WO2017073821A1 - Rotor and permanent magnet-type motor including same - Google Patents

Rotor and permanent magnet-type motor including same Download PDF

Info

Publication number
WO2017073821A1
WO2017073821A1 PCT/KR2015/011557 KR2015011557W WO2017073821A1 WO 2017073821 A1 WO2017073821 A1 WO 2017073821A1 KR 2015011557 W KR2015011557 W KR 2015011557W WO 2017073821 A1 WO2017073821 A1 WO 2017073821A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
shape
insertion hole
magnet insertion
Prior art date
Application number
PCT/KR2015/011557
Other languages
French (fr)
Korean (ko)
Inventor
유세현
서정무
이정종
정인성
허진
정채림
Original Assignee
전자부품연구원
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 울산대학교 산학협력단 filed Critical 전자부품연구원
Publication of WO2017073821A1 publication Critical patent/WO2017073821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet electric motor, and more particularly, to a rotor for concentrating magnetic flux by changing only the shape of the permanent magnet in a state of maintaining the amount of the permanent magnet as it is, and a permanent magnet electric motor including the same.
  • Hybrid cars and electric cars are attracting attention due to the detriment of fossil fuels and the environmental impact caused by air pollution.
  • Hybrid cars use an internal combustion engine as a main power source and an electric motor as an auxiliary power source.
  • Electric vehicles are motor vehicles using only electric motors.
  • Electric vehicles are expected to replace transitional vehicles such as hybrid vehicles due to the characteristics of pollution-free and carbon dioxide-free vehicles while driving.
  • the electric motor of the electric vehicle acts like an engine and receives electrical energy from a battery and converts it into mechanical energy. Accordingly, the output and the driving distance of the electric vehicle are greatly affected by the performance of the battery and the electric motor.
  • the permanent magnet electric motor is composed of a stator in which a winding wound around a stator iron core made of a magnetic material, and a rotor rotatably disposed in the stator iron core of the stator and having a permanent magnet therein.
  • the permanent magnet motor has a high residual magnetic flux density in order to increase the output density by concentrating the magnetic flux through a flux type using a permanent magnet in order to secure the low output density, or to obtain a higher output.
  • Eggplants can compensate for insufficient magnetic flux density by using expensive permanent magnets, increasing the amount of permanent magnets, or by inserting more auxiliary permanent magnets.
  • the technical problem to be achieved by the present invention is to provide a rotor and a permanent magnet electric motor including the same to change the shape of the permanent magnet to maintain the amount of the permanent magnet as it is to concentrate the magnetic flux.
  • the rotor according to the present invention the rotary shaft insertion hole for inserting the rotary shaft, and each frame of the V-shaped at least two or more bends while maintaining the V-shaped spaced apart from the rotary shaft insertion hole And a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes and a rotor iron core in which a plurality of zigzag permanent magnet insertion holes are continuously formed.
  • the rotor iron core characterized in that the outer periphery is formed in an arc shape.
  • V-shape it characterized in that it comprises an included angle of 5 ° to 85 °.
  • each of the V-shaped frame is characterized in that at least three or more permanent magnet insertion holes are formed, and the formed permanent magnet insertion holes form a zigzag shape with a preset included angle and bend.
  • the at least three or more permanent magnet insertion holes are characterized in that the length of each of the longitudinal direction is the same or shorter as the permanent magnet insertion hole closer to the rotation shaft insertion hole.
  • the at least three or more permanent magnet insertion holes are characterized in that the predetermined angle is the same, or the smaller the angle of the bend close to the rotation axis insertion hole is formed.
  • the permanent magnet electric motor including the rotor according to the present invention includes a rotation shaft insertion hole for inserting a rotation shaft, and each frame of the V-shape is curved at least two or more while being spaced apart from the rotation shaft insertion hole to maintain a V shape.
  • Rotor and pipe shape including a plurality of permanent magnet insertion holes are formed continuously in a zigzag shape, including a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes, including
  • the stator includes a stator provided inside the pipe shape.
  • the magnetic flux is generated in the clockwise or counterclockwise direction around the outer periphery connecting the respective V-shaped frame.
  • the magnetic flux is concentrated to increase the output density of the motor, and desired output density Can be reached.
  • FIG. 1 is a view for explaining a rotor according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a magnetic flux path of the permanent magnet motor according to an embodiment of the present invention.
  • FIG 3 is a view for explaining the basic rotor and the arc-shaped rotor according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining a performance comparison of the cogging torque of the basic rotor and the arc-shaped rotor according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the performance comparison of the counter-electromotive voltage of the basic type rotor and the arc type rotor according to an embodiment of the present invention.
  • FIG. 6 is a view illustrating a conventional permanent magnet shape and a permanent magnet shape according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a performance comparison with respect to the pore magnetic flux density of the permanent magnet shapes shown in FIG. 6.
  • FIG. 8 is a diagram for explaining a performance comparison of counter electromotive voltages of the permanent magnet shapes illustrated in FIG. 6.
  • FIG. 9 is a diagram for explaining a performance comparison of output torques of the permanent magnet shapes illustrated in FIG. 6.
  • FIG. 1 is a view for explaining a rotor according to an embodiment of the present invention.
  • the rotor 100 changes the shape of the permanent magnet in the state of maintaining the amount of the permanent magnet as it is to concentrate the magnetic flux to increase the output density of the motor, to reach the desired output density.
  • the rotor 100 includes a rotor iron core 10 and a plurality of permanent magnets 20.
  • the rotor core 10 is a core of the rotor, and includes a rotation shaft insertion hole 30 for inserting the rotation shaft and a plurality of permanent magnet insertion holes 11.
  • the rotary shaft insertion hole 30 is a hole formed in the center of the rotor iron core 10 to insert a rotary shaft (not shown). Therefore, the rotor iron core 10 may be connected to the rotating shaft to be inserted to rotate.
  • the plurality of permanent magnet insertion holes 11 are holes into which the plurality of permanent magnets 20 are inserted.
  • the plurality of permanent magnet insertion holes 11 are continuously spaced apart from the rotation shaft insertion hole 30 at regular intervals while maintaining a V shape.
  • the V-shape maintains a predetermined first included angle ⁇ , and the first frame 12 and the second frame 16 having a branch shape are formed.
  • the first frame 12 and the second frame 16 form a V shape when the virtual center lines are connected to each other, and each of the plurality of permanent magnet insertion holes 13, 14, 15, 17, 18, and 19 is formed. Include.
  • the V-shape has a maximum pore magnetic flux density and is formed to be spaced apart from the point where the first frame 12 and the second frame 16 do not collide with each other.
  • the first included angle ⁇ may be between 5 ° and 85 °.
  • the first included angle ⁇ is an angle generated when the virtual center line with respect to the first frame 12 and the second frame 16 intersects.
  • the first frame 12 and the second frame 16 each include at least two or more bends, which are zigzag.
  • at least three permanent magnet insertion holes are formed in the first frame 12 and the second frame 16 to form at least two bends, and the formed permanent magnet insertion holes have a predetermined second included angle ( It is formed in a zigzag shape by ⁇ ) and the third included angle ⁇ .
  • the first frame 12 includes a first permanent magnet insertion hole 13, a second permanent magnet insertion hole 14, and a third permanent magnet insertion hole 15, and the second frame 16 has a fourth permanent magnet.
  • the magnet insertion hole 17, the fifth permanent magnet insertion hole 18, and the sixth permanent magnet insertion hole 19 are included.
  • the first and fourth permanent magnet insertion holes 13 and 17 have a length in the longitudinal direction of the first length a
  • the second and fifth permanent magnet insertion holes 14 and 18 have a length in the longitudinal direction. It is the 2nd length b
  • the 3rd and 6th permanent magnet insertion holes 15 and 19 are the 3rd length c of the length in the longitudinal direction.
  • the included angles of the first and second permanent magnet insertion holes 13 and 14 and the included angles of the fourth and fifth permanent magnet insertion holes 17 and 18 are the second included angle ⁇
  • the second and third permanent magnets are included.
  • the included angles of the insertion holes 14 and 15 and the included angles of the fifth and sixth permanent magnet insertion holes 18 and 19 are the third included angle ⁇ .
  • the optimized values of the first to third lengths (a, b, c) and the second and third included angles ( ⁇ , ⁇ ) may be calculated through simulation.
  • the first step arbitrarily adjusts the first to third lengths (a, b, c) and the second and third included angles ( ⁇ , ⁇ ).
  • the second step calculates the adjusted first to third lengths a, b, and c and the back electromotive force BEMF of the second and third included angles ⁇ and ⁇ .
  • the third step is set to an optimized value when the counter electromotive voltage of the permanent magnet motor according to the present invention is greater than or equal to 80% of the base electromotive voltage of the reference motor, and performs the first stage again if not.
  • the reference motor may be an electric motor including a neodymium magnet (Nd-PM).
  • the first to third lengths (a, b, c) are optimized, the first to third lengths (a, b, c) have the same length in their respective longitudinal directions, or permanent magnet insertion close to the rotation shaft insertion hole.
  • the holes may be formed shorter (a ⁇ b ⁇ c).
  • the longitudinal lengths a, b, and c of the first to third permanent magnet insertion holes 13, 14, and 15 are the same, or the longitudinal length a of the first permanent magnet insertion holes 13 is the same. It may be longer than the longitudinal length (b) of the second permanent magnet insertion hole 14, the longitudinal length (b) of the second permanent magnet insertion hole 14 is the length of the third permanent magnet insertion hole (15). It may be longer than the direction length (c).
  • the longitudinal lengths a, b, and c of the fourth to sixth permanent magnet insertion holes 17, 18, and 19 are the same, or the longitudinal length a of the fourth permanent magnet insertion hole 17 is defined as 5 may be longer than the longitudinal length (b) of the permanent magnet insertion hole (18), and the longitudinal length (b) of the fifth permanent magnet insertion hole (18) is the longitudinal direction of the sixth permanent magnet insertion hole (19). It may be longer than length c.
  • first and second frames 12 and 16 each include n permanent magnet insertion holes instead of three permanent magnet insertion holes, the lengths thereof in the longitudinal direction are the same or close to the rotation shaft insertion holes.
  • the permanent magnet insertion hole is the same as the feature that can be formed short.
  • the second and third included angles ⁇ and ⁇ may be smaller as the respective included angles are the same or as the included angles of the bends closer to the rotation shaft insertion holes. ( ⁇ ⁇ ⁇ ).
  • the second included angle ⁇ between the first and second permanent magnet insertion holes 13 and 14 is equal to the third included angle ⁇ between the second and third permanent magnet insertion holes 14 and 15, or It can be formed large. Also, the second included angle ⁇ between the fourth and fifth permanent magnet insertion holes 17 and 18 is equal to or larger than the third included angle ⁇ between the fifth and sixth permanent magnet insertion holes 18 and 19. Can be formed.
  • the second included angle ⁇ may be greater than 160 ° and less than 175 ° (160 ° ⁇ ⁇ 175 °) and the third included angle ⁇ may be greater than 155 ° and less than 175 °. (155 ° ⁇ ⁇ 175 °).
  • the included angles of the bends may be the same as each other, or the smaller the angles of the bends close to the rotation shaft insertion holes 30. The same features apply.
  • the plurality of permanent magnets 20 are inserted into the plurality of permanent magnet insertion holes 11.
  • the plurality of permanent magnets 20 may be ferritic permanent magnets.
  • the plurality of permanent magnets 20 are inserted into the corresponding plurality of permanent magnet insertion holes 11.
  • the first permanent magnet 23 is inserted into the first permanent magnet insertion hole 13
  • the second permanent magnet 24 is inserted into the second permanent magnet insertion hole 14
  • the third permanent magnet 25 Is inserted into the third permanent magnet insertion hole 15
  • the fourth permanent magnet 27 is inserted into the fourth permanent magnet insertion hole 17
  • the fifth permanent magnet 28 is the fifth permanent magnet insertion hole
  • the sixth permanent magnet 29 is inserted into the sixth permanent magnet insertion hole 19.
  • the plurality of permanent magnets 20 have a V-shape while maintaining the V-shape.
  • the frames 12 and 16 may be arranged in a curved shape having a zigzag shape.
  • FIG. 2 is a view for explaining a magnetic flux path of the permanent magnet motor according to an embodiment of the present invention.
  • the permanent magnet electric motor includes a rotor 100 and a stator 200.
  • the stator 200 includes a stator iron core (not shown) formed in a pipe shape and a winding (not shown) wound around the stator iron core, and includes a rotor 100 inside the pipe shape. At this time, the stator 200 is provided to be spaced apart from the rotor 100 at regular intervals, the rotation axis is connected to the center of the rotor 100 to rotate the rotor 100. Through this, a magnetic flux is formed between the rotor 100 and the stator 200.
  • stator 200 is wound around a stator yoke (not shown) formed in the stator core. At this time, when the rotor 100 rotates by the rotating shaft, a magnetic flux is formed between the permanent magnet 20 included in the rotor 100 and the winding wound on the stator 200 to generate current in the winding. do.
  • the permanent magnet electric motor is arranged such that at least two or more bends are formed in a zigzag shape while maintaining the V shape of the rotor 100 with respect to the permanent magnet 20. do.
  • the permanent magnet 20 is spaced apart at regular intervals from the rotation shaft insertion hole 30 of the rotor 100 to form a V-shape continuously.
  • the permanent magnet 20 thus formed generates current for the q-axis and the d-axis.
  • the permanent magnet 20a and the permanent magnet 20b are each formed in two or more bends in a zigzag shape while maintaining a V shape, and a current about the d axis is generated in the center of the V shape, respectively.
  • the current on the q-axis is generated between the permanent magnet 20a and the permanent magnet 20b.
  • the permanent magnet motor generates a magnetic flux in a clockwise or counterclockwise direction with respect to the outer periphery connecting the respective V-shaped frames.
  • the direction of the magnetic flux may be changed according to the magnetic direction of the plurality of permanent magnets (20).
  • FIG. 3 is a view for explaining the basic rotor and the arc-shaped rotor according to an embodiment of the present invention.
  • Fig. 3 (a) shows the basic rotor and
  • Fig. 3 (b) shows the arc rotor.
  • the rotor 100 is divided into a basic rotor 100a and an arc rotor 100b.
  • the basic rotor 100a is a rotor including a basic rotor iron core 10a
  • the arc rotor 100b is a rotor including an arc rotor iron core 10b. While the basic rotor iron core 10a has a general arc shape with an outer circumference, the arc rotor iron core 10b has an arc shape with an outer circumference protruding more than a general arc shape.
  • an air gap which is a space spaced from the stator 200, is closer to the arc-shaped center and a general arc shape.
  • the arc type rotor 100b may improve cogging torque than the basic type rotor 100a.
  • Figure 4 is a view for explaining the performance evaluation of the cogging torque of the basic rotor and the arc-shaped rotor according to an embodiment of the present invention
  • Figure 5 is a basic rotor and arc type according to an embodiment of the present invention It is a figure for demonstrating the performance evaluation about the counter electromotive voltage of a rotor.
  • the basic configuration of the basic rotor and the arc rotor is the same, and only the rotor iron core is used for the basic rotor iron and the arc rotor iron core, respectively.
  • the arc-type rotors had less peak-to-peak values over time than the basic rotors, while also reducing ripple.
  • the arc rotor has a cogging torque of about 46% improvement over the basic rotor.
  • FIG. 6 is a view illustrating a conventional permanent magnet shape and a permanent magnet shape according to an embodiment of the present invention.
  • Figure 6 (a) is a view for explaining the spoke type (spoke type) permanent magnet shape
  • Figure 6 (b) is a view for explaining the V-shaped permanent magnet shape
  • Figure 6 (c) according to the present invention It is a figure which shows a permanent magnet shape.
  • the conventional spoke-type permanent magnet shape is a permanent magnet is arranged in a single straight shape, the V-shaped permanent magnet shape maintains a constant included angle in the state in which the spoke-type permanent magnet is bisected in the width direction
  • the permanent magnets are spaced apart from each other, and the permanent magnets according to the present invention have a zigzag shape in which each frame is arranged in a V-shaped rotor, and the permanent magnets are disposed.
  • the shape of the permanent magnet shown in Figure 6 (a) to Figure 6 (c) is the same amount of the permanent magnet, but the shape of the permanent magnet is different.
  • FIG. 7 is a view for explaining a performance comparison of the pore flux densities of the permanent magnet shapes shown in FIG. 6, and FIG. 8 is a view for explaining a performance comparison with respect to the counter electromotive voltage of the permanent magnet shapes shown in FIG. 6.
  • 9 is a view for explaining a performance comparison of the output torque of the permanent magnet shapes shown in FIG.
  • the pore magnetic flux density has a maximum value of 0.5 (T) for spoke type permanent magnets and a maximum value of 0.75 (T) for V-shaped permanent magnets. ),
  • the maximum value for the permanent magnet of the present invention was measured as 0.9 (T).
  • the shape of the permanent magnet of the present invention has a higher pore magnetic flux density than those of the conventional permanent magnet.
  • the counter electromotive voltage has a maximum value of 41.1982 (V ms ) for the spoke permanent magnet and 43.2478 (V) for the V-shaped permanent magnet. ms ), and the maximum value for the permanent magnet of the present invention was measured to be 50.7307 (V ms ).
  • the shape of the permanent magnet of the present invention is higher in counter voltage than those of the conventional permanent magnet.
  • the output torque has a maximum value of 3.2 Nm for the spoke permanent magnet, and a maximum value of 3.8 Nm for the V-shaped permanent magnet.
  • the maximum value for the permanent magnet of the present invention was measured to 4.5 (Nm).
  • the shape of the permanent magnet of the present invention has a higher output torque than those of the conventional permanent magnet.
  • the shape of the permanent magnet of the present invention can increase the output density of the electric motor by concentrating the magnetic flux more than the shape of the conventional permanent magnet in a state of maintaining the permanent magnet amount as it is. In other words, the output density can be increased without increasing the manufacturing cost.
  • 100a basic rotor
  • 100b arc rotor
  • stator a first length

Abstract

A rotor and a permanent magnet-type motor including the same are disclosed. The rotor comprises: a rotary shaft insertion hole for inserting a rotary shaft thereinto; a rotor iron core having a plurality of permanent magnet insertion holes, which are continuously formed therein, are maintained in a V shape by being spaced from the rotary shaft insertion hole, and have each of V-shaped frames forming a zigzag shape by including at least two curves; and a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes.

Description

회전자 및 이를 포함하는 영구자석형 전동기Rotor and permanent magnet motor including same
본 발명은 영구자석형 전동기에 관한 것으로, 더욱 상세하게 영구자석 양을 그대로 유지하는 상태로 영구자석의 형상만 변경하여 자속을 집중시키는 회전자 및 이를 포함하는 영구자석형 전동기에 관한 것이다.The present invention relates to a permanent magnet electric motor, and more particularly, to a rotor for concentrating magnetic flux by changing only the shape of the permanent magnet in a state of maintaining the amount of the permanent magnet as it is, and a permanent magnet electric motor including the same.
대기오염 문제로 인한 환경의 악영향과 화석연료의 고갈로 인하여, 하이브리드 자동차, 전기 자동차가 주목을 받고 있다. 하이브리드 자동차는 내연기관을 주 동력원으로 이용하고 전동기를 보조 동력원으로 이용하는 자동차이다. 전기자동차는 전동기만을 주 동력원으로 이용하는 자동차이다.Hybrid cars and electric cars are attracting attention due to the detriment of fossil fuels and the environmental impact caused by air pollution. Hybrid cars use an internal combustion engine as a main power source and an electric motor as an auxiliary power source. Electric vehicles are motor vehicles using only electric motors.
전기자동차는 주행 시 오염물질 및 이산화탄소 배출량이 없는 무공해 자동차라는 특징 때문에, 배터리, 전동기 등의 기술 발전에 따라 하이브리드 자동차와 같은 과도기적 자동차를 대체할 것으로 기대된다.Electric vehicles are expected to replace transitional vehicles such as hybrid vehicles due to the characteristics of pollution-free and carbon dioxide-free vehicles while driving.
한편, 전기자동차의 전동기는 엔진과 같은 역할을 하며, 배터리로부터 전기 에너지를 공급받아 기계 에너지로 변환시킨다. 이에 따라, 전기자동차의 출력 및 주행 거리는 배터리와 전동기의 성능에 큰 영향을 받게 된다.On the other hand, the electric motor of the electric vehicle acts like an engine and receives electrical energy from a battery and converts it into mechanical energy. Accordingly, the output and the driving distance of the electric vehicle are greatly affected by the performance of the battery and the electric motor.
따라서, 전기자동차의 출력 및 주행 거리 향상을 위해서는 배터리 성능 향상과 함께 전동기의 출력밀도 및 효율향상이 중요시되고 있다.Therefore, in order to improve the output and the driving distance of the electric vehicle, it is important to improve the battery performance and the power density and efficiency of the electric motor.
또한, 최근 지구환경문제 및 탄소 경제시대 도래를 배경으로 전기자동차뿐 아니라, 가전기기 등 전 분야에서 시스템의 고효율화가 매우 중요한 이슈로 부각되고 있다. 이에 따라, 시스템의 핵심 구동원으로서 전동기의 고효율화가 더욱 요구되고 있다.In addition, with the recent global environmental problems and the arrival of the carbon economy, the high efficiency of the system is emerging as a very important issue not only in electric vehicles but also in all fields such as home appliances. Accordingly, there is a further demand for higher efficiency of the motor as a key driving source of the system.
한편, 영구자석형 전동기는 자성재로 이루어지는 고정자 철심에 권취된 권선이 형성되는 고정자와, 고정자의 고정자 철심 내에 회전가능하게 배치되고 그 내부에 영구자석을 가지는 회전자로 구성되어 있다.On the other hand, the permanent magnet electric motor is composed of a stator in which a winding wound around a stator iron core made of a magnetic material, and a rotor rotatably disposed in the stator iron core of the stator and having a permanent magnet therein.
특히, 영구자석형 전동기는 출력밀도가 낮은 것을 보안하기 위해서, 영구자석을 이용한 자속집중형(spoke type)을 통하여 자속을 집중시켜 출력밀도를 높여주거나, 더 높은 출력을 얻기 위해서 높은 잔류자속밀도를 가지는 가격이 비싼 영구자석을 사용하거나, 영구자석의 양을 늘리거나, 보조 영구자석을 더 삽입함으로써 부족한 자속밀도를 보충할 수 있다. In particular, the permanent magnet motor has a high residual magnetic flux density in order to increase the output density by concentrating the magnetic flux through a flux type using a permanent magnet in order to secure the low output density, or to obtain a higher output. Eggplants can compensate for insufficient magnetic flux density by using expensive permanent magnets, increasing the amount of permanent magnets, or by inserting more auxiliary permanent magnets.
하지만 이와 같은 경우, 영구자석형 전동기의 제작비용 상승을 초래하는 부작용이 발생함으로, 이러한 문제점을 개선할 수 있는 새로운 출력밀도 향상의 개발이 필요한 실정이다.However, in such a case, since a side effect occurs that causes an increase in the manufacturing cost of the permanent magnet type motor, it is necessary to develop a new power density improvement that can improve the problem.
본 발명이 이루고자 하는 기술적 과제는 영구자석 양을 그대로 유지하는 상태로 영구자석의 형상만 변경하여 자속을 집중시키는 회전자 및 이를 포함하는 영구자석형 전동기를 제공하는데 목적이 있다.The technical problem to be achieved by the present invention is to provide a rotor and a permanent magnet electric motor including the same to change the shape of the permanent magnet to maintain the amount of the permanent magnet as it is to concentrate the magnetic flux.
상기 목적을 달성하기 위해, 본 발명에 따른 회전자는, 회전축을 삽입하는 회전축 삽입구멍과, 상기 회전축 삽입구멍과 이격되어 V자 형상을 유지하면서 상기 V자 형상의 각 프레임이 적어도 2개 이상의 굴곡을 포함하여 지그재그 형상을 이루는 복수의 영구자석 삽입구멍이 연속적으로 형성되는 회전자 철심 및 상기 복수의 영구자석 삽입구멍에 삽입되는 복수의 영구자석을 포함한다.In order to achieve the above object, the rotor according to the present invention, the rotary shaft insertion hole for inserting the rotary shaft, and each frame of the V-shaped at least two or more bends while maintaining the V-shaped spaced apart from the rotary shaft insertion hole And a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes and a rotor iron core in which a plurality of zigzag permanent magnet insertion holes are continuously formed.
또한 상기 회전자 철심은, 외주연이 아크형상으로 형성되는 것을 특징으로 한다. In addition, the rotor iron core, characterized in that the outer periphery is formed in an arc shape.
또한 상기 V자 형상은, 5°내지 85°인 끼인각을 포함하는 것을 특징으로 한다.In addition, the V-shape, it characterized in that it comprises an included angle of 5 ° to 85 °.
또한 상기 V자 형상의 각 프레임은, 적어도 3개 이상의 영구자석 삽입구멍이 형성되고, 상기 형성된 영구자석 삽입구멍이 기 설정된 끼인각으로 지그재그 형상을 이루며 굴곡이 형성되는 것을 특징으로 한다.In addition, each of the V-shaped frame is characterized in that at least three or more permanent magnet insertion holes are formed, and the formed permanent magnet insertion holes form a zigzag shape with a preset included angle and bend.
또한 상기 적어도 3개 이상의 영구자석 삽입구멍은, 각각의 길이방향 길이가 동일하거나, 상기 회전축 삽입구멍으로부터 가까운 영구자석 삽입구멍일수록 짧게 형성되는 것을 특징으로 한다.In addition, the at least three or more permanent magnet insertion holes are characterized in that the length of each of the longitudinal direction is the same or shorter as the permanent magnet insertion hole closer to the rotation shaft insertion hole.
또한 상기 적어도 3개 이상의 영구자석 삽입구멍은, 상기 기 설정된 끼인각이 동일하거나, 상기 회전축 삽입구멍으로부터 가까운 굴곡의 끼인각일수록 작게 형성되는 것을 특징으로 한다.In addition, the at least three or more permanent magnet insertion holes are characterized in that the predetermined angle is the same, or the smaller the angle of the bend close to the rotation axis insertion hole is formed.
본 발명에 따른 회전자를 포함하는 영구자석형 전동기는, 회전축을 삽입하는 회전축 삽입구멍과, 상기 회전축 삽입구멍과 이격되어 V자 형상을 유지하면서 상기 V자 형상의 각 프레임이 적어도 2개 이상의 굴곡을 포함하여 지그재그 형상을 이루는 복수의 영구자석 삽입구멍이 연속적으로 형성되는 회전자 철심과, 상기 복수의 영구자석 삽입구멍에 삽입되는 복수의 영구자석을 포함하는 회전자 및 파이프 형상으로 형성되고, 상기 파이프 형상의 내부에 상기 회전자가 구비되는 고정자를 포함한다.The permanent magnet electric motor including the rotor according to the present invention includes a rotation shaft insertion hole for inserting a rotation shaft, and each frame of the V-shape is curved at least two or more while being spaced apart from the rotation shaft insertion hole to maintain a V shape. Rotor and pipe shape including a plurality of permanent magnet insertion holes are formed continuously in a zigzag shape, including a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes, including The stator includes a stator provided inside the pipe shape.
또한 상기 V자 형상의 각 프레임 사이를 연결하는 외주연을 중심으로 시계방향 또는 반시계방향으로 자속이 생성되는 것을 특징으로 한다.In addition, the magnetic flux is generated in the clockwise or counterclockwise direction around the outer periphery connecting the respective V-shaped frame.
본 발명에 따른 회전자 및 이를 포함하는 영구자석형 전동기에 의하면, 영구자석 양을 그대로 유지하는 상태로 영구자석의 형상만을 변경하여 자속을 집중시켜 전동기의 출력밀도를 상승시키고, 원하고자 하는 출력밀도에 도달할 수 있다.According to the rotor and the permanent magnet motor including the same according to the present invention, by changing only the shape of the permanent magnet in a state of maintaining the amount of the permanent magnet as it is, the magnetic flux is concentrated to increase the output density of the motor, and desired output density Can be reached.
또한 영구자석 양을 그대로 유지하므로, 추가적인 제작비용이 필요 없어 비용절감을 할 수 있다.In addition, since the amount of permanent magnets are kept intact, no additional manufacturing costs are required, thereby reducing costs.
도 1은 본 발명의 일 실시예에 따른 회전자를 설명하기 위한 도면이다.1 is a view for explaining a rotor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 영구자석형 전동기의 자속 경로를 설명하기 위한 도면이다.2 is a view for explaining a magnetic flux path of the permanent magnet motor according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자를 설명하기 위한 도면이다.3 is a view for explaining the basic rotor and the arc-shaped rotor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자의 코깅 토크에 대한 성능 비교를 설명하기 위한 도면이다.4 is a view for explaining a performance comparison of the cogging torque of the basic rotor and the arc-shaped rotor according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자의 역기전압에 대한 성능 비교를 설명하기 위한 도면이다.5 is a view for explaining the performance comparison of the counter-electromotive voltage of the basic type rotor and the arc type rotor according to an embodiment of the present invention.
도 6은 종래의 영구자석 형상 및 본 발명의 일 실시예에 따른 영구자석 형상을 설명하기 위한 도면이다.6 is a view illustrating a conventional permanent magnet shape and a permanent magnet shape according to an embodiment of the present invention.
도 7은 도 6에 도시된 영구자석 형상들의 공극자속밀도에 대한 성능 비교를 설명하기 위한 도면이다.FIG. 7 is a view for explaining a performance comparison with respect to the pore magnetic flux density of the permanent magnet shapes shown in FIG. 6.
도 8은 도 6에 도시된 영구자석 형상들의 역기전압에 대한 성능 비교를 설명하기 위한 도면이다.FIG. 8 is a diagram for explaining a performance comparison of counter electromotive voltages of the permanent magnet shapes illustrated in FIG. 6.
도 9는 도 6에 도시된 영구자석 형상들의 출력토크에 대한 성능 비교를 설명하기 위한 도면이다.FIG. 9 is a diagram for explaining a performance comparison of output torques of the permanent magnet shapes illustrated in FIG. 6.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it is noted that the same reference numerals are assigned to the same components as much as possible, even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function is apparent to those skilled in the art or may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 회전자를 설명하기 위한 도면이다.1 is a view for explaining a rotor according to an embodiment of the present invention.
도 1을 참조하면, 회전자(100)는 영구자석 양을 그대로 유지하는 상태로 영구자석의 형상만 변경하여 자속을 집중시켜 전동기의 출력밀도를 상승시키고, 원하고자 하는 출력밀도에 도달한다. 회전자(100)는 회전자 철심(10) 및 복수의 영구자석(20)을 포함한다.Referring to Figure 1, the rotor 100 changes the shape of the permanent magnet in the state of maintaining the amount of the permanent magnet as it is to concentrate the magnetic flux to increase the output density of the motor, to reach the desired output density. The rotor 100 includes a rotor iron core 10 and a plurality of permanent magnets 20.
회전자 철심(10)은 회전자의 철심(core)으로써, 회전축을 삽입하는 회전축 삽입구멍(30)과 복수의 영구자석 삽입구멍(11)을 포함한다. The rotor core 10 is a core of the rotor, and includes a rotation shaft insertion hole 30 for inserting the rotation shaft and a plurality of permanent magnet insertion holes 11.
회전축 삽입구멍(30)은 회전자 철심(10)의 중심에 형성되어 회전축(미도시)이 삽입되는 구멍이다. 따라서, 회전자 철심(10)은 삽입되는 회전축과 연결되어 회전을 할 수 있다. The rotary shaft insertion hole 30 is a hole formed in the center of the rotor iron core 10 to insert a rotary shaft (not shown). Therefore, the rotor iron core 10 may be connected to the rotating shaft to be inserted to rotate.
복수의 영구자석 삽입구멍(11)은 복수의 영구자석(20)이 삽입되는 구멍이다. 복수의 영구자석 삽입구멍(11)은 회전축 삽입구멍(30)과 일정한 간격으로 이격되어 V자 형상을 유지하면서 연속적으로 형성된다. The plurality of permanent magnet insertion holes 11 are holes into which the plurality of permanent magnets 20 are inserted. The plurality of permanent magnet insertion holes 11 are continuously spaced apart from the rotation shaft insertion hole 30 at regular intervals while maintaining a V shape.
V자 형상은 기 설정된 제1 끼인각(θ)을 유지하며, 가지(branch) 형상의 제1 프레임(12) 및 제2 프레임(16)이 형성된다. 여기서, 제1 프레임(12) 및 제2 프레임(16)은 가상의 중심선을 서로 연결하면 V자 형상을 이루며, 각각 복수의 영구자석 삽입구멍(13, 14, 15, 17, 18, 19)을 포함한다.The V-shape maintains a predetermined first included angle θ, and the first frame 12 and the second frame 16 having a branch shape are formed. Here, the first frame 12 and the second frame 16 form a V shape when the virtual center lines are connected to each other, and each of the plurality of permanent magnet insertion holes 13, 14, 15, 17, 18, and 19 is formed. Include.
V자 형상은 공극자속밀도가 최대가 되고, 제1 프레임(12) 및 제2 프레임(16)끼리 부딪히지 않는 지점까지 이격되게 형성된다. 바람직하게는, 제1 끼인각(θ)은 5°내지 85°일 수 있다. 여기서, 제1 끼인각(θ)은 제1 프레임(12) 및 제2 프레임(16)에 대한 가상의 중심선이 교차하면서 생기는 각도이다. The V-shape has a maximum pore magnetic flux density and is formed to be spaced apart from the point where the first frame 12 and the second frame 16 do not collide with each other. Preferably, the first included angle θ may be between 5 ° and 85 °. Here, the first included angle θ is an angle generated when the virtual center line with respect to the first frame 12 and the second frame 16 intersects.
제1 프레임(12) 및 제2 프레임(16)은 적어도 2개 이상의 굴곡을 각각 포함하고, 상기 굴곡은 지그재그 형상을 이룬다. 이 때, 제1 프레임(12) 및 제2 프레임(16)은 적어도 2개 이상의 굴곡을 형성하기 위해 적어도 3개 이상의 영구자석 삽입구멍이 형성되고, 형성된 영구자석 삽입구멍은 기 설정된 제2 끼인각(α) 및 제3 끼인각(β)에 의해 지그재그 형상으로 형성된다. The first frame 12 and the second frame 16 each include at least two or more bends, which are zigzag. In this case, at least three permanent magnet insertion holes are formed in the first frame 12 and the second frame 16 to form at least two bends, and the formed permanent magnet insertion holes have a predetermined second included angle ( It is formed in a zigzag shape by α) and the third included angle β.
제1 프레임(12)은 제1 영구자석 삽입구멍(13), 제2 영구자석 삽입구멍(14) 및 제3 영구자석 삽입구멍(15)을 포함하고, 제2 프레임(16)은 제4 영구자석 삽입구멍(17), 제5 영구자석 삽입구멍(18) 및 제6 영구자석 삽입구멍(19)을 포함한다. The first frame 12 includes a first permanent magnet insertion hole 13, a second permanent magnet insertion hole 14, and a third permanent magnet insertion hole 15, and the second frame 16 has a fourth permanent magnet. The magnet insertion hole 17, the fifth permanent magnet insertion hole 18, and the sixth permanent magnet insertion hole 19 are included.
여기서, 제1 및 제4 영구자석 삽입구멍(13, 17)은 길이방향의 길이가 제1 길이(a)이고, 제2 및 제5 영구자석 삽입구멍(14, 18)은 길이방향의 길이가 제2 길이(b)이며, 제3 및 제6 영구자석 삽입구멍(15, 19)은 길이방향의 길이가 제3 길이(c)이다. 또한 제1 및 제2 영구자석 삽입구멍(13, 14)의 끼인각과 제4 및 제5 영구자석 삽입구멍(17, 18)의 끼인각은 제2 끼인각(α)이고, 제2 및 제3 영구자석 삽입구멍(14, 15)의 끼인각과 제5 및 제6 영구자석 삽입구멍(18, 19)의 끼인각은 제3 끼인각(β)이다.Here, the first and fourth permanent magnet insertion holes 13 and 17 have a length in the longitudinal direction of the first length a, and the second and fifth permanent magnet insertion holes 14 and 18 have a length in the longitudinal direction. It is the 2nd length b, and the 3rd and 6th permanent magnet insertion holes 15 and 19 are the 3rd length c of the length in the longitudinal direction. In addition, the included angles of the first and second permanent magnet insertion holes 13 and 14 and the included angles of the fourth and fifth permanent magnet insertion holes 17 and 18 are the second included angle α, and the second and third permanent magnets are included. The included angles of the insertion holes 14 and 15 and the included angles of the fifth and sixth permanent magnet insertion holes 18 and 19 are the third included angle β.
이 때, 제1 내지 제3 길이(a, b, c)와 제2 및 제3 끼인각(α, β)은 시뮬레이션을 통해 최적화된 값이 산출될 수 있으며, 산출되는 방법은 다음과 같다.At this time, the optimized values of the first to third lengths (a, b, c) and the second and third included angles (α, β) may be calculated through simulation.
제1 단계는 제1 내지 제3 길이(a, b, c)와 제2 및 제3 끼인각(α, β)을 임의로 조절을 한다. 제2 단계는 조절된 제1 내지 제3 길이(a, b, c)와 제2 및 제3 끼인각(α, β)의 역기전압(Back Electro Motive Force, BEMF)을 산출한다. 제3 단계는 본 발명에 따른 영구자석형 전동기의 역기전압이 기준 전동기의 역기전압에 80%보다 크거나 같으면 최적화된 값으로 설정하고, 아닌 경우 제1 단계를 다시 수행을 한다. 여기서, 기준 전동기는 네오디움자석(Nd-PM)을 포함한 전동기일 수 있다.The first step arbitrarily adjusts the first to third lengths (a, b, c) and the second and third included angles (α, β). The second step calculates the adjusted first to third lengths a, b, and c and the back electromotive force BEMF of the second and third included angles α and β. The third step is set to an optimized value when the counter electromotive voltage of the permanent magnet motor according to the present invention is greater than or equal to 80% of the base electromotive voltage of the reference motor, and performs the first stage again if not. Here, the reference motor may be an electric motor including a neodymium magnet (Nd-PM).
한편, 제1 내지 제3 길이(a, b, c)를 최적화하면, 제1 내지 제3 길이(a, b, c)는 각각의 길이방향 길이가 동일하거나, 회전축 삽입구멍으로부터 가까운 영구자석 삽입구멍일수록 짧게 형성될 수 있다(a≥b≥c). On the other hand, if the first to third lengths (a, b, c) are optimized, the first to third lengths (a, b, c) have the same length in their respective longitudinal directions, or permanent magnet insertion close to the rotation shaft insertion hole. The holes may be formed shorter (a ≥ b ≥ c).
즉, 제1 내지 제3 영구자석 삽입구멍(13, 14, 15)의 길이방향 길이(a, b, c)는 동일하거나, 제1 영구자석 삽입구멍(13)의 길이방향 길이(a)가 제2 영구자석 삽입구멍(14)의 길이방향 길이(b)보다 길을 수 있고, 제2 영구자석 삽입구멍(14)의 길이방향 길이(b)가 제3 영구자석 삽입구멍(15)의 길이방향 길이(c)보다 길을 수 있다. 또한 제4 내지 제6 영구자석 삽입구멍(17, 18, 19)의 길이방향 길이(a, b, c)는 동일하거나, 제4 영구자석 삽입구멍(17)의 길이방향 길이(a)가 제5 영구자석 삽입구멍(18)의 길이방향 길이(b)보다 길을 수 있고, 제5 영구자석 삽입구멍(18)의 길이방향 길이(b)가 제6 영구자석 삽입구멍(19)의 길이방향 길이(c)보다 길을 수 있다.That is, the longitudinal lengths a, b, and c of the first to third permanent magnet insertion holes 13, 14, and 15 are the same, or the longitudinal length a of the first permanent magnet insertion holes 13 is the same. It may be longer than the longitudinal length (b) of the second permanent magnet insertion hole 14, the longitudinal length (b) of the second permanent magnet insertion hole 14 is the length of the third permanent magnet insertion hole (15). It may be longer than the direction length (c). In addition, the longitudinal lengths a, b, and c of the fourth to sixth permanent magnet insertion holes 17, 18, and 19 are the same, or the longitudinal length a of the fourth permanent magnet insertion hole 17 is defined as 5 may be longer than the longitudinal length (b) of the permanent magnet insertion hole (18), and the longitudinal length (b) of the fifth permanent magnet insertion hole (18) is the longitudinal direction of the sixth permanent magnet insertion hole (19). It may be longer than length c.
이 때, 제1 및 제2 프레임(12, 16)이 각각 3개의 영구자석 삽입구멍이 아니라 n개의 영구자석 삽입구멍을 포함하더라도, 길이방향 길이는 각각의 길이가 동일하거나, 회전축 삽입구멍으로부터 가까운 영구자석 삽입구멍일수록 짧게 형성될 수 있는 특징이 동일하게 적용된다.At this time, even if the first and second frames 12 and 16 each include n permanent magnet insertion holes instead of three permanent magnet insertion holes, the lengths thereof in the longitudinal direction are the same or close to the rotation shaft insertion holes. The permanent magnet insertion hole is the same as the feature that can be formed short.
또한 제2 및 제3 끼인각(α, β)을 최적화하면, 제2 및 제3 끼인각(α, β)은 각각의 끼인각이 동일하거나, 상기 회전축 삽입구멍으로부터 가까운 굴곡의 끼인각일수록 작게 형성될 수 있다(α≥β). In addition, if the second and third included angles α and β are optimized, the second and third included angles α and β may be smaller as the respective included angles are the same or as the included angles of the bends closer to the rotation shaft insertion holes. (α ≧ β).
즉, 제1 및 제2 영구자석 삽입구멍(13, 14) 사이의 제2 끼인각(α)은 제2 및 제3 영구자석 삽입구멍(14, 15) 사이의 제3 끼인각(β)과 동일하거나 크게 형성될 수 있다. 또한 제4 및 제5 영구자석 삽입구멍(17, 18) 사이의 제2 끼인각(α)은 제5 및 제6 영구자석 삽입구멍(18, 19) 사이의 제3 끼인각(β)과 동일하거나 크게 형성될 수 있다.That is, the second included angle α between the first and second permanent magnet insertion holes 13 and 14 is equal to the third included angle β between the second and third permanent magnet insertion holes 14 and 15, or It can be formed large. Also, the second included angle α between the fourth and fifth permanent magnet insertion holes 17 and 18 is equal to or larger than the third included angle β between the fifth and sixth permanent magnet insertion holes 18 and 19. Can be formed.
바람직하게는, 제2 끼인각(α)은 160°보다 크고, 175°보다 작을 수 있고(160°<α<175°), 제3 끼인각(β)은 155°보다 크고, 175°보다 작을 수 있다(155°<β<175°).Preferably, the second included angle α may be greater than 160 ° and less than 175 ° (160 ° <α <175 °) and the third included angle β may be greater than 155 ° and less than 175 °. (155 ° <β <175 °).
이 때, 제1 및 제2 프레임(12, 16)이 굴곡이 2개 이상의 굴곡일 경우에도, 굴곡을 이루는 끼인각은 서로 동일하거나, 회전축 삽입구멍(30)으로부터 가까운 굴곡의 끼인각일수록 작게 형성될 수 있는 특징이 동일하게 적용된다.In this case, even when the first and second frames 12 and 16 are curved in two or more bends, the included angles of the bends may be the same as each other, or the smaller the angles of the bends close to the rotation shaft insertion holes 30. The same features apply.
복수의 영구자석(20)은 복수의 영구자석 삽입구멍(11)에 삽입된다. 복수의 영구자석(20)은 페라이트계 영구자석일 수 있다. 복수의 영구자석(20)은 대응되는 복수의 영구자석 삽입구멍(11)에 삽입된다.The plurality of permanent magnets 20 are inserted into the plurality of permanent magnet insertion holes 11. The plurality of permanent magnets 20 may be ferritic permanent magnets. The plurality of permanent magnets 20 are inserted into the corresponding plurality of permanent magnet insertion holes 11.
즉, 제1 영구자석(23)은 제1 영구자석 삽입구멍(13)에 삽입되고, 제2 영구자석(24)은 제2 영구자석 삽입구멍(14)에 삽입되며, 제3 영구자석(25)은 제3 영구자석 삽입구멍(15)에 삽입되고, 제4 영구자석(27)은 제4 영구자석 삽입구멍(17)에 삽입되며, 제5 영구자석(28)은 제5 영구자석 삽입구멍(18)에 삽입되고, 제6 영구자석(29)은 제6 영구자석 삽입구멍(19)에 삽입된다.That is, the first permanent magnet 23 is inserted into the first permanent magnet insertion hole 13, the second permanent magnet 24 is inserted into the second permanent magnet insertion hole 14, the third permanent magnet 25 ) Is inserted into the third permanent magnet insertion hole 15, the fourth permanent magnet 27 is inserted into the fourth permanent magnet insertion hole 17, the fifth permanent magnet 28 is the fifth permanent magnet insertion hole The sixth permanent magnet 29 is inserted into the sixth permanent magnet insertion hole 19.
따라서, 회전자 철심(10)에 형성된 복수의 영구자석 삽입구멍(11)에 복수의 영구자석(20)을 삽입함으로써, 복수의 영구자석(20)은 V자 형상을 유지하면서 V자 형상의 각 프레임(12, 16)이 지그재그 형상으로 이루어진 굴곡의 형상으로 배치될 수 있다. Therefore, by inserting the plurality of permanent magnets 20 into the plurality of permanent magnet insertion holes 11 formed in the rotor iron core 10, the plurality of permanent magnets 20 have a V-shape while maintaining the V-shape. The frames 12 and 16 may be arranged in a curved shape having a zigzag shape.
도 2는 본 발명의 일 실시예에 따른 영구자석형 전동기의 자속 경로를 설명하기 위한 도면이다.2 is a view for explaining a magnetic flux path of the permanent magnet motor according to an embodiment of the present invention.
도 2를 참조하면, 영구자석형 전동기는 회전자(100) 및 고정자(200)를 포함한다.Referring to FIG. 2, the permanent magnet electric motor includes a rotor 100 and a stator 200.
고정자(200)는 파이프 형상으로 형성된 고정자 철심(미도시)과, 고정자 철심에 권취된 권선(미도시)을 포함하고, 파이프 형상의 내부에 회전자(100)를 구비한다. 이 때, 고정자(200)는 회전자(100)와 일정한 간격으로 이격되어 구비되며, 회전자(100)의 중심에는 회전축이 연결되어 회전자(100)를 회전시킨다. 이를 통해, 회전자(100) 및 고정자(200) 사이에 자속이 형성된다. The stator 200 includes a stator iron core (not shown) formed in a pipe shape and a winding (not shown) wound around the stator iron core, and includes a rotor 100 inside the pipe shape. At this time, the stator 200 is provided to be spaced apart from the rotor 100 at regular intervals, the rotation axis is connected to the center of the rotor 100 to rotate the rotor 100. Through this, a magnetic flux is formed between the rotor 100 and the stator 200.
상세하게는, 고정자(200)는 고정자 철심에 형성된 고정자 요크(미도시)에 권선이 권취된다. 이 때, 회전자(100)가 회전축에 의해 회전을 하는 경우, 회전자(100)에 포함된 영구자석(20)과 고정자(200)에 권취된 권선 사이에 자속이 형성되어 권선에 전류가 생성된다.In detail, the stator 200 is wound around a stator yoke (not shown) formed in the stator core. At this time, when the rotor 100 rotates by the rotating shaft, a magnetic flux is formed between the permanent magnet 20 included in the rotor 100 and the winding wound on the stator 200 to generate current in the winding. do.
특히, 자속을 보다 집중시키기 위해 영구자석형 전동기는 회전자(100)의 영구자석(20)에 대한 배치를 V자 형상을 유지하면서 V자 형상에 적어도 2개 이상의 굴곡이 지그재그 형상으로 형성되도록 배치한다. 영구자석(20)은 회전자(100)의 회전축 삽입구멍(30)과 일정한 간격으로 이격되어 V자 형상이 연속적으로 형성된다. 이렇게 형성된 영구자석(20)은 q축과 d축에 대한 전류가 생성한다. Particularly, in order to concentrate the magnetic flux, the permanent magnet electric motor is arranged such that at least two or more bends are formed in a zigzag shape while maintaining the V shape of the rotor 100 with respect to the permanent magnet 20. do. The permanent magnet 20 is spaced apart at regular intervals from the rotation shaft insertion hole 30 of the rotor 100 to form a V-shape continuously. The permanent magnet 20 thus formed generates current for the q-axis and the d-axis.
예를 들면, 영구자석(20a) 및 영구자석(20b)은 각각 V자 형상을 유지하면서 2개 이상의 굴곡이 지그재그 형상으로 형성되며, 각각 V자 형상의 중심으로 d축에 대한 전류가 생성되며, 영구자석(20a) 및 영구자석(20b) 사이로 q축에 대한 전류가 생성된다. For example, the permanent magnet 20a and the permanent magnet 20b are each formed in two or more bends in a zigzag shape while maintaining a V shape, and a current about the d axis is generated in the center of the V shape, respectively. The current on the q-axis is generated between the permanent magnet 20a and the permanent magnet 20b.
이를 통해, 영구자석형 전동기는 V자 형상의 각 프레임 사이를 연결하는 외주연을 중심으로 시계방향 또는 반시계방향으로 자속이 생성된다. 이 때, 자속의 방향은 복수의 영구자석(20)의 자성 방향에 따라 변경될 수 있다.Through this, the permanent magnet motor generates a magnetic flux in a clockwise or counterclockwise direction with respect to the outer periphery connecting the respective V-shaped frames. At this time, the direction of the magnetic flux may be changed according to the magnetic direction of the plurality of permanent magnets (20).
도 3은 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자를 설명하기 위한 도면이다. 도 3(a)는 기본형 회전자를 도시한 도면이고, 도 3(b)는 아크형 회전자를 도시한 도면이다.3 is a view for explaining the basic rotor and the arc-shaped rotor according to an embodiment of the present invention. Fig. 3 (a) shows the basic rotor and Fig. 3 (b) shows the arc rotor.
도 3을 참조하면, 회전자(100)는 기본형 회전자(100a) 및 아크형 회전자(100b)로 구분한다. Referring to FIG. 3, the rotor 100 is divided into a basic rotor 100a and an arc rotor 100b.
기본형 회전자(100a)는 기본형 회전자 철심(10a)을 포함하는 회전자이고, 아크형 회전자(100b)는 아크형 회전자 철심(10b)을 포함하는 회전자이다. 기본형 회전자 철심(10a)은 외주연이 일반적인 호 형상인데 반해, 아크형 회전자 철심(10b)은 외주연이 일반적인 호 형상보다 더 돌출되는 아크 형상이다. The basic rotor 100a is a rotor including a basic rotor iron core 10a, and the arc rotor 100b is a rotor including an arc rotor iron core 10b. While the basic rotor iron core 10a has a general arc shape with an outer circumference, the arc rotor iron core 10b has an arc shape with an outer circumference protruding more than a general arc shape.
아크형 회전자 철심(10b)은 고정자(200)와 이격되는 공간인 공극(air gap)이 아크 형상의 중심과 일반적인 호 형상보다 가까워진다. 이를 통해, 아크형 회전자(100b)는 기본형 회전자(100a)보다 코깅 토크(cogging torque)를 향상시킬 수 있다.In the arc-shaped rotor core 10b, an air gap, which is a space spaced from the stator 200, is closer to the arc-shaped center and a general arc shape. Through this, the arc type rotor 100b may improve cogging torque than the basic type rotor 100a.
도 4는 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자의 코깅 토크에 대한 성능 평가를 설명하기 위한 도면이고, 도 5는 본 발명의 일 실시예에 따른 기본형 회전자 및 아크형 회전자의 역기전압에 대한 성능 평가를 설명하기 위한 도면이다.4 is a view for explaining the performance evaluation of the cogging torque of the basic rotor and the arc-shaped rotor according to an embodiment of the present invention, Figure 5 is a basic rotor and arc type according to an embodiment of the present invention It is a figure for demonstrating the performance evaluation about the counter electromotive voltage of a rotor.
도 4 및 도 5를 참조하면, 기본형 회전자와 아크형 회전자의 코깅 토크 및 역기전압에 대한 성능 평가를 하였다. 기본형 회전자와 아크형 회전자의 기본적인 구성이 동일하며, 회전자 철심만 각각 기본형 회전자 철심과 아크형 회전자 철심을 사용하였다.4 and 5, the performance evaluation on the cogging torque and counter-electromotive voltage of the basic rotor and the arc rotor. The basic configuration of the basic rotor and the arc rotor is the same, and only the rotor iron core is used for the basic rotor iron and the arc rotor iron core, respectively.
아크형 회전자는 기본형 회전자보다 시간에 따른 피크 투 피크 값(peak-to-peak) 값이 감소하는 동시에 리플(ripple)도 감소하였다. 따라서, 아크형 회전자는 기본형 회전자보다 코깅 토크가 약 46%를 향상되었다.The arc-type rotors had less peak-to-peak values over time than the basic rotors, while also reducing ripple. Thus, the arc rotor has a cogging torque of about 46% improvement over the basic rotor.
이에 반해, 기본형 회전자와 아크형 회전자의 역기전압 값은 거의 유사한 것을 확인하였다.On the contrary, it was confirmed that the counter electromotive voltage values of the basic rotor and the arc rotor were almost similar.
따라서, 회전자의 회전자 철심을 기본형에서 아크형으로 변경을 하면 코깅 토크 및 리플을 향상시킬 수 있는 효과가 있음을 확인하였다.Therefore, it was confirmed that changing the rotor core of the rotor from the basic type to the arc type has an effect of improving cogging torque and ripple.
도 6은 종래의 영구자석 형상 및 본 발명의 일 실시예에 따른 영구자석 형상을 설명하기 위한 도면이다. 도 6(a)는 스포크형(spoke type) 영구자석 형상을 설명하는 도면이고, 도 6(b)는 V자 형상의 영구자석 형상을 설명하는 도면이며, 도 6(c)는 본 발명에 따른 영구자석 형상을 도시한 도면이다. 6 is a view illustrating a conventional permanent magnet shape and a permanent magnet shape according to an embodiment of the present invention. Figure 6 (a) is a view for explaining the spoke type (spoke type) permanent magnet shape, Figure 6 (b) is a view for explaining the V-shaped permanent magnet shape, Figure 6 (c) according to the present invention It is a figure which shows a permanent magnet shape.
도 6을 참조하면, 종래의 스포크형 영구자석 형상은 영구자석이 하나의 직선 형상으로 배치되고, V자 형상의 영구자석 형상은 스포크형 영구자석이 폭방향으로 2등분된 상태에서 일정한 끼인각을 유지하며 이격되게 영구자석이 배치되며, 본 발명에 따른 영구자석 형상은 V자 형상 회전자에서 각 프레임이 지그재그 형상을 이루며 영구자석이 배치된다.Referring to Figure 6, the conventional spoke-type permanent magnet shape is a permanent magnet is arranged in a single straight shape, the V-shaped permanent magnet shape maintains a constant included angle in the state in which the spoke-type permanent magnet is bisected in the width direction The permanent magnets are spaced apart from each other, and the permanent magnets according to the present invention have a zigzag shape in which each frame is arranged in a V-shaped rotor, and the permanent magnets are disposed.
따라서, 도 6(a) 내지 도 6(c)에 도시된 영구자석 형상은 영구자석 양이 동일하지만 영구자석의 배치되는 형상이 차이가 있다.Therefore, the shape of the permanent magnet shown in Figure 6 (a) to Figure 6 (c) is the same amount of the permanent magnet, but the shape of the permanent magnet is different.
도 7은 도 6에 도시된 영구자석 형상들의 공극자속밀도에 대한 성능 비교를 설명하기 위한 도면이고, 도 8은 도 6에 도시된 영구자석 형상들의 역기전압에 대한 성능 비교를 설명하기 위한 도면이며, 도 9는 도 6에 도시된 영구자석 형상들의 출력토크에 대한 성능 비교를 설명하기 위한 도면이다.FIG. 7 is a view for explaining a performance comparison of the pore flux densities of the permanent magnet shapes shown in FIG. 6, and FIG. 8 is a view for explaining a performance comparison with respect to the counter electromotive voltage of the permanent magnet shapes shown in FIG. 6. 9 is a view for explaining a performance comparison of the output torque of the permanent magnet shapes shown in FIG.
도 7 내지 도 9를 참조하면, 도 6에 개시된 영구자석 형상들의 공극자속밀도, 역기전압 및 출력토크를 성능 비교하였다.7 to 9, the pore magnetic flux density, counter electromotive voltage and output torque of the permanent magnet shapes shown in FIG. 6 were compared.
도 7(a) 및 도 7(b)에 도시된 바와 같이, 공극자속밀도는 스포크형 영구자석에 대한 최대값이 0.5(T)이고, V자 형상의 영구자석에 대한 최대값이 0.75(T)이며, 본 발명의 영구자석에 대한 최대값이 0.9(T)로 측정되었다. As shown in Figs. 7 (a) and 7 (b), the pore magnetic flux density has a maximum value of 0.5 (T) for spoke type permanent magnets and a maximum value of 0.75 (T) for V-shaped permanent magnets. ), The maximum value for the permanent magnet of the present invention was measured as 0.9 (T).
즉, 본 발명의 영구자석에 대한 형상이 종래의 영구자석에 대한 형상들보다 공극자속밀도가 높다는 것을 알 수 있다.That is, it can be seen that the shape of the permanent magnet of the present invention has a higher pore magnetic flux density than those of the conventional permanent magnet.
도 8(a) 및 도 8(b)에 도시된 바와 같이, 역기전압은 스포크형 영구자석에 대한 최대값이 41.1982(Vms)이고, V자 형상의 영구자석에 대한 최대값이 43.2478(Vms)이며, 본 발명의 영구자석에 대한 최대값이 50.7307(Vms)로 측정되었다.As shown in Figs. 8 (a) and 8 (b), the counter electromotive voltage has a maximum value of 41.1982 (V ms ) for the spoke permanent magnet and 43.2478 (V) for the V-shaped permanent magnet. ms ), and the maximum value for the permanent magnet of the present invention was measured to be 50.7307 (V ms ).
즉, 본 발명의 영구자석에 대한 형상이 종래의 영구자석에 대한 형상들보다 역기전압이 높다는 것을 알 수 있다.That is, it can be seen that the shape of the permanent magnet of the present invention is higher in counter voltage than those of the conventional permanent magnet.
도 9(a) 및 도 9(b)에 도시된 바와 같이, 출력토크는 스포크형 영구자석에 대한 최대값이 3.2(Nm)이고, V자 형상의 영구자석에 대한 최대값이 3.8(Nm)이며, 본 발명의 영구자석에 대한 최대값이 4.5(Nm)로 측정되었다.As shown in Figs. 9 (a) and 9 (b), the output torque has a maximum value of 3.2 Nm for the spoke permanent magnet, and a maximum value of 3.8 Nm for the V-shaped permanent magnet. The maximum value for the permanent magnet of the present invention was measured to 4.5 (Nm).
즉, 본 발명의 영구자석에 대한 형상이 종래의 영구자석에 대한 형상들보다 출력토크가 높다는 것을 알 수 있다.That is, it can be seen that the shape of the permanent magnet of the present invention has a higher output torque than those of the conventional permanent magnet.
따라서, 본 발명의 영구자석에 대한 형상은 영구자석 양을 그대로 유지하는 상태로 종래의 영구자석에 대한 형상들보다 자속을 더욱 집중시켜 전동기의 출력밀도를 상승시킬 수 있다. 즉, 제작비용의 증가 없이 출력밀도를 상승시킬 수 있다는 효과가 있다.Therefore, the shape of the permanent magnet of the present invention can increase the output density of the electric motor by concentrating the magnetic flux more than the shape of the conventional permanent magnet in a state of maintaining the permanent magnet amount as it is. In other words, the output density can be increased without increasing the manufacturing cost.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific preferred embodiments described above, and the present invention belongs to the present invention without departing from the gist of the present invention as claimed in the claims. Various modifications can be made by those skilled in the art, and such changes are within the scope of the claims.
[부호의 설명][Description of the code]
10: 회전자 철심 10a: 기본형 회전자 철심10: rotor iron core 10a: basic rotor iron core
10b: 아크형 회전자 철심 11: 영구자석 삽입구멍10b: arc-type rotor core 11: permanent magnet insertion hole
12: 제1 프레임 13: 제1 영구자석 삽입구멍12: 1st frame 13: 1st permanent magnet insertion hole
14: 제2 영구자석 삽입구멍 15: 제3 영구자석 삽입구멍14: 2nd permanent magnet insertion hole 15: 3rd permanent magnet insertion hole
16: 제2 프레임 17: 제4 영구자석 삽입구멍16: 2nd frame 17: 4th permanent magnet insertion hole
18: 제5 영구자석 삽입구멍 19: 제6 영구자석 삽입구멍18: 5th permanent magnet insertion hole 19: 6th permanent magnet insertion hole
20, 20a, 20b: 영구자석 23: 제1 영구자석20, 20a, 20b: permanent magnet 23: first permanent magnet
24: 제2 영구자석 25: 제3 영구자석24: 2nd permanent magnet 25: 3rd permanent magnet
27: 제4 영구자석 28: 제5 영구자석27: 4th permanent magnet 28: 5th permanent magnet
29: 제6 영구자석 30: 회전축 삽입구멍29: 6th permanent magnet 30: rotation shaft insertion hole
40: 공극 100: 회전자40: void 100: rotor
100a: 기본형 회전자 100b: 아크형 회전자100a: basic rotor 100b: arc rotor
200: 고정자 a: 제1 길이200: stator a: first length
b: 제2 길이 c: 제3 길이b: second length c: third length
θ: 제1 끼인각 α: 제2 끼인각θ: first included angle α: second included angle
β: 제3 끼인각β: third included angle

Claims (8)

  1. 회전축을 삽입하는 회전축 삽입구멍과, 상기 회전축 삽입구멍과 이격되어 V자 형상을 유지하면서 상기 V자 형상의 각 프레임이 적어도 2개 이상의 굴곡을 포함하여 지그재그 형상을 이루는 복수의 영구자석 삽입구멍이 연속적으로 형성되는 회전자 철심; 및A rotary shaft insertion hole for inserting the rotary shaft and a plurality of permanent magnet insertion holes in which each of the V-shaped frames comprise at least two bends and form a zig-zag shape while being spaced apart from the rotary shaft insertion hole maintain a V shape. Rotor iron core formed as; And
    상기 복수의 영구자석 삽입구멍에 삽입되는 복수의 영구자석;A plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes;
    을 포함하는 회전자.Rotor comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 회전자 철심은, 외주연이 아크형상으로 형성되는 것을 특징으로 하는 회전자.The rotor iron core is a rotor, characterized in that the outer periphery is formed in an arc shape.
  3. 제 1항에 있어서,The method of claim 1,
    상기 V자 형상은, The V-shape is,
    5°내지 85°인 끼인각을 포함하는 것을 특징으로 하는 회전자.A rotor comprising an included angle between 5 ° and 85 °.
  4. 제 1항에 있어서,The method of claim 1,
    상기 V자 형상의 각 프레임은,Each frame of the V-shape,
    적어도 3개 이상의 영구자석 삽입구멍이 형성되고, 상기 형성된 영구자석 삽입구멍이 기 설정된 끼인각으로 지그재그 형상을 이루며 굴곡이 형성되는 것을 특징으로 하는 회전자.At least three permanent magnet insertion holes are formed, the rotor is characterized in that the formed permanent magnet insertion hole is formed in a zigzag shape with a predetermined included angle bends.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 적어도 3개 이상의 영구자석 삽입구멍은,The at least three permanent magnet insertion holes,
    각각의 길이방향 길이가 동일하거나, 상기 회전축 삽입구멍으로부터 가까운 영구자석 삽입구멍일수록 짧게 형성되는 것을 특징으로 하는 회전자.And the length of each longitudinal direction is the same, or the shorter the permanent magnet insertion hole is closer to the rotation shaft insertion hole.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 적어도 3개 이상의 영구자석 삽입구멍은,The at least three permanent magnet insertion holes,
    상기 기 설정된 끼인각이 동일하거나, 상기 회전축 삽입구멍으로부터 가까운 굴곡의 끼인각일수록 작게 형성되는 것을 특징으로 하는 회전자.And the preset angle of inclination is the same or smaller as the angle of inclination close to the rotation shaft insertion hole is smaller.
  7. 회전축을 삽입하는 회전축 삽입구멍과, 상기 회전축 삽입구멍과 이격되어 V자 형상을 유지하면서 상기 V자 형상의 각 프레임이 적어도 2개 이상의 굴곡을 포함하여 지그재그 형상을 이루는 복수의 영구자석 삽입구멍이 연속적으로 형성되는 회전자 철심과, 상기 복수의 영구자석 삽입구멍에 삽입되는 복수의 영구자석을 포함하는 회전자; 및A rotary shaft insertion hole for inserting the rotary shaft and a plurality of permanent magnet insertion holes in which each of the V-shaped frames comprise at least two bends and form a zig-zag shape while being spaced apart from the rotary shaft insertion hole maintain a V shape. A rotor comprising a rotor iron core formed of a plurality of permanent magnets inserted into the plurality of permanent magnet insertion holes; And
    파이프 형상으로 형성되어 상기 파이프 형상의 내부에 상기 회전자가 구비되는 고정자;A stator formed in a pipe shape and having the rotor provided inside the pipe shape;
    를 포함하는 회전자를 포함하는 영구자석형 전동기.Permanent magnet electric motor including a rotor including a.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 V자 형상의 각 프레임 사이를 연결하는 외주연을 중심으로 시계방향 또는 반시계방향으로 자속이 생성되는 것을 특징으로 하는 영구자석형 전동기. Permanent magnet-type motor, characterized in that the magnetic flux is generated clockwise or counterclockwise around the outer periphery connecting between the V-shaped frame.
PCT/KR2015/011557 2015-10-30 2015-10-30 Rotor and permanent magnet-type motor including same WO2017073821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0151495 2015-10-30
KR1020150151495A KR101736051B1 (en) 2015-10-30 2015-10-30 Rotor and permanent magnet type electric motor comprising the same

Publications (1)

Publication Number Publication Date
WO2017073821A1 true WO2017073821A1 (en) 2017-05-04

Family

ID=58631532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011557 WO2017073821A1 (en) 2015-10-30 2015-10-30 Rotor and permanent magnet-type motor including same

Country Status (2)

Country Link
KR (1) KR101736051B1 (en)
WO (1) WO2017073821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007766A1 (en) * 2018-07-04 2020-01-09 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008391A (en) * 1999-06-15 2001-01-12 Toyota Motor Corp Dynamo-electric machine
JP2003023740A (en) * 2001-07-05 2003-01-24 Mitsubishi Electric Corp Permanent-magnet rotor for permanent-magnet motor
JP2005051896A (en) * 2003-07-31 2005-02-24 Toshiba Corp Rotor of reluctance type rotating electric machine
US20090189470A1 (en) * 2008-01-25 2009-07-30 Mcclellan W Thomas Flux-Focused Shaped Permanent Magnet, Magnetic Unit Having the Magnets, Device Having the Magnetic Units and Method for Asymmetrically Focusing Flux Fields of Permanent Magnets
US7902711B2 (en) * 2008-12-09 2011-03-08 GM Global Technology Operations LLC Methods and apparatus for a permanent magnet machine with segmented ferrite magnets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008391A (en) * 1999-06-15 2001-01-12 Toyota Motor Corp Dynamo-electric machine
JP2003023740A (en) * 2001-07-05 2003-01-24 Mitsubishi Electric Corp Permanent-magnet rotor for permanent-magnet motor
JP2005051896A (en) * 2003-07-31 2005-02-24 Toshiba Corp Rotor of reluctance type rotating electric machine
US20090189470A1 (en) * 2008-01-25 2009-07-30 Mcclellan W Thomas Flux-Focused Shaped Permanent Magnet, Magnetic Unit Having the Magnets, Device Having the Magnetic Units and Method for Asymmetrically Focusing Flux Fields of Permanent Magnets
US7902711B2 (en) * 2008-12-09 2011-03-08 GM Global Technology Operations LLC Methods and apparatus for a permanent magnet machine with segmented ferrite magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007766A1 (en) * 2018-07-04 2020-01-09 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Rotor

Also Published As

Publication number Publication date
KR20170051638A (en) 2017-05-12
KR101736051B1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10340756B2 (en) Rotating electric machine and vehicle equipped with rotating electric machine
US6984909B2 (en) Motor
US9735640B2 (en) Rotating electrical machine and vehicle equipped with rotating electrical machine
US6909216B2 (en) Motor generator
US20060272870A1 (en) Hybrid electrical vehicle employing permanent magnetic type dynamo-electric machine
EP1487089A2 (en) Permanent magnet motor
WO2016024777A1 (en) Washing machine
CN110326191B (en) Rotor of rotating electrical machine and rotating electrical machine provided with same
US20130043761A1 (en) Rotor and rotating electric machine equipped with the rotor
WO2020138583A1 (en) Axial motor including magnetic levitation rotation body
WO2013085231A1 (en) Rotor including permanent magnets having different thicknesses and motor including same
WO2020032600A1 (en) Method for manufacturing stator and inner rotor of generator for use of rotating shaft
WO2012119301A1 (en) Ferrite three-phase permanent magnet motor
WO2017073821A1 (en) Rotor and permanent magnet-type motor including same
WO2014148731A1 (en) Method for operating variable magnetic flux motor
WO2015190719A1 (en) Brushless motor
CN116846106A (en) Permanent magnet generator with low magnetic density distortion rate and voltage-stabilizing power generation system
CN108258820B (en) Non-overlapping winding tooth slot type double-rotor permanent magnet synchronous motor
WO2018110714A1 (en) Coil structure of coreless generator
WO2018128487A1 (en) Driving machine combining motor and alternator
WO2024029770A1 (en) Brushless motor
KR20190090755A (en) Mechanical drive to the motor and alternator
WO2020251244A1 (en) Motor
CN215344139U (en) Motor rotor and permanent magnet synchronous motor
WO2019031857A2 (en) Dc power generation device employing multiple brushes and distributor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907366

Country of ref document: EP

Kind code of ref document: A1