WO2017073523A1 - Rotating anode x-ray tube - Google Patents

Rotating anode x-ray tube Download PDF

Info

Publication number
WO2017073523A1
WO2017073523A1 PCT/JP2016/081465 JP2016081465W WO2017073523A1 WO 2017073523 A1 WO2017073523 A1 WO 2017073523A1 JP 2016081465 W JP2016081465 W JP 2016081465W WO 2017073523 A1 WO2017073523 A1 WO 2017073523A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
ray tube
filament
target
anode
Prior art date
Application number
PCT/JP2016/081465
Other languages
French (fr)
Japanese (ja)
Inventor
英隆 中林
阿武 秀郎
Original Assignee
東芝電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝電子管デバイス株式会社 filed Critical 東芝電子管デバイス株式会社
Publication of WO2017073523A1 publication Critical patent/WO2017073523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/064Details of the emitter, e.g. material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes

Definitions

  • Embodiments of the present invention relate to a rotary anode type X-ray tube.
  • an X-ray tube apparatus is used as an X-ray generation source in medical equipment and industrial equipment that diagnose a subject using X-rays.
  • an X-ray tube device a rotary anode type X-ray tube device including a rotary anode type X-ray tube is known.
  • the rotary anode X-ray tube device includes a rotary anode X-ray tube that emits X-rays, a stator coil, a housing that accommodates the rotary anode X-ray tube and the stator coil, and the like.
  • the rotary anode type X-ray tube includes a fixed shaft, a cathode for generating electrons, an anode target, a rotating body, a vacuum envelope, and the like.
  • the rotating body is connected to the anode target and is rotated by a magnetic field generated from the stator coil.
  • the cathode faces the anode target.
  • the anode target emits X-rays when electrons emitted from the cathode collide.
  • a technique is disclosed in which the cathode is tilted.
  • An object of the present embodiment is to provide a rotary anode type X-ray tube capable of improving input to an anode target.
  • a rotary anode X-ray tube is: A fixed shaft having an X-ray tube axis, a rotating body supported by a bearing around the fixed shaft, a first filament that emits an electron beam, and an electron convergence that converges the electron beam emitted from the first filament
  • a cathode having a cup having a cup
  • the electron beam emitted from the first filament collides and emits X-rays in a main radiation direction perpendicular to the X-ray tube axis.
  • An electron target that has a target surface that is connected to the rotating body, and a vacuum envelope that has a glass container surrounding the anode target and accommodates the cathode and the anode target.
  • the cup has a first inclined flat surface, a second inclined flat surface, a valley bottom portion located between the first inclined flat surface and the second inclined flat surface, and an opening in the first inclined flat surface. 1st yield A groove, and a first storage groove having an opening on the bottom surface of the first converging groove, and storing the first filament, and a straight line parallel to the X-ray tube axis from the center of the first focus.
  • a reference axis a plane including the reference axis and the main radiation direction as a first reference plane, a virtual straight line extending from the valley bottom portion as a first extension line, the main radiation direction and the first extension line,
  • is an angle formed by ⁇
  • is an angle formed by the main radiation direction and the target surface, ⁇ > 0 °, ⁇ > 0 °, and ⁇ + ⁇ ⁇ 21 °.
  • a rotary anode X-ray tube is: A fixed shaft having an X-ray tube axis, a rotating body supported by a bearing around the fixed shaft, a filament for emitting an electron beam, and an electron focusing cup for converging the electron beam emitted from the filament.
  • a cathode having a target surface facing the cathode and having a focal point for emitting X-rays in a main radiation direction perpendicular to the X-ray tube axis by colliding with an electron beam emitted from the filament;
  • An anode target connected to a rotating body; and a vacuum envelope having a glass container surrounding the anode target, and containing the cathode and the anode target, wherein the electron focusing cup faces the anode target.
  • a straight line parallel to the X-ray tube axis from the center of the focal point is used as a reference axis, and a plane including the reference axis and the main radiation direction is defined as a first reference surface. If the angle formed by one surface is ⁇ and the acute angle formed by the main radiation direction and the target surface on the first reference surface is angle ⁇ , ⁇ > 0 °, ⁇ > 0 °, ⁇ + ⁇ ⁇ 21 ° It is characterized by being.
  • FIG. 1 is a cross-sectional view showing a rotating anode X-ray tube apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the cathode of the rotary anode X-ray tube apparatus according to the first embodiment along the YZ plane.
  • FIG. 3 is a plan view showing a state where the cathode shown in FIG. 2 is viewed from the anode target side.
  • FIG. 4 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the first embodiment, showing a cathode, an anode target, and the like.
  • FIG. 5 is a plan view of the anode target shown in FIG.
  • FIG. 6 is a cross-sectional view showing a part of a rotary anode type X-ray tube apparatus according to a modification of the first embodiment, showing a cathode, an anode target, and the like.
  • FIG. 7 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the second embodiment along the YZ plane, and shows a cathode, an anode target, and the like.
  • FIG. 8 is a plan view showing a state where the cathode shown in FIG. 7 is viewed from the anode target side.
  • FIG. 9 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the second embodiment along the XZ plane, and shows a cathode, an anode target, and the like.
  • FIG. 10 is a cross-sectional view showing a part of the rotary anode X-ray tube of Comparative Example 1 along the XZ plane, showing the cathode, the anode target, and the like.
  • FIG. 1 is a cross-sectional view showing a rotary anode X-ray tube apparatus 100 according to the first embodiment.
  • the description of FIG. 1 can also be applied to the description of a second embodiment described later.
  • the first direction X and the second direction Y are orthogonal to each other.
  • the third direction Z is orthogonal to the first direction X and the second direction Y.
  • the XY plane is a plane defined by the first direction X and the second direction Y.
  • the XZ plane is a plane defined by the first direction X and the third direction Z.
  • the YZ plane is a plane defined by the second direction Y and the third direction Z.
  • a rotary anode X-ray tube device 100 houses a rotary anode X-ray tube 1, a stator coil 2 that is a coil for generating a magnetic field, the rotary anode X-ray tube 1, and a stator coil 2.
  • the housing 3 and the control unit 4 are provided.
  • the rotary anode type X-ray tube 1 includes a fixed shaft 10, a rotating body 20, a cathode support component 30, a cathode 60, an anode target 50, a vacuum envelope 70, and the like.
  • the fixed shaft 10 is formed in a cylindrical shape and extends along the X-ray tube axis A parallel to the third direction Z. One end of the fixed shaft 10 is exposed to the outside of the vacuum envelope 70.
  • the fixed shaft 10 is formed using a material such as Fe (iron) or Mo (molybdenum), for example.
  • the rotating body 20 has a cylindrical portion 21 formed in a cylindrical shape with one end opened, and a connecting portion 22 formed on the side opposite to the opened side of the cylindrical portion 21.
  • the cylindrical portion 21 and the connecting portion 22 extend along the X-ray tube axis A. That is, the rotating body 20 is provided coaxially with the fixed shaft 10.
  • the rotating body 20 is rotatably supported around the fixed shaft 10 by a bearing (not shown) disposed between the fixed shaft 10 and the cylindrical portion 21.
  • the cylindrical portion 21 faces the stator coil 2 with the vacuum envelope 70 interposed therebetween.
  • the rotating body 20 is formed using a material such as Fe, Mo, or Cu, for example.
  • the cylindrical portion 21 of the rotating body 20 and the fixed shaft 10 are provided with a gap (a minute gap) (not shown).
  • the bearing is, for example, a dynamic pressure bearing using a liquid metal as a lubricant.
  • a liquid metal (not shown) is filled in a gap between the cylindrical portion 21 and the fixed shaft 10.
  • the liquid metal a material such as a Galn (gallium / indium) alloy or a GaInSn (gallium / indium / tin) alloy can be used.
  • Liquid metal has the property of becoming liquid at room temperature.
  • liquid metal has a characteristic of low vapor pressure. For this reason, a liquid metal can be used inside the rotary anode X-ray tube in a vacuum state.
  • the bearing is formed using the fixed shaft 10, the rotating body 20, and a liquid metal.
  • the bearing is not limited to the above-described dynamic pressure bearing, and can take various forms.
  • the cathode support component 30 is formed in a flat plate shape, and has a surface 30A on the anode target 50 side and a surface 30B on the opposite side of the surface 30A. In the illustrated example, the surface 30A and the surface 30B are formed perpendicular to the X-ray tube axis A.
  • the cathode support component 30 supports the cathode 60 on the surface 30A, and is fixed to the cathode assembly 31 on the surface 30B.
  • the cathode structure 31 is fixed to the inner wall of the vacuum envelope 70. The cathode structure 31 faces the anode target 50 in the third direction Z.
  • the cathode 60 is fixed to the cathode support component 30.
  • the cathode 60 has an electron converging cup 15 and a filament coil as a filament.
  • the filament coil is formed using a material whose main component is tungsten.
  • the cathode 60 has a first filament coil 61 as a first filament and a second filament coil 62 as a second filament described later.
  • the cathode 60 has a third filament coil 61 as a filament.
  • the number of filaments included in the cathode 60 is not limited to one or two.
  • the cathode 60 only needs to have at least one filament.
  • the filament is not limited to the filament coil, and can be variously modified. For example, a flat filament may be used.
  • the anode target 50 is formed in a disk shape and is connected to the connection portion 22 of the rotating body 20.
  • the anode target 50 is provided coaxially with the fixed shaft 10 or the like.
  • the anode target 50 rotates integrally with the rotating body 20.
  • the anode target 50 is formed of, for example, molybdenum or tungsten, or an alloy using these.
  • the anode target 50 has an annular X-ray radiation layer 51 and a target base 52.
  • the X-ray emission layer 51 is formed on the side of the target substrate 52 facing the cathode 60, and has a target surface 50 ⁇ / b> A on the side facing the cathode 60.
  • the anode target 50 forms a focal point on the target surface 50A and generates X-rays from the focal point when electrons emitted from the cathode 60 collide with the target surface 50A.
  • the X-ray emission layer 51 is made of a metal having a high melting point.
  • the X-ray radiation layer 51 is formed of a tungsten alloy.
  • the anode target 50 is electrically connected to the terminal 91 through the fixed shaft 10 and the rotating body 20.
  • the connecting portion 22 and the target base 52 are formed separately, but the target base 52 may be integrally formed of the same material as the connecting portion 22.
  • the shape of the anode target 50 shown in FIG. 1 is an example, and the anode target 50 can take various shapes.
  • the vacuum envelope 70 accommodates the fixed shaft 10, the rotating body 20, the cathode 60, the anode target 50, and the like.
  • the vacuum envelope 70 is sealed and the inside is maintained in a vacuum state (depressurized state).
  • the vacuum envelope 70 has a glass container 70a and a connecting portion 70b.
  • the glass container 70a surrounds at least the anode target 50.
  • the connection part 70b is airtightly connected to the glass container 70a by fusion, and on the other hand, it is airtightly connected to the fixed shaft 10.
  • the glass container 70a is made of, for example, borosilicate glass.
  • the connection part 70b is made of, for example, Kovar as a metal.
  • the vacuum envelope 70 has an opening 71.
  • the opening 71 is formed in the connection portion 70b.
  • the opening 71 is airtightly joined to one end of the fixed shaft 10 so as to maintain the sealed state of the vacuum envelope 70.
  • the rotary anode X-ray tube 1 employs a one-end support bearing structure.
  • the vacuum envelope 70 fixes one end of the fixed shaft 10. That is, one end portion of the fixed shaft 10 functions as a cantilever support portion of the bearing.
  • the stator coil 2 faces the side surface of the cylindrical portion 21 of the rotating body 20 and is provided so as to surround the outside of the vacuum envelope 70 in an annular shape. Stator coil 2 is electrically connected to a terminal (not shown) and driven through the terminal.
  • the housing 3 accommodates the rotating anode type X-ray tube 1 and the stator coil 2.
  • the housing 3 is sealed.
  • the housing 3 has an X-ray transmission window 3a that transmits X-rays in the vicinity of the X-ray emission layer 51 on the cathode 60 side.
  • the cooling liquid L is filled in a space between the rotary anode X-ray tube 1 and the housing 3.
  • the coolant L is an insulating oil.
  • the material of the coolant L is not particularly limited, and various materials such as an insulating coolant and an aqueous coolant can be used.
  • the control unit 4 is electrically connected to the cathode 60 via terminals 81, 82, 83.
  • the control unit 4 drives or controls any one of the plurality of filament coils, or simultaneously performs two or more drives or controls among the plurality of filament coils.
  • a circuit (not shown) connected to the terminals 81, 82, and 83 may be used, and terminals other than the terminals 81, 82, and 83 may be used.
  • the stator coil 2 is driven via a terminal (not shown) to generate a magnetic field to be applied to the rotating body 20. For this reason, the rotating body 20 rotates together with the anode target 50.
  • the control unit 4 supplies a current for driving the filament coil of the cathode 60 via the terminals 81 to 83.
  • the control unit 4 drives at least one filament coil. In the first embodiment, the control unit 4 drives one filament coil of the first and second filament coils or drives two filament coils simultaneously.
  • the control unit 4 drives one filament.
  • a relatively negative voltage is applied to the driven filament coil.
  • a relatively positive voltage is applied to the anode target 50. That is, a voltage (tube voltage) is applied between the anode target 50 and the cathode 60.
  • a potential difference is generated between the cathode 60 and the anode target 50. Electrons emitted from the filament coil are converged and accelerated toward the anode target 50 and collide with the X-ray emission layer 51. That is, a current (tube current) flows from the cathode 60 to the focal point on the target surface 50A.
  • the target surface 50A emits X-rays from the focal point when electrons collide. Thereby, the X-rays generated from the target surface 50A pass through the vacuum envelope 70 and are emitted to the outside of the housing 3 through the X-ray transmission window 3a.
  • FIG. 2 is a sectional view showing the cathode 60 of the rotary anode X-ray tube apparatus according to the first embodiment along the YZ plane.
  • FIG. 2 shows a side view of a part of the anode target 50 in a state viewed from the direction opposite to the first direction X.
  • the cathode 60 includes a first filament coil 61 and a second filament coil 62 that emit electrons, and an electron converging cup 15.
  • the filament coil and the electron converging cup 15 are electrically connected to a plurality of terminals such as the terminals 81, 82, and 83 shown in FIG.
  • the filament coil emits electrons when supplied with current.
  • the electron converging cup 15 converges electrons emitted from the filament coil.
  • a focal point BM is formed on the target surface 50 ⁇ / b> A of the anode target 50.
  • the electron converging cup 15 includes a front surface 15A, a first inclined flat surface 160, a second inclined flat surface 170, a first converging groove portion 16, a second converging groove portion 17, a first storage groove portion 26, and a second storage space. And a groove portion 27.
  • the electron focusing cup 15 and the first filament coil 61 form one electron gun.
  • the electron converging cup 15 and the second filament coil 62 form one electron gun.
  • the front surface 15 ⁇ / b> A is a flat surface and faces the anode target 50. That is, the front surface 15 ⁇ / b> A corresponds to the front surface of the cathode 60. Further, the front surface 15 ⁇ / b> A is closest to the anode target 50 in the cathode 60.
  • the first inclined flat surface 160 and the second inclined flat surface 170 are inclined with respect to the front surface 15A. That is, the first inclined flat surface 160 and the second inclined flat surface 170 are inclined from the XY plane so that the two electron guns can form the focal point BM at the same position.
  • the electron converging cup 15 has a valley bottom portion M between the first inclined flat surface 160 and the second inclined flat surface 170.
  • the valley bottom portion M is located at the boundary between the first inclined flat surface 160 and the second inclined flat surface 170. That is, the first inclined flat surface 160 and the second inclined flat surface 170 are inclined so as to be substantially line symmetric with respect to the line segment along the third direction Z passing through the valley bottom portion M.
  • the valley bottom portion M is located on the XZ plane and is parallel to the front surface 15A in the XZ plane. Of the distances from the focal point BM to the first inclined flat surface 160 and the second inclined flat surface 170, the distance to the valley bottom portion M is the longest.
  • the first converging groove 16 has an opening 16 a on the first inclined flat surface 160. Moreover, the 1st convergence groove part 16 has the bottom face 16b. The bottom surface 16b is parallel to the first inclined flat surface 160.
  • the first storage groove 26 has an opening 26 a on the bottom surface 16 b and stores the first filament coil 61.
  • the second converging groove 17 has an opening 17 a on the first inclined flat surface 170. Moreover, the 2nd convergence groove part 12 has the bottom face 17b. The bottom surface 17b is parallel to the second inclined flat surface 170.
  • the second storage groove 27 has an opening 27 a on the bottom surface 17 b and stores the second filament coil 62.
  • the first inclined flat surface 160 is parallel to the bottom surface 16b, and the second inclined flat surface 170 is parallel to the bottom surface 17b.
  • the opening part 26a is parallel to the opening part 16a, and the opening part 27a is parallel to the opening part 17a.
  • the first filament coil 61 extends along a virtual plane parallel to the opening 26a.
  • the second filament coil 62 extends along a virtual plane parallel to the opening 27a.
  • a focal point that emits X-rays in the main radiation direction when electrons emitted from the first filament coil 61 are incident on the target surface 50A is defined as a first focal point F1.
  • the focal point that emits X-rays in the main radiation direction when electrons emitted from the second filament coil 62 are incident on the target surface 50A is defined as the second focal point F2.
  • the center position of the first focus F1 and the center position of the second focus F2 are the same position.
  • the dimension of the first focal point F1 and the dimension of the second focal point F2 are different.
  • the dimension of the first filament coil 61 and the dimension of the second filament coil 62 are different.
  • the reference axis RA passes through the focal point BM.
  • the reference axis RA is an axis that passes through the center of the first focal point F1 and is parallel to the third direction Z. As described above, since the center positions of the first focus F1 and the second focus F2 are the same, the reference axis RA also passes through the center of the second focus F2.
  • a plane including the reference axis RA and the main radiation direction d is defined as a first reference plane S1.
  • FIG. 3 is a plan view showing a state in which the cathode 60 shown in FIG. 2 is viewed from the anode target 50 side.
  • the dimensions of the first filament coil 61 and the second filament coil 62 are different.
  • the first filament coil 61 is larger than the second filament coil 62 in the first direction X.
  • the converging first converging groove 16 and the second converging groove 17 have a long axis parallel to the first reference plane S1.
  • the 1st storage groove part 26 and the 2nd storage groove part 27 have a long axis, respectively.
  • the first filament coil 61 and the second filament coil 62 are each formed to extend linearly and have a long axis.
  • FIG. 4 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the first embodiment, showing the cathode 60, the anode target 50, and the like.
  • FIG. 4 shows a cross section along the XZ plane passing through the reference axis RA of the cathode 60 and the anode target 50.
  • FIG. 5 is a plan view of the anode target 50 shown in FIG. 1 as viewed from the cathode 60 side, and shows an electron irradiation region and the like.
  • the main radiation direction d of X-rays is located on the same plane as the XZ plane passing through the reference axis RA.
  • the main radiation direction d is parallel to the first direction X and passes through the center of the focal point.
  • the main radiation direction d is perpendicular to the reference axis RA.
  • the shape when the focal point formed on the target surface 50A is viewed from the outside of the rotary anode X-ray tube 1 in the direction opposite to the main radiation direction d may be referred to as an effective focal point.
  • a virtual straight line extending along the valley bottom portion M is defined as a first extension line E1
  • a virtual straight line extending along the target surface 50A is defined as a second extension line E2
  • the main radiation direction A virtual straight line extending along d is defined as a third extension line E3.
  • the first extension line E1 and the third extension line E3 form an angle ⁇
  • the second extension line E2 and the third extension line E3 form an angle ⁇ .
  • an irradiation area AR1 indicates an area irradiated with electrons in the rotary anode type X-ray tube apparatus of the present embodiment.
  • the cathode 60 is arranged such that the first extension line E1 is parallel to the third extension line E3, or the first extension line E1 is parallel to the second extension line E2.
  • a region irradiated with electrons when 60 is arranged is shown.
  • the average radius from the X-ray tube axis A to the irradiation area AR1 is r1
  • the average radius from the X-ray tube axis A to the irradiation area AR2 is r2.
  • the average radius r1 of the irradiation area AR1 is larger than the average radius r2 of the irradiation area AR2. For example, the average radius r1 is 20% larger than the average radius r2. Further, the irradiation area AR1 has a focal point (electron incident point) BM at a position facing the cathode 60.
  • the focal point BM is a region where electrons are incident at an arbitrary timing.
  • the rotary anode X-ray tube 1 includes the cathode 60 and the anode target 50 having the target surface 50A.
  • the first extension line E1 along the valley bottom portion M and the third extension line E3 along the main radiation direction d form an angle ⁇ . That is, the valley bottom portion M is inclined to the side opposite to the anode target 50 by an angle ⁇ with respect to the main radiation direction d.
  • the second extension line E2 and the third extension line E3 along the target surface 50A form an angle ⁇ . That is, the target surface 50A is inclined to the opposite side of the cathode 60 by an angle ⁇ with respect to the main radiation direction d.
  • the valley bottom portion M faces the outside of the anode target 50, and the radiation direction e of electrons emitted from the cathode 60 faces the outside of the anode target 50.
  • the average radius r1 of the irradiation area AR1 of the present embodiment is larger than the average radius r2 of the irradiation area AR2. Therefore, the area of the irradiation area AR1 of the anode target 50 irradiated with electrons emitted from the cathode 60 can be increased, and the input to the anode target 50 can be increased. Therefore, a rotating anode X-ray tube capable of improving the input to the anode target can be obtained.
  • the component closest to the vacuum envelope 70 is the cathode 60 (electron focusing cup 15).
  • the point Q shown in FIG. 4 is the closest point. Since the shortest distance between the cathode 60 and the vacuum envelope 70 can be maintained at the same level as the conventional one, there is no fear that discharge is likely to occur between the cathode 60 and the vacuum envelope 70.
  • the angle ⁇ is in the range of ⁇ ⁇ 21 ° which is conventionally employed.
  • the angle ⁇ is in the range of ⁇ ⁇ 21 °, among the recoil electrons radiated from the focal point BM, the amount of the recoil electrons directed to the glass container 70a can be kept at an acceptable level as before. .
  • the angle ⁇ is in the range of 21 ° ⁇ , the recoil electrons toward the glass container 70a increase compared to the conventional case.
  • the shape distortion of the focal point BM in the rotary anode type X-ray tube having the glass container 70a is almost constant if ⁇ + ⁇ is constant. Therefore, by limiting ⁇ + ⁇ to the range of ⁇ + ⁇ ⁇ 21 °, which has been conventionally employed, the shape distortion of the focal point BM can be kept within the conventional allowable level.
  • the anode target 50 is, for example, 150 rps (the number of rotations of the anode target 50 per second).
  • electrons emitted from the cathode 60 are applied to the target surface 50A of the X-ray emission layer 51 to emit X-rays.
  • the heat generated in the X-ray radiation layer 51 is conducted to the target base 52 and accumulated in the entire anode target 50, while being gradually dissipated mainly by radiation.
  • the temperature of the irradiation area AR1 is Tf.
  • Ts be the temperature of the focal point BM.
  • Tf of the irradiation area AR1 represents the average temperature of the irradiation area AR1 excluding the focal point BM
  • the temperature Ts of the focal point BM represents the highest temperature reached at the moment at the focal position.
  • the average temperature Tb of the target base 52 rises due to heat accumulation based on the difference between the amount of heat input due to the incidence of electrons on the anode target 50 and the amount of heat dissipated due to heat dissipation or the like, or decreases due to heat dissipation.
  • the temperature Ts of the focal point BM becomes a peak temperature due to the instantaneous input heat amount due to the electron incidence at the focal point position in addition to the temperature Tf of the irradiation area AR1. Further, the temperature Ts of the focal point BM is relatively greatly influenced by the rotational speed of the anode target 50 because the instantaneous heat storage action at the focal point BM differs depending on the rotational speed of the anode target 50. That is, when compared with the temperature Tf of the same irradiation area AR1, if the rotation speed of the anode target 50 is low, the temperature Ts of the focal point BM is relatively high, and if the rotation speed of the anode target 50 is high, the focal point BM. The temperature Ts is closer to the temperature Tf.
  • the temperature of each part of the anode target 50 can be expressed by the following approximate expression as shown in a paper published in Toshiba Review Vol. 37, No. 9, pp. 777-780.
  • Ts Tf + (2 ⁇ P ⁇ w ⁇ 1/2 ) / [S ⁇ ( ⁇ ⁇ ⁇ ⁇ C ⁇ ⁇ ⁇ ⁇ ) ⁇ 1/2 ]
  • P the incident power of electrons, that is, the input power to the anode target 50
  • w the width of the incident electrons in the rotation direction of the anode target 50 (that is, the focal width)
  • S the area of the electron incident surface (that is, the focal point).
  • is the density of the surface member quality of the anode target 50 (that is, the density of the material of the X-ray radiation layer 51)
  • C is the specific heat of the surface member quality of the anode target 50
  • is the surface member quality of the anode target 50.
  • the thermal conductivity, ⁇ represents the peripheral speed of the anode target 50 at the position of the focal point BM.
  • the rapid temperature rise ⁇ Ts that occurs at the focal position of the anode target 50 is approximately proportional to the input power P to the anode target 50 and is also approximately proportional to the square root of the focal spot size w.
  • FIG. 6 is a cross-sectional view showing a part of a rotary anode X-ray tube apparatus 100 according to a modification of the first embodiment, and shows a cathode 60, an anode target 50, and the like.
  • FIG. 6 is different from the embodiment shown in FIG. 4 in the shapes of the cathode support component 30 and the cathode 60.
  • the cathode support component 30 has a surface 30A as a third surface.
  • a region that is in contact with the cathode 60 and supports the cathode 60 is referred to as a surface 30C.
  • a fourth extension line E4 is set as a virtual straight line perpendicular to the X-ray tube axis A.
  • the fourth extension line E4 is located between the valley bottom portion M and the surface 30C.
  • An end P of the surface 30C on the X-ray tube axis A side is located on the fourth extension line E4.
  • the surface 30C is inclined by the angle ⁇ from the fourth extension line E4 to the side opposite to the anode target 50.
  • the cathode support component 30 is bent so that the surface 30C is inclined by the angle ⁇ with respect to the fourth extension line E4.
  • the valley bottom portion M is parallel to the surface 30C. That is, the valley bottom portion M is inclined by an angle ⁇ on the opposite side to the anode target 50 with respect to the fourth extension line E4.
  • the valley bottom portion M and the target surface 50A form a positional relationship equivalent to the positional relationship shown in FIG. Also in such a modification, the same effect as the first embodiment described above can be obtained.
  • the rotary anode X-ray tube 1 does not necessarily include the cathode support component 30.
  • the valley portion M of the cathode 60 and the target surface 50A of the anode target 50 have the positional relationship shown in the above embodiment and the modification, the same effects as in the above embodiment and the modification are obtained. It is possible to obtain
  • FIG. 7 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the second embodiment along the YZ plane, showing the cathode 60, the anode target 50, and the like.
  • FIG. 7 is different from FIG. 2 in that the cathode 60 includes one third filament coil 63.
  • the cathode 60 includes one third filament coil 63 and an electron focusing cup 15.
  • the electron converging cup 15 includes a front surface 15 ⁇ / b> A as a first surface, a third converging groove 18, and a third storage groove 28.
  • the front surface 15 ⁇ / b> A is a flat surface and faces the anode target 50.
  • the third converging groove 18 has an opening 18a on the front surface 15A. Moreover, the 3rd convergence groove part 18 has the bottom face 18b. The bottom surface 18b is parallel to the front surface 15A.
  • the third storage groove 28 has an opening 28 a on the bottom surface 18 b and stores the third filament coil 63.
  • FIG. 8 is a plan view showing a state in which the cathode 60 shown in FIG. 7 is viewed from the anode target 50 side.
  • the third filament coil 63 is disposed so as to extend in the first direction X and pass through the center of the electron converging cup 15.
  • the opening 18 a and the opening 28 a have a long axis parallel to the first direction X and are provided so as to pass through the center of the electron converging cup 15.
  • the third filament coil 63 and the electron converging cup 15 are electrically connected to the terminals 81, 82, 83 as shown in FIG.
  • the third filament coil 63 emits electrons when supplied with current.
  • the electron converging cup 15 converges the electrons emitted from the third filament coil 63.
  • FIG. 9 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the second embodiment along the XZ plane, a view showing the cathode 60, the anode target 50, and the like.
  • FIG. 9 is different from FIG. 4 in that the cathode 60 includes one filament coil and thus does not have the valley bottom portion M.
  • an imaginary straight line extending along the front surface 15A of the cathode 60 in the XZ plane is defined as a fifth extension line E5.
  • the fifth extension line E5 and the third extension line E3 form an angle ⁇
  • the second extension line E2 and the third extension line E3 form an angle ⁇ .
  • the front surface 15A is inclined to the side opposite to the anode target 50 by an angle ⁇ from the main radiation direction d.
  • the target surface 50A is inclined to the side opposite to the cathode 60 by an angle ⁇ from the main radiation direction d.
  • the front surface 15 ⁇ / b> A faces the outside of the anode target 50, and the radiation direction e of electrons emitted from the cathode 60 faces the outside of the anode target 50.
  • FIG. 10 is a cross-sectional view showing a part of the rotary anode X-ray tube 1 of Comparative Example 1 along the XZ plane, showing the cathode 60, the anode target 50, and the like.
  • Comparative Example 1 ⁇ + ⁇ ⁇ 21 °.
  • the rotating anode X-ray tube 1 of Comparative Example 2 is different in that ⁇ ⁇ 0 ° compared to the first embodiment shown in FIG. 4 and the second embodiment shown in FIG. Yes.
  • ⁇ + ⁇ ⁇ 21 ° In Comparative Example 2, it is conceivable to dispose the cathode 60 so that the valley bottom portion M (front surface 15A) is parallel to the target surface 50A. By setting ⁇ ⁇ 0 °, it is possible to easily obtain a focal shape with little distortion.
  • Comparative Example 2 similarly to Comparative Example 1, the average radius of the electron irradiation region is smaller than the average radius r1 of the irradiation region AR1 of the above embodiment, and the average of the irradiation region in Comparative Example 1 is as follows. Even smaller than the radius. For this reason, in Comparative Example 2 in which ⁇ ⁇ 0 °, it is difficult to obtain the rotating anode X-ray tube 1 capable of improving the input to the anode target.
  • the filament is not limited to a filament coil, and may be a flat filament, for example.
  • the valley bottom portion M may be a flat surface perpendicular to the first reference plane S1.
  • the cathode 60 may include three filament coils. Even if the third converging groove and the third storage groove are formed in the valley portion M, and the third filament coil is disposed in the storage groove. good.
  • the opening of the converging groove and the opening of the storage groove are arranged in parallel to the valley bottom portion M, but they are not necessarily arranged in parallel.
  • the electron focusing cup 15 may not have the flat front surface 15A.
  • the embodiment of the present invention is not limited to the rotary anode X-ray tube 1 described above, but can be applied to various types of rotary anode X-ray tubes.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

This rotating anode X-ray tube is provided with a fixed shaft, a rotor, a cathode, an anode target, and a vacuum envelope. The cathode is provided with a first filament, and an electron focusing cup. The electron focusing cup is provided with a first inclined flat surface, a second inclined flat surface, a valley bottom section, a first focusing groove part, and a first accommodation groove part. The expressions α>0˚, β>0˚, and α+β≤21˚ are satisfied.

Description

回転陽極型X線管Rotating anode X-ray tube
 本発明の実施形態は、回転陽極型X線管に関する。 Embodiments of the present invention relate to a rotary anode type X-ray tube.
 従来、X線を使用して被写体を診断する医療用機器や工業用機器には、X線発生源としてX線管装置が使用されている。X線管装置として、回転陽極型のX線管を備えた回転陽極型X線管装置が知られている。 Conventionally, an X-ray tube apparatus is used as an X-ray generation source in medical equipment and industrial equipment that diagnose a subject using X-rays. As an X-ray tube device, a rotary anode type X-ray tube device including a rotary anode type X-ray tube is known.
 回転陽極型X線管装置は、X線を放射する回転陽極型X線管、ステータコイル、これら回転陽極型X線管及びステータコイルを収容した筐体等を備えている。回転陽極型X線管は、固定軸、電子を発生する陰極、陽極ターゲット、回転体、真空外囲器等を備えている。回転体は陽極ターゲットに接続されており、ステータコイルから発生する磁界により回転する。また、陰極は陽極ターゲットと対向している。陽極ターゲットは、陰極から放出された電子が衝突することによりX線を放出する。ここで、陰極の陽極ターゲットと対向する側の先端面が管軸に垂直となるように陰極が配置される技術、及び陰極の陽極ターゲットと対向する側の先端面が固定軸側を向くように陰極が傾けて配置される技術が開示されている。 The rotary anode X-ray tube device includes a rotary anode X-ray tube that emits X-rays, a stator coil, a housing that accommodates the rotary anode X-ray tube and the stator coil, and the like. The rotary anode type X-ray tube includes a fixed shaft, a cathode for generating electrons, an anode target, a rotating body, a vacuum envelope, and the like. The rotating body is connected to the anode target and is rotated by a magnetic field generated from the stator coil. The cathode faces the anode target. The anode target emits X-rays when electrons emitted from the cathode collide. Here, a technique in which the cathode is disposed so that the tip surface of the cathode facing the anode target is perpendicular to the tube axis, and the tip surface of the cathode facing the anode target is directed to the fixed axis side. A technique is disclosed in which the cathode is tilted.
米国特許第5136625号明細書US Pat. No. 5,136,625 米国特許第6256375号明細書US Pat. No. 6,256,375
 本実施形態の目的は、陽極ターゲットへの入力の向上が可能な回転陽極型X線管を提供することにある。 An object of the present embodiment is to provide a rotary anode type X-ray tube capable of improving input to an anode target.
 一実施形態に係る回転陽極型X線管は、
 X線管軸を有する固定軸と、前記固定軸の周囲で軸受により支持される回転体と、電子ビームを放出する第1フィラメントと、前記第1フィラメントから放出された電子ビームを収束させる電子収束カップと、を備える陰極と、前記陰極と対向し、前記第1フィラメントから放出された電子ビームが衝突し前記X線管軸に垂直な主放射方向にX線を放射する第1焦点が形成されるターゲット面を有し、前記回転体に接続される陽極ターゲットと、前記陽極ターゲットを囲むガラス容器を有し、前記陰極及び前記陽極ターゲットを収容する真空外囲器と、を備え、前記電子収束カップは、第1傾斜平坦面と、第2傾斜平面と、前記第1傾斜平坦面と前記第2傾斜平坦面との間に位置する谷底部分と、前記第1傾斜平坦面に開口部を有する第1収束溝部と、前記第1収束溝部の底面に開口部を有し前記第1フィラメントを収容する第1収納溝部と、を有し、前記第1焦点の中心から前記X線管軸に平行な直線を基準軸とし、前記基準軸と前記主放射方向とを含む平面を第1基準面とし、前記谷底部分から延びる仮想上の直線を第1延長線とし、前記主放射方向と前記第1延長線とが成す角度をαとし、前記主放射方向と前記ターゲット面とが成す角度をβとすると、α>0°、β>0°、α+β≦21°であることを特徴とする。
A rotary anode X-ray tube according to an embodiment is:
A fixed shaft having an X-ray tube axis, a rotating body supported by a bearing around the fixed shaft, a first filament that emits an electron beam, and an electron convergence that converges the electron beam emitted from the first filament A cathode having a cup; and a first focal point facing the cathode, the electron beam emitted from the first filament collides and emits X-rays in a main radiation direction perpendicular to the X-ray tube axis. An electron target that has a target surface that is connected to the rotating body, and a vacuum envelope that has a glass container surrounding the anode target and accommodates the cathode and the anode target. The cup has a first inclined flat surface, a second inclined flat surface, a valley bottom portion located between the first inclined flat surface and the second inclined flat surface, and an opening in the first inclined flat surface. 1st yield A groove, and a first storage groove having an opening on the bottom surface of the first converging groove, and storing the first filament, and a straight line parallel to the X-ray tube axis from the center of the first focus. A reference axis, a plane including the reference axis and the main radiation direction as a first reference plane, a virtual straight line extending from the valley bottom portion as a first extension line, the main radiation direction and the first extension line, When α is an angle formed by α and β is an angle formed by the main radiation direction and the target surface, α> 0 °, β> 0 °, and α + β ≦ 21 °.
 一実施形態に係る回転陽極型X線管は、
 X線管軸を有する固定軸と、前記固定軸の周囲で軸受により支持される回転体と、電子ビームを放出するフィラメントと、前記フィラメントから放出された電子ビームを収束させる電子収束カップと、を備える陰極と、前記陰極と対向し、前記フィラメントから放出された電子ビームが衝突し前記X線管軸に垂直な主放射方向にX線を放射する焦点が形成されるターゲット面を有し、前記回転体に接続される陽極ターゲットと、前記陽極ターゲットを囲むガラス容器を有し、前記陰極及び前記陽極ターゲットを収容する真空外囲器と、を備え、前記電子収束カップは、前記陽極ターゲットと対向する第1面と、前記第1面に開口部を有する収束溝部と、前記収束溝部の底面に開口部を有し前記フィラメントを収容する収納溝部と、を有し、前記焦点の中心から前記X線管軸に平行な直線を基準軸とし、前記基準軸と前記主放射方向とを含む平面を第1基準面とし、前記第1基準面において前記主放射方向と前記第1面とが成す角度をαとし、前記第1基準面において前記主放射方向と前記ターゲット面とが形成する鋭角を角度βとすると、α>0°、β>0°、α+β≦21°であることを特徴とする。
A rotary anode X-ray tube according to an embodiment is:
A fixed shaft having an X-ray tube axis, a rotating body supported by a bearing around the fixed shaft, a filament for emitting an electron beam, and an electron focusing cup for converging the electron beam emitted from the filament. A cathode having a target surface facing the cathode and having a focal point for emitting X-rays in a main radiation direction perpendicular to the X-ray tube axis by colliding with an electron beam emitted from the filament; An anode target connected to a rotating body; and a vacuum envelope having a glass container surrounding the anode target, and containing the cathode and the anode target, wherein the electron focusing cup faces the anode target. A first groove, a converging groove having an opening on the first surface, and a storage groove having an opening on the bottom surface of the converging groove and accommodating the filament. A straight line parallel to the X-ray tube axis from the center of the focal point is used as a reference axis, and a plane including the reference axis and the main radiation direction is defined as a first reference surface. If the angle formed by one surface is α and the acute angle formed by the main radiation direction and the target surface on the first reference surface is angle β, α> 0 °, β> 0 °, α + β ≦ 21 ° It is characterized by being.
図1は、第1の実施形態に係る回転陽極型X線管装置を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating anode X-ray tube apparatus according to the first embodiment. 図2は、上記第1の実施形態に係る回転陽極型X線管装置の陰極をY-Z平面に沿って示す断面図である。FIG. 2 is a cross-sectional view showing the cathode of the rotary anode X-ray tube apparatus according to the first embodiment along the YZ plane. 図3は、図2に示した陰極を陽極ターゲット側からみた状態を示す平面図である。FIG. 3 is a plan view showing a state where the cathode shown in FIG. 2 is viewed from the anode target side. 図4は、上記第1の実施形態に係る回転陽極型X線管装置の一部を示す断面図であり、陰極、陽極ターゲット等を示す図である。FIG. 4 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the first embodiment, showing a cathode, an anode target, and the like. 図5は、図1に示した陽極ターゲットを陰極側から見た平面図であり、電子の照射領域などを示す図である。FIG. 5 is a plan view of the anode target shown in FIG. 1 as viewed from the cathode side, and shows an electron irradiation region and the like. 図6は、上記第1の実施形態の変形例に係る回転陽極型X線管装置の一部を示す断面図であり、陰極、陽極ターゲット等を示す図である。FIG. 6 is a cross-sectional view showing a part of a rotary anode type X-ray tube apparatus according to a modification of the first embodiment, showing a cathode, an anode target, and the like. 図7は、第2の実施形態に係る回転陽極型X線管装置の一部をY-Z平面に沿って示す断面図であり、陰極、陽極ターゲット等を示す図である。FIG. 7 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the second embodiment along the YZ plane, and shows a cathode, an anode target, and the like. 図8は、図7に示した陰極を陽極ターゲット側からみた状態を示す平面図である。FIG. 8 is a plan view showing a state where the cathode shown in FIG. 7 is viewed from the anode target side. 図9は、上記第2の実施形態に係る回転陽極型X線管装置の一部をX-Z平面に沿って示す断面図であり、陰極、陽極ターゲット等を示す図である。FIG. 9 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus according to the second embodiment along the XZ plane, and shows a cathode, an anode target, and the like. 図10は、比較例1の回転陽極型X線管の一部をX-Z平面に沿って示す断面図であり、陰極、陽極ターゲット等を示す図である。FIG. 10 is a cross-sectional view showing a part of the rotary anode X-ray tube of Comparative Example 1 along the XZ plane, showing the cathode, the anode target, and the like.
 以下に、本発明の実施形態及び各変形例について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。 Hereinafter, embodiments of the present invention and modifications thereof will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, for the sake of clarity, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part as compared to actual aspects, but are merely examples, and The interpretation is not limited. In addition, in the present specification and each drawing, components that perform the same or similar functions as those described above with reference to the previous drawings are denoted by the same reference numerals, and repeated detailed description may be omitted as appropriate. .
 まず、第1の実施形態に係る回転陽極型X線管装置について説明する。図1は、第1の実施形態に係る回転陽極型X線管装置100を示す断面図である。なお、図1の説明は、後述する第2の実施形態の説明にも適用可能である。第1方向X及び第2方向Yは互いに直交している。また、第3方向Zは、第1方向X及び第2方向Yと直交している。X-Y平面は、第1方向X及び第2方向Yで規定される平面である。X-Z平面は、第1方向X及び第3方向Zで規定される平面である。Y-Z平面は、第2方向Y及び第3方向Zで規定される平面である。 First, the rotating anode X-ray tube apparatus according to the first embodiment will be described. FIG. 1 is a cross-sectional view showing a rotary anode X-ray tube apparatus 100 according to the first embodiment. The description of FIG. 1 can also be applied to the description of a second embodiment described later. The first direction X and the second direction Y are orthogonal to each other. The third direction Z is orthogonal to the first direction X and the second direction Y. The XY plane is a plane defined by the first direction X and the second direction Y. The XZ plane is a plane defined by the first direction X and the third direction Z. The YZ plane is a plane defined by the second direction Y and the third direction Z.
 図1に示すように、回転陽極型X線管装置100は、回転陽極型X線管1、磁界を発生させるコイルであるステータコイル2、回転陽極型X線管1及びステータコイル2を収容する筐体3、制御部4等を備えている。回転陽極型X線管1は、固定軸10、回転体20、陰極支持部品30、陰極60、陽極ターゲット50、真空外囲器70等を備えている。 As shown in FIG. 1, a rotary anode X-ray tube device 100 houses a rotary anode X-ray tube 1, a stator coil 2 that is a coil for generating a magnetic field, the rotary anode X-ray tube 1, and a stator coil 2. The housing 3 and the control unit 4 are provided. The rotary anode type X-ray tube 1 includes a fixed shaft 10, a rotating body 20, a cathode support component 30, a cathode 60, an anode target 50, a vacuum envelope 70, and the like.
 固定軸10は、円柱状に形成され、第3方向Zに平行なX線管軸Aに沿って延出している。固定軸10は、一端部が真空外囲器70の外側に露出している。固定軸10は、例えば、Fe(鉄)やMo(モリブデン)等の材料を用いて形成される。 The fixed shaft 10 is formed in a cylindrical shape and extends along the X-ray tube axis A parallel to the third direction Z. One end of the fixed shaft 10 is exposed to the outside of the vacuum envelope 70. The fixed shaft 10 is formed using a material such as Fe (iron) or Mo (molybdenum), for example.
 回転体20は、一端が開口した円筒状に形成された円筒部21と、円筒部21の開口した側とは反対側に形成された接続部22と、を有している。円筒部21及び接続部22は、X線管軸Aに沿って延出している。すなわち、回転体20は、固定軸10と同軸的に設けられている。回転体20は、固定軸10と円筒部21との間に配置された図示しない軸受により、固定軸10の周りで回転可能に支持されている。円筒部21は、真空外囲器70を挟んでステータコイル2に対向している。回転体20は、例えば、FeやMo、Cu等の材料を用いて形成される。 The rotating body 20 has a cylindrical portion 21 formed in a cylindrical shape with one end opened, and a connecting portion 22 formed on the side opposite to the opened side of the cylindrical portion 21. The cylindrical portion 21 and the connecting portion 22 extend along the X-ray tube axis A. That is, the rotating body 20 is provided coaxially with the fixed shaft 10. The rotating body 20 is rotatably supported around the fixed shaft 10 by a bearing (not shown) disposed between the fixed shaft 10 and the cylindrical portion 21. The cylindrical portion 21 faces the stator coil 2 with the vacuum envelope 70 interposed therebetween. The rotating body 20 is formed using a material such as Fe, Mo, or Cu, for example.
 回転体20の円筒部21と固定軸10とは、互いに図示しない隙間(微小な隙間)を置いて設けられている。ここで、軸受は、例えば、潤滑剤としての液体金属を用いた動圧軸受である。図示しない液体金属は、円筒部21と固定軸10との間の隙間に充填されている。液体金属は、Galn(ガリウム・インジウム)合金またはGaInSn(ガリウム・インジウム・錫)合金等の材料を利用することができる。液体金属は、常温で液状となる特性を持っている。また、液体金属は、蒸気圧が低いという特性も持っている。このため、真空状態の回転陽極型X線管の内部で液体金属を使用することができる。軸受は、固定軸10と、回転体20と、液体金属とを用いて形成される。なお、軸受としては、上記した動圧軸受に限らず、様々な形態をとることが可能である。 The cylindrical portion 21 of the rotating body 20 and the fixed shaft 10 are provided with a gap (a minute gap) (not shown). Here, the bearing is, for example, a dynamic pressure bearing using a liquid metal as a lubricant. A liquid metal (not shown) is filled in a gap between the cylindrical portion 21 and the fixed shaft 10. As the liquid metal, a material such as a Galn (gallium / indium) alloy or a GaInSn (gallium / indium / tin) alloy can be used. Liquid metal has the property of becoming liquid at room temperature. In addition, liquid metal has a characteristic of low vapor pressure. For this reason, a liquid metal can be used inside the rotary anode X-ray tube in a vacuum state. The bearing is formed using the fixed shaft 10, the rotating body 20, and a liquid metal. The bearing is not limited to the above-described dynamic pressure bearing, and can take various forms.
 陰極支持部品30は、平板状に形成されており、陽極ターゲット50側の面30Aと、面30Aの反対側の面30Bを有している。図示した例では、面30A及び面30Bは、X線管軸Aに垂直に形成されている。陰極支持部品30は、面30Aで陰極60を支持し、面30Bで陰極構体31に固定されている。陰極構体31は、真空外囲器70の内壁に固定されている。陰極構体31は、第3方向Zにおいて、陽極ターゲット50に対向している。 The cathode support component 30 is formed in a flat plate shape, and has a surface 30A on the anode target 50 side and a surface 30B on the opposite side of the surface 30A. In the illustrated example, the surface 30A and the surface 30B are formed perpendicular to the X-ray tube axis A. The cathode support component 30 supports the cathode 60 on the surface 30A, and is fixed to the cathode assembly 31 on the surface 30B. The cathode structure 31 is fixed to the inner wall of the vacuum envelope 70. The cathode structure 31 faces the anode target 50 in the third direction Z.
 陰極60は、陰極支持部品30に固定されている。陰極60は、電子収束カップ15と、フィラメントとしてのフィラメントコイルと、を有している。例えば、フィラメントコイルは、タングステンを主成分とする材料を用いて形成される。この第1の実施形態では、陰極60は、第1フィラメントとしての第1フィラメントコイル61と、後述する第2フィラメントとしての第2フィラメントコイル62と、を有している。後述する第2の実施形態では、陰極60は、フィラメントとしての第3フィラメントコイル61を有している。なお、陰極60が有するフィラメントの数は1個又は2個に限定されるものではない。陰極60は、少なくとも1個のフィラメントを有していればよい。また、フィラメントは、上記フィラメントコイルに限定されるものではなく、種々変形可能であり、例えば、平板フィラメントであってもよい。 The cathode 60 is fixed to the cathode support component 30. The cathode 60 has an electron converging cup 15 and a filament coil as a filament. For example, the filament coil is formed using a material whose main component is tungsten. In the first embodiment, the cathode 60 has a first filament coil 61 as a first filament and a second filament coil 62 as a second filament described later. In a second embodiment to be described later, the cathode 60 has a third filament coil 61 as a filament. Note that the number of filaments included in the cathode 60 is not limited to one or two. The cathode 60 only needs to have at least one filament. Further, the filament is not limited to the filament coil, and can be variously modified. For example, a flat filament may be used.
 陽極ターゲット50は、円盤状に形成され、回転体20の接続部22に接続されている。陽極ターゲット50は、固定軸10等と同軸的に設けられている。陽極ターゲット50は、回転体20と一体的に回転する。陽極ターゲット50は、例えばモリブデン又はタングステン、あるいはこれらを用いた合金で形成される。 The anode target 50 is formed in a disk shape and is connected to the connection portion 22 of the rotating body 20. The anode target 50 is provided coaxially with the fixed shaft 10 or the like. The anode target 50 rotates integrally with the rotating body 20. The anode target 50 is formed of, for example, molybdenum or tungsten, or an alloy using these.
 陽極ターゲット50は、円環状のX線放射層51と、ターゲット基体52と、を有している。X線放射層51は、ターゲット基体52の陰極60と対向する側に形成され、陰極60と対向する側にターゲット面50Aを有している。陽極ターゲット50は、ターゲット面50Aに陰極60から放出された電子が衝突することにより、ターゲット面50A上に焦点を形成し、焦点からX線を発生する。X線放射層51は、融点の高い金属で形成されている。ここでは、X線放射層51は、タングステン合金で形成されている。陽極ターゲット50は、固定軸10及び回転体20等を介し、端子91と電気的に接続されている。 The anode target 50 has an annular X-ray radiation layer 51 and a target base 52. The X-ray emission layer 51 is formed on the side of the target substrate 52 facing the cathode 60, and has a target surface 50 </ b> A on the side facing the cathode 60. The anode target 50 forms a focal point on the target surface 50A and generates X-rays from the focal point when electrons emitted from the cathode 60 collide with the target surface 50A. The X-ray emission layer 51 is made of a metal having a high melting point. Here, the X-ray radiation layer 51 is formed of a tungsten alloy. The anode target 50 is electrically connected to the terminal 91 through the fixed shaft 10 and the rotating body 20.
 なお、図示した例では、接続部22及びターゲット基体52は、別々に形成されているが、ターゲット基体52は、接続部22と同一材料で一体に形成されていても良い。また、図1に示した陽極ターゲット50の形状は一例であり、陽極ターゲット50は、種々の形状をとることが可能である。 In the illustrated example, the connecting portion 22 and the target base 52 are formed separately, but the target base 52 may be integrally formed of the same material as the connecting portion 22. Moreover, the shape of the anode target 50 shown in FIG. 1 is an example, and the anode target 50 can take various shapes.
 真空外囲器70は、固定軸10、回転体20、陰極60、陽極ターゲット50等を収容している。真空外囲器70は密閉され、内部が真空状態(減圧状態)に維持されている。真空外囲器70は、ガラス容器70aと接続部70bとを有している。ガラス容器70aは、少なくとも陽極ターゲット50を取り囲んでいる。接続部70bは、一方で、融着によりガラス容器70aに気密に接続され、他方で、固定軸10に気密に接続されている。ガラス容器70aは、例えば、硼珪酸ガラスで形成されている。接続部70bは、金属として、例えば、コバールで形成されている。コバールの熱膨張率は、硼珪酸ガラスの熱膨張率と略等しいため、接続部70bにコバールを使用することは望ましい。真空外囲器70は開口部71を有している。開口部71は、接続部70bに形成されている。真空外囲器70の密閉状態を維持するよう、開口部71は固定軸10の一端部に気密に接合されている。図示した例では、回転陽極型X線管1には、片端支持軸受構造が採用されている。真空外囲器70は、固定軸10の一端部を固定している。すなわち、固定軸10の一端部は、軸受の片持ち支持部として機能している。 The vacuum envelope 70 accommodates the fixed shaft 10, the rotating body 20, the cathode 60, the anode target 50, and the like. The vacuum envelope 70 is sealed and the inside is maintained in a vacuum state (depressurized state). The vacuum envelope 70 has a glass container 70a and a connecting portion 70b. The glass container 70a surrounds at least the anode target 50. On the one hand, the connection part 70b is airtightly connected to the glass container 70a by fusion, and on the other hand, it is airtightly connected to the fixed shaft 10. The glass container 70a is made of, for example, borosilicate glass. The connection part 70b is made of, for example, Kovar as a metal. Since the coefficient of thermal expansion of Kovar is substantially equal to the coefficient of thermal expansion of borosilicate glass, it is desirable to use Kovar for the connecting portion 70b. The vacuum envelope 70 has an opening 71. The opening 71 is formed in the connection portion 70b. The opening 71 is airtightly joined to one end of the fixed shaft 10 so as to maintain the sealed state of the vacuum envelope 70. In the illustrated example, the rotary anode X-ray tube 1 employs a one-end support bearing structure. The vacuum envelope 70 fixes one end of the fixed shaft 10. That is, one end portion of the fixed shaft 10 functions as a cantilever support portion of the bearing.
 ステータコイル2は、回転体20の円筒部21の側面と対向し、真空外囲器70の外側を環状に囲むように設けられている。ステータコイル2は、端子(図示せず)と電気的に接続され、端子を介して駆動される。 The stator coil 2 faces the side surface of the cylindrical portion 21 of the rotating body 20 and is provided so as to surround the outside of the vacuum envelope 70 in an annular shape. Stator coil 2 is electrically connected to a terminal (not shown) and driven through the terminal.
 筐体3は、回転陽極型X線管1及びステータコイル2を収容している。筐体3は密閉されている。筐体3は、陰極60側のX線放射層51付近において、X線を透過させるX線透過窓3aを有している。冷却液Lは、回転陽極型X線管1と筐体3との間の空間に充填されている。本実施形態において冷却液Lは絶縁油である。なお、冷却液Lの材料は特に限定されず、絶縁油のほか、水系冷却液等、種々の材料を用いることが可能である。 The housing 3 accommodates the rotating anode type X-ray tube 1 and the stator coil 2. The housing 3 is sealed. The housing 3 has an X-ray transmission window 3a that transmits X-rays in the vicinity of the X-ray emission layer 51 on the cathode 60 side. The cooling liquid L is filled in a space between the rotary anode X-ray tube 1 and the housing 3. In the present embodiment, the coolant L is an insulating oil. The material of the coolant L is not particularly limited, and various materials such as an insulating coolant and an aqueous coolant can be used.
 制御部4は、端子81、82、83を介して陰極60に電気的に接続されている。制御部4は、複数のフィラメントコイルのうち何れか1つの駆動や制御を行ったり、複数のフィラメントコイルのうち同時に2つ以上の駆動や制御を行ったりする。陰極60を駆動する際、端子81、82、83に接続された図示しない回路が用いられてもよいし、端子81、82、83以外の端子が用いられてもよい。 The control unit 4 is electrically connected to the cathode 60 via terminals 81, 82, 83. The control unit 4 drives or controls any one of the plurality of filament coils, or simultaneously performs two or more drives or controls among the plurality of filament coils. When driving the cathode 60, a circuit (not shown) connected to the terminals 81, 82, and 83 may be used, and terminals other than the terminals 81, 82, and 83 may be used.
 次に、上記回転陽極型X線管装置100の動作について説明する。 
 回転陽極型X線管装置100の動作において、ステータコイル2は、端子(図示せず)を介して駆動され、回転体20に与える磁界を発生する。このため、回転体20は陽極ターゲット50とともに一体に回転する。制御部4は、端子81乃至83を介して陰極60のフィラメントコイルを駆動させる電流を与える。陰極60が複数のフィラメントコイルを備えている場合、制御部4は、少なくとも1つのフィラメントコイルを駆動させる。この第1の実施形態では、制御部4は、第1及び第2フィラメントコイルのうち、1つのフィラメントコイルを駆動するか、2つのフィラメントコイルを同時に駆動する。なお、後述する第2の実施形態では、制御部4は1つのフィラメントを駆動する。駆動されるフィラメントコイルには、相対的に負の電圧が与えられる。陽極ターゲット50には相対的に正の電圧が与えられる。すなわち、陽極ターゲット50と陰極60との間には電圧(管電圧)が印加される。陰極60及び陽極ターゲット50に電位差が生じる。フィラメントコイルから放出された電子は、陽極ターゲット50に向かって収束及び加速され、X線放射層51に衝突する。すなわち、陰極60からターゲット面50A上の焦点に電流(管電流)が流れる。ターゲット面50Aは、電子が衝突することにより、焦点からX線を放出する。これにより、ターゲット面50Aから発生したX線は、真空外囲器70を透過し、X線透過窓3aを介して筐体3の外部に放出される。
Next, the operation of the rotary anode X-ray tube apparatus 100 will be described.
In the operation of the rotary anode X-ray tube device 100, the stator coil 2 is driven via a terminal (not shown) to generate a magnetic field to be applied to the rotating body 20. For this reason, the rotating body 20 rotates together with the anode target 50. The control unit 4 supplies a current for driving the filament coil of the cathode 60 via the terminals 81 to 83. When the cathode 60 includes a plurality of filament coils, the control unit 4 drives at least one filament coil. In the first embodiment, the control unit 4 drives one filament coil of the first and second filament coils or drives two filament coils simultaneously. In the second embodiment to be described later, the control unit 4 drives one filament. A relatively negative voltage is applied to the driven filament coil. A relatively positive voltage is applied to the anode target 50. That is, a voltage (tube voltage) is applied between the anode target 50 and the cathode 60. A potential difference is generated between the cathode 60 and the anode target 50. Electrons emitted from the filament coil are converged and accelerated toward the anode target 50 and collide with the X-ray emission layer 51. That is, a current (tube current) flows from the cathode 60 to the focal point on the target surface 50A. The target surface 50A emits X-rays from the focal point when electrons collide. Thereby, the X-rays generated from the target surface 50A pass through the vacuum envelope 70 and are emitted to the outside of the housing 3 through the X-ray transmission window 3a.
 図2は、第1の実施形態に係る回転陽極型X線管装置の陰極60をY-Z平面に沿って示す断面図である。また、図2には、第1方向Xとは反対の方向からみた状態の陽極ターゲット50の一部の側面図を示している。 
 図2に示すように、陰極60は、電子を放出する第1フィラメントコイル61及び第2フィラメントコイル62と、電子収束カップ15と、を備えている。フィラメントコイルと電子収束カップ15は、図1に示した端子81、82、83などの複数の端子に電気的に接続されている。フィラメントコイルは、電流が供給されることにより、電子を放出する。電子収束カップ15は、フィラメントコイルから放出された電子を収束させる。また、図示した例では、陽極ターゲット50のターゲット面50A上には、焦点BMが形成されている。
FIG. 2 is a sectional view showing the cathode 60 of the rotary anode X-ray tube apparatus according to the first embodiment along the YZ plane. FIG. 2 shows a side view of a part of the anode target 50 in a state viewed from the direction opposite to the first direction X.
As shown in FIG. 2, the cathode 60 includes a first filament coil 61 and a second filament coil 62 that emit electrons, and an electron converging cup 15. The filament coil and the electron converging cup 15 are electrically connected to a plurality of terminals such as the terminals 81, 82, and 83 shown in FIG. The filament coil emits electrons when supplied with current. The electron converging cup 15 converges electrons emitted from the filament coil. In the illustrated example, a focal point BM is formed on the target surface 50 </ b> A of the anode target 50.
 電子収束カップ15は、前面15Aと、第1傾斜平坦面160と、第2傾斜平坦面170と、第1収束溝部16と、第2収束溝部17と、第1収納溝部26と、第2収納溝部27と、を有している。ここで、電子収束カップ15及び第1フィラメントコイル61で1つの電子銃を形成している。また、電子収束カップ15及び第2フィラメントコイル62で1つの電子銃を形成している。 The electron converging cup 15 includes a front surface 15A, a first inclined flat surface 160, a second inclined flat surface 170, a first converging groove portion 16, a second converging groove portion 17, a first storage groove portion 26, and a second storage space. And a groove portion 27. Here, the electron focusing cup 15 and the first filament coil 61 form one electron gun. The electron converging cup 15 and the second filament coil 62 form one electron gun.
 前面15Aは、平坦面であり、陽極ターゲット50と対向している。すなわち、前面15Aは、陰極60の前面に相当する。また、前面15Aは、陰極60のうち、陽極ターゲット50にもっとも近接している。 The front surface 15 </ b> A is a flat surface and faces the anode target 50. That is, the front surface 15 </ b> A corresponds to the front surface of the cathode 60. Further, the front surface 15 </ b> A is closest to the anode target 50 in the cathode 60.
 第1傾斜平坦面160及び第2傾斜平坦面170は、前面15Aに対して傾斜している。すなわち、2個の電子銃が同じ位置に焦点BMを形成できるよう、第1傾斜平坦面160及び第2傾斜平坦面170は、X-Y平面から傾いている。電子収束カップ15は、第1傾斜平坦面160と第2傾斜平坦面170との間に谷底部分Mを有している。本実施形態においては、谷底部分Mは、第1傾斜平坦面160と第2傾斜平坦面170との境界に位置している。すなわち、第1傾斜平坦面160及び第2傾斜平坦面170は、谷底部分Mを通る第3方向Zに沿った線分に対して略線対称となるように傾斜している。なお、本実施形態において谷底部分Mは、X-Z平面上に位置し、X-Z平面において前面15Aに平行である。また、焦点BMから第1傾斜平坦面160及び第2傾斜平坦面170までの距離のうち、谷底部分Mまでの距離が最も長い。 The first inclined flat surface 160 and the second inclined flat surface 170 are inclined with respect to the front surface 15A. That is, the first inclined flat surface 160 and the second inclined flat surface 170 are inclined from the XY plane so that the two electron guns can form the focal point BM at the same position. The electron converging cup 15 has a valley bottom portion M between the first inclined flat surface 160 and the second inclined flat surface 170. In the present embodiment, the valley bottom portion M is located at the boundary between the first inclined flat surface 160 and the second inclined flat surface 170. That is, the first inclined flat surface 160 and the second inclined flat surface 170 are inclined so as to be substantially line symmetric with respect to the line segment along the third direction Z passing through the valley bottom portion M. In the present embodiment, the valley bottom portion M is located on the XZ plane and is parallel to the front surface 15A in the XZ plane. Of the distances from the focal point BM to the first inclined flat surface 160 and the second inclined flat surface 170, the distance to the valley bottom portion M is the longest.
 第1収束溝部16は、第1傾斜平坦面160上に開口部16aを有している。また、第1収束溝部16は、底面16bを有している。底面16bは、第1傾斜平坦面160と平行である。第1収納溝部26は、底面16b上に開口部26aを有し、第1フィラメントコイル61を収納している。第2収束溝部17は、第1傾斜平坦面170上に開口部17aを有している。また、第2収束溝部12は、底面17bを有している。底面17bは、第2傾斜平坦面170と平行である。第2収納溝部27は、底面17b上に開口部27aを有し、第2フィラメントコイル62を収納している。 The first converging groove 16 has an opening 16 a on the first inclined flat surface 160. Moreover, the 1st convergence groove part 16 has the bottom face 16b. The bottom surface 16b is parallel to the first inclined flat surface 160. The first storage groove 26 has an opening 26 a on the bottom surface 16 b and stores the first filament coil 61. The second converging groove 17 has an opening 17 a on the first inclined flat surface 170. Moreover, the 2nd convergence groove part 12 has the bottom face 17b. The bottom surface 17b is parallel to the second inclined flat surface 170. The second storage groove 27 has an opening 27 a on the bottom surface 17 b and stores the second filament coil 62.
 第1傾斜平坦面160は底面16bと平行であり、第2傾斜平坦面170は底面17bと平行である。このため、開口部26aは開口部16aと平行であり、開口部27aは開口部17aと平行である。第1フィラメントコイル61は、開口部26aと平行な仮想平面に沿って延在している。第2フィラメントコイル62は、開口部27aと平行な仮想平面に沿って延在している。 The first inclined flat surface 160 is parallel to the bottom surface 16b, and the second inclined flat surface 170 is parallel to the bottom surface 17b. For this reason, the opening part 26a is parallel to the opening part 16a, and the opening part 27a is parallel to the opening part 17a. The first filament coil 61 extends along a virtual plane parallel to the opening 26a. The second filament coil 62 extends along a virtual plane parallel to the opening 27a.
 ターゲット面50Aに形成される焦点BMのうち、第1フィラメントコイル61から放出された電子がターゲット面50Aに入射されることにより主放射方向にX線を放射する焦点を第1焦点F1とする。一方、ターゲット面50Aに形成される焦点BMのうち、第2フィラメントコイル62から放出された電子がターゲット面50Aに入射されることにより主放射方向にX線を放射する焦点を第2焦点F2とする。本実施形態において、第1焦点F1の中心位置と第2焦点F2の中心位置とは、同じ位置である。但し、本実施形態において、2個の電子銃の構造が異なっているため、第1焦点F1の寸法と第2焦点F2の寸法とは、異なっている。後述するが、例えば、第1フィラメントコイル61の寸法と第2フィラメントコイル62の寸法とは、異なっている。 Among the focal points BM formed on the target surface 50A, a focal point that emits X-rays in the main radiation direction when electrons emitted from the first filament coil 61 are incident on the target surface 50A is defined as a first focal point F1. On the other hand, of the focal point BM formed on the target surface 50A, the focal point that emits X-rays in the main radiation direction when electrons emitted from the second filament coil 62 are incident on the target surface 50A is defined as the second focal point F2. To do. In the present embodiment, the center position of the first focus F1 and the center position of the second focus F2 are the same position. However, in this embodiment, since the structures of the two electron guns are different, the dimension of the first focal point F1 and the dimension of the second focal point F2 are different. As will be described later, for example, the dimension of the first filament coil 61 and the dimension of the second filament coil 62 are different.
 ここで、基準軸RAは、焦点BMを通っている。また、基準軸RAは、第1焦点F1の中心を通り第3方向Zに平行な軸である。上記したように、第1焦点F1と第2焦点F2の中心位置とが同一であるため、基準軸RAは、第2焦点F2の中心も通っている。なお、基準軸RAと主放射方向dとを含む平面を第1基準面S1とする。 Here, the reference axis RA passes through the focal point BM. The reference axis RA is an axis that passes through the center of the first focal point F1 and is parallel to the third direction Z. As described above, since the center positions of the first focus F1 and the second focus F2 are the same, the reference axis RA also passes through the center of the second focus F2. A plane including the reference axis RA and the main radiation direction d is defined as a first reference plane S1.
 図3は、図2に示した陰極60を陽極ターゲット50側からみた状態を示す平面図である。 
 図3に示すように、第1フィラメントコイル61の寸法と第2フィラメントコイル62の寸法は異なっている。図示した例では、第1フィラメントコイル61は、第1方向Xにおいて第2フィラメントコイル62より大きい。収束第1収束溝部16及び第2収束溝部17は、第1基準面S1に平行な長軸を有している。また、第1収納溝部26及び第2収納溝部27は、それぞれ長軸を有している。第1フィラメントコイル61及び第2フィラメントコイル62は、それぞれ、直線状に延出して形成され、長軸を有している。
FIG. 3 is a plan view showing a state in which the cathode 60 shown in FIG. 2 is viewed from the anode target 50 side.
As shown in FIG. 3, the dimensions of the first filament coil 61 and the second filament coil 62 are different. In the illustrated example, the first filament coil 61 is larger than the second filament coil 62 in the first direction X. The converging first converging groove 16 and the second converging groove 17 have a long axis parallel to the first reference plane S1. Moreover, the 1st storage groove part 26 and the 2nd storage groove part 27 have a long axis, respectively. The first filament coil 61 and the second filament coil 62 are each formed to extend linearly and have a long axis.
 図4は、第1の実施形態に係る回転陽極型X線管装置100の一部を示す断面図であり、陰極60、陽極ターゲット50等を示す図である。図4は、陰極60及び陽極ターゲット50の基準軸RAを通るX-Z平面に沿った断面を示している。また、図5は、図1に示した陽極ターゲット50を陰極60側から見た平面図で有り、電子の照射領域などを示す図である。X線の主放射方向dは、基準軸RAを通るX-Z平面と同一平面上に位置している。本実施形態においては、主放射方向dは、第1方向Xに平行であり、焦点の中心を通っている。また、主放射方向dは、基準軸RAに垂直である。なお、ターゲット面50A上に形成される焦点を、回転陽極型X線管1の外側から主放射方向dとは反対の方向に見た場合の形状を、実効焦点と称する場合がある。 FIG. 4 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the first embodiment, showing the cathode 60, the anode target 50, and the like. FIG. 4 shows a cross section along the XZ plane passing through the reference axis RA of the cathode 60 and the anode target 50. FIG. 5 is a plan view of the anode target 50 shown in FIG. 1 as viewed from the cathode 60 side, and shows an electron irradiation region and the like. The main radiation direction d of X-rays is located on the same plane as the XZ plane passing through the reference axis RA. In the present embodiment, the main radiation direction d is parallel to the first direction X and passes through the center of the focal point. The main radiation direction d is perpendicular to the reference axis RA. In addition, the shape when the focal point formed on the target surface 50A is viewed from the outside of the rotary anode X-ray tube 1 in the direction opposite to the main radiation direction d may be referred to as an effective focal point.
 ここで、X-Z平面において、谷底部分Mに沿って延びる仮想上の直線を第1延長線E1とし、ターゲット面50Aに沿って延びる仮想上の直線を第2延長線E2とし、主放射方向dに沿って延びる仮想上の直線を第3延長線E3とする。 
 図4に示すように、第1延長線E1及び第3延長線E3は、角度αを成し、第2延長線E2及び第3延長線E3は、角度βを成している。角度α及び角度βは正の値をとる鋭角である(0°<α<90°、0°<β<90°)。本実施形態においては、例えば、α=4°であり、β=10°である。なお、角度α及び角度βの値はこれらに限定されず、角度α及び角度βはどちらが大きく設定されていてもよいし、等しく設定されていてもよい。
Here, in the XZ plane, a virtual straight line extending along the valley bottom portion M is defined as a first extension line E1, a virtual straight line extending along the target surface 50A is defined as a second extension line E2, and the main radiation direction A virtual straight line extending along d is defined as a third extension line E3.
As shown in FIG. 4, the first extension line E1 and the third extension line E3 form an angle α, and the second extension line E2 and the third extension line E3 form an angle β. The angles α and β are acute angles having positive values (0 ° <α <90 °, 0 ° <β <90 °). In this embodiment, for example, α = 4 ° and β = 10 °. Note that the values of the angle α and the angle β are not limited to these, and either the angle α or the angle β may be set larger or equal.
 図5において、照射領域AR1は、本実施形態の回転陽極型X線管装置において電子が照射される領域を示している。照射領域AR2は、例えば、第1延長線E1が第3延長線E3に平行となるように陰極60を配置した場合や、第1延長線E1が第2延長線E2に平行となるように陰極60を配置した場合に電子が照射される領域を示している。X線管軸Aから照射領域AR1までの平均半径をr1とし、X線管軸Aから照射領域AR2までの平均半径をr2とする。照射領域AR1の平均半径r1は、照射領域AR2の平均半径r2より大きくなる。例えば、平均半径r1は、平均半径r2より20%大きくなる。また、照射領域AR1は、陰極60と対向する位置に、焦点(電子入射点)BMを有している。焦点BMは、任意のタイミングに電子が入射される領域である。 In FIG. 5, an irradiation area AR1 indicates an area irradiated with electrons in the rotary anode type X-ray tube apparatus of the present embodiment. In the irradiation area AR2, for example, the cathode 60 is arranged such that the first extension line E1 is parallel to the third extension line E3, or the first extension line E1 is parallel to the second extension line E2. A region irradiated with electrons when 60 is arranged is shown. The average radius from the X-ray tube axis A to the irradiation area AR1 is r1, and the average radius from the X-ray tube axis A to the irradiation area AR2 is r2. The average radius r1 of the irradiation area AR1 is larger than the average radius r2 of the irradiation area AR2. For example, the average radius r1 is 20% larger than the average radius r2. Further, the irradiation area AR1 has a focal point (electron incident point) BM at a position facing the cathode 60. The focal point BM is a region where electrons are incident at an arbitrary timing.
 上記のように構成された第1の実施形態に係る回転陽極型X線管によれば、回転陽極型X線管1は、陰極60と、ターゲット面50Aを有する陽極ターゲット50と、を備えている。また、谷底部分Mに沿った第1延長線E1と、主放射方向dに沿った第3延長線E3とは、角度αを成している。すなわち、谷底部分Mは、主放射方向dに対して角度αだけ陽極ターゲット50とは反対側に傾斜している。さらに、ターゲット面50Aに沿った第2延長線E2と、第3延長線E3とは、角度βを成している。すなわち、ターゲット面50Aは、主放射方向dに対して角度βだけ陰極60とは反対側に傾斜している。このため、谷底部分Mが陽極ターゲット50の外側を向き、陰極60から放出される電子の放射方向eは、陽極ターゲット50のより外側を向く。本実施形態の照射領域AR1の平均半径r1は、照射領域AR2の平均半径r2に比べて大きくなる。よって、陰極60から放出された電子により照射される陽極ターゲット50の照射領域AR1の面積を拡大することが可能となり、陽極ターゲット50への入力を増大することが可能となる。 
 したがって、陽極ターゲットへの入力の向上が可能な回転陽極型X線管を得ることができる。
According to the rotary anode X-ray tube according to the first embodiment configured as described above, the rotary anode X-ray tube 1 includes the cathode 60 and the anode target 50 having the target surface 50A. Yes. The first extension line E1 along the valley bottom portion M and the third extension line E3 along the main radiation direction d form an angle α. That is, the valley bottom portion M is inclined to the side opposite to the anode target 50 by an angle α with respect to the main radiation direction d. Further, the second extension line E2 and the third extension line E3 along the target surface 50A form an angle β. That is, the target surface 50A is inclined to the opposite side of the cathode 60 by an angle β with respect to the main radiation direction d. For this reason, the valley bottom portion M faces the outside of the anode target 50, and the radiation direction e of electrons emitted from the cathode 60 faces the outside of the anode target 50. The average radius r1 of the irradiation area AR1 of the present embodiment is larger than the average radius r2 of the irradiation area AR2. Therefore, the area of the irradiation area AR1 of the anode target 50 irradiated with electrons emitted from the cathode 60 can be increased, and the input to the anode target 50 can be increased.
Therefore, a rotating anode X-ray tube capable of improving the input to the anode target can be obtained.
 なお、陰極電位となる部品である陰極支持部品30、陰極構体31、陰極60(電子収束カップ15)のうち、真空外囲器70と最も近接する部品は陰極60(電子収束カップ15)であり、図4に示す点Qが最近接点となる。陰極60と真空外囲器70との間の最短距離は従来と同程度に保つことができるため、陰極60と真空外囲器70との間で放電が生じやすくなる恐れはない。 Of the cathode support component 30, the cathode assembly 31, and the cathode 60 (electron focusing cup 15), which are components having a cathode potential, the component closest to the vacuum envelope 70 is the cathode 60 (electron focusing cup 15). The point Q shown in FIG. 4 is the closest point. Since the shortest distance between the cathode 60 and the vacuum envelope 70 can be maintained at the same level as the conventional one, there is no fear that discharge is likely to occur between the cathode 60 and the vacuum envelope 70.
 また、角度αを調節しなくても、陰極60自体の位置をX線管軸Aから遠くすることにより、照射領域AR2から照射領域AR1に変えることは可能である。しかしながら、この場合、陰極60が真空外囲器70に接近する又は接触し、放電が生じやすくなるため望ましくはない。真空外囲器70の内径を大きくすれば上記放電の問題は解消されるが、回転陽極型X線管1の大型化を招くため、真空外囲器70の内径を大きくすることも望ましくはない。 Further, without adjusting the angle α, it is possible to change the irradiation area AR2 to the irradiation area AR1 by moving the position of the cathode 60 itself away from the X-ray tube axis A. However, in this case, it is not desirable because the cathode 60 approaches or contacts the vacuum envelope 70 and discharge easily occurs. Increasing the inner diameter of the vacuum envelope 70 eliminates the above-mentioned discharge problem. However, since the size of the rotary anode X-ray tube 1 is increased, it is not desirable to increase the inner diameter of the vacuum envelope 70. .
 また、陰極60から放出された電子がターゲット面50Aに衝突すると、その約50%はほとんどエネルギーを失うことなく反射される。この反射した電子(反跳電子)の一部は、陽極ターゲット50を取り囲んでいるガラス容器70aに初期的には衝突するが、ガラス容器70aは電気絶縁性を有するため、ガラス容器70aの表面はマイナス電位に帯電する。すると、ガラス容器70aへの反跳電子のそれ以上の衝突が抑制され、ガラス容器70aの過熱が抑制される。上記の観点から、真空外囲器70の一部に上記ガラス容器70aを用いることが望ましい。 When electrons emitted from the cathode 60 collide with the target surface 50A, about 50% of the electrons are reflected with almost no energy loss. Some of the reflected electrons (recoil electrons) initially collide with the glass container 70a surrounding the anode target 50, but the glass container 70a has electrical insulation, so the surface of the glass container 70a is Charge to negative potential. Then, further collision of recoil electrons with the glass container 70a is suppressed, and overheating of the glass container 70a is suppressed. From the above viewpoint, it is desirable to use the glass container 70 a as a part of the vacuum envelope 70.
 本発明者らの実験によれば、焦点BMを起点として放射される反跳電子のうち、ガラス容器70aに向かう反跳電子の量は、角度βが大きいほど大きい。そのため、角度βは、従来採用されているβ≦21°の範囲にあることが望ましい。角度βをβ≦21°の範囲に限定することにより、焦点BMを起点として放射される反跳電子のうち、ガラス容器70aに向かう反跳電子の量を従来並みの許容レベルに収めることができる。角度βが21°<βの範囲では、ガラス容器70aに向かう反跳電子は、従来に比べて増大する。その結果、ガラス容器70aの内壁に初期的に衝突する反跳電子が増え、従来に比べてガラス容器70aの内壁がより加熱され、ガラス容器70aの内壁の溶解やガラス容器70aの内壁からのガス放出がより発生し易くなる恐れがある。これにより、X線管の故障を誘発する恐れがある。 According to the experiments by the present inventors, among the recoil electrons radiated from the focal point BM, the amount of recoil electrons toward the glass container 70a is larger as the angle β is larger. Therefore, it is desirable that the angle β is in the range of β ≦ 21 ° which is conventionally employed. By limiting the angle β to the range of β ≦ 21 °, among the recoil electrons radiated from the focal point BM, the amount of the recoil electrons directed to the glass container 70a can be kept at an acceptable level as before. . When the angle β is in the range of 21 ° <β, the recoil electrons toward the glass container 70a increase compared to the conventional case. As a result, recoil electrons that initially collide with the inner wall of the glass container 70a are increased, the inner wall of the glass container 70a is heated more than before, and the inner wall of the glass container 70a is dissolved and gas from the inner wall of the glass container 70a is heated. Release may be more likely to occur. This may induce a failure of the X-ray tube.
 また、本発明者らの実験によれば、ガラス容器70aを有する回転陽極型X線管における焦点BMの形状ゆがみは、α+βが一定であればほぼ一定であった。そのため、α+βを従来採用されているα+β≦21°の範囲に限定することにより、焦点BMの形状ゆがみを従来並みの許容レベルに収めることができる。 Further, according to the experiments by the present inventors, the shape distortion of the focal point BM in the rotary anode type X-ray tube having the glass container 70a is almost constant if α + β is constant. Therefore, by limiting α + β to the range of α + β ≦ 21 °, which has been conventionally employed, the shape distortion of the focal point BM can be kept within the conventional allowable level.
 すなわち、α+βをα+β≦21°の範囲に限定することにより上記したガス放出に伴う回転陽極型X線管の故障の発生を防止することができ、かつ焦点BMの形状ゆがみを従来並みの許容レベルに収めることができる。 That is, by limiting α + β to the range of α + β ≦ 21 °, it is possible to prevent the above-described failure of the rotary anode X-ray tube due to gas release, and the shape distortion of the focal point BM is as high as the conventional level. Can fit in.
 上記のような回転陽極型X線管1を搭載した回転陽極型X線管装置100でX線撮影を行う際には、陽極ターゲット50を、例えば、150rps(毎秒の陽極ターゲット50の回転数)又は、それ以上の速度で回転させながら、陰極60から放出された電子をX線放射層51のターゲット面50Aに当ててX線を放出させる。X線放射層51で発生した熱は、ターゲット基体52に伝導され、陽極ターゲット50全体に蓄積される一方、主として輻射により徐々に放散される。 When X-ray imaging is performed with the rotary anode X-ray tube apparatus 100 equipped with the rotary anode X-ray tube 1 as described above, the anode target 50 is, for example, 150 rps (the number of rotations of the anode target 50 per second). Alternatively, while rotating at a higher speed, electrons emitted from the cathode 60 are applied to the target surface 50A of the X-ray emission layer 51 to emit X-rays. The heat generated in the X-ray radiation layer 51 is conducted to the target base 52 and accumulated in the entire anode target 50, while being gradually dissipated mainly by radiation.
 ここで、照射領域AR1の温度をTfとする。焦点BMの温度をTsとする。なお、照射領域AR1の温度Tfは、焦点BMを除いた照射領域AR1の平均温度を表し、焦点BMの温度Tsは、焦点位置でのその瞬間での到達最高温度を表している。そして、ターゲット基体52の平均温度Tbは、陽極ターゲット50への電子入射による入力熱量と放熱等による放散熱量との差に基づいて蓄熱されることによって上昇し、又は、放熱によって低下する。 Here, the temperature of the irradiation area AR1 is Tf. Let Ts be the temperature of the focal point BM. Note that the temperature Tf of the irradiation area AR1 represents the average temperature of the irradiation area AR1 excluding the focal point BM, and the temperature Ts of the focal point BM represents the highest temperature reached at the moment at the focal position. Then, the average temperature Tb of the target base 52 rises due to heat accumulation based on the difference between the amount of heat input due to the incidence of electrons on the anode target 50 and the amount of heat dissipated due to heat dissipation or the like, or decreases due to heat dissipation.
 焦点BMの温度Tsは、照射領域AR1の温度Tfに加えて焦点位置での電子入射による瞬時入力熱量によりピーク温度になる。また、この焦点BMの温度Tsは、陽極ターゲット50の回転速度によって焦点BMでの瞬時的な蓄熱作用が異なるため、陽極ターゲット50の回転速度によって比較的大きく影響される。すなわち、同じ照射領域AR1の温度Tfで比較した場合、陽極ターゲット50の回転速度が低ければ、焦点BMの温度Tsは相対的に高い温度となり、陽極ターゲット50の回転速度が高ければ、焦点BMでの温度Tsは温度Tfにより近い温度となる。 The temperature Ts of the focal point BM becomes a peak temperature due to the instantaneous input heat amount due to the electron incidence at the focal point position in addition to the temperature Tf of the irradiation area AR1. Further, the temperature Ts of the focal point BM is relatively greatly influenced by the rotational speed of the anode target 50 because the instantaneous heat storage action at the focal point BM differs depending on the rotational speed of the anode target 50. That is, when compared with the temperature Tf of the same irradiation area AR1, if the rotation speed of the anode target 50 is low, the temperature Ts of the focal point BM is relatively high, and if the rotation speed of the anode target 50 is high, the focal point BM. The temperature Ts is closer to the temperature Tf.
 これら、陽極ターゲット50の各部の温度は、東芝レビュー第37巻第9号第777~780頁に掲載された論文に示されているように、次のような近似式で表すことができる。 The temperature of each part of the anode target 50 can be expressed by the following approximate expression as shown in a paper published in Toshiba Review Vol. 37, No. 9, pp. 777-780.
Ts=Tf+(2・P・w-1/2)/[S・(π・ρ・C・λ・ν)-1/2]
 ここで、Pは電子の入射電力即ち陽極ターゲット50への入力電力、wは陽極ターゲット50の回転方向の入射された電子の幅(即ち焦点の幅)、Sは電子入射面の面積(即ち焦点の面積)、ρは陽極ターゲット50の表面部材質の密度(即ちX線放射層51の材質の密度)、Cは陽極ターゲット50の表面部材質の比熱、λは陽極ターゲット50の表面部材質の熱伝導率、νは焦点BMの位置での陽極ターゲット50の周速度を表している。
Ts = Tf + (2 · P · w −1/2 ) / [S · (π · ρ · C · λ · ν) −1/2 ]
Here, P is the incident power of electrons, that is, the input power to the anode target 50, w is the width of the incident electrons in the rotation direction of the anode target 50 (that is, the focal width), and S is the area of the electron incident surface (that is, the focal point). ), Ρ is the density of the surface member quality of the anode target 50 (that is, the density of the material of the X-ray radiation layer 51), C is the specific heat of the surface member quality of the anode target 50, and λ is the surface member quality of the anode target 50. The thermal conductivity, ν, represents the peripheral speed of the anode target 50 at the position of the focal point BM.
 また、陽極ターゲット50の焦点位置で起こる急激な温度上昇値をΔTs、照射領域AR1で平均的に起こる温度上昇値をΔTfとすれば、次の関係が成り立つ。 Further, if the rapid temperature rise value that occurs at the focal position of the anode target 50 is ΔTs and the temperature rise value that occurs on the average in the irradiation region AR1 is ΔTf, the following relationship is established.
Ts=Tb+ΔTf+ΔTs=Tf+ΔTs
∴ ΔTs=(2・P・w-1/2)/[S・(π・ρ・C・λ・ν)-1/2]
 このことから明らかなように、陽極ターゲット50の焦点位置で起こる急激な温度上昇ΔTsは、陽極ターゲット50への入力電力Pにほぼ比例し、焦点サイズwの平方根に同じくほぼ比例し、電子入射面の面積Sに略反比例し、陽極ターゲット50の回転速度の平方根、即ち焦点BMの位置での陽極ターゲット50の周速度νの平方根に同じくほぼ反比例する。
Ts = Tb + ΔTf + ΔTs = Tf + ΔTs
ΔTs = (2 · P · w −1/2 ) / [S · (π · ρ · C · λ · ν) −1/2 ]
As is clear from this, the rapid temperature rise ΔTs that occurs at the focal position of the anode target 50 is approximately proportional to the input power P to the anode target 50 and is also approximately proportional to the square root of the focal spot size w. Is approximately inversely proportional to the area S of the anode target 50 and is also approximately inversely proportional to the square root of the rotational speed of the anode target 50, that is, the square root of the peripheral speed ν of the anode target 50 at the position of the focal point BM.
 上記のことから、照射領域AR1を陽極ターゲット50のより外側に形成した方が、X線を長期間にわたって連続的に出力することができたり、陽極ターゲット50への熱入力量を増大させることができたりする。つまり、より高出力の回転陽極型X線管1を提供することが可能となる。 From the above, when the irradiation region AR1 is formed outside the anode target 50, X-rays can be output continuously over a long period of time, or the amount of heat input to the anode target 50 can be increased. I can do it. That is, it is possible to provide a rotary anode X-ray tube 1 with higher output.
 図6は、上記第1の実施形態の変形例に係る回転陽極型X線管装置100の一部を示す断面図であり、陰極60、陽極ターゲット50等を示す図である。図6は、図4に示した実施形態と比較して、陰極支持部品30及び陰極60の形状が相違している。 FIG. 6 is a cross-sectional view showing a part of a rotary anode X-ray tube apparatus 100 according to a modification of the first embodiment, and shows a cathode 60, an anode target 50, and the like. FIG. 6 is different from the embodiment shown in FIG. 4 in the shapes of the cathode support component 30 and the cathode 60.
 陰極支持部品30は、第3面としての面30Aを有している。ここでは、面30Aのうち、特に陰極60に接し、陰極60を支持している領域を面30Cとする。ここで、図6において、X線管軸Aに垂直な仮想上の直線として第4延長線E4を設定する。第4延長線E4は、谷底部分Mと面30Cとの間に位置する。面30CのX線管軸A側の端部Pは、第4延長線E4上に位置する。面30Cは、第4延長線E4から陽極ターゲット50とは反対側に角度αだけ傾斜している。つまり、陰極支持部品30は、面30Cが第4延長線E4に対して角度αだけ傾斜するように屈曲している。谷底部分Mは、面30Cと平行である。すなわち、谷底部分Mは第4延長線E4に対して陽極ターゲット50とは反対側に角度αだけ傾斜している。このように、陰極支持部品30を屈曲させることにより、谷底部分M及びターゲット面50Aは図4に示した位置関係と同等の位置関係を構成する。 
 このような変形例においても、上述した第1の実施形態と同様の効果を得ることができる。
The cathode support component 30 has a surface 30A as a third surface. Here, of the surface 30A, a region that is in contact with the cathode 60 and supports the cathode 60 is referred to as a surface 30C. Here, in FIG. 6, a fourth extension line E4 is set as a virtual straight line perpendicular to the X-ray tube axis A. The fourth extension line E4 is located between the valley bottom portion M and the surface 30C. An end P of the surface 30C on the X-ray tube axis A side is located on the fourth extension line E4. The surface 30C is inclined by the angle α from the fourth extension line E4 to the side opposite to the anode target 50. That is, the cathode support component 30 is bent so that the surface 30C is inclined by the angle α with respect to the fourth extension line E4. The valley bottom portion M is parallel to the surface 30C. That is, the valley bottom portion M is inclined by an angle α on the opposite side to the anode target 50 with respect to the fourth extension line E4. In this manner, by bending the cathode support component 30, the valley bottom portion M and the target surface 50A form a positional relationship equivalent to the positional relationship shown in FIG.
Also in such a modification, the same effect as the first embodiment described above can be obtained.
 なお、上記の実施形態及び変形例は、陰極60が、陰極支持部品30に支持されている場合について説明したが、回転陽極型X線管1が必ずしも陰極支持部品30を備えていなくてもよい。その場合にも、陰極60の谷底部分Mと陽極ターゲット50のターゲット面50Aとが上記の実施形態及び変形例で示した位置関係となっていれば、上記の実施形態及び変形例と同様の効果を得ることが可能である。 In the above embodiment and modification, the case where the cathode 60 is supported by the cathode support component 30 has been described. However, the rotary anode X-ray tube 1 does not necessarily include the cathode support component 30. . Even in this case, if the valley portion M of the cathode 60 and the target surface 50A of the anode target 50 have the positional relationship shown in the above embodiment and the modification, the same effects as in the above embodiment and the modification are obtained. It is possible to obtain
 次に、第2の実施形態の回転陽極型X線管1について説明する。 
 図7は、第2の実施形態に係る回転陽極型X線管装置100の一部をY-Z平面に沿って示す断面図であり、陰極60、陽極ターゲット50等を示す図である。図7は、図2と比較して、陰極60が1つの第3フィラメントコイル63を備えている点で相違している。
Next, the rotary anode X-ray tube 1 of the second embodiment will be described.
FIG. 7 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the second embodiment along the YZ plane, showing the cathode 60, the anode target 50, and the like. FIG. 7 is different from FIG. 2 in that the cathode 60 includes one third filament coil 63.
 図7に示すように、陰極60は、1個の第3フィラメントコイル63と、電子収束カップ15と、を備えている。電子収束カップ15は、第1面としての前面15Aと、第3収束溝部18と、第3収納溝部28と、を有している。前面15Aは、平坦面であり、陽極ターゲット50と対向している。 As shown in FIG. 7, the cathode 60 includes one third filament coil 63 and an electron focusing cup 15. The electron converging cup 15 includes a front surface 15 </ b> A as a first surface, a third converging groove 18, and a third storage groove 28. The front surface 15 </ b> A is a flat surface and faces the anode target 50.
 第3収束溝部18は、前面15A上に開口部18aを有している。また、第3収束溝部18は、底面18bを有している。底面18bは、前面15Aと平行である。第3収納溝部28は、底面18b上に開口部28aを有し、第3フィラメントコイル63を収納している。 The third converging groove 18 has an opening 18a on the front surface 15A. Moreover, the 3rd convergence groove part 18 has the bottom face 18b. The bottom surface 18b is parallel to the front surface 15A. The third storage groove 28 has an opening 28 a on the bottom surface 18 b and stores the third filament coil 63.
 図8は、図7に示した陰極60を陽極ターゲット50側からみた状態を示す平面図である。 
 図8に示すように、第3フィラメントコイル63は、第1方向Xに延出して、かつ電子収束カップ15の中心を通るように配置されている。開口部18a及び開口部28aは、第1方向Xに平行な長軸を有し、電子収束カップ15の中心を通るように設けられている。
FIG. 8 is a plan view showing a state in which the cathode 60 shown in FIG. 7 is viewed from the anode target 50 side.
As shown in FIG. 8, the third filament coil 63 is disposed so as to extend in the first direction X and pass through the center of the electron converging cup 15. The opening 18 a and the opening 28 a have a long axis parallel to the first direction X and are provided so as to pass through the center of the electron converging cup 15.
 第3フィラメントコイル63と、電子収束カップ15は、図1に示したように、端子81、82、83に電気的に接続されている。第3フィラメントコイル63は、電流が供給されることにより、電子を放出する。電子収束カップ15は、第3フィラメントコイル63から放出された電子を収束する。 The third filament coil 63 and the electron converging cup 15 are electrically connected to the terminals 81, 82, 83 as shown in FIG. The third filament coil 63 emits electrons when supplied with current. The electron converging cup 15 converges the electrons emitted from the third filament coil 63.
 図9は、第2の実施形態に係る回転陽極型X線管装置100の一部をX-Z平面に沿って示す断面図、陰極60、陽極ターゲット50等を示す図である。図9は、図4と比較して、陰極60が1つのフィラメントコイルを備えているため、谷底部分Mを有していない点で異なっている。 FIG. 9 is a cross-sectional view showing a part of the rotary anode X-ray tube apparatus 100 according to the second embodiment along the XZ plane, a view showing the cathode 60, the anode target 50, and the like. FIG. 9 is different from FIG. 4 in that the cathode 60 includes one filament coil and thus does not have the valley bottom portion M.
 ここで、X-Z平面において、陰極60の前面15Aに沿って延びる仮想上の直線を第5延長線E5とする。図9に示すように、第5延長線E5及び第3延長線E3は、角度αを形成し、第2延長線E2及び第3延長線E3は、角度βを形成している。角度α及び角度βは正の値をとる鋭角である(0°<α<90°、0°<β<90°)。本実施形態においては、例えば、α=4°であり、β=10°である。なお、角度α及び角度βの値はこれに限定されず、角度α及び角度βはどちらが大きく設定されていてもよいし、等しく設定されていてもよい。 Here, an imaginary straight line extending along the front surface 15A of the cathode 60 in the XZ plane is defined as a fifth extension line E5. As shown in FIG. 9, the fifth extension line E5 and the third extension line E3 form an angle α, and the second extension line E2 and the third extension line E3 form an angle β. The angles α and β are acute angles having positive values (0 ° <α <90 °, 0 ° <β <90 °). In this embodiment, for example, α = 4 ° and β = 10 °. Note that the values of the angle α and the angle β are not limited to this, and either the angle α or the angle β may be set larger or equal.
 図示した例では、前面15Aは、主放射方向dから角度αだけ、陽極ターゲット50とは反対側に傾斜している。ターゲット面50Aは、主放射方向dから角度βだけ、陰極60とは反対側に傾斜している。このため、前面15Aが陽極ターゲット50の外側を向き、陰極60から放出される電子の放射方向eは、陽極ターゲット50のより外側を向く。 In the illustrated example, the front surface 15A is inclined to the side opposite to the anode target 50 by an angle α from the main radiation direction d. The target surface 50A is inclined to the side opposite to the cathode 60 by an angle β from the main radiation direction d. For this reason, the front surface 15 </ b> A faces the outside of the anode target 50, and the radiation direction e of electrons emitted from the cathode 60 faces the outside of the anode target 50.
 したがって、この第2の実施形態では、上記した第1の実施形態と同様の効果を得ることができる。 Therefore, in the second embodiment, the same effect as in the first embodiment described above can be obtained.
 次に、比較例1の回転陽極型X線管1について説明する。 
 図10は、比較例1の回転陽極型X線管1の一部をX-Z平面に沿って示す断面図であり、陰極60、陽極ターゲット50等を示す図である。比較例1の回転陽極型X線管1は、図4に示した第1の実施形態や図9に示した第2の実施形態と比較して、α=0°となる点で相違している。すなわち、第1延長線E1及び第3延長線E3は平行である。
Next, the rotating anode X-ray tube 1 of Comparative Example 1 will be described.
FIG. 10 is a cross-sectional view showing a part of the rotary anode X-ray tube 1 of Comparative Example 1 along the XZ plane, showing the cathode 60, the anode target 50, and the like. The rotating anode X-ray tube 1 of Comparative Example 1 is different in that α = 0 ° compared to the first embodiment shown in FIG. 4 and the second embodiment shown in FIG. Yes. That is, the first extension line E1 and the third extension line E3 are parallel.
 なお、比較例1においても、α+β≦21°である。フィラメントコイル近傍における電子の放射方向eは、基準軸RAに平行となる。すなわち、このときの電子の照射領域AR2の平均半径は、上記実施形態の照射領域AR1の平均半径r1よりも小さくなり、図5に示した照射領域AR2の平均半径r2と略同一となる。このため、α=0°とする比較例1では、陽極ターゲットへの入力の向上が可能な回転陽極型X線管1を得ることは困難なものである。 In Comparative Example 1, α + β ≦ 21 °. The electron radiation direction e in the vicinity of the filament coil is parallel to the reference axis RA. That is, the average radius of the electron irradiation area AR2 at this time is smaller than the average radius r1 of the irradiation area AR1 of the above embodiment, and is substantially the same as the average radius r2 of the irradiation area AR2 shown in FIG. For this reason, in Comparative Example 1 in which α = 0 °, it is difficult to obtain the rotary anode X-ray tube 1 that can improve the input to the anode target.
 次に、比較例2の回転陽極型X線管1について説明する。 
 比較例2の回転陽極型X線管1は、図4に示した第1の実施形態や図9に示した第2の実施形態と比較して、α<0°となる点で相違している。なお、比較例2においても、α+β≦21°である。例えば、比較例2では、谷底部分M(前面15A)がターゲット面50Aに平行となるように陰極60を配置することが考えられる。α<0°とすることにより、ゆがみの少ない焦点形状を得るのが容易になるという効果が得られる。しかしながら、比較例2においても、比較例1と同様に、電子の照射領域の平均半径は、上記実施形態の照射領域AR1の平均半径r1よりも小さくなり、比較例1のときの照射領域の平均半径よりもさらに小さくなる。このため、α<0°とする比較例2では、陽極ターゲットへの入力の向上が可能な回転陽極型X線管1を得ることは困難なものである。
Next, the rotating anode X-ray tube 1 of Comparative Example 2 will be described.
The rotating anode X-ray tube 1 of Comparative Example 2 is different in that α <0 ° compared to the first embodiment shown in FIG. 4 and the second embodiment shown in FIG. Yes. In Comparative Example 2, α + β ≦ 21 °. For example, in Comparative Example 2, it is conceivable to dispose the cathode 60 so that the valley bottom portion M (front surface 15A) is parallel to the target surface 50A. By setting α <0 °, it is possible to easily obtain a focal shape with little distortion. However, in Comparative Example 2, similarly to Comparative Example 1, the average radius of the electron irradiation region is smaller than the average radius r1 of the irradiation region AR1 of the above embodiment, and the average of the irradiation region in Comparative Example 1 is as follows. Even smaller than the radius. For this reason, in Comparative Example 2 in which α <0 °, it is difficult to obtain the rotating anode X-ray tube 1 capable of improving the input to the anode target.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 なお、例えば、フィラメントはフィラメントコイルに限定されるものではなく、例えば平板フィラメントなどであっても良い。 For example, the filament is not limited to a filament coil, and may be a flat filament, for example.
 また、例えば、上記第1の実施形態では谷底部分Mが線状である場合を示したが、谷底部分Mは第1基準面S1に垂直な平坦面であってもよい。この場合、陰極60が3つのフィラメントコイルを備えていても良く、谷底部分Mに第3の収束溝部及び第3の収納溝部が形成され、第3のフィラメントコイルが収納溝部に配置されていても良い。 For example, although the case where the valley bottom portion M is linear is shown in the first embodiment, the valley bottom portion M may be a flat surface perpendicular to the first reference plane S1. In this case, the cathode 60 may include three filament coils. Even if the third converging groove and the third storage groove are formed in the valley portion M, and the third filament coil is disposed in the storage groove. good.
 また、上記第1の実施形態では、収束溝部の開口部及び収納溝部の開口部は谷底部分Mに平行に配置されているが、これらは、必ずしも平行に配置する必要はない。 In the first embodiment, the opening of the converging groove and the opening of the storage groove are arranged in parallel to the valley bottom portion M, but they are not necessarily arranged in parallel.
 さらに、上記第1の実施形態では電子収束カップ15が平坦な前面15Aを有する場合を示したが、電子収束カップ15は、平坦な前面15Aを有していなくても良い。 Furthermore, although the case where the electron focusing cup 15 has the flat front surface 15A is shown in the first embodiment, the electron focusing cup 15 may not have the flat front surface 15A.
 本発明の実施形態は、上述した回転陽極型X線管1に限定されるものではなく、各種の回転陽極型X線管に適用可能である。 The embodiment of the present invention is not limited to the rotary anode X-ray tube 1 described above, but can be applied to various types of rotary anode X-ray tubes.

Claims (6)

  1.  X線管軸を有する固定軸と、
     前記固定軸の周囲で軸受により支持される回転体と、
     電子ビームを放出する第1フィラメントと、前記第1フィラメントから放出された電子ビームを収束させる電子収束カップと、を備える陰極と、
     前記陰極と対向し、前記第1フィラメントから放出された電子ビームが衝突し前記X線管軸に垂直な主放射方向にX線を放射する第1焦点が形成されるターゲット面を有し、前記回転体に接続される陽極ターゲットと、
     前記陽極ターゲットを囲むガラス容器を有し、前記陰極及び前記陽極ターゲットを収容する真空外囲器と、を備え、
     前記電子収束カップは、第1傾斜平坦面と、第2傾斜平坦面と、前記第1傾斜平坦面と前記第2傾斜平坦面との間に位置する谷底部分と、前記第1傾斜平坦面に開口部を有する第1収束溝部と、前記第1収束溝部の底面に開口部を有し前記第1フィラメントを収容する第1収納溝部と、を有し、
     前記第1焦点の中心から前記X線管軸に平行な直線を基準軸とし、
     前記基準軸と前記主放射方向とを含む平面を第1基準面とし、
     前記谷底部分から延びる仮想上の直線を第1延長線とし、
     前記主放射方向と前記第1延長線とが成す角度をαとし、
     前記主放射方向と前記ターゲット面とが成す角度をβとすると、
     α>0°、β>0°、α+β≦21°であることを特徴とする回転陽極型X線管。
    A fixed shaft having an X-ray tube axis;
    A rotating body supported by a bearing around the fixed shaft;
    A cathode comprising: a first filament that emits an electron beam; and an electron focusing cup that converges the electron beam emitted from the first filament;
    Opposite the cathode, and having a target surface on which a first focal point is formed which emits X-rays in a main radiation direction perpendicular to the X-ray tube axis by colliding with an electron beam emitted from the first filament, An anode target connected to the rotating body;
    A glass container surrounding the anode target, and a vacuum envelope containing the cathode and the anode target,
    The electron converging cup includes a first inclined flat surface, a second inclined flat surface, a valley bottom portion located between the first inclined flat surface and the second inclined flat surface, and the first inclined flat surface. A first converging groove having an opening; and a first storage groove having an opening on a bottom surface of the first converging groove and accommodating the first filament.
    A straight line parallel to the X-ray tube axis from the center of the first focus is used as a reference axis,
    A plane including the reference axis and the main radiation direction is a first reference plane,
    A virtual straight line extending from the valley bottom portion is defined as a first extension line,
    An angle formed by the main radiation direction and the first extension line is α,
    If the angle formed by the main radiation direction and the target surface is β,
    A rotary anode type X-ray tube characterized by α> 0 °, β> 0 °, and α + β ≦ 21 °.
  2.  さらに、前記陰極を支持する第3面を有する陰極支持部品を備え、
     前記谷底部分及び前記第3面との間に位置し前記X線管軸に垂直な仮想上の平面を第3垂直面とすると、
     前記第3面の前記X線管軸側の端部は、前記第3垂直面上に位置し、前記第3面は前記第3垂直面から傾斜する請求項1に記載の回転陽極型X線管。
    And a cathode support component having a third surface for supporting the cathode,
    When a virtual plane located between the valley bottom portion and the third surface and perpendicular to the X-ray tube axis is defined as a third vertical surface,
    2. The rotary anode type X-ray according to claim 1, wherein an end of the third surface on the X-ray tube axis side is located on the third vertical surface, and the third surface is inclined from the third vertical surface. tube.
  3.  前記陰極は、電子ビームを放出する第2フィラメントを備え、
     前記電子収束カップは、前記第2傾斜平坦面に開口部を有する第2収束溝部と、前記第2収束溝部の底面に開口部を有し前記第2フィラメントを収容する第1収納溝部と、を有する、請求項1に記載の回転陽極型X線管。
    The cathode includes a second filament that emits an electron beam;
    The electron converging cup includes a second converging groove having an opening in the second inclined flat surface, and a first receiving groove having an opening in the bottom surface of the second converging groove and accommodating the second filament. The rotary anode X-ray tube according to claim 1, comprising:
  4.  X線管軸を有する固定軸と、
     前記固定軸の周囲で軸受により支持される回転体と、
     電子ビームを放出するフィラメントと、前記フィラメントから放出された電子ビームを収束させる電子収束カップと、を備える陰極と、
     前記陰極と対向し、前記フィラメントから放出された電子ビームが衝突し前記X線管軸に垂直な主放射方向にX線を放射する焦点が形成されるターゲット面を有し、前記回転体に接続される陽極ターゲットと、
     前記陽極ターゲットを囲むガラス容器を有し、前記陰極及び前記陽極ターゲットを収容する真空外囲器と、を備え、
     前記電子収束カップは、前記陽極ターゲットと対向する第1面と、前記第1面に開口部を有する収束溝部と、前記収束溝部の底面に開口部を有し前記フィラメントを収容する収納溝部と、を有し、
     前記焦点の中心から前記X線管軸に平行な直線を基準軸とし、
     前記基準軸と前記主放射方向とを含む平面を第1基準面とし、
     前記第1基準面において前記主放射方向と前記第1面とが成す角度をαとし、
     前記第1基準面において前記主放射方向と前記ターゲット面とが形成する鋭角を角度βとすると、
     α>0°、β>0°、α+β≦21°であることを特徴とする回転陽極型X線管。
    A fixed shaft having an X-ray tube axis;
    A rotating body supported by a bearing around the fixed shaft;
    A cathode comprising: a filament that emits an electron beam; and an electron focusing cup that focuses the electron beam emitted from the filament;
    Opposite to the cathode, the electron beam emitted from the filament collides and has a target surface on which a focal point for emitting X-rays in a main radiation direction perpendicular to the X-ray tube axis is formed and connected to the rotating body An anode target,
    A glass container surrounding the anode target, and a vacuum envelope containing the cathode and the anode target,
    The electron converging cup includes a first surface facing the anode target, a converging groove having an opening in the first surface, a housing groove having an opening in the bottom surface of the converging groove and accommodating the filament, Have
    A straight line parallel to the X-ray tube axis from the center of the focal point is a reference axis,
    A plane including the reference axis and the main radiation direction is a first reference plane,
    An angle formed by the main radiation direction and the first surface in the first reference plane is α,
    When an acute angle formed by the main radiation direction and the target surface in the first reference plane is an angle β,
    A rotary anode type X-ray tube characterized by α> 0 °, β> 0 °, and α + β ≦ 21 °.
  5.  さらに、前記陰極を支持する第3面を有する陰極支持部品を備え、
     前記第1面及び前記第3面との間に位置し前記X線管軸に垂直な仮想上の平面を第3垂直面とすると、
     前記第3面の前記X線管軸側の端部は、前記第3垂直面上に位置し、前記第3面は前記第3垂直面から傾斜する請求項4に記載の回転陽極型X線管。
    And a cathode support component having a third surface for supporting the cathode,
    When a virtual plane located between the first surface and the third surface and perpendicular to the X-ray tube axis is defined as a third vertical surface,
    5. The rotary anode X-ray according to claim 4, wherein an end of the third surface on the X-ray tube axis side is located on the third vertical surface, and the third surface is inclined from the third vertical surface. tube.
  6.  さらに、前記陰極を支持する支持面を有する陰極支持部品を備え、
     前記支持面は、前記X線管軸に垂直である請求項1又は4に記載の回転陽極型X線管。
    Furthermore, a cathode support component having a support surface for supporting the cathode,
    The rotary anode type X-ray tube according to claim 1, wherein the support surface is perpendicular to the X-ray tube axis.
PCT/JP2016/081465 2015-10-28 2016-10-24 Rotating anode x-ray tube WO2017073523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212130 2015-10-28
JP2015-212130 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073523A1 true WO2017073523A1 (en) 2017-05-04

Family

ID=58630515

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/068290 WO2017073109A1 (en) 2015-10-28 2016-06-20 Rotating anode x-ray tube
PCT/JP2016/081465 WO2017073523A1 (en) 2015-10-28 2016-10-24 Rotating anode x-ray tube

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068290 WO2017073109A1 (en) 2015-10-28 2016-06-20 Rotating anode x-ray tube

Country Status (1)

Country Link
WO (2) WO2017073109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035240A1 (en) * 2017-08-14 2019-02-21 キャノン電子管デバイス株式会社 X-ray tube
JP2021099424A (en) * 2019-12-23 2021-07-01 株式会社ディスコ Optical element unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090900B2 (en) * 2018-09-26 2022-06-27 株式会社リガク X-ray generator and X-ray analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859546A (en) * 1981-10-02 1983-04-08 Toshiba Corp Rotary-anode-type x-ray tube
JPH08287854A (en) * 1995-04-07 1996-11-01 Siemens Ag X-ray tube with low temperatured emitter
JPH0963523A (en) * 1995-08-28 1997-03-07 Toshiba Corp Rotating positive electrode x-ray tube
WO1999048128A1 (en) * 1998-03-16 1999-09-23 Kabushiki Kaisha Toshiba X-ray tube
JP2003257347A (en) * 2002-02-28 2003-09-12 Toshiba Corp Rotary anode type x-ray tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073385A (en) * 2004-09-02 2006-03-16 Shimadzu Corp X-ray tube apparatus
WO2014007167A1 (en) * 2012-07-02 2014-01-09 株式会社 東芝 X-ray tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859546A (en) * 1981-10-02 1983-04-08 Toshiba Corp Rotary-anode-type x-ray tube
JPH08287854A (en) * 1995-04-07 1996-11-01 Siemens Ag X-ray tube with low temperatured emitter
JPH0963523A (en) * 1995-08-28 1997-03-07 Toshiba Corp Rotating positive electrode x-ray tube
WO1999048128A1 (en) * 1998-03-16 1999-09-23 Kabushiki Kaisha Toshiba X-ray tube
JP2003257347A (en) * 2002-02-28 2003-09-12 Toshiba Corp Rotary anode type x-ray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035240A1 (en) * 2017-08-14 2019-02-21 キャノン電子管デバイス株式会社 X-ray tube
CN111033673A (en) * 2017-08-14 2020-04-17 佳能电子管器件株式会社 X-ray tube
US11217420B2 (en) 2017-08-14 2022-01-04 Canon Electron Tubes & Devices Co., Ltd. X-ray tube
JP2021099424A (en) * 2019-12-23 2021-07-01 株式会社ディスコ Optical element unit

Also Published As

Publication number Publication date
WO2017073109A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP5800578B2 (en) X-ray tube
JP6498535B2 (en) X-ray tube
WO2017073523A1 (en) Rotating anode x-ray tube
JP2016126969A (en) X-ray tube device
JP2014229388A (en) X-ray tube
JP2017054679A (en) Stationary anodic x-ray tube device
JP5881815B2 (en) X-ray tube
EP3474306B1 (en) X-ray tube
JP2010262784A (en) X-ray tube, and x-ray tube device
JP2011233365A (en) Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP5823206B2 (en) X-ray tube device
JP2003257347A (en) Rotary anode type x-ray tube
JP2005243331A (en) X-ray tube
WO2021049639A1 (en) X-ray tube
JP2007287501A (en) Transmitting x-ray tube
JP2015076359A (en) X-ray tube apparatus
US20190304736A1 (en) X-ray tube
JP6026172B2 (en) X-ray tube device
JP6620348B2 (en) Rotating anode X-ray tube
JP2012084436A (en) X-ray tube device
WO2023119689A1 (en) X-ray tube
JP6064456B2 (en) X-ray tube
JP2016051629A (en) X-ray tube device
CN109671605B (en) Fixed anode type X-ray tube
JP2018181410A (en) X-ray tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP