WO2017074027A1 - Non-aqueous electrolyte additive, non-aqueous electrolyte comprising same, and lithium secondary battery including same - Google Patents

Non-aqueous electrolyte additive, non-aqueous electrolyte comprising same, and lithium secondary battery including same Download PDF

Info

Publication number
WO2017074027A1
WO2017074027A1 PCT/KR2016/012093 KR2016012093W WO2017074027A1 WO 2017074027 A1 WO2017074027 A1 WO 2017074027A1 KR 2016012093 W KR2016012093 W KR 2016012093W WO 2017074027 A1 WO2017074027 A1 WO 2017074027A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
aqueous electrolyte
secondary battery
lithium secondary
additive
Prior art date
Application number
PCT/KR2016/012093
Other languages
French (fr)
Korean (ko)
Inventor
유성훈
강유선
이경미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160139012A external-priority patent/KR101937898B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16860210.0A priority Critical patent/EP3370296B1/en
Priority to US15/735,741 priority patent/US10454138B2/en
Priority to JP2018528930A priority patent/JP6656717B2/en
Priority to PL16860210T priority patent/PL3370296T3/en
Priority to CN201680037297.6A priority patent/CN108370068B/en
Publication of WO2017074027A1 publication Critical patent/WO2017074027A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte additive, a nonaqueous electrolyte including the same, and a lithium secondary battery having the same, and specifically, a nonaqueous electrolyte additive capable of improving performance while ensuring stability at high voltage, a nonaqueous electrolyte including the same, and the same It relates to a lithium secondary battery.
  • Electrochemical devices are the most attracting field in this respect, and among them, interest in secondary batteries capable of charging and discharging has emerged.
  • lithium secondary batteries developed in the early 1990s among the currently applied secondary batteries have been in the spotlight for their advantages of high operating voltage and high energy density.
  • the lithium secondary battery is composed of a negative electrode made of a carbon material or the like capable of occluding and releasing lithium ions, a positive electrode made of a lithium transition metal oxide and the like, and a nonaqueous electrolyte.
  • the lithium secondary battery includes a lithium ion liquid battery (LiLB) using a liquid electrolyte, a lithium ion polymer battery (LiPB) using a gel polymer electrolyte, and a LPB (lithium) using a solid polymer electrolyte according to the type of electrolyte used. polymer battery).
  • LiLB lithium ion liquid battery
  • LiPB lithium ion polymer battery
  • LPB lithium
  • lithium secondary batteries that can be safely charged even at high voltages while maintaining excellent cycle life characteristics even in harsh environments such as high temperature, low temperature, and high voltage charging.
  • the cathode active material is structurally collapsed, thereby degrading the performance of the cathode.
  • metal ions eluted from the surface of the anode deteriorate the cathode while electrodeposition (electrodeposition) on the cathode.
  • electrodeposition electrodeposition
  • the first technical problem of the present invention is to provide a non-aqueous electrolyte additive excellent in the adsorption effect with the metal ions eluted from the anode.
  • Another object of the present invention is to provide a nonaqueous electrolyte solution for a lithium secondary battery that can improve overcharge safety of an electrolyte by including the nonaqueous electrolyte additive.
  • a third technical object of the present invention is to provide a lithium secondary battery having improved cycle characteristics and high temperature storage performance even at high voltage charging by including the nonaqueous electrolyte.
  • nonaqueous electrolyte additive comprising a compound represented by the following formula (1):
  • R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element
  • A is an alkyl group having 1 to 4 carbon atoms in which at least one fluorine element and cyano group (-CN) are substituted.
  • Ionizable lithium salts Organic solvents; And it provides a non-aqueous electrolyte for lithium secondary battery comprising the non-aqueous electrolyte additive.
  • a negative electrode a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a lithium secondary battery having a nonaqueous electrolyte of the present invention.
  • the present invention provides a non-aqueous electrolyte additive that can form a more stable ionic conductive film on the surface of the anode to suppress the decomposition reaction of the electrolyte, thereby suppressing the decomposition reaction during overcharging or suppressing elution and movement of metal ions.
  • the lithium secondary battery electrolyte which can be made, and the lithium secondary battery which improved the lifetime characteristic and high temperature safety under high voltage can be manufactured.
  • Example 1 is a graph showing the life characteristics of a lithium secondary battery according to Experimental Example 1 of the present invention.
  • one embodiment of the present invention to provide a non-aqueous electrolyte additive that can form a complex with the metal ions eluted from the anode.
  • the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery that can improve the overcharge safety of the electrolyte by including the nonaqueous electrolyte additive.
  • the present invention provides a lithium secondary battery having improved cycle characteristics and high temperature storage performance even at high voltage charging by including the nonaqueous electrolyte.
  • nonaqueous electrolyte additive comprising a compound represented by the following Formula 1 in which a cyano group and at least one fluorine element are present as a substituent:
  • R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element
  • A is an alkyl group having 1 to 4 carbon atoms in which at least one fluorine element and cyano group (-CN) are substituted.
  • Specific examples of the compound represented by Formula 1 include at least one compound selected from the group consisting of the following Formulas 1a to 1i.
  • Ionizable lithium salts Organic solvents; And nonaqueous electrolyte additives,
  • non-aqueous electrolyte lithium secondary battery containing the compound represented by the formula (1) as the non-aqueous electrolyte additive.
  • the nonaqueous electrolyte additive may be included in about 0.5 to 5% by weight, specifically 1 to 5% by weight, based on the total weight of the nonaqueous electrolyte. If the content of the additive is less than 0.5% by weight, the stabilizing effect of the SEI film described later is insufficient, and if the content of the additive is more than 5% by weight, at least one fluorine element substituted at the terminal of the compound of Formula 1 included in the additive Or increased resistance due to cyano groups.
  • lithium secondary battery forms a passivation film by electrochemical oxidative decomposition reaction of electrolyte at the surface of the battery's positive electrode, especially in the presence of surface bond or activation position. Increase impedance to co-intercalation.
  • structural dissolution of the cathode active material or chemical dissolution reaction occurs by the electrolytic solution, so that ions of Co, Mn, and Ni are eluted.
  • ions of Co, Mn, and Ni are eluted.
  • These reactions lead to a decrease in the performance of the anode itself, and at the same time, eluted metal ions are electrodeposited on the surface of the cathode.
  • the metal electrodeposited on the negative electrode generally exhibits great reactivity with the electrolyte. Therefore, the amount of reversible lithium is increased, thereby increasing the irreversible reaction according to the progress of charging and discharging, which results in deterioration of the capacity and life characteristics of the battery.
  • the present invention provides a cyano group (-CN) -containing compound having a high tendency to form a complex with metal ions such as Co, Mn, and Ni as an electrolyte additive.
  • the non-aqueous electrolyte additive made of the compound represented by Chemical Formula 1 of the present invention contains eluted metal ions and a cyano group of good adsorption, the non-aqueous electrolyte additive has a structural breakdown of the positive electrode active material during charge and discharge of the battery.
  • the complexes may be combined with the metal ions eluted from the anode to form a stable ion conductive film on the surface of the anode.
  • the non-aqueous electrolyte additive composed of the compound represented by Formula 1 of the present invention includes at least one or more fluorine elements as a substituent, not only is it easier to form a film, but also the ion conductive effect of the resulting film can be enhanced.
  • the compound represented by the formula (1) of the present invention can suppress the electrodeposition of the metal ions eluted from the positive electrode to the negative electrode even in a state where no film is formed. Therefore, the lithium secondary battery of the present invention having the nonaqueous electrolyte containing such additives can significantly improve overall performance such as room temperature and high temperature life characteristics of the secondary battery by allowing the negative electrode to smoothly occlude and release lithium even at high temperatures.
  • the lithium salt included as an electrolyte may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, Li + as a cation of the lithium salt, an anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 2 N -, (CN) 2 -, BF 4
  • the said lithium salt can also be used 1 type or in mixture of 2 or more types as needed.
  • the lithium salt may be appropriately changed within a range generally available, but may be included in an electrolyte solution at a concentration of 0.8 M to 1.5 M in order to obtain an effect of forming an anti-corrosion coating on the surface of the electrode.
  • the organic solvent included in the nonaqueous electrolyte of the present invention may be used without limitation those conventionally used in the lithium secondary battery electrolyte, for example, ether compounds, ester compounds, amide compounds, linear carbonate compounds, or cyclic carbonate compounds These may be used alone or in combination of two or more thereof. Representatively, it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well.
  • an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof may be used.
  • the present invention is not limited thereto.
  • ester compounds in the organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or a mixture of two or more thereof may be used.
  • the present invention is not limited thereto.
  • the secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a non-aqueous electrolyte
  • a lithium secondary battery comprising the electrolyte of the present invention as the electrolyte.
  • the lithium secondary battery of the present invention may be prepared by injecting the nonaqueous electrolyte of the present invention into an electrode structure consisting of a cathode, a cathode, and a separator interposed between the cathode and the anode.
  • the positive electrode, the negative electrode, and the separator constituting the electrode structure may be used all those conventionally used in the manufacture of a lithium secondary battery.
  • the positive electrode may be prepared by coating a positive electrode mixture including a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like.
  • the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like.
  • lithium-nickel-manganese-based oxide for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like
  • lithium-nickel-cobalt oxide e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1) and the like
  • lithium-manganese-cobalt oxide e.
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.), and the lithium composite metal oxide may be Li (Ni) in consideration of the remarkable improvement effect by controlling the type and content ratio of the constituent elements forming the lithium composite metal oxide.
  • the cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the cathode mixture.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the positive electrode mixture.
  • Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack and EC, which are acetylene black series. Family (Armak Company), Vulcan XC-72 (manufactured by Cabot Company) and Super P (manufactured by Timcal).
  • the binder is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the positive electrode mixture.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the negative electrode may be prepared by, for example, coating a negative electrode mixture including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) (MeOx) Oxides of the metals (Me) (MeOx)
  • one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode mixture.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the negative electrode mixture.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode mixture.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material, and optionally a binder and a conductive material.
  • concentration of the negative electrode active material and, optionally, the solid content including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • Fluoroethylene carbonate (FEC), propylene carbonate (PC) and ethylene carbonate (EMC) were mixed in a ratio of 30:10:60 (vol%) to prepare an organic solvent mixture. Thereafter, 0.5 wt% of the compound of Chemical Formula 1a was further added based on the total content of the prepared organic solvent mixture, and LiPF 6 was dissolved to a concentration of 1 M to prepare a nonaqueous electrolyte.
  • NMP N-methyl-2-pyrrolidone
  • LiCO 2 lithium cobalt composite oxide
  • carbon black carbon black
  • PVDF polyvinylidene fluoride
  • the positive electrode mixture was prepared by adding 40 parts by weight of the positive electrode mixture mixed at a ratio of 5: 5 (wt%).
  • the positive electrode mixture was applied to a positive electrode current collector (Al thin film) having a thickness of 100 ⁇ m, dried, and roll pressed to prepare a positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • natural graphite as a negative electrode active material
  • PVDF as a binder
  • carbon black as a conductive material at a ratio of 95: 2: 3 (wt%) 80 Part by weight was added to prepare a negative electrode mixture.
  • the negative electrode mixture was applied to a negative electrode current collector (Cu thin film) having a thickness of 90 ⁇ m, dried, and roll pressed to prepare a negative electrode.
  • the positive electrode and the negative electrode prepared by the above-described method was prepared with a polyethylene porous film by a conventional method, and then the non-aqueous electrolyte was prepared by pouring the lithium secondary battery.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1b was used instead of the compound of Formula 1a as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1c was used instead of the compound of Formula 1a as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1d was used instead of the compound of Formula 1a as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1e was used instead of the compound of Formula 1a as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1f was used instead of the compound of Formula 1a as an additive.
  • an electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that the additive contained the compound of Formula 1g instead of the compound of Formula 1a.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1h was used instead of the compound of Formula 1a as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1, except that 5 wt% of the compound of Formula 1a was used as an additive.
  • An electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1a was not added as an additive.
  • an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 2a was used instead of the compound of Formula 1a as an additive.
  • An electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that 7 wt% of the compound of Formula 1a was added as an additive when preparing the non-aqueous electrolyte.
  • the batteries (battery capacity 5.5 mAh) prepared in Examples 1 to 9 and Comparative Examples 1 to 5 were charged at 60 ° C. to 0.7C constant current until 4.35V, and then charged at a constant voltage of 4.35V to charge current 0.275. Charging was terminated when mA reached. Then, it was left for 10 minutes and then discharged until it became 3.0V at 0.5C constant current. After 100 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 1.
  • C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio of battery capacity. That is, 1C of the cells manufactured previously means 5.5 mA current.
  • the batteries of Examples 1 to 9 are superior in cycle life characteristics to those of the secondary batteries of 1 to 5 in comparison.
  • Example 1 1a 0.5 wt% 45
  • Example 2 1b 0.5 wt% 48
  • Example 3 1c 0.5 wt% 44
  • Example 4 1d 0.5 wt% 48
  • Example 5 1e 0.5 wt% 52
  • Example 6 1f 0.5 wt% 75
  • Example 7 1 g 0.5 wt% 63
  • Example 8 1h 0.5 wt% 57
  • Example 9 1a 5 wt% 55 Comparative Example 1 - - 255 Comparative Example 2 2a 0.5 wt% 208 Comparative Example 3 2b 0.5 wt% 190 Comparative Example 4 1a 7 wt% 144 Comparative Example 5 2c 0.5 wt% 131
  • Example 1 The lithium secondary batteries of Example 1, Example 9, and Comparative Example 4 were placed at 25 ° C. under SOC at 0% for 1 hour, and then the AC impedance of the battery was measured while scanning to 50 mHz-100 kHz. At this time, the amplitude of the alternating current was 10mV, and the DC potential of the battery was 3.74V. The results are shown in FIG.
  • the intersection point with the X-axis in the graph of Figure 2 means Ohm resistance of the battery
  • the half circle (half circle) at the rear means the resistance by the SEI formed on the surface of the electrode plate.
  • Comparative Example 4 which has a large amount of addition compared to Examples 1 and 9, has greatly increased resistance.
  • Comparative Example 4 the amount of Co eluted is large and the life is also reduced.

Abstract

The present invention relates to: a non-aqueous electrolyte additive comprising, as a substituent, a cyano group and at least one fluorine element; a non-aqueous electrolyte for a lithium secondary battery, comprising the same; and a lithium secondary battery including the same.

Description

비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지Non-aqueous electrolyte additive, non-aqueous electrolyte comprising same and lithium secondary battery having same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2015년 10월 29일자 한국 특허 출원 제10-2015-0150733호 및 2016년 10월 25일자 한국 특허 출원 제10-2016-0139012호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0150733 dated October 29, 2015 and Korean Patent Application No. 10-2016-0139012 dated October 25, 2016. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지에 관한 것으로, 구체적으로 고전압에서 안정성을 확보하면서도 성능을 개선할 수 있는 비수전해액 첨가제와, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte additive, a nonaqueous electrolyte including the same, and a lithium secondary battery having the same, and specifically, a nonaqueous electrolyte additive capable of improving performance while ensuring stability at high voltage, a nonaqueous electrolyte including the same, and the same It relates to a lithium secondary battery.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있으며, 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.Recently, the interest in energy storage technology is increasing, and as the field of application to the energy of mobile phones, camcorders, notebook PCs, and even electric vehicles has been expanded, efforts for research and development of electrochemical devices are becoming more concrete.
전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이며, 그 중에서도 충방전이 가능한 이차전지에 대한 관심이 대두되고 있다. 특히, 현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. Electrochemical devices are the most attracting field in this respect, and among them, interest in secondary batteries capable of charging and discharging has emerged. In particular, lithium secondary batteries developed in the early 1990s among the currently applied secondary batteries have been in the spotlight for their advantages of high operating voltage and high energy density.
상기 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 등으로 이루어진 음극과, 리튬 전이금속 산화물 등으로 이루어진 양극 및 비수전해액으로 구성되어 있다. The lithium secondary battery is composed of a negative electrode made of a carbon material or the like capable of occluding and releasing lithium ions, a positive electrode made of a lithium transition metal oxide and the like, and a nonaqueous electrolyte.
상기 리튬 이차전지는 사용하는 전해질의 종류에 따라 액체 전해질을 사용하는 LiLB (lithium ion liquid battery)와, 겔형 고분자 전해질을 사용하는 LiPB (lithium ion polymer battery), 및 고체 고분자 전해질을 사용하는 LPB (lithium polymer battery) 등으로 나눌 수 있다.The lithium secondary battery includes a lithium ion liquid battery (LiLB) using a liquid electrolyte, a lithium ion polymer battery (LiPB) using a gel polymer electrolyte, and a LPB (lithium) using a solid polymer electrolyte according to the type of electrolyte used. polymer battery).
최근 리튬 이차전지의 응용 범위가 확대되면서 고온이나 저온 환경, 고전압 충전 등 보다 가혹한 환경에서도 우수한 사이클 수명 특성을 유지하면서, 고전압으로도 안전하게 충전할 수 있는 리튬 이차전지에 대한 요구가 점차 늘어나고 있는 실정이다.Recently, as the application range of lithium secondary batteries is expanded, there is a growing demand for lithium secondary batteries that can be safely charged even at high voltages while maintaining excellent cycle life characteristics even in harsh environments such as high temperature, low temperature, and high voltage charging. .
한편, 이차전지의 충방전이 진행됨에 따라 양극활물질이 구조적으로 붕괴되면서 양극의 성능저하가 발생한다. 또한 양극 구조 붕괴시 양극 표면으로부터 용출된 금속이온이 음극에 전착(electrodeposition)하면서 음극을 열화 시키게 된다. 이러한 전지 성능 열화 현상은 양극의 전위가 높아지거나, 전지의 고온 노출 시 더욱 가속화되는 경향을 보인다.On the other hand, as the charge and discharge of the secondary battery proceeds, the cathode active material is structurally collapsed, thereby degrading the performance of the cathode. In addition, when the anode structure collapses, metal ions eluted from the surface of the anode deteriorate the cathode while electrodeposition (electrodeposition) on the cathode. Such deterioration of battery performance tends to be accelerated when the potential of the positive electrode is increased or when the battery is exposed to high temperature.
상기와 같은 문제점을 해결하기 위해서 양극에 피막을 형성하여 양극을 보호하는 물질을 전해액에 첨가하는 방법이 제안되었다.In order to solve the above problems, a method of forming a film on the positive electrode and adding a material for protecting the positive electrode to the electrolyte has been proposed.
선행기술문헌Prior art literature
한국 특허공개공보 제2014-0067242호Korean Patent Publication No. 2014-0067242
한국 특허등록공보 제1249350호Korean Patent Registration Publication No. 1249350
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 양극으로부터 용출된 금속 이온과 흡착 효과가 우수한 비수전해액 첨가제를 제공하고자 한다.In order to solve the above problems, the first technical problem of the present invention is to provide a non-aqueous electrolyte additive excellent in the adsorption effect with the metal ions eluted from the anode.
또한, 본 발명의 제2 기술적 과제는 상기 비수전해액 첨가제를 포함함으로써, 전해액의 과충전 안전성을 개선할 수 있는 리튬 이차전지용 비수 전해액을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a nonaqueous electrolyte solution for a lithium secondary battery that can improve overcharge safety of an electrolyte by including the nonaqueous electrolyte additive.
또한, 본 발명의 제3 기술적 과제는 상기 비수전해액을 포함함으로써 고전압 충전에서도 사이클 특성 및 고온 저장 성능이 개선된 리튬 이차전지를 제공하는 것을 목적으로 한다. In addition, a third technical object of the present invention is to provide a lithium secondary battery having improved cycle characteristics and high temperature storage performance even at high voltage charging by including the nonaqueous electrolyte.
상기의 목적을 달성하기 위하여, 본 발명의 일 실시예에서는, In order to achieve the above object, in one embodiment of the present invention,
하기 화학식 1로 표시되는 화합물을 포함하는 비수 전해액 첨가제를 제공한다:It provides a nonaqueous electrolyte additive comprising a compound represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2016012093-appb-I000001
Figure PCTKR2016012093-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
R은 적어도 하나 이상의 불소 원소가 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element,
A는 적어도 하나 이상의 불소 원소 및 시아노기(-CN)가 치환된 탄소수 1 내지 4의 알킬기이다.A is an alkyl group having 1 to 4 carbon atoms in which at least one fluorine element and cyano group (-CN) are substituted.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
이온화 가능한 리튬염; 유기 용매; 및 상기 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공한다.Ionizable lithium salts; Organic solvents; And it provides a non-aqueous electrolyte for lithium secondary battery comprising the non-aqueous electrolyte additive.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 본 발명의 비수 전해액을 구비한 리튬 이차전지를 제공한다.Provided is a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a lithium secondary battery having a nonaqueous electrolyte of the present invention.
본 발명은 양극 표면 상에 보다 안정적인 이온전도성 (ionic conductive) 피막을 형성하여 전해액의 분해 반응을 억제할 수 있는 비수 전해액 첨가제를 제공함으로써, 과충전시 분해 반응을 억제하거나 금속 이온의 용출 및 이동을 억제할 수 있는 리튬 이차전지용 전해액과, 고전압하에서 수명 특성 및 고온 안전성이 개선된 리튬 이차전지를 제조할 수 있다.The present invention provides a non-aqueous electrolyte additive that can form a more stable ionic conductive film on the surface of the anode to suppress the decomposition reaction of the electrolyte, thereby suppressing the decomposition reaction during overcharging or suppressing elution and movement of metal ions. The lithium secondary battery electrolyte which can be made, and the lithium secondary battery which improved the lifetime characteristic and high temperature safety under high voltage can be manufactured.
도 1은 본 발명의 실험예 1에 따른 리튬 이차전지의 수명 특성을 도시한 그래프이다.1 is a graph showing the life characteristics of a lithium secondary battery according to Experimental Example 1 of the present invention.
도 2는 본 발명의 실험예 3에 따른 AC 임피던스를 측정한 결과 그래프이다.2 is a graph showing the results of measuring AC impedance according to Experimental Example 3 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
일반적으로 이차전지에 대하여 과충전이 발생하게 되면 양극으로부터 리튬이온이 과량으로 방출되면서 양극활물질의 구조가 불안정하게 된다. 이러한 불안정한 구조의 양극 활물질로부터 산소가 방출되면서 전해액의 분해 반응을 야기한다. 특히, 고온 조건에서는 양극으로부터의 금속 이온 용출이 증가하고, 이러한 금속 이온이 음극에서 석출되면 전지의 성능이 저하되는 단점이 있다.In general, when overcharging occurs in a secondary battery, an excessive amount of lithium ions are released from the positive electrode, resulting in an unstable structure of the positive electrode active material. Oxygen is released from the cathode active material having such an unstable structure, causing a decomposition reaction of the electrolyte. In particular, in high temperature conditions, elution of metal ions from the positive electrode increases, and when such metal ions precipitate from the negative electrode, there is a disadvantage in that the performance of the battery is reduced.
이에, 본 발명의 일 실시예에서는 양극으로부터 용출된 금속 이온과 착물을 형성할 수 있는 비수전해액 첨가제를 제공하고자 한다.Thus, one embodiment of the present invention to provide a non-aqueous electrolyte additive that can form a complex with the metal ions eluted from the anode.
또한, 본 발명에서는 상기 비수전해액 첨가제를 포함함으로써, 전해액의 과충전 안전성을 개선할 수 있는 리튬 이차전지용 비수 전해액을 제공한다.In addition, the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery that can improve the overcharge safety of the electrolyte by including the nonaqueous electrolyte additive.
또한, 본 발명에서는 상기 비수전해액을 포함함으로써 고전압 충전에서도 사이클 특성 및 고온 저장 성능이 개선된 리튬 이차전지를 제공한다. In addition, the present invention provides a lithium secondary battery having improved cycle characteristics and high temperature storage performance even at high voltage charging by including the nonaqueous electrolyte.
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
치환기로서 시아노기와 적어도 하나 이상의 불소 원소가 존재하는 하기 화학식 1로 표시되는 화합물을 포함하는 비수 전해액 첨가제를 제공한다:Provided is a nonaqueous electrolyte additive comprising a compound represented by the following Formula 1 in which a cyano group and at least one fluorine element are present as a substituent:
[화학식 1][Formula 1]
Figure PCTKR2016012093-appb-I000002
Figure PCTKR2016012093-appb-I000002
상기 화학식 1에서,In Chemical Formula 1,
R은 적어도 하나 이상의 불소 원소가 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element,
A는 적어도 하나 이상의 불소 원소 및 시아노기(-CN)가 치환된 탄소수 1 내지 4의 알킬기이다.A is an alkyl group having 1 to 4 carbon atoms in which at least one fluorine element and cyano group (-CN) are substituted.
상기 화학식 1로 표시되는 화합물의 구체적인 예시로는 하기 화학식 1a 내지 1i로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 들 수 있다.Specific examples of the compound represented by Formula 1 include at least one compound selected from the group consisting of the following Formulas 1a to 1i.
[화학식 1a][Formula 1a]
Figure PCTKR2016012093-appb-I000003
Figure PCTKR2016012093-appb-I000003
[화학식 1b][Formula 1b]
Figure PCTKR2016012093-appb-I000004
Figure PCTKR2016012093-appb-I000004
[화학식 1c][Formula 1c]
Figure PCTKR2016012093-appb-I000005
Figure PCTKR2016012093-appb-I000005
[화학식 1d][Formula 1d]
Figure PCTKR2016012093-appb-I000006
Figure PCTKR2016012093-appb-I000006
[화학식 1e][Formula 1e]
Figure PCTKR2016012093-appb-I000007
Figure PCTKR2016012093-appb-I000007
[화학식 1f][Formula 1f]
Figure PCTKR2016012093-appb-I000008
Figure PCTKR2016012093-appb-I000008
[화학식 1g][Formula 1g]
Figure PCTKR2016012093-appb-I000009
Figure PCTKR2016012093-appb-I000009
[화학식 1h][Formula 1h]
Figure PCTKR2016012093-appb-I000010
Figure PCTKR2016012093-appb-I000010
[화학식 1i]Formula 1i]
Figure PCTKR2016012093-appb-I000011
Figure PCTKR2016012093-appb-I000011
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
이온화 가능한 리튬염; 유기 용매; 및 비수전해액 첨가제를 포함하며,Ionizable lithium salts; Organic solvents; And nonaqueous electrolyte additives,
상기 비수전해액 첨가제로 상기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 비수 전해액을 제공한다.It provides a non-aqueous electrolyte lithium secondary battery containing the compound represented by the formula (1) as the non-aqueous electrolyte additive.
이때, 상기 비수전해액 첨가제는 비수 전해액 전체 중량을 기준으로 약 0.5 내지 5 중량%, 구체적으로 1 내지 5 중량%로 포함될 수 있다. 만약, 상기 첨가제의 함량이 0.5 중량% 미만이면 후술한 SEI막의 안정화 효과가 불충분하고, 첨가제의 함량이 5 중량%를 초과하면 상기 첨가제에 포함된 화학식 1의 화합물의 말단에 치환된 하나 이상의 불소 원소 또는 시아노기로 인한 저항 증가가 나타날 수 있다. In this case, the nonaqueous electrolyte additive may be included in about 0.5 to 5% by weight, specifically 1 to 5% by weight, based on the total weight of the nonaqueous electrolyte. If the content of the additive is less than 0.5% by weight, the stabilizing effect of the SEI film described later is insufficient, and if the content of the additive is more than 5% by weight, at least one fluorine element substituted at the terminal of the compound of Formula 1 included in the additive Or increased resistance due to cyano groups.
전기화학소자 중 리튬 이차전지는 전지의 양극에서 특히 표면의 결합이 존재하는 곳이나 활성화 위치에서 전해액의 전기화학적 산화 분해 반응에 의하여 일종의 부동태 막을 형성하게 되는데, 이 부동태 막은 양극활물질로의 리튬이온의 삽입(co-intercalation)에 대한 임피던스를 증가시킨다. 또한, 충방전의 반복 과정 시 양극활물질의 구조적 붕괴 내지는 전해액에 의한 화학적 용해 반응이 발생하여 Co, Mn, Ni의 이온이 용출된다. 이러한 반응들은 양극 자체의 성능 저하로 이어짐을 물론이며, 동시에 용출된 금속 이온이 음극 표면에서 전착 (electrodeposition)되는 현상이 일어난다. 이렇게 음극에 전착된 금속은 일반적으로 전해액에 대해 큰 반응성을 보인다. 따라서, 가역성 리튬 양의 감소에 의해 충방전 진행에 따른 비가역 반응을 증가시켜 전지의 용량 및 수명 특성 저하가 초래된다.Among the electrochemical devices, lithium secondary battery forms a passivation film by electrochemical oxidative decomposition reaction of electrolyte at the surface of the battery's positive electrode, especially in the presence of surface bond or activation position. Increase impedance to co-intercalation. In addition, during the repetition of charging and discharging, structural dissolution of the cathode active material or chemical dissolution reaction occurs by the electrolytic solution, so that ions of Co, Mn, and Ni are eluted. These reactions lead to a decrease in the performance of the anode itself, and at the same time, eluted metal ions are electrodeposited on the surface of the cathode. The metal electrodeposited on the negative electrode generally exhibits great reactivity with the electrolyte. Therefore, the amount of reversible lithium is increased, thereby increasing the irreversible reaction according to the progress of charging and discharging, which results in deterioration of the capacity and life characteristics of the battery.
이에, 본 발명에서는 Co, Mn, Ni 등의 금속 이온과 착물을 형성하려는 경향이 높은 시아노기(-CN) 함유 화합물을 전해액 첨가제로 제공한다. Accordingly, the present invention provides a cyano group (-CN) -containing compound having a high tendency to form a complex with metal ions such as Co, Mn, and Ni as an electrolyte additive.
즉, 본 발명의 상기 화학식 1로 표시되는 화합물로 이루어진 비수전해액 첨가제는 용출된 금속 이온과 흡착을 잘 하는 극성의 시아노기를 포함하고 있기 때문에, 전지의 충방전 과정에서 양극 활물질의 구조적인 붕괴 내지는 전해액에 의한 화학적 용해 반응에 의해 양극으로부터 용출되는 금속 이온과 결합하여 착물을 형성하여 양극 표면에 안정적인 이온전도성 피막을 형성할 수 있다. 또한, 본 발명의 화학식 1로 표시되는 화합물로 이루어진 비수전해액 첨가제는 적어도 하나 이상의 불소 원소를 치환기로 포함하고 있기 때문에, 피막 형성에 보다 용이할 뿐만 아니라, 생성된 피막의 이온전도성 효과도 높아질 수 있다. 더욱이, 본 발명의 화학식 1로 표시되는 화합물은 피막을 형성하지 않은 상태에서도 양극으로부터 용출된 금속 이온을 흡착하여 음극에 전착하는 것을 억제할 수 있다. 따라서, 이러한 첨가제를 포함하는 비수전해액을 구비한 본 발명의 리튬 이차전지는 고온에서도 음극이 리튬을 원활하게 흡장 및 방출함으로써 이차전지의 상온 및 고온 수명 특성 등의 제반 성능을 현저히 개선시킬 수 있다. That is, since the non-aqueous electrolyte additive made of the compound represented by Chemical Formula 1 of the present invention contains eluted metal ions and a cyano group of good adsorption, the non-aqueous electrolyte additive has a structural breakdown of the positive electrode active material during charge and discharge of the battery. By the chemical dissolution reaction by the electrolytic solution, the complexes may be combined with the metal ions eluted from the anode to form a stable ion conductive film on the surface of the anode. In addition, since the non-aqueous electrolyte additive composed of the compound represented by Formula 1 of the present invention includes at least one or more fluorine elements as a substituent, not only is it easier to form a film, but also the ion conductive effect of the resulting film can be enhanced. . Furthermore, the compound represented by the formula (1) of the present invention can suppress the electrodeposition of the metal ions eluted from the positive electrode to the negative electrode even in a state where no film is formed. Therefore, the lithium secondary battery of the present invention having the nonaqueous electrolyte containing such additives can significantly improve overall performance such as room temperature and high temperature life characteristics of the secondary battery by allowing the negative electrode to smoothly occlude and release lithium even at high temperatures.
한편, 상기 본 발명의 비수 전해액에 있어서, 전해질로서 포함되는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다. 상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 1.5M의 농도로 포함할 수 있다. On the other hand, in the non-aqueous electrolyte of the present invention, the lithium salt included as an electrolyte may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, Li + as a cation of the lithium salt, an anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - can include at least one selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N. The said lithium salt can also be used 1 type or in mixture of 2 or more types as needed. The lithium salt may be appropriately changed within a range generally available, but may be included in an electrolyte solution at a concentration of 0.8 M to 1.5 M in order to obtain an effect of forming an anti-corrosion coating on the surface of the electrode.
또한, 상기 본 발명의 비수 전해액에 포함되는 유기 용매는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르 화합물, 에스테르 화합물, 아미드 화합물, 선형 카보네이트 화합물, 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 또는 이들의 혼합물을 포함할 수 있다. In addition, the organic solvent included in the nonaqueous electrolyte of the present invention may be used without limitation those conventionally used in the lithium secondary battery electrolyte, for example, ether compounds, ester compounds, amide compounds, linear carbonate compounds, or cyclic carbonate compounds These may be used alone or in combination of two or more thereof. Representatively, it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트 로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof. In addition, specific examples of the linear carbonate compound include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well. When the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
또한, 상기 유기 용매 중 에테르 화합물로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the ether compound in the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof may be used. However, the present invention is not limited thereto.
그리고 상기 유기 용매 중 에스테르 화합물로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트와 같은 선형 에스테르; 및 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 환형 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.And ester compounds in the organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone, and ε-caprolactone, or a mixture of two or more thereof may be used. However, the present invention is not limited thereto.
또한, 본 발명의 일 실시예에서는, In addition, in one embodiment of the present invention,
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막 및 비수전해액을 포함하는 이차전지에 있어서, 상기 전해액으로 본 발명의 전해액을 포함하는 리튬 이차전지를 제공한다. In the secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a non-aqueous electrolyte, it provides a lithium secondary battery comprising the electrolyte of the present invention as the electrolyte.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명의 비수 전해액을 주입하여 제조할 수 있다. 이때, 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.Specifically, the lithium secondary battery of the present invention may be prepared by injecting the nonaqueous electrolyte of the present invention into an electrode structure consisting of a cathode, a cathode, and a separator interposed between the cathode and the anode. At this time, the positive electrode, the negative electrode, and the separator constituting the electrode structure may be used all those conventionally used in the manufacture of a lithium secondary battery.
이때, 상기 양극은 양극 집전체 상에 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 합제를 코팅하여 제조할 수 있다.In this case, the positive electrode may be prepared by coating a positive electrode mixture including a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode current collector.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r21=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like. (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 <Y <1), LiMn 2-z Ni z O 4 ( here, 0 <Z <2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 <Y1 <1) and the like), lithium-manganese-cobalt oxide (e. g., LiCo 1-Y2 Mn Y2 O 2 (here, 0 <Y2 <1), LiMn 2 - z1 Co z1 O 4 ( here, 0 <z1 <2) and the like), lithium-nickel Manganese-cobalt-based oxides (e.g., Li (Ni p Co q Mn r1 ) O 2 , where 0 <p <1, 0 <q <1, 0 <r1 <1, p + q + r1 = 1) or Li (Ni p1 Co q1 Mn r2 ) O 4 (where 0 <p1 <2, 0 <q1 <2, 0 <r2 <2, p1 + q1 + r21 = 2, etc.), or lithium- nickel-cobalt-transition metal (M) oxide (e.g., Li (Ni Co p2 q2 Mn r3 M S2) O 2 (W Where M is selected from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo, and p2, q2, r3 and s2 are atomic fractions of the independent elements, respectively, 0 <p2 <1, 0 <Q2 <1, 0 <r3 <1, 0 <s2 <1, p2 + q2 + r3 + s2 = 1), etc.), and any one or two or more of these compounds may be included. Among the lithium composite metal oxides, LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 may be improved in capacity and stability of the battery. , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.), and the lithium composite metal oxide may be Li (Ni) in consideration of the remarkable improvement effect by controlling the type and content ratio of the constituent elements forming the lithium composite metal oxide. 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , and the like, and any one or a mixture of two or more thereof may be used. have.
상기 양극 활물질은 양극 합제의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다. The cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the cathode mixture.
상기 도전재는 통상적으로 양극 합제의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the positive electrode mixture.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack and EC, which are acetylene black series. Family (Armak Company), Vulcan XC-72 (manufactured by Cabot Company) and Super P (manufactured by Timcal).
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 합제의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the positive electrode mixture. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
또한, 상기 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 합제를 코팅하여 제조할 수 있다.In addition, the negative electrode may be prepared by, for example, coating a negative electrode mixture including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector generally has a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.As the negative electrode active material, natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
상기 음극 활물질은 음극 합제의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode mixture.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 합제의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the negative electrode mixture. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 합제의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode mixture. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material, and optionally a binder and a conductive material. . For example, the concentration of the negative electrode active material and, optionally, the solid content including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the separator, conventional porous polymer films conventionally used as separators, for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc. The porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예Example
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예 1Example 1
(비수전해액 제조)(Non-aqueous electrolyte preparation)
플루오로에틸렌 카보네이트 (FEC), 프로필렌 카보네이트 (PC) 및 에틸렌카보네이트(EMC)를 30: 10 : 60 (vol%)의 비율로 혼합하여 유기 용매 혼합액을 제조하였다. 이후, 제조된 유기용매 혼합액 전체 함량을 기준으로 상기 화학식 1a의 화합물을 0.5 중량%를 더 첨가하고, LiPF6을 1M 농도가 되도록 용해시켜 비수 전해액을 제조하였다.Fluoroethylene carbonate (FEC), propylene carbonate (PC) and ethylene carbonate (EMC) were mixed in a ratio of 30:10:60 (vol%) to prepare an organic solvent mixture. Thereafter, 0.5 wt% of the compound of Chemical Formula 1a was further added based on the total content of the prepared organic solvent mixture, and LiPF 6 was dissolved to a concentration of 1 M to prepare a nonaqueous electrolyte.
(양극 제조)(Anode manufacturing)
용제인 N-메틸-2-피롤리돈 (NMP) 100 중량부를 기준으로 양극 활물질 입자로 리튬 코발트 복합산화물 (LiCO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플로라이드 (PVDF)를 90 : 5 : 5 (wt%)의 비율로 혼합한 양극 합제 40 중량부를 첨가하여 양극 합제를 제조하였다. 상기 양극 합제를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.Based on 100 parts by weight of N-methyl-2-pyrrolidone (NMP) solvent, lithium cobalt composite oxide (LiCO 2 ) as the positive electrode active material particles, carbon black as the conductive material, and polyvinylidene fluoride (PVDF) as the binder was 90 The positive electrode mixture was prepared by adding 40 parts by weight of the positive electrode mixture mixed at a ratio of 5: 5 (wt%). The positive electrode mixture was applied to a positive electrode current collector (Al thin film) having a thickness of 100 μm, dried, and roll pressed to prepare a positive electrode.
(음극 제조)(Cathode production)
용제인 N-메틸-2-피롤리돈 (NMP) 100 중량부를 기준으로 음극 활물질로 천연 흑연, 바인더로 PVDF, 도전재로 카본 블랙을 95 : 2 : 3 (wt%)의 비율로 음극 합제 80 중량부를 첨가하여 음극 합제를 제조하였다. 상기 음극 합제를 두께가 90㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스를 실시하여 음극을 제조하였다.Based on 100 parts by weight of N-methyl-2-pyrrolidone (NMP) solvent, natural graphite as a negative electrode active material, PVDF as a binder and carbon black as a conductive material at a ratio of 95: 2: 3 (wt%) 80 Part by weight was added to prepare a negative electrode mixture. The negative electrode mixture was applied to a negative electrode current collector (Cu thin film) having a thickness of 90 μm, dried, and roll pressed to prepare a negative electrode.
(이차전지 제조)(Secondary Battery Manufacturing)
전술한 방법으로 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 통상적인 방법으로 코인형 전지를 제조한 후, 상기 제조된 비수전해액을 주액하여 리튬 이차전지를 제조하였다.The positive electrode and the negative electrode prepared by the above-described method was prepared with a polyethylene porous film by a conventional method, and then the non-aqueous electrolyte was prepared by pouring the lithium secondary battery.
실시예 2Example 2
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1b의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1b was used instead of the compound of Formula 1a as an additive.
실시예 3Example 3
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1c의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1c was used instead of the compound of Formula 1a as an additive.
실시예 4Example 4
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1d의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1d was used instead of the compound of Formula 1a as an additive.
실시예 5Example 5
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1e의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1e was used instead of the compound of Formula 1a as an additive.
실시예 6Example 6
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1f의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 1f was used instead of the compound of Formula 1a as an additive.
실시예 7Example 7
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1g 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that the additive contained the compound of Formula 1g instead of the compound of Formula 1a.
실시예 8Example 8
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 화학식 1h 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1h was used instead of the compound of Formula 1a as an additive.
실시예 9Example 9
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물을 5 중량%를 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1, except that 5 wt% of the compound of Formula 1a was used as an additive.
비교예 1Comparative Example 1
첨가제로 상기 화학식 1a의 화합물을 첨가하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.An electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that the compound of Formula 1a was not added as an additive.
비교예 2Comparative Example 2
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 하기 화학식 2a의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except that the compound of Formula 2a was used instead of the compound of Formula 1a as an additive.
[화학식 2a][Formula 2a]
Figure PCTKR2016012093-appb-I000012
Figure PCTKR2016012093-appb-I000012
비교예 3Comparative Example 3
상기 비수전해액 제조 시에, 첨가제로 상기 화학식 1a의 화합물 대신 하기 화학식 2b를 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.In preparing the non-aqueous electrolyte, an electrolyte solution and a battery including the same were prepared in the same manner as in Example 1 except for including the following Formula 2b as an additive instead of the compound of Formula 1a.
[화학식 2b][Formula 2b]
Figure PCTKR2016012093-appb-I000013
Figure PCTKR2016012093-appb-I000013
비교예 4Comparative Example 4
상기 비수전해액 제조 시에 첨가제로 상기 화학식 1a의 화합물을 7 중량%를 첨가하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.An electrolyte and a battery including the same were prepared in the same manner as in Example 1, except that 7 wt% of the compound of Formula 1a was added as an additive when preparing the non-aqueous electrolyte.
비교예 5Comparative Example 5
상기 화학식 1a의 화합물 대신 하기 화학식 2c를 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 전해액 및 이를 포함하는 전지를 제조하였다.An electrolyte and a battery including the same were prepared in the same manner as in Example 1 except for including the following Chemical Formula 2c instead of the compound of Chemical Formula 1a.
[화학식 2c][Formula 2c]
Figure PCTKR2016012093-appb-I000014
Figure PCTKR2016012093-appb-I000014
실험예 Experimental Example
실험예 1: 수명 특성Experimental Example 1: Life Characteristics
실시예 1 내지 9 및 비교예 1 내지 5에서 제조된 전지(전지용량 5.5 mAh)를 60℃에서 0.7C 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전 전류가 0.275 mA가 되면 충전을 종료하였다. 이후, 10분간 방치한 다음 0.5C 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 100 사이클 실시한 다음, 전지 용량을 측정하여 도 1에 나타내었다.The batteries (battery capacity 5.5 mAh) prepared in Examples 1 to 9 and Comparative Examples 1 to 5 were charged at 60 ° C. to 0.7C constant current until 4.35V, and then charged at a constant voltage of 4.35V to charge current 0.275. Charging was terminated when mA reached. Then, it was left for 10 minutes and then discharged until it became 3.0V at 0.5C constant current. After 100 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 1.
여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate를 나타내는 것으로서 통상 전지 용량의 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA 전류를 의미한다.Here, C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio of battery capacity. That is, 1C of the cells manufactured previously means 5.5 mA current.
도 1에 나타낸 바와 같이, 실시예 1 내지 9의 전지는 비교에 1 내지 5의 이차전지에 비하여 사이클 수명 특성이 우수한 것을 알 수 있다.As shown in FIG. 1, it can be seen that the batteries of Examples 1 to 9 are superior in cycle life characteristics to those of the secondary batteries of 1 to 5 in comparison.
실험예 2: Co 이온 전착 실험Experimental Example 2: Co ion electrodeposition experiment
상기 실험예 1에서 고온수명 특성 평가를 거친 셀 들의 분리막에 대하여, ICP (Inductively Coupled Plasma) 분석 방법을 사용하여 용출된 Co 이온의 농도를 측정하고, 그 비교 결과를 하기 표 1에 나타내었다.For the membranes of the cells subjected to the evaluation of the high temperature life characteristics in Experimental Example 1, the concentration of the eluted Co ions was measured using an ICP (Inductively Coupled Plasma) analysis method, and the comparison results are shown in Table 1 below.
화학식Chemical formula 사용량usage Co (ppm)Co (ppm)
실시예 1Example 1 1a1a 0.5 중량%0.5 wt% 4545
실시예 2Example 2 1b1b 0.5 중량%0.5 wt% 4848
실시예 3Example 3 1c1c 0.5 중량%0.5 wt% 4444
실시예 4Example 4 1d1d 0.5 중량%0.5 wt% 4848
실시예 5Example 5 1e1e 0.5 중량%0.5 wt% 5252
실시예 6Example 6 1f1f 0.5 중량%0.5 wt% 7575
실시예 7Example 7 1g1 g 0.5 중량%0.5 wt% 6363
실시예 8Example 8 1h1h 0.5 중량%0.5 wt% 5757
실시예 9Example 9 1a 1a 5 중량%5 wt% 5555
비교예 1Comparative Example 1 -- -- 255255
비교예 2Comparative Example 2 2a2a 0.5 중량%0.5 wt% 208208
비교예 3Comparative Example 3 2b2b 0.5 중량%0.5 wt% 190190
비교예 4Comparative Example 4 1a1a 7 중량%7 wt% 144144
비교예 5Comparative Example 5 2c 2c 0.5 중량%0.5 wt% 131131
상기 표 1에 나타낸 바와 같이, 실시예 1 내지 9의 전지는 용출된 Co 농도가 모두 75 ppm 이하로 낮은 반면, 비교예 1 내지 5의 이차전지는 모두 190 ppm 이상으로 높은 것을 알 수 있다. 따라서, 본 발명의 첨가제를 포함하는 비수전해액을 사용하는 경우, 금속의 용출을 억제할 수 있으며, 안정한 피막을 형성할 수 있음을 확인할 수 있다.As shown in Table 1, it can be seen that the batteries of Examples 1 to 9 were all lowered to less than 75 ppm of Co concentration, whereas all of the secondary batteries of Comparative Examples 1 to 5 were higher than 190 ppm. Therefore, when using the nonaqueous electrolyte containing the additive of this invention, it can be confirmed that elution of a metal can be suppressed and a stable film can be formed.
실험예 3: AC 임피던스(alternative-current impedance: ACI)의 측정Experimental Example 3: Measurement of AC Impedance (alternative-current impedance)
상기 실시예 1 과 실시예 9와 비교예 4의 리튬 이차 전지를 SOC 0% 상태에서 25℃온도 조건에서 1시간 동안 둔 후 50mHz-100kHz까지 스캔하면서 전지의 AC 임피던스를 측정하였다. 이때 교류 전류의 진폭은 10mV이었으며, 전지의 직류전위(DC potential)은 3.74V이었다. 그 결과를 도 2에 나타내었다.The lithium secondary batteries of Example 1, Example 9, and Comparative Example 4 were placed at 25 ° C. under SOC at 0% for 1 hour, and then the AC impedance of the battery was measured while scanning to 50 mHz-100 kHz. At this time, the amplitude of the alternating current was 10mV, and the DC potential of the battery was 3.74V. The results are shown in FIG.
이때, 도 2의 그래프에서 X축과의 교차점은 전지의 Ohm 저항을 의미하고, 뒷부분의 반원(half circle)은 극판 표면에 형성되는 SEI에 의한 저항을 의미한다.At this time, the intersection point with the X-axis in the graph of Figure 2 means Ohm resistance of the battery, the half circle (half circle) at the rear means the resistance by the SEI formed on the surface of the electrode plate.
즉 반원의 지름이 작을수록 SEI에 의해 유발되는 저항의 크기가 작다는 것을 의미한다.In other words, the smaller the diameter of the semicircle, the smaller the magnitude of resistance caused by SEI.
도 2에 나타난 바와 같이, 실시예 1, 9에 비하여 첨가량이 많은 비교예 4는 저항이 크게 증가한 것을 알 수 있다. 또한 비교예 4는 용출된 Co의 양도 많고 수명도 저하 됨을 알 수 있다.As shown in FIG. 2, it can be seen that Comparative Example 4, which has a large amount of addition compared to Examples 1 and 9, has greatly increased resistance. In addition, it can be seen that in Comparative Example 4, the amount of Co eluted is large and the life is also reduced.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 것인 비수 전해액 첨가제:A nonaqueous electrolyte additive comprising a compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2016012093-appb-I000015
    Figure PCTKR2016012093-appb-I000015
    상기 화학식 1에서,In Chemical Formula 1,
    R은 적어도 하나 이상의 불소 원소가 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, A는 적어도 하나 이상의 불소 원소 및 시아노기(-CN)가 치환된 탄소수 1 내지 4의 알킬기이다.R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element, and A is an alkyl group having 1 to 4 carbon atoms substituted with at least one fluorine element and cyano group (-CN).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 비수전해액 첨가제는 하기 화학식 1a 내지 1i로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 비수 전해액 첨가제:The non-aqueous electrolyte additive is a non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by the general formula 1a to 1i:
    [화학식 1a][Formula 1a]
    Figure PCTKR2016012093-appb-I000016
    Figure PCTKR2016012093-appb-I000016
    [화학식 1b][Formula 1b]
    Figure PCTKR2016012093-appb-I000017
    Figure PCTKR2016012093-appb-I000017
    [화학식 1c][Formula 1c]
    Figure PCTKR2016012093-appb-I000018
    Figure PCTKR2016012093-appb-I000018
    [화학식 1d][Formula 1d]
    Figure PCTKR2016012093-appb-I000019
    Figure PCTKR2016012093-appb-I000019
    [화학식 1e][Formula 1e]
    Figure PCTKR2016012093-appb-I000020
    Figure PCTKR2016012093-appb-I000020
    [화학식 1f][Formula 1f]
    Figure PCTKR2016012093-appb-I000021
    Figure PCTKR2016012093-appb-I000021
    [화학식 1g][Formula 1g]
    Figure PCTKR2016012093-appb-I000022
    Figure PCTKR2016012093-appb-I000022
    [화학식 1h][Formula 1h]
    Figure PCTKR2016012093-appb-I000023
    Figure PCTKR2016012093-appb-I000023
    [화학식 1i]Formula 1i]
    Figure PCTKR2016012093-appb-I000024
    Figure PCTKR2016012093-appb-I000024
  3. 이온화 가능한 리튬염; 유기 용매; 및 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액으로서,Ionizable lithium salts; Organic solvents; And a nonaqueous electrolyte solution for a lithium secondary battery comprising a nonaqueous electrolyte additive,
    상기 비수전해액 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 것인 리튬 이차전지용 비수 전해액:The non-aqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery containing a compound represented by the formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2016012093-appb-I000025
    Figure PCTKR2016012093-appb-I000025
    상기 화학식 1에서,In Chemical Formula 1,
    R은 적어도 하나 이상의 불소 원소가 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, A는 적어도 하나 이상의 불소 원소 및 시아노기(-CN)가 치환된 탄소수 1 내지 4의 알킬기이다.R is an alkyl group having 1 to 3 carbon atoms substituted or unsubstituted with at least one fluorine element, and A is an alkyl group having 1 to 4 carbon atoms substituted with at least one fluorine element and cyano group (-CN).
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 비수전해액 첨가제는 비수 전해액 전체 함량을 기준으로 0.5 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery that will be contained in 0.5% by weight to 5% by weight based on the total content of the non-aqueous electrolyte.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 비수전해액 첨가제는 비수 전해액 전체 함량을 기준으로 1 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.The nonaqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery that will be included in 1% by weight to 5% by weight based on the total content of the nonaqueous electrolyte.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 리튬염은 양이온으로 Li+를 포함하고, The lithium salt includes Li + as a cation,
    음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4-, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8-, (CF3)2PF4-, (CF3)3PF3-, (CF3)4PF2-, (CF3)5PF-, (CF3)6P-, CF3SO3-, C4F9SO3-, CF3CF2SO3-, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나를 포함하는 것인 리튬 이차전지용 비수 전해액.Anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC4O8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF-, (CF 3) 6 P-, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 - , SCN- , and (CF 3 CF 2 SO 2) 2 N - is the non-aqueous electrolyte lithium secondary battery comprises any one selected from the group consisting of.
  7. 청구항 3에 있어서,The method according to claim 3,
    상기 유기 용매는 에테르, 에스테르, 아미드, 선형 카보네이트 및 환형 카보네이트로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것인 리튬 이차전지용 비수 전해액.The organic solvent is any one selected from the group consisting of ether, ester, amide, linear carbonate and cyclic carbonate or a mixture of two or more thereof.
  8. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery having a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
    상기 비수 전해액은 청구항 3 내지 7 중 어느 한 항의 리튬 이차전지용 비수 전해액인 것인 리튬 이차전지.The nonaqueous electrolyte is a lithium secondary battery of the nonaqueous electrolyte for lithium secondary battery of any one of claims 3 to 7.
PCT/KR2016/012093 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte comprising same, and lithium secondary battery including same WO2017074027A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16860210.0A EP3370296B1 (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including the non-aqueous electrolyte
US15/735,741 US10454138B2 (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte
JP2018528930A JP6656717B2 (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte containing the same, and lithium secondary battery including the same
PL16860210T PL3370296T3 (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including the non-aqueous electrolyte
CN201680037297.6A CN108370068B (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150150733 2015-10-29
KR10-2015-0150733 2015-10-29
KR10-2016-0139012 2016-10-25
KR1020160139012A KR101937898B1 (en) 2015-10-29 2016-10-25 Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2017074027A1 true WO2017074027A1 (en) 2017-05-04

Family

ID=58631711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012093 WO2017074027A1 (en) 2015-10-29 2016-10-26 Non-aqueous electrolyte additive, non-aqueous electrolyte comprising same, and lithium secondary battery including same

Country Status (1)

Country Link
WO (1) WO2017074027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179622A (en) * 2006-12-25 2008-08-07 Nichicon Corp Ionic compound
KR20110119054A (en) * 2010-04-26 2011-11-02 삼성에스디아이 주식회사 Lithium polymer battery
US20120171581A1 (en) * 2009-09-15 2012-07-05 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
KR20140037622A (en) * 2012-09-19 2014-03-27 에스케이케미칼주식회사 Electrolyte composition for secondary battery and method for producing the same
KR20140067242A (en) * 2012-11-26 2014-06-05 에스케이이노베이션 주식회사 Electrolyte for secondary battery and lithium secondary battery containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179622A (en) * 2006-12-25 2008-08-07 Nichicon Corp Ionic compound
US20120171581A1 (en) * 2009-09-15 2012-07-05 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
KR20110119054A (en) * 2010-04-26 2011-11-02 삼성에스디아이 주식회사 Lithium polymer battery
KR20140037622A (en) * 2012-09-19 2014-03-27 에스케이케미칼주식회사 Electrolyte composition for secondary battery and method for producing the same
KR20140067242A (en) * 2012-11-26 2014-06-05 에스케이이노베이션 주식회사 Electrolyte for secondary battery and lithium secondary battery containing the same

Similar Documents

Publication Publication Date Title
WO2020130575A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2018135915A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage characteristics
WO2013012250A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2018212429A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery containing same
WO2018143733A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage properties
WO2019103434A1 (en) Additive, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery comprising same
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2022055258A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2013009155A2 (en) Nonaqueous electrolyte and lithium secondary battery using same
WO2018135890A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2017204599A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2021040386A1 (en) Lithium secondary battery and method for manufacturing same
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2021049872A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019151724A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2021101174A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2020204607A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery including same
WO2022092688A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2022065796A1 (en) Additive for nonaqueous electrolytic solution, nonaqueous electrolytic solution containing same, and lithium secondary battery
WO2021049875A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE