WO2017073501A1 - Water-repellent member and manufacturing method for same - Google Patents

Water-repellent member and manufacturing method for same Download PDF

Info

Publication number
WO2017073501A1
WO2017073501A1 PCT/JP2016/081402 JP2016081402W WO2017073501A1 WO 2017073501 A1 WO2017073501 A1 WO 2017073501A1 JP 2016081402 W JP2016081402 W JP 2016081402W WO 2017073501 A1 WO2017073501 A1 WO 2017073501A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
repellent member
fluorine
inorganic particles
layer
Prior art date
Application number
PCT/JP2016/081402
Other languages
French (fr)
Japanese (ja)
Inventor
目黒 晃
孝徳 高橋
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2017073501A1 publication Critical patent/WO2017073501A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a water repellent member and a method for producing the same.
  • Patent Document 1 discloses a water-repellent member in which a large number of columnar protrusions are formed on the surface, and inorganic particles are exposed on the surface of the columnar protrusions.
  • Patent Document 2 discloses a water-repellent member in which a large number of cone-shaped or frustum-shaped projections are formed on the surface, and hydrophobic fine particles are attached to the surface of the projections.
  • the present inventor forms a secondary concavo-convex shape on the base surface after setting the area ratio of the recesses on the base surface of the resin layer to a specific range, and provides a fluorine-containing group on the surface of the secondary concavo-convex shape.
  • a raw material composition obtained by mixing a photocurable resin composition and inorganic particles is applied onto a substrate to form a transferred layer, and a mold is formed on the transferred layer.
  • the transferred layer is irradiated with active energy rays to cure the transferred layer, thereby forming a resin layer having a concavo-convex shape, and etching the resin layer to surface the inorganic particles.
  • a method for producing a water-repellent member comprising a step of forming a fluorine-containing layer so as to cover the inorganic particles by exposing the inorganic particles to a fluorine-containing silane coupling agent.
  • the inorganic particles have an average particle size (D50) of 5 to 400 nm.
  • FIG. 1 shows a water-repellent member 1 according to a first embodiment of the present invention, in which (a) is a plan view, (b) is a cross-sectional view taken along the line AA, and (c) is a plan view for explaining a method for calculating the area ratio of recesses. It is.
  • (A)-(e) show the manufacturing process of the water-repellent member 1 of the first embodiment of the present invention.
  • (A)-(d) shows the manufacturing process of the water-repellent member 1 of 2nd Embodiment of this invention.
  • (A)-(d) shows the manufacturing process of the water repellent member 1 of 3rd Embodiment of this invention, (e) is an enlarged view of the area
  • (A) to (b) show SEM images of the water-repellent films of Examples 1 and 3, respectively.
  • the form of the water repellent member 1 is not particularly limited, but is preferably a flexible water repellent film.
  • the contact angle with respect to the water of the water repellent member 1 is not specifically limited, 160 degree
  • the material of the base material 6 is not specifically limited, It is preferable that they are transparent base materials, such as a resin base material and a quartz base material, and it is more preferable that it is a resin base material from a flexible viewpoint.
  • the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • the substrate 6 is preferably in the form of a flexible film, and the thickness is preferably in the range of 25 to 500 ⁇ m.
  • the resin which comprises the resin layer 7 is not specifically limited, For example, it consists of resin, such as a (meth) acryl resin, a styrene resin, an olefin resin, a polycarbonate resin, a polyester resin, an epoxy resin, a silicone resin.
  • the primary uneven shape is formed by providing a plurality of recesses on the base surface 7a.
  • the recess is the hole 3 provided in an island shape, and the primary uneven shape is a hole pattern shape in which a large number of holes 3 are dispersed.
  • the shape of the recess is not particularly limited, and may be, for example, a groove shape.
  • the primary concavo-convex shape is a line and space pattern in which a large number of groove-like concave portions are provided substantially in parallel.
  • the hole 3 has a columnar shape having a substantially constant cross-sectional area in the depth direction.
  • the hole 3 may be conical or frustum-shaped.
  • the cross-sectional shape of the hole 3 is preferably a circle, but may be another shape such as an ellipse, an ellipse, or a polygon (such as a square, a rectangle, or a regular hexagon).
  • the diameter is preferably 40 nm to 120 ⁇ m, more preferably 80 nm to 10 ⁇ m, and further preferably 100 nm to 3 ⁇ m.
  • the lower limit of the diameter is, for example, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, or 230 nm.
  • the upper limit of the diameter is, for example, 1.7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, 100, or 120 ⁇ m.
  • the cross-sectional area when the diameter is 40 nm is 400 ⁇ nm 2
  • the cross-sectional area when the diameter is 120 ⁇ m is 3600 ⁇ m 2
  • the hole 3 preferably has a cross-sectional area similar to that of a circle even when the cross-sectional shape is other than a circle. Accordingly, holes 3, regardless of the cross-sectional shape, it is preferable that the cross-sectional area is 400 ⁇ nm 2 ⁇ 3600 ⁇ m 2.
  • the primary concavo-convex shape is formed so that the area ratio (dent ratio) of the recesses on the base surface 7a is 10 to 60%. If the dent ratio is too small, the water repellency decreases. If the dent ratio is too large, the water repellency is lowered and the scratch resistance is also lowered.
  • the dent ratio can be calculated by (area of the recess in the base surface 7a) / (area of the area where the primary uneven shape is formed) in the region where the primary uneven shape is formed.
  • the dent ratio can be obtained by calculating the area ratio of the recesses in the unit unit. In the present embodiment, the equilateral triangular region T in FIG.
  • the dent ratio is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60%, and within the range between any two of the numerical values exemplified here. There may be.
  • the average height of the primary concavo-convex shape is not particularly limited, but is, for example, 60 nm to 100 ⁇ m, more preferably 80 nm to 10 ⁇ m, and further preferably 100 nm to 3 ⁇ m.
  • the lower limit of the average height is, for example, 60, 80, 100, 120, 140, 160, 180, 190, or 200 nm.
  • the upper limit of the average height is, for example, 1.6, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, or 100 ⁇ m.
  • the value of the ratio of the average height to the diameter of the primary uneven shape is not particularly limited, but is, for example, 0.5 to 2, and preferably 0.7 to 1.5.
  • the value of this ratio is, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 and may be in the range between any two of the numerical values exemplified here.
  • the average height of the primary shape was formed by, for example, transcription using a scanning probe microscope PC software “SPIWin” from an image obtained by observation with a scanning probe microscope (manufactured by SII. Nanotechnology, Inc., L-trace). In a cross-sectional profile when passing through a plurality of recesses, it means a value obtained by randomly extracting and averaging the heights of adjacent unevennesses at five points.
  • the base surface 7a is provided with a secondary uneven shape.
  • the secondary concavo-convex shape is formed by the inorganic particles 8 provided on the base surface 7a. More specifically, in this embodiment, a large number of inorganic particles 8 are embedded in the resin layer 7, and some of the large number of inorganic particles 8 protrude from the base surface 7 a and are exposed from the resin layer 7.
  • a secondary uneven shape is formed by the outer peripheral surface of the inorganic particles 8 protruding from the base surface 7a.
  • a secondary concavo-convex shape may be formed in the concave portion of the resin layer 7, but it is not essential.
  • the carbon number of the perfluoroalkyl group is, for example, 1 to 10, specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the numerical values exemplified here are It may be within a range between any two.
  • the fluorine-containing group is preferably chemically bonded to the inorganic particles 8. Since the inorganic particles 8 have high adhesion to the resin layer 7 and the fluorine-containing group tends to form a strong chemical bond with the inorganic particles 8, the fluorine-containing layer 9 covers the exposed surface of the inorganic particles 8. By providing, the fluorine-containing layer 9 is firmly held on the secondary concavo-convex shape. Moreover, it is preferable that the fluorine-containing layer 9 is also disposed on the secondary shape surface formed in the hole 3, and may be disposed on a surface other than the secondary uneven surface.
  • the inorganic particles 8 are inorganic particles, and examples of the inorganic material include a simple metal, an inorganic oxide film, an inorganic nitride film, and an inorganic oxynitride film.
  • Si and Al are mentioned as an inorganic element which comprises an inorganic substance.
  • the inorganic substance is, for example, silicon oxide or aluminum oxide, and it is preferable to use aluminum oxide in order to further improve the scratch resistance.
  • the average height of the secondary concavo-convex shape is 15 nm or more.
  • the secondary concavo-convex shape has such an average height, thereby exhibiting excellent water repellency.
  • the upper limit of the average height is not particularly specified, but is 1000 nm, for example. Accordingly, the average height is preferably 15 to 1000 nm, and more preferably 40 to 500 nm. Specifically, the average height is, for example, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 200, 500, 1000 nm, It may be within a range between any two of the numerical values exemplified here.
  • the average height of the secondary shape is measured from an image obtained by observation with a scanning probe microscope (SII.
  • Nanotechnology, L-trace using a scanning probe microscope PC software “SPIWin”.
  • SPIWin scanning probe microscope PC software
  • a raw material composition obtained by mixing a photocurable resin composition and inorganic particles 8 is applied onto a substrate 6 to form a transferred layer 11.
  • the details of the substrate 6 and the inorganic particles 8 are as described above.
  • the photocurable resin composition contains a monomer and a photoinitiator and has a property of being cured by irradiation with active energy rays.
  • Active energy rays is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
  • Monomers include photopolymerizable monomers for forming (meth) acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, etc., and photopolymerizable (meth) acrylic.
  • System monomers are preferred.
  • (meth) acryl means methacryl and / or acryl
  • (meth) acrylate means methacrylate and / or acrylate.
  • the photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer.
  • the upper limit of content of a photoinitiator is not prescribed
  • the raw material composition can be produced by mixing the above components by a known method.
  • the raw material composition can be applied onto the substrate 6 by a method such as spin coating, spray coating, bar coating, dip coating, die coating, or slit coating to form the transferred layer 11.
  • the transfer layer 11 is irradiated with active energy rays 17 in a state where the mold 13 is pressed against the transfer layer 11 to transfer the transfer layer 11. Is cured to form the resin layer 7 having the concavo-convex shape 4.
  • the concavo-convex shape 4 is a shape having a plurality of holes 4 a having a depth and diameter smaller than those of the holes 3 in the base surface 7, and the mold 13 is provided with an inverted pattern 15 of the concavo-convex shape 4.
  • etching is performed to retract the base surface 7a of the resin layer 7, thereby exposing the inorganic particles 8 embedded in the resin layer 7 to the surface. And projecting from the base surface 7a.
  • a secondary uneven shape is formed by the outer peripheral surface of the inorganic particles 8 protruding from the base surface 7a.
  • the diameter of the hole 4 a is expanded to become the hole 3.
  • the etching method is not particularly limited, and may be wet etching or dry etching.
  • dry etching is oxygen plasma ashing.
  • the fluorine-containing silane coupling agent is, for example, perfluoroalkyltrialkoxy (methoxy, ethoxy, etc.) silane.
  • Examples of the fluorine-containing silane coupling agent include OPTOOL DSX (manufactured by Daikin Industries).
  • a water-repellent member 1 according to a second embodiment of the present invention will be described with reference to FIG.
  • the water repellent member 1 of this embodiment is similar to that of the first embodiment. However, in the water repellent member 1 of this embodiment, as shown in FIG. It is not embedded and is attached to the surface of the resin layer 7. A large number of inorganic particles 8 adhere to the base surface 7 a of the resin layer 7, thereby forming secondary irregularities on the base surface 7 a of the resin layer 7.
  • the manufacturing method of the water-repellent member 1 of the present embodiment includes a transferred layer forming step, an uneven shape forming step, an inorganic particle adhesion and a fluorine-containing layer forming step.
  • the transfer layer 11 is irradiated with active energy rays 17 in a state where the mold 13 is pressed against the transfer layer 11 to transfer the transfer layer.
  • the resin layer 7 having the concavo-convex shape 4 is formed by curing 11.
  • the concavo-convex shape 4 is a shape having a plurality of holes 3 in the base surface 7a.
  • the secondary uneven shape can be formed by attaching the polymer particles to the base surface 7a. Since the fluorine-containing group is provided on the surface of the polymer particle, the fluorine-containing group is also provided on the surface of the secondary concavo-convex shape formed by the polymer particle.
  • the manufacturing method of the water-repellent member 1 of this embodiment includes a transfer layer forming step, an uneven shape forming step, an inorganic film forming step, and a fluorine-containing layer forming step.
  • a raw material composition containing a photocurable resin composition is applied onto the substrate 6 to form the transferred layer 11.
  • the raw material composition includes a photocurable resin composition, but it is not necessary to include inorganic particles.
  • an inorganic film 8a is formed so as to cover the resin layer 7, and an inorganic film 8a and a fluorine-containing silane coupling agent are reacted to react with each other.
  • the fluorine-containing layer 9 is formed so as to cover the film 8a, and the manufacture of the water repellent member 1 of this embodiment is completed.
  • the inorganic film 8a is made of the same inorganic material as the inorganic particles 8, and can be formed by a method such as vapor deposition or sputtering.
  • Example 1 To the UV curable resin prepared above, a nano silica toluene dispersion (D50: 150 nm) manufactured by CIK Nanotech Co., Ltd. was added at a mass ratio of 15%, and mixed by stirring to obtain an inorganic particle-containing UV curable resin. Next, an inorganic particle-containing UV curable resin prepared as described above is applied to the easily accessible PET substrate with a bar coater so as to have a thickness of 5 ⁇ m to form a transfer layer, and dried at 60 ° C. for 5 minutes.
  • an inorganic particle-containing UV curable resin prepared as described above is applied to the easily accessible PET substrate with a bar coater so as to have a thickness of 5 ⁇ m to form a transfer layer, and dried at 60 ° C. for 5 minutes
  • Example 2 A water-repellent film was produced in the same manner as in Example 1 except that a nanopillar mold (height 220 nm, period 240 nm, diameter 140 nm) was used.
  • Example 4 The inorganic particles were repelled in the same manner as in Example 2 except that CIK Nanotech's alumina dispersion ALMIBK15WT% -M21 (D50: 35 nm) was added in a mass ratio of 5% instead of the nanosilica toluene dispersion. An aqueous film was prepared.
  • Example 2 A water repellent film was produced in the same manner as in Example 1 except that a nanohole mold (depth 200 nm, period 450 nm, diameter 230 nm) was used.
  • Example 3 A water repellent film was formed in the same manner as in Example 1 except that the transferred layer was cured with a flat separator pressed against the transferred layer instead of the mold, and oxygen plasma ashing and fluorination were not performed. Produced.
  • Comparative Example 4 A water-repellent film was produced in the same manner as in Example 1 except that the transferred layer was cured while pressing a flat separator against the transferred layer instead of the mold.
  • Comparative Example 5 A water-repellent film was produced in the same manner as in Example 1 except that the oxygen plasma ashing treatment was not performed.
  • Comparative Example 6 A water-repellent film was produced in the same manner as in Example 1 except that a layer to be transferred was formed by applying a UV curable resin containing no inorganic particles.
  • ⁇ Average height measurement> When passing through a plurality of holes or pillars measured using a scanning probe microscope PC software “SPIWin” from an image obtained by observation with a scanning probe microscope (manufactured by SII. Nanotechnology, L-trace)
  • SII. Nanotechnology, L-trace the average height of the primary concavo-convex shape was obtained by randomly extracting the five adjacent concavo-convex heights and averaging them.
  • the average height of the secondary concavo-convex shape was obtained by randomly extracting the five adjacent concavo-convex heights and averaging them.
  • Rate of change (%) (water contact angle before abrasion ⁇ water contact angle after abrasion) ⁇ 100 / (water contact angle before abrasion)
  • the secondary concavo-convex shape is formed by arranging a large number of inorganic particles on the base surface of the resin layer.
  • the inorganic particles are not visible from the relationship of magnification, it was confirmed that the secondary uneven shape was formed on the base surface of the resin layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The purpose of the present invention is to provide a water-repellent member having excellent water-repelling properties and scratch resistance. The present invention provides a water-repellent member comprising a base material and a resin layer on at least one surface of the base material. The resin layer has a primary peak-valley shape in which a plurality of recesses are provided on the base surface, with the proportion of such recesses by area in the base area being 10-60%. The base surface is provided with a secondary peak-valley shape, and the average height of the secondary peak-valley shape is 15 nm or greater, and the surface of the secondary peak-valley shape is provided with a fluorine-containing group.

Description

撥水性部材及びその製造方法Water repellent member and manufacturing method thereof
 本発明は、撥水性部材及びその製造方法に関する。 The present invention relates to a water repellent member and a method for producing the same.
 特許文献1には、表面に多数の柱状突起を形成し、この柱状突起の表面に無機粒子を露出させた撥水性部材が開示されている。特許文献2には、表面に多数の錐状又は錐台状突起を形成し、この突起の表面に疎水性の微粒子を付着させた撥水性部材が開示されている。 Patent Document 1 discloses a water-repellent member in which a large number of columnar protrusions are formed on the surface, and inorganic particles are exposed on the surface of the columnar protrusions. Patent Document 2 discloses a water-repellent member in which a large number of cone-shaped or frustum-shaped projections are formed on the surface, and hydrophobic fine particles are attached to the surface of the projections.
WO2014/181448WO2014 / 181448 特開2008-122435号公報JP 2008-122435 A
 特許文献1~2の撥水性部材は、どちらも、撥水性部材の表面に突起を形成することを前提としている。このため、特許文献1~2の撥水性部材は表面が擦られると突起が倒壊して撥水性が低下してしまうという問題を有する。 Both of the water-repellent members of Patent Documents 1 and 2 are premised on forming protrusions on the surface of the water-repellent member. For this reason, the water-repellent members of Patent Documents 1 and 2 have a problem that when the surface is rubbed, the protrusions collapse and the water repellency decreases.
 本発明はこのような事情に鑑みてなされたものであり、撥水性及び耐擦傷性が優れた撥水性部材を提供するものである。 The present invention has been made in view of such circumstances, and provides a water-repellent member having excellent water repellency and scratch resistance.
 本発明によれば、基材と、前記基材の少なくとも一方の面に樹脂層を備え、前記樹脂層は、ベース面に複数の凹部が設けられた一次凹凸形状を有し、前記ベース面での前記凹部の面積割合は、10~60%であり、前記ベース面に二次凹凸形状が設けられ、前記二次凹凸形状の平均高さは、15nm以上であり、前記二次凹凸形状の表面にフッ素含有基が設けられている、撥水性部材が提供される。 According to the present invention, a base material and a resin layer are provided on at least one surface of the base material, and the resin layer has a primary concavo-convex shape in which a plurality of concave portions are provided on a base surface, The area ratio of the recesses is 10 to 60%, a secondary uneven shape is provided on the base surface, the average height of the secondary uneven shape is 15 nm or more, and the surface of the secondary uneven shape is There is provided a water-repellent member provided with a fluorine-containing group.
 本発明者は、樹脂層のベース面での凹部の面積割合を特定の範囲にした上で、ベース面に二次凹凸形状を形成し、この二次凹凸形状の表面にフッ素含有基を設けることによって、撥水性と耐擦傷性の両方を高めることができることを見出し、本発明の完成に到った。 The present inventor forms a secondary concavo-convex shape on the base surface after setting the area ratio of the recesses on the base surface of the resin layer to a specific range, and provides a fluorine-containing group on the surface of the secondary concavo-convex shape. Thus, it has been found that both water repellency and scratch resistance can be improved, and the present invention has been completed.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、前記フッ素含有基は、無機物を介して、前記二次凹凸形状の表面に設けられている。
 好ましくは、前記凹部は、島状に設けられたホールである。
 好ましくは、前記ホールは、前記ベース面での断面積が400πnm~3600πμmである。
 好ましくは、前記ホールは、円柱状である。
 好ましくは、前記フッ素含有基は、パーフルオロアルキル基である。
 好ましくは、水に対する接触角が160度以上である。
Hereinafter, various embodiments of the present invention will be exemplified. The embodiments described below can be combined with each other.
Preferably, the fluorine-containing group is provided on the surface of the secondary concavo-convex shape via an inorganic substance.
Preferably, the recess is a hole provided in an island shape.
Preferably, the hole is, the cross-sectional area at the base surface is 400πnm 2 ~ 3600πμm 2.
Preferably, the hole is cylindrical.
Preferably, the fluorine-containing group is a perfluoroalkyl group.
Preferably, the contact angle with respect to water is 160 degrees or more.
 本発明の別の観点によれば、光硬化性樹脂組成物と無機粒子を混合して得られる原料組成物を基材上に塗布して被転写層を形成し、前記被転写層にモールドを押し付けた状態で前記被転写層に活性エネルギー線を照射して前記被転写層を硬化させることによって凹凸形状を有する樹脂層を形成し、前記樹脂層に対してエッチングを行って前記無機粒子を表面に露出させ、前記無機粒子とフッ素含有シランカップリング剤を反応させることによって前記無機粒子を覆うようにフッ素含有層を形成する工程を備える、撥水性部材の製造方法が提供される。
 好ましくは、前記無機粒子は、平均粒径(D50)が5~400nmである。
According to another aspect of the present invention, a raw material composition obtained by mixing a photocurable resin composition and inorganic particles is applied onto a substrate to form a transferred layer, and a mold is formed on the transferred layer. In the pressed state, the transferred layer is irradiated with active energy rays to cure the transferred layer, thereby forming a resin layer having a concavo-convex shape, and etching the resin layer to surface the inorganic particles. There is provided a method for producing a water-repellent member, comprising a step of forming a fluorine-containing layer so as to cover the inorganic particles by exposing the inorganic particles to a fluorine-containing silane coupling agent.
Preferably, the inorganic particles have an average particle size (D50) of 5 to 400 nm.
本発明の第1実施形態の撥水性部材1を示し、(a)は平面図、(b)はA-A断面図、(c)は凹部の面積割合の算出方法を説明するための平面図である。1 shows a water-repellent member 1 according to a first embodiment of the present invention, in which (a) is a plan view, (b) is a cross-sectional view taken along the line AA, and (c) is a plan view for explaining a method for calculating the area ratio of recesses. It is. (a)~(e)は、本発明の第1実施形態の撥水性部材1の製造工程を示す。(A)-(e) show the manufacturing process of the water-repellent member 1 of the first embodiment of the present invention. (a)~(d)は、本発明の第2実施形態の撥水性部材1の製造工程を示す。(A)-(d) shows the manufacturing process of the water-repellent member 1 of 2nd Embodiment of this invention. (a)~(d)は、本発明の第3実施形態の撥水性部材1の製造工程を示し、(e)は(d)中の領域Aの拡大図である。(A)-(d) shows the manufacturing process of the water repellent member 1 of 3rd Embodiment of this invention, (e) is an enlarged view of the area | region A in (d). (a)~(b)は、それぞれ、実施例1及び3の撥水性フィルムのSEM像を示す。(A) to (b) show SEM images of the water-repellent films of Examples 1 and 3, respectively.
 以下、図面を参照しながら本発明の好ましい実施の形態について具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
1.第1実施形態
1-1.撥水性部材
 図1に示すように、本発明の第1実施形態の撥水性部材1は、基材6と、基材6の少なくとも一方の面に樹脂層7を備え、樹脂層7は、ベース面7aに複数の凹部が設けられた一次凹凸形状を有し、ベース面7aでの凹部の面積割合は、10~60%であり、ベース面7aに二次凹凸形状が設けられ、前記二次凹凸形状の平均高さは、15nm以上であり、前記二次凹凸形状の表面にフッ素含有基が設けられている。
 以下、各構成について詳細に説明する。
1. First Embodiment 1-1. Water-repellent member As shown in FIG. 1, the water-repellent member 1 of the first embodiment of the present invention includes a base 6 and a resin layer 7 on at least one surface of the base 6. The surface 7a has a primary concavo-convex shape provided with a plurality of recesses, the area ratio of the recesses on the base surface 7a is 10 to 60%, and the base surface 7a is provided with a secondary concavo-convex shape, The average height of the concavo-convex shape is 15 nm or more, and a fluorine-containing group is provided on the surface of the secondary concavo-convex shape.
Hereinafter, each configuration will be described in detail.
<撥水性部材1>
 撥水性部材1の形態は特に限定されないが、可撓性を有する撥水性フィルムであることが好ましい。撥水性部材1の水に対する接触角は特に限定されないが、160度以上が好ましく、170度以上がさらに好ましく、175度以上がさらに好ましく、178度以上がさらに好ましい。撥水性部材1は、撥油性も有することが好ましい。
<Water repellent member 1>
The form of the water repellent member 1 is not particularly limited, but is preferably a flexible water repellent film. Although the contact angle with respect to the water of the water repellent member 1 is not specifically limited, 160 degree | times or more are preferable, 170 degree | times or more are more preferable, 175 degree | times or more are more preferable, 178 degree | times or more are more preferable. It is preferable that the water repellent member 1 also has oil repellency.
<基材6>
 基材6の材質は、特に限定されないが、樹脂基材、石英基材などの透明基材であることが好ましく、可撓性の観点から樹脂基材であることがさらに好ましい。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、基材6は可撓性を有するフィルム状であることが好ましく、その厚さは25~500μmの範囲であることが好ましい。
<Substrate 6>
Although the material of the base material 6 is not specifically limited, It is preferable that they are transparent base materials, such as a resin base material and a quartz base material, and it is more preferable that it is a resin base material from a flexible viewpoint. Examples of the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate. The substrate 6 is preferably in the form of a flexible film, and the thickness is preferably in the range of 25 to 500 μm.
<樹脂層7、一次凹凸形状>
 樹脂層7を構成する樹脂は特に限定されないが、例えば、(メタ)アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等の樹脂からなる。
<Resin layer 7, primary uneven shape>
Although the resin which comprises the resin layer 7 is not specifically limited, For example, it consists of resin, such as a (meth) acryl resin, a styrene resin, an olefin resin, a polycarbonate resin, a polyester resin, an epoxy resin, a silicone resin.
 一次凹凸形状は、ベース面7aに複数の凹部が設けられて構成される。本実施形態では、凹部は、島状に設けられたホール3であり、一次凹凸形状は、多数のホール3が分散されたホールパターン形状である。一方、凹部の形状は特に限定されず、例えば溝状であってもよい。この場合、一次凹凸形状は、多数の溝状凹部が略平行に設けられたラインアンドスペースパターンとなる。 The primary uneven shape is formed by providing a plurality of recesses on the base surface 7a. In the present embodiment, the recess is the hole 3 provided in an island shape, and the primary uneven shape is a hole pattern shape in which a large number of holes 3 are dispersed. On the other hand, the shape of the recess is not particularly limited, and may be, for example, a groove shape. In this case, the primary concavo-convex shape is a line and space pattern in which a large number of groove-like concave portions are provided substantially in parallel.
 本実施形態では、ホール3は、その深さ方向に断面積が実質的に一定である柱状である。一方、ホール3は、錐状、錐台状などであってもよい。また、ホール3の断面形状は円が好ましいが、楕円、長円、多角形(正方形、長方形、正六角形など)などの別の形状であってもよい。ホール3の断面形状が円である場合、その直径は40nm~120μmが好ましく、80nm~10μmがさらに好ましく、100nm~3μmがさらに好ましい。この直径の下限は、具体的には例えば、40、60、80、100、120、140、160、180、200,220,又は230nmである。この直径の上限は、具体的には例えば、1.7,2、3、4、5、6、7、8、9、10、20、40、60,80、100,又は120μmである。直径が40nmのときの断面積は400πnmであり、直径が120μmのときの断面積は3600πμmである。ホール3は、断面形状が円以外の場合でも、円の場合と同様の断面積を有することが好ましい。従って、ホール3は、断面形状に関わらず、断面積が400πnm~3600πμmであることが好ましい。 In the present embodiment, the hole 3 has a columnar shape having a substantially constant cross-sectional area in the depth direction. On the other hand, the hole 3 may be conical or frustum-shaped. The cross-sectional shape of the hole 3 is preferably a circle, but may be another shape such as an ellipse, an ellipse, or a polygon (such as a square, a rectangle, or a regular hexagon). When the cross-sectional shape of the hole 3 is a circle, the diameter is preferably 40 nm to 120 μm, more preferably 80 nm to 10 μm, and further preferably 100 nm to 3 μm. Specifically, the lower limit of the diameter is, for example, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, or 230 nm. Specifically, the upper limit of the diameter is, for example, 1.7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, 100, or 120 μm. The cross-sectional area when the diameter is 40 nm is 400 πnm 2 , and the cross-sectional area when the diameter is 120 μm is 3600 πμm 2 . The hole 3 preferably has a cross-sectional area similar to that of a circle even when the cross-sectional shape is other than a circle. Accordingly, holes 3, regardless of the cross-sectional shape, it is preferable that the cross-sectional area is 400πnm 2 ~ 3600πμm 2.
 一次凹凸形状は、ベース面7aでの凹部の面積割合(凹み率)が10~60%となるように形成される。凹み率が小さすぎると撥水性が低下する。凹み率が大きすぎると撥水性が低下することに加えて耐擦傷性も低下する。凹み率は、一次凹凸形状が形成されている領域において、(ベース面7aでの凹部の面積)/(一次凹凸形状が形成されている領域の面積)によって算出することができる。一次凹凸形状が単位ユニットの繰り返しによって構成されている場合は、凹み率は、単位ユニット中の凹部の面積割合を算出することによって求めることができる。本実施形態では、図1(c)中の正三角形の領域Tが単位ユニットであり、領域T内の斜線部分Sがホール3の面積であるので、(斜線部分Sの面積)/(領域Tの面積)によって凹み率の算出が可能である。凹み率は、具体的には例えば、10、15、20、25、30、35、40、45、50、55、60%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The primary concavo-convex shape is formed so that the area ratio (dent ratio) of the recesses on the base surface 7a is 10 to 60%. If the dent ratio is too small, the water repellency decreases. If the dent ratio is too large, the water repellency is lowered and the scratch resistance is also lowered. The dent ratio can be calculated by (area of the recess in the base surface 7a) / (area of the area where the primary uneven shape is formed) in the region where the primary uneven shape is formed. When the primary concavo-convex shape is configured by repeating unit units, the dent ratio can be obtained by calculating the area ratio of the recesses in the unit unit. In the present embodiment, the equilateral triangular region T in FIG. 1C is a unit unit, and the hatched portion S in the region T is the area of the hole 3, so that (area of the hatched portion S) / (region T It is possible to calculate the dent ratio according to the area. Specifically, the dent ratio is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60%, and within the range between any two of the numerical values exemplified here. There may be.
 一次凹凸形状の平均高さは、特に限定されないが、例えば、60nm~100μmであり、80nm~10μmがさらに好ましく、100nm~3μmがさらに好ましい。この平均高さの下限は、具体的には例えば、60、80、100、120、140、160、180、190、又は200nmである。この平均高さの上限は、具体的には例えば、1.6,2、3、4、5、6、7、8、9、10、20、40、60,80、又は100μmである。一次凹凸形状の直径に対する平均高さの比の値は、特に限定されないが、例えば、0.5~2であり、0.7~1.5が好ましい。この値がこの範囲である場合に、撥水性及び耐擦傷性が高くなりやすい。この比の値は、具体的には例えば、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。一次形状の平均高さは、走査型プローブ顕微鏡(SII.Nanotechnology社製, L-trace)の観察によって得られた像から、走査型プローブ顕微鏡PCソフト「SPIWin」を用い、例えば転写により形成された凹部を複数通過するときの断面プロファイルにおいて、隣り合った凹凸の高さを無作為に5点抽出して平均した値を意味する。 The average height of the primary concavo-convex shape is not particularly limited, but is, for example, 60 nm to 100 μm, more preferably 80 nm to 10 μm, and further preferably 100 nm to 3 μm. Specifically, the lower limit of the average height is, for example, 60, 80, 100, 120, 140, 160, 180, 190, or 200 nm. Specifically, the upper limit of the average height is, for example, 1.6, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, or 100 μm. The value of the ratio of the average height to the diameter of the primary uneven shape is not particularly limited, but is, for example, 0.5 to 2, and preferably 0.7 to 1.5. When this value is within this range, water repellency and scratch resistance tend to be high. Specifically, the value of this ratio is, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 and may be in the range between any two of the numerical values exemplified here. The average height of the primary shape was formed by, for example, transcription using a scanning probe microscope PC software “SPIWin” from an image obtained by observation with a scanning probe microscope (manufactured by SII. Nanotechnology, Inc., L-trace). In a cross-sectional profile when passing through a plurality of recesses, it means a value obtained by randomly extracting and averaging the heights of adjacent unevennesses at five points.
<二次凹凸形状、フッ素含有基、無機物>
 ベース面7aには二次凹凸形状が設けられている。本実施形態では、二次凹凸形状は、ベース面7aに設けられた無機粒子8によって形成されている。より具体的には、本実施形態では、樹脂層7内に多数の無機粒子8が埋設されており、多数の無機粒子8のうちの一部がベース面7aから突出して樹脂層7から露出するように配置されている。そして、ベース面7aから突出した無機粒子8の外周面によって二次凹凸形状が形成される。樹脂層7の凹部内にも二次凹凸形状が形成されていてもよいが、必須ではない。
<Secondary irregular shape, fluorine-containing group, inorganic substance>
The base surface 7a is provided with a secondary uneven shape. In the present embodiment, the secondary concavo-convex shape is formed by the inorganic particles 8 provided on the base surface 7a. More specifically, in this embodiment, a large number of inorganic particles 8 are embedded in the resin layer 7, and some of the large number of inorganic particles 8 protrude from the base surface 7 a and are exposed from the resin layer 7. Are arranged as follows. A secondary uneven shape is formed by the outer peripheral surface of the inorganic particles 8 protruding from the base surface 7a. A secondary concavo-convex shape may be formed in the concave portion of the resin layer 7, but it is not essential.
 本実施形態では、フッ素含有基を含むフッ素含有層9が、無機粒子8の露出面を覆うように設けられている。従って、本実施形態では、フッ素含有基は、無機物を介して二次凹凸形状の表面に設けられている。フッ素含有層9は、フッ素含有基を含んでいればよく、その厚さや構成は限定されない。フッ素含有層9を設けることによって撥水性が高められる。フッ素含有基は、一例では、パーフルオロアルキル基であり、より具体的には、パーフルオロアルキルシラン基である。パーフルオロアルキル基の炭素数は、例えば1~10であり、具体的には例えば、1、2、3、4、5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。フッ素含有基は、好ましくは、無機粒子8に化学結合されている。無機粒子8は、樹脂層7との密着性が高く、フッ素含有基は、無機粒子8に対して強固な化学結合を形成しやすいので、無機粒子8の露出面を覆うようにフッ素含有層9を設けることによってフッ素含有層9が二次凹凸形状上に強固に保持される。また、フッ素含有層9は、ホール3内に形成された二次形状表面上にも配置されることが好ましく、更に、二次凹凸形状表面以外に配置されていても良い。 In this embodiment, the fluorine-containing layer 9 containing a fluorine-containing group is provided so as to cover the exposed surface of the inorganic particles 8. Therefore, in this embodiment, the fluorine-containing group is provided on the surface of the secondary concavo-convex shape via an inorganic substance. The fluorine-containing layer 9 only needs to contain a fluorine-containing group, and its thickness and configuration are not limited. By providing the fluorine-containing layer 9, the water repellency is enhanced. In one example, the fluorine-containing group is a perfluoroalkyl group, and more specifically, a perfluoroalkylsilane group. The carbon number of the perfluoroalkyl group is, for example, 1 to 10, specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the numerical values exemplified here are It may be within a range between any two. The fluorine-containing group is preferably chemically bonded to the inorganic particles 8. Since the inorganic particles 8 have high adhesion to the resin layer 7 and the fluorine-containing group tends to form a strong chemical bond with the inorganic particles 8, the fluorine-containing layer 9 covers the exposed surface of the inorganic particles 8. By providing, the fluorine-containing layer 9 is firmly held on the secondary concavo-convex shape. Moreover, it is preferable that the fluorine-containing layer 9 is also disposed on the secondary shape surface formed in the hole 3, and may be disposed on a surface other than the secondary uneven surface.
 無機粒子8は、無機物の粒子であり、無機物としては、金属単体、無機酸化膜、無機窒化膜、無機酸窒化膜などが挙げられる。無機物を構成する無機元素しては、SiやAlが挙げられる。無機物は、例えば、酸化シリコンや酸化アルミニウムであり、耐擦傷性をより向上するために、酸化アルミニウムを用いることが好ましい。 The inorganic particles 8 are inorganic particles, and examples of the inorganic material include a simple metal, an inorganic oxide film, an inorganic nitride film, and an inorganic oxynitride film. Si and Al are mentioned as an inorganic element which comprises an inorganic substance. The inorganic substance is, for example, silicon oxide or aluminum oxide, and it is preferable to use aluminum oxide in order to further improve the scratch resistance.
 無機粒子8の平均粒径は、特に限定されないが、例えば、5~400nmである。無機粒子8の平均粒径がこの範囲である場合に、撥水性が高くなりやすい。無機粒子8の平均粒径は、具体的には例えば、5、10、15、20、25、50,100,150,200,250,300,350,400nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ここで、本発明における平均粒径とは、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となる径(D50)をいい、無機粒子8の平均粒径とは、動的光散乱法で得られた値を意味する。 The average particle diameter of the inorganic particles 8 is not particularly limited, but is, for example, 5 to 400 nm. When the average particle diameter of the inorganic particles 8 is within this range, the water repellency tends to increase. Specifically, the average particle diameter of the inorganic particles 8 is, for example, 5, 10, 15, 20, 25, 50, 100, 150, 200, 250, 300, 350, 400 nm. Or within a range between the two. Here, the average particle diameter in the present invention refers to a diameter (D50) in which the large side and the small side are equivalent when the powder is divided into two from a certain particle diameter. Means a value obtained by a dynamic light scattering method.
 二次凹凸形状の平均高さは、15nm以上である。二次凹凸形状がこのような平均高さを有することによって優れた撥水性が発揮される。この平均高さの上限は特に規定されないが、例えば、1000nmである。従って、この平均高さは、15~1000nmが好ましく、40~500nmがさらに好ましい。この平均高さは、具体的には例えば、15、20、25、30、35、40、50、60、70、80、90、100、110、120、130、200、500、1000nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。二次形状の平均高さは、走査型プローブ顕微鏡(SII.Nanotechnology社製,L-trace)の観察によって得られた像から、走査型プローブ顕微鏡PCソフト「SPIWin」を用いて測定され、例えば転写により形成された凹部を通過しないときの断面プロファイルにおいて、隣り合った凹凸の高さを無作為に5点抽出して平均した値を意味する。 The average height of the secondary concavo-convex shape is 15 nm or more. The secondary concavo-convex shape has such an average height, thereby exhibiting excellent water repellency. The upper limit of the average height is not particularly specified, but is 1000 nm, for example. Accordingly, the average height is preferably 15 to 1000 nm, and more preferably 40 to 500 nm. Specifically, the average height is, for example, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 200, 500, 1000 nm, It may be within a range between any two of the numerical values exemplified here. The average height of the secondary shape is measured from an image obtained by observation with a scanning probe microscope (SII. Nanotechnology, L-trace) using a scanning probe microscope PC software “SPIWin”. In the cross-sectional profile when not passing through the concave portion formed by the above, it means a value obtained by randomly extracting and averaging the heights of the adjacent irregularities at five points.
1-2.撥水性部材の製造方法
 次に、図2を用いて、撥水性部材1の製造方法について説明する。
1-2. Next, a method for producing the water repellent member 1 will be described with reference to FIG.
 本発明の第1実施形態の撥水性部材1の製造方法は、被転写層形成工程、凹凸形状形成工程と、エッチング工程と、フッ素含有層形成工程を備える。
 以下、各工程についてさらに詳細に説明する。
The manufacturing method of the water-repellent member 1 according to the first embodiment of the present invention includes a transferred layer forming step, an uneven shape forming step, an etching step, and a fluorine-containing layer forming step.
Hereinafter, each step will be described in more detail.
<被転写層形成工程>
 まず、図2(a)に示すように、光硬化性樹脂組成物と無機粒子8を混合して得られる原料組成物を基材6上に塗布して被転写層11を形成する。基材6及び無機粒子8の詳細は上述した通りである。光硬化性樹脂組成物は、モノマーと、光開始剤を含有し、活性エネルギー線の照射によって硬化する性質を有する。「活性エネルギー線」は、UV光、可視光、電子線などの、光硬化性樹脂組成物を硬化可能なエネルギー線の総称である。
<Transfer layer forming process>
First, as shown in FIG. 2 (a), a raw material composition obtained by mixing a photocurable resin composition and inorganic particles 8 is applied onto a substrate 6 to form a transferred layer 11. The details of the substrate 6 and the inorganic particles 8 are as described above. The photocurable resin composition contains a monomer and a photoinitiator and has a property of being cured by irradiation with active energy rays. “Active energy rays” is a general term for energy rays that can cure a photocurable resin composition, such as UV light, visible light, and electron beams.
 モノマーとしては、(メタ)アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等を形成するための光重合性のモノマーが挙げられ、光重合性の(メタ)アクリル系モノマーが好ましい。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを意味し、(メタ)アクリレートはメタクリレートおよび/またはアクリレートを意味する。 Monomers include photopolymerizable monomers for forming (meth) acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, silicone resins, etc., and photopolymerizable (meth) acrylic. System monomers are preferred. In the present specification, (meth) acryl means methacryl and / or acryl, and (meth) acrylate means methacrylate and / or acrylate.
 光開始剤は、モノマーの重合を促進するために添加される成分であり、前記モノマー100質量部に対して0.1質量部以上含有されることが好ましい。光開始剤の含有量の上限は、特に規定されないが、例えば前記モノマー100質量部に対して20質量部である。 The photoinitiator is a component added to promote the polymerization of the monomer, and is preferably contained in an amount of 0.1 part by mass or more with respect to 100 parts by mass of the monomer. Although the upper limit of content of a photoinitiator is not prescribed | regulated in particular, For example, it is 20 mass parts with respect to 100 mass parts of said monomers.
 光硬化性樹脂組成物は、溶剤、重合禁止剤、連鎖移動剤、酸化防止剤、光増感剤、充填剤、レベリング剤等の成分を光硬化性樹脂組成物の性質に影響を与えない範囲で含んでいてもよい。 The photocurable resin composition is a range in which components such as a solvent, a polymerization inhibitor, a chain transfer agent, an antioxidant, a photosensitizer, a filler, and a leveling agent do not affect the properties of the photocurable resin composition. May be included.
 原料組成物における、光硬化性樹脂組成物に対する無機粒子8の質量比は、特に限定されないが、例えば、0.05~0.5である。この質量比は、具体的には例えば、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The mass ratio of the inorganic particles 8 to the photocurable resin composition in the raw material composition is not particularly limited, but is, for example, 0.05 to 0.5. Specifically, this mass ratio is, for example, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 It may be within the range between any two of the numerical values exemplified here.
 原料組成物は、上記成分を公知の方法で混合することにより製造することができる。原料組成物は、スピンコート、スプレーコート、バーコート、ディップコート、ダイコートおよびスリットコート等の方法で基材6上に塗布して被転写層11を形成することが可能である。 The raw material composition can be produced by mixing the above components by a known method. The raw material composition can be applied onto the substrate 6 by a method such as spin coating, spray coating, bar coating, dip coating, die coating, or slit coating to form the transferred layer 11.
<凹凸形状形成工程>
 次に、図2(a)~図2(c)に示すように、被転写層11に対してモールド13を押し付けた状態で被転写層11に活性エネルギー線17を照射して被転写層11を硬化させることによって凹凸形状4を有する樹脂層7を形成する。凹凸形状4は、ホール3よりも深さ及び直径が小さい複数のホール4aをベース面7に有する形状であり、モールド13には、凹凸形状4の反転パターン15が設けられている。
<Uneven shape forming process>
Next, as shown in FIGS. 2A to 2C, the transfer layer 11 is irradiated with active energy rays 17 in a state where the mold 13 is pressed against the transfer layer 11 to transfer the transfer layer 11. Is cured to form the resin layer 7 having the concavo-convex shape 4. The concavo-convex shape 4 is a shape having a plurality of holes 4 a having a depth and diameter smaller than those of the holes 3 in the base surface 7, and the mold 13 is provided with an inverted pattern 15 of the concavo-convex shape 4.
 モールド13の種類は特に限定されないが、例えば、樹脂製モールド、ニッケル製モールドなどが利用可能である。モールド13を被転写層11に押し付ける圧力は、反転パターン15の形状を被転写層11に転写可能な圧力であればよい。被転写層11へ照射する活性エネルギー線17は、被転写層11が十分に硬化する程度の積算光量で照射すればよく、積算光量は、例えば100~10000mJ/cmである。活性エネルギー線17の照射によって、被転写層11が硬化される。本実施形態では、基材6側から活性エネルギー線17の照射を行っているが、モールド側から活性エネルギー線17の照射を行ってもよい。 The type of the mold 13 is not particularly limited. For example, a resin mold, a nickel mold, or the like can be used. The pressure for pressing the mold 13 against the transferred layer 11 may be any pressure that can transfer the shape of the reversal pattern 15 to the transferred layer 11. The active energy ray 17 irradiated to the transferred layer 11 may be irradiated with an integrated light amount that can sufficiently cure the transferred layer 11, and the integrated light amount is, for example, 100 to 10,000 mJ / cm 2 . The transferred layer 11 is cured by irradiation with the active energy ray 17. In the present embodiment, the active energy rays 17 are irradiated from the substrate 6 side, but the active energy rays 17 may be irradiated from the mold side.
 次に、モールド13を取り外すことによって、図2(c)に示すように、基材6上に凹凸形状4を有する樹脂層7が形成された構造が得られる。この時点では、無機粒子8は樹脂層7に埋設されており、ベース面7aに二次凹凸形状は形成されていない。 Next, by removing the mold 13, as shown in FIG. 2C, a structure in which the resin layer 7 having the uneven shape 4 is formed on the substrate 6 is obtained. At this time, the inorganic particles 8 are embedded in the resin layer 7, and the secondary uneven shape is not formed on the base surface 7a.
 次に、図2(c)~図2(d)に示すように、エッチングを行って樹脂層7のベース面7aを後退させることによって樹脂層7に埋設されている無機粒子8を表面に露出させると共にベース面7aから突出させる。そして、ベース面7aから突出した無機粒子8の外周面によって二次凹凸形状が形成される。この際に、ホール4aが拡径されてホール3となる。 Next, as shown in FIGS. 2 (c) to 2 (d), etching is performed to retract the base surface 7a of the resin layer 7, thereby exposing the inorganic particles 8 embedded in the resin layer 7 to the surface. And projecting from the base surface 7a. A secondary uneven shape is formed by the outer peripheral surface of the inorganic particles 8 protruding from the base surface 7a. At this time, the diameter of the hole 4 a is expanded to become the hole 3.
 エッチングの方法は、特に限定されず、ウエットエッチングでもドライエッチングでもよい。ドライエッチングの一例として、酸素プラズマアッシングが挙げられる。 The etching method is not particularly limited, and may be wet etching or dry etching. One example of dry etching is oxygen plasma ashing.
<フッ素含有層形成工程>
 次に、図2(e)に示すように、無機粒子8とフッ素含有シランカップリング剤を反応させることによって無機粒子8を覆うようにフッ素含有層9を形成し、本実施形態の撥水性部材1の製造が完了する。フッ素含有シランカップリング剤は、例えば、パーフルオロアルキルトリアルコキシ(メトキシ、エトキシなど)シランである。フッ素含有シランカップリング剤の例としては、オプツールDSX(ダイキン工業社製)が挙げられる。
<Fluorine-containing layer forming step>
Next, as shown in FIG. 2 (e), the fluorine-containing layer 9 is formed so as to cover the inorganic particles 8 by reacting the inorganic particles 8 with the fluorine-containing silane coupling agent. 1 is completed. The fluorine-containing silane coupling agent is, for example, perfluoroalkyltrialkoxy (methoxy, ethoxy, etc.) silane. Examples of the fluorine-containing silane coupling agent include OPTOOL DSX (manufactured by Daikin Industries).
2.第2実施形態
 図3を用いて、本発明の第2実施形態の撥水性部材1について説明する。本実施形態の撥水性部材1は、第1実施形態に類似しているが、図3(d)に示すように、本実施形態の撥水性部材1では、無機粒子8は樹脂層7には埋設されておらず、樹脂層7の表面に付着している。そして、樹脂層7のベース面7aに多数の無機粒子8が付着することによって、樹脂層7のベース面7aに二次凹凸形状が形成されている。
2. Second Embodiment A water-repellent member 1 according to a second embodiment of the present invention will be described with reference to FIG. The water repellent member 1 of this embodiment is similar to that of the first embodiment. However, in the water repellent member 1 of this embodiment, as shown in FIG. It is not embedded and is attached to the surface of the resin layer 7. A large number of inorganic particles 8 adhere to the base surface 7 a of the resin layer 7, thereby forming secondary irregularities on the base surface 7 a of the resin layer 7.
 以下、本実施形態の撥水性部材1の製造方法について説明する。本実施形態の撥水性部材1の製造方法は、被転写層形成工程、凹凸形状形成工程と、無機粒子付着及びフッ素含有層形成工程を備える。 Hereinafter, a method for producing the water repellent member 1 of the present embodiment will be described. The manufacturing method of the water-repellent member 1 of the present embodiment includes a transferred layer forming step, an uneven shape forming step, an inorganic particle adhesion and a fluorine-containing layer forming step.
<被転写層形成工程>
 この工程では、図3(a)に示すように、光硬化性樹脂組成物を含む原料組成物を基材6上に塗布して被転写層11を形成する。本実施形態では、原料組成物は光硬化性樹脂組成物を含むことが必須であるが、無機粒子を含む必要がない。
<Transfer layer forming process>
In this step, as shown in FIG. 3A, the raw material composition containing the photocurable resin composition is applied onto the substrate 6 to form the transferred layer 11. In this embodiment, it is essential that the raw material composition includes a photocurable resin composition, but it is not necessary to include inorganic particles.
<凹凸形状形成工程>
 この工程では、図3(b)~図3(c)に示すように、被転写層11に対してモールド13を押し付けた状態で被転写層11に活性エネルギー線17を照射して被転写層11を硬化させることによって凹凸形状4を有する樹脂層7を形成する。本実施形態では、凹凸形状4は、ベース面7aに複数のホール3を有する形状である。
<Uneven shape forming process>
In this step, as shown in FIGS. 3B to 3C, the transfer layer 11 is irradiated with active energy rays 17 in a state where the mold 13 is pressed against the transfer layer 11 to transfer the transfer layer. The resin layer 7 having the concavo-convex shape 4 is formed by curing 11. In the present embodiment, the concavo-convex shape 4 is a shape having a plurality of holes 3 in the base surface 7a.
<無機粒子付着及びフッ素含有層形成工程>
 この工程では、図3(d)に示すように、樹脂層7のベース面7aに多数の無機粒子8を付着させることによって樹脂層7のベース面7aに二次凹凸形状を形成する。また、無機粒子8はホール3内にも付着させることが好ましい。
<Inorganic particle adhesion and fluorine-containing layer forming step>
In this step, as shown in FIG. 3 (d), secondary irregularities are formed on the base surface 7 a of the resin layer 7 by attaching a large number of inorganic particles 8 to the base surface 7 a of the resin layer 7. In addition, it is preferable that the inorganic particles 8 are also adhered in the holes 3.
 無機粒子8は、表面にフッ素含有層9を有するものであってもフッ素含有層9を有さないものであってもよい。前者の場合、フッ素含有層9を有する無機粒子8をベース面7aに付着させることによって本実施形態の撥水性部材1の製造が完了する。後者の場合、無機粒子8をベース面7aに付着させた後に、第1実施形態と同様のフッ素含有層形成工程を行うことによって本実施形態の撥水性部材1の製造が完了する。無機粒子を付着しやすくするために、例えば、無機粒子の分散液にアルコキシドのような無機物の前駆体を添加しても良い。 The inorganic particles 8 may have a fluorine-containing layer 9 on the surface or may not have the fluorine-containing layer 9. In the former case, the production of the water-repellent member 1 of the present embodiment is completed by attaching the inorganic particles 8 having the fluorine-containing layer 9 to the base surface 7a. In the latter case, after the inorganic particles 8 are attached to the base surface 7a, the same fluorine-containing layer forming step as that in the first embodiment is performed to complete the manufacture of the water-repellent member 1 of the present embodiment. In order to facilitate the adhesion of the inorganic particles, for example, an inorganic precursor such as an alkoxide may be added to the inorganic particle dispersion.
 本実施形態は、以下の態様でも実施可能である。
・無機粒子8の代わりに、無機粒子8と同様の平均粒径を有する有機粒子を用いてもよい。この場合、有機粒子をベース面7aに付着させた後に、有機粒子の表面に無機膜を形成し、その後、第1実施形態と同様のフッ素含有層形成工程を行うことができる。無機膜は、無機粒子8と同様の無機物からなり、蒸着やスパッタリングなどの方法で形成可能である。
・無機粒子8の代わりに、無機粒子8と同様の平均粒径を有するフルオロアルキルシラン系ポリマーからなるポリマー粒子を用いてもよい。この場合、ポリマー粒子をベース面7aに付着させることによって二次凹凸形状を形成することができる。このポリマー粒子の表面にはフッ素含有基が設けられているので、このポリマー粒子で形成された二次凹凸形状の表面にもフッ素含有基が設けられる。
This embodiment can also be implemented in the following aspects.
In place of the inorganic particles 8, organic particles having an average particle size similar to that of the inorganic particles 8 may be used. In this case, after attaching the organic particles to the base surface 7a, an inorganic film can be formed on the surface of the organic particles, and then a fluorine-containing layer forming step similar to that of the first embodiment can be performed. The inorganic film is made of the same inorganic material as the inorganic particles 8 and can be formed by a method such as vapor deposition or sputtering.
In place of the inorganic particles 8, polymer particles made of a fluoroalkylsilane polymer having the same average particle diameter as the inorganic particles 8 may be used. In this case, the secondary uneven shape can be formed by attaching the polymer particles to the base surface 7a. Since the fluorine-containing group is provided on the surface of the polymer particle, the fluorine-containing group is also provided on the surface of the secondary concavo-convex shape formed by the polymer particle.
3.第3実施形態
 図4を用いて、本発明の第3実施形態の撥水性部材1について説明する。本実施形態の撥水性部材1は、第2実施形態に類似しているが、図4(d)~図4(e)に示すように、本実施形態の撥水性部材1では、樹脂層7のベース面7aにおいて樹脂層7自体が成形されて、ベース面7aに二次凹凸形状が形成されている。
3. 3rd Embodiment The water-repellent member 1 of 3rd Embodiment of this invention is demonstrated using FIG. The water repellent member 1 of this embodiment is similar to that of the second embodiment. However, as shown in FIGS. 4D to 4E, in the water repellent member 1 of this embodiment, the resin layer 7 The resin layer 7 itself is molded on the base surface 7a, and a secondary concavo-convex shape is formed on the base surface 7a.
 以下、本実施形態の撥水性部材1の製造方法について説明する。本実施形態の撥水性部材1の製造方法は、被転写層形成工程、凹凸形状形成工程と、無機膜形成及びフッ素含有層形成工程を備える。 Hereinafter, a method for producing the water repellent member 1 of the present embodiment will be described. The manufacturing method of the water-repellent member 1 of this embodiment includes a transfer layer forming step, an uneven shape forming step, an inorganic film forming step, and a fluorine-containing layer forming step.
<被転写層形成工程>
 この工程では、図4(a)に示すように、光硬化性樹脂組成物を含む原料組成物を基材6上に塗布して被転写層11を形成する。本実施形態では、原料組成物は光硬化性樹脂組成物を含むことが必須であるが、無機粒子を含む必要がない。
<Transfer layer forming process>
In this step, as shown in FIG. 4A, a raw material composition containing a photocurable resin composition is applied onto the substrate 6 to form the transferred layer 11. In this embodiment, it is essential that the raw material composition includes a photocurable resin composition, but it is not necessary to include inorganic particles.
<凹凸形状形成工程>
 この工程では、図4(b)~図4(c)に示すように、被転写層11に対してモールド13を押し付けた状態で被転写層11に活性エネルギー線17を照射して被転写層11を硬化させることによって凹凸形状4を有する樹脂層7を形成する。本実施形態では、凹凸形状4は、ベース面7に複数のホール3と複数の突起7bを有する形状であり、モールド13には、複数のホール3と複数の突起7bに対応した反転パターン15が設けられている。複数の突起7bによってベース面7aに二次凹凸形状が形成される。
<Uneven shape forming process>
In this step, as shown in FIGS. 4B to 4C, the transfer layer 11 is irradiated with active energy rays 17 in a state where the mold 13 is pressed against the transfer layer 11 to transfer the transfer layer. The resin layer 7 having the concavo-convex shape 4 is formed by curing 11. In the present embodiment, the concavo-convex shape 4 is a shape having a plurality of holes 3 and a plurality of protrusions 7b on the base surface 7, and the mold 13 has a reverse pattern 15 corresponding to the plurality of holes 3 and the plurality of protrusions 7b. Is provided. A secondary concavo-convex shape is formed on the base surface 7a by the plurality of protrusions 7b.
<無機膜形成及びフッ素含有層形成工程>
 この工程では、図4(d)~図4(e)に示すように、樹脂層7を覆うように無機膜8aを形成し、無機膜8aとフッ素含有シランカップリング剤を反応させることによって無機膜8aを覆うようにフッ素含有層9を形成して、本実施形態の撥水性部材1の製造を完了する。無機膜8aは、無機粒子8と同様の無機物からなり、蒸着やスパッタリングなどの方法で形成可能である。
<Inorganic film formation and fluorine-containing layer formation step>
In this step, as shown in FIGS. 4D to 4E, an inorganic film 8a is formed so as to cover the resin layer 7, and an inorganic film 8a and a fluorine-containing silane coupling agent are reacted to react with each other. The fluorine-containing layer 9 is formed so as to cover the film 8a, and the manufacture of the water repellent member 1 of this embodiment is completed. The inorganic film 8a is made of the same inorganic material as the inorganic particles 8, and can be formed by a method such as vapor deposition or sputtering.
 本実施形態は、以下の態様でも実施可能である。
・上記実施形態では、モールド13を用いてベース面7aに突起7bを形成しているが、例えばサンドブラストのような別の方法でベース面7aに突起7bを形成してもよい。
This embodiment can also be implemented in the following aspects.
In the above embodiment, the protrusions 7b are formed on the base surface 7a using the mold 13, but the protrusions 7b may be formed on the base surface 7a by another method such as sandblasting.
 以下、本発明の実施例及び比較例を示す。 Hereinafter, examples and comparative examples of the present invention will be described.
<UV硬化樹脂の調製>
 まず、多官能モノマー及び光開始剤を以下に示す割合で配合してUV硬化樹脂を調製した。
多官能アクリレートモノマー
 ビスコート#360(大阪有機製)50質量部
 ビスコート#700HV      20質量部
 ビスコート#310HP      30質量部
光開始剤
 イルガキュアー184(チバスペシャリティーケミカルズ社製) 5質量部
<Preparation of UV curable resin>
First, a polyfunctional monomer and a photoinitiator were blended in the proportions shown below to prepare a UV curable resin.
Multifunctional acrylate monomer Biscoat # 360 (Osaka Organic) 50 parts by mass Biscoat # 700HV 20 parts by mass Biscoat # 310HP 30 parts by mass Photoinitiator Irgacure 184 (manufactured by Ciba Specialty Chemicals) 5 parts by mass
<実施例・比較例>
[実施例1]
 上記調製のUV硬化樹脂にCIKナノテック社製ナノシリカトルエン分散液(D50:150nm)を固形分換算で質量比15%添加し、撹拌により混合して、無機粒子含有UV硬化樹脂を得た。
 次に、易接処理PET基材に対して、上記調製の無機粒子含有UV硬化樹脂を5μm厚になるようにバーコーターで塗工をして被転写層を形成し、60℃5分の乾燥の後、ナノピラーモールド(高さ250nm、周期450nm,直径230nm)に対して、被転写層をモールドに押し当てるように上からローラーでラミネートを行った。その後、PET基材側から積算光量500mJ/cmでUV照射を行い、UV硬化樹脂を硬化させた。その後、モールドを取り外すことによって、ベース面に複数のホールが設けられた一次凹凸形状を有する転写品を作製した。
<Examples and comparative examples>
[Example 1]
To the UV curable resin prepared above, a nano silica toluene dispersion (D50: 150 nm) manufactured by CIK Nanotech Co., Ltd. was added at a mass ratio of 15%, and mixed by stirring to obtain an inorganic particle-containing UV curable resin.
Next, an inorganic particle-containing UV curable resin prepared as described above is applied to the easily accessible PET substrate with a bar coater so as to have a thickness of 5 μm to form a transfer layer, and dried at 60 ° C. for 5 minutes. Thereafter, lamination was performed from above with a roller so as to press the transferred layer against the mold with respect to the nanopillar mold (height 250 nm, period 450 nm, diameter 230 nm). Thereafter, UV irradiation was performed from the PET substrate side with an integrated light amount of 500 mJ / cm 2 to cure the UV curable resin. Thereafter, the mold was removed to prepare a transfer product having a primary uneven shape in which a plurality of holes were provided on the base surface.
 次に、Samco製プラズマクリーナー(PC-300)を用いて、50[Pa]以下の真空下において、高周波(13.56MHz)を200Wの条件で、上記の転写品に対して、酸素プラズマアッシング処理を60秒間施すことによって、樹脂層のベース面から無機粒子を突出させて、樹脂層のベース面に二次凹凸形状を形成した。 Next, using a Samco plasma cleaner (PC-300), an oxygen plasma ashing treatment is performed on the above-mentioned transferred product under a vacuum of 50 [Pa] or less and a high frequency (13.56 MHz) of 200 W. Was applied for 60 seconds to make the inorganic particles protrude from the base surface of the resin layer, thereby forming a secondary uneven shape on the base surface of the resin layer.
 次に、ダイキン工業製オプツールDSXを二次凹凸形状の表面に塗布し、温度60℃湿度90%の条件下で24時間反応させて、二次凹凸形状の表面をフッ素化処理することによってフッ素含有層を形成した撥水性フィルムを作製した。 Next, Daikin Industries Co., Ltd. OPTOOL DSX was applied to the surface of the secondary concavo-convex shape and reacted for 24 hours under the conditions of a temperature of 60 ° C. and a humidity of 90% to fluorinate the surface of the secondary concavo-convex shape. A water-repellent film having a layer formed thereon was produced.
[実施例2]
 ナノピラーモールド(高さ220nm、周期240nm,直径140nm)を用いた以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[Example 2]
A water-repellent film was produced in the same manner as in Example 1 except that a nanopillar mold (height 220 nm, period 240 nm, diameter 140 nm) was used.
[実施例3]
 μピラーモールド(高さ1700nm、周期3000nm,直径1700nm)を用いた以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[Example 3]
A water repellent film was produced in the same manner as in Example 1 except that a μ pillar mold (height 1700 nm, period 3000 nm, diameter 1700 nm) was used.
[実施例4]
 無機粒子について、ナノシリカトルエン分散液の代わりに、CIKナノテック社アルミナ分散液ALMIBK15WT%-M21(D50:35nm)を固形分換算で質量比5%添加した以外は、実施例2と同様の方法で撥水性フィルムを作製した。
[Example 4]
The inorganic particles were repelled in the same manner as in Example 2 except that CIK Nanotech's alumina dispersion ALMIBK15WT% -M21 (D50: 35 nm) was added in a mass ratio of 5% instead of the nanosilica toluene dispersion. An aqueous film was prepared.
[比較例1]
 フッ素化処理を行わなかった以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[Comparative Example 1]
A water repellent film was produced in the same manner as in Example 1 except that the fluorination treatment was not performed.
[比較例2]
 ナノホールモールド(深さ200nm、周期450nm,直径230nm)を用いた以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[Comparative Example 2]
A water repellent film was produced in the same manner as in Example 1 except that a nanohole mold (depth 200 nm, period 450 nm, diameter 230 nm) was used.
[比較例3]
 モールドの代わりに平坦なセパレータを被転写層に押し付けた状態で被転写層を硬化させ、酸素プラズマアッシング処理及びフッ素化処理を行わなかった以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[比較例4]
 モールドの代わりに平坦なセパレータを被転写層に押し付けた状態で被転写層を硬化させた以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[比較例5]
 酸素プラズマアッシング処理を行わなかった以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[比較例6]
 無機粒子を含有しないUV硬化樹脂を塗工して被転写層を形成した以外は、実施例1と同様の方法で撥水性フィルムを作製した。
[Comparative Example 3]
A water repellent film was formed in the same manner as in Example 1 except that the transferred layer was cured with a flat separator pressed against the transferred layer instead of the mold, and oxygen plasma ashing and fluorination were not performed. Produced.
[Comparative Example 4]
A water-repellent film was produced in the same manner as in Example 1 except that the transferred layer was cured while pressing a flat separator against the transferred layer instead of the mold.
[Comparative Example 5]
A water-repellent film was produced in the same manner as in Example 1 except that the oxygen plasma ashing treatment was not performed.
[Comparative Example 6]
A water-repellent film was produced in the same manner as in Example 1 except that a layer to be transferred was formed by applying a UV curable resin containing no inorganic particles.
<平均高さ測定>
 走査型プローブ顕微鏡(SII.Nanotechnology社製,L-trace)の観察によって得られた像から、走査型プローブ顕微鏡PCソフト「SPIWin」を用いて測定された、複数のホール又はピラーを通過するときの断面プロファイルにおいて、隣り合った凹凸の高さを無作為に5点抽出して平均した値を一次凹凸形状の平均高さとした。
 ホール又はピラーを通過しないときの断面プロファイルにおいて、隣り合った凹凸の高さを無作為に5点抽出して平均した値を二次凹凸形状の平均高さとした。
<Average height measurement>
When passing through a plurality of holes or pillars measured using a scanning probe microscope PC software “SPIWin” from an image obtained by observation with a scanning probe microscope (manufactured by SII. Nanotechnology, L-trace) In the cross-sectional profile, the average height of the primary concavo-convex shape was obtained by randomly extracting the five adjacent concavo-convex heights and averaging them.
In the cross-sectional profile when not passing through the holes or pillars, the average height of the secondary concavo-convex shape was obtained by randomly extracting the five adjacent concavo-convex heights and averaging them.
<水接触角測定>
 得られた撥水性フィルムについて、接触角測定装置(dataphysics製,OCA20)を用いて、室温(25℃)下において、当該フィルムの表面にイオン交換水0.5μl滴下し、フィルムと水の接する角度(水接触角)を測定した。
<Water contact angle measurement>
About the obtained water-repellent film, 0.5 μl of ion-exchanged water was dropped on the surface of the film at room temperature (25 ° C.) using a contact angle measuring device (manufactured by dataphysics, OCA20), and the angle at which the film and water contacted each other (Water contact angle) was measured.
<耐擦傷性試験>
 ラビングテスター(株式会社井元製作所社性、ラビングテスターIMC-150B)を用いて、撥水性フィルムの樹脂層表面においてキムワイプを10往復させる前後で水接触角を測定し、その変化率を算出した。変化率は、以下に式に従って算出した。
 変化率(%)=(擦傷前の水接触角-擦傷後の水接触角)×100/(擦傷前の水接触角)
<Abrasion resistance test>
Using a rubbing tester (manufactured by Imoto Seisakusho Co., Ltd., rubbing tester IMC-150B), the water contact angle was measured before and after 10 reciprocations of Kimwipe on the resin layer surface of the water-repellent film, and the rate of change was calculated. The rate of change was calculated according to the following formula.
Rate of change (%) = (water contact angle before abrasion−water contact angle after abrasion) × 100 / (water contact angle before abrasion)
 実施例・比較例の条件及び測定結果を表1に示す。 Table 1 shows the conditions and measurement results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4では、擦傷前の水接触角が大きく、撥水性が優れていることが分かった。また、実施例1~4では、擦傷前後の水接触角の変化率が小さいので、耐擦傷性が優れていることが分かった。実施例4では無機粒子をアルミナに変更することで擦傷試験前後の水接触角の変化率がさらに小さくなり、耐擦傷性が向上することが分かった。 As shown in Table 1, in Examples 1 to 4, it was found that the water contact angle before scratching was large and the water repellency was excellent. In Examples 1 to 4, it was found that the change rate of the water contact angle before and after the scratch was small, and thus the scratch resistance was excellent. In Example 4, it was found that changing the inorganic particles to alumina further reduced the rate of change of the water contact angle before and after the scratch test, and improved the scratch resistance.
 また、図5(a)のSEM像に示すように、実施例1の撥水性フィルムでは、樹脂層のベース面に多数の無機粒子が配置されることによって二次凹凸形状が形成されていることが確認できた。図5(b)のSEM像では、倍率の関係から無機粒子は見えないが、樹脂層のベース面に二次凹凸形状が形成されている状態が確認できた。 Moreover, as shown in the SEM image of FIG. 5A, in the water-repellent film of Example 1, the secondary concavo-convex shape is formed by arranging a large number of inorganic particles on the base surface of the resin layer. Was confirmed. In the SEM image of FIG. 5 (b), although the inorganic particles are not visible from the relationship of magnification, it was confirmed that the secondary uneven shape was formed on the base surface of the resin layer.
1:撥水性部材、3:ホール、4:凹凸形状、4a:ホール、6:基材、7:樹脂層、7a:ベース面、7b:突起、8:無機粒子、9:フッ素含有層、11:被転写層、13:モールド、15:反転パターン、17:活性エネルギー線 1: water-repellent member, 3: hole, 4: uneven shape, 4a: hole, 6: base material, 7: resin layer, 7a: base surface, 7b: protrusion, 8: inorganic particles, 9: fluorine-containing layer, 11 : Transfer target layer, 13: Mold, 15: Inversion pattern, 17: Active energy ray

Claims (9)

  1. 基材と、前記基材の少なくとも一方の面に樹脂層を備え、
    前記樹脂層は、ベース面に複数の凹部が設けられた一次凹凸形状を有し、
    前記ベース面での前記凹部の面積割合は、10~60%であり、
    前記ベース面に二次凹凸形状が設けられ、
    前記二次凹凸形状の平均高さは、15nm以上であり、
    前記二次凹凸形状の表面にフッ素含有基が設けられている、撥水性部材。
    A substrate and a resin layer on at least one surface of the substrate;
    The resin layer has a primary concavo-convex shape in which a plurality of concave portions are provided on a base surface,
    The area ratio of the recesses on the base surface is 10 to 60%,
    A secondary concavo-convex shape is provided on the base surface,
    The average height of the secondary concavo-convex shape is 15 nm or more,
    A water repellent member in which a fluorine-containing group is provided on the surface of the secondary uneven shape.
  2. 前記フッ素含有基は、無機物を介して、前記二次凹凸形状の表面に設けられている、請求項1に記載の撥水性部材。 The water repellent member according to claim 1, wherein the fluorine-containing group is provided on the surface of the secondary concavo-convex shape through an inorganic substance.
  3. 前記凹部は、島状に設けられたホールである、請求項1又は請求項2に記載の撥水性部材。 The water-repellent member according to claim 1, wherein the recess is a hole provided in an island shape.
  4. 前記ホールは、前記ベース面での断面積が400πnm~3600πμmである、請求項3に記載の撥水性部材。 The hole, the cross-sectional area at the base surface is 400πnm 2 ~ 3600πμm 2, water-repellent member according to claim 3.
  5. 前記ホールは、円柱状である、請求項3又は請求項4に記載の撥水性部材。 The water repellent member according to claim 3 or 4, wherein the hole has a cylindrical shape.
  6. 前記フッ素含有基は、パーフルオロアルキル基である、請求項1~請求項5の何れか1つに記載の撥水性部材。 The water repellent member according to any one of claims 1 to 5, wherein the fluorine-containing group is a perfluoroalkyl group.
  7. 水に対する接触角が160度以上である、請求項1~請求項6の何れか1つに記載の撥水性部材。 The water repellent member according to any one of claims 1 to 6, wherein a contact angle with water is 160 degrees or more.
  8. 光硬化性樹脂組成物と無機粒子を混合して得られる原料組成物を基材上に塗布して被転写層を形成し、
    前記被転写層にモールドを押し付けた状態で前記被転写層に活性エネルギー線を照射して前記被転写層を硬化させることによって凹凸形状を有する樹脂層を形成し、
    前記樹脂層に対してエッチングを行って前記無機粒子を表面に露出させ、
    前記無機粒子とフッ素含有シランカップリング剤を反応させることによって前記無機粒子を覆うようにフッ素含有層を形成する工程を備える、撥水性部材の製造方法。
    A raw material composition obtained by mixing a photocurable resin composition and inorganic particles is applied onto a substrate to form a transferred layer,
    Forming a resin layer having a concavo-convex shape by curing the transferred layer by irradiating the transferred layer with active energy rays in a state where a mold is pressed against the transferred layer,
    Etching the resin layer to expose the inorganic particles on the surface,
    A method for producing a water-repellent member, comprising a step of forming a fluorine-containing layer so as to cover the inorganic particles by reacting the inorganic particles with a fluorine-containing silane coupling agent.
  9. 前記無機粒子は、平均粒径(D50)が5~400nmである、請求項8に記載の撥水性部材の製造方法。 The method for producing a water-repellent member according to claim 8, wherein the inorganic particles have an average particle diameter (D50) of 5 to 400 nm.
PCT/JP2016/081402 2015-10-26 2016-10-24 Water-repellent member and manufacturing method for same WO2017073501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210157A JP2018202609A (en) 2015-10-26 2015-10-26 Water-repellent member and method for producing the same
JP2015-210157 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017073501A1 true WO2017073501A1 (en) 2017-05-04

Family

ID=58630450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081402 WO2017073501A1 (en) 2015-10-26 2016-10-24 Water-repellent member and manufacturing method for same

Country Status (3)

Country Link
JP (1) JP2018202609A (en)
TW (1) TW201728434A (en)
WO (1) WO2017073501A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019372515B2 (en) 2018-10-29 2024-08-29 Sumitomo Electric Industries, Ltd. Slant-type fiber grating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191024A (en) * 1997-09-19 1999-04-06 Hitachi Ltd Water repellent material and manufacture thereof
JP2008224718A (en) * 2007-03-08 2008-09-25 Konica Minolta Opto Inc Antiglare antireflection film and display device
JP2012219249A (en) * 2011-04-14 2012-11-12 Kagawa Univ Super water-repellent oil-repellent translucent antifouling film and method for manufacturing the same, and glass window, solar energy utilization apparatus, optical apparatus and display device using them
JP2015063068A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Transparent water-repellent body, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191024A (en) * 1997-09-19 1999-04-06 Hitachi Ltd Water repellent material and manufacture thereof
JP2008224718A (en) * 2007-03-08 2008-09-25 Konica Minolta Opto Inc Antiglare antireflection film and display device
JP2012219249A (en) * 2011-04-14 2012-11-12 Kagawa Univ Super water-repellent oil-repellent translucent antifouling film and method for manufacturing the same, and glass window, solar energy utilization apparatus, optical apparatus and display device using them
JP2015063068A (en) * 2013-09-25 2015-04-09 日産自動車株式会社 Transparent water-repellent body, and production method thereof

Also Published As

Publication number Publication date
TW201728434A (en) 2017-08-16
JP2018202609A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
Di Mundo et al. Nanotexturing of polystyrene surface in fluorocarbon plasmas: From sticky to slippery superhydrophobicity
Kothary et al. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach
US20110300345A1 (en) Surface Having Superhydrophobic Region And Superhydrophilic Region
US9079215B2 (en) Micro-fiber arrays with tip coating and transfer method for preparing same
WO2013137176A1 (en) Mold, resist laminate and manufacturing process therefor, and microrelief structure
TW201532330A (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
KR20130080857A (en) Fine-structure laminate, method for preparing fine-structure laminate, and production method for fine-structure laminate
JP2018523167A (en) Article having a nanotextured surface with hydrophobicity
JP2002346469A (en) Self-purification surface, method for manufacturing the same and usage of the same
TWI632430B (en) Superoleophobic surfaces and methods of making same
JP5522339B2 (en) Water repellent structure and water repellent structure
WO2017057220A1 (en) Water-repellent member and method for manufacturing same
JP2007320071A (en) Manufacturing method of template and treated base material having transfer fine pattern
Park et al. Perfectly hydrophobic surfaces with patterned nanoneedles of controllable features
TWI603846B (en) Anti-fingerprint film and electrical and electronic apparatus
JP2017110468A (en) Structural body for bath room
JP2022174051A (en) Infrared sensor cover, infrared sensor module, and camera
WO2017073501A1 (en) Water-repellent member and manufacturing method for same
JP2018103534A (en) Hard coat film and method for producing the same
JP2014076610A (en) Oil repellent laminated body and method for producing the same
TW201831529A (en) Hard-coat film and method for manufacturing same
WO2017126589A1 (en) Cell culture substrate and method for producing same
JP6046733B2 (en) Antireflection film, method for producing the same, and display device
JPWO2014163041A1 (en) Transfer film and substrate with uneven structure
JP2015114464A (en) Function transfer body, and method of transferring functional layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP