WO2017073651A1 - User terminal, wireless base station, and wireless communication method - Google Patents

User terminal, wireless base station, and wireless communication method Download PDF

Info

Publication number
WO2017073651A1
WO2017073651A1 PCT/JP2016/081848 JP2016081848W WO2017073651A1 WO 2017073651 A1 WO2017073651 A1 WO 2017073651A1 JP 2016081848 W JP2016081848 W JP 2016081848W WO 2017073651 A1 WO2017073651 A1 WO 2017073651A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user terminal
control information
subframe
transmission
Prior art date
Application number
PCT/JP2016/081848
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
一樹 武田
聡 永田
ジン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015217391A external-priority patent/JP6301302B2/en
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP16859880.3A priority Critical patent/EP3367740A4/en
Priority to US15/770,445 priority patent/US11026096B2/en
Priority to CN201680062858.8A priority patent/CN108353421B/en
Publication of WO2017073651A1 publication Critical patent/WO2017073651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel.13, etc.
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • LTE of 8-12 the specification has been performed on the assumption that exclusive operation is performed in a frequency band (also referred to as a licensed band) licensed by a telecommunications carrier (operator).
  • a frequency band also referred to as a licensed band
  • the license band for example, 800 MHz, 1.7 GHz, 2 GHz, and the like are used.
  • UE User Equipment
  • Rel. 13 In LTE it is considered to expand the frequency of the LTE system using an unlicensed spectrum band (also referred to as an unlicensed band) that can be used in addition to the license band.
  • an unlicensed spectrum band also referred to as an unlicensed band
  • Non-patent document 2 As the unlicensed band, for example, the use of a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is being studied.
  • LAA License-Assisted Access
  • DC Dual Connectivity
  • SA unlicensed band stand-alone
  • 3GPP TS 36.300 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2” AT & T, “Drivers, Benefits and Challenges for LTE in Unlicensed Spectrum,” 3GPP TSG RAN Meeting # 62 RP-131701
  • the cell of the unlicensed band is assumed to have different communication characteristics from the cell of the license band, such as listening applied before transmission. Therefore, synchronization, channel state information (CSI) measurement, downlink shared channel (PDSCH) demodulation, and rate matching can be achieved simply by applying control information signaling in the license band cell to the unlicensed band cell. There is a risk that communication processing such as cannot be performed properly.
  • CSI channel state information
  • PDSCH downlink shared channel
  • the present invention has been made in view of the above points, and a user terminal and a radio base station capable of appropriately performing communication processing in a cell to which listening is applied before transmission (for example, a cell in an unlicensed band)
  • a user terminal and a radio base station capable of appropriately performing communication processing in a cell to which listening is applied before transmission (for example, a cell in an unlicensed band)
  • One of the objects is to provide a wireless communication method.
  • a user terminal includes, in LAA SCell (License-Assisted Access Secondary Cell), a reception unit that receives common control information via a downlink control channel, and the LAA based on the common control information. And a control unit that controls communication processing in the SCell.
  • LAA SCell Liense-Assisted Access Secondary Cell
  • communication processing can be appropriately performed in a cell (for example, an unlicensed band) to which listening is applied before transmission.
  • FIG. 1A and 1B are diagrams showing an example of the configuration of LAA DRS.
  • FIG. 2 is an explanatory diagram of CSI-RS / IM information according to the present embodiment.
  • 3A to 3C are diagrams showing an example of identifying DRS subframes according to the present embodiment.
  • 4A and 4B are explanatory diagrams of DRS information according to the present embodiment.
  • 5A and 5B are explanatory diagrams of burst information according to the present embodiment.
  • 6A and 6B are diagrams illustrating an example of the extended PCFICH according to the present embodiment.
  • 7A and 7B are diagrams showing another example of the extended PCFICH according to the present embodiment.
  • 8A and 8B are diagrams showing still another example of the extended PCFICH according to the present embodiment.
  • 9A and 9B are diagrams illustrating an example of a partial TTI according to the present embodiment.
  • 10A and 10B are diagrams illustrating an example of generation of common control information according to the present embodiment. It is a figure which shows an example of schematic structure of the radio
  • LTE / LTE-A in an unlicensed band
  • an interference control function is required for coexistence with LTE, Wi-Fi, or other systems of other operators.
  • a system that operates LTE / LTE-A in an unlicensed band is generally referred to as LAA, LAA-LTE, LTE-U, U-, regardless of whether the operation mode is CA, DC, or SA. It may be called LTE or the like.
  • a transmission point for example, a radio base station (eNB), a user terminal (UE), or the like
  • a carrier of an unlicensed band may be referred to as a carrier frequency or simply a frequency
  • another entity for example, another user terminal
  • the transmission point performs listening (LBT) at a timing before a predetermined period before the transmission timing.
  • the transmission point that executes LBT searches the entire target carrier band (for example, one component carrier (CC)) at a timing before a predetermined period before the transmission timing, and other devices It is confirmed whether (for example, a radio base station, a user terminal, a Wi-Fi device, etc.) is communicating in the carrier band.
  • CC component carrier
  • listening means that a certain transmission point (for example, a radio base station, a user terminal, etc.) exceeds a predetermined level (for example, predetermined power) from another transmission point before transmitting a signal.
  • a predetermined level for example, predetermined power
  • the listening performed by the radio base station and / or the user terminal may be referred to as LBT, CCA, carrier sense, or the like.
  • the transmission point When the transmission point can confirm that no other device is communicating, the transmission point performs transmission using the carrier. For example, when the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold, the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
  • LBT idle the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold
  • the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission.
  • “the channel is idle” means that the channel is not occupied by a specific system, and the channel is idle, the channel is clear, the channel is free, and the like.
  • the transmission point when the transmission point detects that another device is in use even in a part of the target carrier band, the transmission point stops its transmission process. For example, if the transmission point detects that the received power of a signal from another device related to the band exceeds a predetermined threshold, the transmission point determines that the channel is busy (LBT busy ) and transmits Do not do. In the case of LBT busy , the channel can be used only after performing LBT again and confirming that it is in an idle state. Note that the channel idle / busy determination method using the LBT is not limited to this.
  • the transmission / reception configuration related to the LBT has a fixed timing.
  • the transmission / reception configuration related to the LBT is not fixed in the time axis direction, and the LBT is performed according to demand.
  • the FBE has a fixed frame period, and if a channel is usable as a result of performing carrier sense in a predetermined frame (may be called LBT time (LBT duration), etc.) This is a mechanism that performs transmission, but waits without performing transmission until the carrier sense timing in the next frame if the channel cannot be used.
  • LBT time LBT duration
  • LBE extends the carrier sense time if the channel is unusable as a result of carrier sense (initial CCA), and continuously performs carrier sense until the channel becomes usable. ) The mechanism to implement the procedure. In LBE, a random back-off is necessary for proper collision avoidance.
  • the carrier sense time (which may be referred to as a carrier sense period) is a time (for example, 1) for performing processing such as listening to determine whether or not a channel can be used in order to obtain one LBT result. Symbol length).
  • the transmission point can transmit a predetermined signal (for example, a channel reservation signal) according to the LBT result.
  • the LBT result refers to information (for example, LBT idle , LBT busy ) relating to the channel availability obtained by the LBT in the carrier in which the LBT is set.
  • the transmission point when the transmission point starts transmission when the LBT result is in an idle state (LBT idle ), the transmission point can perform transmission while omitting the LBT for a predetermined period (for example, 10-13 ms). Such transmission is also called burst transmission or burst.
  • interference between LAA and Wi-Fi, interference between LAA systems, etc. can be avoided. be able to. Further, even when transmission points are controlled independently for each operator who operates the LAA system, interference can be reduced without grasping each control content by the LBT.
  • the user terminal in order to perform setting or resetting of SCell (Secondary Cell) of the unlicensed band for the user terminal, the user terminal detects SCell existing in the vicinity by RRM (Radio Resource Management) measurement, and the reception quality After measuring, it is necessary to report to the network.
  • the signal for RRM measurement in LAA is Rel. 12 based on the discovery signal (DS: Discovery Signal).
  • a signal for RRM measurement in LAA may be called a detection measurement signal, a discovery reference signal (DRS), a discovery signal (DS), LAA DRS, LAA DS, or the like.
  • the SCell of the unlicensed band may be called, for example, LAA SCell.
  • LAA DRS is Rel. 12 As with DS, synchronization signal (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), cell-specific reference signal (CRS) and channel state measurement reference signal (CSI-RS: Channel) It is under consideration to include at least one of (State Information Reference Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS cell-specific reference signal
  • CSI-RS Channel
  • the network (for example, a radio base station) can set a LATC DRS DMTC (Discovery Measurement Timing Configuration) for each frequency for the user terminal.
  • the DMTC includes information related to a DRS transmission period (may be referred to as a DMTC periodicity), a DRS measurement timing offset, and the like.
  • DRS is transmitted in DMTC period (DMTC duration) every DMTC period.
  • DMTC period DMTC duration
  • the DMTC period is fixed to 6 ms length.
  • the length of DRS transmitted in the DMTC period (which may be referred to as a DRS period (DS), DS period, DRS burst, DS burst, etc.) is 1 ms to 5 ms.
  • DS DRS period
  • DS burst DS burst
  • DS burst DS burst
  • DS burst DS burst
  • etc. the length of DRS transmitted in the DMTC period
  • LAA DS Rel.
  • the same setting as 12 may be used, or a different setting may be used.
  • the DRS period may be 1 ms or less, or 1 ms or more.
  • the radio base station performs listening (LBT) before transmitting LAA DRS, and transmits LAA DRS in the case of LBT idle .
  • the user terminal grasps the timing and period of the DRS period by DMTC notified from the network, and performs detection and / or measurement of LAA DRS.
  • the DRS period in addition to RRM measurement, it is considered to perform CSI measurement using DRS. For example, it is assumed that CSI measurement is performed using CRS or CSI-RS included in DRS other than the timing of CSI measurement of a predetermined period (for example, 5 ms, 10 ms).
  • FIG. 1 is a diagram showing an example of the configuration of LAA DRS.
  • FIG. 1A shows a configuration example when CRS is transmitted through two antenna ports.
  • the LAA DRS includes CRS (port 0/1) of symbols # 0, # 4, # 7, and # 11, PSS of symbol # 6, and SSS of symbol # 5.
  • the LAA DRS may be configured to include CSI-RSs of symbols # 9 and # 10.
  • FIG. 1B shows a configuration example when CRS is transmitted through four antenna ports.
  • the LAA DRS includes CRS (port 2/3) of symbols # 1 and # 8 in addition to the configuration of FIG. 1A.
  • CRS port X represents CRS transmitted through antenna port X.
  • the LAA DRS may be configured to include at least one of a synchronization signal (PSS / SSS), CRS, and CSI-RS. Further, PSS / SSS, CRS, and CSI-RS allocation positions (for example, resource elements) may be the same as or different from existing systems (for example, Rel. 12).
  • LAA DRS is a Rel. It may be composed of 12 DRS 12 symbols (for example, symbols # 0- # 11).
  • the cell in the unlicensed band has different communication characteristics from the cell in the license band, such as listening applied before transmission. Therefore, there is a possibility that communication processing such as synchronization, CSI measurement, PDSCH demodulation, and rate matching cannot be appropriately performed only by applying control information signaling in the license band cell to the unlicensed band cell.
  • the present inventors have conceived that appropriate communication processing can be performed in an unlicensed band cell by signaling control information in consideration of communication characteristics of an unlicensed band different from the license band cell. did.
  • a carrier (cell) for which listening is set is described as an unlicensed band, but the present invention is not limited to this.
  • This embodiment can be applied to any frequency carrier (cell) for which listening is set regardless of the license band or the unlicensed band.
  • CA or carrier of a carrier for which listening is not set for example, a license cell primary cell (PCell)
  • a carrier for which listening is set for example, an unlicensed band secondary cell (SCell)
  • DC unlicensed band secondary cell
  • the present embodiment can be applied to a case where a user terminal is connected to a carrier (cell) for which listening is set in a stand-alone manner.
  • control information to be described later is signaled in the physical layer, but the present invention is not limited to this. At least one of the control information described later may be signaled by an upper layer (for example, RRC (Radio Resource Control) or system information).
  • RRC Radio Resource Control
  • control information signaled in a cell of an unlicensed band (a cell in which listening is set before transmission) will be described.
  • the common control information signaled commonly to the user terminals in the cell may include at least one of the following CRS information, CSI-RS / IM information, DRS information, and burst information.
  • the specific control information (UE specific control information) individually signaled to the user terminal of the cell may include at least one of the following final subframe information and DRS information.
  • the CRS information is information related to the number of OFDM (Orthogonal Frequency-Division Multiplexing) symbols to which CRS is allocated in a subframe.
  • the CRS information may be a bit value (for example, 1 bit) indicating whether the CRS is assigned to 1 or 2 OFDM symbols in the subframe (or whether to be assigned to 4 or 6 OFDM symbols). Good.
  • a CRS is assigned to 4 OFDM symbols (eg, OFDM symbols # 0, # 4, # 7, # 11 in FIG. 1A) for 2 antenna ports and OFDM for 4 antenna ports. Assigned to symbols (for example, OFDM symbols # 0, # 1, # 4, # 7, # 8, # 11 in FIG. 1B).
  • a CRS is assigned to one OFDM symbol (for example, only the first OFDM symbol) in the case of two antenna ports, and is assigned to two OFDM symbols (for example, only the first and second OFDM symbols) in the case of four antenna ports.
  • the introduction of subframes is also being considered. By introducing the subframe, the overhead of CRS can be reduced in a transmission mode in which demodulation is performed using a demodulation reference signal (DMRS: DeModulation Reference Signal).
  • DMRS DeModulation Reference Signal
  • the user terminal needs to determine whether downlink transmission is performed in each subframe. For this reason, when the user terminal detects the CRS (CRS ports 0 and 1) of the cell ID of the cell of the unlicensed band in the first OFDM symbol of the subframe, the user terminal performs downlink transmission (for example, PSS, SSS) in the subframe. , At least one transmission of CSI-RS and PDSCH) is performed.
  • CRS CRS ports 0 and 1
  • the user terminal performs downlink transmission (for example, PSS, SSS) in the subframe.
  • At least one transmission of CSI-RS and PDSCH) is performed.
  • the subframe is a subframe in which CRS is assigned to 1 or 2 OFDM symbols, or a subframe in which CRS is assigned to 4 or 6 OFDM symbols. It is assumed that cannot be determined. As a result, there is a possibility that synchronization, CSI measurement based on CRS, or rate matching of PDSCH cannot be performed appropriately.
  • CRS information indicating whether or not CRS is assigned to 1 or 2 OFDM symbols in a subframe (or whether or not 4 or 6 OFDM symbols are assigned) may be signaled.
  • CRS information is assumed to be used for synchronization, CSI measurement, and rate matching, it may be commonly signaled to user terminals in the cell.
  • CSI-RS / IM information is allocated to non-zero power CSI-RS (CSI-RS) and / or zero power CSI-RS (CSI-IM (Interference Measurement)) in a subframe. It is information about.
  • the CSI-RS information is a bit value (for example, 1 bit) indicating the presence / absence of non-zero power CSI-RS and / or zero power CSI-RS (hereinafter abbreviated as CSI-RS / IM) in a subframe. There may be.
  • the CSI-RS / IM used for CSI measurement is assigned to a subframe of a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling.
  • a predetermined period for example, a period of 5 or 10 ms
  • CSI-RS / IM information indicating whether or not CSI-RS / IM for CSI measurement is allocated in a subframe may be signaled. Accordingly, as shown in FIG. 2, when the CSI-RS / IM information signaled in the DRS subframe # 1 indicates the assignment of CSI-RS / IM, the user terminal performs CSI measurement in the DRS subframe # 1. It can be judged to do.
  • the CSI-RS / IM information is assumed to be used for both a user terminal scheduled for PDSCH and a user terminal not scheduled for PDSCH, it may be commonly signaled to user terminals in a cell.
  • the DRS information is information related to DRS allocation within a subframe.
  • the DRS information may be a bit value (for example, 1 bit) indicating the presence or absence of DRS in the subframe.
  • the DRS subframe is used for CSI measurement.
  • CSI-RS / IM can be assigned.
  • the user terminal is a DRS subframe, it can be determined that the user terminal is a subframe in which CSI measurement is performed.
  • the user terminal cannot identify the DRS subframe in DMTC.
  • FIG. 3A shows a case in which only DRS is transmitted in any subframe in DMTC (for example, subframe # 1 or # 5 in FIG. 3A).
  • FIG. 3B shows a case where DRS and PDSCH are transmitted in subframe # 0 in DMTC.
  • FIG. 3C shows a case where DRS and PDSCH are transmitted in subframe # 8 other than subframes # 0 and # 5 in DMTC.
  • the subframe can be identified as the DRS subframe.
  • DRS is assigned in subframe # 1 in DMTC, and existing PSS, SSS, and CRS are assigned in subframe # 5.
  • the DRS includes a PSS, an SSS, and a CRS as shown in FIGS. 1A and 1B. Therefore, it is assumed that the user terminal cannot distinguish between the subframe # 1 that is a DRS subframe and the subframe # 5 that is not a DRS subframe but includes PSS, SSS, and CRS in DMTC.
  • FIG. 4B it is assumed that subframe # 0 that is a DRS subframe and subframe # 5 that is not a DRS subframe but includes PSS, SSS, and CRS cannot be distinguished in DMTC.
  • DRS information indicating whether or not a DRS is allocated within a subframe may be signaled.
  • the user terminal can determine that the subframe is a DRS subframe and perform CSI measurement in the DRS subframe.
  • the user terminal can detect whether DRS is assigned to the subframe to which the PDSCH is assigned based on the DRS information, the user terminal can appropriately perform rate matching.
  • DRS information is assumed to be used instead of the above-mentioned CSI-RS / IM information, it may be signaled in common to user terminals in the cell.
  • the user terminal When CSI-RS for RRM measurement and / or CSI measurement is set for the user terminal, the user terminal first detects a subframe including PSS, SSS, and CRS detected in DMTC (for example, If it is assumed that subframe # 1 in FIG. 4A and subframe # 0 in FIG. 4B are DRS subframes including CRM-RSs for RRM measurement and / or CSI measurement, the DRS information may not be commonly signaled. Good.
  • UE-specific signaling may be performed to the user terminal scheduled for PDSCH.
  • Burst information is information regarding the burst to which the subframe belongs.
  • the burst information may be information indicating whether or not a subframe belongs to the same burst as other subframes.
  • the burst information may be a bit value indicating the number of subframes in which the same burst continues from the current subframe (for example, 4 bits if the maximum burst length is 10 or 13 ms), or a burst index. May be a bit value (for example, 1 or 2 bits).
  • the user terminal can assume that the transmission power of CRS and / or CSI-RS is constant between subframes in the same burst, so the result of CSI measurement based on CRS or CSI-RS May be averaged.
  • the user terminal should not assume that the transmission power of CRS and / or CSI-RS is constant between subframes in different bursts (assuming that it varies), so it is based on CRS or CSI-RS. The results of CSI measurements should not be averaged.
  • signaling the above burst information prevents the CSI measurement results from being averaged between subframes in different bursts.
  • the burst information will be described in detail with reference to FIGS. 5A and 5B.
  • burst information indicating the number of subframes in which the same burst continues from the current subframe is used.
  • burst information indicating a burst index is used.
  • burst information indicating the number of subframes “0” followed by the same burst is signaled. Further, in subframes # 3, # 4, # 5, and # 6 constituting the next burst, bursts indicating the number of subframes “3”, “2”, “1”, and “0”, respectively, in which the same burst continues. Information is signaled.
  • the user terminal since the user terminal can recognize the subframe in which the burst ends based on the burst information, it is possible to prevent the CSI measurement result from being averaged between the burst and the subframe of the next burst.
  • burst information indicating the burst index # 0 is signaled in each of the subframes # 0 to # 3 constituting the first burst from the left.
  • burst information indicating burst index # 1 is signaled in subframes # 7 to # 0 constituting the second burst.
  • Burst information indicating burst index # 2 in subframe # 1 constituting the third burst, burst information indicating burst index # 3 in subframe # 3- # 6 constituting the fourth burst, and fifth burst Burst information indicating burst index # 0 is signaled in subframes # 7 to # 0 constituting the frame.
  • burst information indicating a burst index is signaled in the subframes constituting each burst. Since the user terminal can identify whether or not the subframes belong to the same burst based on the burst index, it is possible to prevent the CSI measurement results from being averaged between subframes of different bursts.
  • burst information Since burst information is assumed to be used for CSI measurement, it may be commonly signaled to user terminals in a cell.
  • the final subframe information is information related to the final subframe of the burst.
  • the final subframe information may be a bit value indicating the number of OFDM symbols used in the final subframe of the burst (for example, 3 bits when indicating eight types of configurations of the final subframe).
  • PDSCH transport block
  • PDSCH transport block
  • a configuration of DwPTS Downlink Pilot Time Slot
  • 6 or 10 OFDM symbols can be used as some of the OFDM symbols.
  • the user terminal needs to recognize the number of OFDM symbols in order to demodulate the PDSCH.
  • final subframe information indicating the number of OFDM symbols used in the final subframe of the burst may be signaled.
  • the user terminal demodulates the PDSCH mapped to the final subframe based on the number of OFDM symbols indicated by the final subframe information.
  • the final subframe information is assumed to be used for demodulation of PDSCH, it may be individually signaled to a user terminal scheduled for PDSCH.
  • the final subframe information may be commonly signaled to the user terminals in the cell.
  • the user terminal When the user terminal detects CRS (CRS ports 0 and 1) or / and PDCCH (Physical Downlink Control Channel) of the cell ID of the cell of the unlicensed band in the first OFDM symbol of the subframe, the user terminal downloads in the subframe. It can be determined that transmission is performed.
  • the last subframe of a burst is composed of a part of OFDM symbols, there is a possibility that the signal structure is different from that of a normal subframe including all OFDM symbols.
  • PSS, SSS, and CSI-RS / IM is not allocated in the last subframe. For this reason, if the user terminal cannot recognize the signal configuration in the final subframe, it may not be able to appropriately perform RRM measurement, CSI measurement, and PDSCH rate matching.
  • the final subframe information may be commonly signaled to the user terminals in the cell.
  • the user terminal recognizes the signal configuration of the final subframe of the burst based on the above-described final subframe information, and performs RRM measurement, CSI measurement, and PDSCH rate matching in the final subframe of the burst based on the recognition result. Do at least one.
  • the user terminal may recognize whether or not PSS / SSS is normally allocated in subframes # 0 and # 5 to which PSS / SSS is allocated. .
  • the user terminal when the number of OFDM symbols indicated by the last subframe information is less than a predetermined number in subframe # 0 or # 5, the user terminal assumes that PSS / SSS is not included in the subframe # 0 or # 5. May be.
  • the predetermined number may be 14, or may be 7.
  • the user terminal recognizes whether or not CSI-RS / IM is allocated in a subframe having a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling based on the number of OFDM symbols indicated by the last subframe information. May be.
  • a predetermined period for example, a period of 5 or 10 ms
  • the user terminal may assume that CSI-RS / IM is not included in the subframe.
  • the predetermined number may be 14, 11, or 7.
  • the user terminal can perform CSI-RS / IM in the subframe.
  • the presence or absence of assignment may be recognized.
  • the CSI-RS configuration is information indicating an allocation position of CSI-RS / IM, and is notified to the user terminal 20 by higher layer signaling.
  • FIG. 17 is a diagram illustrating an example of a CSI-RS configuration.
  • CSI-RS / IM allocation positions are specified by CSI-RS configurations # 0 to # 19.
  • CSI-RS / IM allocation positions are specified by CSI-RS configurations # 0 to # 9.
  • the user terminal assigns CSI-RS / IM allocation positions to OFDM symbols # 12 and # 13 (CSI in FIG. 17A). -When any one of RS configurations # 4, # 9, # 18, and # 19 is set (when CSI-RS configuration # 4 or # 9 is set in FIG. 17B), CSI-RS / It may be assumed that no IM is included.
  • the user terminal has a position where CSI-RS / IM is allocated as OFDM symbol # 5 and In the case of # 6 or OFDM symbols # 9 and # 10 (when any of CSI-RS configurations # 0- # 3, # 5- # 8, # 10- # 17 is set in FIG. 17A, CSI-RS configurations # 0 to # 3 and # 5 to # 8 are set), it can be assumed that CSI-RS / IM is included in the subframe.
  • the user terminal sets the allocation position of CSI-RS / IM to OFDM symbols # 9 and # 10 or OFDM symbols.
  • # 12 and # 13 when any of CSI-RS configuration # 1- # 4, # 6- # 9, # 12- # 19 in FIG. 17A is set, CSI-RS configuration # in FIG. 17B) 1- # 4 and # 6- # 9 are set, it may be assumed that CSI-RS / IM is not included in the subframe.
  • the user terminal has the allocation position of CSI-RS / IM as OFDM symbol # 5 and When # 6 (when CSI-RS configuration # 0, # 5, # 10, or # 11 is set in FIG. 17A, when CSI-RS configuration # 0 or # 5 is set in FIG. 17B) ) Can be assumed to include CSI-RS / IM in the subframe.
  • the user terminal when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is less than a predetermined number (for example, 14 in the case of normal CP), the user terminal performs a normal CSI-RS / IM allocation pattern ( An assignment pattern different from that shown in FIG. 17 may be assumed.
  • the different allocation patterns may be configured by, for example, OFDM symbols # 0 to # 6 in FIG.
  • the transmission power of CRS and / or CSI-RS may be signaled.
  • Information regarding the transmission power may be commonly signaled to user terminals in the cell, or may be individually signaled to user terminals in the cell.
  • the common control information is assumed to include at least one of CRS information, CSI-RS / IM information, DRS information, and burst information, but other information (for example, monitoring of downlink control information and / or Information on subframes for which CSI measurement is not performed, information on transmission power of CRS and / or CSI-RS, and the like may be included.
  • the common control information may include final subframe information.
  • the common control information includes CRS information, CSI-RS / IM information, and burst information is illustrated, but the combination of information is not limited to this.
  • the common control information may include DRS information instead of CSI-RS / IM information, or may not include both CSI-RS / IM information and DRS information.
  • the physical control channel other than the downlink control channel (PDCCH or EPDCCH) is extended to signal common control information.
  • PCFICH Physical Control Format Indicator CHannel
  • the PCFICH is a physical control channel that transmits a control format identifier (CFI) indicating the number of OFDM symbols allocated to the PDCCH in the subframe.
  • CFI control format identifier
  • PCFICH is arranged in the first OFDM symbol of a subframe and is referred to by all user terminals in the cell. For this reason, when extending PCFICH, common signaling can be performed without providing a common search space in the downlink control channel.
  • PCFICH that transmits other common control information in addition to CFI
  • Enhanced PCFICH Enhanced PCFICH
  • the extended PCFICH may be called ePCFICH, a common control channel, or the like.
  • FIG. 6A shows an existing PCFICH configuration.
  • a 2-bit CFI is encoded at an encoding rate of 1/16, and a 32-bit encoded bit string is modulated by QPSK (Quadrature Phase Shift Keying).
  • QPSK Quadrature Phase Shift Keying
  • Sixteen symbols are mapped to four resource element groups (REGs) distributed in the frequency direction on the basis of physical cell IDs (PCIs) every four symbols.
  • One REG is composed of four resource elements (RE). 4REG is assigned to the first OFDM symbol in the subframe.
  • the extended PCFICH in addition to the 2-bit CFI, common control information having a predetermined number of bits is transmitted. For example, when transmitting CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits) in addition to CFI (2 bits), a total of 6 or 8 bits is common. Control information is transmitted. For this reason, in the extended PCFICH, more bit information can be transmitted by changing at least one of encoding, padding, modulation, and mapping of the existing PCFICH.
  • FIG. 6B shows a configuration example in which the coding rate is made lower than that of PCFICH and the number of mapped REs and the modulation scheme are maintained.
  • a total of 6 bits of common control information (CFI (2 bits) + CRS information (1 bit) + CSI-RS / IM information (1 bit) + burst information (2 bits)) is encoded at a coding rate of 1/5. And 2 bits are padded.
  • a total of 8 bits of common control information (CFI (2 bits) + CRS information (1 bit) + CSI-RS / IM information (1 bit) + burst information (4 bits)) is encoded at a coding rate of 1/4.
  • the 32-bit coded bit string is modulated by QPSK and mapped to 16REG of 4REG, similar to the existing PCFICH.
  • 7A and 7B show a configuration example in which the number of REs mapped in comparison with PCFICH is increased and the coding rate and the modulation scheme are maintained.
  • 7A and 7B 6 or 8 bits of common control information is encoded at a coding rate of 1/16, and a 96 or 128 bit encoded bit string is modulated by QPSK.
  • the modulated 48 or 64 symbols may be mapped to 12 or 16 REGs.
  • 1REG is comprised by 4RE similar to the existing PCFICH.
  • the modulated 48 or 64 symbols may be mapped to 4REG.
  • 1REG is composed of 12 or 16REs. In this way, when the number of REGs is increased from the existing PCFICH by the extended PCFICH, the number of REGs may be increased by maintaining the number of REGs in the REG, or the number of REs in the REG may be increased by maintaining the number of REGs. You may let them.
  • FIG. 8A shows a configuration example in which the modulation rate is maintained by lowering the coding rate than PCFICH and increasing the number of mapped REs.
  • 6-bit common control information is encoded at a coding rate of 1/10, and 4 bits are padded.
  • 8-bit common control information is encoded at an encoding rate of 1/8.
  • the 64-bit encoded bit string is modulated by QPSK and mapped to 32RE.
  • FIG. 8A shows an example in which 1 REG is composed of 4 REs and is mapped to 8 REGs, the present invention is not limited to this.
  • the number of REs constituting one REG may be increased to 8 REs and mapped to the same 4 REGs as the existing PCFICH.
  • FIG. 8B shows a configuration example in which the modulation scheme is increased and the number of mapped REs is increased to maintain the coding rate.
  • 6 or 8-bit common control information is encoded at an encoding rate of 1/16.
  • the encoded bit string of 96 or 128 bits is modulated by 16QAM (Quadrature Amplitude Modulation) and mapped to 24 or 32RE.
  • 8B shows an example in which 1 REG is composed of 4 REs and mapped to 6 or 8 REGs, but is not limited thereto.
  • the number of REs constituting one REG may be increased to 6 or 8 REs, and may be mapped to the same 4 REGs as the existing PCFICH.
  • common control information common to user terminals in a cell can be transmitted without providing a common search space in a downlink control channel in an unlicensed band cell. Further, the number of REs to which the extended PCFICH is mapped is not greatly changed compared with the existing PCFICH (for example, in FIG. 6B, 16 REs that are the same as the existing PCFICH). For this reason, the overhead caused by signaling the additional common control information does not occur or can be minimized.
  • the RE to which the extended PCFICH is mapped in FIG. 6-8 may be the first OFDM symbol of the subframe or may be an OFDM symbol other than the first. Whether the user terminal refers to the existing PCFICH or the extended PCFICH may be instructed by higher layer signaling, or may be set in the user terminal in advance.
  • the PDCCH may be assigned to the first or second OFDM symbol at the beginning of the subframe, and may not be assigned to the third OFDM symbol.
  • the number of CFI bits can be reduced from 2 bits to 1 bit.
  • a TTI partial starting TTI
  • common control information in an unlicensed band cell may not be transmitted.
  • the partial TTI it is assumed that the existing PCFICH and PDCCH are allocated in the first OFDM symbol of the second slot of the subframe. This is because, in the partial TTI, the user terminal can assume that no CRS is assigned to 4 or 6 OFDM symbols, no CSI-RS / IM is assigned, and a new burst is started.
  • the extended PCFICH may be assigned to the first OFDM symbol of the subframe.
  • the common control information for the cell of the unlicensed band may not be transmitted, so that the existing PCFICH may be assigned to the OFDM symbol where the partial TTI starts. .
  • ⁇ Second aspect> In the second mode, common control information is signaled in a common search space provided in a downlink control channel (PDCCH or EPDCCH) of an unlicensed band cell (SCell).
  • PDCH downlink control channel
  • EPDCCH unlicensed band cell
  • RNTI new wireless network temporary identifier
  • SI System Information
  • FIG. 10 is a diagram illustrating a generation example of common control information according to the second mode.
  • the radio base station includes a cyclic redundancy check (CRC) scrambled (masked) by RNTI (see FIG. 10A) or SI-RNTI (see FIG. 10B) for an unlicensed band cell including common control information in the existing DCI format. ) Is added.
  • CRC cyclic redundancy check
  • the radio base station assigns and transmits the common control information with the CRC added to the common search space of the downlink control channel of the cell of the unlicensed band.
  • the user terminal performs blind decoding of the common search space of the downlink control channel of the primary cell, and when the DCI can be normally decoded by the CRC descrambled by the RNTI or SI-RNTI for the cell of the unlicensed band, the CRC is added.
  • the DCI in the existing format is replaced with the above-described common control information.
  • the RNTI or SI-RNTI for an unlicensed band cell may be notified to the user terminal in advance by higher layer signaling (for example, RRC signaling or system information).
  • the DCI format 1C can be considered. Since the DCI format 1C has a bandwidth of 20 MHz and is 15 bits, it can include the above-described CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits). is there.
  • the total number of bits including CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits) is 4 or 6 bits, so that the existing DCI format 1C There is room for 15 bits. For this reason, the expandability of common control information can be improved compared with a 1st aspect.
  • the common control information when the common control information is allocated to the common search space of the EPDCCH in the unlicensed band, information regarding the presence or absence of the common search space in the EPDCCH may be notified to the user terminal by higher layer signaling.
  • the user terminal may specify the resource to which the common search space is allocated based on the PCI and the subframe index.
  • the resource information indicating the resource to which the common search space in the EPDCCH is allocated may be notified to the user terminal by higher layer signaling.
  • ⁇ Third Aspect> common control information is signaled in a common search space provided in a downlink control channel (PDCCH or EPDCCH) of a primary cell (PCell) that is carrier-aggregated or dual-connected with an unlicensed band cell (SCell).
  • a new wireless network temporary identifier (RNTI) is introduced for an unlicensed band cell. Since SI-RNTI is used in the PCell of the existing system, it is not desirable to use SI-RNTI in the third mode.
  • the radio base station adds common control information to the existing DCI format and adds a CRC scrambled (masked) by an RNTI for an unlicensed band cell.
  • the radio base station allocates (cross-carrier schedules) the common control information with the CRC added to the common search space of the downlink control channel of the primary cell and transmits it.
  • the user terminal performs blind decoding on the common search space of the downlink control channel of the primary cell, and when the DCI can be normally decoded by the CRC descrambled by the RNTI for the cell of the unlicensed band, the user terminal of the existing format to which the CRC is added DCI is replaced with the above-described common control information.
  • the RNTI for an unlicensed band cell may be notified to the user terminal in advance by higher layer signaling (for example, RRC signaling or system information).
  • common control information can be transmitted to user terminals in the cell without providing a common search space in the downlink control channel in the cell of the unlicensed band as in the second aspect. Moreover, since CRC is added to the common control information, erroneous detection of the common control information in the user terminal can be prevented.
  • the existing DCI format includes an index for identifying the SCell (for example, 5 bits in the case of 32CC) in the existing format. Even if the SCell index (5 bits) is added to the total number of bits of 4 or 6 described above, the existing DCI format 1C has 15 bits. Therefore, the expandability of the common control information can be improved as compared with the first mode.
  • the common control information is allocated to the common search space of the EPDCCH of the primary cell, as described in the second aspect, information regarding the presence or absence of the common search space in the EPDCCH, or resource information to which the common search space is allocated May be notified to the user terminal by higher layer signaling.
  • the unique control information is signaled in a user-specific search space provided in the downlink control channel of a cell (SCell) of an unlicensed band, or downlink control of a PCell that performs CA or DC with the cell. Signaled in the channel's user-specific search space.
  • the specific control information includes at least one of final subframe information and DRS information, but other information (for example, a subframe for which monitoring of downlink control information and / or CSI measurement is not performed) Information, information on CRS and / or CSI-RS transmission power, etc.).
  • Wireless communication system Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described.
  • the above-described common signaling and / or UE-specific signaling is applied.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • the wireless communication system 1 carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied.
  • the wireless communication system 1 also has a wireless base station (for example, LTE-U base station) that can use an unlicensed band.
  • the wireless communication system 1 includes SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), etc. May be called.
  • a radio communication system 1 shown in FIG. 11 includes a radio base station 11 that forms a macro cell C1, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. I have. Moreover, the user terminal 20 is arrange
  • LTE-U unlicensed band
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. For example, assist information (for example, DL signal configuration) regarding the radio base station 12 (for example, LTE-U base station) that uses the unlicensed band is transmitted from the radio base station 11 that uses the license band to the user terminal 20. can do. Further, when CA is performed in the license band and the unlicensed band, it is possible to adopt a configuration in which one radio base station (for example, the radio base station 11) controls the schedules of the license band cell and the unlicensed band cell.
  • assist information for example, DL signal configuration
  • LTE-U base station LTE-U base station
  • the user terminal 20 may be connected to the radio base station 12 without being connected to the radio base station 11.
  • the wireless base station 12 using the unlicensed band may be connected to the user terminal 20 in a stand-alone manner.
  • the radio base station 12 controls the schedule of the unlicensed band cell.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • the radio base stations 10 that share and use the same unlicensed band are configured to be synchronized in time.
  • Each user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • Carrier Frequency Division Multiple Access is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used.
  • the PDSCH may be referred to as a downlink data channel.
  • User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH.
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels are PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), Enhanced PCFICH (Enhanced Physical Control Format Indicator Channel) PHICH (Physical Hybrid-RQ Indicator Channel).
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the PCFICH transmits a CFI (Control Format Indicator) which is the number of OFDM symbols used for the PDCCH.
  • the HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • the extended PCFICH is used for transmission of common control information for cells in an unlicensed band in addition to CFI.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink L1 / L2 control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used.
  • PUSCH may be referred to as an uplink data channel.
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information (ACK / NACK), and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • ACK / NACK delivery confirmation information
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • DRS Discovery Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can transmit / receive uplink (UL) / downlink (DL) signals in an unlicensed band.
  • the transmission / reception unit 103 may be capable of transmitting / receiving UL / DL signals in a license band.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 transmits a downlink signal to the user terminal 20 using at least the unlicensed band.
  • the transmission / reception unit 103 transmits DRS including CSI-RS frequency-multiplexed with PSS / SSS in the unlicensed band in the DMTC period set in the user terminal 20.
  • the transmission / reception unit 103 receives an uplink signal from the user terminal 20 using at least the unlicensed band.
  • the transmission / reception unit 103 may receive a result of RRM measurement and / or CSI measurement (for example, CSI feedback) from the user terminal 20 in a license band and / or an unlicensed band.
  • the transmission / reception unit 103 transmits common control information and / or unique control information.
  • the common control information includes at least one of CRS information, CSI-RS / IM information, DRS information, and burst information.
  • the unique control information includes at least one of final subframe information and DRS information.
  • the transmission / reception unit 103 transmits higher layer control information.
  • the common control information transmitted by the transmission / reception unit 103 may include final subframe information.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 13, the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
  • the control unit (scheduler) 301 controls the entire radio base station 10. When scheduling is performed by one control unit (scheduler) 301 for the license band and the unlicensed band, the control unit 301 controls communication between the license band cell and the unlicensed band cell.
  • the control unit 301 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 schedules system information, downlink data signals transmitted by PDSCH, downlink control signals (common control information and unique control information) transmitted by PDCCH and / or EPDCCH, and common control information transmitted by extended PCFICH. (Eg, resource allocation) is controlled. It also controls scheduling of synchronization signals (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and downlink reference signals such as CRS, CSI-RS, and DMRS.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • an uplink data signal transmitted on the PUSCH for example, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • HARQ-ACK delivery confirmation signal
  • the control unit 301 controls the transmission of the downlink signal to the transmission signal generation unit 302 and the mapping unit 303 according to the LBT result obtained by the measurement unit 305. Specifically, the control unit 301 controls generation, mapping, transmission, and the like of various signals included in the DRS so that DRS (LAA DRS) is transmitted in the unlicensed band.
  • DRS LAA DRS
  • control unit 301 may control the generation and mapping of the above-described common control information and / or unique control information. Specifically, the control unit 301 controls generation of common control information transmitted via the extended PCFICH obtained by extending PCFICH, encoding (for example, joint encoding), modulation, and mapping between the CFI and the common control information. (First embodiment, FIGS. 6-8). Note that at least one of the coding rate of extended PCFICH, the number of resource elements to be mapped, and the modulation scheme is different from PCFICH.
  • control unit 301 performs control so as to add CRC scrambled by RNTI or SI-RNTI for cells in the unlicensed band to the common control information (second and third modes). Further, the control unit 301 allocates the common control information with the CRC added to the common search space of the unlicensed band cell or the downlink control channel (PDCCH or EPDCCH) of the primary cell that performs CA or DC with the cell. To control.
  • control unit 301 when providing a common search space in the EPDCCH, performs control so that information regarding the presence or absence of the common search space in the EPDCCH or resource information to which the common search space is allocated is transmitted by higher layer signaling. (Second and third aspects).
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301. Further, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on the result of CSI measurement in each user terminal 20. Also, the transmission signal generation unit 302 generates a DRS including PSS, SSS, CRS, CSI-RS, and the like.
  • the transmission signal generation unit 302 generates common control information and unique control information (including encoding processing, modulation processing, and the like) based on an instruction from the control unit 301. Specifically, the transmission signal generation unit 302 generates common control information transmitted through the extended CFI notification channel by changing at least one of the coding rate, the number of resource elements, and the modulation scheme from the existing PCFICH. (First embodiment). Alternatively, the transmission signal generation unit 302 may add CRC scrambled with RNTI or SI-RNTI for cells of an unlicensed band to the common control information (second and third modes).
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 Based on an instruction from the control unit 301, the measurement unit 305 performs LBT on a carrier (for example, an unlicensed band) in which LBT is set, and the LBT result (for example, whether the channel state is idle or busy). Is output to the control unit 301.
  • a carrier for example, an unlicensed band
  • the LBT result for example, whether the channel state is idle or busy
  • the measurement unit 305 may measure, for example, the received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal. .
  • the measurement result may be output to the control unit 301.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can transmit / receive UL / DL signals in an unlicensed band.
  • the transmission / reception unit 203 may be capable of transmitting / receiving UL / DL signals in a license band.
  • the transmission / reception unit 203 can be composed of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which are described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives a downlink signal transmitted from the radio base station 10 using at least the unlicensed band.
  • the transmission / reception unit 203 receives a DRS including a CSI-RS that is frequency-multiplexed with the PSS / SSS in an unlicensed band during the DMTC period set from the radio base station 10.
  • the transmission / reception unit 203 transmits an uplink signal to the radio base station 10 using at least an unlicensed band.
  • the transmission / reception unit 203 may transmit the result of RRM measurement of DRS and / or CSI measurement (for example, CSI feedback) in the license band and / or the unlicensed band.
  • the transmission / reception unit 203 receives common control information and / or unique control information.
  • the transmission / reception unit 203 receives higher layer control information.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 controls the reception signal processing unit 404 and the measurement unit 405 to perform RRM measurement and / or CSI measurement and cell search in the unlicensed band.
  • the RRM measurement may be performed using LAA DRS.
  • CSI measurement may be performed using LAA DRS or CSI-RS / IM.
  • the control unit 401 may control transmission of the uplink signal to the transmission signal generation unit 402 and the mapping unit 403 according to the LBT result obtained by the measurement unit 405.
  • control unit 401 may control the reception processing of the above-described common control information and / or unique control information. Specifically, the control unit 401 may control reception processing (for example, demodulation, decoding, etc.) of common control information via the extended PCFICH (first mode, FIGS. 6-8).
  • reception processing for example, demodulation, decoding, etc.
  • control unit 401 may perform control so as to perform reception processing (for example, blind decoding, demodulation, decoding, etc.) of common control information allocated to the common search space of the downlink control channel of the cell of the unlicensed band ( Second aspect).
  • reception processing for example, blind decoding, demodulation, decoding, etc.
  • the control unit 401 replaces the DCI of the existing format to which the CRC is added with the above-described common control information.
  • control unit 401 performs reception processing (for example, blind decoding, demodulation, decoding, etc.) of common control information allocated to a common search space of a downlink control channel of a primary cell that performs CA or DC with an unlicensed band cell. (3rd aspect) may be controlled.
  • reception processing for example, blind decoding, demodulation, decoding, etc.
  • the control unit 401 replaces the DCI of the existing format to which the CRC is added with the above-described common control information.
  • control unit 401 allocates a common search space based on information signaled by higher layers (for example, information on the presence / absence of the common search space in the EPDCCH and resource information itself). Information may be detected (second and third modes).
  • control unit 401 receives specific control information allocated to the user specific search space of the downlink control channel of the primary cell that performs DC with the cell of the unlicensed band (for example, blind decoding, demodulation, decoding, etc.) You may control to perform.
  • control unit 401 may measure, synchronize, and perform PDSCH of channel state information (CSI) in a subframe in which the common control information and / or unique control information is received based on the common control information and / or unique control information. At least one of demodulation and rate matching may be controlled. For example, the control unit 401 controls at least one of synchronization, CSI measurement based on CRS, demodulation of PDSCH, and rate matching based on the above-described CRS information.
  • CSI channel state information
  • control unit 401 may control CSI measurement in the DRS subframe based on the above-described CSI-RS / IM information. Alternatively, the control unit 401 may control CSI measurement and / or rate matching in the DRS subframe based on the above DRS information. In addition, the control unit 401 may perform control so that CSI measurement is performed in a subframe including PSS, SSS, and CRS detected first in DMTC. Moreover, the control part 401 may average the result of the CSI measurement in the same burst based on the above-mentioned burst information. In addition, the control unit 401 may control demodulation and / or rate matching of the PDSCH mapped to the final subframe based on the above-described final subframe information.
  • control unit 401 recognizes the signal configuration of the last subframe of the burst based on the above-described last subframe information, and based on the recognition result, the RRM measurement, CSI measurement, and PDSCH rate in the last subframe of the burst At least one of the matchings may be controlled.
  • the control unit 401 based on the number of OFDM symbols indicated by the last subframe information, the control unit 401 recognizes whether or not PSS / SSS is normally allocated in subframes # 0 and # 5 to which PSS / SSS is allocated. Good. For example, when the number of OFDM symbols indicated by the last subframe information in subframe # 0 or # 5 is less than a predetermined number, control section 401 assumes that PSS / SSS is not included in subframe # 0 or # 5. May be.
  • the predetermined number may be 14 or 7 in the case of a normal CP, for example.
  • the control unit 401 determines whether or not CSI-RS / IM is allocated in a subframe having a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling. You may recognize it. For example, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is less than the predetermined number, the control unit 401 may assume that CSI-RS / IM is not included in the subframe. .
  • the predetermined number may be 14 or 11 in the case of a normal CP, for example.
  • control unit 401 in the subframe, based on the number of OFDM symbols indicated by the final subframe information in the subframe having the predetermined period and the CSI-RS configuration (see FIG. 17) notified by higher layer signaling.
  • the presence / absence of CSI-RS / IM assignment may be recognized.
  • the control unit 401 assigns a normal CSI-RS / IM. You may assume the allocation pattern different from a pattern (refer FIG. 17).
  • the different allocation patterns may be configured by, for example, OFDM symbols # 0 to # 6 in FIG. *
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 performs reception processing (demapping, demodulation, decoding, etc.) of common control information and unique control information based on an instruction from the control unit 401. Specifically, the received signal processing unit 404 may perform demodulation, decoding, and the like of the common control information transmitted by the extended PCFICH (first mode). The received signal processing unit 404 blind-decodes common control information assigned to a common search space of an unlicensed band cell or primary cell, and is descrambled by an RNTI or SI-RNTI for the cell of the unlicensed band. The common control information may be decoded based on the second and third aspects. Reception signal processing section 404 may perform blind decoding on unique control information allocated to a user-specific search space of an unlicensed band cell or primary cell.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform LBT on a carrier (for example, an unlicensed band) on which LBT is set based on an instruction from the control unit 401.
  • the measurement unit 405 may output an LBT result (for example, a determination result of whether the channel state is idle or busy) to the control unit 401.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal. For example, the measurement unit 405 performs RRM measurement of LAA DRS. The measurement result may be output to the control unit 401.
  • the received power for example, RSRP
  • reception quality for example, RSRQ
  • RSRQ reception quality
  • channel state for example, channel state
  • the measurement unit 405 performs RRM measurement of LAA DRS.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 16 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above physically include a central processing unit (processor) 1001, a main storage device (memory) 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, You may comprise as a computer apparatus containing the bus
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • Each function in the radio base station 10 and the user terminal 20 is performed by causing the central processing unit 1001 to perform computation by reading predetermined software (program) on hardware such as the central processing unit 1001 and the main storage device 1002. This is realized by controlling communication by the device 1004 and reading and / or writing of data in the main storage device 1002 and the auxiliary storage device 1003.
  • the central processing unit 1001 controls the entire computer by operating an operating system, for example.
  • the central processing unit 1001 may be configured by a processor (CPU: Central Processing Unit) including a control device, an arithmetic device, a register, an interface with peripheral devices, and the like.
  • CPU Central Processing Unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the central processing unit 1001.
  • the central processing unit 1001 reads programs, software modules, and data from the auxiliary storage device 1003 and / or the communication device 1004 to the main storage device 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the main storage device 1002 and operating on the central processing unit 1001, and may be realized similarly for other functional blocks.
  • the main storage device (memory) 1002 is a computer-readable recording medium, and may be composed of at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of a flexible disk, a magneto-optical disk, a CD-ROM (Compact Disc ROM), a hard disk drive, and the like.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the central processing unit 1001 and the main storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. .
  • the radio base station 10 and the user terminal 20 may be configured to include hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Thus, a part or all of each functional block may be realized.
  • ASIC Application Specific Integrated Circuit
  • PLD Process-Demand Generation
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block)), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation.
  • mobile communication system 5G (5th generation mobile communication system)
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark

Abstract

The present invention makes it possible to perform appropriate communications in a cell (such as an unlicensed band) in which listening is applied prior to transmission. A user terminal according to an embodiment of the present invention is provided with: a reception unit which, in a License-Assisted Access Secondary Cell (LAA SCell), receives common control information via a downstream control channel; and a control unit which controls communication processing in the LAA SCell on the basis of the common control information.

Description

ユーザ端末、無線基地局及び無線通信方法User terminal, radio base station, and radio communication method
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。 The present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、LTE Rel.13などともいう)も検討されている。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and lower delay (Non-Patent Document 1). Also, LTE-A (also referred to as LTE Advanced, LTE Rel. 10, 11 or 12) has been specified for the purpose of further widening and speeding up from LTE (also referred to as LTE Rel. 8 or 9), and LTE. Successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel.13, etc.) are also being studied.
 Rel.8-12のLTEでは、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)ともいう)において排他的な運用がなされることを想定して仕様化が行われてきた。ライセンスバンドとしては、例えば、800MHz、1.7GHz、2GHzなどが使用される。 Rel. In LTE of 8-12, the specification has been performed on the assumption that exclusive operation is performed in a frequency band (also referred to as a licensed band) licensed by a telecommunications carrier (operator). As the license band, for example, 800 MHz, 1.7 GHz, 2 GHz, and the like are used.
 近年、スマートフォンやタブレットなどの高機能化されたユーザ端末(UE:User Equipment)の普及は、ユーザトラヒックを急激に増加させている。増加するユーザトラヒックを吸収するため、更なる周波数バンドを追加することが求められているが、ライセンスバンドのスペクトラム(licensed spectrum)には限りがある。 In recent years, the spread of highly functional user terminals (UE: User Equipment) such as smartphones and tablets has rapidly increased user traffic. In order to absorb the increasing user traffic, it is required to add a further frequency band, but the spectrum of the license band is limited.
 このため、Rel.13 LTEでは、ライセンスバンド以外に利用可能なアンライセンススペクトラム(unlicensed spectrum)のバンド(アンライセンスバンド(unlicensed band)ともいう)を利用して、LTEシステムの周波数を拡張することが検討されている(非特許文献2)。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)やBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯などの利用が検討されている。 For this reason, Rel. 13 In LTE, it is considered to expand the frequency of the LTE system using an unlicensed spectrum band (also referred to as an unlicensed band) that can be used in addition to the license band. Non-patent document 2). As the unlicensed band, for example, the use of a 2.4 GHz band or a 5 GHz band that can use Wi-Fi (registered trademark) or Bluetooth (registered trademark) is being studied.
 具体的には、Rel.13 LTEでは、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(CA:Carrier Aggregation)を行うことが検討されている。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLAA(License-Assisted Access)と称する。なお、将来的には、ライセンスバンドとアンライセンスバンドのデュアルコネクティビティ(DC:Dual Connectivity)や、アンライセンスバンドのスタンドアローン(SA:Stand-Alone)もLAAの検討対象となる可能性がある。 Specifically, Rel. In 13 LTE, it is considered to carry out carrier aggregation (CA) between a licensed band and an unlicensed band. Communication performed using the unlicensed band together with the license band is referred to as LAA (License-Assisted Access). In the future, license connectivity and unlicensed band dual connectivity (DC: Dual Connectivity) and unlicensed band stand-alone (SA) may also be considered for LAA.
 アンライセンスバンドのセルは、送信前にリスニングが適用されたりするなど、ライセンスバンドのセルとは異なる通信特性を有することが想定される。したがって、ライセンスバンドのセルにおける制御情報のシグナリングをアンライセンスバンドのセルに適用するだけでは、同期、チャネル状態情報(CSI)の測定、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)の復調、レートマッチングなどの通信処理を適切に行うことができない恐れがある。 The cell of the unlicensed band is assumed to have different communication characteristics from the cell of the license band, such as listening applied before transmission. Therefore, synchronization, channel state information (CSI) measurement, downlink shared channel (PDSCH) demodulation, and rate matching can be achieved simply by applying control information signaling in the license band cell to the unlicensed band cell. There is a risk that communication processing such as cannot be performed properly.
 本発明はかかる点に鑑みてなされたものであり、送信前にリスニングが適用されるセル(例えば、アンライセンスバンドのセル)において、適切に通信処理を行うことが可能なユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。 The present invention has been made in view of the above points, and a user terminal and a radio base station capable of appropriately performing communication processing in a cell to which listening is applied before transmission (for example, a cell in an unlicensed band) One of the objects is to provide a wireless communication method.
 本発明の一態様に係るユーザ端末は、LAA SCell(License-Assisted Access Secondary Cell)において、下り制御チャネルを介して、共通制御情報を受信する受信部と、前記共通制御情報に基づいて、前記LAA SCellにおける通信処理を制御する制御部と、を具備することを特徴とする。 A user terminal according to an aspect of the present invention includes, in LAA SCell (License-Assisted Access Secondary Cell), a reception unit that receives common control information via a downlink control channel, and the LAA based on the common control information. And a control unit that controls communication processing in the SCell.
 本発明によれば、送信前にリスニングが適用されるセル(例えば、アンライセンスバンド)において、適切に通信処理を行うことができる。 According to the present invention, communication processing can be appropriately performed in a cell (for example, an unlicensed band) to which listening is applied before transmission.
図1A及び1Bは、LAA DRSの構成の一例を示す図である。1A and 1B are diagrams showing an example of the configuration of LAA DRS. 図2は、本実施の形態に係るCSI-RS/IM情報の説明図である。FIG. 2 is an explanatory diagram of CSI-RS / IM information according to the present embodiment. 図3A-3Cは、本実施の形態に係るDRSサブフレームの識別例を示す図である。3A to 3C are diagrams showing an example of identifying DRS subframes according to the present embodiment. 図4A及び4Bは、本実施の形態に係るDRS情報の説明図である。4A and 4B are explanatory diagrams of DRS information according to the present embodiment. 図5A及び5Bは、本実施の形態に係るバースト情報の説明図である。5A and 5B are explanatory diagrams of burst information according to the present embodiment. 図6A及び6Bは、本実施の形態に係る拡張PCFICHの一例を示す図である。6A and 6B are diagrams illustrating an example of the extended PCFICH according to the present embodiment. 図7A及び7Bは、本実施の形態に係る拡張PCFICHの他の例を示す図である。7A and 7B are diagrams showing another example of the extended PCFICH according to the present embodiment. 図8A及び8Bは、本実施の形態に係る拡張PCFICHの更に別の例を示す図である。8A and 8B are diagrams showing still another example of the extended PCFICH according to the present embodiment. 図9A及び9Bは、本実施の形態に係る部分TTIの一例を示す図である。9A and 9B are diagrams illustrating an example of a partial TTI according to the present embodiment. 図10A及び10Bは、本実施の形態に係る共通制御情報の生成例を示す図である。10A and 10B are diagrams illustrating an example of generation of common control information according to the present embodiment. 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the radio | wireless communications system which concerns on this Embodiment. 本実施の形態に係る無線基地局の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the wireless base station which concerns on this Embodiment. 本実施の形態に係る無線基地局の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the radio base station which concerns on this Embodiment. 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the user terminal which concerns on this Embodiment. 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user terminal which concerns on this Embodiment. 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the radio base station and user terminal which concern on this Embodiment. 図17A及び17Bは、本実施の形態に係るCSI-RS構成の一例を示す図である。17A and 17B are diagrams showing an example of a CSI-RS configuration according to the present embodiment.
 アンライセンスバンドでLTE/LTE-Aを運用するシステム(例えば、LAAシステム)においては、他事業者のLTE、Wi-Fi又はその他のシステムとの共存のため、干渉制御機能が必要になると考えられる。なお、アンライセンスバンドでLTE/LTE-Aを運用するシステムは、運用形態がCA、DC又はSAのいずれであるかに関わらず、総称して、LAA、LAA-LTE、LTE-U、U-LTEなどと呼ばれてもよい。 In a system that operates LTE / LTE-A in an unlicensed band (for example, an LAA system), it is considered that an interference control function is required for coexistence with LTE, Wi-Fi, or other systems of other operators. . A system that operates LTE / LTE-A in an unlicensed band is generally referred to as LAA, LAA-LTE, LTE-U, U-, regardless of whether the operation mode is CA, DC, or SA. It may be called LTE or the like.
 一般に、アンライセンスバンドのキャリア(キャリア周波数又は単に周波数と呼ばれてもよい)を用いて通信を行う送信ポイント(例えば、無線基地局(eNB)、ユーザ端末(UE)など)は、当該アンライセンスバンドのキャリアで通信を行っている他のエンティティ(例えば、他のユーザ端末)を検出した場合、当該キャリアで送信を行うことが禁止されている。 In general, a transmission point (for example, a radio base station (eNB), a user terminal (UE), or the like) that performs communication using a carrier of an unlicensed band (may be referred to as a carrier frequency or simply a frequency) When another entity (for example, another user terminal) communicating with the carrier of the band is detected, transmission using the carrier is prohibited.
 このため、送信ポイントは、送信タイミングよりも所定期間前のタイミングで、リスニング(LBT)を実行する。具体的には、LBTを実行する送信ポイントは、送信タイミングよりも所定期間前のタイミングで、対象となるキャリア帯域全体(例えば、1コンポーネントキャリア(CC:Component Carrier))をサーチし、他の装置(例えば、無線基地局、ユーザ端末、Wi-Fi装置など)が当該キャリア帯域で通信しているか否かを確認する。 For this reason, the transmission point performs listening (LBT) at a timing before a predetermined period before the transmission timing. Specifically, the transmission point that executes LBT searches the entire target carrier band (for example, one component carrier (CC)) at a timing before a predetermined period before the transmission timing, and other devices It is confirmed whether (for example, a radio base station, a user terminal, a Wi-Fi device, etc.) is communicating in the carrier band.
 なお、本明細書において、リスニングとは、ある送信ポイント(例えば、無線基地局、ユーザ端末など)が信号の送信を行う前に、他の送信ポイントなどから所定レベル(例えば、所定電力)を超える信号が送信されているか否かを検出/測定する動作を指す。また、無線基地局及び/又はユーザ端末が行うリスニングは、LBT、CCA、キャリアセンスなどと呼ばれてもよい。 In this specification, listening means that a certain transmission point (for example, a radio base station, a user terminal, etc.) exceeds a predetermined level (for example, predetermined power) from another transmission point before transmitting a signal. An operation for detecting / measuring whether or not a signal is transmitted. The listening performed by the radio base station and / or the user terminal may be referred to as LBT, CCA, carrier sense, or the like.
 送信ポイントは、他の装置が通信していないことを確認できた場合、当該キャリアを用いて送信を行う。例えば、送信ポイントは、LBTで測定した受信電力(LBT期間中の受信信号電力)が所定の閾値以下である場合、チャネルがアイドル状態(LBTidle)であると判断し送信を行う。「チャネルがアイドル状態である」とは、言い換えると、特定のシステムによってチャネルが占有されていないことをいい、チャネルがアイドルである、チャネルがクリアである、チャネルがフリーである、などともいう。 When the transmission point can confirm that no other device is communicating, the transmission point performs transmission using the carrier. For example, when the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold, the transmission point determines that the channel is in an idle state (LBT idle ) and performs transmission. In other words, “the channel is idle” means that the channel is not occupied by a specific system, and the channel is idle, the channel is clear, the channel is free, and the like.
 一方、送信ポイントは、対象となるキャリア帯域のうち、一部の帯域でも他の装置が使用中であることを検出した場合、自らの送信処理を中止する。例えば、送信ポイントは、当該帯域に係る他の装置からの信号の受信電力が、所定の閾値を超過していることを検出した場合、チャネルはビジー状態(LBTbusy)であると判断し、送信を行わない。LBTbusyの場合、当該チャネルは、改めてLBTを行いアイドル状態であることが確認できた後に初めて利用可能となる。なお、LBTによるチャネルのアイドル状態/ビジー状態の判定方法は、これに限られない。 On the other hand, when the transmission point detects that another device is in use even in a part of the target carrier band, the transmission point stops its transmission process. For example, if the transmission point detects that the received power of a signal from another device related to the band exceeds a predetermined threshold, the transmission point determines that the channel is busy (LBT busy ) and transmits Do not do. In the case of LBT busy , the channel can be used only after performing LBT again and confirming that it is in an idle state. Note that the channel idle / busy determination method using the LBT is not limited to this.
 LBTのメカニズム(スキーム)としては、FBE(Frame Based Equipment)及びLBE(Load Based Equipment)が検討されている。両者の違いは、送受信に用いるフレーム構成、チャネル占有時間などである。FBEは、LBTに係る送受信の構成が固定タイミングを有するものである。また、LBEは、LBTに係る送受信の構成が時間軸方向で固定でなく、需要に応じてLBTが行われるものである。 As the mechanism (scheme) of LBT, FBE (Frame Based Equipment) and LBE (Load Based Equipment) are being studied. The difference between the two is the frame configuration used for transmission and reception, the channel occupation time, and the like. In the FBE, the transmission / reception configuration related to the LBT has a fixed timing. In addition, in the LBE, the transmission / reception configuration related to the LBT is not fixed in the time axis direction, and the LBT is performed according to demand.
 具体的には、FBEは、固定のフレーム周期をもち、所定のフレームで一定時間(LBT時間(LBT duration)などと呼ばれてもよい)キャリアセンスを行った結果、チャネルが使用可能であれば送信を行うが、チャネルが使用不可であれば次のフレームにおけるキャリアセンスタイミングまで送信を行わずに待機するというメカニズムである。 Specifically, the FBE has a fixed frame period, and if a channel is usable as a result of performing carrier sense in a predetermined frame (may be called LBT time (LBT duration), etc.) This is a mechanism that performs transmission, but waits without performing transmission until the carrier sense timing in the next frame if the channel cannot be used.
 一方、LBEは、キャリアセンス(初期CCA)を行った結果チャネルが使用不可であった場合はキャリアセンス時間を延長し、チャネルが使用可能となるまで継続的にキャリアセンスを行うというECCA(Extended CCA)手順を実施するメカニズムである。LBEでは、適切な衝突回避のためランダムバックオフが必要である。 LBE, on the other hand, extends the carrier sense time if the channel is unusable as a result of carrier sense (initial CCA), and continuously performs carrier sense until the channel becomes usable. ) The mechanism to implement the procedure. In LBE, a random back-off is necessary for proper collision avoidance.
 なお、キャリアセンス時間(キャリアセンス期間と呼ばれてもよい)とは、1つのLBT結果を得るために、リスニングなどの処理を実施してチャネルの使用可否を判断するための時間(例えば、1シンボル長)である。 The carrier sense time (which may be referred to as a carrier sense period) is a time (for example, 1) for performing processing such as listening to determine whether or not a channel can be used in order to obtain one LBT result. Symbol length).
 送信ポイントは、LBT結果に応じて所定の信号(例えば、チャネル予約(channel reservation)信号)を送信することができる。ここで、LBT結果とは、LBTが設定されるキャリアにおいてLBTにより得られたチャネルの空き状態に関する情報(例えば、LBTidle、LBTbusy)のことをいう。 The transmission point can transmit a predetermined signal (for example, a channel reservation signal) according to the LBT result. Here, the LBT result refers to information (for example, LBT idle , LBT busy ) relating to the channel availability obtained by the LBT in the carrier in which the LBT is set.
 また、送信ポイントは、LBT結果がアイドル状態(LBTidle)である場合に送信を開始すると、所定期間(例えば、10-13ms)LBTを省略して送信を行うことができる。このような送信は、バースト送信、バーストなどとも呼ばれる。 In addition, when the transmission point starts transmission when the LBT result is in an idle state (LBT idle ), the transmission point can perform transmission while omitting the LBT for a predetermined period (for example, 10-13 ms). Such transmission is also called burst transmission or burst.
 以上述べたように、LAAシステムにおいて、送信ポイントに、LBTメカニズムに基づく同一周波数内における干渉制御を導入することにより、LAAとWi-Fiとの間の干渉、LAAシステム間の干渉などを回避することができる。また、LAAシステムを運用するオペレータ毎に、送信ポイントの制御を独立して行う場合であっても、LBTによりそれぞれの制御内容を把握することなく干渉を低減することができる。 As described above, in the LAA system, by introducing interference control within the same frequency based on the LBT mechanism at the transmission point, interference between LAA and Wi-Fi, interference between LAA systems, etc. can be avoided. be able to. Further, even when transmission points are controlled independently for each operator who operates the LAA system, interference can be reduced without grasping each control content by the LBT.
 ところで、LAAシステムでも、ユーザ端末に対するアンライセンスバンドのSCell(Secondary Cell)の設定または再設定などを行うため、ユーザ端末がRRM(Radio Resource Management)測定により周辺に存在するSCellを検出し、受信品質を測定した後、ネットワークへ報告を行うことが必要となる。LAAにおけるRRM測定のための信号は、Rel.12で規定されたディスカバリ信号(DS:Discovery Signal)をベースに検討されている。 By the way, even in the LAA system, in order to perform setting or resetting of SCell (Secondary Cell) of the unlicensed band for the user terminal, the user terminal detects SCell existing in the vicinity by RRM (Radio Resource Management) measurement, and the reception quality After measuring, it is necessary to report to the network. The signal for RRM measurement in LAA is Rel. 12 based on the discovery signal (DS: Discovery Signal).
 なお、LAAにおけるRRM測定のための信号は、検出測定用信号、ディスカバリ参照信号(DRS:Discovery Reference Signal)、ディスカバリ信号(DS:Discovery Signal)、LAA DRS、LAA DSなどと呼ばれてもよい。また、アンライセンスバンドのSCellは、例えばLAA SCellと呼ばれてもよい。 A signal for RRM measurement in LAA may be called a detection measurement signal, a discovery reference signal (DRS), a discovery signal (DS), LAA DRS, LAA DS, or the like. Further, the SCell of the unlicensed band may be called, for example, LAA SCell.
 LAA DRSは、Rel.12 DSと同様に、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))とセル固有参照信号(CRS:Cell-specific Reference Signal)とチャネル状態測定用参照信号(CSI-RS:Channel State Information Reference Signal)の少なくとも一つを含んで構成されることが検討されている。 LAA DRS is Rel. 12 As with DS, synchronization signal (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), cell-specific reference signal (CRS) and channel state measurement reference signal (CSI-RS: Channel) It is under consideration to include at least one of (State Information Reference Signal).
 また、ネットワーク(例えば、無線基地局)は、ユーザ端末に対して、周波数ごとにLAA DRSのDMTC(Discovery Measurement Timing Configuration)を設定することができる。DMTCは、DRSの送信周期(DMTC周期(DMTC periodicity)などと呼ばれてもよい)や、DRS測定タイミングのオフセットなどに関する情報を含む。 Also, the network (for example, a radio base station) can set a LATC DRS DMTC (Discovery Measurement Timing Configuration) for each frequency for the user terminal. The DMTC includes information related to a DRS transmission period (may be referred to as a DMTC periodicity), a DRS measurement timing offset, and the like.
 DRSは、DMTC周期ごとに、DMTC期間(DMTC duration)の中で送信される。ここで、Rel.12では、DMTC期間は6ms長固定である。また、DMTC期間の中で送信されるDRSの長さ(DRS期間(DRS occasion)、DS期間、DRSバースト、DSバーストなどと呼ばれてもよい)は1ms以上5ms以下である。LAA DSでは、Rel.12と同様の設定が用いられてもよいし、異なる設定が用いられてもよい。例えば、DRS期間は、LBT時間を考慮して、1ms以下としてもよいし、1ms以上としてもよい。 DRS is transmitted in DMTC period (DMTC duration) every DMTC period. Here, Rel. 12, the DMTC period is fixed to 6 ms length. Also, the length of DRS transmitted in the DMTC period (which may be referred to as a DRS period (DS), DS period, DRS burst, DS burst, etc.) is 1 ms to 5 ms. In LAA DS, Rel. The same setting as 12 may be used, or a different setting may be used. For example, in consideration of the LBT time, the DRS period may be 1 ms or less, or 1 ms or more.
 アンライセンスバンドのセルにおいて、無線基地局は、LAA DRS送信前にリスニング(LBT)を実施し、LBTidleの場合にLAA DRSを送信する。ユーザ端末は、ネットワークから通知されるDMTCによって、DRS期間のタイミングや周期を把握し、LAA DRSの検出及び/又は測定を実施する。DRS期間では、さらにRRM測定に加え、DRSを用いてCSI測定を行うことが検討されている。例えば、所定周期(例えば、5ms、10ms)のCSI測定のタイミング以外にも、DRSに含まれるCRSやCSI-RSを用いてCSI測定を行うことが想定される。 In the cell of the unlicensed band, the radio base station performs listening (LBT) before transmitting LAA DRS, and transmits LAA DRS in the case of LBT idle . The user terminal grasps the timing and period of the DRS period by DMTC notified from the network, and performs detection and / or measurement of LAA DRS. In the DRS period, in addition to RRM measurement, it is considered to perform CSI measurement using DRS. For example, it is assumed that CSI measurement is performed using CRS or CSI-RS included in DRS other than the timing of CSI measurement of a predetermined period (for example, 5 ms, 10 ms).
 図1は、LAA DRSの構成の一例を示す図である。図1Aは、CRSが2アンテナポートで送信される場合の構成例を示す。図1Aでは、LAA DRSは、シンボル#0、#4、#7、#11のCRS(port 0/1)、シンボル#6のPSS及びシンボル#5のSSSを含んで構成される。LAA DRSは、シンボル#9、#10のCSI-RSを含んで構成されてもよい。図1Bは、CRSが4アンテナポートで送信される場合の構成例を示す。図1Bでは、LAA DRSは、図1Aの構成に加えて、シンボル#1、#8のCRS(port 2/3)を含んで構成される。 FIG. 1 is a diagram showing an example of the configuration of LAA DRS. FIG. 1A shows a configuration example when CRS is transmitted through two antenna ports. In FIG. 1A, the LAA DRS includes CRS (port 0/1) of symbols # 0, # 4, # 7, and # 11, PSS of symbol # 6, and SSS of symbol # 5. The LAA DRS may be configured to include CSI-RSs of symbols # 9 and # 10. FIG. 1B shows a configuration example when CRS is transmitted through four antenna ports. In FIG. 1B, the LAA DRS includes CRS (port 2/3) of symbols # 1 and # 8 in addition to the configuration of FIG. 1A.
 なお、図1A及び1Bにおいて、CRS port Xは、アンテナポートXで送信されるCRSを表す。また、図1A及び1Bに示すLAA DRSの構成は一例にすぎず、これに限られない。LAA DRSは、同期信号(PSS/SSS)、CRS、CSI-RSの少なくとも一つを含んで構成されればよい。また、PSS/SSS、CRS、CSI-RSの割り当て位置(例えば、リソースエレメント)は、既存システム(例えば、Rel.12)と同様であってもよいし、異なっていてもよい。また、LAA DRSは、Rel.12 DRSの12シンボル分(例えば、シンボル#0-#11)で構成されてもよい。 In FIGS. 1A and 1B, CRS port X represents CRS transmitted through antenna port X. Moreover, the structure of LAA DRS shown to FIG. 1A and 1B is only an example, and is not restricted to this. The LAA DRS may be configured to include at least one of a synchronization signal (PSS / SSS), CRS, and CSI-RS. Further, PSS / SSS, CRS, and CSI-RS allocation positions (for example, resource elements) may be the same as or different from existing systems (for example, Rel. 12). LAA DRS is a Rel. It may be composed of 12 DRS 12 symbols (for example, symbols # 0- # 11).
 以上のように、アンライセンスバンドのセルは、送信前にリスニングが適用されたりするなど、ライセンスバンドのセルとは異なる通信特性を有することが想定される。したがって、ライセンスバンドのセルにおける制御情報のシグナリングをアンライセンスバンドのセルに適用するだけでは、同期、CSI測定、PDSCHの復調、レートマッチングなどの通信処理を適切に行うことができない恐れがある。 As described above, it is assumed that the cell in the unlicensed band has different communication characteristics from the cell in the license band, such as listening applied before transmission. Therefore, there is a possibility that communication processing such as synchronization, CSI measurement, PDSCH demodulation, and rate matching cannot be appropriately performed only by applying control information signaling in the license band cell to the unlicensed band cell.
 そこで、本発明者らは、ライセンスバンドのセルとは異なるアンライセンスバンドの通信特性を考慮した制御情報をシグナリングすることにより、アンライセンスバンドのセルにおいて、適切な通信処理を可能とすることを着想した。 Accordingly, the present inventors have conceived that appropriate communication processing can be performed in an unlicensed band cell by signaling control information in consideration of communication characteristics of an unlicensed band different from the license band cell. did.
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、本実施の形態では、リスニングが設定されるキャリア(セル)をアンライセンスバンドとして説明するが、これに限られない。本実施の形態は、リスニングが設定される周波数キャリア(セル)であれば、ライセンスバンド又はアンライセンスバンドに関わらず適用することができる。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the present embodiment, a carrier (cell) for which listening is set is described as an unlicensed band, but the present invention is not limited to this. This embodiment can be applied to any frequency carrier (cell) for which listening is set regardless of the license band or the unlicensed band.
 また、本実施の形態では、リスニングが設定されないキャリア(例えば、ライセンスバンドのプライマリセル(PCell))と、リスニングが設定されるキャリア(例えば、アンライセンスバンドのセカンダリセル(SCell))とのCA又はDCが適用される場合を想定するが、これに限られない。例えば、リスニングが設定されるキャリア(セル)に、ユーザ端末がスタンドアローンで接続する場合などにも、本実施の形態を適用することができる。 Further, in the present embodiment, CA or carrier of a carrier for which listening is not set (for example, a license cell primary cell (PCell)) and a carrier for which listening is set (for example, an unlicensed band secondary cell (SCell)) Although the case where DC is applied is assumed, it is not restricted to this. For example, the present embodiment can be applied to a case where a user terminal is connected to a carrier (cell) for which listening is set in a stand-alone manner.
 また、本実施の形態では、後述する制御情報を物理レイヤでシグナリングするものとするが、これに限られない。後述する制御情報の少なくとも一つは、上位レイヤ(例えば、RRC(Radio Resource Control)やシステム情報)でシグナリングされてもよい。 In the present embodiment, control information to be described later is signaled in the physical layer, but the present invention is not limited to this. At least one of the control information described later may be signaled by an upper layer (for example, RRC (Radio Resource Control) or system information).
(シグナリングの内容)
 本実施の形態において、アンライセンスバンドのセル(送信前にリスニングが設定されるセル)でシグナリングされる制御情報について説明する。上記セル内のユーザ端末に共通にシグナリングされる共通制御情報は、以下に示すCRS情報、CSI-RS/IM情報、DRS情報、バースト情報の少なくとも一つを含んでもよい。また、当該セルのユーザ端末に個別にシグナリングされる固有制御情報(UE固有制御情報)は、以下に示す最終サブフレーム情報、DRS情報の少なくとも一つを含んでもよい。
(Signaling content)
In the present embodiment, control information signaled in a cell of an unlicensed band (a cell in which listening is set before transmission) will be described. The common control information signaled commonly to the user terminals in the cell may include at least one of the following CRS information, CSI-RS / IM information, DRS information, and burst information. Moreover, the specific control information (UE specific control information) individually signaled to the user terminal of the cell may include at least one of the following final subframe information and DRS information.
(1)CRS情報
 CRS情報は、サブフレーム内においてCRSが割り当てられるOFDM(Orthogonal Frequency-Division Multiplexing)シンボル数に関する情報である。例えば、CRS情報は、サブフレーム内においてCRSが1又は2OFDMシンボルに割り当てられるか否か(或いは、4又は6OFDMシンボルに割り当てられるか否か)を示すビット値(例えば、1ビット)であってもよい。
(1) CRS information The CRS information is information related to the number of OFDM (Orthogonal Frequency-Division Multiplexing) symbols to which CRS is allocated in a subframe. For example, the CRS information may be a bit value (for example, 1 bit) indicating whether the CRS is assigned to 1 or 2 OFDM symbols in the subframe (or whether to be assigned to 4 or 6 OFDM symbols). Good.
 一般に、1サブフレーム内において、CRSは、2アンテナポートの場合は4OFDMシンボル(例えば、図1AのOFDMシンボル#0、#4、#7、#11)に割り当てられ、4アンテナポートの場合はOFDMシンボル(例えば、図1BのOFDMシンボル#0、#1、#4、#7、#8、#11)に割り当てられる。 In general, within one subframe, a CRS is assigned to 4 OFDM symbols (eg, OFDM symbols # 0, # 4, # 7, # 11 in FIG. 1A) for 2 antenna ports and OFDM for 4 antenna ports. Assigned to symbols (for example, OFDM symbols # 0, # 1, # 4, # 7, # 8, # 11 in FIG. 1B).
 これに対して、CRSを、2アンテナポートの場合は1OFDMシンボル(例えば、先頭のOFDMシンボルのみ)に割り当て、4アンテナポートの場合は2OFDMシンボル(例えば、先頭及び2番目のOFDMシンボルのみ)に割り当てるサブフレームを導入することも検討されている。当該サブフレームの導入により、復調用参照信号(DMRS:DeModulation Reference Signal)を用いて復調を行う送信モードにおいてCRSのオーバヘッドを削減できる。 In contrast, a CRS is assigned to one OFDM symbol (for example, only the first OFDM symbol) in the case of two antenna ports, and is assigned to two OFDM symbols (for example, only the first and second OFDM symbols) in the case of four antenna ports. The introduction of subframes is also being considered. By introducing the subframe, the overhead of CRS can be reduced in a transmission mode in which demodulation is performed using a demodulation reference signal (DMRS: DeModulation Reference Signal).
 ところで、アンライセンスバンドのセルでは、リスニング結果がビジー状態である場合無線基地局は下り送信を行わないため、ユーザ端末は各サブフレームで下り送信が行われるかを判断する必要がある。このため、ユーザ端末は、サブフレームの最初のOFDMシンボルにおいて、アンライセンスバンドのセルのセルIDのCRS(CRSポート0及び1)を検出する場合、当該サブフレームにおいて下り送信(例えば、PSS、SSS、CSI-RS、PDSCHの少なくとも一つの送信)が行われると判断する。 By the way, in the cell of the unlicensed band, since the radio base station does not perform downlink transmission when the listening result is busy, the user terminal needs to determine whether downlink transmission is performed in each subframe. For this reason, when the user terminal detects the CRS (CRS ports 0 and 1) of the cell ID of the cell of the unlicensed band in the first OFDM symbol of the subframe, the user terminal performs downlink transmission (for example, PSS, SSS) in the subframe. , At least one transmission of CSI-RS and PDSCH) is performed.
 しかしながら、サブフレームの最初のOFDMシンボルにおけるCRSの検出結果だけでは、当該サブフレームが、CRSを1又は2OFDMシンボルに割り当てるサブフレーム、又は、CRSを4又は6OFDMシンボルに割り当てるサブフレームのいずれであるかを判断できないことが想定される。この結果、同期、CRSに基づくCSI測定、或いは、PDSCHのレートマッチングを適切に行うことができない恐れがある。 However, based on the detection result of CRS in the first OFDM symbol of the subframe, whether the subframe is a subframe in which CRS is assigned to 1 or 2 OFDM symbols, or a subframe in which CRS is assigned to 4 or 6 OFDM symbols. It is assumed that cannot be determined. As a result, there is a possibility that synchronization, CSI measurement based on CRS, or rate matching of PDSCH cannot be performed appropriately.
 そこで、本実施の形態では、サブフレーム内においてCRSが1又は2OFDMシンボルに割り当てられるか否か(或いは、4又は6OFDMシンボルに割り当てられるか否か)を示すCRS情報をシグナリングしてもよい。 Therefore, in the present embodiment, CRS information indicating whether or not CRS is assigned to 1 or 2 OFDM symbols in a subframe (or whether or not 4 or 6 OFDM symbols are assigned) may be signaled.
 CRS情報は、同期、CSI測定、レートマッチングに用いることが想定されるため、セル内のユーザ端末に共通にシグナリングされてもよい。 Since CRS information is assumed to be used for synchronization, CSI measurement, and rate matching, it may be commonly signaled to user terminals in the cell.
(2)CSI-RS/IM情報
 CSI-RS/IM情報は、サブフレーム内におけるノンゼロパワーCSI-RS(CSI-RS)及び/又はゼロパワーCSI-RS(CSI-IM(Interference Measurement))の割り当てに関する情報である。例えば、CSI-RS情報は、サブフレーム内においてノンゼロパワーCSI-RS及び/又はゼロパワーCSI-RS(以下、CSI-RS/IMと略する)の有無を示すビット値(例えば、1ビット)であってもよい。
(2) CSI-RS / IM information CSI-RS / IM information is allocated to non-zero power CSI-RS (CSI-RS) and / or zero power CSI-RS (CSI-IM (Interference Measurement)) in a subframe. It is information about. For example, the CSI-RS information is a bit value (for example, 1 bit) indicating the presence / absence of non-zero power CSI-RS and / or zero power CSI-RS (hereinafter abbreviated as CSI-RS / IM) in a subframe. There may be.
 既存システム(例えば、Rel.12)では、CSI測定に用いられるCSI-RS/IMは、上位レイヤシグナリングで設定される所定周期(例えば、5又は10ms周期)のサブフレームに割り当てられる。アンライセンスバンドのセルでは、所定周期のサブフレームに加えて、DRSが割り当てられるサブフレーム(以下、DRSサブフレームと略する)に、CSI測定用のCSI-RS/IMを割り当てることも検討されている。このため、図2に示すように、所定周期のCSI-RS/IMの割り当てサブフレーム#2及び#7と、DMTC内のDRSサブフレーム#1とが一致しない場合に、ユーザ端末が、当該DRSサブフレームにおいてCSI測定を行うか否かを判断可能とすることが望まれる。 In the existing system (for example, Rel. 12), the CSI-RS / IM used for CSI measurement is assigned to a subframe of a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling. In an unlicensed band cell, in addition to subframes of a predetermined period, it is also considered to assign CSI-RS / IM for CSI measurement to subframes to which DRS is assigned (hereinafter abbreviated as DRS subframes). Yes. Therefore, as shown in FIG. 2, when the CSI-RS / IM allocation subframes # 2 and # 7 in a predetermined cycle do not match the DRS subframe # 1 in the DMTC, the user terminal It is desirable to be able to determine whether to perform CSI measurement in a subframe.
 そこで、本実施の形態では、サブフレーム内でCSI測定用のCSI-RS/IMが割り当てられるか否かを示すCSI-RS/IM情報をシグナリングしてもよい。これにより、図2に示すように、DRSサブフレーム#1でシグナリングされるCSI-RS/IM情報がCSI-RS/IMの割り当てを示す場合、ユーザ端末は、DRSサブフレーム#1でCSI測定を行うと判断できる。 Therefore, in the present embodiment, CSI-RS / IM information indicating whether or not CSI-RS / IM for CSI measurement is allocated in a subframe may be signaled. Accordingly, as shown in FIG. 2, when the CSI-RS / IM information signaled in the DRS subframe # 1 indicates the assignment of CSI-RS / IM, the user terminal performs CSI measurement in the DRS subframe # 1. It can be judged to do.
 CSI-RS/IM情報は、PDSCHをスケジュールされたユーザ端末及びPDSCHをスケジュールされていないユーザ端末の双方に用いられることが想定されるため、セル内のユーザ端末に共通にシグナリングされてもよい。 Since the CSI-RS / IM information is assumed to be used for both a user terminal scheduled for PDSCH and a user terminal not scheduled for PDSCH, it may be commonly signaled to user terminals in a cell.
(3)DRS情報
 DRS情報は、サブフレーム内におけるDRSの割り当てに関する情報である。例えば、DRS情報は、サブフレーム内におけるDRSの有無を示すビット値(例えば、1ビット)であってもよい。
(3) DRS information The DRS information is information related to DRS allocation within a subframe. For example, the DRS information may be a bit value (for example, 1 bit) indicating the presence or absence of DRS in the subframe.
 上述の通り、アンライセンスバンドのセルでは、上位レイヤシグナリングで設定される所定周期(例えば、5又は10ms周期)のサブフレームとDRSサブフレームとが一致しない場合でも、当該DRSサブフレームにCSI測定用のCSI-RS/IMを割り当てることができる。この場合、ユーザ端末は、DRSサブフレームであれば、CSI測定を行うサブフレームであると判断することができる。しかしながら、ユーザ端末がDMTC内のDRSサブフレームを識別できないことが想定される。 As described above, in an unlicensed band cell, even if a subframe of a predetermined period (for example, a period of 5 or 10 ms) set in higher layer signaling and a DRS subframe do not match, the DRS subframe is used for CSI measurement. CSI-RS / IM can be assigned. In this case, if the user terminal is a DRS subframe, it can be determined that the user terminal is a subframe in which CSI measurement is performed. However, it is assumed that the user terminal cannot identify the DRS subframe in DMTC.
 図3及び4を参照し、DRSサブフレームの識別例を説明する。図3Aでは、DMTC内のいずれかのサブフレーム(例えば、図3Aでは、サブフレーム#1又は#5)でDRSのみが送信されるケースが示される。図3Bでは、DMTC内のサブフレーム#0でDRS及びPDSCHが送信されるケースが示される。図3Cでは、DMTC内のサブフレーム#0、#5以外のサブフレーム#8でDRS及びPDSCHが送信されるケースが示される。図3A-3Cに示すケースでは、PSS、SSS及びCRSを含むサブフレームがDMTC内で1サブフレームだけであるため、当該サブフレームをDRSサブフレームとして識別できる。 A DRS subframe identification example will be described with reference to FIGS. FIG. 3A shows a case in which only DRS is transmitted in any subframe in DMTC (for example, subframe # 1 or # 5 in FIG. 3A). FIG. 3B shows a case where DRS and PDSCH are transmitted in subframe # 0 in DMTC. FIG. 3C shows a case where DRS and PDSCH are transmitted in subframe # 8 other than subframes # 0 and # 5 in DMTC. In the case shown in FIGS. 3A to 3C, since the subframe including the PSS, SSS, and CRS is only one subframe in the DMTC, the subframe can be identified as the DRS subframe.
 一方、図4A及び4Bに示すように、DMTC内にDRSサブフレームとPSS、SSS及びCRSが割り当てられる通常のサブフレーム#0及び/又は#5とが混在する場合、ユーザ端末は、サブフレーム#0又は/及び#5とDRSサブフレームとを区別できない恐れがある。 On the other hand, as shown in FIGS. 4A and 4B, when a DRS subframe and normal subframes # 0 and / or # 5 to which PSS, SSS, and CRS are allocated are mixed in the DMTC, the user terminal There is a possibility that 0 or / and # 5 cannot be distinguished from the DRS subframe.
 例えば、図4Aでは、DMTC内のサブフレーム#1においてDRSが割り当てられ、サブフレーム#5において既存のPSS、SSS及びCRSが割り当てられる。ここで、DRSは、図1A及び1Bに示すように、PSS、SSS及びCRSを含んで構成される。このため、ユーザ端末は、DMTC内において、DRSサブフレームであるサブフレーム#1と、DRSサブフレームではないがPSS、SSS及びCRSを含むサブフレーム#5と、を区別できないことが想定される。同様に、図4Bでは、DMTC内において、DRSサブフレームであるサブフレーム#0と、DRSサブフレームではないがPSS、SSS及びCRSを含むサブフレーム#5と、を区別できないことが想定される。 For example, in FIG. 4A, DRS is assigned in subframe # 1 in DMTC, and existing PSS, SSS, and CRS are assigned in subframe # 5. Here, the DRS includes a PSS, an SSS, and a CRS as shown in FIGS. 1A and 1B. Therefore, it is assumed that the user terminal cannot distinguish between the subframe # 1 that is a DRS subframe and the subframe # 5 that is not a DRS subframe but includes PSS, SSS, and CRS in DMTC. Similarly, in FIG. 4B, it is assumed that subframe # 0 that is a DRS subframe and subframe # 5 that is not a DRS subframe but includes PSS, SSS, and CRS cannot be distinguished in DMTC.
 そこで、本実施の形態では、サブフレーム内でDRSが割り当てられるか否かを示すDRS情報をシグナリングしてもよい。ユーザ端末は、サブフレーム内にDRSが割り当てられることを示すDRS情報が含まれる場合、当該サブフレームがDRSサブフレームであると判断し、当該DRSサブフレームでCSI測定を行うことができる。また、ユーザ端末は、DRS情報により、PDSCHが割り当てられるサブフレームにDRSが割り当てられるかを検出できるので、レートマッチングを適切に行うことができる。 Therefore, in the present embodiment, DRS information indicating whether or not a DRS is allocated within a subframe may be signaled. When the DRS information indicating that the DRS is allocated is included in the subframe, the user terminal can determine that the subframe is a DRS subframe and perform CSI measurement in the DRS subframe. Moreover, since the user terminal can detect whether DRS is assigned to the subframe to which the PDSCH is assigned based on the DRS information, the user terminal can appropriately perform rate matching.
 DRS情報は、上述のCSI-RS/IM情報の代わりに用いることが想定されるため、セル内のユーザ端末に共通にシグナリングされてもよい。なお、ユーザ端末に対してRRM測定用及び/又はCSI測定用のCSI-RSが設定される場合において、ユーザ端末がDMTC内で最初に検出されたPSS、SSS及びCRSを含むサブフレーム(例えば、図4Aのサブフレーム#1、図4Bのサブフレーム#0)をRRM測定用及び/又はCSI測定用のCSI-RSを含むDRSサブフレームであると仮定する場合、DRS情報は共通シグナリングされなくともよい。 Since DRS information is assumed to be used instead of the above-mentioned CSI-RS / IM information, it may be signaled in common to user terminals in the cell. When CSI-RS for RRM measurement and / or CSI measurement is set for the user terminal, the user terminal first detects a subframe including PSS, SSS, and CRS detected in DMTC (for example, If it is assumed that subframe # 1 in FIG. 4A and subframe # 0 in FIG. 4B are DRS subframes including CRM-RSs for RRM measurement and / or CSI measurement, the DRS information may not be commonly signaled. Good.
 また、DRS情報は、PDSCHのレートマッチングに用いることが想定されるため、PDSCHをスケジュールされたユーザ端末にUE固有シグナリングされてもよい。 Also, since it is assumed that the DRS information is used for rate matching of PDSCH, UE-specific signaling may be performed to the user terminal scheduled for PDSCH.
(4)バースト情報
 バースト情報は、サブフレームが属するバーストに関する情報である。具体的には、バースト情報は、サブフレームが他のサブフレームと同じバーストに属するか否かを示す情報であってもよい。例えば、バースト情報は、現在のサブフレームから同じバーストが続くサブフレーム数を示すビット値(例えば、最大バースト長が10又は13msであるとすると、4ビット)であってもよいし、バーストのインデックスを示すビット値(例えば、1又は2ビット)であってもよい。
(4) Burst information Burst information is information regarding the burst to which the subframe belongs. Specifically, the burst information may be information indicating whether or not a subframe belongs to the same burst as other subframes. For example, the burst information may be a bit value indicating the number of subframes in which the same burst continues from the current subframe (for example, 4 bits if the maximum burst length is 10 or 13 ms), or a burst index. May be a bit value (for example, 1 or 2 bits).
 アンライセンスバンドのセルでは、ユーザ端末は、同じバースト内のサブフレーム間では、CRS及び/又はCSI-RSの送信電力が一定であると仮定できるので、CRS又はCSI-RSに基づくCSI測定の結果を平均化してもよい。一方、ユーザ端末は、異なるバースト内のサブフレーム間では、CRS及び/又はCSI-RSの送信電力が一定であると仮定すべきではない(変動すると仮定する)ので、CRS又はCSI-RSに基づくCSI測定の結果を平均化すべきではない。 In an unlicensed band cell, the user terminal can assume that the transmission power of CRS and / or CSI-RS is constant between subframes in the same burst, so the result of CSI measurement based on CRS or CSI-RS May be averaged. On the other hand, the user terminal should not assume that the transmission power of CRS and / or CSI-RS is constant between subframes in different bursts (assuming that it varies), so it is based on CRS or CSI-RS. The results of CSI measurements should not be averaged.
 そこで、本実施の形態では、上述のバースト情報をシグナリングすることにより、異なるバースト内のサブフレーム間でCSI測定の結果を平均化してしまうのを防止する。図5A及び図5Bを参照し、バースト情報について詳細に説明する。図5Aでは、現在のサブフレームから同じバーストが続くサブフレーム数を示すバースト情報が用いられる。図5Bでは、バーストのインデックスを示すバースト情報が用いられる。 Therefore, in this embodiment, signaling the above burst information prevents the CSI measurement results from being averaged between subframes in different bursts. The burst information will be described in detail with reference to FIGS. 5A and 5B. In FIG. 5A, burst information indicating the number of subframes in which the same burst continues from the current subframe is used. In FIG. 5B, burst information indicating a burst index is used.
 図5Aでは、左から1番目のバーストを構成するサブフレーム#1において、同じバーストが続くサブフレーム数「0」を示すバースト情報がシグナリングされる。また、次のバーストを構成するサブフレーム#3、#4、#5、#6において、それぞれ、同じバーストが続くサブフレーム数「3」、「2」、「1」、「0」を示すバースト情報がシグナリングされる。図5Aでは、ユーザ端末は、バースト情報によりバーストが終了するサブフレームを認識できるので、当該バーストと次のバーストのサブフレーム間において、CSI測定の結果を平均化してしまうのを防止できる。 In FIG. 5A, in subframe # 1 constituting the first burst from the left, burst information indicating the number of subframes “0” followed by the same burst is signaled. Further, in subframes # 3, # 4, # 5, and # 6 constituting the next burst, bursts indicating the number of subframes “3”, “2”, “1”, and “0”, respectively, in which the same burst continues. Information is signaled. In FIG. 5A, since the user terminal can recognize the subframe in which the burst ends based on the burst information, it is possible to prevent the CSI measurement result from being averaged between the burst and the subframe of the next burst.
 図5Bでは、左から1番目のバーストを構成するサブフレーム#0-#3において、それぞれ、バーストインデックス#0を示すバースト情報がシグナリングされる。2番目のバーストを構成するサブフレーム#7-#0において、それぞれ、バーストインデックス#1を示すバースト情報がシグナリングされる。3番目のバーストを構成するサブフレーム#1においてバーストインデックス#2を示すバースト情報、4番目のバーストを構成するサブフレーム#3-#6においてバーストインデックス#3を示すバースト情報、5番目のバーストを構成するサブフレーム#7-#0においてバーストインデックス#0を示すバースト情報がシグナリングされる。 In FIG. 5B, burst information indicating the burst index # 0 is signaled in each of the subframes # 0 to # 3 constituting the first burst from the left. In subframes # 7 to # 0 constituting the second burst, burst information indicating burst index # 1 is signaled. Burst information indicating burst index # 2 in subframe # 1 constituting the third burst, burst information indicating burst index # 3 in subframe # 3- # 6 constituting the fourth burst, and fifth burst Burst information indicating burst index # 0 is signaled in subframes # 7 to # 0 constituting the frame.
 このように、図5Bでは、各バーストを構成するサブフレームにおいてバーストインデックスを示すバースト情報がシグナリングされる。ユーザ端末は、バーストインデックスにより同じバーストに属するサブフレームであるか否かを識別できるので、異なるバーストのサブフレーム間において、CSI測定の結果を平均化してしまうのを防止できる。 Thus, in FIG. 5B, burst information indicating a burst index is signaled in the subframes constituting each burst. Since the user terminal can identify whether or not the subframes belong to the same burst based on the burst index, it is possible to prevent the CSI measurement results from being averaged between subframes of different bursts.
 また、図5Bでは、2ビットのバーストインデックスが用いられるため、同じバーストインデックス#0が付されるバースト間(すなわち、左から1番目と5番目のバースト間)には、13msの時間間隔がある。最大バースト長が10又は13msであると仮定すると、ユーザ端末が、1番目と5番目のバースト内のサブフレームが同じバーストに属すると誤認する恐れは少ない。このように、バーストインデックスのビット数を増加させることにより、同じバーストインデックスが付されるバースト間での誤認識を防止できる。なお、オーバヘッドを削減する観点からは、1ビットのバーストインデックスが用いられてもよい。 In FIG. 5B, since a 2-bit burst index is used, there is a time interval of 13 ms between bursts assigned the same burst index # 0 (that is, between the first and fifth bursts from the left). . Assuming that the maximum burst length is 10 or 13 ms, the user terminal is less likely to misidentify that the subframes in the first and fifth bursts belong to the same burst. In this way, by increasing the number of bits of the burst index, it is possible to prevent erroneous recognition between bursts with the same burst index. From the viewpoint of reducing overhead, a 1-bit burst index may be used.
 バースト情報は、CSI測定に用いられることが想定されるため、セル内のユーザ端末に共通にシグナリングされてもよい。 Since burst information is assumed to be used for CSI measurement, it may be commonly signaled to user terminals in a cell.
(5)最終サブフレーム情報
 最終サブフレーム情報は、バーストの最終サブフレーム(end subframe)に関する情報である。例えば、最終サブフレーム情報は、バーストの最終サブフレームで用いられるOFDMシンボル数を示すビット値(例えば、最終サブフレームの8種類の構成を示す場合は、3ビット)であってもよい。
(5) Final subframe information The final subframe information is information related to the final subframe of the burst. For example, the final subframe information may be a bit value indicating the number of OFDM symbols used in the final subframe of the burst (for example, 3 bits when indicating eight types of configurations of the final subframe).
 アンライセンスバンドのセルでは、バーストの最終サブフレームにおいて、PDSCH(トランスポートブロック)が、全OFDMシンボルにマッピングされてもよいし、一部のOFDMシンボルにマッピングされてもよい。なお、一部のOFDMシンボルとしては、例えば、DwPTS(Downlink Pilot Time Slot)の構成(6又は10OFDMシンボルなど)を利用できる。このように、バーストの最終サブフレームのOFDMシンボル数が動的に変更可能とする場合、ユーザ端末は、PDSCHを復調するために当該OFDMシンボル数を認識する必要がある。 In an unlicensed band cell, PDSCH (transport block) may be mapped to all OFDM symbols or a part of OFDM symbols in the last subframe of a burst. For example, a configuration of DwPTS (Downlink Pilot Time Slot) (such as 6 or 10 OFDM symbols) can be used as some of the OFDM symbols. As described above, when the number of OFDM symbols in the last subframe of the burst can be dynamically changed, the user terminal needs to recognize the number of OFDM symbols in order to demodulate the PDSCH.
 そこで、本実施の形態では、バーストの最終サブフレームで用いられるOFDMシンボル数を示す最終サブフレーム情報をシグナリングしてもよい。ユーザ端末は、当該最終サブフレーム情報が示すOFDMシンボル数に基づいて、最終サブフレームにマッピングされるPDSCHを復調する。 Therefore, in the present embodiment, final subframe information indicating the number of OFDM symbols used in the final subframe of the burst may be signaled. The user terminal demodulates the PDSCH mapped to the final subframe based on the number of OFDM symbols indicated by the final subframe information.
 最終サブフレーム情報は、PDSCHの復調に用いることが想定されるため、PDSCHをスケジュールされたユーザ端末に個別にシグナリングされてもよい。 Since the final subframe information is assumed to be used for demodulation of PDSCH, it may be individually signaled to a user terminal scheduled for PDSCH.
 また、本実施の形態において、最終サブフレーム情報は、セル内のユーザ端末に共通にシグナリングされてもよい。 Further, in the present embodiment, the final subframe information may be commonly signaled to the user terminals in the cell.
 ユーザ端末は、サブフレームの最初のOFDMシンボルにおいて、アンライセンスバンドのセルのセルIDのCRS(CRSポート0及び1)又は/及びPDCCH(Physical Downlink Control Channel)を検出する場合、当該サブフレームにおいて下り送信が行われると判断できる。一方、バーストの最終サブフレームが一部のOFDMシンボルで構成される場合、全てのOFDMシンボルを含んで構成される通常のサブフレームとは、異なる信号構成となる恐れがある。例えば、最終サブフレームが一部のOFDMシンボルで構成される場合、PSS、SSS、CSI-RS/IMの少なくとも一つが最終サブフレーム内に割り当てられないことも想定される。このため、ユーザ端末は、最終サブフレームにおける信号構成を認識できないと、RRM測定、CSI測定、PDSCHのレートマッチングを適切に行うことができない恐れがある。 When the user terminal detects CRS (CRS ports 0 and 1) or / and PDCCH (Physical Downlink Control Channel) of the cell ID of the cell of the unlicensed band in the first OFDM symbol of the subframe, the user terminal downloads in the subframe. It can be determined that transmission is performed. On the other hand, when the last subframe of a burst is composed of a part of OFDM symbols, there is a possibility that the signal structure is different from that of a normal subframe including all OFDM symbols. For example, when the last subframe is composed of a part of OFDM symbols, it is also assumed that at least one of PSS, SSS, and CSI-RS / IM is not allocated in the last subframe. For this reason, if the user terminal cannot recognize the signal configuration in the final subframe, it may not be able to appropriately perform RRM measurement, CSI measurement, and PDSCH rate matching.
 そこで、本実施の形態では、最終サブフレーム情報をセル内のユーザ端末に共通にシグナリングしてもよい。ユーザ端末は、上述の最終サブフレーム情報に基づいて、バーストの最終サブフレームの信号構成を認識し、認識結果に基づいて、バーストの最終サブフレームにおいて、RRM測定、CSI測定、PDSCHのレートマッチングの少なくとも一つを行う。 Therefore, in the present embodiment, the final subframe information may be commonly signaled to the user terminals in the cell. The user terminal recognizes the signal configuration of the final subframe of the burst based on the above-described final subframe information, and performs RRM measurement, CSI measurement, and PDSCH rate matching in the final subframe of the burst based on the recognition result. Do at least one.
 具体的には、ユーザ端末は、最終サブフレーム情報が示すOFDMシンボル数に基づいて、通常、PSS/SSSが割り当てられるサブフレーム#0及び#5におけるPSS/SSSの割り当て有無を認識してもよい。 Specifically, based on the number of OFDM symbols indicated by the last subframe information, the user terminal may recognize whether or not PSS / SSS is normally allocated in subframes # 0 and # 5 to which PSS / SSS is allocated. .
 例えば、ユーザ端末は、サブフレーム#0又は#5において最終サブフレーム情報が示すOFDMシンボル数が所定数未満である場合、当該サブフレーム#0又は#5においてPSS/SSSが含まれないと仮定してもよい。ここで、当該所定数は、例えば、ノーマルCP(Cyclic Prefix)の場合、14であってもよいし、7であってもよい。 For example, when the number of OFDM symbols indicated by the last subframe information is less than a predetermined number in subframe # 0 or # 5, the user terminal assumes that PSS / SSS is not included in the subframe # 0 or # 5. May be. Here, for example, in the case of a normal CP (Cyclic Prefix), the predetermined number may be 14, or may be 7.
 また、ユーザ端末は、最終サブフレーム情報が示すOFDMシンボル数に基づいて、上位レイヤシグナリングで設定される所定周期(例えば、5又は10ms周期)のサブフレームにおけるCSI-RS/IMの割り当て有無を認識してもよい。 Further, the user terminal recognizes whether or not CSI-RS / IM is allocated in a subframe having a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling based on the number of OFDM symbols indicated by the last subframe information. May be.
 例えば、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が所定数未満である場合、当該サブフレームにおいてCSI-RS/IMが含まれないと仮定してもよい。ここで、当該所定数は、例えば、ノーマルCP(Cyclic Prefix)の場合、14であってもよいし、11であってもよいし、7であってもよい。 For example, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is less than the predetermined number, the user terminal may assume that CSI-RS / IM is not included in the subframe. Here, for example, in the case of a normal CP (Cyclic Prefix), the predetermined number may be 14, 11, or 7.
 また、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数と、上位レイヤシグナリングで通知されるCSI-RS構成とに基づいて、当該サブフレームにおいてCSI-RS/IMの割り当て有無を認識してもよい。ここで、CSI-RS構成とは、CSI-RS/IMの割り当て位置を示す情報であり、上位レイヤシグナリングによりユーザ端末20に通知される。 In addition, based on the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period and the CSI-RS configuration notified by higher layer signaling, the user terminal can perform CSI-RS / IM in the subframe. The presence or absence of assignment may be recognized. Here, the CSI-RS configuration is information indicating an allocation position of CSI-RS / IM, and is notified to the user terminal 20 by higher layer signaling.
 図17は、CSI-RS構成の一例を示す図である。2アンテナポートのCSI-RSの場合、図17Aに示すように、CSI-RS構成#0-#19によりCSI-RS/IMの割り当て位置が特定される。また、4アンテナポートのCSI-RSの場合、図17Bに示すように、CSI-RS構成#0-#9によりCSI-RS/IMの割り当て位置が特定される。 FIG. 17 is a diagram illustrating an example of a CSI-RS configuration. In the case of CSI-RS with two antenna ports, as shown in FIG. 17A, CSI-RS / IM allocation positions are specified by CSI-RS configurations # 0 to # 19. In the case of CSI-RS with 4 antenna ports, as shown in FIG. 17B, CSI-RS / IM allocation positions are specified by CSI-RS configurations # 0 to # 9.
 ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が11以上14未満である場合、CSI-RS/IMの割り当て位置がOFDMシンボル#12及び#13(図17AにおいてCSI-RS構成#4、#9、#18、#19のいずれかが設定される場合、図17BにおいてCSI-RS構成#4又は#9が設定される場合)、当該サブフレームにおいてCSI-RS/IMが含まれないと仮定してもよい。 When the number of OFDM symbols indicated by the last subframe information is 11 or more and less than 14 in the subframe having the predetermined period, the user terminal assigns CSI-RS / IM allocation positions to OFDM symbols # 12 and # 13 (CSI in FIG. 17A). -When any one of RS configurations # 4, # 9, # 18, and # 19 is set (when CSI-RS configuration # 4 or # 9 is set in FIG. 17B), CSI-RS / It may be assumed that no IM is included.
 逆に、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が11以上14未満である場合であっても、CSI-RS/IMの割り当て位置がOFDMシンボル#5及び#6又はOFDMシンボル#9及び#10である場合(図17AにおいてCSI-RS構成#0-#3、#5-#8、#10-#17のいずれかが設定される場合、図17BにおいてCSI-RS構成#0-#3、#5-#8のいずれかが設定される場合)は、当該サブフレームにおいてCSI-RS/IMが含まれると仮定できる。 Conversely, even when the number of OFDM symbols indicated by the last subframe information in the subframe of the predetermined period is 11 or more and less than 14, the user terminal has a position where CSI-RS / IM is allocated as OFDM symbol # 5 and In the case of # 6 or OFDM symbols # 9 and # 10 (when any of CSI-RS configurations # 0- # 3, # 5- # 8, # 10- # 17 is set in FIG. 17A, CSI-RS configurations # 0 to # 3 and # 5 to # 8 are set), it can be assumed that CSI-RS / IM is included in the subframe.
 また、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が7以上11未満である場合、CSI-RS/IMの割り当て位置がOFDMシンボル#9及び#10又はOFDMシンボル#12及び#13である場合(図17AにおいてCSI-RS構成#1-#4、#6-#9、#12-#19のいずれかが設定される場合、図17BにおいてCSI-RS構成#1-#4、#6-#9のいずれかが設定される場合)は、当該サブフレームにおいてCSI-RS/IMが含まれないと仮定してもよい。 In addition, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is 7 or more and less than 11, the user terminal sets the allocation position of CSI-RS / IM to OFDM symbols # 9 and # 10 or OFDM symbols. In the case of # 12 and # 13 (when any of CSI-RS configuration # 1- # 4, # 6- # 9, # 12- # 19 in FIG. 17A is set, CSI-RS configuration # in FIG. 17B) 1- # 4 and # 6- # 9 are set), it may be assumed that CSI-RS / IM is not included in the subframe.
 逆に、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が7以上11未満である場合であっても、CSI-RS/IMの割り当て位置がOFDMシンボル#5及び#6である場合(図17AにおいてCSI-RS構成#0、#5、#10、#11のいずれかが設定される場合、図17BにおいてCSI-RS構成#0又は#5が設定される場合)は、当該サブフレームにおいてCSI-RS/IMが含まれると仮定できる。 Conversely, even when the number of OFDM symbols indicated by the last subframe information in the subframe of the predetermined period is 7 or more and less than 11, the user terminal has the allocation position of CSI-RS / IM as OFDM symbol # 5 and When # 6 (when CSI-RS configuration # 0, # 5, # 10, or # 11 is set in FIG. 17A, when CSI-RS configuration # 0 or # 5 is set in FIG. 17B) ) Can be assumed to include CSI-RS / IM in the subframe.
 また、ユーザ端末は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が所定数(例えば、ノーマルCPの場合14)未満である場合、通常のCSI-RS/IMの割り当てパターン(図17参照)とは異なる割り当てパターンを想定してもよい。当該異なる割り当てパターンは、例えば、図17のOFDMシンボル#0-#6で構成されてもよい。 In addition, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is less than a predetermined number (for example, 14 in the case of normal CP), the user terminal performs a normal CSI-RS / IM allocation pattern ( An assignment pattern different from that shown in FIG. 17 may be assumed. The different allocation patterns may be configured by, for example, OFDM symbols # 0 to # 6 in FIG.
(6)その他
 本実施の形態では、ユーザ端末の消費電力を軽減するために、下り制御情報のモニタリング及び/又はCSI測定を行わないサブフレームに関する情報(例えば、バーストの最終サブフレームからモニタリング及び/又はCSI測定を行わないサブフレーム数)をシグナリングしてもよい。当該サブフレームに関する情報は、上記セル内のユーザ端末に共通にシグナリングされてもよいし、上記セル内のユーザ端末に個別にシグナリングされてもよい。
(6) Others In this embodiment, in order to reduce the power consumption of the user terminal, information on subframes for which monitoring of downlink control information and / or CSI measurement is not performed (for example, monitoring and / or monitoring from the last subframe of a burst) Alternatively, the number of subframes for which CSI measurement is not performed may be signaled. Information on the subframe may be commonly signaled to user terminals in the cell, or may be individually signaled to user terminals in the cell.
 また、上述のように、CRS及び/又はCSI-RSの送信電力はバースト間で異なるため、CRS及び/又はCSI-RSの送信電力に関する情報をシグナリングしてもよい。当該送信電力に関する情報は、上記セル内のユーザ端末に共通にシグナリングされてもよいし、上記セル内のユーザ端末に個別にシグナリングされてもよい。 Also, as described above, since the transmission power of CRS and / or CSI-RS varies between bursts, information on the transmission power of CRS and / or CSI-RS may be signaled. Information regarding the transmission power may be commonly signaled to user terminals in the cell, or may be individually signaled to user terminals in the cell.
(共通シグナリング)
 次に、本実施の形態における共通制御情報のシグナリング(共通シグナリング)の手法について説明する。本実施の形態では、下り制御チャネル(PDCCH又はEPDCCH)以外の物理制御チャネルを拡張して共通制御情報をシグナリングする例(第1の態様)、アンライセンスバンドのセル(SCell)の下り制御チャネルに設けられる共通サーチスペースで共通制御情報をシグナリングする例(第2の態様)、PCellの下り制御チャネルの共通サーチスペースで共通制御情報をシグナリングする例(第3の態様)について説明する。
(Common signaling)
Next, a common control information signaling (common signaling) method according to the present embodiment will be described. In this embodiment, an example in which physical control channels other than the downlink control channel (PDCCH or EPDCCH) are extended to signal common control information (first mode), the downlink control channel of the cell (SCell) of the unlicensed band An example in which common control information is signaled in the provided common search space (second mode) and an example in which common control information is signaled in the common search space of the downlink control channel of the PCell (third mode) will be described.
 ここで、共通制御情報は、CRS情報、CSI-RS/IM情報、DRS情報、バースト情報の少なくとも一つを含むことが想定されるが、他の情報(例えば、下り制御情報のモニタリング及び/又はCSI測定を行わないサブフレームに関する情報やCRS及び/又はCSI-RSの送信電力に関する情報など)を含んでもよい。 Here, the common control information is assumed to include at least one of CRS information, CSI-RS / IM information, DRS information, and burst information, but other information (for example, monitoring of downlink control information and / or Information on subframes for which CSI measurement is not performed, information on transmission power of CRS and / or CSI-RS, and the like may be included.
 また、共通制御情報は、最終サブフレーム情報を含んでもよい。 Further, the common control information may include final subframe information.
 また、以下では、共通制御情報が、CRS情報、CSI-RS/IM情報、バースト情報を含む場合を例示するが、情報の組み合わせはこれに限られない。例えば、共通制御情報は、CSI-RS/IM情報の代わりにDRS情報を含んでもよいし、CSI-RS/IM情報とDRS情報との双方を含まなくともよい。 In the following, a case where the common control information includes CRS information, CSI-RS / IM information, and burst information is illustrated, but the combination of information is not limited to this. For example, the common control information may include DRS information instead of CSI-RS / IM information, or may not include both CSI-RS / IM information and DRS information.
<第1の態様>
 第1の態様では、アンライセンスバンドのセルにおいて、下り制御チャネル(PDCCH又はEPDCCH)以外の物理制御チャネルを拡張して共通制御情報をシグナリングする。以下では、制御フォーマット通知チャネル(PCFICH:Physical Control Format Indicator CHannel)を拡張する例を説明する。
<First aspect>
In the first mode, in an unlicensed band cell, the physical control channel other than the downlink control channel (PDCCH or EPDCCH) is extended to signal common control information. Below, the example which expands a control format notification channel (PCFICH: Physical Control Format Indicator CHannel) is demonstrated.
 ここで、PCFICHは、サブフレーム内でPDCCHに割り当てられるOFDMシンボル数を示す制御フォーマット識別子(CFI:Control Format Indicator)を送信する物理制御チャネルである。PCFICHは、サブフレームの先頭のOFDMシンボルに配置され、セル内の全ユーザ端末が参照する。このため、PCFICHを拡張する場合、下り制御チャネルに共通サーチスペースを設けずに、共通シグナリングを行うことができる。 Here, the PCFICH is a physical control channel that transmits a control format identifier (CFI) indicating the number of OFDM symbols allocated to the PDCCH in the subframe. PCFICH is arranged in the first OFDM symbol of a subframe and is referred to by all user terminals in the cell. For this reason, when extending PCFICH, common signaling can be performed without providing a common search space in the downlink control channel.
 以下では、CFIだけを伝送する既存のPCFICHと区別するため、CFIに加えて他の共通制御情報を伝送するPCFICHを拡張PCFICH(Enhanced PCFICH)と呼ぶが、名称はこれに限られない。拡張PCFICHは、ePCFICH、共通制御チャネルなどと呼ばれてもよい。 Hereinafter, in order to distinguish from existing PCFICH that transmits only CFI, PCFICH that transmits other common control information in addition to CFI is referred to as enhanced PCFICH (Enhanced PCFICH), but the name is not limited thereto. The extended PCFICH may be called ePCFICH, a common control channel, or the like.
 図6-8を参照し、拡張PCFICHの構成を説明する。図6Aでは、既存のPCFICHの構成が示される。図6Aに示すように、既存のPCFICHでは、2ビットのCFIが符号化率1/16で符号化され、32ビットの符号化ビット列がQPSK(Quadrature Phase Shift Keying)により変調される。16シンボルは、4シンボル毎に、物理セルID(PCI:Physical Cell Identity)に基づいて周波数方向に分散された4リソースエレメントグループ(REG)にマッピングされる。なお、1REGは、4リソースエレメント(RE)で構成される。また、4REGは、サブフレーム内の先頭のOFDMシンボルに割り当てられる。 The configuration of the extended PCFICH will be described with reference to Fig. 6-8. FIG. 6A shows an existing PCFICH configuration. As shown in FIG. 6A, in the existing PCFICH, a 2-bit CFI is encoded at an encoding rate of 1/16, and a 32-bit encoded bit string is modulated by QPSK (Quadrature Phase Shift Keying). Sixteen symbols are mapped to four resource element groups (REGs) distributed in the frequency direction on the basis of physical cell IDs (PCIs) every four symbols. One REG is composed of four resource elements (RE). 4REG is assigned to the first OFDM symbol in the subframe.
 一方、拡張PCFICHでは、2ビットのCFIに加えて、所定ビット数の共通制御情報が伝送される。例えば、CFI(2ビット)に加えて、CRS情報(1ビット)、CSI-RS/IM情報(1ビット)、バースト情報(2又は4ビット)を伝送する場合、合計で6又は8ビットの共通制御情報を伝送することになる。このため、拡張PCFICHでは、既存のPCFICHの符号化、パディング、変調、REに対するマッピングの少なくとも一つを変更することで、より多くのビット情報を伝送可能とする。 On the other hand, in the extended PCFICH, in addition to the 2-bit CFI, common control information having a predetermined number of bits is transmitted. For example, when transmitting CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits) in addition to CFI (2 bits), a total of 6 or 8 bits is common. Control information is transmitted. For this reason, in the extended PCFICH, more bit information can be transmitted by changing at least one of encoding, padding, modulation, and mapping of the existing PCFICH.
 例えば、図6Bでは、PCFICHよりも符号化率を低くし、マッピングされるRE数及び変調方式を維持する構成例が示される。図6Bでは、合計6ビットの共通制御情報(CFI(2ビット)+CRS情報(1ビット)+CSI-RS/IM情報(1ビット)+バースト情報(2ビット))が符号化率1/5で符号化され、2ビットがパディングされる。また、合計8ビットの共通制御情報(CFI(2ビット)+CRS情報(1ビット)+CSI-RS/IM情報(1ビット)+バースト情報(4ビット))が符号化率1/4で符号化される。32ビットの符号化ビット列は、既存のPCFICHと同様に、QPSKで変調され、4REGの16REにマッピングされる。 For example, FIG. 6B shows a configuration example in which the coding rate is made lower than that of PCFICH and the number of mapped REs and the modulation scheme are maintained. In FIG. 6B, a total of 6 bits of common control information (CFI (2 bits) + CRS information (1 bit) + CSI-RS / IM information (1 bit) + burst information (2 bits)) is encoded at a coding rate of 1/5. And 2 bits are padded. Also, a total of 8 bits of common control information (CFI (2 bits) + CRS information (1 bit) + CSI-RS / IM information (1 bit) + burst information (4 bits)) is encoded at a coding rate of 1/4. The The 32-bit coded bit string is modulated by QPSK and mapped to 16REG of 4REG, similar to the existing PCFICH.
 また、図7A及び7Bでは、PCFICHよりもマッピングされるRE数を増加させ、符号化率及び変調方式を維持する構成例が示される。図7A及び7Bでは、6又は8ビットの共通制御情報が符号化率1/16で符号化され、96又は128ビットの符号化ビット列がQPSKにより変調される。 7A and 7B show a configuration example in which the number of REs mapped in comparison with PCFICH is increased and the coding rate and the modulation scheme are maintained. 7A and 7B, 6 or 8 bits of common control information is encoded at a coding rate of 1/16, and a 96 or 128 bit encoded bit string is modulated by QPSK.
 図7Aに示すように、変調された48又は64シンボルは、12又は16REGにマッピングされてもよい。この場合、1REGは、既存のPCFICHと同様の4REで構成される。或いは、図7Bに示すように、変調された48又は64シンボルは、4REGにマッピングされてもよい。この場合、1REGは、既存のPCFICHとは異なり、12又は16REで構成される。このように、拡張PCFICHでRE数を既存のPCFICHより増加させる場合、REG内のRE数を維持してREG数を増加させてもよいし、REG数を維持してREG内のRE数を増加させてもよい。 As shown in FIG. 7A, the modulated 48 or 64 symbols may be mapped to 12 or 16 REGs. In this case, 1REG is comprised by 4RE similar to the existing PCFICH. Alternatively, as shown in FIG. 7B, the modulated 48 or 64 symbols may be mapped to 4REG. In this case, unlike the existing PCFICH, 1REG is composed of 12 or 16REs. In this way, when the number of REGs is increased from the existing PCFICH by the extended PCFICH, the number of REGs may be increased by maintaining the number of REGs in the REG, or the number of REs in the REG may be increased by maintaining the number of REGs. You may let them.
 また、図8Aでは、PCFICHよりも符号化率を低くするとともにマッピングされるRE数を増加させ、変調方式を維持する構成例が示される。図8Aでは、6ビットの共通制御情報が符号化率1/10で符号化され、4ビットがパディングされる。また、8ビットの共通制御情報が符号化率1/8で符号化される。64ビットの符号化ビット列は、QPSKで変調され、32REにマッピングされる。なお、図8Aでは、1REGが4REで構成され、8REGにマッピングされる例が示されるがこれに限られない。1REGを構成するRE数を8REに増加させて、既存のPCFICHと同じ4REGにマッピングしてもよい。 8A shows a configuration example in which the modulation rate is maintained by lowering the coding rate than PCFICH and increasing the number of mapped REs. In FIG. 8A, 6-bit common control information is encoded at a coding rate of 1/10, and 4 bits are padded. In addition, 8-bit common control information is encoded at an encoding rate of 1/8. The 64-bit encoded bit string is modulated by QPSK and mapped to 32RE. Although FIG. 8A shows an example in which 1 REG is composed of 4 REs and is mapped to 8 REGs, the present invention is not limited to this. The number of REs constituting one REG may be increased to 8 REs and mapped to the same 4 REGs as the existing PCFICH.
 また、図8Bでは、変調方式を高次にするとともにマッピングされるRE数を増加させ、符号化率を維持する構成例が示される。図8Bでは、6又は8ビットの共通制御情報が符号化率1/16で符号化される。96又は128ビットの符号化ビット列は、16QAM(Quadrature Amplitude Modulation)で変調され、24又は32REにマッピングされる。なお、図8Bでは、1REGが4REで構成され、6又は8REGにマッピングされる例が示されるがこれに限られない。1REGを構成するRE数を6又は8REに増加させ、既存のPCFICHと同じ4REGにマッピングしてもよい。 FIG. 8B shows a configuration example in which the modulation scheme is increased and the number of mapped REs is increased to maintain the coding rate. In FIG. 8B, 6 or 8-bit common control information is encoded at an encoding rate of 1/16. The encoded bit string of 96 or 128 bits is modulated by 16QAM (Quadrature Amplitude Modulation) and mapped to 24 or 32RE. 8B shows an example in which 1 REG is composed of 4 REs and mapped to 6 or 8 REGs, but is not limited thereto. The number of REs constituting one REG may be increased to 6 or 8 REs, and may be mapped to the same 4 REGs as the existing PCFICH.
 以上の第1の態様によれば、アンライセンスバンドのセルにおいて下り制御チャネルに共通サーチスペースを設けずとも、当該セル内のユーザ端末に共通の共通制御情報を伝送できる。また、拡張PCFICHがマッピングされるRE数は、既存のPCFICHと比べて大きく変更されない(例えば、図6Bでは、既存PCFICHと同じ16RE)。このため、追加の共通制御情報をシグナリングすることによるオーバヘッドが生じないか、或いは、最小限にできる。 According to the first aspect described above, common control information common to user terminals in a cell can be transmitted without providing a common search space in a downlink control channel in an unlicensed band cell. Further, the number of REs to which the extended PCFICH is mapped is not greatly changed compared with the existing PCFICH (for example, in FIG. 6B, 16 REs that are the same as the existing PCFICH). For this reason, the overhead caused by signaling the additional common control information does not occur or can be minimized.
 なお、図6-8において拡張PCFICHがマッピングされるREは、サブフレームの先頭のOFDMシンボルであってもよいし、先頭以外のOFDMシンボルであってもよい。また、ユーザ端末が、既存のPCFICHを参照するか拡張PCFICHを参照するかは、上位レイヤシグナリングにより指示されてもよいし、予めユーザ端末に設定されていてもよい。 Note that the RE to which the extended PCFICH is mapped in FIG. 6-8 may be the first OFDM symbol of the subframe or may be an OFDM symbol other than the first. Whether the user terminal refers to the existing PCFICH or the extended PCFICH may be instructed by higher layer signaling, or may be set in the user terminal in advance.
 また、アンライセンスバンドのセルでは、PDCCHをサブフレームの先頭の1又は2番目のOFDMシンボルに割り当てるものとし、3番目のOFDMシンボルに割り当てないものとしてもよい。この場合、CFIのビット数を2ビットから1ビットに削減できる。 Also, in an unlicensed band cell, the PDCCH may be assigned to the first or second OFDM symbol at the beginning of the subframe, and may not be assigned to the third OFDM symbol. In this case, the number of CFI bits can be reduced from 2 bits to 1 bit.
 また、サブフレームの途中から開始されるTTI(partial starting TTI)(以下、部分TTIという)においては、アンライセンスバンドのセルにおける共通制御情報は送信されなくともよい。部分TTIでは、サブフレームの第2スロットの先頭のOFDMシンボルにおいて、既存のPCFICHとPDCCHとを割り当てることが想定される。この場合、ユーザ端末は、部分TTIでは、4又は6OFDMシンボルにCRSを割り当てない、CSI-RS/IMを割り当てない、新たなバーストが開始されると仮定することができるためである。 Also, in a TTI (partial starting TTI) (hereinafter referred to as a partial TTI) starting from the middle of a subframe, common control information in an unlicensed band cell may not be transmitted. In the partial TTI, it is assumed that the existing PCFICH and PDCCH are allocated in the first OFDM symbol of the second slot of the subframe. This is because, in the partial TTI, the user terminal can assume that no CRS is assigned to 4 or 6 OFDM symbols, no CSI-RS / IM is assigned, and a new burst is started.
 例えば、図9A及び9Bに示すように、部分TTI以外のサブフレームでは、拡張PCFICHが、サブフレームの先頭のOFDMシンボルに割り当てられてもよい。一方、図9Bに示すように、部分TTIでは、アンライセンスバンドのセル用の共通制御情報は送信されなくともよいため、部分TTIが開始されるOFDMシンボルに、既存のPCFICHが割り当てられてもよい。 For example, as shown in FIGS. 9A and 9B, in a subframe other than the partial TTI, the extended PCFICH may be assigned to the first OFDM symbol of the subframe. On the other hand, as shown in FIG. 9B, in the partial TTI, the common control information for the cell of the unlicensed band may not be transmitted, so that the existing PCFICH may be assigned to the OFDM symbol where the partial TTI starts. .
<第2の態様>
 第2の態様では、アンライセンスバンドのセル(SCell)の下り制御チャネル(PDCCH又はEPDCCH)に設けられる共通サーチスペースで共通制御情報をシグナリングする。
<Second aspect>
In the second mode, common control information is signaled in a common search space provided in a downlink control channel (PDCCH or EPDCCH) of an unlicensed band cell (SCell).
 具体的には、第2の態様では、アンライセンスバンドのセル用に新たな無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)が導入されるか、SCellで使用されないSI(System Information)-RNTIが利用される。 Specifically, in the second mode, a new wireless network temporary identifier (RNTI) is introduced for an unlicensed band cell or SI (System Information) -RNTI not used in the SCell is used. Used.
 図10は、第2の態様に係る共通制御情報の生成例を示す図である。無線基地局は、既存のDCIフォーマットに共通制御情報を含め、アンライセンスバンドのセル用のRNTI(図10A参照)又はSI-RNTI(図10B参照)によりスクランブル(マスク)された巡回冗長検査(CRC)を付加する。無線基地局は、アンライセンスバンドのセルの下り制御チャネルの共通サーチスペースに、上記CRCが付加された共通制御情報を割り当てて送信する。 FIG. 10 is a diagram illustrating a generation example of common control information according to the second mode. The radio base station includes a cyclic redundancy check (CRC) scrambled (masked) by RNTI (see FIG. 10A) or SI-RNTI (see FIG. 10B) for an unlicensed band cell including common control information in the existing DCI format. ) Is added. The radio base station assigns and transmits the common control information with the CRC added to the common search space of the downlink control channel of the cell of the unlicensed band.
 ユーザ端末は、プライマリセルの下り制御チャネルの共通サーチスペースをブラインド復号し、アンライセンスバンドのセル用のRNTI又はSI-RNTIによりデスクランブルしたCRCによりDCIが正常に復号できる場合、当該CRCが付加された既存フォーマットのDCIを、上述の共通制御情報に読み替える。なお、アンライセンスバンドのセル用のRNTIやSI-RNTIは、上位レイヤシグナリング(例えば、RRCシグナリングやシステム情報)により予めユーザ端末に通知されてもよい。 The user terminal performs blind decoding of the common search space of the downlink control channel of the primary cell, and when the DCI can be normally decoded by the CRC descrambled by the RNTI or SI-RNTI for the cell of the unlicensed band, the CRC is added. The DCI in the existing format is replaced with the above-described common control information. Note that the RNTI or SI-RNTI for an unlicensed band cell may be notified to the user terminal in advance by higher layer signaling (for example, RRC signaling or system information).
 また、図10A及び図10Bに示す既存のDCIフォーマットとしては、例えば、DCIフォーマット1Cが考えられる。DCIフォーマット1Cは、20MHzの帯域幅で15ビットであるため、上述のCRS情報(1ビット)、CSI-RS/IM情報(1ビット)、バースト情報(2又は4ビット)を含めることが可能である。 Further, as the existing DCI format shown in FIGS. 10A and 10B, for example, the DCI format 1C can be considered. Since the DCI format 1C has a bandwidth of 20 MHz and is 15 bits, it can include the above-described CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits). is there.
 以上の第2の態様によれば、共通制御情報にCRCが付加されるので、ユーザ端末における共通制御情報の誤検出を防止できる。また、例えば、CRS情報(1ビット)、CSI-RS/IM情報(1ビット)、バースト情報(2又は4ビット)を含む合計ビット数は4又は6ビットであるため、既存のDCIフォーマット1Cの15ビットには余裕がある。このため、第1の態様と比較して、共通制御情報の拡張性を高めることができる。 According to the above second aspect, since CRC is added to the common control information, it is possible to prevent erroneous detection of the common control information in the user terminal. Also, for example, the total number of bits including CRS information (1 bit), CSI-RS / IM information (1 bit), and burst information (2 or 4 bits) is 4 or 6 bits, so that the existing DCI format 1C There is room for 15 bits. For this reason, the expandability of common control information can be improved compared with a 1st aspect.
 なお、共通制御情報がアンライセンスバンドのEPDCCHの共通サーチスペースに割り当てられる場合、EPDCCHにおける共通サーチスペースの有無に関する情報が、上位レイヤシグナリングによりユーザ端末に通知されてもよい。この場合、ユーザ端末は、共通サーチスペースが割り当てられるリソースを、PCIやサブフレームインデックスに基づいて特定してもよい。 In addition, when the common control information is allocated to the common search space of the EPDCCH in the unlicensed band, information regarding the presence or absence of the common search space in the EPDCCH may be notified to the user terminal by higher layer signaling. In this case, the user terminal may specify the resource to which the common search space is allocated based on the PCI and the subframe index.
 或いは、共通制御情報がアンライセンスバンドのEPDCCHの共通サーチスペースに割り当てられる場合、EPDCCHにおける共通サーチスペースが割り当てられるリソースを示すリソース情報が、上位レイヤシグナリングによりユーザ端末に通知されてもよい。 Alternatively, when the common control information is allocated to the EPDCCH common search space of the unlicensed band, the resource information indicating the resource to which the common search space in the EPDCCH is allocated may be notified to the user terminal by higher layer signaling.
<第3の態様>
 第3の態様では、アンライセンスバンドのセル(SCell)とキャリアアグリゲーション又はデュアルコネクティビティされるプライマリセル(PCell)の下り制御チャネル(PDCCH又はEPDCCH)に設けられる共通サーチスペースで共通制御情報をシグナリングする。具体的には、第3の態様では、アンライセンスバンドのセル用に新たな無線ネットワーク一時識別子(RNTI)が導入される。なお、既存システムのPCellではSI-RNTIが利用されているため、第3の態様では、SI-RNTIを利用することは望ましくない。
<Third Aspect>
In the third mode, common control information is signaled in a common search space provided in a downlink control channel (PDCCH or EPDCCH) of a primary cell (PCell) that is carrier-aggregated or dual-connected with an unlicensed band cell (SCell). Specifically, in the third aspect, a new wireless network temporary identifier (RNTI) is introduced for an unlicensed band cell. Since SI-RNTI is used in the PCell of the existing system, it is not desirable to use SI-RNTI in the third mode.
 図10Aで説明したように、無線基地局は、既存のDCIフォーマットに共通制御情報を含め、アンライセンスバンドのセル用のRNTIによりスクランブル(マスク)されたCRCを付加する。無線基地局は、プライマリセルの下り制御チャネルの共通サーチスペースに、上記CRCが付加された共通制御情報を割り当てて(クロスキャリアスケジューリングして)送信する。 As described with reference to FIG. 10A, the radio base station adds common control information to the existing DCI format and adds a CRC scrambled (masked) by an RNTI for an unlicensed band cell. The radio base station allocates (cross-carrier schedules) the common control information with the CRC added to the common search space of the downlink control channel of the primary cell and transmits it.
 ユーザ端末は、プライマリセルの下り制御チャネルの共通サーチスペースをブラインド復号し、アンライセンスバンドのセル用のRNTIによりデスクランブルしたCRCによりDCIが正常に復号できる場合、当該CRCが付加された既存フォーマットのDCIを、上述の共通制御情報に読み替える。なお、アンライセンスバンドのセル用のRNTIは、上位レイヤシグナリング(例えば、RRCシグナリングやシステム情報)により予めユーザ端末に通知されてもよい。 The user terminal performs blind decoding on the common search space of the downlink control channel of the primary cell, and when the DCI can be normally decoded by the CRC descrambled by the RNTI for the cell of the unlicensed band, the user terminal of the existing format to which the CRC is added DCI is replaced with the above-described common control information. Note that the RNTI for an unlicensed band cell may be notified to the user terminal in advance by higher layer signaling (for example, RRC signaling or system information).
 以上の第3の態様によれば、第2の態様のようにアンライセンスバンドのセルにおいて下り制御チャネルに共通サーチスペースを設けずとも、当該セル内のユーザ端末に共通の共通制御情報を伝送できる。また、共通制御情報にCRCが付加されるので、ユーザ端末における共通制御情報の誤検出を防止できる。 According to the above third aspect, common control information can be transmitted to user terminals in the cell without providing a common search space in the downlink control channel in the cell of the unlicensed band as in the second aspect. . Moreover, since CRC is added to the common control information, erroneous detection of the common control information in the user terminal can be prevented.
 なお、第3の態様のようにクロスキャリアスケジューリングを行う場合、既存のDCIフォーマットには、SCellを識別するインデックス(例えば、32CCの場合、5ビット)を既存フォーマットに含めることが想定されるが、上述の合計ビット数4又は6ビットにSCellのインデックス(5ビット)を追加しても、既存のDCIフォーマット1Cの15ビットには余裕がある。したがって、第1の態様と比較して、共通制御情報の拡張性を高めることができる。 When performing cross-carrier scheduling as in the third aspect, it is assumed that the existing DCI format includes an index for identifying the SCell (for example, 5 bits in the case of 32CC) in the existing format. Even if the SCell index (5 bits) is added to the total number of bits of 4 or 6 described above, the existing DCI format 1C has 15 bits. Therefore, the expandability of the common control information can be improved as compared with the first mode.
 また、共通制御情報がプライマリセルのEPDCCHの共通サーチスペースに割り当てられる場合、第2の態様で説明したように、EPDCCHにおける共通サーチスペースの有無に関する情報、又は、当該共通サーチスペースが割り当てられるリソース情報が、上位レイヤシグナリングによりユーザ端末に通知されてもよい。 Further, when the common control information is allocated to the common search space of the EPDCCH of the primary cell, as described in the second aspect, information regarding the presence or absence of the common search space in the EPDCCH, or resource information to which the common search space is allocated May be notified to the user terminal by higher layer signaling.
(UE固有シグナリング)
 次に、本実施の形態における固有制御情報のシグナリング(UE固有シグナリング)の手法について説明する。本実施の形態では、固有制御情報は、アンライセンスバンドのセル(SCell)の下り制御チャネルに設けられるユーザ固有サーチスペースでシグナリングされるか、或いは、上記セルとCA又はDCを行うPCellの下り制御チャネルのユーザ固有サーチスペースでシグナリングされる。
(UE specific signaling)
Next, a technique of unique control information signaling (UE specific signaling) in the present embodiment will be described. In the present embodiment, the unique control information is signaled in a user-specific search space provided in the downlink control channel of a cell (SCell) of an unlicensed band, or downlink control of a PCell that performs CA or DC with the cell. Signaled in the channel's user-specific search space.
 ここで、固有制御情報は、最終サブフレーム情報、DRS情報の少なくとも一つを含むことが想定されるが、他の情報(例えば、下り制御情報のモニタリング及び/又はCSI測定を行わないサブフレームに関する情報やCRS及び/又はCSI-RSの送信電力に関する情報など)を含んでもよい。 Here, it is assumed that the specific control information includes at least one of final subframe information and DRS information, but other information (for example, a subframe for which monitoring of downlink control information and / or CSI measurement is not performed) Information, information on CRS and / or CSI-RS transmission power, etc.).
 例えば、上述の最終サブフレーム情報(3ビット)、DRS情報(1ビット)を含む固有制御情報をシグナリングする場合、追加で4ビットが必要となる。このため、ビット数を増加させた新たなDCIフォーマットが導入されてもよい。 For example, when signaling specific control information including the above-mentioned final subframe information (3 bits) and DRS information (1 bit), an additional 4 bits are required. For this reason, a new DCI format with an increased number of bits may be introduced.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上述の共通シグナリング及び/又はUE固有シグナリングが適用される。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, the above-described common signaling and / or UE-specific signaling is applied.
 図11は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。また、無線通信システム1は、アンライセンスバンドを利用可能な無線基地局(例えば、LTE-U基地局)を有している。 FIG. 11 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied. The wireless communication system 1 also has a wireless base station (for example, LTE-U base station) that can use an unlicensed band.
 なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)などと呼ばれてもよい。 The wireless communication system 1 includes SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), etc. May be called.
 図11に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)とを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。例えば、マクロセルC1をライセンスバンドで利用し、スモールセルC2をアンライセンスバンド(LTE-U)で利用する形態が考えられる。また、スモールセルの一部をライセンスバンドで利用し、他のスモールセルをアンライセンスバンドで利用する形態が考えられる。 A radio communication system 1 shown in FIG. 11 includes a radio base station 11 that forms a macro cell C1, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. I have. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. For example, a mode in which the macro cell C1 is used in the license band and the small cell C2 is used in the unlicensed band (LTE-U) is conceivable. Further, a mode in which a part of the small cell is used in the license band and another small cell is used in the unlicensed band is conceivable.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。例えば、ライセンスバンドを利用する無線基地局11からユーザ端末20に対して、アンライセンスバンドを利用する無線基地局12(例えば、LTE-U基地局)に関するアシスト情報(例えば、DL信号構成)を送信することができる。また、ライセンスバンドとアンライセンスバンドでCAを行う場合、1つの無線基地局(例えば、無線基地局11)がライセンスバンドセル及びアンライセンスバンドセルのスケジュールを制御する構成とすることも可能である。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. For example, assist information (for example, DL signal configuration) regarding the radio base station 12 (for example, LTE-U base station) that uses the unlicensed band is transmitted from the radio base station 11 that uses the license band to the user terminal 20. can do. Further, when CA is performed in the license band and the unlicensed band, it is possible to adopt a configuration in which one radio base station (for example, the radio base station 11) controls the schedules of the license band cell and the unlicensed band cell.
 なお、ユーザ端末20は、無線基地局11に接続せず、無線基地局12に接続する構成としてもよい。例えば、アンライセンスバンドを用いる無線基地局12がユーザ端末20とスタンドアローンで接続する構成としてもよい。この場合、無線基地局12がアンライセンスバンドセルのスケジュールを制御する。 Note that the user terminal 20 may be connected to the radio base station 12 without being connected to the radio base station 11. For example, the wireless base station 12 using the unlicensed band may be connected to the user terminal 20 in a stand-alone manner. In this case, the radio base station 12 controls the schedule of the unlicensed band cell.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12), a wired connection (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.) or a wireless connection It can be set as the structure to do.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。また、同一のアンライセンスバンドを共有して利用する各無線基地局10は、時間的に同期するように構成されていることが好ましい。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10. Moreover, it is preferable that the radio base stations 10 that share and use the same unlicensed band are configured to be synchronized in time.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。 Each user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single-Carrier Frequency Division Multiple Access)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Carrier Frequency Division Multiple Access) is applied. OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there. The uplink and downlink radio access methods are not limited to these combinations.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHは、下りデータチャネルと呼ばれてもよい。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. The PDSCH may be referred to as a downlink data channel. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、拡張PCFICH(Enhanced Physical Control Format Indicator Channel)PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数であるCFI(Control Format Indicator)が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。拡張PCFICHは、CFIに加えて、アンライセンスバンドのセル用の共通制御情報の伝送に用いられる。 Downlink L1 / L2 control channels are PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), Enhanced PCFICH (Enhanced Physical Control Format Indicator Channel) PHICH (Physical Hybrid-RQ Indicator Channel). Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The PCFICH transmits a CFI (Control Format Indicator) which is the number of OFDM symbols used for the PDCCH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH. The EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH. The extended PCFICH is used for transmission of common control information for cells in an unlicensed band in addition to CFI.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上りL1/L2制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHは、上りデータチャネルと呼ばれてもよい。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報(ACK/NACK)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the radio communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink L1 / L2 control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. PUSCH may be referred to as an uplink data channel. User data and higher layer control information are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information (ACK / NACK), and the like are transmitted by PUCCH. A random access preamble for establishing connection with a cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、検出測定用参照信号(DRS:Discovery Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), detection measurement reference signal (DRS: Discovery Reference Signal), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<無線基地局>
 図12は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
<Wireless base station>
FIG. 12 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and other transmission processing Is transferred to the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
 送受信部103は、アンライセンスバンドで上り(UL)/下り(DL)信号の送受信が可能である。なお、送受信部103は、ライセンスバンドでUL/DL信号の送受信が可能であってもよい。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 can transmit / receive uplink (UL) / downlink (DL) signals in an unlicensed band. The transmission / reception unit 103 may be capable of transmitting / receiving UL / DL signals in a license band. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 なお、送受信部103は、少なくともアンライセンスバンドを用いて、ユーザ端末20に下り信号を送信する。例えば、送受信部103は、PSS/SSSと周波数多重されるCSI-RSを含むDRSを、ユーザ端末20に設定したDMTC期間において、アンライセンスバンドで送信する。 The transmission / reception unit 103 transmits a downlink signal to the user terminal 20 using at least the unlicensed band. For example, the transmission / reception unit 103 transmits DRS including CSI-RS frequency-multiplexed with PSS / SSS in the unlicensed band in the DMTC period set in the user terminal 20.
 また、送受信部103は、少なくともアンライセンスバンドを用いて、ユーザ端末20から上り信号を受信する。送受信部103は、ユーザ端末20から、RRM測定及び/又はCSI測定の結果(例えば、CSIフィードバックなど)をライセンスバンド及び/又はアンライセンスバンドで受信してもよい。 Further, the transmission / reception unit 103 receives an uplink signal from the user terminal 20 using at least the unlicensed band. The transmission / reception unit 103 may receive a result of RRM measurement and / or CSI measurement (for example, CSI feedback) from the user terminal 20 in a license band and / or an unlicensed band.
 また、送受信部103は、共通制御情報及び/又は固有制御情報を送信する。ここで、共通制御情報は、CRS情報、CSI-RS/IM情報、DRS情報、バースト情報の少なくとも一つを含む。固有制御情報は、最終サブフレーム情報、DRS情報の少なくとも一つを含む。また、送受信部103は、上位レイヤ制御情報を送信する。 Further, the transmission / reception unit 103 transmits common control information and / or unique control information. Here, the common control information includes at least one of CRS information, CSI-RS / IM information, DRS information, and burst information. The unique control information includes at least one of final subframe information and DRS information. In addition, the transmission / reception unit 103 transmits higher layer control information.
 また、送受信部103で送信される共通制御情報は、最終サブフレーム情報を含んでもよい。 Further, the common control information transmitted by the transmission / reception unit 103 may include final subframe information.
 図13は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図13では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。 FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 13, the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. ing.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。なお、ライセンスバンドとアンライセンスバンドに対して1つの制御部(スケジューラ)301でスケジューリングを行う場合、制御部301は、ライセンスバンドセル及びアンライセンスバンドセルの通信を制御する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。 The control unit (scheduler) 301 controls the entire radio base station 10. When scheduling is performed by one control unit (scheduler) 301 for the license band and the unlicensed band, the control unit 301 controls communication between the license band cell and the unlicensed band cell. The control unit 301 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。 The control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example. The control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号(共通制御情報、固有制御情報)、拡張PCFICHで送信される共通制御情報のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))や、CRS、CSI-RS、DMRSなどの下り参照信号のスケジューリングの制御を行う。 The control unit 301 schedules system information, downlink data signals transmitted by PDSCH, downlink control signals (common control information and unique control information) transmitted by PDCCH and / or EPDCCH, and common control information transmitted by extended PCFICH. (Eg, resource allocation) is controlled. It also controls scheduling of synchronization signals (PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and downlink reference signals such as CRS, CSI-RS, and DMRS.
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認信号(HARQ-ACK))、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。 The control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
 制御部301は、測定部305により得られたLBT結果に従って、送信信号生成部302及びマッピング部303に対して、下り信号の送信を制御する。具体的には、制御部301は、DRS(LAA DRS)を、アンライセンスバンドで送信するように、DRSに含まれる各種信号の生成、マッピング、送信などを制御する。 The control unit 301 controls the transmission of the downlink signal to the transmission signal generation unit 302 and the mapping unit 303 according to the LBT result obtained by the measurement unit 305. Specifically, the control unit 301 controls generation, mapping, transmission, and the like of various signals included in the DRS so that DRS (LAA DRS) is transmitted in the unlicensed band.
 ここで、制御部301は、上述の共通制御情報及び/又は固有制御情報の生成及びマッピングを制御してもよい。具体的には、制御部301は、PCFICHを拡張した拡張PCFICHを介して伝送される共通制御情報の生成、CFIと共通制御情報との符号化(例えば、ジョイント符号化)、変調、マッピングを制御する(第1の態様、図6-8)。なお、拡張PCFICHの符号化率、マッピングされるリソースエレメント数、変調方式の少なくとも一つは、PCFICHと異なる。 Here, the control unit 301 may control the generation and mapping of the above-described common control information and / or unique control information. Specifically, the control unit 301 controls generation of common control information transmitted via the extended PCFICH obtained by extending PCFICH, encoding (for example, joint encoding), modulation, and mapping between the CFI and the common control information. (First embodiment, FIGS. 6-8). Note that at least one of the coding rate of extended PCFICH, the number of resource elements to be mapped, and the modulation scheme is different from PCFICH.
 或いは、制御部301は、共通制御情報にアンライセンスバンドのセル用のRNTI又はSI-RNTIによりスクランブルされたCRCを付加するように制御する(第2及び第3の態様)。また、制御部301は、アンライセンスバンドのセル、又は、当該セルとCA又はDCするプライマリセルの下り制御チャネル(PDCCH又はEPDCCH)の共通サーチスペースに、上記CRCが付加された共通制御情報を割り当てるように制御する。 Alternatively, the control unit 301 performs control so as to add CRC scrambled by RNTI or SI-RNTI for cells in the unlicensed band to the common control information (second and third modes). Further, the control unit 301 allocates the common control information with the CRC added to the common search space of the unlicensed band cell or the downlink control channel (PDCCH or EPDCCH) of the primary cell that performs CA or DC with the cell. To control.
 また、制御部301は、EPDCCHに共通サーチスペースを設ける場合、当該EPDCCHにおける共通サーチスペースの有無に関する情報、又は、当該共通サーチスペースが割り当てられるリソース情報を、上位レイヤシグナリングにより送信するように制御する(第2及び第3の態様)。 In addition, when providing a common search space in the EPDCCH, the control unit 301 performs control so that information regarding the presence or absence of the common search space in the EPDCCH or resource information to which the common search space is allocated is transmitted by higher layer signaling. (Second and third aspects).
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20におけるCSI測定の結果などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。また、送信信号生成部302は、PSS、SSS、CRS、CSI-RSなどを含むDRSを生成する。 The transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301. Further, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on the result of CSI measurement in each user terminal 20. Also, the transmission signal generation unit 302 generates a DRS including PSS, SSS, CRS, CSI-RS, and the like.
 また、送信信号生成部302は、制御部301からの指示に基づいて、共通制御情報及び固有制御情報を生成(符号化処理、変調処理などを含む)する。具体的には、送信信号生成部302は、符号化率、リソースエレメント数、変調方式の少なくとも一つを既存のPCFICHとは異ならせて、拡張CFI通知チャネルで伝送される共通制御情報を生成してもよい(第1の態様)。或いは、送信信号生成部302は、アンライセンスバンドのセル用のRNTI又はSI-RNTIでスクランブルされたCRCを共通制御情報に付加してもよい(第2及び第3の態様)。 Also, the transmission signal generation unit 302 generates common control information and unique control information (including encoding processing, modulation processing, and the like) based on an instruction from the control unit 301. Specifically, the transmission signal generation unit 302 generates common control information transmitted through the extended CFI notification channel by changing at least one of the coding rate, the number of resource elements, and the modulation scheme from the existing PCFICH. (First embodiment). Alternatively, the transmission signal generation unit 302 may add CRC scrambled with RNTI or SI-RNTI for cells of an unlicensed band to the common control information (second and third modes).
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部305は、制御部301からの指示に基づいて、LBTが設定されるキャリア(例えば、アンライセンスバンド)でLBTを実施し、LBT結果(例えば、チャネル状態がアイドルであるかビジーであるかの判定結果)を、制御部301に出力する。 Based on an instruction from the control unit 301, the measurement unit 305 performs LBT on a carrier (for example, an unlicensed band) in which LBT is set, and the LBT result (for example, whether the channel state is idle or busy). Is output to the control unit 301.
 また、測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 may measure, for example, the received power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like of the received signal. . The measurement result may be output to the control unit 301.
<ユーザ端末>
 図14は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
<User terminal>
FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、アンライセンスバンドでUL/DL信号の送受信が可能である。なお、送受信部203は、ライセンスバンドでUL/DL信号の送受信が可能であってもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can transmit / receive UL / DL signals in an unlicensed band. The transmission / reception unit 203 may be capable of transmitting / receiving UL / DL signals in a license band.
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 203 can be composed of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which are described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. In addition, broadcast information in the downlink data is also transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 なお、送受信部203は、少なくともアンライセンスバンドを用いて、無線基地局10から送信された下り信号を受信する。例えば、送受信部203は、PSS/SSSと周波数多重されるCSI-RSを含むDRSを、無線基地局10から設定されたDMTC期間において、アンライセンスバンドで受信する。 Note that the transmission / reception unit 203 receives a downlink signal transmitted from the radio base station 10 using at least the unlicensed band. For example, the transmission / reception unit 203 receives a DRS including a CSI-RS that is frequency-multiplexed with the PSS / SSS in an unlicensed band during the DMTC period set from the radio base station 10.
 また、送受信部203は、少なくともアンライセンスバンドを用いて、無線基地局10に上り信号を送信する。例えば、送受信部203は、DRSのRRM測定及び/又はCSI測定の結果(例えば、CSIフィードバックなど)をライセンスバンド及び/又はアンライセンスバンドで送信してもよい。 Further, the transmission / reception unit 203 transmits an uplink signal to the radio base station 10 using at least an unlicensed band. For example, the transmission / reception unit 203 may transmit the result of RRM measurement of DRS and / or CSI measurement (for example, CSI feedback) in the license band and / or the unlicensed band.
 また、送受信部203は、共通制御情報及び/又は固有制御情報を受信する。また、送受信部203は、上位レイヤ制御情報を受信する。 Further, the transmission / reception unit 203 receives common control information and / or unique control information. The transmission / reception unit 203 receives higher layer control information.
 図15は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図15においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。 FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. At least.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。 The control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403. The control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。 The control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10. The control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like. To control.
 制御部401は、アンライセンスバンドにおいて、RRM測定及び/又はCSI測定やセルサーチを行うように、受信信号処理部404及び測定部405を制御する。なお、RRM測定は、LAA DRSを用いて行われてもよい。また、CSI測定は、LAA DRSを用いて行われてもよいし、CSI-RS/IMを用いて行われてもよい。また、制御部401は、測定部405により得られたLBT結果に従って、送信信号生成部402及びマッピング部403に対して、上り信号の送信を制御してもよい。 The control unit 401 controls the reception signal processing unit 404 and the measurement unit 405 to perform RRM measurement and / or CSI measurement and cell search in the unlicensed band. The RRM measurement may be performed using LAA DRS. Also, CSI measurement may be performed using LAA DRS or CSI-RS / IM. Further, the control unit 401 may control transmission of the uplink signal to the transmission signal generation unit 402 and the mapping unit 403 according to the LBT result obtained by the measurement unit 405.
 具体的には、制御部401は、上述の共通制御情報及び/又は固有制御情報の受信処理を制御してもよい。具体的には、制御部401は、拡張PCFICHを介した共通制御情報の受信処理(例えば、復調、復号など)を制御してもよい(第1の態様、図6-8)。 Specifically, the control unit 401 may control the reception processing of the above-described common control information and / or unique control information. Specifically, the control unit 401 may control reception processing (for example, demodulation, decoding, etc.) of common control information via the extended PCFICH (first mode, FIGS. 6-8).
 或いは、制御部401は、アンライセンスバンドのセルの下り制御チャネルの共通サーチスペースに割り当てられる共通制御情報の受信処理(例えば、ブラインド復号、復調、復号など)を行うように制御してもよい(第2の態様)。制御部401は、アンライセンスバンドのセル用のRNTI又はSI-RNTIによりデスクランブルしたCRCによりDCIが正常に復号できる場合、当該CRCが付加された既存フォーマットのDCIを、上述の共通制御情報に読み替える。 Alternatively, the control unit 401 may perform control so as to perform reception processing (for example, blind decoding, demodulation, decoding, etc.) of common control information allocated to the common search space of the downlink control channel of the cell of the unlicensed band ( Second aspect). When the DCI can be normally decoded by the CRC descrambled by the RNTI or SI-RNTI for the cell of the unlicensed band, the control unit 401 replaces the DCI of the existing format to which the CRC is added with the above-described common control information. .
 或いは、制御部401は、アンライセンスバンドのセルとCA又はDCを行うプライマリセルの下り制御チャネルの共通サーチスペースに割り当てられる共通制御情報の受信処理(例えば、ブラインド復号、復調、復号など)を行うように制御してもよい(第3の態様)。制御部401は、アンライセンスバンドのセル用のRNTIによりデスクランブルしたCRCによりDCIが正常に復号できる場合、当該CRCが付加された既存フォーマットのDCIを、上述の共通制御情報に読み替える。 Alternatively, the control unit 401 performs reception processing (for example, blind decoding, demodulation, decoding, etc.) of common control information allocated to a common search space of a downlink control channel of a primary cell that performs CA or DC with an unlicensed band cell. (3rd aspect) may be controlled. When the DCI can be normally decoded by the CRC descrambled by the RNTI for the cell of the unlicensed band, the control unit 401 replaces the DCI of the existing format to which the CRC is added with the above-described common control information.
 また、制御部401は、EPDCCHに共通サーチスペースを設ける場合、上位レイヤシグナリングされる情報(例えば、EPDCCHにおける共通サーチスペースの有無に関する情報や、リソース情報そのもの)に基づいて共通サーチスペースが割り当てられるリソース情報を検出してもよい(第2及び第3の態様)。 In addition, when providing a common search space in the EPDCCH, the control unit 401 allocates a common search space based on information signaled by higher layers (for example, information on the presence / absence of the common search space in the EPDCCH and resource information itself). Information may be detected (second and third modes).
 また、制御部401は、アンライセンスバンドのセル又は当該セルとDCを行うプライマリセルの下り制御チャネルのユーザ固有サーチスペースに割り当てられる固有制御情報の受信処理(例えば、ブラインド復号、復調、復号など)を行うように制御してもよい。 Further, the control unit 401 receives specific control information allocated to the user specific search space of the downlink control channel of the primary cell that performs DC with the cell of the unlicensed band (for example, blind decoding, demodulation, decoding, etc.) You may control to perform.
 また、制御部401は、共通制御情報及び/又は固有制御情報に基づいて、当該共通制御情報及び/又は固有制御情報が受信されたサブフレームにおけるチャネル状態情報(CSI)の測定、同期、PDSCHの復調、レートマッチングの少なくとも一つを制御してもよい。例えば、制御部401は、上述のCRS情報に基づいて、同期、CRSに基づくCSI測定、PDSCHの復調、レートマッチングの少なくとも一つを制御する。 In addition, the control unit 401 may measure, synchronize, and perform PDSCH of channel state information (CSI) in a subframe in which the common control information and / or unique control information is received based on the common control information and / or unique control information. At least one of demodulation and rate matching may be controlled. For example, the control unit 401 controls at least one of synchronization, CSI measurement based on CRS, demodulation of PDSCH, and rate matching based on the above-described CRS information.
 また、制御部401は、上述のCSI-RS/IM情報に基づいて、DRSサブフレームでのCSI測定を制御してもよい。或いは、制御部401は、上述のDRS情報に基づいて、DRSサブフレームでのCSI測定及び/又はレートマッチングを制御してもよい。また、制御部401は、DMTC内で最初に検出されたPSS、SSS及びCRSを含むサブフレームでCSI測定を行うように制御してもよい。また、制御部401は、上述のバースト情報に基づいて、同じバースト内のCSI測定の結果を平均化してもよい。また、制御部401は、上述の最終サブフレーム情報に基づいて、最終サブフレームにマッピングされるPDSCHの復調及び/又はレートマッチングを制御してもよい。 In addition, the control unit 401 may control CSI measurement in the DRS subframe based on the above-described CSI-RS / IM information. Alternatively, the control unit 401 may control CSI measurement and / or rate matching in the DRS subframe based on the above DRS information. In addition, the control unit 401 may perform control so that CSI measurement is performed in a subframe including PSS, SSS, and CRS detected first in DMTC. Moreover, the control part 401 may average the result of the CSI measurement in the same burst based on the above-mentioned burst information. In addition, the control unit 401 may control demodulation and / or rate matching of the PDSCH mapped to the final subframe based on the above-described final subframe information.
 また、制御部401は、上述の最終サブフレーム情報に基づいて、バーストの最終サブフレームの信号構成を認識し、認識結果に基づいて、バーストの最終サブフレームにおけるRRM測定、CSI測定、PDSCHのレートマッチングの少なくとも一つを制御してもよい。 Further, the control unit 401 recognizes the signal configuration of the last subframe of the burst based on the above-described last subframe information, and based on the recognition result, the RRM measurement, CSI measurement, and PDSCH rate in the last subframe of the burst At least one of the matchings may be controlled.
 具体的には、制御部401は、最終サブフレーム情報が示すOFDMシンボル数に基づいて、通常、PSS/SSSが割り当てられるサブフレーム#0及び#5におけるPSS/SSSの割り当て有無を認識してもよい。例えば、制御部401は、サブフレーム#0又は#5において最終サブフレーム情報が示すOFDMシンボル数が所定数未満である場合、当該サブフレーム#0又は#5においてPSS/SSSが含まれないと仮定してもよい。ここで、当該所定数は、例えば、ノーマルCPの場合、14であってもよいし、7であってもよい。 Specifically, based on the number of OFDM symbols indicated by the last subframe information, the control unit 401 recognizes whether or not PSS / SSS is normally allocated in subframes # 0 and # 5 to which PSS / SSS is allocated. Good. For example, when the number of OFDM symbols indicated by the last subframe information in subframe # 0 or # 5 is less than a predetermined number, control section 401 assumes that PSS / SSS is not included in subframe # 0 or # 5. May be. Here, the predetermined number may be 14 or 7 in the case of a normal CP, for example.
 また、制御部401は、最終サブフレーム情報が示すOFDMシンボル数に基づいて、上位レイヤシグナリングで設定される所定周期(例えば、5又は10ms周期)のサブフレームにおけるCSI-RS/IMの割り当て有無を認識してもよい。例えば、制御部401は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が所定数未満である場合、当該サブフレームにおいてCSI-RS/IMが含まれないと仮定してもよい。ここで、当該所定数は、例えば、ノーマルCPの場合、14であってもよいし、11であってもよい。 Further, based on the number of OFDM symbols indicated by the last subframe information, the control unit 401 determines whether or not CSI-RS / IM is allocated in a subframe having a predetermined period (for example, a period of 5 or 10 ms) set by higher layer signaling. You may recognize it. For example, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined period is less than the predetermined number, the control unit 401 may assume that CSI-RS / IM is not included in the subframe. . Here, the predetermined number may be 14 or 11 in the case of a normal CP, for example.
 また、制御部401は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数と、上位レイヤシグナリングで通知されるCSI-RS構成(図17参照)とに基づいて、当該サブフレームにおいてCSI-RS/IMの割り当て有無を認識してもよい。 In addition, the control unit 401, in the subframe, based on the number of OFDM symbols indicated by the final subframe information in the subframe having the predetermined period and the CSI-RS configuration (see FIG. 17) notified by higher layer signaling. The presence / absence of CSI-RS / IM assignment may be recognized.
 また、制御部401は、上記所定周期のサブフレームにおいて最終サブフレーム情報が示すOFDMシンボル数が所定数(例えば、ノーマルCPの場合、14)未満である場合、通常のCSI-RS/IMの割り当てパターン(図17参照)とは異なる割り当てパターンを想定してもよい。当該異なる割り当てパターンは、例えば、図17のOFDMシンボル#0-#6で構成されてもよい。  In addition, when the number of OFDM symbols indicated by the last subframe information in the subframe having the predetermined cycle is less than a predetermined number (for example, 14 in the case of normal CP), the control unit 401 assigns a normal CSI-RS / IM. You may assume the allocation pattern different from a pattern (refer FIG. 17). The different allocation patterns may be configured by, for example, OFDM symbols # 0 to # 6 in FIG. *
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
 また、受信信号処理部404は、制御部401からの指示に基づいて、共通制御情報及び固有制御情報の受信処理(デマッピング、復調、復号など)を行う。具体的には、受信信号処理部404は、拡張PCFICHで伝送される共通制御情報の復調、復号などを行ってもよい(第1の態様)。また、受信信号処理部404は、アンライセンスバンドのセル又はプライマリセルの共通サーチスペースに割り当てられる共通制御情報をブラインド復号し、アンライセンスバンドのセル用のRNTI又はSI-RNTIでデスクランブルされたCRCに基づいて共通制御情報を復号してもよい(第2及び第3の態様)。また、受信信号処理部404は、アンライセンスバンドのセル又はプライマリセルのユーザ固有サーチスペースに割り当てられる固有制御情報をブラインド復号してもよい。 Also, the reception signal processing unit 404 performs reception processing (demapping, demodulation, decoding, etc.) of common control information and unique control information based on an instruction from the control unit 401. Specifically, the received signal processing unit 404 may perform demodulation, decoding, and the like of the common control information transmitted by the extended PCFICH (first mode). The received signal processing unit 404 blind-decodes common control information assigned to a common search space of an unlicensed band cell or primary cell, and is descrambled by an RNTI or SI-RNTI for the cell of the unlicensed band. The common control information may be decoded based on the second and third aspects. Reception signal processing section 404 may perform blind decoding on unique control information allocated to a user-specific search space of an unlicensed band cell or primary cell.
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example. The reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部405は、制御部401からの指示に基づいて、LBTが設定されるキャリア(例えば、アンライセンスバンド)でLBTを実施してもよい。測定部405は、LBT結果(例えば、チャネル状態がアイドルであるかビジーであるかの判定結果)を、制御部401に出力してもよい。 The measurement unit 405 may perform LBT on a carrier (for example, an unlicensed band) on which LBT is set based on an instruction from the control unit 401. The measurement unit 405 may output an LBT result (for example, a determination result of whether the channel state is idle or busy) to the control unit 401.
 また、測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。例えば、測定部405は、LAA DRSをRRM測定する。測定結果は、制御部401に出力されてもよい。 Further, the measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal. For example, the measurement unit 405 performs RRM measurement of LAA DRS. The measurement result may be output to the control unit 401.
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
 例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、中央処理装置(プロセッサ)1001、主記憶装置(メモリ)1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。 For example, a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention. FIG. 16 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention. The wireless base station 10 and the user terminal 20 described above physically include a central processing unit (processor) 1001, a main storage device (memory) 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, You may comprise as a computer apparatus containing the bus | bath 1007 grade | etc.,. In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like.
 無線基地局10及びユーザ端末20における各機能は、中央処理装置1001、主記憶装置1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、中央処理装置1001が演算を行い、通信装置1004による通信や、主記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the radio base station 10 and the user terminal 20 is performed by causing the central processing unit 1001 to perform computation by reading predetermined software (program) on hardware such as the central processing unit 1001 and the main storage device 1002. This is realized by controlling communication by the device 1004 and reading and / or writing of data in the main storage device 1002 and the auxiliary storage device 1003.
 中央処理装置1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。中央処理装置1001は、制御装置、演算装置、レジスタ、周辺装置とのインターフェースなどを含むプロセッサ(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、中央処理装置1001で実現されてもよい。 The central processing unit 1001 controls the entire computer by operating an operating system, for example. The central processing unit 1001 may be configured by a processor (CPU: Central Processing Unit) including a control device, an arithmetic device, a register, an interface with peripheral devices, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the central processing unit 1001.
 また、中央処理装置1001は、プログラム、ソフトウェアモジュールやデータを、補助記憶装置1003及び/又は通信装置1004から主記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、主記憶装置1002に格納され、中央処理装置1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The central processing unit 1001 reads programs, software modules, and data from the auxiliary storage device 1003 and / or the communication device 1004 to the main storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the main storage device 1002 and operating on the central processing unit 1001, and may be realized similarly for other functional blocks.
 主記憶装置(メモリ)1002は、コンピュータ読み取り可能な記録媒体であり、例えばROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、光磁気ディスク、CD-ROM(Compact Disc ROM)、ハードディスクドライブなどの少なくとも1つで構成されてもよい。 The main storage device (memory) 1002 is a computer-readable recording medium, and may be composed of at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example. . The auxiliary storage device 1003 is a computer-readable recording medium, and may be composed of at least one of a flexible disk, a magneto-optical disk, a CD-ROM (Compact Disc ROM), a hard disk drive, and the like.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input. The output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、中央処理装置1001や主記憶装置1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。なお、無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Further, each device such as the central processing unit 1001 and the main storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses. Note that the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of the devices illustrated in the figure, or may be configured not to include some devices. .
 また、無線基地局10及びユーザ端末20は、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。 Further, the radio base station 10 and the user terminal 20 may be configured to include hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). Thus, a part or all of each functional block may be realized.
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 Note that the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, the channel and / or symbol may be a signal (signaling). The signal may be a message. In addition, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。 In addition, information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information. . For example, the radio resource may be indicated by a predetermined index.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 本明細書で説明した各態様/実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
 情報の通知は、本明細書で説明した態様/実施の形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block)), MAC (Medium Access Control) signaling), other signals, or a combination thereof. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本明細書で説明した各態様/実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation). mobile communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extensions based on them Applied to the next generation system.
 本明細書で説明した各態様/実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施の形態に限定されるものではないということは明らかである。例えば、上述の各態様/各実施の形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. For example, each of the above aspects / embodiments may be used alone or in combination. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 本出願は、2015年10月27日出願の特願2015-210954及び2015年11月5日出願の特願2015-217391に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2015-210954 filed on October 27, 2015 and Japanese Patent Application No. 2015-217391 filed on November 5, 2015. All this content is included here.

Claims (8)

  1.  LAA SCell(License-Assisted Access Secondary Cell)において、下り制御チャネルを介して、共通制御情報を受信する受信部と、
     前記共通制御情報に基づいて、前記LAA SCellにおける通信処理を制御する制御部と、を具備することを特徴とするユーザ端末。
    In LAA SCell (License-Assisted Access Secondary Cell), a receiving unit that receives common control information via a downlink control channel;
    And a control unit that controls communication processing in the LAA SCell based on the common control information.
  2.  前記制御部は、前記共通制御情報に基づいて、チャネル状態情報(CSI)の測定を制御することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit controls measurement of channel state information (CSI) based on the common control information.
  3.  前記制御部は、前記共通制御情報に基づいて、複数のサブフレームの前記CSIの測定結果の平均化を制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein the control unit controls averaging of the CSI measurement results of a plurality of subframes based on the common control information.
  4.  前記共通制御情報には、前記LAA SCell用の無線ネットワーク一時識別子(RNTI)によりスクランブルされた巡回冗長検査(CRC)が付加されていることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 4. The cyclic redundancy check (CRC) scrambled by the wireless network temporary identifier (RNTI) for the LAA SCell is added to the common control information. The described user terminal.
  5.  前記共通制御情報は、DCI(Downlink Control Information)フォーマット1Cであることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 4, wherein the common control information is a DCI (Downlink Control Information) format 1C.
  6.  前記制御部は、前記共通制御情報が示すOFDMシンボル数が所定数未満である場合、PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal)が含まれないと想定することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。 The control unit assumes that PSS (Primary Synchronization Signal) and / or SSS (Secondary Synchronization Signal) is not included when the number of OFDM symbols indicated by the common control information is less than a predetermined number. The user terminal according to any one of claims 1 to 5.
  7.  LAA SCell(License-Assisted Access Secondary Cell)における通信処理の制御に用いられる共通制御情報を生成する生成部と、
     前記LAA SCellにおいて、下り制御チャネルを介して、前記共通制御情報を送信する送信部と、を具備することを特徴とする無線基地局。
    A generating unit that generates common control information used for controlling communication processing in LAA SCell (License-Assisted Access Secondary Cell);
    In the LAA SCell, a radio base station comprising: a transmission unit that transmits the common control information via a downlink control channel.
  8.  LAA SCell(License-Assisted Access Secondary Cell)における無線基地局とユーザ端末との無線通信方法であって、前記ユーザ端末が、
     前記LAA SCellにおいて、下り制御チャネルを介して、共通制御情報を受信する工程と、
     前記共通制御情報に基づいて、前記LAA SCellにおける通信処理を制御する工程と、を有することを特徴とする無線通信方法。
    A wireless communication method between a wireless base station and a user terminal in LAA SCell (License-Assisted Access Secondary Cell), wherein the user terminal
    In the LAA SCell, receiving common control information via a downlink control channel;
    And a step of controlling communication processing in the LAA SCell based on the common control information.
PCT/JP2016/081848 2015-10-27 2016-10-27 User terminal, wireless base station, and wireless communication method WO2017073651A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16859880.3A EP3367740A4 (en) 2015-10-27 2016-10-27 User terminal, wireless base station, and wireless communication method
US15/770,445 US11026096B2 (en) 2015-10-27 2016-10-27 User terminal, radio base station and radio communication method
CN201680062858.8A CN108353421B (en) 2015-10-27 2016-10-27 User terminal, radio base station, and radio communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-210954 2015-10-27
JP2015210954 2015-10-27
JP2015-217391 2015-11-05
JP2015217391A JP6301302B2 (en) 2015-10-27 2015-11-05 User terminal, radio base station, and radio communication method

Publications (1)

Publication Number Publication Date
WO2017073651A1 true WO2017073651A1 (en) 2017-05-04

Family

ID=58630436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081848 WO2017073651A1 (en) 2015-10-27 2016-10-27 User terminal, wireless base station, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2017073651A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375685B2 (en) * 2017-01-20 2019-08-06 Qualcomm Incorporated Secondary timing advance groups with only license assisted access secondary cells
CN110870345A (en) * 2017-05-12 2020-03-06 株式会社Ntt都科摩 User terminal and wireless communication method
CN111066340A (en) * 2017-12-22 2020-04-24 华为技术有限公司 Unauthorized carrier processing method, device and system
CN111164920A (en) * 2017-08-09 2020-05-15 株式会社Ntt都科摩 User terminal and wireless communication method
CN111492685A (en) * 2017-10-23 2020-08-04 株式会社Ntt都科摩 User terminal and wireless communication method
CN111512665A (en) * 2017-11-10 2020-08-07 株式会社Ntt都科摩 User terminal and wireless communication method
CN111587598A (en) * 2018-01-11 2020-08-25 株式会社Ntt都科摩 User terminal and wireless communication method
CN111788855A (en) * 2018-01-05 2020-10-16 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801919A (en) * 2018-01-11 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801971A (en) * 2018-01-11 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111955023A (en) * 2018-02-15 2020-11-17 株式会社Ntt都科摩 User terminal and wireless communication method
CN112106416A (en) * 2018-03-13 2020-12-18 株式会社Ntt都科摩 User terminal and wireless communication method
CN112262612A (en) * 2018-04-05 2021-01-22 株式会社Ntt都科摩 User terminal and radio base station
CN112369090A (en) * 2018-05-10 2021-02-12 株式会社Ntt都科摩 User terminal
CN112385189A (en) * 2018-05-11 2021-02-19 株式会社Ntt都科摩 User terminal and radio base station
CN112655179A (en) * 2018-07-06 2021-04-13 株式会社Ntt都科摩 User terminal and base station
CN112840724A (en) * 2018-10-10 2021-05-25 株式会社Ntt都科摩 Terminal and wireless communication method
EP3732812A4 (en) * 2018-03-28 2021-07-21 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN113303001A (en) * 2018-11-09 2021-08-24 株式会社Ntt都科摩 User terminal and wireless communication method
CN113748726A (en) * 2019-04-05 2021-12-03 株式会社Ntt都科摩 User device and base station device
CN111201760B (en) * 2017-08-10 2023-04-25 株式会社Ntt都科摩 User terminal and wireless communication method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT ET AL.: "PDSCH and DCI Transmissions in LAA", 3GPP TSG- RAN WG1#82B RL-155629, 26 September 2015 (2015-09-26), XP051041796, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/Rl-155629.zip> [retrieved on 20161205] *
ERICSSON: "Further discussion on support of CSI Measurement and Reporting for LAA", 3GPP TSG-RAN WG1#80B RL-152011, XP050950284, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_80b/Docs/R1-152011.zip> *
MOTOROLA MOBILITY: "CSI measurement and reporting for LAA", 3GPP TSG-RAN WG1#82B R1- 155780, 26 September 2015 (2015-09-26), XP051021753, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/R1-155780.zip> [retrieved on 20161205] *
NOKIA NETWORKS: "On DL transmission detection and UL subframe indication for LAA", 3GPP TSG- RAN WG1#82B RL-155602, 25 September 2015 (2015-09-25), XP051021337, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/Rl-155602.zip> *
See also references of EP3367740A4 *
SHARP: "Consideration of CSI measurement and CSI reporting for LAA", 3GPP TSG-RAN WG1#82B R1- 155571, 25 September 2015 (2015-09-25), XP051041720, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/Rl-155571.zip> [retrieved on 20161205] *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375685B2 (en) * 2017-01-20 2019-08-06 Qualcomm Incorporated Secondary timing advance groups with only license assisted access secondary cells
CN110870345A (en) * 2017-05-12 2020-03-06 株式会社Ntt都科摩 User terminal and wireless communication method
CN110870345B (en) * 2017-05-12 2023-09-12 株式会社Ntt都科摩 Terminal, wireless communication method and base station
CN111164920B (en) * 2017-08-09 2023-04-18 株式会社Ntt都科摩 User terminal and wireless communication method
CN111164920A (en) * 2017-08-09 2020-05-15 株式会社Ntt都科摩 User terminal and wireless communication method
CN111201760B (en) * 2017-08-10 2023-04-25 株式会社Ntt都科摩 User terminal and wireless communication method
CN111492685B (en) * 2017-10-23 2024-03-12 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN111492685A (en) * 2017-10-23 2020-08-04 株式会社Ntt都科摩 User terminal and wireless communication method
CN111512665B (en) * 2017-11-10 2024-03-12 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN111512665A (en) * 2017-11-10 2020-08-07 株式会社Ntt都科摩 User terminal and wireless communication method
CN111066340B (en) * 2017-12-22 2021-11-19 华为技术有限公司 Unauthorized carrier processing method, device and system
CN111066340A (en) * 2017-12-22 2020-04-24 华为技术有限公司 Unauthorized carrier processing method, device and system
CN111788855A (en) * 2018-01-05 2020-10-16 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801971A (en) * 2018-01-11 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801919A (en) * 2018-01-11 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801919B (en) * 2018-01-11 2024-03-01 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN111587598A (en) * 2018-01-11 2020-08-25 株式会社Ntt都科摩 User terminal and wireless communication method
CN111955023A (en) * 2018-02-15 2020-11-17 株式会社Ntt都科摩 User terminal and wireless communication method
CN112106416A (en) * 2018-03-13 2020-12-18 株式会社Ntt都科摩 User terminal and wireless communication method
US11729797B2 (en) 2018-03-28 2023-08-15 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
US11160050B2 (en) 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
EP3732812A4 (en) * 2018-03-28 2021-07-21 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block
CN112262612A (en) * 2018-04-05 2021-01-22 株式会社Ntt都科摩 User terminal and radio base station
CN112369090B (en) * 2018-05-10 2024-03-12 株式会社Ntt都科摩 User terminal
CN112369090A (en) * 2018-05-10 2021-02-12 株式会社Ntt都科摩 User terminal
CN112385189A (en) * 2018-05-11 2021-02-19 株式会社Ntt都科摩 User terminal and radio base station
CN112655179A (en) * 2018-07-06 2021-04-13 株式会社Ntt都科摩 User terminal and base station
CN112655179B (en) * 2018-07-06 2024-02-23 株式会社Ntt都科摩 Terminal, base station and system
CN112840724A (en) * 2018-10-10 2021-05-25 株式会社Ntt都科摩 Terminal and wireless communication method
CN113303001A (en) * 2018-11-09 2021-08-24 株式会社Ntt都科摩 User terminal and wireless communication method
CN113303001B (en) * 2018-11-09 2024-02-23 株式会社Ntt都科摩 User terminal and wireless communication method
CN113748726A (en) * 2019-04-05 2021-12-03 株式会社Ntt都科摩 User device and base station device

Similar Documents

Publication Publication Date Title
WO2017073651A1 (en) User terminal, wireless base station, and wireless communication method
WO2017110959A1 (en) User terminal, wireless base station, and wireless communication method
WO2017170889A1 (en) User terminal and wireless communication method
WO2017030053A1 (en) Radio base station, user terminal and radio communication method
WO2017014048A1 (en) User terminal, wireless base station, and wireless communication method
WO2017038741A1 (en) User terminal, wireless base station, and wireless communication method
WO2017122751A1 (en) User terminal, wireless base station and wireless communication method
JP6317773B2 (en) User terminal, radio base station, and radio communication method
WO2017026434A1 (en) User terminal, wireless base station, and wireless communication method
WO2017038892A1 (en) User terminal, radio base station and radio communication method
JP6301302B2 (en) User terminal, radio base station, and radio communication method
WO2017078034A1 (en) User terminal, wireless base station, and wireless communications method
WO2017033839A1 (en) User terminal, wireless base station, and wireless communication method
WO2017130990A1 (en) User terminal, wireless base station, and wireless communication method
WO2017033837A1 (en) User terminal, wireless base station, and wireless communication method
WO2017126579A1 (en) User terminal, wireless base station, and wireless communication method
WO2017078035A1 (en) User terminal, wireless base station, and wireless communications method
WO2017110961A1 (en) User terminal, wireless base station, and wireless communication method
CN111837440A (en) User terminal and wireless communication method
CN107736063B (en) User terminal, radio base station, and radio communication method
WO2016182046A1 (en) User terminal and wireless communication method
WO2017051726A1 (en) User terminal, wireless base station, and wireless communication method
WO2017038532A1 (en) User terminal, radio base station and radio communication method
WO2017126658A1 (en) User terminal, wireless base station, and wireless communication method
WO2017026488A1 (en) User terminal, wireless base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859880

Country of ref document: EP