatives, acacia, carrageenan, carboxymethylcellulose, hydrolyzed styrene anhydride copolymers, agar, alginate, casein, albumin, cellulose phthalate and the like can be used.
  • the prepolymer may be prepared in a dispersion by dispersing in a dispersion medium like the nanocomposite.
  • the dispersion of the nanocomposite prepared in step S110 and the prepolymer dispersion of the wall material prepared in step S120 may be mixed and stirred to form an emulsion (S130). It is necessary to optimize the ratio of the nanocomposite and the prepolymer under the conditions for forming such an emulsion, and the two dispersions may be mixed in a volume ratio of 1: 5 to 1:12. In addition, a stabilizer may be added to improve dispersibility.
  • the color nanocomposite may be in a dispersed phase and the wall material may be in a continuous phase.
  • an additive may be added to increase the stability of the emulsion.
  • Such additives may be organic polymers having high viscosity and high wettability after dissolution in an aqueous phase.
  • gelatin polyvinyl alcohol, sodium carboxymethyl cellulose, starch, hydroxyethyl cellulose, polyvinylpyrrolidone, alginate At least one of them can be used.
  • the core material dispersion may be encapsulated by controlling the pH and temperature of the emulsion formed in the step S130 so that the continuous wall material dispersion is deposited around the discolored magnetic discoloring ink to form a wall of the capsule (S140). That is, the encapsulation is performed by an in situ polymerization method, in which case, the capsule wall material may be more densely formed to reduce the elasticity, thereby adding an additive to increase the hardness of the wall material.
  • the type of additive to be added may be an ionic or polar substance that is well soluble in the aqueous phase.
  • an ionic or polar substance that is well soluble in the aqueous phase.
  • ammonium chloride, resorcinol, hydroquinone, and catechol which is a curing catalyst, may be used.
  • microparticles containing the color nanocomposite of the present invention may be prepared by the in situ polymerization method as described above, but may also be prepared by a coacervation method E or an interfacial polymerization method.
  • an oil phase / water emulsion of an internal phase and an external phase is used.
  • the color nanocomposite colloid is coacervated out from the aqueous outer phase and granulated by forming walls in the oil phase droplets of the inner phase by controlling temperature, pH, relative concentration, and the like.
  • urea-formaldehyde, melamine-formaldehyde, gelatin, arabic rubber, or the like can be used as the wall material.
  • the lipophilic monomer in the inner phase depending on the presence of the lipophilic monomer in the inner phase, it is present as an emulsion in the aqueous outer phase.
  • the monomer in the inner phase liquid crystal reacts with the monomer introduced into the aqueous outer phase, the polymerization takes place at the interface between the droplet of the inner phase and the surrounding aqueous outer phase, and a wall of particles is formed around the droplet.
  • the formed wall is relatively thin and permeable, but unlike other manufacturing methods, heating is not required, and thus there is an advantage in that various dielectric liquids can be applied.
  • the microparticles according to the invention consist of a uniform sphere of 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the uniformity of the shape and size of the capsule is to ensure the macroscopic uniformity of the color nanocomposite rearranged by the electric or magnetic field, thereby improving the color change and the sharpness of the color to be implemented. If the uniformity of the shape and size of the microparticles is not secured, even if the color nanocomposites dispersed in the microparticles are rearranged uniformly, irregularities are increased macroscopically, resulting in insufficient color change and implementation.
  • Table 2 shows the results of measuring the particle size distribution of the microparticles (Comparative Example) prepared by reducing the amount of the curing catalyst to 1/2 without using the microparticles (Example) and the stabilizer prepared by the present invention. have.
  • the microparticles according to the present invention has a D50 of 23.23 ⁇ m having the size of the particle required by the present invention, it can be seen that the D50 is rapidly increased when the manufacturing conditions are changed. Uniformity of the particle size distribution can also be seen by examining the particle size distribution graph of the microparticles according to Examples and Comparative Examples (Fig. 13).
  • the comparative example is 113.95 ⁇ m, which shows that the uniformity of the average particle size distribution is greatly deteriorated compared to the examples. Therefore, it was confirmed that the microparticles of the present invention can be obtained by strictly controlling the production conditions and physical properties of the microparticles in the present invention.
  • the microparticles of the present invention have less agglomeration between the particles even after drying due to the low elasticity of the wall material and the hard properties. This can be seen by examining the optical micrograph of the powder state prepared by the room temperature drying of the Example (FIG. 16A) and the Comparative Example (FIG. 16B). In Example, no agglomeration occurred after drying and almost no change in the shape of the particles was observed, but in the Comparative Example, it was confirmed that the shape change and the partial agglomeration occurred. Therefore, the particles according to the comparative example can be seen to exhibit properties similar to the conventional capsule.
  • FIG. 17 is a photograph showing the appearance of color when a rubber particle having a magnetic field strength of 100 gauss is applied to the rear surface of the slide glass after applying the microparticles of the present invention to the slide glass at a thickness of 100 ⁇ m.
  • the uniformity of the microparticles of the present invention has the effect of causing a noticeable color change even in a weak magnetic field.
  • the microparticles of the present invention exhibit excellent heat resistance due to the low elasticity and rigid properties of the wall material.
  • the microparticles according to the Examples and Comparative Examples evenly sprayed on the slide glass and left for 24 hours in a hot air dryer at 100 °C, the result of the change in the shape of the particles observed. From the above results, it was confirmed that the rigidity of the wall material of the microparticles according to the present invention is excellent in thermal stability.
  • This property means that it can withstand high temperature printing conditions, which means that it can be applied to various types of display elements or print media.
  • FT-IR Fourier transform infrared spectroscopy
  • the wall material of the microparticles of the present invention was found to have a very dense structure, a very high elasticity, a low elasticity, and a hard property.
  • microparticles including the color nanocomposite of the present invention have no agglomeration during dry storage, and are excellent in thermal stability and wall strength, and thus can be applied to various types of printing, and particularly heat resistance and coagulation resistance such as silk screen printing are required. It can be applied to inks that can be used to broaden the application.
  • microparticles according to the present invention When the microparticles according to the present invention are applied to an ink for printing, they can be dispersed and used in binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • the surface active agent and the crosslinking agent may be added to the binder to improve the durability of the printing or coating process.
  • Printing using the microparticles includes all forms of printing and coating, and may be a coating such as roll coating, gravure coating, dip coating, spray coating, meniscus coating, sping coating, brush coating, air knife coating, or silkscreen. It may be carried out through printing such as printing, electrostatic printing, thermal printing, inkjet printing.
  • complex counterfeits such as alcoholic beverages, gourmet foods, bills, checks, identification cards, passports, vehicle production numbers, high-end machine IDs, high-end merchandise labels, clothing labels, high-end bags labels, software product markings, high-end electronic product numbers, etc. It can be produced with a printing medium such as an ink for the prevention technology, it can be printed on a variety of products using such a printing medium.
  • the display device may be manufactured with various display devices such as color variable glass, color variable wallpaper, color variable solar cell, color variable sensor, color variable paper, color variable ink, and anti-counterfeiting tag, and display colors using such display elements. You can do it.
  • various colors can be displayed by using a medium generating a magnetic or electric field to cause a color change, to maintain a changed color, or to return to the original color when the magnetic or electric field is removed.
  • it may be used as a color display device for forming pixels by forming barrier ribs using a roll-to-roll method and injecting a display material including the microparticles of the present invention.
  • microparticles having different thresholds for electric fields may be applied to the reflective display device. That is, the microparticles having different colors may be positioned in the reflective display device divided into the partition including the upper and lower substrates and the upper and lower electrodes, thereby realizing various colors by applying an electric field.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The present invention relates to microparticles which are rearranged by the application of an electric field or a magnetic field and contain a color nanocomposite including nanoparticles, and to a method for manufacturing the microparticles, wherein, in the microparticles, the pencil hardness in a dry powder state is 4B or less; and the pore volume of the region of 5 nm or less is 20% or less of the total pore volume in the pore size distribution according to the specific surface area measurement using nitrogen gas, and the pore volume of the region of 3 nm or less is 20% or less of the total pore volume in the pore distribution according to the specific surface area measurement using argon gas.

Description

컬러 나노 복합체를 함유하는 마이크로 입자 및 이의 제조방법.Micro particles containing color nanocomposites and methods for their preparation.
본 발명은 컬러 나노 복합체 및 이의 제조방법, 상기 컬러 나노 복합체를 함유하는 마이크로 입자 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 전기장 또는 자기장에 반응하여 색 가변이 일어나는 컬러 나노 복합체 및 이의 제조방법 및 심(core)에 상기 컬러 나노 복합체를 포함하고 벽재(shell)는 탄성이 적고 단단한 고분자 물질로 이루어지는 마이크로 입자 및 이의 제조방법에 관한 것이다.The present invention relates to a color nanocomposite and a method for manufacturing the same, a microparticle containing the color nanocomposite and a method for manufacturing the same, and more particularly, a color nanocomposite and a method for producing the color change in response to an electric or magnetic field and The core includes the color nanocomposite and the shell (shell) relates to the microparticles made of a high elastic and hard polymer material and a method of manufacturing the same.
나노입자는 양자 크기의 효과에 의해 마이크론 크기 이상의 입자에 없는 독특한 특성을 나타내며, 벌크 상태와 동일한 특성을 가진 경우에도, 상대적으로 큰 표면적으로 인해 우수한 발광 특성, 자기 특성, 촉매 특성 등을 나타낸다.Nanoparticles exhibit unique properties that are not found in particles larger than micron size by the effect of quantum size, and exhibit excellent luminescent properties, magnetic properties, catalytic properties, etc., due to their relatively large surface area, even when they have the same properties as the bulk state.
과거 수십 년 동안 다양한 나노입자의 합성 방법이 연구되고 있으나, 그 중에서도 자성 나노입자는 우수한 자기적 특성을 가지고 있을 뿐만 아니라, 입자의 크기가 대략 20nm 이하의 크기가 되면 개개의 나노입자들이 초상자성(superparamagnetics)을 가지게 되어 다양한 응용이 가능할 것으로 주목받고 있다.In the past decades, various nanoparticle synthesis methods have been studied. Among them, magnetic nanoparticles not only have excellent magnetic properties, but when the particle size is about 20 nm or less, individual nanoparticles are superparamagnetic ( It is attracting attention that it will have a variety of applications due to its superparamagnetics.
즉, 초상자성 나노입자는 평상시에는 일반적인 자기적 특성도 보이지 않고 잘 분산되어 있다가 외부 자기장에 의해 나노 입자들의 자기장 모멘트가 배열하여 동일 방향으로 자화되어 나노 입자간의 간격이 조절 될 수 있다.That is, the superparamagnetic nanoparticles are normally dispersed without showing the general magnetic properties, but the magnetic field moments of the nanoparticles are arranged in the same direction by the external magnetic field, so that the spacing between the nanoparticles can be controlled.
자기적 특성이 우수하고 크기가 균일한 초상자성 나노입자들을 합성하는 방법으로 유기 용매에서 금속염이나 착화합물을 환원 열분해하는 방법이 널리 알려져 있다(미국 특허공보 제6,676,729호, 제7,407,527호)As a method of synthesizing superparamagnetic nanoparticles having excellent magnetic properties and uniform size, reduction pyrolysis of metal salts or complex compounds in organic solvents is widely known (US Patent Nos. 6,676,729 and 7,407,527).
그러나 이러한 열분해 방법으로 합성된 초상자성 나노입자들은 표면이 긴 포화 탄화수소 사슬의 리간드에 의해 보호 또는 강하게 결합되어 있기 때문에, 응용을 위한 표면 처리가 어렵고 표면에 존재하는 유기 리간드들은 초상자성 특성 발현을 저해하며, 나노입자 입자가 수용액에 분산되는 것을 방해하여 생물학적 응용을 제한한다.However, since superparamagnetic nanoparticles synthesized by this pyrolysis method are protected or strongly bound by ligands of long saturated hydrocarbon chains, surface treatment for application is difficult and organic ligands present on the surface inhibit the development of superparamagnetic properties. And prevents the nanoparticle particles from dispersing in aqueous solution to limit biological applications.
이를 극복하기 위한 방법으로, 유/무기 물질을 이용하여 개개의 나노입자들을 응집시키는 것이 아니라, 반응이 진행되면서 스스로 뭉쳐짐으로써 나노클러스터 콜로이드를 형성시키는 방법들이 제안되어 왔다(Angew. Chem. Int. Ed., 2005, 44, 2782., J. Am. Chem. Soc., 2009, 131, 12900.)As a method for overcoming this, methods for forming nanocluster colloids by aggregating themselves as the reaction proceeds, rather than aggregating individual nanoparticles using organic / inorganic materials (Angew. Chem. Int. Ed., 2005, 44, 2782., J. Am. Chem. Soc., 2009, 131, 12900.)
또한, 나노클러스터 제조의 양산성을 증대시키고자 전구체 물질을 합성하기 위한 다양한 배합비에 대해서도 검토되고 있다. 즉, 반응물의 양이나 반응물들 간의 비율, 반응 온도 및 시간에 따라 자성 나노클러스터의 크기를 조절하고, 이종 금속의 종류 및 첨가량에 따라 자기적 특성을 증가시키거나 초상자성, 상자성, 강자성, 반강자성 등으로 다양하게 변형될 수 있는 자성 나노클러스터 제조 방법을 개발되었다(대한민국 등록특허공보 10-1151147호)In addition, various compounding ratios for synthesizing precursor materials in order to increase the mass productivity of nanocluster production are also studied. That is, the size of the magnetic nanoclusters is controlled according to the amount of reactants or the ratio between reactants, reaction temperature and time, and the magnetic properties are increased according to the type and amount of dissimilar metals, or superparamagnetic, paramagnetic, ferromagnetic, and antiferromagnetic A method of manufacturing a magnetic nanocluster that can be modified in various ways has been developed (Korea Patent Publication No. 10-1151147)
상기와 같은 공정으로 제조된 단분산 초상자성 나노입자 클러스터들의 입경을 150nm 내외로 조절하고 안정되게 분산시켜 자기장을 인가하면 자기장의 세기에 따라 분산 콜로이드의 색상이 변화되어 자기장의 세기가 증가할수록 갈색의 나노입자 콜로이드는 푸른색을 띠게 되므로 다양한 색가변 응용제품을 제조할 수 있다.The particle size of the monodisperse superparamagnetic nanoparticle clusters prepared by the above process is controlled to about 150 nm and stably dispersed to apply a magnetic field so that the color of the dispersed colloid changes according to the strength of the magnetic field, and brown color increases as the strength of the magnetic field increases. Nanoparticle colloids become blue, making them a versatile color-variable application.
예를 들어, 컬러 나노 복합체를 포함하는 컬러 표시 물질의 표시층의 상부에 패턴화된 자성층을 적층하거나 하부에 자성층을 적층함으로써 자성층 패턴이 없는 표시층에 비하여 자성층의 자장에 의한 변색을 통해 다양한 색상을 나타내게 할 수도 있고, 외부 자성체의 근접에 의하여 다시 변색 효과를 구현함으로써 색 변화와 색 다양성을 더욱 향상시킬 수도 있으며, 컬러 표시 물질의 매개체 대신 자화물질 등의 별도의 물질층을 컬러 표시 물질이 포함된 표시층의 하부에 배치함으로써, 외부에서 자기장이 인가되지 않을 때에는 색을 구현하지 않거나 변색이 발생하지 않다가 외부에서 인가되는 자기장에 의해 안정적으로 광결정 내지 입자들이 배열 및 간격이 조절되어 구현된 색상, 이미지, 정보를 자기장이 제거된 이후에도 유지할 수도 있다.For example, by stacking a patterned magnetic layer on top of a display layer of a color display material including a color nanocomposite or by stacking a magnetic layer on a bottom, various colors may be changed through magnetic field discoloration compared to a display layer without a magnetic layer pattern. In addition, the color change material may further improve color change and color diversity by realizing the discoloration effect by the proximity of an external magnetic material, and the color display material includes a separate material layer such as a magnetization material instead of a medium of the color display material. When the magnetic field is not applied from outside, color is not realized or discoloration does not occur, and photonic crystals or particles are arranged and spaced stably by an externally applied magnetic field. In addition, images and information can be retained even after the magnetic field is removed.
그러나 이러한 다양한 형태의 응용을 위해서는 전기장 또는 자기장의 인가에 의한 색 변화가 매우 커서 시인성(visibility)이 뛰어난 특성을 나타내며 입자 크기가 매우 균일한 나노 복합체가 필요하나 종래기술의 재료로는 이러한 효과를 충분히 구현하기에 불충분하다.However, for such various types of applications, nano-composites with very high visibility and very uniform particle sizes are required due to the large color change caused by the application of electric or magnetic fields. Insufficient to implement
한편, 최근 물질의 사용용도에 따라 물질 자체를 더럽히거나 손상 또는 특성을 변화시키지 않게 보호하거나 다른 물질과 반응하지 않게 격리하여 보관 유지하기 위한 방법의 일환으로 제약산업, 농약 관련 산업 및 디스플레이 분야 등에서 마이크로 입자을 다양하게 적용하고 있다. Meanwhile, as part of a method for protecting the material itself from being polluted, damaged or changed according to the usage of the material, or isolating and keeping it from reacting with other materials, the pharmaceutical industry, pesticide-related industry and display fields, etc. There are various applications of micro particles.
특히 나노입자 자체가 하나의 일정 매질 속에 분산되어 있는 용액 상태일 경우는 일반 인쇄장치 및 이를 위한 필름 등의 제조가 어렵기 때문에 마이크로 입자을 적용하는 경우가 많다. In particular, when the nanoparticles themselves are in a solution state dispersed in a certain medium, the microparticles are often applied because of the difficulty in manufacturing a general printing apparatus and a film therefor.
한편, 필수적으로 물질의 특성을 구현하는데 있어서, 액체상태의 용매를 포함해야 하는 나노입자의 한 예로 광결정(photonic crystal)을 꼽을 수 있는데, 이는 일정한 형태로 고정된 구조의 광결정과는 달리 외부에서 일정한 자기장 에너지를 주었을 때 나노입자들이 직접 이동하여 입자들끼리의 배열과 간격이 변함에 따라 특정한 파장에 해당하는 색을 반사하는 특성을 나타낸다. On the other hand, photonic crystal is an example of nanoparticles that must include a liquid solvent in realizing material properties. When the magnetic field energy is given, the nanoparticles move directly and reflect the color corresponding to a specific wavelength as the arrangement and spacing of the particles change.
외부 자기장에 따라 색상이 변하는 광결정 나노입자 또는 나노 복합체를 포함하는 잉크 자체는 액체상태이기 때문에 응용분야가 한정적이다. 다양한 응용을 위해서는 잉크의 누액방지 및 특성유지가 필수적으로 요구되는 동시에 장기간 동안의 보관 용이성과 다양한 기재에 쉽게 인쇄할 수 있도록 잉크를 둘러싸는 벽재의 탄성이 적고 단단한 성질이 요구된다. Inks containing photonic crystal nanoparticles or nanocomposites that change color in response to external magnetic fields are in a liquid state and thus have limited applications. For various applications, it is essential to prevent leakage of ink and to maintain its properties, and at the same time, it is required for easy storage for a long time and low elasticity and rigid properties of the wall covering the ink so that it can be easily printed on various substrates.
일반적인 마이크로 입자 제조방법 중 화학적 접근방법은 코아세르베이션(coacervation) 방법, 계면 중합법, 인 시튜 중합법(in situ polymerization)의 3가지가 많이 사용되고 있다. Among chemical microparticles, three chemical approaches are commonly used: coacervation, interfacial polymerization, and in situ polymerization.
코아세르베이션 방법은 입자의 벽재로 유연성이 높은 젤라틴 고분자를 사용하기 때문에 입자들끼리의 조밀구조(closed packing structure)를 쉽게 형성하여 필름 제작이 용이하나, 교반을 하지 않고 보관하는 경우 입자끼리의 응집현상에 의해 장기 보관성이 떨어지며, 다양한 기재에 적용 가능한 실크 스크린 인쇄에는 적용하기가 힘들다. 계면 중합법의 경우 소수성 잉크를 수용액 상에서 실리카(SiO2) 등의 벽재로 사용하기 때문에 벽재의 경화도와 입자 사이즈 조절이 어려운 등의 공정상의 제한성을 가진다.The coacervation method uses a highly flexible gelatinous polymer as the wall material of the particles, thus easily forming a closed packing structure between the particles, thereby facilitating the production of the film. Long-term storage is poor due to the phenomenon, it is difficult to apply to silk screen printing applicable to various substrates. In the case of the interfacial polymerization method, since hydrophobic ink is used as a wall material such as silica (SiO 2 ) in an aqueous solution, it has process limitations such as hardening of the wall material and difficulty in controlling particle size.
인 시튜 중합법은 공정단계가 간단하며 제조되는 입자를 구성하는 벽재의 경화도가 높기 때문에 수상에서 그대로 보관했을 때 입자끼리의 응집현상이 거의 없으며, 건조하여 분말 상태로도 보관이 용이하다. 또한, 다양한 기재, 예를 들면 종이, 도자기 표면, 천 등에 실크 스크린 인쇄가 가능하다. In-situ polymerization method is simple in the process step and because the high degree of hardening of the wall material constituting the particles produced, there is little cohesion phenomenon between the particles when stored in the water phase, it is easy to dry and stored even in the powder state. In addition, silk screen printing is possible on various substrates, such as paper, porcelain surfaces, cloth, and the like.
대한민국 공개특허공보 제10-2013-0093438호, 제10-2014-0120219호에서 광결정 분산액을 포함하는 캡슐의 제조 방법에 대해서 개시되어 있기는 하나, 광결정 분산액을 물리적인 방법에 의해 광결정 입자를 벽재로 고분자 물질을 사용하여 담지하는 효과를 나타내는 것이기 때문에 제조된 캡슐 자체의 탄성이 적고 단단하여 변형이 어려운 벽재를 가지는 입자 형태로 제조하여 인쇄가 용이한 마이크로 입자를 얻을 수 있는 방법까지는 개시하고 있지 못하다.Korean Patent Laid-Open Publication Nos. 10-2013-0093438 and 10-2014-0120219 disclose a method for preparing a capsule including a photonic crystal dispersion, but the photonic crystal dispersion is physically applied to the photonic crystal particles as a wall material. Since it shows the effect of supporting by using a polymeric material, it has not been disclosed until the method of obtaining micro-particles that can be easily printed by producing a particle form having a wall material having a low elasticity and a hard and deformable shape of the capsule itself.
따라서, 전기장 또는 자기장의 인가에 의해 색상이 변하는 나노 복합체의 보관성과 인쇄성이 용이하도록 벽재를 탄성이 적고 단단하게 한 마이크로 입자를 제조할 필요성이 요구되고 있다. Therefore, there is a need for manufacturing microparticles having a low elasticity and hardening of the wall material to facilitate storage and printability of the nanocomposite whose color is changed by application of an electric or magnetic field.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 균일한 입자 분포를 가진 컬러 나노 복합체 및 그 제조방법을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the problems of the prior art as described above, and an object thereof is to provide a color nanocomposite having a uniform particle distribution and a method of manufacturing the same.
또한, 본 발명은 CIE 표색계의 색좌표에 따른 전기장 또는 자기장의 인가 전후의 색차(ΔE* ab)가 2.2 이상이며, 입도분포곡선의 반치폭(full width at half maximum, FWHM)이 30nm 이하인 특성을 나타내어 전기장 또는 자기장 인가에 의해 색상 변화가 크며, 입자 크기가 매우 균일한 컬러 나노 복합체를 제공하는 것을 그 목적으로 한다.In addition, the present invention exhibits a characteristic in which the color difference (ΔE * ab ) before and after application of the electric or magnetic field according to the color coordinates of the CIE color system is 2.2 or more and the full width at half maximum (FWHM) of the particle size distribution curve is 30 nm or less. Another object is to provide a color nanocomposite having a large color change and a very uniform particle size by applying a magnetic field.
또한, 심(core)에 상기 나노 복합체를 포함하고, 벽재(shell)가 탄성이 적고 단단한 고분자 물질로 이루어지는 마이크로 입자 및 이의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a microparticle including the nanocomposite in a core and a shell having a low elasticity and a hard polymer material, and a method of manufacturing the same.
또한, 본 발명은 전기장 또는 자기장 인가에 따라 변색하는 나노 복합체를 포함한 마이크로 입자를 수상에서 장기간 보관하거나 고온에서 건조하여 분말 상태에서도 보관성을 가질 수 있도록 하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to provide long-term storage in the water phase or the microparticles including the nanocomposite discolored by the application of an electric or magnetic field or to be dried at a high temperature to have a storage even in the powder state.
또한, 다양한 색상의 구현이 가능한 컬러 나노 복합체를 포함한 마이크로 입자를 통해 다양한 형태의 인쇄나 도포 공정에 적용할 수 있는 마이크로 입자를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide microparticles that can be applied to various types of printing or coating processes through microparticles including color nanocomposites capable of realizing various colors.
본 발명에 따른 컬러 나노 복합체는 전기장 또는 자기장의 인가에 의하여 색 가변되는 컬러 나노 복합체에 관한 것으로서, 상기 컬러 나노 복합체는 CIE 표색계의 색좌표에 따른 전기장 또는 자기장의 인가 전후의 색차(ΔE* ab)가 2.2 이상이며, 입도분포곡선의 반치폭(full width at half maximum, FWHM)이 30nm 이하이며, 상기 컬러 나노 복합체의 수분산 상태의 제타전위 값이 상기 나노입자의 수분산 상태와 비교하여 4배 이상 차이가 나는 것을 특징으로 한다.The color nanocomposite according to the present invention relates to a color nanocomposite whose color is varied by application of an electric or magnetic field, wherein the color nanocomposite has a color difference (ΔE * ab ) before and after application of an electric or magnetic field according to a color coordinate of a CIE color system. 2.2 or more, full width at half maximum (FWHM) of the particle size distribution curve is 30 nm or less, the zeta potential value of the water dispersion state of the color nanocomposite is more than four times compared to the water dispersion state of the nanoparticles It is characterized by flying.
또한, 상기 컬러 나노 복합체는 극성 또는 비극성 매체에 분산되어 전기장 또는 자기장의 인가에 의해 재배열되거나 전하 상태가 변할 수 있으며, 이때, 상기 매체는 염료 또는 안료를 포함할 수 있다.In addition, the color nanocomposite may be dispersed in a polar or nonpolar medium and rearranged or changed in charge state by application of an electric or magnetic field, wherein the medium may include a dye or a pigment.
본 발명의 컬러 나노 복합체는 소수성 물질로 피복된 착색제 입자와 나노 입자의 혼합물일 수 있고, 착색제로 피복된 나노 입자로 이루어질 수 있으며, 착색제 입자와 나노 입자가 응집되어 이루어진 입자일 수 있다.The color nanocomposite of the present invention may be a mixture of colorant particles and nanoparticles coated with a hydrophobic material, may be composed of nanoparticles coated with a colorant, and may be particles in which colorant particles and nanoparticles are aggregated.
본 발명에 따른 컬러 나노 복합체를 제조하는 방법은 착색제 입자와 나노 입자를 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 소수성 물질을 혼합하여 미니에멀전을 형성하는 단계; 상기 미니에멀전과 단량체를 중합하는 단계;를 포함하는 것을 특징으로 한다.Method for producing a color nanocomposite according to the present invention comprises the steps of preparing a mixture by mixing the colorant particles and nanoparticles; Mixing a hydrophobic material in the mixture to form a miniemulsion; And polymerizing the miniemulsion and a monomer.
이때, 상기 단량체는 스티렌(styrene), 피리딘(pyridine), 피롤(pyrrole), 아닐린(aniline), 피롤리돈(pyrrolidone), 아크릴산(acrylate), 우레탄(urethane), 티오펜(thiophene), 카바졸(carbazole), 플루오렌(fluorene), 비닐알코올(vinylalcohol), 에틸렌글리콜(ethylene glycol), 에톡시아크릴레이트(ethoxy acrylate) 중 어느 하나 또는 그 이상일 수 있다.In this case, the monomer is styrene (pyridine), pyridine (pyrrole), aniline (aniline), pyrrolidone (pyrrolidone), acrylic acid (acrylate), urethane (urethane), thiophene, carbazole It may be any one or more of (carbazole), fluorene (fluorene), vinyl alcohol (vinylalcohol), ethylene glycol (ethylene glycol), ethoxy acrylate (ethoxy acrylate).
또한, 상기 중합하는 단계는 미니에멀전의 액적을 매질에 투입함으로써 수행할 수 있고, 상기 소수성 물질과 상기 착색제 입자의 현탁액을 제조한 후, 개시제를 부가함으로써 수행할 수도 있다.In addition, the polymerization may be carried out by adding a droplet of the miniemulsion to the medium, and may be carried out by preparing a suspension of the hydrophobic material and the colorant particles, and then adding an initiator.
또한, 나노 입자의 표면을 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자를 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자를 혼합하여 분산액을 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조될 수 있다.In addition, preparing a nanoparticle surface-modified (수식) surface of the nanoparticles with a material containing a reactive group; Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles; It can be prepared, including; the surface-modified nanoparticles and the adsorption reaction of the colorant particles.
또한, 나노 입자 및 착색제 입자의 표면을 수식(修飾)하는 단계; 상기 착색제 입자 및 상기 나노 입자를 혼합하여 분산액을 제조하는 단계; 상기 착색제 입자 및 나노 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조될 수도 있다.In addition, modifying the surface of the nanoparticles and colorant particles; Preparing a dispersion by mixing the colorant particles and the nanoparticles; It may be prepared, including; the step of causing the adsorption reaction of the colorant particles and nanoparticles.
또한, 나노 입자 클러스터 및 착색제 입자를 혼합하는 단계; 상기 나노 입자 클러스터 및 상기 착색제 입자의 응집 반응을 일으키는 단계;를 포함하여 제조될 수 있다.In addition, mixing the nanoparticle cluster and the colorant particles; It may be prepared to include; a step of causing an aggregation reaction of the nanoparticle cluster and the colorant particles.
이 경우, 상기 나노 입자 클러스터 및 상기 착색제 입자는 입도분포곡선에 따른 중앙입경의 차이(ΔD50) 및 평균입경의 차이(ΔDm)가 5nm 이하인 것을 특징으로 한다.In this case, the nanoparticle cluster and the colorant particles are characterized in that the difference (ΔD50) and the difference (ΔDm) of the average particle diameter according to the particle size distribution curve is 5nm or less.
본 발명의 제조방법에 있어서, 상기 나노 입자는 실리콘(Si), 티타늄(Ti), 바륨(Ba), 스트론튬(Sr), 철(Fe), 니켈(Ni), 코발트(Co), 납(Pb), 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 텅스텐(W), 몰리브덴(Mo), 아연(Zn), 지르코늄(Zr) 중 어느 하나 또는 그 이상의 금속 또는 이들의 질화물 또는 산화물일 수 있으며, 상기 착색제 입자는 염료 입자, 안료 입자, 표면 수식되거나 되지 않은 카본 나노 입자, 흑연, 표면 수식되거나 되지 않은 산화그래핀 입자 중 어느 하나 또는 그 이상일 수 있다.In the manufacturing method of the present invention, the nanoparticles are silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb) ), Aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr) or one or more metals thereof It may be a nitride or oxide of, the colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles.
또한, 상기 염료 입자는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화 염료, 프탈로시아닌 염료 중 어느 하나 또는 그 이상의 염료로 이루어진 입자이며, 상기 안료 입자는 안료는 산화티타늄(titanium dioxide), 산화아연(zinc oxide), 리토폰(lithopon), 황화아연(zinc sulfonate), 황연(chrome yellow), 크롬산아연(zinc chromate), 철적(red oxide of iron), 연단(red lead), 카드뮴적(cardmium red), 모르브덴적(molybdate chrome orange), 감청(milori blue, pressian blue, iron blue), 코발트 블루(cobalt blue), 크롬녹(chrome green), 수산화크롬(viridian), 아연녹(zinc green), 은분(alluminium powder), 금분(bronze powder), 형광안료, 펄안료 중 어느 하나 또는 그 이상의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 중 어느 하나 또는 그 이상의 유기안료일 수 있다.In addition, the dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes, the pigment particles are pigmented titanium oxide (titanium dioxide), Zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium ( cardmium red, molybdate chrome orange, milori blue, pressian blue, iron blue, cobalt blue, chrome green, chrome hydroxide, zinc green ), Silver powder, bronze powder, fluorescent pigment, pearl pigment or any one or more of inorganic pigments, or insoluble azo, soluble azo, phthalocyanine, quinacridone, dioxazine, isoindoli Paddy field, vat dye system, phylcholine series, fluorine System, it may be a quinophthalone-based, any of metal complexes or more organic pigments.
또한, 본 발명의 마이크로 입자는 전기장 또는 자기장의 인가에 의해 재배열되는 컬러 나노 복합체를 함유하는 마이크로 입자로서, 상기 마이크로 입자는 건조 분말 상태에서의 연필경도가 4B 이하이며, 질소 가스를 사용한 비표면적 측정에 따른 공극도분포(pore size distribution)에서 5nm 이하 영역의 공극부피(pore volume)가 전체 공극 부피의 20% 이하인 것을 특징으로 한다.In addition, the microparticles of the present invention are microparticles containing color nanocomposites rearranged by application of an electric or magnetic field, wherein the microparticles have a pencil hardness of 4 B or less in a dry powder state and a specific surface area using nitrogen gas. In the pore size distribution according to the measurement, the pore volume in the region of 5 nm or less is characterized in that less than 20% of the total pore volume.
이때, 상기 마이크로 입자는 상기 컬러 나노 복합체를 포함하는 심(core) 물질과 중합체 또는 공중합체로 이루어진 벽재(shell) 물질로 이루어지는 것을 특징으로 한다.In this case, the microparticles are made of a core material including the color nanocomposite and a shell material made of a polymer or a copolymer.
또한, 상기 컬러 나노 복합체는 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자 및 착색제 입자를 포함할 수 있으며, 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자 및 반응성기를 포함하는 물질로 표면 수식(修飾)된 착색제 입자를 포함할 수도 있고, 나노 입자 클러스터 및 착색제 입자의 응집체를 포함할 수도 있다.In addition, the color nanocomposite may include nano particles and colorant particles surface-modified with a material containing a reactive group, and a material including nano-particles and reactive groups with a surface modified with a material containing a reactive group. It may contain the colorant particle | grains modified by the surface modification, and may also contain the aggregate of a nanoparticle cluster and a colorant particle.
본 발명의 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법은 유상/수상 에멀전(O/W emulsion)을 이용한 인 시튜 중합법(in-situ polymerization)일 수 있고, 코아세르베이션 방법(coacervation approach)일 수 있으며, 계면 중합법(interfacial polymerization)일 수도 있다.The preparation method of the microparticles containing the color nanocomposite of the present invention may be an in-situ polymerization using an oil phase / water emulsion, and a coacervation approach. It may also be an interfacial polymerization (interfacial polymerization).
본 발명의 인쇄 매체 및 인쇄 방법, 표시 소자 및 표시 방법은 상기 컬러 나노 복합체를 함유하는 마이크로 입자를 포함하는 것을 특징으로 한다.The print media, the printing method, the display element, and the display method of the present invention are characterized by comprising micro particles containing the color nanocomposite.
본 발명에 따른 컬러 나노 복합체는 매우 균일한 입자 분포를 가지며 전기장 또는 자기장 인가에 의해 색상 변화가 커서 다양한 표시 장치에 응용할 수 있는 효과를 나타낸다.The color nanocomposite according to the present invention has a very uniform particle distribution and has a large color change by application of an electric or magnetic field, and thus can be applied to various display devices.
또한, 상기 컬러 나노 복합체를 이용한 마이크로 입자는 벽재를 구성하는 유기 고분자 물질이 탄성이 낮고 단단한 성질을 가지고 있어, 캡슐과는 달리 입자끼리의 응집 현상이 적으며, 수상에서 교반 또는 회전과 같은 물리적인 힘을 가하지 않고 방치하여도 장기간 보관할 수 있는 효과를 나타낸다.In addition, the microparticles using the color nanocomposite have low elasticity and hard properties of the organic polymer constituting the wall material, and unlike the capsules, there is little agglomeration between the particles, and physical phases such as stirring or rotation in the water phase It can be stored for a long time even if it is left without applying force.
또한, 본 발명에 따른 마이크로 입자는 벽재의 모양 변형이 낮으므로, 다양한 접착제와 쉽게 혼합하여 원하는 기재에 쉽게 코팅할 수 있는 실크 프린팅과 같은 인쇄 공정을 수행할 수 있는 효과를 나타낸다.In addition, since the microparticles according to the present invention have low shape deformation of the wall material, the micro particles exhibit an effect of performing a printing process such as silk printing, which can be easily mixed with various adhesives and easily coated on a desired substrate.
또한, 본 발명에 따른 마이크로 입자는 고온에서 건조하여 분말 형태로 보관할 수 있어 저장안정성 및 저장용이성이 탁월하며, 시인성(visibility)이 뛰어나 다양한 인쇄, 도포 공정에 사용할 수 있다.In addition, the micro-particles according to the present invention can be stored in a powder form by drying at a high temperature, excellent storage stability and ease of storage, excellent visibility (visibility) can be used in various printing, coating process.
또한, 나노 복합체를 감싸는 벽재 구조의 안정성, 입도의 균일성으로 인해 전기장 또는 자기장의 인가에 의해 재배열되는 컬러 나노 복합체의 거시적 균일성을 확보할 수 있으므로, 색상의 변화 및 구현되는 색상의 선명도가 더욱 향상되는 효과를 얻을 수 있다.In addition, since the stability of the wall structure surrounding the nanocomposite and the uniformity of the particle size ensure the macroscopic uniformity of the color nanocomposite rearranged by application of an electric or magnetic field, the change in color and the vividness of the color to be realized The effect can be further improved.
도 1은 본 발명의 다양한 실시형태에 따른 컬러 나노 복합체를 나타낸 개념도이다.1 is a conceptual diagram illustrating a color nanocomposite according to various embodiments of the present disclosure.
도 2는 본 발명의 일실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.2 is a process chart showing a method of manufacturing a color nanocomposite according to an embodiment of the present invention.
도 3은 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.3 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
도 4는 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.Figure 4 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
도 5는 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.5 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
도 6은 표면 수식에 의하여 제조된 나노 복합체를 나타내는 개념도이다.6 is a conceptual diagram illustrating a nanocomposite prepared by surface modification.
도 7은 응집에 의해 제조된 나노 복합체(아래)를 나타내는 개념도이다.7 is a conceptual diagram showing a nanocomposite (below) prepared by aggregation.
도 8은 산화철-프러시안 블루 나노 복합체의 제조과정을 나타낸 개념도이다.8 is a conceptual diagram illustrating a manufacturing process of the iron oxide-Prussian blue nanocomposite.
도 9는 산화철 나노입자(a), 산화철 나노입자 3g에 대해 K4Fe(CN)6 16g을 반응시킨 산화철-프러시안 블루 나노 복합체(b), 산화철 나노입자 3g에 대해 K4Fe(CN)6 32g을 반응시킨 산화철-프러시안 블루 나노 복합체(c)의 SEM 사진이다.9 shows iron oxide nanoparticles (a), iron oxide-Prussian blue nanocomposites (b) reacted with 16 g of K 4 Fe (CN) 6 to 3 g of iron oxide nanoparticles (b), and K 4 Fe (CN) for 3 g of iron oxide nanoparticles. SEM image of iron oxide-Prussian blue nanocomposite (c) reacted with 6 32 g.
도 10은 산화철 나노입자(a), 산화철 나노입자 3g에 대해 K4Fe(CN)6 16g을 반응시킨 산화철-프러시안 블루 나노 복합체(b), 산화철 나노입자 3g에 대해 K4Fe(CN)6 32g을 반응시킨 산화철-프러시안 블루 나노 복합체(c)의 분말상(좌측) 및 수분산 상태(우측)을 비교한 사진이다.10 shows iron oxide nanoparticles (a), iron oxide-Prussian blue nanocomposites (b) reacted with 16 g of K 4 Fe (CN) 6 to 3 g of iron oxide nanoparticles (b), and K 4 Fe (CN) for 3 g of iron oxide nanoparticles. It is a photograph comparing the powder phase (left) and the water dispersion state (right) of the iron oxide-Prussian blue nanocomposite (c) which reacted 6 32 g.
도 11은 산화철 나노입자(a) 및 산화철 나노입자 3g에 대해 K4Fe(CN)6 16g을 반응시킨 산화철-프러시안 블루 나노 복합체(b), 산화철 나노입자 3g에 대해 K4Fe(CN)6 32g을 반응시킨 산화철-프러시안 블루 나노 복합체(c)의 증류수에 수분산된 상태에서 측정한 제타전위 측정결과이다.11 is iron oxide nanoparticles (a), and iron oxide nanoparticles for 3g K 4 Fe (CN) iron oxide was reacted with 6 16g - K 4 Fe (CN ) for the Prussian blue nanocomposite (b), iron oxide nanoparticles 3g This is the zeta potential measurement result measured in the state of being dispersed in distilled water of the iron oxide-Prussian blue nanocomposite (c) reacted with 6 32g.
도 12는 본 발명의 일 실시예에 따른 마이크로 입자의 제조 공정을 나타낸 공정도이다.12 is a process chart showing the manufacturing process of the microparticles according to an embodiment of the present invention.
도 13은 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 입도 분포 그래프이다.It is a particle size distribution graph of the microparticle (a) of an Example and the microparticle (b) of a comparative example.
도 14는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 에멀전 상태에 있어서의 광학현미경 사진이다.It is an optical microscope photograph in the emulsion state of the microparticle (a) of an Example, and the microparticle (b) of a comparative example.
도 15는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 수상에서의 광학현미경 사진이다.15 is an optical microscope photograph of an aqueous phase of the microparticles (a) of the example and the microparticles (b) of the comparative example.
도 16은 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 건조 분말에 대한 광학현미경 사진이다.16 is an optical micrograph of the dry powder of the microparticle (a) of the Example and the microparticle (b) of the Comparative Example.
도 17은 마이크로 입자에 자기장을 인가했을 때 색상 발현을 나타내는 사진이다.17 is a photograph showing color development when a magnetic field is applied to microparticles.
도 18은 분말 상태의 마이크로 입자의 자기장 세기에 따른 반사율 변화를 나타낸 스펙트럼이다.18 is a spectrum of reflectance change according to the magnetic field strength of the microparticles in powder state.
도 19는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 고온 보관 후의 광학현미경 사진이다.19 is an optical micrograph of the microparticles (a) of the example and the microparticles (b) of the comparative example after high temperature storage.
도 20은 본 발명의 마이크로 입자에 대한 푸리에 변환 적외선 분광법(FT-IR) 측정 결과를 나타낸 스펙트럼이다.20 is a spectrum showing Fourier transform infrared spectroscopy (FT-IR) measurement results for the microparticles of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 하여 과장되어 표현될 수도 있다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. In the drawings, like reference numerals refer to the same or similar functions throughout the several aspects, and length, area, thickness, and the like may be exaggerated for convenience.
본 발명의 일 실시예에 따른 컬러 나노 복합체는 전기장 또는 자기장의 인가에 의하여 색 가변되며, CIE 표색계의 색좌표에 따른 전기장 또는 자기장의 인가 전후의 색차(ΔE* ab)가 2.2 이상이며, 입도분포곡선의 반치폭(full width at half maximum, FWHM)이 30nm 이하인 것을 특징으로 한다. 또한, 상기 컬러 나노 복합체의 수분산 상태의 제타전위 값이 상기 나노입자의 수분산 상태와 비교하여 4배 이상, 바람직하게는 4 내지 6배 차이가 나는 것을 특징으로 한다.The color nanocomposite according to an embodiment of the present invention is color-variable by application of an electric or magnetic field, the color difference (ΔE * ab ) before and after application of the electric or magnetic field according to the color coordinates of the CIE color system is 2.2 or more, and the particle size distribution curve The full width at half maximum (FWHM) is characterized in that less than 30nm. In addition, the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles.
본 발명에서 상기 색차(ΔE* ab)는 전기장 또는 자기장의 인가 전후에 본 발명이 컬러 나노 복합체의 재배열 또는 전하 상태의 변화를 통해 색상(반사광 또는 투과광에 의해 유발되는 색상)의 변화 정도를 나타내는 지표로서 2.2 이상, 바람직하게는 3.0 이상, 더욱 바람직하게는 3.2 이상의 색차를 나타냄으로써 색상의 변화를 시각적으로 명확히 확인할 수 있는 정도의 색 변화를 나타내는 것을 의미한다.In the present invention, the color difference ΔE * ab indicates the degree of change in color (color caused by reflected light or transmitted light) through the rearrangement or change of charge state of the color nanocomposite before and after application of an electric or magnetic field. By indicating the color difference of 2.2 or more, preferably 3.0 or more, more preferably 3.2 or more as an index, it means that the color change of the degree which can visually clearly confirm the change of color is meant.
또한, 본 발명에서 상기 입도분포곡선의 반치폭은 입자의 균일성을 나타내는 지표로서, 입도분석에 의해 측정되는 단일 피크의 D50을 중심으로 피크의 반치폭이 30nm 이하, 바람직하게는 20nm 이하, 더욱 바람직하게는 10nm 이하가 되도록 균일한 입도 분포를 가진 컬러 나노 복합체를 제조함으로써, 전기장 또는 자기장의 인가에 의해 용이하게 재배열되며, 입사광의 회절이나 산란을 통해 균일한 색상을 구현할 수 있게 된다.In addition, in the present invention, the half width of the particle size distribution curve is an index indicating uniformity of particles, and the half width of the peak is 30 nm or less, preferably 20 nm or less, more preferably around D50 of a single peak measured by particle size analysis. By manufacturing the color nanocomposite having a uniform particle size distribution to be less than 10nm, it is easily rearranged by the application of an electric or magnetic field, it is possible to achieve a uniform color through diffraction or scattering of incident light.
또한, 상기 컬러 나노 복합체의 수분산 상태의 제타전위 값이 상기 나노입자의 수분산 상태와 비교하여 4배 이상, 바람직하게는 4 내지 6배 차이가 나는 것을 특징으로 한다. 수분산 상태에서 측정되는 제타전위 값은 나노입자의 경우 상대적으로 낮게 나타나는 경향을 보이며, 이는 불충분한 수분산성과 이로 인한 전기장 또는 자기장 인가에 의한 배열특성 및 색 구현 특성의 부족과 직결되는 문제이다. 본 발명에 따른 상기 컬러 나노 복합체는 나노입자의 수분산 상태와 비교하여 4배 이상 제타전위 값이 차이가 나기 때문에 수분산성이 우수하고 전기장 또는 자기장 인가에 의한 색 변화 특성이 우수하여 본 발명에서 목적하는 색차를 달성할 수 있게 되므로, 컬러 나노 복합체의 향상된 특성을 판단하는 지표가 된다.In addition, the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles. The zeta potential value measured in the water dispersion state tends to be relatively low in the case of nanoparticles, which is directly related to insufficient water dispersion and the lack of arrangement characteristics and color implementation characteristics due to the application of electric or magnetic fields. The color nanocomposite according to the present invention is excellent in water dispersibility and excellent in color change characteristics by application of electric or magnetic fields because the zeta potential value is more than four times higher than that of the nanoparticles. Since the color difference can be achieved, it becomes an index for determining the improved characteristics of the color nanocomposite.
본 발명에서 컬러 나노 복합체가 색상을 구현하는 원리는 나노 복합체 내에 포함된 착색제 입자로 인한 입자의 고유색을 통해 구현될 수 있으며, 이와 동시에, 전기장 또는 자기장의 외부로부터의 인가에 의해 상기 나노 복합체가 재배열되거나 전하 상태가 변함으로써 특정 파장의 광을 투과 또는 반사시켜 색상을 구현할 수도 있다.In the present invention, the principle that the color nanocomposite realizes the color may be realized through the intrinsic color of the particles due to the colorant particles contained in the nanocomposite, and at the same time, the nanocomposite may be reapplied by application from the outside of an electric or magnetic field. By arranging or changing the charge state, colors may be realized by transmitting or reflecting light of a specific wavelength.
따라서 본 발명에서 상기 컬러 나노 복합체는 입자의 재배열 또는 전하 상태의 변화를 통한 색상 구현을 위해 매우 균일한 입자 크기를 가지며 매질 내의 이동성이 높아 재배열이 용이한 특성을 가져야 한다.Therefore, in the present invention, the color nanocomposite should have a very uniform particle size and high mobility in a medium for easy color rearrangement for color realization through rearrangement or change of charge state of particles.
본 발명의 컬러 나노 복합체는 매체에 분산되어 존재할 수 있으며, 전하를 갖는 입자의 형태로 분산되어 존재할 수도 있다. 또한, 상기 컬러 나노 복합체는 코어-셀 구조나 멀티 코어-셀 구조로 구성될 수 있다.The color nanocomposites of the present invention may be dispersed and present in a medium, or may be dispersed and present in the form of charged particles. In addition, the color nanocomposite may be composed of a core-cell structure or a multi-core-cell structure.
또한, 본 발명의 컬러 나노 복합체는 입자 크기가 50 내지 1000nm, 바람직하게는 100 내지 500nm, 더욱 바람직하게는 100 내지 300nm의 범위에서 균일한 크기를 나타낸다. 또한, 착색제를 포함하는 경우 입자 크기보다는 입자의 균일성이 더 중요한 요인이 될 수 있으므로, 상기 입자 크기의 범위를 벗어날 수도 있다.In addition, the color nanocomposite of the present invention exhibits a uniform size in the particle size of 50 to 1000 nm, preferably 100 to 500 nm, more preferably 100 to 300 nm. In addition, when the colorant is included, the uniformity of the particles may be more important than the particle size, and thus may be out of the range of the particle size.
본 발명의 컬러 나노 복합체는 나노 입자를 포함하여 구성되는데, 상기 나노 입자는 전도성 입자, 금속 입자, 유기금속 입자, 금속산화물 입자, 자성 입자, 소수성 유기고분자 입자일 수 있고, 외부 에너지의 인가에 의해 입자의 배열, 간격에 규칙성이 부여되는 광결정 특성을 나타내는 입자일 수 있다. 예를 들면, 실리콘(Si), 티타늄(Ti), 바륨(Ba), 스트론튬(Sr), 철(Fe), 니켈(Ni), 코발트(Co), 납(Pb), 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 텅스텐(W), 몰리브덴(Mo), 아연(Zn), 지르코늄(Zr) 중 어느 하나 또는 그 이상의 금속 또는 이들의 질화물 또는 산화물로 이루어질 수 있다. The color nanocomposite of the present invention comprises nanoparticles, wherein the nanoparticles can be conductive particles, metal particles, organometallic particles, metal oxide particles, magnetic particles, hydrophobic organic polymer particles, and by the application of external energy. It may be a particle exhibiting photonic crystal properties imparting regularity to the arrangement and spacing of the particles. For example, silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr), or any one or more metals or nitrides or oxides thereof. .
또한, 유기물질 나노 입자로서 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트 등의 고분자 물질로도 이루어질 수 있으며, 탄화수소기를 갖는 유기화합물에 의하여 표면이 수식된 입자, 카르복실기, 에스테르기, 아실기 중 어느 하나 또는 그 이상을 갖는 유기화합물에 의하여 표면이 수식된 입자, 할로겐 원소를 포함하는 착화합물에 의하여 표면이 수식된 입자, 아민, 티올, 포스핀을 포함하는 배위화합물에 의하여 표면이 수식된 입자, 표면에 라디칼을 형성하여 전하를 갖는 입자를 들 수 있다.In addition, the organic material nanoparticles may be made of a high molecular material such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, particles whose surface is modified by an organic compound having a hydrocarbon group, carboxyl group, ester group, ah. Particles whose surface is modified by an organic compound having any one or more of the actual groups, particles whose surface is modified by a complex compound containing a halogen element, and whose surface is modified by a coordination compound containing amines, thiols, and phosphines The particle | grains and particle | grains which form a radical in the surface and have an electric charge are mentioned.
또한, 상기 나노 입자는 전기 분극 특성을 부여한 입자일 수 있다. 즉, 매개체와의 분극을 위하여 외부 자기장 또는 전기장이 인가됨에 따라 이온 또는 원자의 분극이 추가 유발되어 분극량이 크게 증가하고, 외부 자기장 또는 전기장이 인가되지 않는 경우에도 잔류 분극량이 존재하며 자기장 또는 전기장 인가 방향에 따라 이력(hysteresis)이 남는 강유전성(ferroelectric) 물질을 포함할 수 있고, 외부 자기장 또는 전기장이 인가됨에 따라 이온 또는 원자 분극이 추가 유발되어 분극량이 크게 증가하지만, 외부 자기장 또는 전기장이 인가되지 않는 경우에는 잔류 분극량과 이력(hysteresis)이 남지 않는 상유전성 물질, 초상유전성(superparaelectric) 물질을 포함할 수 있다.In addition, the nanoparticles may be particles imparting electrical polarization characteristics. That is, as the external magnetic field or electric field is applied to polarize the medium, the polarization of ions or atoms is further induced to increase the amount of polarization, and the residual polarization amount exists even when the external magnetic field or the electric field is not applied and the magnetic or electric field is applied. It can contain ferroelectric materials that remain hysteresis along the direction, and when an external magnetic or electric field is applied, an additional ionic or atomic polarization is induced to increase the amount of polarization greatly, but no external magnetic or electric field is applied. In this case, it may include a paraelectric material and a superparaelectric material in which residual polarization and hysteresis remain.
이러한 물질로는 페로브스카이트(perovskite) 구조를 갖는 물질을 포함할 수 있다. 즉, ABO3 구조를 갖는 물질로서 PbZrO3, PbTiO3, Pb(Zr,Ti)O3, SrTiO3, BaTiO3, (Ba, Sr)TiO3, CaTiO3, LiNbO3 등의 물질을 그 예로 들 수 있다.Such materials may include materials having a perovskite structure. Ie ABO 3 Examples of the material having a structure include PbZrO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , SrTiO 3 , BaTiO 3 , (Ba, Sr) TiO 3 , CaTiO 3 , LiNbO 3, and the like.
또한, 상기 나노 입자는 단일 또는 이종의 금속이 함유된 입자, 산화물 입자 또는 광결정성 입자로도 이루어질 수 있다.In addition, the nanoparticles may be made of particles containing single or different types of metals, oxide particles or photonic crystal particles.
금속의 경우, 금속 나이트레이트계 화합물, 금속 설페이트계 화합물, 금속 플루오르아세토아세테이트계 화합물, 금속 할라이드계 화합물, 금속 퍼클로로레이트계 화합물, 금속 설파메이트계 화합물, 금속 스티어레이트계 화합물 및 유기 금속 계열 화합물로 이루어진 군에서 선택되는 자성 선구물질과 알킬트리메틸암모늄할라이드계 양이온 리간드, 알킬산, 트리알킬포스핀, 트리알킬포스핀옥사이드, 알킬아민, 알킬티올 등의 중성 리간드, 소듐알킬설페이트, 소듐알킬카복실레이트, 소듐알킬포스페이트, 소듐아세테이트 등의 음이온 리간드로 이루어진 군에서 선택되는 리간드를 용매에 첨가하여 녹임으로써 비정질 금속 겔을 제조하고, 이를 가열하여 결정성 입자로 상전이시킴으로써 제조할 수 있다.In the case of a metal, a metal nitrate compound, a metal sulfate compound, a metal fluoracetoacetate compound, a metal halide compound, a metal perchloroate compound, a metal sulfamate compound, a metal styrate compound and an organometallic compound Magnetic precursors selected from the group consisting of: alkyl trimethylammonium halide-based cationic ligands, alkyl acids, trialkylphosphines, trialkylphosphine oxides, neutral ligands such as alkylamines, alkylthiols, sodium alkyl sulfates, sodium alkylcarboxylates The amorphous metal gel may be prepared by adding a ligand selected from the group consisting of anionic ligands such as sodium alkyl phosphate, sodium acetate, and the like to a solvent to dissolve it, and heating the phase to crystalline particles.
이때 이종의 선구물질을 함유함으로써 최종적으로 얻어지는 입자의 자기적 특성이 증강되거나, 초상자성, 상자성, 강자성, 반강자성, 페리자성, 반자성 등의 다양한 자성 물질을 얻을 수 있다.At this time, the magnetic properties of the particles finally obtained by containing heterogeneous precursors may be enhanced, or various magnetic materials such as superparamagnetism, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and diamagnetic may be obtained.
본 발명의 컬러 나노 복합체는 매체에 분산된 상태로 있다가 전기장 또는 자기장의 인가에 의해 재배열될 수 있다. 이러한 매체로는 극성 또는 비극성 매체를 사용할 수 있다. 예를 들어, 물, 메탄올, 에탄올, 프로판올, 부탄올, 프로필렌카보네이트, 톨루엔, 벤젠, 헥산, 클로로포름, 할로카본오일, 퍼클로로에틸렌, 트리클로로에틸렌, 아이소파라핀 오일의 일종인 isopar-G, isopar-M, isopar-H 중 어느 하나 또는 그 이상을 사용할 수 있다.The color nanocomposites of the present invention may be dispersed in a medium and rearranged by application of an electric or magnetic field. Such a medium may be a polar or nonpolar medium. For example, water, methanol, ethanol, propanol, butanol, propylene carbonate, toluene, benzene, hexane, chloroform, halocarbon oil, perchloroethylene, trichloroethylene, isopar-G which is a kind of isoparaffin oil, isopar-M One or more of, isopar-H can be used.
본 발명의 컬러 나노 복합체는 자체의 고유색을 가질 수 있고, 입자의 재배열에 의해 색상을 나타낼 수도 있으나, 이와 더불어 매체에 소정의 색을 부여함으로써 다양한 색상을 구현할 수도 있다. 이 경우, 상기 매체는 염료 또는 안료를 포함할 수 있다. The color nanocomposite of the present invention may have its own intrinsic color and may represent colors by rearrangement of particles, and in addition, various colors may be realized by applying a predetermined color to the medium. In this case, the medium may comprise a dye or a pigment.
상기 염료는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화염료, 프탈로시아닌 염료 등을 사용할 수 있고, 상기 안료는 산화티탄(Titanium dioxide), 산화아연(Zinc oxide), 리토폰(Lithopon), 황화아연(Zinc sulfonate), 카본블랙(Carbon black), 흑연(Graphite), 황연(Chrome yellow), 징크 크로메이트(Zinc chromate), 철적(Redoxide of iron), 연단(Red lead), 카드뮴적(Cardmium red), 모르브덴적(Molybdate chrome orange), 감청(Milori blue, pressian blue, iron blue), 코발트 블루(Cobalt blue), 크롬녹(chrome green), 수산화크롬(Viridian), 아연녹(Zinc green), 은분(Alluminium powder), 금분(Bronze powder), 형광안료, 펄안료 등의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 등의 유기안료를 사용할 수 있다The dye may be azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes, and the like, and the pigments include titanium dioxide, zinc oxide, and lithopone. Zinc sulfonate, Carbon black, Graphite, Chrome yellow, Zinc chromate, Red oxide of iron, Red lead, Cardmium red, Molybdate chrome orange, Royal blue, pressian blue, iron blue, Cobalt blue, Chrome green, Chrome hydroxide, Zinc green Inorganic pigments such as aluminum powder, bronze powder, fluorescent pigment, pearl pigment, or insoluble azo, soluble azo, phthalocyanine, quinacridone, dioxazine, isoindolinone, and dry dye Organic compounds such as phyllocholine, fluorine-based, quinophthalone-based and metal complexes There used to be
본 발명의 컬러 나노 복합체를 제조하는 방법은 다양한 방법이 적용될 수 있다. 예를 들어, 에멀전의 형성에 따른 다양한 나노 복합체 제조 방법으로 아래 표 1과 같은 다양한 방법을 들 수 있다.Various methods may be applied to the method of manufacturing the color nanocomposite of the present invention. For example, various methods of preparing nanocomposites according to the formation of an emulsion may include various methods as shown in Table 1 below.
에멀전 종류Emulsion type Prize 특징Characteristic
W/OW / O 내부수상Internal award 콜로이드 입자Colloidal particles
콜로이드 입자 + 경화제Colloidal Particle + Hardener
콜로이드 입자 + 염료Colloidal particles + dye
콜로이드 입자 + 기능성 물질Colloidal particles + functional substances
외부유상External oil 유화제Emulsifier
에너지energy 열, UV, 냉각Heat, UV, cooling
O/WO / W 내부유상Internal oil 콜로이드 입자Colloidal particles
콜로이드 입자 + 착색제Colloidal Particles + Colorants
콜로이드 입자 + 경화제Colloidal Particle + Hardener
콜로이드 입자 + 저비점 용매Colloidal Particle + Low Boiling Solvent
콜로이드 입자 + 기능성 물질Colloidal particles + functional substances
외부수상External award 유화제Emulsifier
크기제어Size control 초음파, 나노노즐, 스프레이Ultrasonic, Nano Nozzle, Spray
에너지energy 열, UV, 냉각Heat, UV, cooling
즉, 표 1과 같이 내부수상/외부유상(W/O) 또는 내부유상/외부수상(O/W)에 따라 내부 상에 포함되는 물질의 조합, 크기제어 방법, 에너지의 종류, 크기에 따라 다양한 형태의 나노 복합체를 제조할 수 있게 된다.That is, as shown in Table 1, a combination of materials included in the inner phase according to the internal water phase / external oil phase (W / O) or the internal oil phase / external water phase (O / W), size control method, energy type, and size The nanocomposite in the form can be prepared.
본 발명에 따른 다양한 나노 복합체의 예시로 도 1에서는 다양한 실시형태에 따른 컬러 나노 복합체를 나타내었다.As an example of various nanocomposites according to the present invention, Figure 1 shows a colored nanocomposite according to various embodiments.
도 1을 참조하면, 본 발명의 나노 복합체는 콜로이드 입자와 염료 또는 안료가 혼합되어 형성할 수 있고(도 1a), 발현물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있으며(도 1b), 경화물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있고(도 1c), 경화물질과 발현물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있다(도 1d).Referring to FIG. 1, the nanocomposite of the present invention may be formed by mixing colloidal particles and dyes or pigments (FIG. 1A), and may further include an expression material to form nanocomposites (FIG. 1B), and a cured material. The nanocomposite may be additionally included (FIG. 1C), or the nanocomposite may be formed additionally including a hardening material and an expression material (FIG. 1D).
본 발명에서 상기와 같은 나노 복합체를 제조하는 구체적인 방법에 대하여 몇 가지 예시를 통해 설명하면 다음과 같다.Referring to the specific method for producing a nanocomposite as described above in the present invention through some examples as follows.
도 2는 본 발명의 일실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.2 is a process chart showing a method of manufacturing a color nanocomposite according to an embodiment of the present invention.
본 실시예에서 상기 나노 복합체는 착색제 입자와 나노 입자를 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 소수성 물질을 혼합하여 미니에멀전을 형성하는 단계; 상기 미니에멀전과 단량체를 중합하는 단계;를 포함하여 제조될 수 있다.In the present embodiment, the nanocomposite comprises the steps of preparing a mixture by mixing the colorant particles and nanoparticles; Mixing a hydrophobic material in the mixture to form a miniemulsion; And polymerizing the miniemulsion and a monomer.
이 경우, 미니에멀전을 형성하기 위하여, 음이온 계면활성제, 양이온 계면활성제 또는 비이온 계면활성제를 포함하여 구성됨으로써 콜로이드 입자의 분산도를 유지할 수 있다. 또한, 상기 에멀전은 계면 화학적 성질을 이용한 화학적 방법 또는 초음파 분산, 회전식 교반, 콜로이드 밀, 호모게나이저 등의 물리적 방법에 의해서 제조될 수도 있다.In this case, in order to form a miniemulsion, an anionic surfactant, a cationic surfactant, or a nonionic surfactant is included to maintain the dispersion of the colloidal particles. In addition, the emulsion may be prepared by a chemical method using interfacial chemical properties or by physical methods such as ultrasonic dispersion, rotary stirring, colloid mill, homogenizer and the like.
이때, 상기 중합하는 단계는 미니에멀전의 액적을 매질에 투입함으로써 수행할 수 있으며, 상기 소수성 물질과 상기 착색제 입자의 현탁액을 제조한 후, 개시제를 부가함으로써 수행할 수도 있다.In this case, the step of polymerization may be carried out by adding a droplet of the miniemulsion to the medium, after preparing a suspension of the hydrophobic material and the colorant particles, it may be carried out by adding an initiator.
또한, 본 발명의 미니에멀전에 적용되는 상기 단량체는 스티렌(styrene), 피리딘(pyridine), 피롤(pyrrole), 아닐린(aniline), 피롤리돈(pyrrolidone), 아크릴산(acrylate), 우레탄(urethane), 티오펜(thiophene), 카바졸(carbazole), 플루오렌(fluorene), 비닐알코올(vinylalcohol), 에틸렌글리콜(ethylene glycol), 에톡시아크릴레이트(ethoxy acrylate) 중 어느 하나 또는 그 이상일 수 있다.In addition, the monomers applied to the miniemulsion of the present invention are styrene, pyridine, pyrrole, aniline, pyrrolidone, acrylic acid, urethane, Thiophene, carbazole, fluorene, fluorene, vinyl alcohol, vinyl alcohol, vinyl glycol, ethylene glycol, ethoxy acrylate may be one or more.
도 3은 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.3 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
본 제조방법에서 상기 나노 복합체는 나노 입자의 표면을 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자를 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자를 혼합하여 분산액을 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조될 수 있다.In the manufacturing method, the nanocomposite comprises the steps of preparing a nanoparticle surface-modified (을) the surface of the nanoparticles with a material containing a reactive group; Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles; It can be prepared, including; the surface-modified nanoparticles and the adsorption reaction of the colorant particles.
상기 표면 수식은 나노 입자의 표면을 수산화기(-OH), 아민기(-NH) 등의 반응성기로 만드는 것으로, 예를 들어, 반응성기인 수산화기를 포함하는 실리카를 나노 입자에 코팅하여 표면 수식을 일으킬 수 있다. 또한, 아미노실란의 코팅을 통해 아민기(-NH)로 수식할 수도 있다.The surface modification is to make the surface of the nanoparticles with a reactive group such as a hydroxyl group (-OH), an amine group (-NH), etc., for example, by coating the nanoparticles with a silica containing a hydroxyl group which is a reactive group may cause surface modification. have. It can also be modified with an amine group (-NH) through the coating of aminosilane.
표면기의 종류는 흡착할 착색제의 종류에 따라 달라지게 된다. 예를 들어, 카본 나노 입자를 착색제로 사용할 경우, 표면을 수산화기로 치환하여 흡착시키게 되며, 메틸렌 블루와 같은 염료 입자를 착색제로 사용할 경우, 표면을 아민기로 치환할 수 있다.The type of surface group depends on the type of colorant to be adsorbed. For example, when the carbon nanoparticles are used as the colorant, the surface is replaced with a hydroxyl group and adsorbed. When dye particles such as methylene blue are used as the colorant, the surface may be replaced with an amine group.
카본 나노 입자를 흡착할 경우, 흡착 반응 효율을 높이기 위하여 카본 나노 입자 대신 에틸렌 디아민이 그래프트된 산화그래핀을 사용하거나, 수산화기로 수식된 카본 나노 입자를 사용할 수도 있다.When the carbon nanoparticles are adsorbed, graphene oxide grafted with ethylene diamine may be used instead of the carbon nanoparticles, or carbon nanoparticles modified with a hydroxyl group may be used to increase the adsorption reaction efficiency.
본 발명의 또다른 실시예에서는 이와 같이 착색제의 표면 수식을 통해 흡착반응을 일으킬 수 있다.In another embodiment of the present invention it is possible to cause the adsorption reaction through the surface modification of the colorant as described above.
도 4는 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.Figure 4 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
도 4에 따르면, 상기 컬러 나노 복합체는 착색제 입자의 표면을 수식(修飾)하는 단계; 상기 착색제 입자 및 나노 입자를 혼합하여 분산액을 제조하는 단계; 상기 착색제 입자 및 나노 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조된다.According to Figure 4, the color nanocomposite is a step of modifying the surface of the colorant particles; Preparing a dispersion by mixing the colorant particles and the nanoparticles; It is prepared, including; causing the adsorption reaction of the colorant particles and nanoparticles.
예를 들어, 5%의 산화그래핀을 에탄올과 혼합한 후 2시간 동안 초음파 분산기로 분산시키고, 이 분산액을 반응기에 담고 교반하면서 암모니아를 사용하여 pH 11로 조정한다. 이후 아미노실란을 투입하여 산화그래핀의 표면을 아민기로 전환시킨다. 이를 세척한 후 실리카로 코팅된 산화철 나노입자 클러스터 콜로이드 수용액과 혼합하고 80℃로 승온하고 12시간 교반하여 흡착 반응을 일으키면 -45mV 내지 -50mV의 제타전위값이 (+)값을 가지거나 (-) 전하를 가져도 매우 낮은 값을 보여 흡착이 양호하게 이루어지는 것을 확인할 수 있다.For example, 5% of graphene oxide is mixed with ethanol and then dispersed with an ultrasonic disperser for 2 hours, and the dispersion is placed in a reactor and adjusted to pH 11 with ammonia while stirring. Then, aminosilane is added to convert the surface of graphene oxide into an amine group. After washing this, mixed with silica-coated iron oxide nanoparticle cluster colloid aqueous solution, the temperature was raised to 80 ° C. and stirred for 12 hours to generate an adsorption reaction, and the zeta potential of -45 mV to -50 mV had a positive value or a negative value. It can be confirmed that adsorption is good even if the charge is very low.
또한, 150nm급의 나노 복합체를 제조할 때, 10~30nm급 카본블랙 입자를 산처리하여 표면을 수산화기로 수식한 후 아민기로 수식된 산화철 나노입자 클러스터 콜로이드와 반응시킬 수도 있다.In addition, when preparing a nanocomposite of 150nm class, 10 to 30nm class carbon black particles may be acid treated to modify the surface with a hydroxyl group and then react with the iron oxide nanoparticle cluster colloid modified with an amine group.
또 다른 예로, 실리카로 코팅되어 수산화기로 표면 수식된 산화철 나노 입자 클러스터와 아민기로 수식된 메틸렌 블루를 이용하여 나노 복합체를 제조할 수 있다.As another example, the nanocomposite may be prepared by using an iron oxide nanoparticle cluster coated with silica and surface modified with a hydroxyl group and methylene blue modified with an amine group.
즉, 분산된 산화철 나노 입자 클러스터 콜로이드를 암모니아를 사용하여 pH 11로 조정하고, 1% 메틸렌 블루를 용해시킨 에탄올 용액과 혼합하여 12시간 교반함으로써 나노 복합체를 제조하게 되는데, 제타 전위 값이 -7 내지 +10mV로 측정되었다. 이것은 실리카로 코팅된 일반적인 산화철 나노 입자 클러스터의 제타 전위 값인 -48 내지 -35mV과 비교하면 반응이 견고하게 일어나는 것을 확인할 수 있다. That is, the dispersed iron oxide nanoparticle cluster colloid is adjusted to pH 11 using ammonia, mixed with an ethanol solution in which 1% methylene blue is dissolved, and stirred for 12 hours to prepare a nanocomposite, and the zeta potential value is -7 to Measured at +10 mV. This can be confirmed that the reaction occurs firmly compared with the zeta potential value of -48 to -35mV of the general iron oxide nanoparticle cluster coated with silica.
또한, 이 경우 입자의 표면 색상이 갈색에서 짙은 군청색 내지 검은색으로 변화하여 고유색을 가진 나노 복합체를 제조할 수 있음을 확인하였다.In this case, it was confirmed that the surface color of the particles was changed from brown to dark navy blue to black to prepare a nanocomposite having an intrinsic color.
도 5는 본 발명의 또다른 실시예에 따른 컬러 나노 복합체의 제조방법을 나타낸 공정도이다.5 is a process chart showing a method of manufacturing a color nanocomposite according to another embodiment of the present invention.
도 5에 따르면, 상기 컬러 나노 복합체는 나노 입자 클러스터 및 착색제 입자를 혼합하는 단계; 상기 나노 입자 클러스터 및 상기 착색제 입자의 응집 반응을 일으키는 단계;를 포함하여 제조된다.According to FIG. 5, the color nanocomposite may include mixing nanoparticle clusters and colorant particles; And agglomeration reaction of the nanoparticle clusters and the colorant particles.
이 경우, 두 종류의 입자가 혼합되어 나노 복합체를 형성하므로, 입자간 혼합 및 분산이 매우 중요한 요인이 된다. 따라서, 상기 나노 입자 클러스터 및 상기 착색제 입자는 입도분포곡선에 따른 중앙입경의 차이(ΔD50) 및 평균입경의 차이(ΔDm)가 5nm 이하의 범위를 만족해야 한다.In this case, since two kinds of particles are mixed to form a nanocomposite, interparticle mixing and dispersion are very important factors. Therefore, the nanoparticle cluster and the colorant particles should satisfy a range of 5 nm or less in the difference between the median particle diameter (ΔD50) and the average particle diameter (ΔDm) according to the particle size distribution curve.
입도분포곡선이 D50을 중심으로 대칭인 경우에는 D50과 Dm의 차이가 없으나, 입도분포곡선이 비대칭인 경우, D50과 Dm의 차이가 발생하며, 이러한 차이가 클 수록 입자 크기 분포의 균일성이 떨어지는 것을 의미한다.If the particle size distribution curve is symmetric about D50, there is no difference between D50 and Dm.However, if the particle size distribution curve is asymmetric, the difference between D50 and Dm occurs.The larger the difference, the less uniform the particle size distribution is. Means that.
즉, ΔD50은 두 종류의 입자간 크기를 나타내는 지표로 5nm 이하인 경우 두 종류의 입자가 실질적으로 동일한 크기로 균일하게 혼합되어 나노 복합체를 형성할 수 있게 된다. 또한, ΔDm은 두 종류의 입자의 입자 균일성과 입자간 크기 차이를 나타내는 지표로 ΔD50과 ΔDm의 5nm 이하인 값을 동시에 만족함으로써, 입자의 크기가 균일하고, 입자간 크기 차이가 실질적으로 동일한 특성을 나타내는 지표로 사용되게 된다.That is, ΔD50 is an index indicating the size of two kinds of particles, and when 5 nm or less, two kinds of particles may be uniformly mixed to substantially the same size to form a nanocomposite. In addition, ΔDm is an index indicating particle uniformity and particle size difference between two kinds of particles, and simultaneously satisfies a value of 5 nm or less of ΔD50 and ΔDm, so that the particle size is uniform and the particle size difference is substantially the same. It will be used as an indicator.
예를 들어, 20 내지 50nm급 카본 블랙의 표면을 산화시켜 수산화기로 표면 수식하여 에틸렌글리콜 용매에 용이하게 분산될 수 있도록 처리한 후 산화철 나노 입자 클러스터와 혼합하여 나노 복합체를 제조한 경우, 카본 블랙의 농도가 증가할 수록 표면 색상이 블랙으로 변하여 두 종류의 입자를 혼합하는 비율에 따른 색상 조절이 가능함을 확인하였다.For example, when the nanocomposite is prepared by oxidizing the surface of 20 to 50nm grade carbon black, surface modification with a hydroxyl group to be easily dispersed in an ethylene glycol solvent, and then mixed with iron oxide nanoparticle clusters. As the concentration was increased, the color of the surface was changed to black, and it was confirmed that the color can be adjusted according to the ratio of mixing two kinds of particles.
본 발명에서 표면 수식에 의한 제조방법과 응집에 의한 제조방법의 차이는 표면 수식에 의하여 제조된 나노 복합체(도 6)와 응집에 의해 제조된 나노 복합체(도 7)를 형성하게 된다.In the present invention, the difference between the manufacturing method by the surface modification and the manufacturing method by the aggregation will form a nanocomposite prepared by the surface modification (FIG. 6) and a nanocomposite prepared by the aggregation (FIG. 7).
도 6을 참조하면, 표면 수식에 의한 제조방법의 경우, 나노 입자의 표면에 반응기를 부여할 수 있는 물질(예를 들어, 실리카)을 코팅함으로써 표면에 (-) 전하를 부여하고(2), (+) 전하를 가진 메틸렌 블루의 아민기(1)와 반응시킴으로써 나노 입자의 표면에 염료 입자가 물리흡착 또는 화학흡착되어 나노 복합체를 형성(3)하게 된다.Referring to FIG. 6, in the manufacturing method based on surface modification, a negative (−) charge is applied to a surface by coating a material (eg, silica) capable of imparting a reactor to the surface of the nanoparticles (2), By reacting with the amine group (1) of methylene blue having a positive charge, the dye particles are physically adsorbed or chemisorbed on the surface of the nanoparticles to form nanocomposites (3).
도 7을 참조하면, 응집에 의한 제조방법의 경우, 유상/수상의 조건에서 나노 입자(1)와 산화된 카본 블랙 입자(2)를 에틸렌글리콜 용매 중에서 분산한 후 응집시킴(3)으로써 하나의 나노 복합체가 형성되게 된다. 이 경우, 카본 블랙의 혼합량에 따라 나노 복합체의 고유색이 변하게 되므로, 용도에 따라 색상의 조정이 가능하게 된다.Referring to FIG. 7, in the case of the manufacturing method by flocculation, the nanoparticles 1 and the oxidized carbon black particles 2 are dispersed in an ethylene glycol solvent and then flocculated (3) under oil / water phase conditions. Nanocomposites are formed. In this case, since the intrinsic color of the nanocomposite changes depending on the amount of carbon black mixed, the color can be adjusted according to the use.
본 발명에 적용되는 모든 제조방법에 있어서, 상기 착색제 입자는 염료 입자, 안료 입자, 표면 수식되거나 되지 않은 카본 나노 입자, 흑연, 표면 수식되거나 되지 않은 산화그래핀 입자 중 어느 하나 또는 그 이상일 수 있다.In all manufacturing methods applied to the present invention, the colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles.
이때, 상기 염료 입자는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화 염료, 프탈로시아닌 염료 중 어느 하나 또는 그 이상의 염료로 이루어진 입자이며, 상기 안료 입자는 안료는 산화티타늄(titanium dioxide), 산화아연(zinc oxide), 리토폰(lithopon), 황화아연(zinc sulfonate), 황연(chrome yellow), 크롬산아연(zinc chromate), 철적(red oxide of iron), 연단(red lead), 카드뮴적(cardmium red), 모르브덴적(molybdate chrome orange), 감청(milori blue, pressian blue, iron blue), 코발트 블루(cobalt blue), 크롬녹(chrome green), 수산화크롬(viridian), 아연녹(zinc green), 은분(alluminium powder), 금분(bronze powder), 형광안료, 펄안료 중 어느 하나 또는 그 이상의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 중 어느 하나 또는 그 이상의 유기안료일 수 있다.In this case, the dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes, the pigment particles are pigments titanium oxide (titanium dioxide), Zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium ( cardmium red, molybdate chrome orange, milori blue, pressian blue, iron blue, cobalt blue, chrome green, chrome hydroxide, zinc green ), Silver powder, bronze powder, fluorescent pigment, pearl pigment or any one or more of inorganic pigments, or insoluble azo, soluble azo, phthalocyanine, quinacridone, dioxazine, isoindoli Paddy field, vat dye system, phylcholine series, fluorine System, it may be a quinophthalone-based, any of metal complexes or more organic pigments.
실시예에서 산화철-프러시안 블루 나노 복합체를 제조하였다.In Example, the iron oxide-Prussian blue nanocomposite was prepared.
300㎖의 이중자켓 반응기에 증류수 100g을 넣고 입경이 200nm인 Fe3O4 산화철 나노입자 3g을 추가한 후 초음파 분사기를 통하여 2시간 동안 분산하였다. 분산 후, 교반봉을 설치하고 이중자켓 반응기를 밀봉하였다. 산화철 나노입자가 분산된 반응기에 프러시안 블루의 전구체인 K4Fe(CN)6가 녹아 있는 수용액에 추가하고 350 rpm으로 10분간 교반하였다.100 g of distilled water was added to a 300 ml double jacket reactor, and 3 g of Fe 3 O 4 iron oxide nanoparticles having a particle diameter of 200 nm were added, followed by dispersion for 2 hours through an ultrasonic sprayer. After dispersion, a stir bar was installed and the double jacketed reactor was sealed. In the reactor in which the iron oxide nanoparticles were dispersed, K 4 Fe (CN) 6, which is a precursor of Prussian blue, was added to the aqueous solution and stirred at 350 rpm for 10 minutes.
이러한 과정을 통해 제조된 혼합 분산용액에 1N-HCl 용액을 이용하여 pH 2로 적정하고 1시간 동안 500 rpm으로 강하게 교반하였다.1N-HCl solution was used to titrate pH 2 to the mixed dispersion solution prepared through the above procedure, and stirred vigorously at 500 rpm for 1 hour.
HCl 용액을 적정하면 도 8에 도시된 바와 같이 산화철 나노입자의 표면에 철 이온이 형성되며, 여기에 K4Fe(CN)6를 부가하면 표면반응이 일어나 K4Fe(CN)6가 산화철 입자의 표면에 코팅이 되어 나노 복합체가 형성되게 된다.When the HCl solution is titrated, iron ions are formed on the surface of the iron oxide nanoparticles as shown in FIG. 8, and when K 4 Fe (CN) 6 is added thereto, a surface reaction occurs to cause the K 4 Fe (CN) 6 iron oxide particles. Coating on the surface of the nanocomposite will be formed.
1시간 동안 교반하면 분산용액의 색상이 진한 청록색 또는 군청색으로 변하는 것을 확인할 수 있다. 이 상태가 되면 산화철 나노입자의 표면에 프러시안 블루가 코팅된 상태가 되므로 교반을 종료한다.After stirring for 1 hour, the color of the dispersion solution was found to turn dark blue or ultra blue. In this state, since the Prussian blue is coated on the surface of the iron oxide nanoparticles, the stirring is terminated.
제조된 청록색의 분산 용액을 영구자석을 이용하여 자기장을 인가하면서 증류수로 5차례 세척한 다음 70℃의 오븐에서 건조하면 청록색 분말을 얻을 수 있다.The prepared turquoise dispersion solution was washed five times with distilled water while applying a magnetic field using a permanent magnet, and then dried in an oven at 70 ° C. to obtain a turquoise powder.
제조된 나노 복합체를 SEM으로 관찰한 결과가 도 9에 도시되어 있다.SEM observation of the prepared nanocomposite is shown in FIG. 9.
도 9의 결과를 살펴보면, 산화철 나노입자(a)와 비교할 때 산화철-프러시안 블루 나노 복합체에서 입자 크기가 증가하여 표면에 프러시안 블루가 코팅된 것을 알 수 있다. 또한, K4Fe(CN)6의 함량을 증가시키면 입자의 표면의 거칠기가 증가하는 경향을 나타내어 나노입자나 안료의 종류에 따라 적절한 비율로 나노입자와 안료를 반응시킬 필요가 있는 것을 알 수 있다.Referring to the results of FIG. 9, it can be seen that the Prussian blue is coated on the surface by increasing the particle size in the iron oxide-Prussian blue nanocomposite when compared to the iron oxide nanoparticles (a). In addition, when the content of K 4 Fe (CN) 6 is increased, the surface roughness of the particles tends to increase, indicating that it is necessary to react the nanoparticles with the pigment at an appropriate ratio depending on the type of nanoparticles or pigments. .
또한, 200nm의 산화철 나노입자와 상기 2종의 산화철-프러시안 블루 나노 복합체를 대비해 보면, 분말 상에서의 색상이 수분산 상태에서 그대로 재현되는 것을 알 수 있다(도 10).In addition, when contrasting the 200 nm iron oxide nanoparticles and the two iron oxide-Prussian blue nanocomposites, it can be seen that the color on the powder is reproduced as it is in the state of dispersion (Fig. 10).
또한, 상기 산화철 나노입자와 산화철-프러시안 블루 나노 복합체를 각각 증류수에 수분산하고 이에 대한 제타전위를 측정해보면, 산화철 나노입자의 제타전위 값은 8mV로 비교적 낮은 상태이나, 산화철-프러시안 블루 나노 복합체의 경우 35 내지 40mV로 매우 안정한 수분산 상태를 나타내고 있다(도 11).In addition, when the iron oxide nanoparticles and the iron oxide-prussian blue nanocomposite are respectively dispersed in distilled water and the zeta potential of the iron oxide nanoparticles is measured, the zeta potential value of the iron oxide nanoparticles is relatively low as 8 mV. In the case of the composite, the dispersion state was very stable at 35 to 40 mV (FIG. 11).
이러한 결과는 본 발명의 산화철-프러시안 블루 나노 복합체가 자기장 인가 조건에서 광 결정으로서의 우수한 특성을 나타낼 것을 시사하는 것이다. 또한, 높은 제타전위 값은 본 발명의 나노 복합체가 전기장 또는 자기장 인가에 의해 뚜렷한 색 변화를 나타내는 결과를 얻을 수 있다.These results suggest that the iron oxide-Prussian blue nanocomposite of the present invention exhibits excellent properties as photonic crystals under magnetic field application conditions. In addition, a high zeta potential value may result in the nanocomposite of the present invention exhibiting a distinct color change by application of an electric or magnetic field.
특히 수분산 상태에서 나노입자와 비교할 때 상기 나노 복합체의 제타전위 값은 4배 내지 5배 차이가 난다는 점에서 나노 복합체로 제조했을 때 전기장 또는 자기장 인가에 따른 재배열 특성이 크게 향상되는 것을 알 수 있다.In particular, since the zeta potential value of the nanocomposite is 4 to 5 times different compared to the nanoparticles in a dispersed state, the rearrangement characteristics of the nanocomposite are greatly improved by applying electric or magnetic fields. Can be.
본 발명의 컬러 나노 복합체는 표지 장치 등에 적용함으로써, 색 가변 유리, 색 가변 벽지, 색 가변 태양전지, 색 가변 센서, 색 가변 종이, 색 가변 잉크, 위조방지 태그 등 다양한 분야에 응용할 수 있다.The color nanocomposite of the present invention can be applied to various fields such as color variable glass, color variable wallpaper, color variable solar cell, color variable sensor, color variable paper, color variable ink, anti-counterfeiting tag, and the like by applying to a labeling device.
예를 들어, 복합 위조 방지 필름으로 응용할 경우, 기판 또는 해당 대상의 표면 상에 형성된 표시 영역을 포함하며, 상기 표시 영역에 경화 매질 내에 산포된 본 발명의 컬러 나노 복합체를 적용함으로써, 자기장을 인가하면 반사광 및 투과도 중 적어도 어느 하나가 변하며, 특정 에너지를 인가하면 소정의 특성이 발현되는 발현 물질이 상기 경화 매질 내에 별도로 존재하도록 할 수도 있다.For example, when applied as a composite anti-counterfeiting film, applying a magnetic field by applying a color nanocomposite of the present invention comprising a display area formed on a surface of a substrate or a corresponding object, and dispersed in a curing medium to the display area At least one of the reflected light and the transmittance is changed, and when a specific energy is applied, an expression material expressing predetermined characteristics may be separately present in the curing medium.
또한, 이러한 필름을 이용하여 주류, 고급 식품류, 지폐, 수표, 신분증, 여권, 차량 생산 번호, 고급 기계 ID, 고급 상품의 라벨, 의류의 라벨, 고급 가방의 라벨, 소프트웨어 제품 표시, 고급 전자 제품 번호 등의 복합 위조 방지 기술로서 응용할 수 있다.You can also use these films to make alcoholic beverages, gourmet foods, bills, checks, ID cards, passports, vehicle production numbers, high-end machine IDs, high-end merchandise labels, clothing labels, high-end bags labels, software product markings, high-end electronic product numbers. It can be applied as a composite anti-counterfeiting technique.
다음으로, 본 발명의 마이크로 입자는 전기장 또는 자기장의 인가에 의해 재배열되는 컬러 나노 복합체를 함유하는 마이크로 입자로서, 상기 마이크로 입자는 연필경도가 4B 이하이며, 질소 가스를 사용한 비표면적 측정에 따른 공극도분포(pore size distribution)에서 5nm 이하 영역의 공극부피(pore volume)가 전체 공극 부피의 20% 이하인 것을 특징으로 한다. 또한, 상기 컬러 나노 복합체의 수분산 상태의 제타전위 값이 상기 나노입자의 수분산 상태와 비교하여 4배 이상, 바람직하게는 4 내지 6배 차이가 나는 것을 특징으로 한다.Next, the microparticles of the present invention are microparticles containing color nanocomposites that are rearranged by application of an electric or magnetic field, wherein the microparticles have a pencil hardness of 4B or less, and the pores according to specific surface area measurement using nitrogen gas. It is characterized in that the pore volume in the region of 5 nm or less in the pore size distribution is 20% or less of the total pore volume. In addition, the zeta potential value of the water dispersion state of the color nanocomposite is characterized in that the difference is more than 4 times, preferably 4 to 6 times compared to the water dispersion state of the nanoparticles.
본 발명의 마이크로 입자는 통상의 캡슐에 비하여 벽재의 탄성이 낮고 단단한 성질을 가진다. 따라서 입자 내에 포함된 컬러 나노 복합체의 보관성이 우수하고, 캡슐과는 달리 인쇄시 입자가 파괴되지 않아 인쇄성이 용이하다. 이러한 특성을 나타내는 컬러 나노 복합체는 건조 분말 상태에서의 연필경도가 4B 이하, 바람직하게는 3B 이하의 특성을 나타낸다. 이에 비하여 통상의 마이크로 캡슐은 연필경도 9B 또는 그 이상의 값을 가져 벽재의 강도가 매우 약한 점을 고려하면, 본 발명의 마이크로 입자는 벽재의 강도가 크게 향상되는 점을 알 수 있다.The microparticles of the present invention have lower elasticity and harder properties of wall materials than conventional capsules. Therefore, it is excellent in the storage of the color nanocomposite contained in the particles, unlike the capsule is easy to print because the particles are not destroyed during printing. The colored nanocomposite exhibiting these properties exhibits a pencil hardness of 4 B or less, preferably 3 B or less, in a dry powder state. On the other hand, considering that the conventional microcapsule has a pencil hardness of 9B or more and the strength of the wall material is very weak, it can be seen that the microparticles of the present invention greatly improve the wall material strength.
이러한 마이크로 입자의 벽재의 강도는 벽재에 존재하는 마이크로 세공의 공극부피로부터 유추할 수 있다. 공극부피는 가스 흡착-탈착법을 이용한 BET 비표면적 측정법을 통해 측정할 수 있다. 이 경우, 질소, 아르곤, 크립톤, 산소, 헬륨, 일산화탄소 등의 가스를 흡착-탈착함으로써 표면적을 측정하게 된다.The strength of the wall material of such microparticles can be inferred from the void volume of the micropores present in the wall material. Pore volume can be measured by BET specific surface area measurement using gas adsorption-desorption method. In this case, the surface area is measured by adsorption-desorption of gases such as nitrogen, argon, krypton, oxygen, helium and carbon monoxide.
마이크로 세공은 5nm 이하의 세공으로서 벽재를 구성하는 고분자의 밀도가 높을수록 마이크로 세공의 공극부피는 감소하게 된다. 따라서 마이크로 세공 영역의 공극 부피는 벽재의 강도와 반비례하는 경향이 있으며, 본 발명에서 마이크로 캡슐의 충분한 강도를 얻기 위해서는 5nm 이하 영역의 공극 부피가 전체 공극 부피의 20% 이하인 조건을 만족해야 한다. 5nm 이하 영역의 공극부피가 전체 공극 부피의 20%를 초과할 경우, 벽재가 고분자의 집합체(agglomerate)로 형성된 구조로 관찰되며, 이는 마이크로 세공 영역의 부피가 감소하는 경향과 연관된다.The micropores are pores of 5 nm or less, and the higher the density of the polymer constituting the wall material, the smaller the pore volume of the micropores. Therefore, the pore volume of the micropore region tends to be inversely proportional to the strength of the wall material, and in order to obtain sufficient strength of the microcapsules in the present invention, the pore volume in the region of 5 nm or less must satisfy 20% or less of the total pore volume. When the pore volume in the 5 nm or less region exceeds 20% of the total pore volume, the wall is observed to be formed of an aggregate of polymers, which is associated with a tendency to decrease the volume of the micropore region.
본 발명에 따른 마이크로 입자는, 도 12에 도시된 바와 같이, 에멀전을 형성하여 코어-셀 구조화하는 반응 과정을 통해 제조할 수 있다.As illustrated in FIG. 12, the microparticles according to the present invention may be prepared through a reaction process of forming an emulsion and core-cell structuring.
우선, 컬러 나노 복합체를 분산매에 분산시켜 심 물질을 제조한다(S110). 이때, 상기 컬러 나노 복합체는 분산매에 대하여 0.1 내지 25 중량%의 비율로 분산될 수 있으나, 필요에 따라 더 많은 양을 분산시킬 수도 있다. 상기 심 물질의 분산액은 초음파 분산기 또는 호모게나이저를 이용하여 분산을 수행한다.First, the core material is prepared by dispersing the color nanocomposite in a dispersion medium (S110). In this case, the color nanocomposite may be dispersed at a ratio of 0.1 to 25% by weight based on the dispersion medium, but may be dispersed in a larger amount as needed. The dispersion of the shim material is dispersed using an ultrasonic disperser or homogenizer.
다음으로, 마이크로 입자의 벽재를 형성할 고분자를 혼합하여 산도 조절에 의하여 프리폴리머를 제조한다(S120). 이 공정은 컬러 나노 복합체의 분산액을 제조하는 공정과 동시에 수행할 수 있다.Next, by mixing the polymer to form the wall material of the microparticles to prepare a prepolymer by acidity control (S120). This process can be performed simultaneously with the process of preparing a dispersion of the color nanocomposites.
상기 벽재를 형성하기 위한 고분자는 탄성이 낮고 단단한 성질을 나타낼 수 있는 고분자 전구체를 사용할 수 있는데, 우레아-포름알데하이드, 멜라민-포름알데하이드, 메틸비닐에테르 코말레산 무수물과 같은 공중합체나 젤라틴, 폴리비닐알코올, 폴리비닐아세테이트, 셀룰로오스성 유도체, 아카시아, 카라기난, 카르복시메틸렐룰로스, 가수분해된 스티렌 무수물 공중합체, 아가, 알기네이트, 카제인, 알부민, 셀룰로오스 프탈레이트 등의 고분자를 사용할 수 있다. 이러한 고분자의 친수성과 소수성을 조절함으로써 나노 복합체를 둘러싸며 벽재를 형성할 수 있다. 또한, 상기 프리폴리머는 나노 복합체와 마찬가지로 분산매에 분산되어 분산액으로 제조될 수 있다.As the polymer for forming the wall material, a polymer precursor capable of exhibiting low elasticity and rigid properties may be used. A copolymer such as urea-formaldehyde, melamine-formaldehyde, methylvinyl ether commaleic anhydride, gelatin, polyvinyl Polymers such as alcohol, polyvinylacetate, cellulosic derivatives, acacia, carrageenan, carboxymethylcellulose, hydrolyzed styrene anhydride copolymers, agar, alginate, casein, albumin, cellulose phthalate and the like can be used. By controlling the hydrophilicity and hydrophobicity of such a polymer it is possible to form a wall surrounding the nanocomposite. In addition, the prepolymer may be prepared in a dispersion by dispersing in a dispersion medium like the nanocomposite.
상기 S110 단계에서 제조된 나노 복합체의 분산액과 상기 S120 단계에서 제조된 벽재 물질의 프리폴리머 분산액을 혼합하고 교반하여 에멀전을 형성하는 단계를 수행할 수 있다(S130). 이러한 에멀전을 형성하기 위한 조건으로 나노 복합체와 프리폴리머의 비율을 최적화할 필요가 있으며, 두 분산액을 부피 비율로 1:5 내지 1:12이 되도록 혼합할 수 있다. 또한, 분산성 향상을 위하여 안정제를 첨가할 수도 있다. 상기 에멀전 내에서 컬러 나노 복합체는 분산상이 되고 벽재 물질은 연속상이 될 수 있다.The dispersion of the nanocomposite prepared in step S110 and the prepolymer dispersion of the wall material prepared in step S120 may be mixed and stirred to form an emulsion (S130). It is necessary to optimize the ratio of the nanocomposite and the prepolymer under the conditions for forming such an emulsion, and the two dispersions may be mixed in a volume ratio of 1: 5 to 1:12. In addition, a stabilizer may be added to improve dispersibility. In the emulsion, the color nanocomposite may be in a dispersed phase and the wall material may be in a continuous phase.
상기 S130 단계에서 에멀전의 안정성을 높이기 위해 첨가제를 첨가할 수 있다. 이러한 첨가제로는 수상에서 용해 후 점도가 높은 습윤성이 우수한 유기 고분자일 수 있으며, 구체적으로는, 젤라틴, 폴리비닐알코올, 소듐 카르복시메틸 셀룰로오스, 전분, 하이드록시에틸 셀룰로오스, 폴리비닐피롤리돈, 알기네이트 중 적어도 어느 하나를 사용할 수 있다.In step S130, an additive may be added to increase the stability of the emulsion. Such additives may be organic polymers having high viscosity and high wettability after dissolution in an aqueous phase. Specifically, gelatin, polyvinyl alcohol, sodium carboxymethyl cellulose, starch, hydroxyethyl cellulose, polyvinylpyrrolidone, alginate At least one of them can be used.
상기 S130 단계에서 형성된 에멀전의 pH와 온도를 조절하여 연속상인 벽재 물질 분산액이 분산상인 자성 변색 잉크 주위에 침착되어 캡슐의 벽이 형성되도록 함으로써 심 물질 분산액을 캡슐화할 수 있다(S140). 즉, 인 시튜 중합방법에 의하여 캡슐화를 수행하는데, 이 경우, 캡슐 벽재를 더 치밀하게 구성하여 탄성을 감소시킴으로써 벽재의 경도를 높이기 위해 첨가제를 첨가하는 과정을 포함할 수 있다.The core material dispersion may be encapsulated by controlling the pH and temperature of the emulsion formed in the step S130 so that the continuous wall material dispersion is deposited around the discolored magnetic discoloring ink to form a wall of the capsule (S140). That is, the encapsulation is performed by an in situ polymerization method, in which case, the capsule wall material may be more densely formed to reduce the elasticity, thereby adding an additive to increase the hardness of the wall material.
첨가되는 첨가제의 종류는 수상에서 용해가 잘 되는 이온성 또는 극성 물질일 수 있다. 예를 들어, 경화 촉매제인 염화암모늄, 레조르시놀, 하이드로퀴논, 카테콜 중 적어도 어느 하나를 사용할 수 있다.The type of additive to be added may be an ionic or polar substance that is well soluble in the aqueous phase. For example, at least one of ammonium chloride, resorcinol, hydroquinone, and catechol, which is a curing catalyst, may be used.
본 발명의 컬러 나노 복합체를 함유하는 마이크로 입자는 상기와 같이 인 시튜 중합법으로 제조할 수 있으나, 코아세르베이션 방법(coacervation approach) E또는 계면 중합법(interfacial polymerization)으로 제조할 수도 있다.The microparticles containing the color nanocomposite of the present invention may be prepared by the in situ polymerization method as described above, but may also be prepared by a coacervation method E or an interfacial polymerization method.
코아세르베이션 방법의 경우, 내부상 및 외부상의 유상/수상 에멀전을 이용하게 된다. 컬러 나노 복합체 콜로이드는 수성 외부상으로부터 밖으로 코아세르베이션(괴상화)되며, 온도, pH, 상대 농도 등을 제어함으로써 내부상의 유상 액적에 벽재를 형성하여 입자화된다. 코아세르베이션의 경우, 벽재 재료로서, 우레아-포름알데하이드, 멜라민-포름알데하이드, 젤라틴, 또는 아라빅 고무 등을 사용할 수 있다.In the case of the coacervation method, an oil phase / water emulsion of an internal phase and an external phase is used. The color nanocomposite colloid is coacervated out from the aqueous outer phase and granulated by forming walls in the oil phase droplets of the inner phase by controlling temperature, pH, relative concentration, and the like. In the case of coacervation, urea-formaldehyde, melamine-formaldehyde, gelatin, arabic rubber, or the like can be used as the wall material.
계면 중합법의 경우, 내부상의 친유성 단량체의 존재에 따라 수성 외부상에 있어서의 에멀전으로 존재하게 된다. 상기 내부상 액정 중의 단량체는 수성 외부상에 도입된 단량체와 반응하고, 내부상의 액적과 주위의 수성 외부상과의 계면에서 중합반응이 일어나며, 상기 액적 주위에서 입자의 벽이 형성된다. 형성된 벽은 비교적 얇고 침투성이 있으나, 다른 제조방법과 달리 가열이 필요하지 않으므로, 다양한 유전성 액체를 적용할 수 있는 장점이 있다.In the case of the interfacial polymerization method, depending on the presence of the lipophilic monomer in the inner phase, it is present as an emulsion in the aqueous outer phase. The monomer in the inner phase liquid crystal reacts with the monomer introduced into the aqueous outer phase, the polymerization takes place at the interface between the droplet of the inner phase and the surrounding aqueous outer phase, and a wall of particles is formed around the droplet. The formed wall is relatively thin and permeable, but unlike other manufacturing methods, heating is not required, and thus there is an advantage in that various dielectric liquids can be applied.
본 발명에 따른 마이크로 입자는 10 내지 100㎛, 바람직하게는 10 내지 50㎛, 더욱 바람직하게는 10 내지 40㎛의 균일한 구형으로 이루어져 있다. 이러한 캡슐 형태 및 크기의 균일성은 전기장 또는 자기장에 의해 재배열되는 컬러 나노 복합체의 거시적 균일성을 확보하는 원인이 되며, 이에 따라 색상의 변화 및 구현되는 색상의 선명도가 더욱 향상되게 된다. 마이크로 입자의 형태와 크기의 균일성이 확보되지 못하면, 상기 마이크로 입자 내에 분산된 컬러 나노 복합체가 균일하게 재배열된다고 하더라도 거시적으로는 불규칙성이 증가되어 색상의 변화 및 구현이 불충분하게 된다.The microparticles according to the invention consist of a uniform sphere of 10 to 100 μm, preferably 10 to 50 μm, more preferably 10 to 40 μm. The uniformity of the shape and size of the capsule is to ensure the macroscopic uniformity of the color nanocomposite rearranged by the electric or magnetic field, thereby improving the color change and the sharpness of the color to be implemented. If the uniformity of the shape and size of the microparticles is not secured, even if the color nanocomposites dispersed in the microparticles are rearranged uniformly, irregularities are increased macroscopically, resulting in insufficient color change and implementation.
본 발명에 의해 제조된 마이크로 입자(실시예)와 안정제를 사용하지 않고, 경화 촉매제의 양을 1/2로 줄여 제조한 마이크로 입자(비교예)의 입도 분포를 측정한 결과가 표 2에 기재되어 있다.Table 2 shows the results of measuring the particle size distribution of the microparticles (Comparative Example) prepared by reducing the amount of the curing catalyst to 1/2 without using the microparticles (Example) and the stabilizer prepared by the present invention. have.
D[4,3](㎛)D [4,3] (µm) D(ν,0.1)(㎛)D (ν, 0.1) (μm) D(ν,0.5)(㎛)D (ν, 0.5) (μm) D(ν,0.9)(㎛)D (ν, 0.9) (μm)
실시예Example 23.5823.58 12.9912.99 23.2323.23 35.6735.67
비교예Comparative example 113.95113.95 23.0823.08 104.53104.53 216.64216.64
표 2를 살펴보면, 본 발명에 따른 마이크로 입자는 D50이 23.23㎛으로 본 발명에서 요구하는 입자의 크기를 가지나, 제조 조건을 변경하면 D50이 급격히 증가하는 것을 확인할 수 있다. 입도 분포의 균일성은 실시예 및 비교예에 따른 마이크로 입자의 입도 분포 그래프를 살펴보아도 알 수 있다(도 13).Looking at Table 2, the microparticles according to the present invention has a D50 of 23.23 ㎛ having the size of the particle required by the present invention, it can be seen that the D50 is rapidly increased when the manufacturing conditions are changed. Uniformity of the particle size distribution can also be seen by examining the particle size distribution graph of the microparticles according to Examples and Comparative Examples (Fig. 13).
또한, D[4,3]에서도 비교예는 113.95㎛로 실시예에 비하여 평균 입도 분포의 균일성이 크게 악화되는 것을 알 수 있다. 따라서 본 발명에서 마이크로 입자의 제조 조건, 물성을 대단히 엄격하게 조절함으로써 본 발명이 목적으로 하는 마이크로 입자를 얻을 수 있음을 확인할 수 있었다.Also in D [4,3], the comparative example is 113.95 µm, which shows that the uniformity of the average particle size distribution is greatly deteriorated compared to the examples. Therefore, it was confirmed that the microparticles of the present invention can be obtained by strictly controlling the production conditions and physical properties of the microparticles in the present invention.
제조 조건을 일부 변경한 상기 실시예(도 14a)와 비교예(도 14b)의 마이크로 입자에 대한 에멀전 상태 및 수상에서의 상태(도 15)에 대한 광학 현미경 사진을 살펴보아도, 제조 조건을 일부 변경할 때 본 발명에서 목적하는 형태 및 입도 균일성을 담보할 수 없음을 확인할 수 있다.Even when looking at the optical micrographs of the emulsion state and the state in the water phase (Fig. 15) of the microparticles of the above-described Example (Fig. 14A) and the Comparative Example (Fig. 14B), which partially changed the manufacturing conditions, the manufacturing conditions were partially changed. When the present invention can be confirmed that the desired shape and particle size uniformity can not be secured.
본 발명의 마이크로 입자는 벽재의 탄성이 낮고 단단한 성질로 인하여 건조 후에도 입자끼리의 응집 현상이 적다. 이는 실시예(도 16a) 및 비교예(도 16b)의 상온 건조에 의해 제조된 분말 상태의 광학 현미경 사진을 살펴보아도 알 수 있다. 실시예에서는 건조 후에도 응집이 발생하지 않으며 입자의 형태 변화가 거의 관찰되지 않으나, 비교예에서는 형태 변화 및 부분적인 응집이 발생하는 것을 확인할 수 있었다. 따라서 비교예에 따른 입자는 종래의 캡슐과 유사한 성질을 나타내는 것으로 볼 수 있다.The microparticles of the present invention have less agglomeration between the particles even after drying due to the low elasticity of the wall material and the hard properties. This can be seen by examining the optical micrograph of the powder state prepared by the room temperature drying of the Example (FIG. 16A) and the Comparative Example (FIG. 16B). In Example, no agglomeration occurred after drying and almost no change in the shape of the particles was observed, but in the Comparative Example, it was confirmed that the shape change and the partial agglomeration occurred. Therefore, the particles according to the comparative example can be seen to exhibit properties similar to the conventional capsule.
도 17은 본 발명의 마이크로 입자를 슬라이드 글래스에 100㎛ 두께로 도포한 후 100 가우스의 자기장 세기를 가진 고무 자석을 상기 슬라이드 글래스 뒷면에 근접했을 때 색상이 발현되는 모습을 촬영한 사진이다. 본 발명의 마이크로 입자의 균일성은 약한 자장에도 뚜렷한 색상 변화를 유발하는 효과를 나타낸다.FIG. 17 is a photograph showing the appearance of color when a rubber particle having a magnetic field strength of 100 gauss is applied to the rear surface of the slide glass after applying the microparticles of the present invention to the slide glass at a thickness of 100 μm. The uniformity of the microparticles of the present invention has the effect of causing a noticeable color change even in a weak magnetic field.
도 18은 본 발명의 마이크로 입자를 분말 상태로 하여 자기장 세기에 따른 반사율을 측정한 것이다. 화살표의 방향으로 자기장 세기가 증가하면 반사 피크가 화살표 방향으로 저파장 이동하는 것을 알 수 있다. 따라서 자성 세기에 따라 색상이 변화하는 현상을 분광학적 데이터를 통해 확인할 수 있다.18 shows the reflectance according to the magnetic field strength by making the microparticles of the present invention into a powder state. It can be seen that when the magnetic field strength increases in the direction of the arrow, the reflection peak moves at a low wavelength in the direction of the arrow. Therefore, the phenomenon of color change according to the magnetic intensity can be confirmed through spectroscopic data.
본 발명의 마이크로 입자는 벽재의 탄성이 낮고 단단한 성질로 인하여 우수한 내열성을 나타낸다. 도 19를 살펴보면, 실시예와 비교예에 따른 마이크로 입자를 슬라이드 글래스 위에 골고루 뿌리고 100℃의 열풍 건조기에 24시간 동안 방치한 후, 입자의 형태 변화를 관찰한 결과이다. 상기 결과로부터 본 발명에 따른 마이크로 입자의 벽재의 견고도가 높아 열적 안정성이 뛰어난 것을 확인할 수 있었다.The microparticles of the present invention exhibit excellent heat resistance due to the low elasticity and rigid properties of the wall material. Referring to Figure 19, the microparticles according to the Examples and Comparative Examples evenly sprayed on the slide glass and left for 24 hours in a hot air dryer at 100 ℃, the result of the change in the shape of the particles observed. From the above results, it was confirmed that the rigidity of the wall material of the microparticles according to the present invention is excellent in thermal stability.
이러한 특성은 고온의 인쇄 조건에서도 견딜 수 있음을 의미하므로, 다양한 형태의 표시 소자나 인쇄 매체에 적용이 가능함을 의미한다.This property means that it can withstand high temperature printing conditions, which means that it can be applied to various types of display elements or print media.
또한, 벽재를 우레아-포름알데하이드로 형성한 마이크로 캡슐의 푸리에 변환 적외선 분광법(FT-IR) 측정 결과를 도 20에 나타내었다. 상기 FT-IR 스펙트럼을 살펴보면, C-N 신축에 해당하는 1097㎝-1 및 N-C-N 신축에 해당하는 1041㎝-1가 관측되어 고분자에 의해 벽재가 제대로 구성되고 있음을 확인할 수 있었다.In addition, Fourier transform infrared spectroscopy (FT-IR) measurement results of the microcapsules in which the wall material was formed of urea-formaldehyde are shown in FIG. 20. Looking at the FT-IR spectrum, it is 1041㎝ -1 was observed for the 1097㎝ -1 and NCN stretching corresponding to CN stretch was confirmed that the wall material has been configured correctly by the polymer.
또한, 실시예와 비교예에 따른 마이크로 입자의 연필경도를 측정한 결과 실시예에서는 3B, 비교예에서는 9B의 측정 결과를 얻어 본 발명의 마이크로 입자의 벽재의 강도가 매우 향상된 것을 확인할 수 있었다.In addition, as a result of measuring the pencil hardness of the microparticles according to the Examples and Comparative Examples, it was confirmed that the strength of the wall material of the microparticles of the present invention was very improved by obtaining the measurement results of 3B in the Examples and 9B in the Comparative Examples.
이러한 연필경도의 측정결과와 마이크로 세공 영역의 공극 부피 비율로부터 본 발명의 마이크로 입자의 벽재는 매우 조밀한 구조를 이루며, 강도가 매우 높은 탄성이 낮고 단단한 성질을 가지는 것으로 파악되었다.From the measurement results of the pencil hardness and the pore volume ratio of the micropore region, the wall material of the microparticles of the present invention was found to have a very dense structure, a very high elasticity, a low elasticity, and a hard property.
본 발명의 컬러 나노 복합체를 포함하는 마이크로 입자는 건조 보관시 응집이 없고, 열적 안정성 및 벽재의 강도가 우수하므로 다양한 형태의 인쇄에 적용할 수 있으며, 특히 실크스크린 인쇄와 같이 내열성, 내응집성이 요구되는 잉크에 적용할 수 있으므로 응용의 폭을 넓힐 수 있다.The microparticles including the color nanocomposite of the present invention have no agglomeration during dry storage, and are excellent in thermal stability and wall strength, and thus can be applied to various types of printing, and particularly heat resistance and coagulation resistance such as silk screen printing are required. It can be applied to inks that can be used to broaden the application.
본 발명에 따른 마이크로 입자를 인쇄를 위한 잉크에 적용할 경우, 수용성 고분자, 수분산 고분자, 유용성 고분자, 열경화성 고분자, 열가소성 고분자, UV 경화 고분자, 방사선 경화 고분자 등의 바인더에 분산하여 사용할 수 있다. 이러한 바인더에 경계면 활성제 및 가교제를 부가하여 인쇄 또는 코팅 공정의 내구성을 향상시킬 수도 있다.When the microparticles according to the present invention are applied to an ink for printing, they can be dispersed and used in binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like. The surface active agent and the crosslinking agent may be added to the binder to improve the durability of the printing or coating process.
상기 마이크로 입자를 사용한 인쇄는 인쇄 및 코팅의 모든 형태를 포함하며, 롤 코팅, 그라비어 코팅, 침지 코팅, 스프레이 코팅, 메니스커스 코팅, 스핑 코팅, 브러시 코팅, 에어나이프 코팅과 같은 코팅이나, 실크스크린 인쇄, 정전 인쇄, 열인쇄, 잉크젯 인쇄와 같은 인쇄를 통해 수행될 수 있다.Printing using the microparticles includes all forms of printing and coating, and may be a coating such as roll coating, gravure coating, dip coating, spray coating, meniscus coating, sping coating, brush coating, air knife coating, or silkscreen. It may be carried out through printing such as printing, electrostatic printing, thermal printing, inkjet printing.
일례로, 주류, 고급 식품류, 지폐, 수표, 신분증, 여권, 차량 생산 번호, 고급 기계 ID, 고급 상품의 라벨, 의류의 라벨, 고급 가방의 라벨, 소프트웨어 제품 표시, 고급 전자 제품 번호 등의 복합 위조 방지 기술을 위한 잉크 등의 인쇄 매체로 제조할 수 있으며, 이러한 인쇄 매체를 이용하여 다양한 제품에 인쇄할 수 있다.For example, complex counterfeits such as alcoholic beverages, gourmet foods, bills, checks, identification cards, passports, vehicle production numbers, high-end machine IDs, high-end merchandise labels, clothing labels, high-end bags labels, software product markings, high-end electronic product numbers, etc. It can be produced with a printing medium such as an ink for the prevention technology, it can be printed on a variety of products using such a printing medium.
또한, 색 가변 유리, 색 가변 벽지, 색 가변 태양전지, 색 가변 센서, 색 가변 종이, 색 가변 잉크, 위조방지 태그 등의 다양한 표시 소자로 제조할 수 있으며, 이러한 표시 소자를 이용하여 색상을 표시할 수 있게 된다. 색상을 표시하는 방법은 자기장 또는 전기장을 발생시키는 매체를 이용하여 색상의 변화를 유발하거나 색상이 변화된 상태를 유지하거나 자기장 또는 전기장이 제거되면 원래 색상으로 돌아오도록 함으로써 다양한 색상 표시가 가능하게 된다.In addition, the display device may be manufactured with various display devices such as color variable glass, color variable wallpaper, color variable solar cell, color variable sensor, color variable paper, color variable ink, and anti-counterfeiting tag, and display colors using such display elements. You can do it. In the method of displaying color, various colors can be displayed by using a medium generating a magnetic or electric field to cause a color change, to maintain a changed color, or to return to the original color when the magnetic or electric field is removed.
또한, 롤-투-롤 공법으로 격벽을 형성시키고 본 발명의 마이크로 입자를 포함하는 표시 물질을 주입함으로써 픽셀을 구현하는 컬러 표시 장치로 사용할 수도 있다.In addition, it may be used as a color display device for forming pixels by forming barrier ribs using a roll-to-roll method and injecting a display material including the microparticles of the present invention.
또한, 전기장에 대한 문턱값이 다른 2종 이상의 마이크로 입자를 사용하여 반사형 표시 장치에 적용할 수도 있다. 즉, 상, 하부 기판 및 상, 하부 전극을 포함하는 격벽으로 구분되는 반사형 표시 장치에 다른 컬러를 갖는 마이크로 입자를 위치시켜 전기장의 인가에 의해 다양한 색상을 구현할 수 있게 된다.In addition, two or more kinds of microparticles having different thresholds for electric fields may be applied to the reflective display device. That is, the microparticles having different colors may be positioned in the reflective display device divided into the partition including the upper and lower substrates and the upper and lower electrodes, thereby realizing various colors by applying an electric field.
또한, 광투과성 필름 상에 본 발명의 마이크로 입자를 포함하는 용액을 도포하고 경화시킴으로써 필름으로 제조할 수도 있다.Moreover, it can also manufacture into a film by apply | coating and hardening the solution containing the microparticle of this invention on a light transmissive film.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been shown and described with reference to preferred embodiments as described above, it is not limited to the above embodiments and various modifications made by those skilled in the art without departing from the spirit of the present invention. Modifications and variations are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.

Claims (31)

  1. 전기장 또는 자기장의 인가에 의하여 재배열되며 나노입자를 포함하는 컬러 나노 복합체에 관한 것으로서, A color nanocomposite comprising nanoparticles rearranged by application of an electric or magnetic field,
    상기 컬러 나노 복합체는 CIE 표색계의 색좌표에 따른 전기장 또는 자기장의 인가 전후의 색차(ΔE* ab)가 2.2 이상이며, 입도분포곡선의 반치폭(full width at half maximum, FWHM)이 30nm 이하인 것을 특징으로 하는 컬러 나노 복합체.The color nanocomposite has a color difference (ΔE * ab ) of 2.2 or more before and after application of an electric or magnetic field according to the color coordinates of the CIE color system, and a full width at half maximum (FWHM) of the particle size distribution curve is 30 nm or less. Colored nanocomposites.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 컬러 나노 복합체는 극성 또는 비극성 매체에 분산되어 전기장 또는 자기장의 인가에 의해 재배열되는 것을 특징으로 하는 컬러 나노 복합체.The color nanocomposite may be dispersed in a polar or nonpolar medium and rearranged by application of an electric or magnetic field.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 매체는 염료 또는 안료를 포함하는 것을 특징으로 하는 컬러 나노 복합체.The medium is colored nanocomposite, characterized in that it comprises a dye or pigment.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 컬러 나노 복합체는 소수성 물질로 피복된 착색제 입자와 나노 입자의 혼합물인 것을 특징으로 하는 컬러 나노 복합체.The color nanocomposite is a color nanocomposite, characterized in that the mixture of the colorant particles and nanoparticles coated with a hydrophobic material.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 컬러 나노 복합체는 착색제로 피복된 나노 입자로 이루어지는 것을 특징으로 하는 컬러 나노 복합체.The color nanocomposite is a color nanocomposite, characterized in that consisting of nanoparticles coated with a colorant.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 컬러 나노 복합체는 착색제 입자와 나노 입자가 응집되어 이루어진 입자인 것을 특징으로 하는 컬러 나노 복합체.The color nanocomposite is a color nanocomposite, characterized in that the particles formed by the aggregation of the colorant particles and nanoparticles.
  7. 청구항 4 내지 6에 있어서,The method according to claim 4 to 6,
    상기 나노 입자는 실리콘(Si), 티타늄(Ti), 바륨(Ba), 스트론튬(Sr), 철(Fe), 니켈(Ni), 코발트(Co), 납(Pb), 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 텅스텐(W), 몰리브덴(Mo), 아연(Zn), 지르코늄(Zr) 중 어느 하나 또는 그 이상의 금속 또는 이들의 질화물 또는 산화물인 것을 특징으로 하는 컬러 나노 복합체.The nanoparticles are silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr), or any one or more metals or nitrides or oxides thereof Color nanocomposites.
  8. 청구항 4 내지 6에 있어서,The method according to claim 4 to 6,
    상기 착색제 입자는 염료 입자, 안료 입자, 표면 수식되거나 되지 않은 카본 나노 입자, 흑연, 표면 수식되거나 되지 않은 산화그래핀 입자 중 어느 하나 또는 그 이상인 것을 특징으로 하는 컬러 나노 복합체.The colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, and surface-modified graphene oxide particles.
  9. 청구항 1에 기재된 컬러 나노 복합체를 제조하는 방법으로서,As a method of manufacturing the colored nanocomposite of claim 1,
    착색제 입자와 나노 입자를 혼합하여 혼합물을 제조하는 단계;Preparing a mixture by mixing the colorant particles and the nanoparticles;
    상기 혼합물에 소수성 물질을 혼합하여 미니에멀전을 형성하는 단계;Mixing a hydrophobic material in the mixture to form a miniemulsion;
    상기 미니에멀전과 단량체를 중합하는 단계;Polymerizing the miniemulsion and a monomer;
    를 포함하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.Method for producing a color nanocomposite comprising a.
  10. 청구항 1에 기재된 컬러 나노 복합체를 제조하는 방법으로서,As a method of manufacturing the colored nanocomposite of claim 1,
    나노 입자의 표면을 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자를 제조하는 단계;Preparing nanoparticles whose surface is modified by a material containing a reactive group;
    상기 표면 수식된 나노 입자 및 착색제 입자를 혼합하여 분산액을 제조하는 단계;Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles;
    상기 표면 수식된 나노 입자 및 상기 착색제 입자의 흡착 반응을 일으키는 단계;Causing adsorption reaction of the surface modified nanoparticles and the colorant particles;
    를 포함하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.Method for producing a color nanocomposite comprising a.
  11. 청구항 1에 기재된 컬러 나노 복합체를 제조하는 방법으로서,As a method of manufacturing the colored nanocomposite of claim 1,
    나노 입자의 표면을 수식(修飾)하는 단계;Modifying the surface of the nanoparticles;
    착색제 입자의 표면을 수식하는 단계;Modifying the surface of the colorant particles;
    상기 착색제 입자 및 상기 나노 입자를 혼합하여 분산액을 제조하는 단계;Preparing a dispersion by mixing the colorant particles and the nanoparticles;
    상기 착색제 입자 및 상기 나노 입자의 흡착 반응을 일으키는 단계;Causing adsorption reaction of the colorant particles and the nanoparticles;
    를 포함하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.Method for producing a color nanocomposite comprising a.
  12. 청구항 1에 기재된 컬러 나노 복합체를 제조하는 방법으로서,As a method of manufacturing the colored nanocomposite of claim 1,
    나노 입자 클러스터 및 착색제 입자를 혼합하는 단계;Mixing the nanoparticle clusters and the colorant particles;
    상기 나노 입자 클러스터 및 상기 착색제 입자의 응집 반응을 일으키는 단계;Causing an aggregation reaction of the nanoparticle clusters and the colorant particles;
    를 포함하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.Method for producing a color nanocomposite comprising a.
  13. 청구항 9 내지 12 중 어느 한 항에 있어서,The method according to any one of claims 9 to 12,
    상기 나노 입자는 실리콘(Si), 티타늄(Ti), 바륨(Ba), 스트론튬(Sr), 철(Fe), 니켈(Ni), 코발트(Co), 납(Pb), 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 텅스텐(W), 몰리브덴(Mo), 아연(Zn), 지르코늄(Zr) 중 어느 하나 또는 그 이상의 금속 또는 이들의 질화물 또는 산화물인 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The nanoparticles are silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr), or any one or more metals or nitrides or oxides thereof Method for producing a color nanocomposite.
  14. 청구항 9 내지 12 중 어느 한 항에 있어서,The method according to any one of claims 9 to 12,
    상기 착색제 입자는 염료 입자, 안료 입자, 표면 수식되거나 되지 않은 카본 나노 입자, 흑연, 표면 수식되거나 되지 않은 산화그래핀 입자 중 어느 하나 또는 그 이상인 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The colorant particles are any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles or more or more.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 염료 입자는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화 염료, 프탈로시아닌 염료 중 어느 하나 또는 그 이상의 염료로 이루어진 입자이며, 상기 안료 입자는 안료는 산화티타늄(titanium dioxide), 산화아연(zinc oxide), 리토폰(lithopon), 황화아연(zinc sulfonate), 황연(chrome yellow), 크롬산아연(zinc chromate), 철적(red oxide of iron), 연단(red lead), 카드뮴적(cardmium red), 모르브덴적(molybdate chrome orange), 감청(milori blue, pressian blue, iron blue), 코발트 블루(cobalt blue), 크롬녹(chrome green), 수산화크롬(viridian), 아연녹(zinc green), 은분(alluminium powder), 금분(bronze powder), 형광안료, 펄안료 중 어느 하나 또는 그 이상의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 중 어느 하나 또는 그 이상의 유기안료인 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, and phthalocyanine dyes, and the pigment particles are titanium oxide (titanium dioxide) or zinc oxide. zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium red ), Molybdate chrome orange, blue blue, pressian blue, iron blue, cobalt blue, chrome green, chromium hydroxide, zinc green, Inorganic pigments of any one or more of silver powder, bronze powder, fluorescent pigment, pearl pigment, or insoluble azo, soluble azo, phthalocyanine, quinacridone, dioxazine, isoindolinone, Vat dyes, phylcholine, fluorine, Smirnoff etalon-based method of producing a color nanocomposite according to any one or more of the organic pigment characterized in that the metal of the complex.
  16. 청구항 9에 있어서,The method according to claim 9,
    상기 단량체는 스티렌(styrene), 피리딘(pyridine), 피롤(pyrrole), 아닐린(aniline), 피롤리돈(pyrrolidone), 아크릴산(acrylate), 우레탄(urethane), 티오펜(thiophene), 카바졸(carbazole), 플루오렌(fluorene), 비닐알코올(vinylalcohol), 에틸렌글리콜(ethylene glycol), 에톡시아크릴레이트(ethoxy acrylate) 중 어느 하나 또는 그 이상인 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The monomers include styrene, pyridine, pyrrole, aniline, pyrrolidone, pyrrolidone, acrylic acid, urethane, thiophene, and carbazole. ), Fluorene (fluorene), vinyl alcohol (vinylalcohol), ethylene glycol (ethylene glycol), ethoxy acrylate (ethoxy acrylate) any one or more of the manufacturing method of the color nanocomposite.
  17. 청구항 9에 있어서,The method according to claim 9,
    상기 중합하는 단계는 미니에멀전의 액적을 매질에 투입함으로써 수행하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.Wherein the step of polymerization is a method of producing a color nanocomposite, characterized in that by performing the droplets of the mini-emulsion to the medium.
  18. 청구항 9에 있어서,The method according to claim 9,
    상기 중합하는 단계는 상기 소수성 물질과 상기 착색제 입자의 현탁액을 제조한 후, 개시제를 부가함으로써 수행하는 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The polymerizing step is prepared by producing a suspension of the hydrophobic material and the colorant particles, the method of producing a color nanocomposite, characterized in that by adding an initiator.
  19. 청구항 12에 있어서,The method according to claim 12,
    상기 나노 입자 클러스터 및 상기 착색제 입자는 입도분포곡선에 따른 중앙입경의 차이(ΔD50) 및 평균입경의 차이(ΔDm)가 5nm 이하인 것을 특징으로 하는 컬러 나노 복합체의 제조방법.The nanoparticle cluster and the colorant particles are a method of producing a color nanocomposite, characterized in that the difference between the median particle size (ΔD50) and the average particle diameter (ΔDm) according to the particle size distribution curve is 5nm or less.
  20. 청구항 1에 기재된 컬러 나노 복합체를 함유하는 마이크로 입자로서,As microparticles containing the color nanocomposite of Claim 1,
    상기 마이크로 입자는 건조 분말 상태에서의 연필경도가 4B 이하이며, 질소 가스를 사용한 비표면적 측정에 따른 공극도분포(pore size distribution)에서 5nm 이하 영역의 공극부피(pore volume)가 전체 공극 부피의 20% 이하인 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자.The microparticles have a pencil hardness of 4 B or less in a dry powder state, and a pore volume of 5 nm or less in a pore size distribution according to a specific surface area measurement using nitrogen gas is 20% of the total pore volume. Micro particles containing colored nanocomposites, characterized in that the% or less.
  21. 청구항 20에 있어서,The method of claim 20,
    상기 마이크로 입자는 상기 컬러 나노 복합체를 포함하는 심(core) 물질과 고분자로 이루어진 벽재(shell) 물질로 이루어지는 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자.The microparticles are microparticles containing the color nanocomposite, characterized in that the core material comprising the color nanocomposite and the shell material made of a polymer.
  22. 청구항 20에 있어서,The method of claim 20,
    상기 컬러 나노 복합체는 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자 및 착색제 입자를 포함하는 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자.The color nanocomposite is a micro-particle containing a color nanocomposite, characterized in that it comprises a nanoparticles and colorant particles surface-modified with a material containing a reactive group.
  23. 청구항 20에 있어서,The method of claim 20,
    상기 컬러 나노 복합체는 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자 및 반응성기를 포함하는 물질로 표면 수식(修飾)된 착색제 입자를 포함하는 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자.The color nanocomposite includes nanoparticles surface-modified with a material containing a reactive group and colorant particles surface-modified with a material containing a reactive group.
  24. 청구항 20에 있어서,The method of claim 20,
    상기 컬러 나노 복합체는 나노 입자 클러스터 및 착색제 입자의 응집체를 포함하는 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자.The colored nanocomposite comprises nanoparticle clusters and aggregates of colorant particles, wherein the microparticles containing the colored nanocomposite.
  25. 청구항 20에 따른 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법으로서, 상기 제조방법은, 유상/수상 에멀전(O/W emulsion)을 이용한 인 시튜 중합법(in-situ polymerization)인 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법.A method for producing microparticles containing a color nanocomposite according to claim 20, wherein the method is an in-situ polymerization method using an oil phase / water emulsion (O / W emulsion). Method for producing microparticles containing nanocomposites.
  26. 청구항 20에 따른 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법으로서, 상기 제조방법은, 코아세르베이션 방법(coacervation approach)인 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법.The method for producing microparticles containing the color nanocomposites according to claim 20, wherein the production method is a coacervation approach.
  27. 청구항 20에 따른 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법으로서, 상기 제조방법은, 계면 중합법(interfacial polymerization)인 것을 특징으로 하는 컬러 나노 복합체를 함유하는 마이크로 입자의 제조방법.The method for producing microparticles containing the color nanocomposite according to claim 20, wherein the production method is an interfacial polymerization.
  28. 청구항 20 내지 24에 따른 컬러 나노 복합체를 함유하는 마이크로 입자를 포함하는 인쇄 매체.A print media comprising microparticles containing the color nanocomposites according to claim 20.
  29. 청구항 28에 따른 인쇄 매체를 이용한 인쇄 방법.A printing method using a printing medium according to claim 28.
  30. 청구항 20 내지 24에 따른 컬러 나노 복합체를 함유하는 마이크로 입자를 포함하는 표시 소자.A display device comprising the microparticles containing the color nanocomposite according to claim 20.
  31. 청구항 30에 따른 표시 소자를 이용한 표시 방법.A display method using the display element according to claim 30.
PCT/KR2016/012347 2015-10-31 2016-10-31 Microparticles containing color nanocomposite and method for manufacturing same WO2017074152A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150152818 2015-10-31
KR20150152825 2015-10-31
KR10-2015-0152818 2015-10-31
KR10-2015-0152825 2015-10-31
KR1020160123792A KR101840260B1 (en) 2015-10-31 2016-09-27 Microparticles Containing Color Nanocomposite and Manufacturing Method Thereof
KR10-2016-0123792 2016-09-27
KR10-2016-0139796 2016-10-26
KR1020160139796A KR101880908B1 (en) 2015-10-31 2016-10-26 Color Nanocomposite and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
WO2017074152A1 true WO2017074152A1 (en) 2017-05-04

Family

ID=58631863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012347 WO2017074152A1 (en) 2015-10-31 2016-10-31 Microparticles containing color nanocomposite and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017074152A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193169A1 (en) * 2018-04-05 2019-10-10 SOCIéTé BIC Printing device and composition comprising magnetic color changeable microcapsules
CN113698101A (en) * 2021-09-15 2021-11-26 无锡乾鹏医疗科技有限公司 Glass ceramic finished product with gradually changed color, preparation method and application thereof
CN114058043A (en) * 2020-08-07 2022-02-18 天津大学 Broadband ultra-black flexible composite film and preparation method thereof
EP3950595A4 (en) * 2019-03-26 2022-05-25 Panasonic Intellectual Property Management Co., Ltd. Composite member, and construction member and decoration member using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340360B1 (en) * 2011-04-08 2013-12-13 주식회사 나노브릭 Display method and device using color changeable material or light transmittance changeable material
KR20150031197A (en) * 2013-09-13 2015-03-23 주식회사 나노브릭 Method of producing micro capsule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340360B1 (en) * 2011-04-08 2013-12-13 주식회사 나노브릭 Display method and device using color changeable material or light transmittance changeable material
KR20150031197A (en) * 2013-09-13 2015-03-23 주식회사 나노브릭 Method of producing micro capsule

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYON, JINHO ET AL.: "Glassy Photonic Inks Encapsulated in Core-shell Microcapsules for Local Electric Field Sensors", SENSORS AND ACTUATORS B: CHEMICAL, vol. 223, 2016, pages 878 - 883, XP055379695, [retrieved on 20151003] *
LEE, IN SOOK ET AL.: "Quasil-amorphous Colloidal Structures for Electrically Tunable Full-color Photonic Pixels with Angle-independency", ADVANCED MATERIALS, vol. 22, no. 44, 23 August 2010 (2010-08-23), pages 4973 - 4977, XP055113279 *
RAMOS, JOSE ET AL.: "Surfactant-free Miniemulsion Polymerization as a Simple Synthetic Route to a Successful Encapsulation of Magnetite Nanoparticles", LANGMUIR, vol. 27, no. 11, 28 April 2011 (2011-04-28), pages 7222 - 7230, XP055379694 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193169A1 (en) * 2018-04-05 2019-10-10 SOCIéTé BIC Printing device and composition comprising magnetic color changeable microcapsules
US11633951B2 (en) 2018-04-05 2023-04-25 SOCIéTé BIC Printing device and composition comprising magnetic-color-changeable microcapsules
EP3950595A4 (en) * 2019-03-26 2022-05-25 Panasonic Intellectual Property Management Co., Ltd. Composite member, and construction member and decoration member using same
CN114058043A (en) * 2020-08-07 2022-02-18 天津大学 Broadband ultra-black flexible composite film and preparation method thereof
CN114058043B (en) * 2020-08-07 2023-07-14 天津大学 Broadband super-black flexible composite film and preparation method thereof
CN113698101A (en) * 2021-09-15 2021-11-26 无锡乾鹏医疗科技有限公司 Glass ceramic finished product with gradually changed color, preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2017095178A1 (en) Device for preventing counterfeiting and falsifying
WO2017074152A1 (en) Microparticles containing color nanocomposite and method for manufacturing same
KR102550629B1 (en) Publications Preventing Forgery and Falsification Comprising Optically Variable Materials
AU667857B2 (en) Synthetic, monodispersed color pigments for the coloration of media such as printing inks, and method and apparatus for making same
WO2010024564A2 (en) Method for manufacturing metal flakes
KR101819091B1 (en) Display Device for Certifying Genuine and Method for Using Thereof
WO2006016729A1 (en) Composition for functional coatings, film formed therefrom and method for forming the composition and the film
JP2017062271A (en) Film containing core-shell particles, and article
CA2444856A1 (en) Methods for producing imaged coated articles by using magnetic pigments
EP3806830B1 (en) Microcapsule containing color particles and print medium including the same
WO2009115643A2 (en) Novel materials and methods
CN101263204B (en) Colored composite micro-particle and method for producing colored composite micro-particle, rendering material and color filter and ink for inkjet
KR102465924B1 (en) Emulsion, Gelly Balls, and Spheres Containing Color Nanocomposite
WO1990004256A1 (en) Process for producing thin layers of conductive polymers
Chai et al. Preparation of disperse dye@ P (St-BA-MAA) microsphere inks and their application on white textile substrates with high color saturation
Tawiah et al. An overview of the science and art of encapsulated pigments: preparation, performance and application
KR101715058B1 (en) Color Display Device Having Various Original Colors and Display Method Thereof
KR101840260B1 (en) Microparticles Containing Color Nanocomposite and Manufacturing Method Thereof
KR101880908B1 (en) Color Nanocomposite and Manufacturing Method Thereof
KR102152408B1 (en) A label for authenticating genuine having hidden image effect and manufacturing method tehreof
KR101059937B1 (en) Manufacturing method of ceramic nano pigment and manufacturing method of black matrix for plasma display panel
KR101921059B1 (en) Nanoparticle Comprising Double Coating Layer and Manufacturing Method Thereof
KR102577803B1 (en) Microcapsule Comprising Nanoparticle and Manufacturing Method Thereof
KR20170111924A (en) Microcapsule Comprising Amphiphilic Solvent Based Ink and Manufacturing Method Thereof
KR20170111925A (en) Raspberry Type Microcaplue and Manufacturing Method Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860335

Country of ref document: EP

Kind code of ref document: A1