WO2017073884A1 - Fluid accelerating device - Google Patents
Fluid accelerating device Download PDFInfo
- Publication number
- WO2017073884A1 WO2017073884A1 PCT/KR2016/007772 KR2016007772W WO2017073884A1 WO 2017073884 A1 WO2017073884 A1 WO 2017073884A1 KR 2016007772 W KR2016007772 W KR 2016007772W WO 2017073884 A1 WO2017073884 A1 WO 2017073884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- passage
- gas
- supply pipe
- flow
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 97
- 239000007789 gas Substances 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 13
- 230000001133 acceleration Effects 0.000 claims description 32
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 28
- 238000010926 purge Methods 0.000 abstract description 7
- 230000001965 increasing effect Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000000427 thin-film deposition Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009474 immediate action Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/02—Influencing flow of fluids in pipes or conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/14—Diverting flow into alternative channels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
Definitions
- the present invention relates to a fluid acceleration device, and more particularly, for example, installed in a fluid flow pipe provided with a dry pump to form an orifice and at the same time to inject a gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid It relates to a fluid acceleration device.
- an etching process or a thin film deposition process is essentially included.
- a PVD process such as a thin film etching process
- a dry pump is connected to the exhaust line. Dry pumps are used in the exhaust lines of various fields, as well as in the process sector.
- the etching process is largely divided into dry etching and wet etching.
- dry etching showing anisotropic characteristics is mainly performed as compared with wet etching showing isotropic characteristics.
- Such dry etching includes plasma etching, ion beam milling, reactive ion etching (RIE), and the like.
- a plasma etching apparatus that uses a plasma to perform ultrafine processing requires ultra-high vacuum that is completely cut off from the outside when the process is performed using various elements such as gas and high frequency power in a process chamber.
- the process gas is converted into a plasma state and reacts with a portion exposed from the mask pattern on the substrate.
- dry pumps are usefully used to form exhaust lines of harmful gases after reaction.
- the thin film deposition process is a process of forming a thin film of a predetermined thickness on the substrate is largely divided into physical vapor deposition method and chemical vapor deposition method.
- chemical vapor deposition a process of forming a thin film on a substrate by chemical reaction after decomposing a gaseous compound has been widely used in recent years.
- the chemical vapor deposition method again includes AP CVD (Atmospheric Pressure Chemical Vapor Deposition) where chemical vapor deposition is performed at atmospheric pressure according to reaction pressure, reaction temperature, and energy injected, and LP CVD (Low Pressure Chemical Vapor) where chemical vapor deposition is performed at low pressure. Deposition) and PE CVD (Plasma Enhanced Chemical Vapor Deposition) where chemical vapor deposition is performed by plasma in a low pressure state.
- Exhaust gas containing a large amount of harmful substances and toxic substances is discharged from the manufacturing process equipment of semiconductors, panel displays, or other electronic components, which are subjected to the above-described etching process and thin film deposition process. This exhaust gas is transferred to the scrubber by the exhaust line, cleaned and purified in the scrubber, and finally discharged to the outside.
- a dry pump capable of forcing the exhaust gas discharged from the manufacturing process equipment to the scrubber.
- the part of the exhaust line between the manufacturing process equipment and the dry pump is a kind of vacuum line formed by the dry pump, and as the flow of the exhaust gas flows smoothly, the clogging in the tube where dust generated by the chemical reaction of the exhaust gas adheres to the inner wall of the tube.
- the portion between the dry pump and the scrubber in the exhaust line is formed as a normal line under atmospheric pressure, and as the transfer pressure and feed rate of the exhaust gas decrease, the dust generated by the chemical reaction of the exhaust gas forms the inner wall of the tube. Intraductal clogging phenomenon that occurs is caused.
- Korean Patent Registration Publication No. 10-0285581 (registered on Jan. 4, 2001) includes a pump installed in a pumping line adjacent to the main equipment among pumping lines connecting between the main equipment and the vacuum pump. 1 heating means, a second heating means installed in an exhaust line adjacent to the pump among the pump exhaust lines connected between the pump and the scrubber, and a gas in the pumping line installed in the pumping line adjacent to the vacuum pump among the pumping lines.
- a first temperature detection sensor for sensing a temperature
- a second temperature detection sensor installed in a pump exhaust line adjacent to the scrubber among the pump exhaust lines, and the first temperature according to detected temperatures of the first and second temperature detection sensors;
- a control means for controlling the operation of the second heating means, so that the pumping and exhaust line is provided through a direct heating method in which a heating means is installed in the line.
- the powder produced prevention device characterized in that so that it can be prevented that the powder produced is disclosed in.
- Korean Patent Publication No. 10-2011-0054675 discloses that the reaction gases used in the manufacturing process of semiconductor, LCD, and LED devices are prevented from being exploded in the process of being transferred to the gas treatment apparatus.
- a nitrogen gas supply system for preventing the generation of condensable by-products in the transfer pipe is disclosed.
- the present invention has been made to solve the above-mentioned problems of the prior art, for example, installed in a fluid flow pipe with a dry pump is installed in the pipe as it accelerates the flow of the fluid by injecting gas at a high pressure in the flow direction of the fluid It is an object of the present invention to provide a fluid acceleration device capable of efficiently reducing clogging phenomenon.
- the present invention is installed in the fluid flow pipe installed with the dry pump to form a negative pressure at the rear end of the dry pump at the same time to reduce the clogging phenomenon in the pipe to reduce the load of the dry pump to increase the service life of the dry pump
- the purpose of the present invention is to provide a fluid acceleration device that reduces the amount of hot purge nitrogen gas and reduces the overall process load and process cost.
- the bypass flow passage is coupled to the fluid flow pipe, the first orifice flow passage is formed in the center and the first orifice flow passage in the inner side.
- a body formed;
- a release valve coupled to a downstream center of the main body to open and close the first orifice flow path;
- a gas supply pipe having one end connected to the bypass flow path of the main body and allowing gas to be injected at a high pressure in the flow direction of the fluid through the bypass flow path, and the bypass flow path of the main body connected to the gas supply pipe. It includes a first branch flow path, characterized in that the positive pressure gauge is installed between the first branch flow path and the gas supply pipe.
- the bypass passage of the main body includes a first branch passage connected to the gas supply pipe, and a positive pressure gauge is installed between the first branch passage and the gas supply pipe.
- the bypass passage of the main body further includes a second branch passage upstream of the branch point of the first branch passage, and the negative pressure gauge is provided at the end of the second branch passage.
- an insert having a second orifice flow path is inserted into the first branch flow path.
- the inlet side outer peripheral surface of the insert is formed with a cut portion at a predetermined angle interval and the cut portion is formed with a side inlet hole to allow gas to flow into the second orifice flow path from the side of the insert.
- the fluid acceleration device further includes a safety unit, one end of which is connected to the main body and the other end of which is connected to the gas supply pipe to prevent excessive movement of the gas supply pipe.
- the body is installed downstream of the dry pump on the fluid flow piping.
- the gas supply pipe is branched to the nitrogen gas supply pipe for providing nitrogen gas to the dry pump.
- the gas supply pipe is connected to the compressor tank.
- the fluid acceleration device for example, it is installed in a fluid flow pipe provided with a dry pump to spray the gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid, thereby effectively reducing the clogging phenomenon in the tube
- a dry pump to spray the gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid, thereby effectively reducing the clogging phenomenon in the tube
- the dry pump is installed in the fluid flow pipe is installed to form a negative pressure at the rear end of the dry pump and at the same time reduce the clogging phenomenon in the pipe to reduce the load of the dry pump Increasing the service life of the dry pump and at the same time reducing the amount of hot purge nitrogen gas has the advantage that the overall process load and process cost can be reduced.
- the clogging phenomenon is reduced and smoothly exhausted exhaust flow, the exhaust hole is formed on the rear end of the exhaust pipe (in front of the device), thereby increasing the efficiency of creating a vacuum generated during the initial exhaust drive,
- the load can be reduced.
- power consumption can be significantly reduced by up to 58%.
- FIG. 1 is a schematic structural diagram showing operation during normal operation of a fluid acceleration device according to an embodiment of the present invention.
- Figure 2 is a schematic structural diagram showing the operation during the exhaust operation of the fluid accelerator according to an embodiment of the present invention.
- Figure 3 is a schematic structural diagram showing the operation during normal operation of the fluid acceleration device according to an embodiment of the present invention including an insert.
- FIG. 4 is an installation structure diagram of a fluid acceleration device according to an embodiment of the present invention applied to a fluid flow pipe corresponding to an exhaust line of a manufacturing process facility for a semiconductor, panel display, or other electronic component.
- FIG. 5 is a perspective view of a fluid acceleration device according to an embodiment of the present invention.
- the body is coupled to the fluid flow pipe, the first orifice flow passage is formed in the center and the inner side is formed by the bypass flow path bypassing the first orifice flow passage;
- a release valve coupled to a downstream center of the main body to open and close the first orifice flow path;
- a gas supply pipe having one end connected to the bypass flow path of the main body and allowing gas to be injected at a high pressure in the flow direction of the fluid through the bypass flow path, and the bypass flow path of the main body connected to the gas supply pipe. It includes a first branch flow path, characterized in that the positive pressure gauge is installed between the first branch flow path and the gas supply pipe.
- Fluid acceleration device 1 for example, is installed in the fluid flow pipe 3 is provided with a dry pump (5) to form an orifice and at the same time the gas in the flow direction of the fluid at high pressure 1 to 5 to accelerate the flow of the fluid, as shown in Figures 1 to 5, is coupled on the fluid flow pipe 3, the first orifice flow passage 11 is formed in the center and the first side in one side A main body 10 in which a bypass flow passage 13 bypassing the orifice flow passage 11 is formed, and a release valve 20 coupled to a downstream center of the main body 10 to open and close the first orifice flow passage 11. And a gas supply pipe 30 connected to the bypass passage 13 of the main body 10 and allowing the gas to be injected at a high pressure in the flow direction of the fluid through the bypass passage 13.
- the main body 10 is to form a specific flow path on the fluid flow pipe 3 and at the same time to form a housing of the fluid acceleration device 1 according to an embodiment of the present invention, on the fluid flow pipe 3 Combined.
- the main body 10 preferably has a structure formed by dividing the semi-circular body portion as schematically shown in FIG. 6 so that the main body 10 can be easily coupled onto the fluid flow pipe 3.
- the opposite sides of the two semi-circular body portions are hinged to each other so as to be rotatable with each other, while the opposite sides of the two semi-circular body portions to each other are provided with fastening members for close and detachable close contact with each other. It may be formed into a structure.
- a first orifice flow passage 11 is formed in the center of the main body 10.
- the first orifice flow passage 11 is formed by, for example, a load lock after the operation stop-initial vacuum of the manufacturing process equipment is removed. It is closed during normal operation when the dry pump 5 is not operated due to the idle state until the opening, and a large amount of exhaust gas flows due to the operation of the manufacturing process equipment, for example. It opens only during the exhaust operation (driving pump 5 operation) flowing through the pipe 3, and serves to accelerate the flow of the exhaust gas by inducing the exhaust gas to flow through at a relatively high speed.
- bypass passage 13 for bypassing the first orifice passage 11 is formed at one inner side of the main body 10, and the bypass passage 13 is a kind of orifice passage for bypassing the first orifice passage 11. Correspondingly, it always remains open regardless of the normal operation in which the dry pump 5 is not operated or in the exhaust operation in which the dry pump 5 is operated.
- the bypass flow path 13 is maintained in an open state during normal operation in which the dry pump 5 is not operated, for example, by the operation stop of the manufacturing process equipment.
- Use of the dry pump 5 by inducing a residual pressure at the rear end to flow through at a relatively high speed so that a negative pressure is formed at the rear end of the dry pump 5, thereby minimizing a load acting on the dry pump 5 later. Increase the service life.
- the fluid acceleration device according to the present embodiment is not limited to a dry pump, it turns out that it can be utilized also in the rear end of the exhaust device using a gas that does not react with air.
- the bypass flow path 13 may be configured to provide a large amount of exhaust gas through the operation of a manufacturing process facility (including an exhaust device that does not use gas that reacts with air).
- the exhaust gas flowed through the bypass flow path 13 at high speed in the fluid flow direction by the exhaust gas flowing through the first orifice flow passage 11 to the exhaust gas flowing through the first orifice flow passage 11.
- the dust generated by the chemical reaction of the exhaust gas serves to reduce the clogging phenomenon in the tube adhered to the inner wall of the fluid flow pipe (3).
- the bypass passage 13 also includes a first branch passage 13a connected to the gas supply pipe 30 to be described later, and the negative pressure gauge to be described later on the upstream side of the branch point of the first branch passage 13a. It further comprises a second branch passage (13b) connected to 50).
- the main body 10 further includes a packing ring 15 in close contact with the corresponding flange portion of the fluid flow pipe 3 on both sides so as to be hermetically coupled to the fluid flow pipe 3.
- the main body 10 is a dry pump 5 on an exhaust line (corresponding to the fluid flow path 3) of a manufacturing process facility such as a panel display such as a semiconductor, an LCD, an OLED, or other electronic components. It is preferred to be installed downstream of.
- the main body 10 may be integrated and installed in the dry pump 5 according to the embodiment.
- the main body 10 is preferably located downstream of the rotor of the dry pump 5.
- the release valve 20 is coupled to the center of the downstream side of the above-described main body 10.
- the release valve 20 is elastically deflected in a reverse direction with respect to the fluid flow direction during normal operation in which the dry pump 5 is stopped.
- the fluid located at the rear end of the dry pump 5 is induced to flow through the bypass flow passage 13 at a relatively high speed so that the dry pump 5
- the exhaust gas is discharged by opening the rear end of the first orifice flow path 11 while being pushed in the fluid flow direction by the exhaust pressure exceeding its own elastic force. 1
- Reversely induces flow through the orifice flow passage 11 at a relatively high speed and at the same time allows a portion of the exhaust gas to bypass the bypass flow passage 13 to be injected at high speed in the fluid flow direction. Do it.
- the release valve 20 includes a valve housing 21 coupled to a downstream center of the main body 10, a coil spring 23 accommodated in the valve housing 21 to provide an elastic force, and the coil spring 23. It has a structure including a valve body 25 for opening and closing the rear end of the first orifice flow path 11 while elastically biased in the reverse direction of the fluid flow direction.
- the valve housing 21 has a front ring body 21a and a rear ring body 21b connected by a plurality of, in particular three connecting supports 21c, as shown schematically in Figs. 1 to 3 and the rear ring body 21b.
- a through hole 21b ' is formed in the center of the valve body 25, and a spring through member 25a is inserted into the coil spring 23 and then penetrated into the through hole 21b'. It is preferable.
- the gas supply pipe 30 is connected to the first branch passage 13a of the bypass passage 13 of the main body 10, which is a bypass passage through the first branch passage 13a.
- the gas is supplied to (13) so that the gas is injected at a high pressure in the flow direction of the fluid together with some of the fluid flowing through the bypass flow path (13), thereby further accelerating the flow of the exhaust gas, in particular exhaust gas
- the dust generated by the chemical reaction of the serves to significantly reduce the clogging phenomenon in the tube adhered to the inner wall of the fluid flow pipe (3).
- the gas supply pipe 30 is connected to the compressor body tank 7 filled with an inert gas such as nitrogen or argon gas or a gas such as air at a high pressure, so that nitrogen and argon gas may flow in the flow direction of the fluid.
- Inert gas such as or gas such as air may be formed to be injected at high speed.
- the gas supply pipe 30 is connected to the nitrogen gas supply pipe 9 which provides nitrogen gas (hot purge gas) to the dry pump 5 so that the nitrogen gas (hot purge gas) flows in the fluid direction. May be formed to be injected at a high speed.
- a positive pressure gauge 40 is interposed between the first branch passage 13a of the bypass passage 13 of the main body 10 and the gas supply pipe 30, and the positive pressure gauge 40 is a gas.
- the positive pressure gauge 40 is a gas.
- the negative pressure gauge 50 is installed at the end of the second branch passage 13b of the bypass passage 13 of the main body 10, and the negative pressure gauge 40 is part of the fluid to the bypass passage 13.
- the sound pressure generated in the second branch flow passage 13b is measured and displayed, or the corresponding signal is provided to the controller so that an abnormality in the fluid flow due to the bypass flow passage 13 can be indicated. Play a role.
- the positive pressure gauge 40 When the fluid flow by the bypass channel 13 is normally performed, the positive pressure gauge 40 is instructed to positive pressure and the negative pressure gauge 50 is instructed to negative pressure. Therefore, when a negative pressure is indicated on the positive pressure gauge 40 or a positive pressure is indicated on the negative pressure gauge 50, it is considered that there is an abnormality in the fluid flow by the bypass flow path 13, and the operator may have a positive pressure gauge 40 or a negative pressure. By looking at the scale of the gauge 50, it is determined whether or not the abnormality is to take immediate action.
- an insert 60 having a second orifice passage 61 is preferably inserted in the center thereof.
- the gas flowing through the gas supply pipe 30 flows at a higher speed to double the clogging reduction effect. This results in shorter bypass distances and less air flow to enhance the flow rate.
- the cutout portion 63 is formed on the inlet side outer circumferential surface of the insert 60 at a predetermined angular interval, and at the same time, a side inlet hole 65 is formed in communication with the second orifice flow passage 61.
- the gas flows into the second orifice flow passage 61 from the side of the insert 60 so that a vortex may be formed in the flow of gas flowing through the second orifice flow passage 61.
- the clogging reduction effect can be further doubled.
- the cutout portion 63 is preferably formed on the inlet side outer circumferential surface of the insert (60) having a hollow cylinder shape three full sets at an angle of 120 degrees, the entire insert 60 on the inlet side of the insert (60) It is preferable that only a predetermined length of the length is cut off and formed.
- Safety unit 70 is connected to the above-described main body 10, and the safety unit 70 is connected to the other end of the gas supply pipe 30.
- the gas supply pipe 30 is excessively moved by the supply pressure, and serves to prevent injury or damage to people.
- the other end of the safety unit 70 is preferably provided with a fixing ring 71 surrounding the outer circumferential surface of a certain point of the gas supply pipe 30 in close contact.
- Safety unit 170 is shown in the form of a chain, but is not limited to this, it is possible if the structure that provides the function to perform the above-described safety role.
- the fluid acceleration device 1 is an exhaust line (fluid flow pipe) of a manufacturing process facility of a panel display such as a semiconductor, an LCD, an OLED, or other electronic components. 3) on the basis of the state installed on the downstream of the dry pump 5, the overall operation of the fluid acceleration device 1 according to an embodiment of the present invention will be described as follows.
- the dry pump 5 is stopped only during normal operation during which manufacturing process equipment such as semiconductors, panel displays, and other electronic parts are stopped.
- the first orifice flow passage 11 is closed by the release valve 20.
- the bypass passage 13 remains open.
- the fluid located at the rear end of the dry pump 5 flows through the bypass passage 13 at a relatively high speed as shown in FIGS. 1 and 3, and a negative pressure is formed at the rear end of the dry pump 5.
- the gas is mixed into the bypass passage 13 through the gas supply pipe 30 and injected at a high speed in the fluid flow direction, the dust is further accelerated by the flow of the fluid forced out by the dry pump 5.
- Intra-tube clogging phenomenon that adheres to the inner wall of the fluid flow pipe 3 can be reduced.
- the dry pump 5 is operated during exhaust operation in which manufacturing process equipment such as semiconductors, panel displays, and other electronic components are operating.
- the valve body 25 of the release valve 20 is applied to the exhaust pressure of the exhaust gas.
- the first orifice flow passage 11 is opened and the bypass flow passage 13 remains open as it is pushed by.
- Exhaust gas forcibly exhausted by the dry pump 5 flows through the first orifice flow passage 11 at a relatively high speed as shown in FIG. 2, and a part of the exhaust gas flows relatively through the bypass flow passage 13. It flows through the gas at a high speed, and at this time, the gas is mixed into the bypass flow path 13 through the gas supply pipe 30 and injected at a high speed in the flow direction of the exhaust gas, forcing exhaust gas by the dry pump 5.
- This reduction in tube clogging phenomenon facilitates the exhaust gas exhaust and reduces the load of the dry pump 5 to increase the service life of the dry pump 5 and at the same time reduce the amount of hot purge nitrogen gas to be used. Load and process costs can be reduced.
- the fluid acceleration device 1 is a dry pump on the exhaust line (corresponding to the fluid flow path 3) of the manufacturing process equipment, such as a panel display, such as a semiconductor, LCD, OLED, etc.
- the manufacturing process equipment such as a panel display, such as a semiconductor, LCD, OLED, etc.
- the fluid acceleration device according to an embodiment of the present invention as described above may be used not only for the discharge port of the dry pump, but also for the external exhaust pipe of all the exhaust pipes through which the non-gas reacting with the air is discharged. It will be appreciated that the fluid acceleration device according to the present embodiment can be installed in, for example, a vehicle exhaust pipe.
- the fluid acceleration device is described as being installed downstream of the dry pump, but the scope of the present invention is not limited thereto and may be installed in the lower portion of a normal gas discharge pipe.
- the nitrogen supply pipe for supplying nitrogen is branched to the mechanical supply pipe of the present embodiment, it is not necessary to supply nitrogen, and it is clear that nitrogen is only one gas that can be used.
- the fluid accelerator according to the present embodiment can obtain a sufficient effect by using only compressed air (currently applicable amount of 5 to 8 slm) without using nitrogen, thereby reducing the amount of power used by the pump during the use of the fluid accelerator.
- the effect of reducing the amount of nitrogen used may be secondary.
- the present invention relates to a fluid acceleration device installed in a fluid flow pipe provided with a dry pump to form an orifice and inject gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid.
- a fluid acceleration device installed in a fluid flow pipe provided with a dry pump to form an orifice and inject gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The present invention relates to a fluid accelerating device wherein: the same is installed in flow piping of a fluid, in which a vacuum pump is installed, for example, and ejects a gas at a high pressure in the flow direction of the fluid such that, by accelerating the flow of the fluid, the inside-tube clogging phenomenon can be reduced efficiently; a negative pressure is formed on the rear end of a dry pump, and the inside-tube clogging phenomenon is simultaneously reduced such that, by reducing the load on the dry pump, the service life of the dry pump is increased; the amount of use of hot purge nitrogen gas is reduced such that the process load and the process cost can be reduced as a whole; and the load on the rear end of the dry pump is reduced such that the amount of consumed energy (power) can be reduced effectively.
Description
본 발명은 유체가속장치에 관한 것으로, 더욱 상세하게는 예를 들어 드라이펌프가 설치된 유체유동배관에 설치되어 오리피스를 형성함과 동시에 유체의 유동방향으로 기체를 고압으로 분사함으로써 유체의 유동을 가속화시키는 유체가속장치에 관한 것이다.The present invention relates to a fluid acceleration device, and more particularly, for example, installed in a fluid flow pipe provided with a dry pump to form an orifice and at the same time to inject a gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid It relates to a fluid acceleration device.
일반적으로 반도체나 LCD, OLED 등과 같은 패널 디스플레이, 기타 전자부품 등의 제조 시에는 에칭 공정이나 박막증착 공정이 필수적으로 포함된다. 이러한 박막 에칭 공정 등 PVD 공정에는 배기 라인이 있으며, 배기 라인에는 드라이펌프가 연결된다. 상기 공정분야 뿐만 아니라 다양한 분야의 배기 라인에 드라이펌프가 사용된다.In general, in the manufacture of a panel display, such as a semiconductor, LCD, OLED, and other electronic components, an etching process or a thin film deposition process is essentially included. In the PVD process, such as a thin film etching process, there is an exhaust line, and a dry pump is connected to the exhaust line. Dry pumps are used in the exhaust lines of various fields, as well as in the process sector.
통상 에칭공정은 크게 건식에칭(dry etching)과 습식에칭(wet etching)으로 나누어진다. 최근에는 반도체나 패널 디스플레이의 집적도가 높아짐에 따라 등방성특성을 나타내는 습식에칭에 비해 이방성 특성을 나타내는 건식에칭이 주로 행해진다. 이러한 건식에칭에는 플라즈마 에칭, 이온 빔 밀링(ion beam milling), 반응성 이온 에칭(RIE; Reactive Ion Etching) 등이 있다.Usually, the etching process is largely divided into dry etching and wet etching. In recent years, as the degree of integration of semiconductors and panel displays increases, dry etching showing anisotropic characteristics is mainly performed as compared with wet etching showing isotropic characteristics. Such dry etching includes plasma etching, ion beam milling, reactive ion etching (RIE), and the like.
건식에칭을 위한 설비 중 플라즈마를 이용하여 기판을 초미세 가공하는 플라즈마 에칭 설비는 공정 챔버에서 가스와 고주파파워 등 각종 요소를 이용하여 공정을 진행할 때 외부와 완전히 차단된 초고진공을 요구한다.Among the facilities for dry etching, a plasma etching apparatus that uses a plasma to perform ultrafine processing requires ultra-high vacuum that is completely cut off from the outside when the process is performed using various elements such as gas and high frequency power in a process chamber.
이러한 공정 챔버에서 가스와 고주파 파워 등을 이용하여 플라즈마 에칭을 수행하는 제조장치에서는, 공정 가스가 플라즈마 상태로 변환되어 기판 상의 마스크 패턴으로부터 노출되는 부위와 반응하게 된다. 이러한 에칭 공정과 스퍼터링 등 PVD 공정에서는 반응 후 유해가스의 배기 라인을 구성하기 위해 드라이펌프가 유용하게 사용되고 있다.In a manufacturing apparatus that performs plasma etching using gas and high frequency power in such a process chamber, the process gas is converted into a plasma state and reacts with a portion exposed from the mask pattern on the substrate. In such PVD processes, such as etching and sputtering, dry pumps are usefully used to form exhaust lines of harmful gases after reaction.
또한 박막증착 공정은 기판 상에 소정 두께의 박막을 형성하는 공정으로 크게 물리기상 증착방법과 화학기상 증착방법으로 구분된다. 여기서, 화학기상 증착방법의 경우 기체상태의 화합물을 분해한 후 화학적 반응에 의해 기판 상에 박막을 형성하는 공정으로 최근에 많이 사용되고 있다.In addition, the thin film deposition process is a process of forming a thin film of a predetermined thickness on the substrate is largely divided into physical vapor deposition method and chemical vapor deposition method. Here, in the case of chemical vapor deposition, a process of forming a thin film on a substrate by chemical reaction after decomposing a gaseous compound has been widely used in recent years.
이러한 화학기상 증착방법은 다시 반응압력과 반응온도 및 주입되는 에너지에 따라 대기압에서 화학기상증착이 이루어지는 AP CVD(Atmospheric Pressure Chemical Vapor Deposition)와, 저압에서 화학기상증착이 이루어지는 LP CVD(Low Pressure Chemical Vapor Deposition) 및 저압상태에서 플라즈마(Plasma)에 의해 화학기상증착이 이루어지는 PE CVD(Plasma Enhanced Chemical Vapor Deposition) 등으로 나누어진다.The chemical vapor deposition method again includes AP CVD (Atmospheric Pressure Chemical Vapor Deposition) where chemical vapor deposition is performed at atmospheric pressure according to reaction pressure, reaction temperature, and energy injected, and LP CVD (Low Pressure Chemical Vapor) where chemical vapor deposition is performed at low pressure. Deposition) and PE CVD (Plasma Enhanced Chemical Vapor Deposition) where chemical vapor deposition is performed by plasma in a low pressure state.
전술한 에칭 공정과 박막증착 공정이 행해지는 반도체, 패널 디스플레이 또는 기타 전자부품 등의 제조공정설비로부터는 유해물질과 유독물질이 다량 함유된 배기가스가 배출된다. 이러한 배기가스는 배기라인에 의해 스크러버로 이송된 후 스크러버 내에서 세정 및 정화된 다음 최종적으로 외부로 배출된다.Exhaust gas containing a large amount of harmful substances and toxic substances is discharged from the manufacturing process equipment of semiconductors, panel displays, or other electronic components, which are subjected to the above-described etching process and thin film deposition process. This exhaust gas is transferred to the scrubber by the exhaust line, cleaned and purified in the scrubber, and finally discharged to the outside.
이러한 제조공정설비와 스크러버 사이를 연결하는 배기라인 상에는 통상적으로 제조공정설비로부터 배출되는 배기가스를 스크러버로 강제 이송시킬 수 있는 드라이펌프가 설치된다.On the exhaust line connecting the manufacturing process equipment and the scrubber is typically installed a dry pump capable of forcing the exhaust gas discharged from the manufacturing process equipment to the scrubber.
배기라인 중 제조공정설비와 드라이펌프 사이 부분은 드라이펌프에 의해 일종의 진공라인이 형성되어 배기가스의 유동이 원활히 이루어짐에 따라 배기가스의 화학반응으로 인해 생성된 분진이 관 내벽에 응착되는 관내 클로깅 현상이 거의 발생되지 않지만, 배기라인 중 드라이펌프와 스크러버 사이 부분은 대기압 하의 통상의 라인으로 형성되어 배기가스의 이송압력 및 이송속도가 저하됨에 따라 배기가스의 화학반응으로 인해 생성된 분진이 관 내벽에 응착되는 관내 클로깅 현상이 발생된다.The part of the exhaust line between the manufacturing process equipment and the dry pump is a kind of vacuum line formed by the dry pump, and as the flow of the exhaust gas flows smoothly, the clogging in the tube where dust generated by the chemical reaction of the exhaust gas adheres to the inner wall of the tube. Although the phenomenon rarely occurs, the portion between the dry pump and the scrubber in the exhaust line is formed as a normal line under atmospheric pressure, and as the transfer pressure and feed rate of the exhaust gas decrease, the dust generated by the chemical reaction of the exhaust gas forms the inner wall of the tube. Intraductal clogging phenomenon that occurs is caused.
이러한 관내 클로깅 현상은 심한 경우 배가라인이 폐색되어 배기가스가 제조공정설비로 역류됨에 따라 공정불량이 발생됨은 물론 드라이펌프의 부하 증대로 인해 성능 저하가 초래되는 문제점이 있었다.In this case, the clogging phenomenon in the pipe is severe, and the exhaust gas is flowed back to the manufacturing process equipment, and process defects occur as well as the load of the dry pump has a problem of deterioration in performance.
전술한 문제점을 해소하기 위한 일환으로, 대한민국 특허등록공보 제10-0285581호(2001.01.04. 등록)에는 메인장비와 진공펌프 사이를 연결하는 펌핑라인중, 상기 메인장비에 인접한 펌핑라인 내에 설치된 제 1 가열수단과, 상기 펌프와 스크러버 사이에 연결된 펌프 배기라인 중, 상기 펌프와 인접한 배기라인 내에 설치된 제 2 가열수단과, 상기 펌핑라인 중, 상기 진공펌프에 근접한 펌핑라인에 설치되어 펌핑라인 내의 가스온도를 감지하는 제 1 온도검출센서와, 상기 펌프 배기라인중, 상기 스크러버에 인접한 펌프 배기라인 내에 설치된 제 2 온도검출센서와, 상기 제 1 및 제 2 온도검출센서의 검출온도에 따라 상기 제 1 및 제 2 가열수단의 작동을 제어하는 제어수단으로 구성됨에 따라 라인 내에 가열수단을 설치한 직접가열방식을 통해 펌핑 및 배기라인 내에 파우더가 생성되는 것이 방지될 수 있도록 한 것을 특징으로 하는 파우더 생성 방지장치가 개시된다.As a part of solving the above-mentioned problems, Korean Patent Registration Publication No. 10-0285581 (registered on Jan. 4, 2001) includes a pump installed in a pumping line adjacent to the main equipment among pumping lines connecting between the main equipment and the vacuum pump. 1 heating means, a second heating means installed in an exhaust line adjacent to the pump among the pump exhaust lines connected between the pump and the scrubber, and a gas in the pumping line installed in the pumping line adjacent to the vacuum pump among the pumping lines. A first temperature detection sensor for sensing a temperature, a second temperature detection sensor installed in a pump exhaust line adjacent to the scrubber among the pump exhaust lines, and the first temperature according to detected temperatures of the first and second temperature detection sensors; And a control means for controlling the operation of the second heating means, so that the pumping and exhaust line is provided through a direct heating method in which a heating means is installed in the line. The powder produced prevention device, characterized in that so that it can be prevented that the powder produced is disclosed in.
또한 대한민국 특허공개공보 제10-2011-0054675호(2011.05.25. 공개)에는 반도체 및 LCD, LED 소자의 제조 공정에 사용된 반응가스들이 가스처리장치로 이송되는 과정에서 폭발하는 것이 방지되도록 함과 더불어 이송배관 내부에 응축성 부산물이 발생하는 것을 방지하기 위한 질소가스 공급 시스템이 개시된다. In addition, Korean Patent Publication No. 10-2011-0054675 (published on May 25, 2011) discloses that the reaction gases used in the manufacturing process of semiconductor, LCD, and LED devices are prevented from being exploded in the process of being transferred to the gas treatment apparatus. In addition, a nitrogen gas supply system for preventing the generation of condensable by-products in the transfer pipe is disclosed.
그러나 전술한 바와 같은 종래기술의 경우에는 배기라인을 가열수단을 통해 가열해야 하므로 상당한 공정비용이 초래됨과 동시에 핫퍼지 질소가스의 과다 사용으로 인해 공정부하가 증대됨을 물론 공정비용이 증대되는 문제점이 있었다.However, in the prior art as described above, since the exhaust line must be heated through a heating means, a considerable process cost is incurred and at the same time, the process load is increased due to the excessive use of hot purge nitrogen gas, and the process cost is increased. .
본 발명은 전술한 종래기술의 문제점을 해소하기 위해 안출된 것으로, 예를 들어 드라이펌프가 설치된 유체유동배관에 설치되어 유체의 유동방향으로 기체를 고압으로 분사함으로써 유체의 유동을 가속화시킴에 따라 관내 클로깅 현상을 효율적으로 저감시킬 수 있도록 한 유체가속장치를 제공함에 그 목적이 있다.The present invention has been made to solve the above-mentioned problems of the prior art, for example, installed in a fluid flow pipe with a dry pump is installed in the pipe as it accelerates the flow of the fluid by injecting gas at a high pressure in the flow direction of the fluid It is an object of the present invention to provide a fluid acceleration device capable of efficiently reducing clogging phenomenon.
또한 본 발명은 예를 들어 드라이펌프가 설치된 유체유동배관에 설치되어 드라이펌프 후단에 음압을 형성함과 동시에 관내 클로깅 현상을 저감시킴에 따라 드라이펌프의 부하를 감소시켜 드라이펌프의 사용 수명을 증대시킴과 동시에 핫퍼지 질소가스의 사용량을 감소시켜 전체적으로 공정부하와 공정비용이 감소될 수 있도록 한 유체가속장치를 제공함에 그 목적이 있다.In addition, the present invention, for example, is installed in the fluid flow pipe installed with the dry pump to form a negative pressure at the rear end of the dry pump at the same time to reduce the clogging phenomenon in the pipe to reduce the load of the dry pump to increase the service life of the dry pump At the same time, the purpose of the present invention is to provide a fluid acceleration device that reduces the amount of hot purge nitrogen gas and reduces the overall process load and process cost.
상술한 바와 같은 목적을 구현하기 위한 본 발명에 따른 유체가속장치는, 유체유동배관 상에 결합되고 중앙에는 제 1 오리피스유로가 관통형성되며 내부 일측에는 상기 제 1 오리피스유로를 우회하는 바이패스유로가 형성되는 본체; 상기 본체의 하류측 중앙에 결합되고 상기 제 1 오리피스유로를 개폐하는 릴리즈밸브; 및 일단은 상기 본체의 바이패스유로에 연결되고 상기 바이패스유로를 통해 기체가 상기 유체의 유동방향으로 고압 분사되도록 하는 기체 공급관을 포함하여 구성되고, 상기 본체의 바이패스유로는 상기 기체 공급관과 연결되는 제 1 분기유로를 포함하고, 상기 제 1 분기유로와 상기 기체공급관 사이에는 양압 게이지가 설치되는 것을 특징으로 한다.In the fluid acceleration device according to the present invention for realizing the object as described above, the bypass flow passage is coupled to the fluid flow pipe, the first orifice flow passage is formed in the center and the first orifice flow passage in the inner side. A body formed; A release valve coupled to a downstream center of the main body to open and close the first orifice flow path; And a gas supply pipe having one end connected to the bypass flow path of the main body and allowing gas to be injected at a high pressure in the flow direction of the fluid through the bypass flow path, and the bypass flow path of the main body connected to the gas supply pipe. It includes a first branch flow path, characterized in that the positive pressure gauge is installed between the first branch flow path and the gas supply pipe.
본 발명의 바람직한 특징에 따르면, 상기 본체의 바이패스유로는 상기 기체공급관과 연결되는 제 1 분기유로를 포함하고, 상기 제 1 분기유로와 상기 기체공급관 사이에는 양압 게이지가 설치된다.According to a preferred feature of the present invention, the bypass passage of the main body includes a first branch passage connected to the gas supply pipe, and a positive pressure gauge is installed between the first branch passage and the gas supply pipe.
본 발명의 바람직한 특징에 따르면, 상기 본체의 바이패스유로는 상기 제 1 분기유로의 분기지점의 상류측에 제 2 분기유로를 더 포함하고, 상기 제 2 분기유로의 단부에는 음압게이지가 설치된다.According to a preferred feature of the present invention, the bypass passage of the main body further includes a second branch passage upstream of the branch point of the first branch passage, and the negative pressure gauge is provided at the end of the second branch passage.
본 발명의 바람직한 특징에 따르면, 상기 제 1 분기유로 내에는 중앙에 제 2 오리피스유로가 형성된 인서트가 삽입된다.According to a preferred feature of the invention, an insert having a second orifice flow path is inserted into the first branch flow path.
본 발명의 바람직한 특징에 따르면, 상기 인서트의 유입측 외주면에는 일정 각도간격으로 절취부가 형성되고 상기 절취부에는 상기 인서트의 측면에서 상기 제 2 오리피스유로 내로 기체가 유입되도록 하는 측면유입공이 형성된다.According to a preferred feature of the present invention, the inlet side outer peripheral surface of the insert is formed with a cut portion at a predetermined angle interval and the cut portion is formed with a side inlet hole to allow gas to flow into the second orifice flow path from the side of the insert.
본 발명의 바람직한 특징에 따르면, 상기 유체가속장치는 일단은 상기 본체에 연결되고 타단은 상기 기체 공급관에 연결되어 상기 기체공급관의 임의 이탈시에 과도하게 움직이지 않도록 지지하는 안전유닛을 더 포함한다.According to a preferred feature of the present invention, the fluid acceleration device further includes a safety unit, one end of which is connected to the main body and the other end of which is connected to the gas supply pipe to prevent excessive movement of the gas supply pipe.
본 발명의 바람직한 특징에 따르면, 상기 본체는 상기 유체유동배관 상에서 드라이펌프의 하류에 설치된다.According to a preferred feature of the invention, the body is installed downstream of the dry pump on the fluid flow piping.
본 발명의 바람직한 특징에 따르면, 상기 기체 공급관에는 상기 드라이펌프로 질소가스를 제공하는 질소가스공급관이 분기 연결된다.According to a preferred feature of the invention, the gas supply pipe is branched to the nitrogen gas supply pipe for providing nitrogen gas to the dry pump.
본 발명의 바람직한 특징에 따르면, 상기 기체 공급관에는 압축기체탱크가 연결된다.According to a preferred feature of the invention, the gas supply pipe is connected to the compressor tank.
본 발명에 따른 유체가속장치에 의하면, 예를 들어 드라이펌프가 설치된 유체유동배관에 설치되어 유체의 유동방향으로 기체를 고압으로 분사함으로써 유체의 유동을 가속화시킴에 따라 관내 클로깅현상을 효율적으로 저감시킬 수 있는 장점이 있다,According to the fluid acceleration device according to the present invention, for example, it is installed in a fluid flow pipe provided with a dry pump to spray the gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid, thereby effectively reducing the clogging phenomenon in the tube There is an advantage to this,
또한 본 발명에 따른 유체가속장치에 의하면, 예를 들어 드라이펌프가 설치된 유체유동배관에 설치되어 드라이펌프 후단에 음압을 형성함과 동시에 관내 클로깅현상을 저감시킴에 따라 드라이펌프의 부하를 감소시켜 드라이펌프의 사용수명을 증대시킴과 동시에 핫퍼지 질소가스의 사용량을 감소시켜 전체적으로 공정부하와 공정비용이 감소될 수 있는 장점이 있다.In addition, according to the fluid acceleration device according to the present invention, for example, the dry pump is installed in the fluid flow pipe is installed to form a negative pressure at the rear end of the dry pump and at the same time reduce the clogging phenomenon in the pipe to reduce the load of the dry pump Increasing the service life of the dry pump and at the same time reducing the amount of hot purge nitrogen gas has the advantage that the overall process load and process cost can be reduced.
또한 본 발명에 따른 유체가속장치에 의하면, 클로깅 현상 저감과 원활환 배기 흐름, 배기관 후단 측(장치 앞부분)에 가진공 상태가 형성되어, 초기 배기 구동 시 발생되는 진공상태를 만드는 효율성을 증대시키고, 부하를 줄일 수 있다. 이로 인하여, 전력 사용량을 최대 58% 까지 현저히 저감시킬 수 있다.In addition, according to the fluid acceleration device according to the present invention, the clogging phenomenon is reduced and smoothly exhausted exhaust flow, the exhaust hole is formed on the rear end of the exhaust pipe (in front of the device), thereby increasing the efficiency of creating a vacuum generated during the initial exhaust drive, The load can be reduced. As a result, power consumption can be significantly reduced by up to 58%.
도 1은 본 발명의 일 실시예에 따른 유체가속장치의 정상 운전시 작동을 나타내는 개략구조도.1 is a schematic structural diagram showing operation during normal operation of a fluid acceleration device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유체가속장치의 배기 운전시 작동을 나타내는 개략구조도.Figure 2 is a schematic structural diagram showing the operation during the exhaust operation of the fluid accelerator according to an embodiment of the present invention.
도 3은 인서트를 포함하는 본 발명의 일 실시예에 따른 유체가속장치의 정상운전시 작동을 나타내는 개략구조도.Figure 3 is a schematic structural diagram showing the operation during normal operation of the fluid acceleration device according to an embodiment of the present invention including an insert.
도 4 는 반도체, 패널 디스플레이 또는 기타 전자부품의 제조공정설비의 배기라인에 해당하는 유체유동배관에 적용된 본 발명의 일 실시예에 따른 유체가속장치의 설치구조도.4 is an installation structure diagram of a fluid acceleration device according to an embodiment of the present invention applied to a fluid flow pipe corresponding to an exhaust line of a manufacturing process facility for a semiconductor, panel display, or other electronic component.
도 5는 본 발명의 일 실시예에 따른 유체가속장치의 사시도.5 is a perspective view of a fluid acceleration device according to an embodiment of the present invention.
본 발명인 유체가속장치의 실시를 위한 최선의 형태는, 유체유동배관 상에 결합되고 중앙에는 제 1 오리피스유로가 관통형성되며 내부 일측에는 상기 제 1 오리피스유로를 우회하는 바이패스유로가 형성되는 본체; 상기 본체의 하류측 중앙에 결합되고 상기 제 1 오리피스유로를 개폐하는 릴리즈밸브; 및 일단은 상기 본체의 바이패스유로에 연결되고 상기 바이패스유로를 통해 기체가 상기 유체의 유동방향으로 고압 분사되도록 하는 기체 공급관을 포함하여 구성되고, 상기 본체의 바이패스유로는 상기 기체 공급관과 연결되는 제 1 분기유로를 포함하고, 상기 제 1 분기유로와 상기 기체공급관 사이에는 양압 게이지가 설치되는 것을 특징으로 한다.The best form for the implementation of the fluid acceleration device of the present invention, the body is coupled to the fluid flow pipe, the first orifice flow passage is formed in the center and the inner side is formed by the bypass flow path bypassing the first orifice flow passage; A release valve coupled to a downstream center of the main body to open and close the first orifice flow path; And a gas supply pipe having one end connected to the bypass flow path of the main body and allowing gas to be injected at a high pressure in the flow direction of the fluid through the bypass flow path, and the bypass flow path of the main body connected to the gas supply pipe. It includes a first branch flow path, characterized in that the positive pressure gauge is installed between the first branch flow path and the gas supply pipe.
이하, 첨부한 도면을 참조하여, 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, it will be described in detail the configuration and operation of the preferred embodiment of the present invention.
본 발명의 일 실시예에 따른 유체가속장치(1)는, 예를 들어 드라이펌프(5)가 설치된 유체유동배관(3)에 설치되어 오리피스를 형성함과 동시에 유체의 유동방향으로 기체를 고압으로 분사함으로써 유체의 유동을 가속화시키는 것으로, 도 1 내지 도 5에 도시되는 바와 같이, 유체유동배관(3) 상에 결합되고 중앙에는 제 1 오리피스유로(11)가 관통 형성되며 내부 일 측에는 상기 제 1 오리피스유로(11)를 우회하는 바이패스유로(13)가 형성되는 본체(10)와, 상기 본체(10)의 하류 측 중앙에 결합되고 상기 제 1 오리피스유로(11)를 개폐하는 릴리즈밸브(20)와, 일단은 상기 본체(10)의 바이패스유로(13)에 연결되고 상기 바이패스유로(13)를 통해 기체가 상기 유체의 유동방향으로 고압분사 되도록 하는 기체 공급관(30)을 포함한다.Fluid acceleration device 1 according to an embodiment of the present invention, for example, is installed in the fluid flow pipe 3 is provided with a dry pump (5) to form an orifice and at the same time the gas in the flow direction of the fluid at high pressure 1 to 5 to accelerate the flow of the fluid, as shown in Figures 1 to 5, is coupled on the fluid flow pipe 3, the first orifice flow passage 11 is formed in the center and the first side in one side A main body 10 in which a bypass flow passage 13 bypassing the orifice flow passage 11 is formed, and a release valve 20 coupled to a downstream center of the main body 10 to open and close the first orifice flow passage 11. And a gas supply pipe 30 connected to the bypass passage 13 of the main body 10 and allowing the gas to be injected at a high pressure in the flow direction of the fluid through the bypass passage 13.
여기서, 본체(10)는 본 발명의 일 실시예에 따른 유체가속장치(1)의 하우징을 형성함과 동시에 유체유동배관(3) 상에서 특정 유로를 형성하는 것으로, 유체유동배관(3) 상에 결합된다. Here, the main body 10 is to form a specific flow path on the fluid flow pipe 3 and at the same time to form a housing of the fluid acceleration device 1 according to an embodiment of the present invention, on the fluid flow pipe 3 Combined.
본체(10)는 유체유동배관(3) 상에 용이하게 결합될 수 있도록 도 6에 개략적으로 도시되는 바와 같이 반원형 몸체부로 양분되어 형성되는 구조를 가지는 것이 바람직하다.The main body 10 preferably has a structure formed by dividing the semi-circular body portion as schematically shown in FIG. 6 so that the main body 10 can be easily coupled onto the fluid flow pipe 3.
이 경우에 양측 반원형 몸체부의 서로 대응되는 일측은 상호 회동가능하게 힌지결합되는 반면에 양측 반원형 몸체부의 서로 대응되는 타측에는 일측 반원형 몸체부와 타측 반원부를 상호 분리가능하게 밀착결합시키는 체결부재가 구비되는 구조로 형성될 수 있다.In this case, the opposite sides of the two semi-circular body portions are hinged to each other so as to be rotatable with each other, while the opposite sides of the two semi-circular body portions to each other are provided with fastening members for close and detachable close contact with each other. It may be formed into a structure.
본체(10)의 중앙에는 제 1 오리피스유로(11)가 관통 형성되는데, 이 제 1 오리피스유로(11)는 예를 들어 제조 공정 설비의 작동정지-초기 진공을 뽑고 난후 로드락(Load lock)이 열릴 때까지의 대기상태로 아이들(Idle) 상태임-에 의해 드라이펌프(5)가 가동되지 않는 정상운전 시에는 폐쇄되어 있다가 예를 들어 제조공정설비의 작동에 의해 다량의 배기가스가 유체유동배관(3)을 관류하는 배기운전(드라이펌프(5) 가동) 시에만 개방되면서 배기가스가 비교적 빠른 속도로 관류하도록 유도함에 따라 배기가스의 유동을 가속화하는 역할을 한다.A first orifice flow passage 11 is formed in the center of the main body 10. The first orifice flow passage 11 is formed by, for example, a load lock after the operation stop-initial vacuum of the manufacturing process equipment is removed. It is closed during normal operation when the dry pump 5 is not operated due to the idle state until the opening, and a large amount of exhaust gas flows due to the operation of the manufacturing process equipment, for example. It opens only during the exhaust operation (driving pump 5 operation) flowing through the pipe 3, and serves to accelerate the flow of the exhaust gas by inducing the exhaust gas to flow through at a relatively high speed.
또한 본체(10)의 내부 일측에는 제 1 오리피스유로(11)를 우회하는 바이패스유로(13)가 형성되는데, 이 바이패스유로(13)는 제 1 오리피스유로(11)를 우회하는 일종의 오리피스유로에 해당하는 것으로, 드라이펌프(5)가 가동되지 않는 정상운전 시 또는 드라이펌프(5)가 가동되는 배기운전 시에 관계없이 항상 개방된 상태로 유지된다.In addition, a bypass passage 13 for bypassing the first orifice passage 11 is formed at one inner side of the main body 10, and the bypass passage 13 is a kind of orifice passage for bypassing the first orifice passage 11. Correspondingly, it always remains open regardless of the normal operation in which the dry pump 5 is not operated or in the exhaust operation in which the dry pump 5 is operated.
바이패스유로(13)는 도 1에 도시되는 바와 같이 예를 들어 제조공정설비의 작동정지에 의해 드라이펌프(5)가 가동되지 않는 정상운전 시에 개방된 상태로 유지되어 드라이펌프(5)의 후단에 잔존하는 유체가 비교적 빠른 속도로 관류하도록 유도함으로써 드라이펌프(5)의 후단에 음압이 형성되도록 하며 이에 의해 차후 드라이펌프(5)에 작용하는 부하가 최소화되도록 함으로써 드라이펌프(5)의 사용수명을 증대시킨다. 이때 본 실시예에 따른 유체가속장치는 드라이 펌프에 한정하지 않으며, 에어와 반응하지 않는 가스를 사용하는 배기장치의 후단에도 활용이 가능함을 밝혀 둔다. As shown in FIG. 1, the bypass flow path 13 is maintained in an open state during normal operation in which the dry pump 5 is not operated, for example, by the operation stop of the manufacturing process equipment. Use of the dry pump 5 by inducing a residual pressure at the rear end to flow through at a relatively high speed so that a negative pressure is formed at the rear end of the dry pump 5, thereby minimizing a load acting on the dry pump 5 later. Increase the service life. At this time, the fluid acceleration device according to the present embodiment is not limited to a dry pump, it turns out that it can be utilized also in the rear end of the exhaust device using a gas that does not react with air.
또한 바이패스유로(13)는 도 2에 도시되는 바와 같이 예를 들어 제조공정설비(에어와 반응하는 가스를 사용하지 않는 배기장치를 포함)의 작동에 의해 다량의 배기가스가 유체유동배관(3)을 관류하는 배기운전 시에도 여전히 개방된 상태로 유지되어 제 1 오리피스유로(11)를 관류한 배기가스에 바이패스유로(13)를 관류한 배기가스를 유체유동방향으로 고속으로 분사함으로써 배기가스의 유동을 더욱 가속화시키는 역할을 함에 따라 특히 배기가스의 화학반응으로 인해 생성된 분진이 유체유동배관(3)의 내벽에 응착되는 관내 클로깅 현상을 감소시키는 역할을 한다.Also, as shown in FIG. 2, the bypass flow path 13 may be configured to provide a large amount of exhaust gas through the operation of a manufacturing process facility (including an exhaust device that does not use gas that reacts with air). The exhaust gas flowed through the bypass flow path 13 at high speed in the fluid flow direction by the exhaust gas flowing through the first orifice flow passage 11 to the exhaust gas flowing through the first orifice flow passage 11. As it serves to further accelerate the flow of the dust, in particular, the dust generated by the chemical reaction of the exhaust gas serves to reduce the clogging phenomenon in the tube adhered to the inner wall of the fluid flow pipe (3).
또한 바이패스유로(13)는 차후에 설명될 기체공급관(30)과 연결되는 제 1 분기유로(13a)를 포함하고, 제 1 분기유로(13a)의 분기지점의 상류측에 차후에 설명될 음압게이지(50)와 연결되는 제 2 분기유로(13b)를 더 포함한다.The bypass passage 13 also includes a first branch passage 13a connected to the gas supply pipe 30 to be described later, and the negative pressure gauge to be described later on the upstream side of the branch point of the first branch passage 13a. It further comprises a second branch passage (13b) connected to 50).
또한 본체(10)는 유체유동배관(3) 상에 기밀적으로 결합될 수 있도록 양측에 유체유동배관(3)의 대응 플랜지부에 밀착되는 패킹링(15)을 더 포함한다.In addition, the main body 10 further includes a packing ring 15 in close contact with the corresponding flange portion of the fluid flow pipe 3 on both sides so as to be hermetically coupled to the fluid flow pipe 3.
본체(10)는 도 4에 도시되는 바와 같이, 반도체나 LCD, OLED 등과 같은 패널 디스플레이, 기타 전자부품 등의 제조공정설비의 배기라인(유체유동관로(3)에 해당) 상에서 드라이펌프(5)의 하류에 설치되는 것이 바람직하다.As shown in FIG. 4, the main body 10 is a dry pump 5 on an exhaust line (corresponding to the fluid flow path 3) of a manufacturing process facility such as a panel display such as a semiconductor, an LCD, an OLED, or other electronic components. It is preferred to be installed downstream of.
또한 본체(10)는 실시 예에 따라 드라이펌프(5) 내에 통합되어 설치될 수도 있는데, 이 경우에 본체(10)는 드라이펌프(5)의 로터의 하류에 위치되는 것이 바람직하다.In addition, the main body 10 may be integrated and installed in the dry pump 5 according to the embodiment. In this case, the main body 10 is preferably located downstream of the rotor of the dry pump 5.
전술한 본체(10)의 하류측 중앙에는 릴리즈밸브(20)가 결합되는데, 이 릴리즈밸브(20)는 드라이펌프(5)가 작동 정지되는 정상운전 시에는 유체유동방향에 대해 역방향으로 탄성 편향되는 자체 탄성력에 의해 제 1 오리피스유로(11)의 후단을 폐쇄함으로써 드라이펌프(5)의 후단에 위치되는 유체가 바이패스유로(13)를 통해 비교적 빠른 속도로 관류하도록 유도하여 드라이펌프(5)의 후단에 음압이 형성되도록 하고 드라이펌프(5)가 작동되는 배기운전 시에는 자체탄성력을 초과하는 배기압력에 의해 유체유동방향으로 밀려지면서 제 1 오리피스유로(11)의 후단을 개방시켜 배기가스가 제 1 오리피스유로(11)를 통해 비교적 빠른 속도로 관류하도록 유도함과 동시에 배기가스의 일부가 바이패스유로(13)로 우회하여 유체유동방향으로 고속으로 분사되도록 하는 역할을 한다.The release valve 20 is coupled to the center of the downstream side of the above-described main body 10. The release valve 20 is elastically deflected in a reverse direction with respect to the fluid flow direction during normal operation in which the dry pump 5 is stopped. By closing the rear end of the first orifice flow passage 11 by its elastic force, the fluid located at the rear end of the dry pump 5 is induced to flow through the bypass flow passage 13 at a relatively high speed so that the dry pump 5 In the exhaust operation in which the negative pressure is formed at the rear end and the dry pump 5 is operated, the exhaust gas is discharged by opening the rear end of the first orifice flow path 11 while being pushed in the fluid flow direction by the exhaust pressure exceeding its own elastic force. 1 Reversely induces flow through the orifice flow passage 11 at a relatively high speed and at the same time allows a portion of the exhaust gas to bypass the bypass flow passage 13 to be injected at high speed in the fluid flow direction. Do it.
릴리즈밸브(20)는 본체(10)의 하류측 중앙에 결합되는 밸브하우징(21)과, 상기 밸브하우징(21) 내에 수용되어 탄성력을 제공하는 코일스프링(23)과, 상기 코일스프링(23)에 의해 유체유동방향의 역방향으로 탄성바이어스되면서 제 1 오리피스유로(11)의 후단을 개폐하는 밸브몸체(25)를 포함하는 구조를 가진다.The release valve 20 includes a valve housing 21 coupled to a downstream center of the main body 10, a coil spring 23 accommodated in the valve housing 21 to provide an elastic force, and the coil spring 23. It has a structure including a valve body 25 for opening and closing the rear end of the first orifice flow path 11 while elastically biased in the reverse direction of the fluid flow direction.
밸브하우징(21)은 도 1 내지 도 3에 개략적으로 도시되는 바와 같이 전방링체(21a)와 후방링체(21b)가 다수의, 특히 3개의 연결지지대(21c)에 의해 연결되고 후방링체(21b)의 중앙에는 관통공(21b')가 형성되며, 밸브몸체(25)의 후방에는 코일스프링(23) 내로 삽입된 후 관통공(21b')에 관통결합되는 스프링관통부재(25a)가 돌출형성 되는 것이 바람직하다.The valve housing 21 has a front ring body 21a and a rear ring body 21b connected by a plurality of, in particular three connecting supports 21c, as shown schematically in Figs. 1 to 3 and the rear ring body 21b. A through hole 21b 'is formed in the center of the valve body 25, and a spring through member 25a is inserted into the coil spring 23 and then penetrated into the through hole 21b'. It is preferable.
전술한 본체(10)의 바이패스유로(13)의 제 1 분기유로(13a)에는 기체공급관(30)이 연결되는데, 이 기체공급관(30)은 제 1 분기유로(13a)를 통해 바이패스유로(13)로 기체를 공급하여 해당 기체가 바이패스유로(13)를 관류하는 일부 유체와 함께 유체의 유동방향으로 고압분사되도록 함에 따라, 배기가스의 유동을 더욱 가속화시키는 역할을 함에 따라 특히 배기가스의 화학반응으로 인해 생성된 분진이 유체유동배관(3)의 내벽에 응착되는 관내 클로깅 현상을 현저히 감소시키는 역할을 한다. The gas supply pipe 30 is connected to the first branch passage 13a of the bypass passage 13 of the main body 10, which is a bypass passage through the first branch passage 13a. The gas is supplied to (13) so that the gas is injected at a high pressure in the flow direction of the fluid together with some of the fluid flowing through the bypass flow path (13), thereby further accelerating the flow of the exhaust gas, in particular exhaust gas The dust generated by the chemical reaction of the serves to significantly reduce the clogging phenomenon in the tube adhered to the inner wall of the fluid flow pipe (3).
기체공급관(30)은 도 4에 도시되는 바와 같이, 질소, 아르곤가스와 같은 비활성가스 또는 공기와 같은 기체가 고압으로 충진된 압축기체탱크(7)와 연결되어 유체의 유동방향으로 질소, 아르곤가스와 같은 비활성가스 또는 공기와 같은 기체가 고속으로 분사되도록 형성될 수 있다.As shown in FIG. 4, the gas supply pipe 30 is connected to the compressor body tank 7 filled with an inert gas such as nitrogen or argon gas or a gas such as air at a high pressure, so that nitrogen and argon gas may flow in the flow direction of the fluid. Inert gas such as or gas such as air may be formed to be injected at high speed.
또한 비록 도시되지는 않았지만 기체 공급관(30)은 드라이펌프(5)로 질소가스 (핫 퍼지 가스)를 제공하는 질소 가스 공급관(9)이 분기 연결되어 유체의 유동방향으로 질소가스(핫 퍼지 가스)가 고속으로 분사되도록 형성될 수도 있다.In addition, although not shown, the gas supply pipe 30 is connected to the nitrogen gas supply pipe 9 which provides nitrogen gas (hot purge gas) to the dry pump 5 so that the nitrogen gas (hot purge gas) flows in the fluid direction. May be formed to be injected at a high speed.
전술한 본체(10)의 바이패스유로(13)의 제 1 분기유로(13a)와 상기 기체 공급관(30) 사이에는 양압 게이지(40)가 개재되는 것이 바람직한데, 이 양압게이지(40)는 기체공급관(30)에 의해 바이패스유로(13)의 제 1 분기유로(13a)의 내부압력을 측정하여 표시하거나 해당신호를 제어부에 제공함에 따라 바이패스유로(13)에 의한 유체유동 상의 이상 여부가 지시될 수 있도록 하는 역할을 한다. Preferably, a positive pressure gauge 40 is interposed between the first branch passage 13a of the bypass passage 13 of the main body 10 and the gas supply pipe 30, and the positive pressure gauge 40 is a gas. By measuring and displaying the internal pressure of the first branch flow passage 13a of the bypass flow passage 13 by the supply pipe 30 or by providing a corresponding signal to the controller, it is determined whether the fluid flow phase is abnormal due to the bypass flow passage 13. To be directed.
전술한 본체(10)의 바이패스유로(13)의 제 2 분기유로(13b)의 단부에는 음압게이지(50)가 설치되는데, 이 음압게이지(40)는 바이패스유로(13)로 유체의 일부가 우회하여 관류하는 경우에 제 2 분기유로(13b) 내에 발생되는 음압을 측정하여 표시하거나 해당신호를 제어부에 제공함에 따라 바이패스유로(13)에 의한 유체유동 상의 이상 여부가 지시될 수 있도록 하는 역할을 한다.The negative pressure gauge 50 is installed at the end of the second branch passage 13b of the bypass passage 13 of the main body 10, and the negative pressure gauge 40 is part of the fluid to the bypass passage 13. When the bypass flows through, the sound pressure generated in the second branch flow passage 13b is measured and displayed, or the corresponding signal is provided to the controller so that an abnormality in the fluid flow due to the bypass flow passage 13 can be indicated. Play a role.
통상 바이패스유로(13)에 의한 유체유동이 정상적으로 이루어질 경우에, 양압 게이지(40)에는 양압이 지시되고 음압 게이지(50)에는 음압이 지시된다. 따라서 양압 게이지(40)에 음압이 지시되거나 음압게이지(50)에 양압이 지시될 경우에 바이패스유로(13)에 의한 유체유동에 이상이 있는 것으로 간주되며, 작업자는 양압 게이지(40)나 음압 게이지(50)의 눈금을 보고 이상여부를 판단하여 즉시 조치를 취하게 된다.When the fluid flow by the bypass channel 13 is normally performed, the positive pressure gauge 40 is instructed to positive pressure and the negative pressure gauge 50 is instructed to negative pressure. Therefore, when a negative pressure is indicated on the positive pressure gauge 40 or a positive pressure is indicated on the negative pressure gauge 50, it is considered that there is an abnormality in the fluid flow by the bypass flow path 13, and the operator may have a positive pressure gauge 40 or a negative pressure. By looking at the scale of the gauge 50, it is determined whether or not the abnormality is to take immediate action.
전술한 본체(10)의 바이패스유로(13)의 제 1 분기유로(13a) 내에는 중앙에 제 2 오리피스유로(61)가 형성된 인서트(60)가 삽입되는 것이 바람직한데, 이 인서트(60)는 제 1 분기유로(13a) 내에 제 2 오리피스유로(61)를 형성함에 따라 기체 공급관(30)을 통해 유입되는 기체가 더욱 고속으로 유입되어 클로깅 저감 효과를 배가될 수 있도록 하는 역할을 한다. 이때는 더 짧은 바이패스 거리와 더 적은 양의 에어로 유속을 강화시키는 효과를 얻을 수 있습니다.In the first branch passage 13a of the bypass passage 13 of the main body 10 described above, an insert 60 having a second orifice passage 61 is preferably inserted in the center thereof. As the second orifice flow passage 61 is formed in the first branch flow passage 13a, the gas flowing through the gas supply pipe 30 flows at a higher speed to double the clogging reduction effect. This results in shorter bypass distances and less air flow to enhance the flow rate.
또한 인서트(60)의 유입측 외주 면에 일정 각도간격으로 절취부(63)가 형성됨과 동시에 이 절취부(63)에 제 2 오리피스유로(61)와 연통되는 측면 유입공(65)이 형성되는 것이 바람직한데, 이 경우에는 인서트(60)의 측면에서 제 2 오리피스유로(61) 내로 기체가 유입되도록 유도하여 제 2 오리피스유로(61) 내를 관류하는 기체의 유동에 와류가 형성될 수 있도록 함으로써 클로깅 저감효과를 더욱 배가될 수 있다. 절취부(63)는 중공원통 형상을 가지는 인서트(60)의 유입측 외주면에 120도 각도 간격으로 1개식 전체 3개가 형성되는 것이 바람직하고, 인서트(60)의 유입측에 인서트(60)의 전체길이 중 일정 길이만큼만 절취되어 형성되는 것이 바람직하다. In addition, the cutout portion 63 is formed on the inlet side outer circumferential surface of the insert 60 at a predetermined angular interval, and at the same time, a side inlet hole 65 is formed in communication with the second orifice flow passage 61. In this case, the gas flows into the second orifice flow passage 61 from the side of the insert 60 so that a vortex may be formed in the flow of gas flowing through the second orifice flow passage 61. The clogging reduction effect can be further doubled. The cutout portion 63 is preferably formed on the inlet side outer circumferential surface of the insert (60) having a hollow cylinder shape three full sets at an angle of 120 degrees, the entire insert 60 on the inlet side of the insert (60) It is preferable that only a predetermined length of the length is cut off and formed.
전술한 본체(10)에는 안전유닛(70)의 일단이 연결되는데, 이 안전유닛(70)은 기체 공급관(30)에 타단이 연결됨에 따라 기체 공급관(30)이 임의로 이탈되는 사고 발생 시에 기체 공급압력에 의해 기체 공급관(30)이 과도하게 움직이면서 사람에게 상해를 입히거나 기물을 파손하거나 하는 일이 방지되도록 하는 역할을 한다. 안전유닛(70)의 타단에는 기체 공급관(30)의 일정지점의 외주면을 밀착되게 둘러싸는 고정링(71)이 구비되는 것이 바람직하다. 안전유닛(170)은 체인 형태로 도시되어 있으나, 이에 한정하지 않으며, 전술한 안전 역할을 수행할 수 있는 기능을 제공하는 구조이면 가능하다.One end of the safety unit 70 is connected to the above-described main body 10, and the safety unit 70 is connected to the other end of the gas supply pipe 30. The gas supply pipe 30 is excessively moved by the supply pressure, and serves to prevent injury or damage to people. The other end of the safety unit 70 is preferably provided with a fixing ring 71 surrounding the outer circumferential surface of a certain point of the gas supply pipe 30 in close contact. Safety unit 170 is shown in the form of a chain, but is not limited to this, it is possible if the structure that provides the function to perform the above-described safety role.
이하, 도 4에 도시되는 바와 같이 본 발명의 일 실시 예에 따른 유체가속장치(1)가 반도체나 LCD, OLED 등과 같은 패널 디스플레이, 기타 전자부품 등의 제조공정설비의 배기라인(유체유동관로(3)에 해당) 상에서 드라이펌프(5)의 하류에 설치된 상태를 기준으로 하여, 본 발명의 일 실시 예에 따른 유체가속장치(1)의 전체작동을 설명하면 다음과 같다.Hereinafter, as shown in FIG. 4, the fluid acceleration device 1 according to an exemplary embodiment of the present invention is an exhaust line (fluid flow pipe) of a manufacturing process facility of a panel display such as a semiconductor, an LCD, an OLED, or other electronic components. 3) on the basis of the state installed on the downstream of the dry pump 5, the overall operation of the fluid acceleration device 1 according to an embodiment of the present invention will be described as follows.
반도체, 패널 디스플레이, 기타 전자부품 등의 제조공정설비가 작동정지 중인 정상운전 시에만 드라이펌프(5)가 작동 정지되는데, 이 경우에 제 1 오리피스유로(11)는 릴리즈밸브(20)에 의해 폐쇄되고 바이패스유로(13)만 개방된 상태로 유지된다.The dry pump 5 is stopped only during normal operation during which manufacturing process equipment such as semiconductors, panel displays, and other electronic parts are stopped. In this case, the first orifice flow passage 11 is closed by the release valve 20. And only the bypass passage 13 remains open.
따라서 드라이펌프(5)의 후단에 위치되는 유체는 도 1 및 도 3에 도시되는 바와 같이 바이패스유로(13)를 비교적 빠른 속도로 관류하여 유동되면서 드라이펌프(5)의 후단에 음압이 형성되고, 이 때 기체공급관(30)을 통해 바이패스유로(13)로 기체가 혼입되어 유체유동방향으로 고속으로 분사되면서 드라이펌프(5)에 의해 강제배기되는 유체의 유동을 더욱 가속화시킴에 따라 분진이 유체유동배관(3)의 내벽에 응착되는 관내 클로깅 현상이 감소될 수 있다.Therefore, the fluid located at the rear end of the dry pump 5 flows through the bypass passage 13 at a relatively high speed as shown in FIGS. 1 and 3, and a negative pressure is formed at the rear end of the dry pump 5. At this time, as the gas is mixed into the bypass passage 13 through the gas supply pipe 30 and injected at a high speed in the fluid flow direction, the dust is further accelerated by the flow of the fluid forced out by the dry pump 5. Intra-tube clogging phenomenon that adheres to the inner wall of the fluid flow pipe 3 can be reduced.
반도체, 패널 디스플레이, 기타 전자부품 등의 제조공정설비가 작동 중인 배기운전 시에 드라이펌프(5)가 작동되는데, 이 경우에 릴리즈밸브(20)의 밸브몸체(25)가 배기가스의 배기압에 의해 밀려지면서 제 1 오리피스유로(11)가 개방되고 바이패스유로(13)도 여전히 개방된 상태로 유지된다.The dry pump 5 is operated during exhaust operation in which manufacturing process equipment such as semiconductors, panel displays, and other electronic components are operating. In this case, the valve body 25 of the release valve 20 is applied to the exhaust pressure of the exhaust gas. The first orifice flow passage 11 is opened and the bypass flow passage 13 remains open as it is pushed by.
드라이펌프(5)에 의해 강제배기되는 배기가스는 도 2에 도시되는 바와 같이 대부분이 제 1 오리피스유로(11)를 비교적 빠른 속도로 관류하여 유동되고 그 중 일부분이 바이패스유로(13)를 비교적 빠른 속도로 관류하여 유동되며, 이 때 기체공급관(30)을 통해 바이패스유로(13)로 기체가 혼입되어 배기 가스의 유동방향으로 고속으로 분사되면서 드라이펌프(5)에 의해 강제배기되는 배기가스의 유동을 더욱 가속화시킴에 따라 분진이 유체유동배관(3)의 내벽에 응착되는 관내 클로깅 현상이 현저히 감소될 수 있다.Exhaust gas forcibly exhausted by the dry pump 5 flows through the first orifice flow passage 11 at a relatively high speed as shown in FIG. 2, and a part of the exhaust gas flows relatively through the bypass flow passage 13. It flows through the gas at a high speed, and at this time, the gas is mixed into the bypass flow path 13 through the gas supply pipe 30 and injected at a high speed in the flow direction of the exhaust gas, forcing exhaust gas by the dry pump 5. By further accelerating the flow of the in-line clogging phenomenon that dust adheres to the inner wall of the fluid flow pipe 3 can be significantly reduced.
이러한 관내 클로깅현상의 저감은 배기 가스의 배기를 원활하게 하고 드라이펌프(5)의 부하를 감소시켜 드라이펌프(5)의 사용 수명을 증대시킴과 동시에 핫퍼지 질소 가스의 사용량을 감소시켜 전체적으로 공정부하와 공정비용이 감소될 수 있다.This reduction in tube clogging phenomenon facilitates the exhaust gas exhaust and reduces the load of the dry pump 5 to increase the service life of the dry pump 5 and at the same time reduce the amount of hot purge nitrogen gas to be used. Load and process costs can be reduced.
또한 본 발명의 일 실시예에 따른 유체가속장치(1)가 반도체나 LCD, OLED 등과 같은 패널 디스플레이, 기타 전자부품 등의 제조공정설비의 배기라인(유체유동관로(3)에 해당) 상에서 드라이펌프(5)의 하류에 설치될 경우에, 드라이펌프(5)의 후단에 음압을 형성함에 따라 드라이펌프(5)의 부하를 감소시켜 드라이펌프(5)의 사용수명을 증대시킨다.In addition, the fluid acceleration device 1 according to an embodiment of the present invention is a dry pump on the exhaust line (corresponding to the fluid flow path 3) of the manufacturing process equipment, such as a panel display, such as a semiconductor, LCD, OLED, etc. When installed downstream of (5), as the negative pressure is formed at the rear end of the dry pump 5, the load of the dry pump 5 is reduced to increase the service life of the dry pump 5.
전술한 바와 같은 본 발명의 일 실시예에 따른 유체가속장치는 드라이펌프의 배출구 뿐 아니라, 에어와 반응하는 가스가 아닌 것이 배출되는 모든 배기관의 외부 배기관에 사용될 수 있다. 본 실시 예에 따른 유체가속장치는 예를 들어 차량 배기관에도 설치 가능함을 밝혀 둔다.The fluid acceleration device according to an embodiment of the present invention as described above may be used not only for the discharge port of the dry pump, but also for the external exhaust pipe of all the exhaust pipes through which the non-gas reacting with the air is discharged. It will be appreciated that the fluid acceleration device according to the present embodiment can be installed in, for example, a vehicle exhaust pipe.
즉 본 실시예에서 유체가속장치는 드라이 펌프의 하류에 설치되는 것으로 기술하였으나, 이에 본 발명의 권리범위가 한정되진 않으며 통상의 기체 방출 배관 하부에도 설치될 수 있다.That is, in the present embodiment, the fluid acceleration device is described as being installed downstream of the dry pump, but the scope of the present invention is not limited thereto and may be installed in the lower portion of a normal gas discharge pipe.
그리고 본 실시예의 기계 공급관에는 질소를 공급하는 질소 공급관이 분기 연결된다 하였으나, 반드시 질소가 공급될 필요는 없으며, 질소는 사용 가능한 하나의 기체일 뿐임을 밝혀 둔다.In addition, although the nitrogen supply pipe for supplying nitrogen is branched to the mechanical supply pipe of the present embodiment, it is not necessary to supply nitrogen, and it is clear that nitrogen is only one gas that can be used.
즉 본 실시 예에 따른 유체가속장치는 질소를 사용하지 않고 압축 에어(현재 적용 가능 량 5 ~ 8slm) 만을 사용하여 충분한 효과를 얻을 수 있으며, 이에 따라 유체가속장치의 사용 중 펌프에서 사용되는 전력량 감소 외에 질소 사용량을 줄이는 효과가 부차적으로 발생될 수 있다. That is, the fluid accelerator according to the present embodiment can obtain a sufficient effect by using only compressed air (currently applicable amount of 5 to 8 slm) without using nitrogen, thereby reducing the amount of power used by the pump during the use of the fluid accelerator. In addition, the effect of reducing the amount of nitrogen used may be secondary.
이상 설명한 바와 같이, 본 발명은 상술한 실시예에 한정되지 아니하며, 청구범위에서 청구되는 본 발명의 기술적 사상에 벗어남 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 자명한 변형실시가 가능하며, 이러한 변형실시는 본 발명의 범위에 속한다.As described above, the present invention is not limited to the above-described embodiments, and modifications apparent by those skilled in the art to which the present invention pertains may be made without departing from the technical spirit of the present invention claimed in the claims. It is possible that such modifications are within the scope of the present invention.
본 발명은 드라이펌프가 설치된 유체유동배관에 설치되어 오리피스를 형성함과 동시에 유체의 유동방향으로 기체를 고압으로 분사함으로써 유체의 유동을 가속화시킬 수 있는 유체가속장치에 관한 것으로 산업상 이용가능성이 높은 발명이다.The present invention relates to a fluid acceleration device installed in a fluid flow pipe provided with a dry pump to form an orifice and inject gas at a high pressure in the flow direction of the fluid to accelerate the flow of the fluid. Invention.
Claims (8)
- 유체유동배관(3) 상에 결합되고 중앙에는 제 1 오리피스유로(11)가 관통형성되며 내부 일측에는 상기 제 1 오리피스유로(11)를 우회하는 바이패스유로(13)가 형성되는 본체(10);The main body 10 is coupled to the fluid flow pipe 3, the first orifice flow passage 11 is formed in the center and the bypass 10 to bypass the first orifice flow passage 11 is formed on one side of the main body (10) ;상기 본체(10)의 하류측 중앙에 결합되고 상기 제 1 오리피스유로(11)를 개폐하는 릴리즈밸브(20); 및A release valve 20 coupled to a downstream center of the main body 10 to open and close the first orifice flow passage 11; And일단은 상기 본체(10)의 바이패스유로(13)에 연결되고 상기 바이패스유로(13)를 통해 기체가 상기 유체의 유동방향으로 고압 분사되도록 하는 기체 공급관(30)을 포함하여 구성되고,One end is connected to the bypass passage 13 of the main body 10 and comprises a gas supply pipe 30 through which the gas is injected in a high pressure flow direction through the bypass passage 13,상기 본체(10)의 바이패스유로(13)는 상기 기체 공급관(30)과 연결되는 제 1 분기유로(13a)를 포함하고, 상기 제 1 분기유로(13a)와 상기 기체공급관(30) 사이에는 양압 게이지(40)가 설치되는 것을 특징으로 하는 유체가속장치.The bypass passage 13 of the main body 10 includes a first branch passage 13a connected to the gas supply pipe 30, and between the first branch passage 13a and the gas supply pipe 30. Fluid acceleration device, characterized in that the positive pressure gauge 40 is installed.
- 청구항 1에 있어서,The method according to claim 1,상기 본체(10)의 바이패스유로(13)는 상기 제 1 분기유로(13a)의 분기지점의 상류측에 제 2 분기유로(13b)를 더 포함하고, 상기 제 2 분기유로(13b)의 단부에는 음압 게이지(50)가 설치되는 것을 특징으로 하는 유체가속장치. The bypass passage 13 of the main body 10 further includes a second branch passage 13b upstream of the branch point of the first branch passage 13a, and an end portion of the second branch passage 13b. Fluid acceleration device, characterized in that the negative pressure gauge (50) is installed.
- 청구항 1에 있어서,The method according to claim 1,상기 제 1 분기유로(13a) 내에는 중앙에 제 2 오리피스유로(61)가 형성된 인서트(60)가 삽입되는 것을 특징으로 하는 유체가속장치. A fluid acceleration device according to claim 1, wherein an insert (60) having a second orifice flow passage (61) is inserted into the first branch flow passage (13a).
- 청구항 3에 있어서,The method according to claim 3,상기 인서트(60)의 유입측 외주면에는 일정 각도 간격으로 절취부(63)가 형성되고 상기 절취부(63)에는 상기 인서트(60)의 측면에서 상기 제 2 오리피스유로(61) 내로 기체가 유입되도록 하는 측면 유입공(65)이 형성되는 것을 특징으로 하는 유체가속장치.The inlet side outer peripheral surface of the insert 60 is formed with a cutout portion 63 at a predetermined angular interval, and the cutout portion 63 allows gas to flow into the second orifice flow passage 61 from the side of the insert 60. Fluid acceleration device, characterized in that the side inlet hole (65) is formed.
- 청구항 1에 있어서,The method according to claim 1,일단은 상기 본체(10)에 연결되고 타단은 상기 기체공급관(30)에 연결되어 상기 기체공급관(30)의 임의이탈시에 과도하게 움직이지 않도록 지지하는 안전유닛(70)을 더 포함하는 것을 특징으로 하는 유체가속장치.One end is further connected to the main body 10 and the other end is connected to the gas supply pipe 30 further comprises a safety unit 70 for supporting so as not to move excessively at any departure of the gas supply pipe (30) Fluid acceleration device.
- 청구항 1 내지 청구항 5 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 5,상기 본체(10)는 상기 유체유동배관(3) 상에서 드라이펌프(5)의 하류에 설치되는 것을 특징으로 하는 유체가속장치. The body (10) is a fluid acceleration device, characterized in that installed on the fluid flow pipe (3) downstream of the dry pump (5).
- 청구항 6에 있어서,The method according to claim 6,상기 기체공급관(30)에는 압축기체탱크(7)가 연결되는 것을 특징으로 하는 유체가속장치.The gas supply pipe 30 is a fluid acceleration device, characterized in that the compressor body tank (7) is connected.
- 청구항 7에 있어서,The method according to claim 7,상기 기체공급관(30)에는 상기 드라이펌프(5)로 질소가스를 제공하는 질소가스공급관(9)이 분기연결되는 것을 특징으로 하는 유체가속장치.The gas supply pipe (30) is a fluid acceleration device characterized in that the nitrogen gas supply pipe (9) for supplying nitrogen gas to the dry pump (5) is branched.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0149551 | 2015-10-27 | ||
KR1020150149551A KR101599200B1 (en) | 2015-10-27 | 2015-10-27 | Fluid flow acceleration apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073884A1 true WO2017073884A1 (en) | 2017-05-04 |
Family
ID=55541729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/007772 WO2017073884A1 (en) | 2015-10-27 | 2016-07-18 | Fluid accelerating device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101599200B1 (en) |
WO (1) | WO2017073884A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112497084A (en) * | 2020-11-14 | 2021-03-16 | 河北虹旭环保科技有限公司 | Catalyst carrier spraying device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240027164A (en) | 2022-08-03 | 2024-03-04 | 조장희 | Fluid acceleration member |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990022673A (en) * | 1995-06-07 | 1999-03-25 | 윌리엄 더블유 제스윈 | Fluid propulsion system for fluid acceleration and direction control |
JP2002243580A (en) * | 2001-02-19 | 2002-08-28 | Nishi Nippon Ryutai Giken:Kk | Accelerator for fluid in the vicinity of surface |
KR101237865B1 (en) * | 2011-10-07 | 2013-02-27 | 이희용 | Fusion fluid accelerator |
KR20140057863A (en) * | 2012-11-05 | 2014-05-14 | 우범제 | An air exhauster of the equipment front end module |
KR20150048330A (en) * | 2013-10-26 | 2015-05-07 | 주식회사 토리 | fluid flow acceleration apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101967001B1 (en) * | 2007-06-07 | 2019-04-08 | 데카 프로덕츠 리미티드 파트너쉽 | Distillation apparatus and compressor |
-
2015
- 2015-10-27 KR KR1020150149551A patent/KR101599200B1/en active IP Right Grant
-
2016
- 2016-07-18 WO PCT/KR2016/007772 patent/WO2017073884A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990022673A (en) * | 1995-06-07 | 1999-03-25 | 윌리엄 더블유 제스윈 | Fluid propulsion system for fluid acceleration and direction control |
JP2002243580A (en) * | 2001-02-19 | 2002-08-28 | Nishi Nippon Ryutai Giken:Kk | Accelerator for fluid in the vicinity of surface |
KR101237865B1 (en) * | 2011-10-07 | 2013-02-27 | 이희용 | Fusion fluid accelerator |
KR20140057863A (en) * | 2012-11-05 | 2014-05-14 | 우범제 | An air exhauster of the equipment front end module |
KR20150048330A (en) * | 2013-10-26 | 2015-05-07 | 주식회사 토리 | fluid flow acceleration apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112497084A (en) * | 2020-11-14 | 2021-03-16 | 河北虹旭环保科技有限公司 | Catalyst carrier spraying device |
Also Published As
Publication number | Publication date |
---|---|
KR101599200B1 (en) | 2016-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012134055A2 (en) | Vacuum gripper device | |
WO2013024935A1 (en) | Gas type fire-fighting apparatus having double detective function for ships | |
WO2014109466A1 (en) | Exhaust system of wafer treatment device | |
WO2017073884A1 (en) | Fluid accelerating device | |
WO2017034110A1 (en) | Water piping system having water hammer buffering function using ejector effect and pressure tank connector therefor | |
MY139703A (en) | Oxygen concentrating apparatus. | |
WO2016036039A1 (en) | Purge module and load port comprising same | |
WO2011091629A1 (en) | Oxygen generator | |
TWI429837B (en) | Triple valve inlet assembly | |
CN111029282A (en) | Heat treatment apparatus | |
WO2015005705A1 (en) | Apparatus and method for coating with solid-state powder | |
TWI553148B (en) | Apparatus for treating a gas stream | |
WO2024085406A1 (en) | Gas measuring apparatus and gas measuring method therefor | |
WO2019109406A1 (en) | Sheet coating apparatus with function of preventing gas from escaping | |
WO2013051877A2 (en) | Vacuum processing apparatus having a means for preventing counter-pressure between chambers | |
CN107004557A (en) | Include the Ion Implantation Equipment of integrated ventilating system | |
CN106969229A (en) | A kind of multi-functional Chemical Pipeline Protecting Jacket | |
WO2014119819A1 (en) | Compact type decompression device | |
WO2021071265A1 (en) | Flexible pipe and method of manufacturing same | |
WO2019059701A1 (en) | Resource saving-type water piping system using ejector effect | |
WO2014035019A1 (en) | Semiconductor and exhaust gas inspection hole for lcd | |
KR100669856B1 (en) | Device for connecting two pipes and apparatus for processing a semiconductor substrate using the same | |
JP2002048682A (en) | Performance evaluation testing equipment of reciprocal engine for aircraft | |
WO2010090434A2 (en) | Backflow prevention system | |
CN216150555U (en) | Dust removal integration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16860068 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16860068 Country of ref document: EP Kind code of ref document: A1 |