WO2017073249A1 - Vehicle window display device - Google Patents

Vehicle window display device Download PDF

Info

Publication number
WO2017073249A1
WO2017073249A1 PCT/JP2016/079323 JP2016079323W WO2017073249A1 WO 2017073249 A1 WO2017073249 A1 WO 2017073249A1 JP 2016079323 W JP2016079323 W JP 2016079323W WO 2017073249 A1 WO2017073249 A1 WO 2017073249A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
window
image
unit
light
Prior art date
Application number
PCT/JP2016/079323
Other languages
French (fr)
Japanese (ja)
Inventor
増田 剛
重之 渡邉
新 竹田
彰仁 堀川
政昭 中林
裕介 仲田
遠藤 修
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2017547689A priority Critical patent/JPWO2017073249A1/en
Publication of WO2017073249A1 publication Critical patent/WO2017073249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the technical field of a vehicle window display device that performs display using a window of a vehicle.
  • the patent document 1 discloses a vehicular lamp in which the degree of freedom of color of laser irradiation is enhanced and a driver can easily draw a line, a mark or the like that can easily recognize the road condition.
  • a figure can be drawn on a road surface or the like by a light source capable of changing the color of the irradiation light.
  • the window is a relatively large area, and various information can be presented by displaying on the window. Therefore, the present invention assumes display in a window of a vehicle and aims to execute display appropriate for the occupant.
  • a vehicle window display device includes an image projection unit disposed in a vehicle compartment of a vehicle and projecting an image on at least a front window and a side window of the vehicle, wherein the image projection unit And performing projection for displaying an in-vehicle image to be displayed to a vehicle occupant in a state in which outward visual recognition is possible via the side window. That is, various displays are performed using the front window and the side window of the vehicle. In this case, the in-vehicle image is projected in a state in which the vehicle exterior visualizing function as a window is maintained.
  • the vehicle window display device it is conceivable to display an external image for display on the outside of the vehicle with an image content different from the in-vehicle image on the outer surface side of the window of the vehicle.
  • the in-vehicle image and the out-vehicle image as different images are projected using the front window and the side window of the vehicle.
  • the vehicle window display device it is conceivable to display information across the front window and at least one side window. That is, the image is projected in a state where the front window and the right side window, or the front window and the left side window, or the front window and the left and right side windows are regarded as one screen.
  • the above-described vehicle window display device includes a laser light output unit that outputs a laser beam as illumination to the outside of the vehicle, and a light emission drive unit having a laser light source and a drive circuit for the laser light source.
  • the laser light output from the laser light source is supplied by a light guide to perform light output, and the image projection unit performs projection using the laser light output from the laser light source and supplied by a light guide.
  • the image projection unit performs projection using the laser light output from the laser light source and supplied by a light guide.
  • it has a function as a vehicle lamp as illumination to the outside of the vehicle, and uses laser light from a laser light source common to illumination and projection.
  • the present invention it is possible to realize various types of information display for the occupant using the window of the vehicle while maintaining the exterior visibility function of the occupant by the front and side windows.
  • the information presentation capability can be enhanced.
  • FIG. 1 is a perspective view of a vehicle equipped with a vehicle window display device according to an embodiment of the present invention. It is an explanatory view of composition of a roof module of an embodiment. It is a block diagram of composition of an important section of an embodiment. It is explanatory drawing of the light distribution of the surrounding illumination part of embodiment, and the to-be-photographed object direction of an imaging unit. It is explanatory drawing of the laser beam supply to the surrounding illumination part of embodiment. It is a flowchart of color control of the illumination light of embodiment. It is explanatory drawing of the projection direction of the projector of embodiment. It is explanatory drawing of the image for in-vehicle projected on the front window of embodiment.
  • FIG. 1 is a perspective view of a vehicle 90
  • FIG. 2A is an explanatory view showing the roof module 1 in a plan view.
  • the shape, structure, and the like of the vehicle 90 described below are merely examples.
  • the vehicle 90 is a four-wheeled automobile having a function of traveling as a fully automatic driving or a partially automatic driving, or a function of assisting the driver's driving with a driving support function.
  • the passenger compartment of the vehicle 90 is a space surrounded by the front window 91F, the left side window 91LS, and the right side window 91RS and the rear window 91RR (see FIG. 7) which do not appear in FIG.
  • the passenger compartment is a space in which approximately 360 ° of the surroundings for the passenger is a window 91 (referred to as “window 91” when referring to each window generically).
  • window 91 when referring to each window generically.
  • the front window 91F and the left side window 91LS, the front window 91F and the right side window 91RS, the rear window 91RR and the left side window 91LS, and the rear window 91RR and the right side window 91RS respectively , Corner portion 95.
  • the corner portion 95 may be transparent or translucent, or may be opaque.
  • a roof module 1 is provided at the top of the vehicle 90.
  • the roof module 1 forms a roof of the vehicle 90 and has a configuration for realizing various functions including a lamp function.
  • a laser light engine 2 having a laser light source is built in a substantially central portion of the roof module 1.
  • a headlight portion 3 is provided on the vehicle front side of the roof module 1.
  • a high beam output unit 3H, a low beam output unit 3L, and a spot beam output unit 3S are provided as the headlight unit 3.
  • the high beam output unit 3H outputs illumination light having a far light distribution
  • the low beam output unit 3L outputs illumination light having a near light distribution.
  • the spot beam output unit 3S outputs illumination light for spot irradiation on the front side.
  • a rear light portion 4 is provided on the vehicle rear side of the roof module 1.
  • the rear light unit 4 is provided with, for example, a rear beam output unit 4H, a brake lamp unit, a back lamp unit, and the like.
  • the illumination configuration of the rear light unit 4 may be, for example, the same configuration as the headlight unit 3.
  • the surrounding illumination part 5 is formed in the side part of the roof module 1 over substantially the perimeter.
  • the ambient illumination unit 5 is indicated by a broken line.
  • a large number of light output portions 51 are arranged in the ambient illumination portion 5, which enables illumination in a 360 ° direction around the vehicle 90.
  • the surrounding illumination unit 5 is disposed to perform illumination of, for example, about 10 m or less in all directions around the vehicle 90.
  • FIG. 2B schematically shows a part of the ambient illumination unit 5 in an enlarged manner.
  • the light output units 51 arranged in a large number in the circumferential direction each have an R (red) laser light output unit 5R, a G (green) laser light output unit 5G, and a B (blue) laser light output unit 5B. That is, each light output unit 51 can perform illumination in various color expressions, external notification, and the like by performing R, G, and B light output.
  • the monitoring sensor unit 7 is arrange
  • FIG. The monitoring sensor unit 7 is, for example, an imaging unit provided with a camera.
  • the vehicle front right, the vehicle front left, the right front, the right rear, the left rear, the left front, the left rear, the vehicle rear Eight are arranged as the right side and the vehicle rear left side.
  • the angle of view in the horizontal direction of the camera in each monitoring sensor unit 7 is about 50 degrees, and imaging in the entire circumferential direction can be performed by eight monitoring sensor units 7.
  • FIG. 2B shows an example in which the visible light camera 7a and the far infrared light camera 7b are provided as one monitoring sensor unit 7, this is an example.
  • a camera including the visible light camera 7 a as the monitoring sensor unit 7, it is possible to recognize the surrounding environment by an image and to recognize a person, an object, and their colors.
  • the far-infrared light camera 7b it becomes suitable for recognition of a heat source such as a person or an animal.
  • the camera by mounting a so-called left and right stereo camera, it becomes possible to obtain distance information to the object using the principle of triangulation.
  • a near infrared camera may be provided.
  • a camera may not be provided, or a laser sensor or a radar sensor may be provided in addition to the camera.
  • the headlight portion 3, the rear light portion 4 and the surrounding illumination portion 5 provided in the roof module 1 respectively output laser light as illumination light.
  • the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 do not have their own laser light source, for example, a laser diode etc., but a laser generated by the laser light engine 2.
  • Light is used. That is, the laser beam generated by the laser light engine 2 is guided and output to each of the high beam output unit 3H, the low beam output unit 3L, and the spot beam output unit 3S of the headlight unit 3 by the optical fiber 6 as a light guide. .
  • laser light generated by the laser light engine 2 is guided by the optical fiber 6 to the rear beam output unit 4H of the rear light unit 4, a brake lamp unit (not shown), a back lamp unit, etc. Further, the laser light generated by the laser light engine 2 is also led to each light output unit 51 of the surrounding illumination unit 5 by the optical fiber 6 and output.
  • the optical fiber 6 is provided in three systems corresponding to each of the R laser light, the G laser light, and the B laser light. By exposing a part of the optical fiber 6 of the three systems to the upper surface or the side surface of the roof module 1 as shown in FIGS. 1 and 2, the optical fiber 6 (R, G, B transmitted by the optical fiber 6 Each light is made to be a part of the appearance design of the roof module 1.
  • the configuration in which laser light generated by the laser light engine 2 is used as the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 is an example.
  • Each of the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 may be uniquely provided with a light source such as a laser diode or a light emitting diode (LED).
  • the headlight unit 3, the rear light unit 4 and a part of the surrounding illumination unit 5 may use laser light generated by the laser light engine 2 and a part may use a unique light source.
  • FIG. 3 shows the internal configuration of the roof module 1 and the configuration of the vehicle 90 associated with the operation of the roof module 1.
  • An ECU (electronic control unit) 92 is a microcomputer that performs various controls in the vehicle 90.
  • the ECU 92 performs, for example, travel control of the vehicle 90, automatic operation control, drive support control, electrical system device control, and the like.
  • a battery 93 is a battery in the vehicle 90, and supplies operating power supply voltages for the traveling system, the electrical system, the control system, and other components.
  • the front window 91F, the left side window 91LS, the right side window 91RS, and the rear window 91RR are windows around the passenger compartment and also have a function as a screen for displaying an in-vehicle image and an out-vehicle image as described later.
  • the ECU 92 can perform variable transmittance control with respect to each window 91 (91F, 91RS, 91LS, 91RR).
  • the transmittance of each window 91 can be uniformly changed by the ECU 92 as a whole window, or the transmittance can be set to be different for each region in the window.
  • the ECU 92 controls the transmittance of each window 91 based on, for example, information from the control unit 20 of the roof module 1.
  • the control unit 20 may control the transmittance of each window 91 directly instead of the ECU 92.
  • the roof module 1 is provided with a laser light engine 2, a headlight 3, a rear light 4, a surrounding illumination 5, an optical fiber 6, and a monitoring sensor unit 7. As shown in FIG. 3, an image projection unit 8 is provided.
  • the laser light engine 2 of the roof module 1 is provided with a control unit 20, a power supply circuit unit 21, a laser light source unit 22, a drive circuit 23, and an analysis unit 24.
  • the control unit 20 is configured by a microcomputer, and performs control of an illumination operation by the roof module 1, an operation related to captured image processing for monitoring the periphery of the vehicle 90, a display operation, and the like. Further, the control unit 20 can acquire vehicle information or perform a processing request (for example, the above-described transmittance control and the like) to the ECU 92 through communication with the ECU 92.
  • the control unit 20 can also provide the ECU 92 with surrounding information obtained by the monitoring sensor unit 7.
  • Communication between the control unit 20 and the ECU 92 is applicable to short-distance wireless communication, wired communication, infrared communication, and various other communication methods.
  • the roof module 1 is disposed on the upper surface of each window 91
  • the ECU 92 is disposed below the vehicle (below the window 91).
  • the window 91 is formed over substantially the entire circumference as in this example, in order to enable communication between the control unit 20 and the ECU 92 by wire, it becomes a part of the window 91 or a boundary of each window 91 It is conceivable to form a transparent transmission path in the corner portion 95 and to use it as a communication path.
  • the power supply circuit unit 21 receives power supply from the battery 93 and generates an operating power supply voltage required for each part of the roof module 1. That is, the power supply voltage necessary for each of the control unit 20, the drive circuit 23, the analysis unit 24, the headlight unit 3, the rear light unit 4, the surrounding illumination unit 5, the monitoring sensor unit 7, and the image projection unit 8 is generated. Supply.
  • the power supply circuit unit 21 may supply a power supply voltage thereto. It is conceivable that power supply from the battery 93 to the power supply circuit unit 21 is wireless power supply. Alternatively, power may be supplied by forming a transparent feeding path in a part of the window 91 or in the corner portion 95.
  • the power supply circuit unit 21 has a storage unit that stores the charge generated in the solar panel, and uses the power supply voltage from the storage unit to generate a necessary power supply voltage for each unit and supply it to each unit. be able to.
  • the power supplied from the battery 93 may be used in combination with the power from the storage unit, or the power supplied from the battery 93 may not be required.
  • the laser light source unit 22 is provided with a laser light source such as a laser diode, for example, and outputs laser light.
  • a laser light source such as a laser diode
  • R laser light, G laser light, and B laser light are respectively output by three laser light sources.
  • the RGB laser beams are sent to the surrounding illumination unit 5, the headlight unit 3 and the rear light unit 4 by the optical fiber 6, respectively.
  • the drive circuit 23 is a circuit that drives each of the RGB laser light sources of the laser light source unit 22. For example, it has a current supply circuit for the laser diode, a current stabilization circuit, a protection circuit, and the like.
  • the drive circuit 23 executes the laser light output from the laser light source unit 22 according to the instruction of the control unit 20.
  • the analysis unit 24 is, for example, an image analysis unit, and cameras of the eight monitoring sensor units 7 that perform imaging for monitoring the periphery of the vehicle 90 as described above (visible light camera 7a, far infrared light camera 7b)
  • the captured image data from are input and image analysis is performed on each.
  • the analysis unit 24 analyzes the captured image from the visible light camera 7a of each monitoring sensor unit 7 to recognize surrounding people, or surrounding objects such as buildings, road conditions, traffic lights, signs, A guardrail, an obstacle, a leading vehicle, an oncoming vehicle, etc. can be recognized.
  • weather, sunshine direction, etc. can also be recognized.
  • the analysis unit 24 can analyze the image by the far infrared light camera 7 b to recognize the temperature distribution around it, and can use this to assist the recognition by the visible light camera 7 a.
  • the analysis unit 24 analyzes detection signals of these sensors and obtains various information.
  • the control unit 20 can perform various controls based on the recognition information of the surrounding environment by the image analysis of the analysis unit 24 and the detection signal analysis.
  • the roof module 1 is provided with an image projection unit 8.
  • the image projection unit 8 has, for example, six projectors 8a to 8f.
  • the projectors 8a to 8f are arranged such that an image can be projected onto each window 91 from the bottom side of the roof module 1, for example.
  • the RGB laser light from the laser output unit 22 is used as a projection light source of the projectors 8a to 8f. For this reason, laser light of RGB is supplied to each of the projectors 8a to 8f by the optical fiber 6.
  • the operation of each of the projectors 8a to 8f is controlled by the control unit 20. That is, the control unit 20 instructs the projection operation and the display content.
  • the projectors 8a to 8f may be provided with independent projection light sources.
  • the projectors 8a to 8f may be disposed in the vehicle independently of the roof module 1.
  • the illumination and monitoring by the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 will be described.
  • the headlight portion 3 is provided on the roof module 1. Therefore, the illumination illuminates the front with the optical axis angle to the road surface being deeper from above the vehicle 90 than in the prior art.
  • the rear light portion 4 is also provided to the roof module 1 and emits light relatively from above, so the visibility of the road surface behind can be enhanced.
  • the light output units 51 are arranged around the roof module 1, so that illumination of 360 degrees around the vehicle 90 is enabled.
  • the light distribution in the vertical direction of each light output unit 51 is below the horizontal direction of the roof module 1.
  • the horizontal direction of the roof module 1 is shown by the alternate long and short dash line H in FIG. 4A
  • the light emission direction of the light output unit 51 disposed in the surrounding illumination unit 5 is, for example, the range of the angle ⁇ 1 indicated by the broken line Is set as. For example, it is set to illuminate around 10 m with such a light distribution.
  • Such light distribution realizes glare-free for people who are far away. Moreover, it is made for the person who exists in the vicinity of the vehicle 90 not to look straight at the light from the surrounding illumination part 5 unconsciously. However, when the position of the eye is low in a child or the like, there is a possibility that they may look unconsciously. Therefore, when it is recognized that a person is present according to the surrounding environment monitoring, it may be considered to stop the light output from the light output unit 51 directed to the person or change the light distribution .
  • the illumination of the ambient lighting unit 5 has the function of making the vehicle 90 itself an infrastructure at that location and brightening the surroundings. The presence of a large number of vehicles 90 in a city area etc. can create a bright environment even at night.
  • the road surface is drawn by the color light source of the surrounding illumination unit 5 to present information to various people in the surrounding area and perform various types of notification.
  • the surrounding illumination unit 5 illuminates the periphery from above the vehicle 90 as the periphery of the roof module 1, but the surrounding illumination unit 5 may be provided around the bottom of the vehicle body . That is, the light output unit 51 arranged as the ambient illumination unit 5 is not limited to being provided in the roof module 1. Moreover, the surrounding illumination part 5 does not necessarily need to perform illumination with respect to the 360-degree direction all around. For example, illumination may be performed only on the side, only on the side and the rear, only on the left side, or only on the right side. In addition, illumination in the direction of 300 degrees, 250 degrees, etc. may be performed almost all around.
  • FIG. 5 shows the R, G, and B laser diodes 22R, 22G, and 22B in the laser light source unit 22 of the laser light engine 2.
  • the emitted light of each of the laser diodes 22R, 22G, and 22B is irradiated to the rotary reflection plate 75.
  • the rotary reflection plate 75 is rotationally driven about the axis J.
  • the rotary reflection plate 75 is shown as a flat plate-like double-sided mirror, it may be replaced with a polygon mirror which is a polyhedral mirror in place of the rotary reflection plate 75.
  • a collimator lens CL and an optical fiber 6 are disposed around the rotary reflection plate 75.
  • the laser light collimated by the collimator lens CL enters the optical fiber 6 from the incident end 6a.
  • three optical fibers 6 corresponding to one set of three collimator lenses CL correspond to one light output unit 51 in the ambient illumination unit 5.
  • each of the R, G, and B laser beams reflected by the rotary reflection plate 75 has a set (three) of collimator lenses CL, as indicated by a solid line.
  • the three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of one light output section 51 in the surrounding illumination section 5.
  • each of the R, G, and B laser beams reflected by the rotary reflection plate 75 is separated by a set of collimator lenses CL, as shown by the broken line. It is introduced into the optical fiber 6.
  • the three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of another light output section 51 in the surrounding illumination section 5. Furthermore, when the rotary reflecting plate 75 is in the state of the alternate long and short dash line, each of the R, G, and B laser beams reflected by the rotary reflecting plate 75 is a set of (three) collimators as shown by the alternate long and short dash line. It is introduced into one set (three) of optical fibers 6 by the lens CL. The three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of another light output section 51 in the surrounding illumination section 5.
  • ambient illumination is achieved by rotating the rotary reflector 75 at high speed while outputting the respective R, G, B laser beams from the R, G, B laser diodes 22 R, 22 B in the laser light source unit 22.
  • Laser light can be distributed to each light output unit 51 of the unit 5.
  • illumination in the direction of 360 degrees can be realized without each light output unit 51 of the surrounding illumination unit 5 being provided with a light source element such as a laser diode.
  • illumination may be performed only in a specific direction or illumination may be turned off only in a specific direction. it can.
  • the color of the illumination light of the surrounding illumination unit 5 can be changed.
  • the illumination light to the specific direction of the surrounding illumination unit 5 is controlled by controlling the light intensity of each of the R, G, and B laser beams to be irradiated to the rotary reflector 75 in synchronization with the rotational position of the rotary reflector 75. You can also change the color of
  • the emitted laser beams of the laser diodes 22R, 22G, and 22B are directly irradiated to the rotary reflecting plate 75, but in actuality through the necessary optical system. It only needs to be irradiated.
  • the emitted laser beams of the laser diodes 22R, 22G, and 22B are also incident on the other optical fibers 6 supplied to the headlight portion 3 and the rear light portion 4.
  • the emitted laser beams of the laser diodes 22R, 22G, 22B are split by an optical element such as a beam splitter, and a part is irradiated to the rotary reflector 75 as shown in FIG. do it.
  • the laser diodes 22R, 22G, 22B may be dedicated laser diodes for supplying light to the ambient illumination unit 5.
  • the monitoring sensor unit 7 will be described.
  • surrounding people or objects can be recognized as described above.
  • the visible light camera 7a and the far infrared light camera 7b are provided as the monitoring sensor unit 7, the human recognition accuracy can be enhanced.
  • a person can be recognized by a method such as pattern matching.
  • it is a person by determining the temperature of the target portion using the image captured by the far infrared light camera 7b.
  • it is also important to monitor the vicinity of the vehicle 90.
  • the monitoring sensor unit 7 disposed at the rear of the vehicle 90 as shown in FIG.
  • the range ⁇ 2 below the horizontal direction (dotted dotted line H) of the roof module 1 is the vertical angle of view. Deploy. In this manner, the children HM and the like behind the vehicle 90 can always be recognized. By adopting such a configuration, the monitoring sensor unit 7 realizes improvement in safety.
  • the illumination of the ambient illumination unit 5 is also used to improve the monitoring function.
  • the clarity of the contour of the image changes depending on the degree of illumination.
  • the object recognition accuracy including the human changes. Therefore, in order to further improve the image recognition accuracy, the color of the illumination light by the ambient illumination unit 5 is changed according to the surrounding objects.
  • Each light output unit 51 in the ambient illumination unit 5 includes R, G, and B laser light output units (5R, 5G, 5B), and thus can output illumination light of various colors. .
  • R, G, and B laser light output units 5R, 5G, 5B
  • Even when each light output unit 51 has a light source such as an LED or a laser diode it is possible to output illumination light of various colors by arranging LEDs as R, G, and B light sources, respectively. It goes without saying that it is possible.
  • the control unit 20 performs the color control process shown in FIG. 6 on the illumination of the surrounding illumination unit 5.
  • the control unit 20 monitors whether or not any object is detected by the analysis unit 24 in a certain direction.
  • the control unit 20 extracts color data of the object in step S102.
  • the information of the color making up the detected object is acquired from the analysis unit 24.
  • the control unit 20 determines the main color from the acquired color data. For example, the dominant color in the detection object, the color with the largest ratio, and the like are set as the primary color.
  • step S104 the control unit 20 performs control such that illumination of the determined main color is output from the detection direction of the object. Specifically, first, information on the direction of the detected object (the direction seen from the vehicle body) is acquired from the analysis unit 24, and the light output unit 51 that illuminates the direction is specified. Then, the respective intensities of the R, G, and B laser beams supplied to the light output unit 51 are controlled so that the output light from the light output unit 51 becomes the main color.
  • red illumination is performed toward the person.
  • yellow illumination is performed toward the object.
  • the analysis unit 24 can accurately determine the contour of the object, and can accurately identify what the object is by pattern matching or the like.
  • the control unit 20 acquires the object identification result by the analysis unit 24 in step S105. Then, the process branches in step S106 depending on whether the detected object is a person or not. In the case of a person, processing for the person is performed, and in the case of other than the person, processing for the object is performed.
  • illumination of the color according to the detection object becomes what is easy to recognize also on a person's vision.
  • the illumination of the blue light increases the visibility of the pedestrian for the driver. This can improve safety.
  • the environment recognition accuracy is improved, for example, when a person is recognized, the surrounding illumination unit 5 is turned off, the illumination in the direction in which the person is present, or the illumination light intensity is reduced. More sophisticated control is possible, such as preventing people from feeling dazzling.
  • Each window 91 is configured as a panel capable of transmittance control, and functions as a window through which the occupant can usually visually recognize the surroundings by being in the total transmission state. Furthermore, in each window 91, an image can be projected from the image projection unit 8 and the transmittance of the projected portion can be reduced to display an occupant in the vehicle compartment (display of an image for in-vehicle use). Further, in each window 91, an image can be projected from the image projection unit 8 and the transmittance of the projected portion can be increased to perform display for a person outside the vehicle (display of the image for the outside of the vehicle).
  • the projectors 8a to 8f in the image projection unit 8 are arranged as shown in FIG. 7, for example, to project an image.
  • Each of the projectors 8a to 8f is disposed, for example, on the bottom side of the roof module 1 so as to obtain a projection direction as illustrated.
  • the arrangement position of the projector 8a is set so as to project an image on the entire front window 91F.
  • the arrangement position of the projector 8 b is set so as to project an image on the entire rear window 91 RR.
  • the arrangement position of the projector 8c is set so as to project an image on a range substantially on the front half side of the right side window 91RS.
  • the arrangement position of the projector 8d is set so as to project an image on a range substantially on the vehicle rear side half of the right side window 91RS.
  • the arrangement position of the projector 8e is set so as to project an image on a substantially half of the front side of the left side window 91LS.
  • the arrangement position of the projector 8 f is set so as to project an image on a range substantially on the rear side of the left side window 91 LS.
  • the image projection unit 8 by arranging the projectors 8a to 8f in this manner, various images can be displayed on all the windows 91.
  • Each of the projectors 8a to 8f may project an independent image, or may project an image for each part so that one continuous image is formed in an adjacent window.
  • FIG. 8 shows a state in which the in-vehicle image 100 is displayed on the front window 91F by the projector 8a.
  • Most of the front window 91F is in a through state (a state of transmissivity that is regarded as substantially transparent), and the occupant can view the scenery in front of the vehicle.
  • the transmittance of part of the front window 91F is lowered, and the projection image of the projector 8a is displayed on that part.
  • a traveling speed, a rotation speed, a shift position, a traveling distance, a time, a traveling mode, and the like are displayed as the in-vehicle image 100.
  • the transmittance of each window 91 may be lowered to perform projection like a video theater.
  • one in-vehicle image 100 with a large screen may be displayed across the adjacent windows 91, for example, the front window 91F and the left and right side windows (91LS, 91RS).
  • the image may be projected as the four windows 91 as a 360 degree screen.
  • Such display across a plurality of windows 91 is possible by setting of projection images by the projectors 8a to 8f. That is, one image may be divided in the horizontal direction and projected from each of the projectors 8a to 8f.
  • the in-vehicle image 100 for example, a map image, a navigation image, a message image regarding a vehicle state, a notification of the surrounding situation, an alert image or characters, various video contents, an enlarged image of a display screen of an information processing apparatus such as a portable terminal, a website An image etc. are assumed.
  • FIG. 9 shows an example in which the car exterior image 101 is displayed on the front window 91F and the left side window 91LS by the projectors 8a, 8e, 8f, for example.
  • the front window 91F and the left side window 91LS have a structure in which the projected image can be viewed from the outside.
  • the image which recommends passing ahead to the person who is going to cross the road is displayed using the front window 91F and the left side window 91LS.
  • the front window 91F and the left side window 91LS as one large screen and displaying them across images, the visibility to the outside and the notification capability are expanded.
  • FIG. 10A and 10B schematically show the structure of the window 91.
  • the window 91 has a structure in which it is divided into a large number of linear regions by a dividing line in the horizontal direction.
  • the window 91 is formed such that the set of the mirror area 150, the transmission area 151, and the diffusion area 152 is continuous in the vertical direction.
  • each region may be, for example, one to several lines in the frame of the image to be projected, or several tens of lines, or more lines. . This may be set according to the vertical resolution of the image or the image visibility. In the explanation, the vertical width of each area is equal to x lines of the image.
  • the mirror area 150 is an area in which the mirror 160 is formed.
  • the mirror 160 reflects downward the light incident from the vehicle interior direction.
  • the transmissive region 151 is a region through which light is normally transmitted at high transmittance.
  • the diffusion region 152 is a region in which the diffusion plate 161 is provided.
  • the light 170 that has entered the mirror area 150 from the inside of the vehicle is reflected by the mirror 160, passes through the transmission area 151 from the top to the bottom, and reaches the diffusion plate 161.
  • the light diffusion plate 161 is disposed to be inclined as shown in the figure, so that the light 170 is diffused outward by the diffusion plate 161.
  • an image by the light 170 is viewed from the outside of the window 91.
  • light 171 from the outside of the vehicle reaches the vehicle interior through transmission region 151. Therefore, the passenger can see the scene outside the vehicle.
  • the light 172 that has entered the diffusion region 152 from the inside of the vehicle is projected to the diffusion plate 161 and diffused. In this state, the image by the light 172 is viewed from the inside of the window 91.
  • the projectors 8a to 8f may emit the in-vehicle image 100 and the in-vehicle image 101 as projection light as follows.
  • the first x line of the frame is blank (pixel data of gradation zero), the next x line is also blank, and the pixel data constituting the image is arranged in the next x line.
  • Such data arrangement is repeated in the vertical direction to form each frame data.
  • projection is performed based on the frame data.
  • the frame data of the car external image 101 arranges pixel data constituting the image in the first x line of the frame, the next x line is blank, and the next x line is also blank. Such data arrangement is repeated in the vertical direction to form each frame data. Then, projection is performed based on the frame data. Then, the projection light which comprises an image is projected on the mirror area
  • the in-vehicle image 100 and the in-vehicle image 101 are simultaneously displayed on the front and back of the window, the in-vehicle image data and the out-vehicle image data are combined.
  • the frame data of the composite image arranges the pixel data forming the car exterior image 101 in the first x line of the frame, the next x line is blank, and the next x line is pixel data forming the car interior image 100 Deploy. This may be repeated in the vertical direction to form and project frame data.
  • the projection positions of the projectors 8a to 8f must be precisely aligned with the position of the area (150, 151, 152) of the window 91. Therefore, a camera capable of recognizing an image display state on the window 91, a light quantity sensor, etc. is provided in the car, and in the state where the in-car image 100 is projected, the in-car image 100 is displayed well. It is desirable that automatic adjustment of the position be performed. In the case of the above configuration, if the in-vehicle image 100 is appropriately displayed as the positional relationship, appropriate projection of the in-vehicle image 101 is performed.
  • FIG. 11A shows an example in which the projector 8 out is arranged outside the vehicle, for example, at the edge of the ceiling 181 by the roof module 1 in addition to the arrangement of the projector 8 in (for example, projectors 8 a to 8 f) inside the vehicle.
  • the window 91 has a two-layer structure, with the glass portion 183 on the outside of the vehicle and the liquid crystal shutter portion 182 on the inside of the vehicle.
  • the liquid crystal shutter portion 182 is a layer whose transmittance is made variable by a voltage applied to both end electrodes of the enclosed liquid crystal.
  • the projector 8in projects the in-vehicle image 100
  • the projector 8out projects the vehicle external image 101.
  • the transmittance of the liquid crystal shutter unit 182 may be lowered in the image projection portion by the projectors 8 in and 8 out. That is, the control unit 20 requests the ECU 92 to perform transmittance control according to each of the area on which the external image 101 is projected and the area on which the in-vehicle image 100 is projected as the area on each window 91. Control the transmittance. Then, the image projection unit 8 is instructed to project an image on each area. In this way, the in-vehicle image 100 and the in-vehicle image 101 can be appropriately displayed.
  • FIG. 8 An example of the arrangement position of the projector 8out outside the vehicle is shown in FIG.
  • ten projectors 8 out are arranged as the projectors 8 g to 8 p.
  • projectors 8g, 8h, 8i that project to the front window 91F
  • projectors 8j, 8k, 8l that project to the rear window 91RR
  • projectors 8m, 8n that project to the right side window 91RS, to the left side window 91LS
  • the projectors 8o and 8p for projecting the light source 90 can be used to display the vehicle 90 in the entire circumferential direction.
  • the road surface can be drawn by the projector 8 out.
  • the projectors 8m and 8n are shown by broken lines when projecting onto the road surface, but by changing the projection direction in this way and displaying various images on the road surface, notification to people outside the vehicle is given. Etc. can be done. For example, guidance for getting on and off is displayed on the road surface.
  • FIG. 11B is yet another structural example.
  • the window 91 has a three-layer structure, and a transmissive OLED (Organic Electro-Luminescence Display) portion 184, a glass portion 183, and a liquid crystal shutter portion 182 are provided from the outside of the vehicle.
  • the in-vehicle image 100 is projected by the projector 8 in (for example, the projectors 8a to 8f), and the transmission-type OLED unit 184 displays the in-vehicle image 101. Images can be displayed inside and outside the vehicle even with such a structure.
  • the transmissive OLED section 184 since the transmission of the window 91 is secured by using the transmissive OLED section 184, the visibility of the occupant outside can be maintained.
  • window structures, display devices (projectors, OLEDs) and the like have been described so far, various other image display methods can be considered using the window 91 inside and outside the vehicle.
  • the example of the structure of the window 91 up to this point may be applied to the entire window 91, for example, as the display area 190 indicated by the hatched portion in FIG. 13A.
  • the degree of freedom in image display can be improved and the screen can be enlarged.
  • the center in the window 91, the center may be a transmissive region 191, and the display region 190 may be a peripheral portion of the window 91.
  • FIG. 13B in the window 91, the center may be a transmissive region 191, and the display region 190 may be a peripheral portion of the window 91.
  • a belt-shaped display area 190 may be formed only at the top and bottom of the window 91, and the center in the top-bottom direction may be the transmission area 191.
  • the transmissive region 191 is, for example, a simple glass region, which is always a region with high transmittance and is not used for display. By providing the transmissive region 191, it is possible to obtain a region that always ensures complete visibility of the exterior of the occupant.
  • Each window 91 also functions as a light output unit as a display of the external image 101. That is, the window 91 can also be used as a lamp.
  • the turn signal function is realized using the window 91.
  • FIG. 14 shows an example in which a turn signal image 101T is displayed as the image 101 for the outside of a vehicle using image projection by the projectors 8a to 8f.
  • FIG. 14 shows a turn signal when turning left.
  • a sequential turn signal is expressed by the display transition as in FIG. 14A ⁇ FIG. 14B ⁇ FIG. 14C ⁇ FIG. 14A. That is, the light emission position of the front window 91F, which is the light output portion at the front of the vehicle body, and the light emission position of the light output unit (front side of the left side window 91LS) in front of the vehicle body left side face both toward the left front corner 95FL of the vehicle 90 So, the light moves.
  • the light emission position of the light output portion (rear window 91RR) at the rear of the vehicle body and the light emission position of the light output portion at the rear of the left side surface of the vehicle body (rear side of the left side window 91LS) are directed to the left rear corner portion 95RL of the vehicle 90
  • the light moves to
  • the display is such that the light wave is pushed toward each of the left front corner portion 95FL and the left rear corner portion 95RL.
  • the turn signal at the time of turning right similarly emits light from the light emission position of the front window 91F, which is the light output portion at the front of the vehicle body, and light emission from the light output portion at the front of the vehicle right side (front side of the right side window 91RS)
  • the light moves so that the positions are both directed to the right front corner 95FR (see FIG. 5) of the vehicle 90.
  • the light emission position of the light output portion (rear window 91RR) at the rear of the vehicle body and the light emission position of the light output portion at the rear of the right side surface of the vehicle body (rear side of the right side window 91RS) are both directed to the right rear corner portion 95RR of the vehicle 90
  • the light moves to
  • the corner portions 95FL and 95RL are visually recognized to blink in the case of a left turn, and the corner portions 95FR and 95RR are visually perceived to blink in the case of a right turn.
  • the viewer can usually recognize it as a turn signal.
  • the upper end position of the light emitting end becomes higher as it approaches the corner portion 95. This enhances the alerting function as a turn signal.
  • a turn signal in which light sequentially moves toward a corner portion of a vehicle body is also possible by the lamp configuration in the vehicle 90A as shown in FIG. 15A.
  • a vehicle 90A in FIG. 15A has turnlights 110L and 110R at the rear of the vehicle, and also has a turnlight 111R at the rear side of the vehicle (the left side is the same although not shown).
  • the turn lights 110R and 111R perform sequential lighting such that light travels toward the corner portion 95RR.
  • the turn lights 110R and 111R have four divided lighting portions, and are lighted in order from the lighting portion farther from the corner portion 95RR as shown in FIG. 15B ⁇ FIG. 15C ⁇ FIG. 15D ⁇ FIG.
  • a turn signal can be displayed such that light travels to the corner portion 95RR.
  • a similar sequential turn signal is also possible by the lamp configuration in the vehicle 90B as shown in FIG. 16A.
  • a vehicle 90B in FIG. 16A has turn lights 112L and 112R in the vicinity of the headlight 113 at the front of the vehicle, and also has a turnlight 111L at the front side of the vehicle (the right side is not shown, but is the same).
  • the turn lights 112L and 111L perform sequential lighting such that light travels toward the corner portion 95FL.
  • the turn lights 112L and 111L have four divisions of lighting parts, and as shown in FIG. 16B ⁇ FIG. 16C ⁇ FIG. 16D ⁇ FIG.
  • a turn signal can be displayed such that light travels to the corner portion 95FL.
  • the shape of the lamp is set such that the upper end position of the light emitting end becomes higher toward the corner portion 95 as a sequential turn in both of the examples of FIGS. This enhances the alerting function as a turn signal.
  • the roof module 1 of the embodiment has a function as a vehicle window display device. That is, the roof module 1 includes the image projection unit 8 which is disposed in the vehicle interior of the vehicle and projects an image on at least the front window 91F and the side windows 91RS and 91LS of the vehicle. A projection for displaying the in-vehicle image 100 to be displayed to the vehicle occupant is performed in a state where the outward visual recognition is possible via the window 91F and the side windows 91RS and 91LS. Thereby, various information displays for the occupant can be realized using the window 91 of the vehicle. By using a wide area such as the window 91 as a screen, the information presentation capability is also high. Further, the function of the window 91 is not impeded by not disturbing the occupant's outward visibility.
  • the display of the outside-vehicle image 101 for displaying outside the vehicle with image contents different from the in-vehicle image 100 is further performed.
  • the display of the outside-vehicle image 101 for displaying outside the vehicle with image contents different from the in-vehicle image 100 is further performed.
  • information is displayed across the front window 91F and at least one side window (91RS or 91LS) (for example, FIG. 9). That is, the image is projected in a state where the front window 91F and the right side window 91RS, or the front window 91F and the left side window 91LS, or the front window 91F and the left and right side windows 91RS and 91LS are regarded as one screen.
  • This makes it possible to display information using the window 91 of the vehicle 90 as a screen of a large size, and can improve the information presentation capability.
  • the embodiment it is possible to perform image display in the entire circumferential direction of the vehicle 90 as the vehicle external image 101, including the rear window 91RR of the vehicle (see FIG. 7). That is, information is displayed using the front window 91F, the left and right side windows 91RS and 91LS, and the rear window 91RR as screens in the entire circumferential direction. As a result, various information can be displayed on the front, rear, left, and right of the vehicle as the image 101 for the external use of the vehicle.
  • the in-vehicle image 100 it is also possible to perform image display in the entire circumferential direction such that the passenger views a 360 ° screen.
  • a laser light output unit (headlight unit 3, rear light unit 4, surrounding illumination unit 5) that outputs laser light as illumination to the outside of the vehicle, laser light source unit 22, and drive circuit 23 of the laser light source And a light emission drive unit (laser light engine 2).
  • the laser light output unit the laser light output from the laser light source unit 22 is supplied by the optical fiber 6 which is a light guide, and light output is performed.
  • the projectors 8a to 8f of the image projection unit 8 also perform projection using the laser light output from the laser light source unit 22 and supplied by the optical fiber 6 (see FIG. 3).
  • the roof module 1 has a function as a vehicle lamp as illumination to the outside of the vehicle, and uses laser light from the laser light source unit 22 common to illumination and projection.
  • the roof module 1 becomes an image projection apparatus having a function as a vehicle lamp, and by sharing the laser light source, the configuration can be made more efficient.
  • a light emission drive part laser light engine 2
  • light sources other than laser light sources, such as LED may be used, and several different types of light sources may be used.
  • control unit 20 controls the projection image and the projection position by the image projection unit 8, and the control unit 20 controls the projection position of the in-vehicle image 100 and the outside image 101 in the window 91
  • the notification output to the ECU 92) is performed.
  • the ECU 92 is configured to be able to control the transmittance of the front window 91F, the side windows 91RS and 91LS, and the rear window 91RR for each position (see FIG. 3).
  • control unit 20 controls the transmittance of the window 91 according to the projected positions of the in-vehicle image 100 and the out-vehicle image 101 by notifying the ECU 92 of the projected positions of the in-vehicle image 100 and the out-vehicle image 101. It is possible to execute Therefore, the control unit 20 can project / display the in-vehicle image 100 and the in-vehicle image 101 using any area of the window 91. This also improves the ability to present information.
  • the display of the turn signal image 101T is also executed as the external image 101 (see FIG. 14). That is, by displaying the turn signal image 101T showing the turn direction by making either the left or right prominent by the window display, the degree of impression or the visibility is higher as various images or dynamic images. Turn signal light can be generated. Further, focusing on the corner portion 95, the turn signal display shown in FIG. 14 is a display operation in which the corner portion 95 blinks. That is, by indicating the turn direction by blinking either of the left and right corner portions, the recognition as a turn signal can be enhanced.
  • SYMBOLS 1 ... Roof module, 2 ... Laser light engine, 3 ... Headlight part, 4 ... Rear light part, 5 ... Ambient illumination part, 6 ... Optical fiber, 7: ... Monitoring sensor unit, 8 ... Image projection part, 20 ... Control part , 21: power supply circuit unit, 22: laser light source unit, 23: drive circuit, 24: analysis unit, 91: window, 91 F: front window, 91 RS: right side window, 91 LS: left side window, 91 RR: rear window

Abstract

The present invention estimates display on the windows of a vehicle and carries out display in a manner suitable for a passenger. This vehicle window display device is arranged in a vehicle interior and comprises an image projection unit that projects an image on at least the front window and the side windows of the vehicle. The image projection unit carries out projection in which an image that is for use within the vehicle and that is to be displayed to a vehicle passenger is displayed in a state in which it is possible for the vehicle passenger to view the exterior via the front window and the side windows. In other words, the function of offering external visibility to a passenger is maintained in the windows while various types of information display intended for the passenger are carried out using the front and side windows of the vehicle.

Description

車両ウインドウ表示装置Vehicle window display device
 本発明は車両のウインドウを用いて表示を行う車両ウインドウ表示装置についての技術分野に関する。 The present invention relates to the technical field of a vehicle window display device that performs display using a window of a vehicle.
特開2015-164828号公報JP, 2015-164828, A
 上記特許文献1にはレーザ照射の色彩の自在度を高め、ドライバーが道路状況を認識しやすい線やマークなどを描画可能にした車両用灯具が開示されている。この場合、照射光の色を変更可能な光源によって路面等に図形を描画することができる。 The patent document 1 discloses a vehicular lamp in which the degree of freedom of color of laser irradiation is enhanced and a driver can easily draw a line, a mark or the like that can easily recognize the road condition. In this case, a figure can be drawn on a road surface or the like by a light source capable of changing the color of the irradiation light.
 ところで、車両においてはウインドウは比較的面積の大きい領域であり、ウインドウに表示を行うことで、多様な情報提示が可能となる。
 そこで本発明は車両のウインドウにおける表示を想定し、乗員にとって適切な表示が実行されるようにすることを目的とする。
By the way, in the vehicle, the window is a relatively large area, and various information can be presented by displaying on the window.
Therefore, the present invention assumes display in a window of a vehicle and aims to execute display appropriate for the occupant.
 本発明に係る車両ウインドウ表示装置は、車両の車室内に配置され、少なくとも車両のフロントウインドウとサイドウインドウに画像を投影する画像投影部を有し、前記画像投影部は、車両乗員が前記フロントウインドウと前記サイドウインドウを介して外方視認が可能な状態において、車両乗員に表示するための車内用画像を表示させる投影を行う。
 即ち車両のフロントウインドウとサイドウインドウを用いて各種の表示を行う。この場合にウインドウとしての車外視認機能を維持した状態で、車内用画像の投影を行う。
A vehicle window display device according to the present invention includes an image projection unit disposed in a vehicle compartment of a vehicle and projecting an image on at least a front window and a side window of the vehicle, wherein the image projection unit And performing projection for displaying an in-vehicle image to be displayed to a vehicle occupant in a state in which outward visual recognition is possible via the side window.
That is, various displays are performed using the front window and the side window of the vehicle. In this case, the in-vehicle image is projected in a state in which the vehicle exterior visualizing function as a window is maintained.
 上記した車両ウインドウ表示装置においては、さらに車両のウインドウの外面側に、前記車内用画像とは異なる画像内容であって車外に対する表示のための車外用画像の表示を行うことが考えられる。
 例えば車両のフロントウインドウとサイドウインドウを用いて、異なる画像としての車内用画像と車外用画像の投影を行う。
In the above-described vehicle window display device, it is conceivable to display an external image for display on the outside of the vehicle with an image content different from the in-vehicle image on the outer surface side of the window of the vehicle.
For example, the in-vehicle image and the out-vehicle image as different images are projected using the front window and the side window of the vehicle.
 上記した車両ウインドウ表示装置においては、フロントウインドウと少なくとも一方のサイドウインドウにまたがって情報を表示させることが考えられる。
 即ちフロントウインドウと右サイドウインドウ、もしくはフロントウインドウと左サイドウインドウ、もしくはフロントウインドウと左右のサイドウインドウを、1つの画面ととらえた状態で画像の投影を行う。
In the above-described vehicle window display device, it is conceivable to display information across the front window and at least one side window.
That is, the image is projected in a state where the front window and the right side window, or the front window and the left side window, or the front window and the left and right side windows are regarded as one screen.
 上記した車両ウインドウ表示装置においては、前記車外用画像として、車両のリアウインドウを含めて、車両の全周囲方向に対する画像表示を行うことが考えられる。
 フロントウインドウ、左右サイドウインドウ、リアウインドウを全周囲方向の画面として利用して情報表示を行う。
In the above-described vehicle window display device, it is conceivable to perform image display in the entire circumferential direction of the vehicle, including the rear window of the vehicle, as the external image for the vehicle.
Information is displayed using the front window, the left and right side windows, and the rear window as a screen in the entire surrounding direction.
 上記した車両ウインドウ表示装置においては、車両外部への照明としてレーザ光を出力するレーザ光出力部と、レーザ光源及びレーザ光源の駆動回路を有する発光駆動部とを有し、前記レーザ光出力部は、前記レーザ光源から出力されたレーザ光が導光路によって供給されて光出力が行われ、前記画像投影部は、前記レーザ光源から出力され導光路によって供給されたレーザ光を用いて投影を行うことが考えられる。
 つまり車両外部への照明としての車両用灯具としての機能を備えるとともに、照明及び投影に共通のレーザ光源からのレーザ光を用いる。
The above-described vehicle window display device includes a laser light output unit that outputs a laser beam as illumination to the outside of the vehicle, and a light emission drive unit having a laser light source and a drive circuit for the laser light source. The laser light output from the laser light source is supplied by a light guide to perform light output, and the image projection unit performs projection using the laser light output from the laser light source and supplied by a light guide. Is considered.
That is, it has a function as a vehicle lamp as illumination to the outside of the vehicle, and uses laser light from a laser light source common to illumination and projection.
 本発明によれば、フロント及びサイドの各ウインドウによる乗員の外部視認性機能を維持しつつ、乗員に対する各種の情報表示を、車両のウインドウを利用して実現できる。車両のフロント及びサイドのウインドウという広い領域を画面とすることで、情報提示能力も高いものとなる。 According to the present invention, it is possible to realize various types of information display for the occupant using the window of the vehicle while maintaining the exterior visibility function of the occupant by the front and side windows. By using a wide area such as the front and side windows of the vehicle as a screen, the information presentation capability can be enhanced.
本発明の実施の形態の車両ウインドウ表示装置を搭載した車両の斜視図である。1 is a perspective view of a vehicle equipped with a vehicle window display device according to an embodiment of the present invention. 実施の形態のルーフモジュールの構成の説明図である。It is an explanatory view of composition of a roof module of an embodiment. 実施の形態の要部の構成のブロック図である。It is a block diagram of composition of an important section of an embodiment. 実施の形態の周囲照明部の配光及び撮像ユニットの被写体方向の説明図である。It is explanatory drawing of the light distribution of the surrounding illumination part of embodiment, and the to-be-photographed object direction of an imaging unit. 実施の形態の周囲照明部へのレーザ光供給の説明図である。It is explanatory drawing of the laser beam supply to the surrounding illumination part of embodiment. 実施の形態の照明光の色制御のフローチャートである。It is a flowchart of color control of the illumination light of embodiment. 実施の形態のプロジェクタの投影方向の説明図である。It is explanatory drawing of the projection direction of the projector of embodiment. 実施の形態のフロントウインドウに投影される車内用画像の説明図である。It is explanatory drawing of the image for in-vehicle projected on the front window of embodiment. 実施の形態のフロントウインドウに投影される車外用画像の説明図である。It is explanatory drawing of the image for the vehicles exterior projected on the front window of embodiment. 実施の形態のウインドウ構造の説明図である。It is explanatory drawing of the window structure of embodiment. 実施の形態の車内及び車外の表示動作の説明図である。It is explanatory drawing of the display operation | movement of the inside of a vehicle of embodiment, and the exterior. 実施の形態の車外用プロジェクタを配置する場合の説明図である。It is explanatory drawing in the case of arrange | positioning the projector for the vehicles of embodiment. 実施の形態のウインドウの領域設定の説明図である。It is explanatory drawing of the area | region setting of the window of embodiment. 実施の形態のターンシグナルの説明図である。It is explanatory drawing of the turn signal of embodiment. 実施の形態の他のターンシグナルの説明図である。It is explanatory drawing of the other turn signal of embodiment. 実施の形態の他のターンシグナルの説明図である。It is explanatory drawing of the other turn signal of embodiment.
<車両構成>
 以下、実施の形態について図面を参照しながら説明する。実施の形態では、車両用灯具としての機能を有するルーフモジュールが車両に搭載されることを想定している。なお、以下説明する実施の形態は本発明を実現する一例に過ぎない。本発明に該当する構成例は以下の説明のものに限らず、多様に考えられる。
<Vehicle configuration>
Hereinafter, embodiments will be described with reference to the drawings. In the embodiment, it is assumed that a roof module having a function as a vehicle lamp is mounted on a vehicle. The embodiment described below is only an example for realizing the present invention. The example of composition applicable to the present invention is not limited to the following explanation, but can be considered variously.
 図1、図2Aにより車両90の形態例を説明する。図1は車両90の斜視図で、図2Aはルーフモジュール1を平面方向に見た状態で示す説明図である。なお以下説明する車両90の形状、構造等は一例に過ぎない。
 車両90は、完全自動運転或いは一部自動運転として走行する機能、又は運転支援機能により運転者の運転を補助する機能を有する4輪の自動車である。
An embodiment of the vehicle 90 will be described with reference to FIGS. 1 and 2A. FIG. 1 is a perspective view of a vehicle 90, and FIG. 2A is an explanatory view showing the roof module 1 in a plan view. The shape, structure, and the like of the vehicle 90 described below are merely examples.
The vehicle 90 is a four-wheeled automobile having a function of traveling as a fully automatic driving or a partially automatic driving, or a function of assisting the driver's driving with a driving support function.
 車両90において乗員が搭乗する車室は、フロントウインドウ91F、左サイドウインドウ91LS、及び図1では現れない側の右サイドウインドウ91RS、リアウインドウ91RR(図7参照)によって囲まれる空間となっている。つまり車室は、乗員にとって周囲の略360°がウインドウ91(各ウインドウを総称する場合「ウインドウ91」と表記する)となっている空間となる。
 なお図1では、フロントウインドウ91Fと左サイドウインドウ91LS、フロントウインドウ91Fと右サイドウインドウ91RS、リアウインドウ91RRと左サイドウインドウ91LS、リアウインドウ91RRと右サイドウインドウ91RSの各境界(ウインドウの接合部分)を、コーナー部95として示している。コーナー部95は透明又は半透明でも良いし、不透明の場合も考えられる。
The passenger compartment of the vehicle 90 is a space surrounded by the front window 91F, the left side window 91LS, and the right side window 91RS and the rear window 91RR (see FIG. 7) which do not appear in FIG. In other words, the passenger compartment is a space in which approximately 360 ° of the surroundings for the passenger is a window 91 (referred to as “window 91” when referring to each window generically).
In FIG. 1, the front window 91F and the left side window 91LS, the front window 91F and the right side window 91RS, the rear window 91RR and the left side window 91LS, and the rear window 91RR and the right side window 91RS respectively , Corner portion 95. The corner portion 95 may be transparent or translucent, or may be opaque.
 車両90の上部には、ルーフモジュール1が設けられている。このルーフモジュール1は、車両90のルーフを形成するとともに、灯具機能をはじめとする各種機能を実現する構成を備える。
 ルーフモジュール1の略中央部には、レーザ光源を有するレーザライトエンジン2が内蔵されている。
 ルーフモジュール1の車両前方側にはヘッドライト部3が設けられている。ヘッドライト部3としては、ハイビーム出力部3H、ロービーム出力部3L、スポットビーム出力部3Sが設けられている。ハイビーム出力部3Hは遠方配光とされた照明光を出力し、ロービーム出力部3Lは近傍配光とされた照明光を出力する。スポットビーム出力部3Sは前方をスポット照射する照明光を出力する。
A roof module 1 is provided at the top of the vehicle 90. The roof module 1 forms a roof of the vehicle 90 and has a configuration for realizing various functions including a lamp function.
A laser light engine 2 having a laser light source is built in a substantially central portion of the roof module 1.
A headlight portion 3 is provided on the vehicle front side of the roof module 1. As the headlight unit 3, a high beam output unit 3H, a low beam output unit 3L, and a spot beam output unit 3S are provided. The high beam output unit 3H outputs illumination light having a far light distribution, and the low beam output unit 3L outputs illumination light having a near light distribution. The spot beam output unit 3S outputs illumination light for spot irradiation on the front side.
 また図1には現れないが、ルーフモジュール1の車両後方側にはリアライト部4が設けられている。リアライト部4には、例えばリアビーム出力部4Hや、ブレーキランプ部、バックランプ部等が設けられている。
 リアライト部4の照明構成は例えばヘッドライト部3と同様の構成であってもよい。
Although not shown in FIG. 1, a rear light portion 4 is provided on the vehicle rear side of the roof module 1. The rear light unit 4 is provided with, for example, a rear beam output unit 4H, a brake lamp unit, a back lamp unit, and the like.
The illumination configuration of the rear light unit 4 may be, for example, the same configuration as the headlight unit 3.
 図1,図2Aに示すように、ルーフモジュール1の側部には、略全周に渡って周囲照明部5が形成されている。図2Aにおいては周囲照明部5は破線で示している。
 周囲照明部5には、多数の光出力部51が配列されており、これによって車両90の周囲360°方向に対する照明が可能とされている。周囲照明部5は、車両90の周囲の全方向に対して、例えば10m以内程度の照明を行うものとして配置される。
 図2Bは、周囲照明部5の一部を拡大して模式的に示している。周方向に多数配列される光出力部51は、それぞれがR(赤色)レーザ光出力部5R、G(緑色)レーザ光出力部5G、B(青色)レーザ光出力部5Bを有している。即ち各光出力部51は、R、G、B光出力を行うことで、多様な色表現での照明や外部報知等を行うことができるようにされている。
As shown to FIG. 1, FIG. 2A, the surrounding illumination part 5 is formed in the side part of the roof module 1 over substantially the perimeter. In FIG. 2A, the ambient illumination unit 5 is indicated by a broken line.
A large number of light output portions 51 are arranged in the ambient illumination portion 5, which enables illumination in a 360 ° direction around the vehicle 90. The surrounding illumination unit 5 is disposed to perform illumination of, for example, about 10 m or less in all directions around the vehicle 90.
FIG. 2B schematically shows a part of the ambient illumination unit 5 in an enlarged manner. The light output units 51 arranged in a large number in the circumferential direction each have an R (red) laser light output unit 5R, a G (green) laser light output unit 5G, and a B (blue) laser light output unit 5B. That is, each light output unit 51 can perform illumination in various color expressions, external notification, and the like by performing R, G, and B light output.
 また図2Bに示すように、周囲照明部5としての光出力部51とともに、監視センサユニット7が配置されている。監視センサユニット7は、例えばカメラを備えた撮像ユニットとされる。そして図2Aのようにルーフモジュール1の周囲方向に対する画像撮像を行うために、車両前部右方、車両前部左方、右側部前方、右側部後方、左側部前方、左側部後方、車両後部右方、車両後部左方として8個配置されている。これは、各監視センサユニット7におけるカメラの水平方向の画角を50度程度とし、8個の監視センサユニット7により、全周囲方向の撮像を行うことができるようにしたものである。 Moreover, as shown to FIG. 2B, the monitoring sensor unit 7 is arrange | positioned with the light output part 51 as the ambient illumination part 5. FIG. The monitoring sensor unit 7 is, for example, an imaging unit provided with a camera. As shown in FIG. 2A, in order to capture an image in the circumferential direction of the roof module 1, the vehicle front right, the vehicle front left, the right front, the right rear, the left rear, the left front, the left rear, the vehicle rear Eight are arranged as the right side and the vehicle rear left side. In this case, the angle of view in the horizontal direction of the camera in each monitoring sensor unit 7 is about 50 degrees, and imaging in the entire circumferential direction can be performed by eight monitoring sensor units 7.
 この図2Bでは、1つの監視センサユニット7として、可視光カメラ7aと遠赤外光カメラ7bを有する例を示しているが、これは一例である。
 監視センサユニット7としては、可視光カメラ7aを含むカメラを少なくとも備えることで、周囲環境について画像により認識することができ、人、物体、さらにはそれらの色を認識することができる。遠赤外光カメラ7bを備えることによって、人や動物等の熱源体の認識に好適となる。
 またカメラに関しては、いわゆる左右一対で用いられるステレオカメラを搭載することで、三角測量の原理を利用して対象物までの距離情報を得ることも可能となる。
 さらに監視センサユニット7としては、近赤外光カメラを備えても良い。また監視センサユニット7としてはカメラを設けず、或いはカメラに加えて、レーザーセンサ、レーダーセンサを備えても良い。
Although FIG. 2B shows an example in which the visible light camera 7a and the far infrared light camera 7b are provided as one monitoring sensor unit 7, this is an example.
By providing at least a camera including the visible light camera 7 a as the monitoring sensor unit 7, it is possible to recognize the surrounding environment by an image and to recognize a person, an object, and their colors. By providing the far-infrared light camera 7b, it becomes suitable for recognition of a heat source such as a person or an animal.
Further, with regard to the camera, by mounting a so-called left and right stereo camera, it becomes possible to obtain distance information to the object using the principle of triangulation.
Furthermore, as the monitoring sensor unit 7, a near infrared camera may be provided. Further, as the monitoring sensor unit 7, a camera may not be provided, or a laser sensor or a radar sensor may be provided in addition to the camera.
 ルーフモジュール1に設けられたヘッドライト部3、リアライト部4、周囲照明部5は、それぞれ照明光としてレーザ光出力を行う。本実施の形態の場合、ヘッドライト部3、リアライト部4、周囲照明部5がそれぞれ独自にレーザ光源としての例えばレーザダイオード等を備えているのではなく、レーザライトエンジン2で発生されるレーザ光が用いられる。
 即ちレーザライトエンジン2で発生されるレーザ光が、導光路としての光ファイバ6によってヘッドライト部3のハイビーム出力部3H、ロービーム出力部3L、スポットビーム出力部3Sのそれぞれに導かれて出力される。
 また同じくレーザライトエンジン2で発生されるレーザ光が、光ファイバ6によってリアライト部4のリアビーム出力部4Hや、図示しないブレーキランプ部、バックランプ部等に導かれて出力される。
 さらに同じくレーザライトエンジン2で発生されるレーザ光が、光ファイバ6によって周囲照明部5の各光出力部51に導かれて出力される。
The headlight portion 3, the rear light portion 4 and the surrounding illumination portion 5 provided in the roof module 1 respectively output laser light as illumination light. In the case of the present embodiment, the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 do not have their own laser light source, for example, a laser diode etc., but a laser generated by the laser light engine 2. Light is used.
That is, the laser beam generated by the laser light engine 2 is guided and output to each of the high beam output unit 3H, the low beam output unit 3L, and the spot beam output unit 3S of the headlight unit 3 by the optical fiber 6 as a light guide. .
Similarly, laser light generated by the laser light engine 2 is guided by the optical fiber 6 to the rear beam output unit 4H of the rear light unit 4, a brake lamp unit (not shown), a back lamp unit, etc.
Further, the laser light generated by the laser light engine 2 is also led to each light output unit 51 of the surrounding illumination unit 5 by the optical fiber 6 and output.
 光ファイバ6は、Rレーザ光、Gレーザ光、Bレーザ光のそれぞれに対応して3系統設けられている。この3系統の光ファイバ6の一部を図1,図2のようにルーフモジュール1の上面や側面に表出されることで、光ファイバ6(光ファイバ6で伝送されるR、G、Bの各光)がルーフモジュール1の外観デザインの一部となるようにもしている。 The optical fiber 6 is provided in three systems corresponding to each of the R laser light, the G laser light, and the B laser light. By exposing a part of the optical fiber 6 of the three systems to the upper surface or the side surface of the roof module 1 as shown in FIGS. 1 and 2, the optical fiber 6 (R, G, B transmitted by the optical fiber 6 Each light is made to be a part of the appearance design of the roof module 1.
 なお、ヘッドライト部3、リアライト部4、周囲照明部5がレーザライトエンジン2で発生されるレーザ光が用いる構成は一例である。
 ヘッドライト部3、リアライト部4、周囲照明部5のそれぞれが独自にレーザダイオードやLED(Light Emitting Diode)等の光源を備えるようにしてもよい。
 またヘッドライト部3、リアライト部4、周囲照明部5の一部が、レーザライトエンジン2で発生されるレーザ光を用い、一部が、独自の光源を用いるものでもよい。
The configuration in which laser light generated by the laser light engine 2 is used as the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 is an example.
Each of the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 may be uniquely provided with a light source such as a laser diode or a light emitting diode (LED).
The headlight unit 3, the rear light unit 4 and a part of the surrounding illumination unit 5 may use laser light generated by the laser light engine 2 and a part may use a unique light source.
<制御構成>
 図3はルーフモジュール1の内部構成と、ルーフモジュール1の動作に関連する車両90の構成を示している。
 ECU(electronic control unit)92は、車両90における各種制御を行うマイクロコンピュータである。ECU92は例えば車両90の走行制御、自動運転制御、運転支援制御、電装系デバイス制御等を行う。
 バッテリ93は、車両90におけるバッテリであり、走行系、電装系、制御系その他の各部の動作電源電圧を供給する。
<Control configuration>
FIG. 3 shows the internal configuration of the roof module 1 and the configuration of the vehicle 90 associated with the operation of the roof module 1.
An ECU (electronic control unit) 92 is a microcomputer that performs various controls in the vehicle 90. The ECU 92 performs, for example, travel control of the vehicle 90, automatic operation control, drive support control, electrical system device control, and the like.
A battery 93 is a battery in the vehicle 90, and supplies operating power supply voltages for the traveling system, the electrical system, the control system, and other components.
 フロントウインドウ91F、左サイドウインドウ91LS、右サイドウインドウ91RS、リアウインドウ91RRは、車室の周囲のウインドウであるとともに、後述するように車内用画像や車外用画像を表示するスクリーンとしての機能も持つ。本例の場合、各ウインドウ91(91F、91RS、91LS、91RR)に対して、ECU92が透過率可変制御ができるものとしている。
 各ウインドウ91は、ECU92によって、ウインドウ全体として一律に透過率が変化されることもできるし、ウインドウ内の領域毎に異なる透過率に設定されることも可能である。ECU92は、例えばルーフモジュール1の制御部20からの情報に基づいて各ウインドウ91の透過率制御を行う。なお、ECU92ではなく制御部20が直接各ウインドウ91の透過率制御を行うようにしてもよい。
The front window 91F, the left side window 91LS, the right side window 91RS, and the rear window 91RR are windows around the passenger compartment and also have a function as a screen for displaying an in-vehicle image and an out-vehicle image as described later. In the case of this example, the ECU 92 can perform variable transmittance control with respect to each window 91 (91F, 91RS, 91LS, 91RR).
The transmittance of each window 91 can be uniformly changed by the ECU 92 as a whole window, or the transmittance can be set to be different for each region in the window. The ECU 92 controls the transmittance of each window 91 based on, for example, information from the control unit 20 of the roof module 1. The control unit 20 may control the transmittance of each window 91 directly instead of the ECU 92.
 ルーフモジュール1には、図1,図2に示したようにレーザライトエンジン2、ヘッドライト部3、リアライト部4、周囲照明部5、光ファイバ6、監視センサユニット7が設けられ、さらに図3に示すように画像投影部8が設けられている。 As shown in FIGS. 1 and 2, the roof module 1 is provided with a laser light engine 2, a headlight 3, a rear light 4, a surrounding illumination 5, an optical fiber 6, and a monitoring sensor unit 7. As shown in FIG. 3, an image projection unit 8 is provided.
 ルーフモジュール1のレーザライトエンジン2には、制御部20、電源回路部21、レーザ光源部22、駆動回路23、解析部24が設けられる。
 制御部20はマイクロコンピュータにより構成され、ルーフモジュール1による照明動作、車両90の周囲監視のための撮像画像処理に関する動作、表示動作等の制御を行う。また制御部20はECU92との通信により、車両情報を取得したり、ECU92に対して処理要求(例えば上述の透過率制御等)を行うことができる。また制御部20は監視センサユニット7によって得られた周囲の情報をECU92に提供することもできる。
The laser light engine 2 of the roof module 1 is provided with a control unit 20, a power supply circuit unit 21, a laser light source unit 22, a drive circuit 23, and an analysis unit 24.
The control unit 20 is configured by a microcomputer, and performs control of an illumination operation by the roof module 1, an operation related to captured image processing for monitoring the periphery of the vehicle 90, a display operation, and the like. Further, the control unit 20 can acquire vehicle information or perform a processing request (for example, the above-described transmittance control and the like) to the ECU 92 through communication with the ECU 92. The control unit 20 can also provide the ECU 92 with surrounding information obtained by the monitoring sensor unit 7.
 制御部20とECU92の通信は近距離無線通信、有線通信、赤外線通信その他各種の通信方式が適用可能である。ルーフモジュール1が、各ウインドウ91の上面に配置されることを考えると、ECU92は車両下方(ウインドウ91よりは下方)に配置されることが想定される。本例のようにウインドウ91がほぼ全周に渡って形成されている場合に、制御部20とECU92を有線で通信可能とするには、ウインドウ91の一部、或いは各ウインドウ91の境界となるコーナー部95に透明伝送路を形成し、通信路とすることが考えられる。 Communication between the control unit 20 and the ECU 92 is applicable to short-distance wireless communication, wired communication, infrared communication, and various other communication methods. Considering that the roof module 1 is disposed on the upper surface of each window 91, it is assumed that the ECU 92 is disposed below the vehicle (below the window 91). In the case where the window 91 is formed over substantially the entire circumference as in this example, in order to enable communication between the control unit 20 and the ECU 92 by wire, it becomes a part of the window 91 or a boundary of each window 91 It is conceivable to form a transparent transmission path in the corner portion 95 and to use it as a communication path.
 電源回路部21は、バッテリ93からの給電を受け、ルーフモジュール1の各部に必要な動作電源電圧を生成する。即ち制御部20、駆動回路23、解析部24、ヘッドライト部3、リアライト部4、周囲照明部5、監視センサユニット7、画像投影部8のそれぞれに必要な電源電圧を生成し、各部に供給する。もちろんヘッドライト部3、リアライト部4、周囲照明部5の構成によっては、電源回路部21は、これらへ電源電圧を供給する場合もある。
 バッテリ93から電源回路部21への給電は無線給電とすることが考えられる。或いはウインドウ91の一部、或いはコーナー部95に透明給電路を形成して給電を行うようにしてもよい。
The power supply circuit unit 21 receives power supply from the battery 93 and generates an operating power supply voltage required for each part of the roof module 1. That is, the power supply voltage necessary for each of the control unit 20, the drive circuit 23, the analysis unit 24, the headlight unit 3, the rear light unit 4, the surrounding illumination unit 5, the monitoring sensor unit 7, and the image projection unit 8 is generated. Supply. Of course, depending on the configuration of the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5, the power supply circuit unit 21 may supply a power supply voltage thereto.
It is conceivable that power supply from the battery 93 to the power supply circuit unit 21 is wireless power supply. Alternatively, power may be supplied by forming a transparent feeding path in a part of the window 91 or in the corner portion 95.
 なお、ルーフモジュール1の上面に太陽光パネルを配置し、太陽光パネルで発電された電力をルーフモジュール1の動作電力として利用することも考えられる。
 その場合、電源回路部21は、太陽光パネルで発生した電荷を蓄電する蓄電部を有するとともに、蓄電部から電源電圧を用いて各部に必要な電源電圧を生成し、各部に供給する構成とすることができる。この場合、バッテリ93からの給電電力と、蓄電部からの電力を併用してもよいし、バッテリ93からの給電を不要とすることも可能である。
It is also conceivable to dispose a solar panel on the top surface of the roof module 1 and use the power generated by the solar panel as the operating power of the roof module 1.
In that case, the power supply circuit unit 21 has a storage unit that stores the charge generated in the solar panel, and uses the power supply voltage from the storage unit to generate a necessary power supply voltage for each unit and supply it to each unit. be able to. In this case, the power supplied from the battery 93 may be used in combination with the power from the storage unit, or the power supplied from the battery 93 may not be required.
 レーザ光源部22は例えばレーザダイオードなどのレーザ光源が備えられてレーザ光を出力する。ここでは3つのレーザ光源により、Rレーザ光、Gレーザ光、Bレーザ光をそれぞれ出力する。RGB各レーザ光は、それぞれ光ファイバ6により周囲照明部5、ヘッドライト部3、リアライト部4に送られる。
 駆動回路23は、レーザ光源部22のRGB各レーザ光源を駆動する回路である。例えばレーザダイオードに対する電流供給回路、電流安定化回路、保護回路等を有する。駆動回路23は制御部20の指示に応じて、レーザ光源部22からのレーザ光出力を実行させる。
The laser light source unit 22 is provided with a laser light source such as a laser diode, for example, and outputs laser light. Here, R laser light, G laser light, and B laser light are respectively output by three laser light sources. The RGB laser beams are sent to the surrounding illumination unit 5, the headlight unit 3 and the rear light unit 4 by the optical fiber 6, respectively.
The drive circuit 23 is a circuit that drives each of the RGB laser light sources of the laser light source unit 22. For example, it has a current supply circuit for the laser diode, a current stabilization circuit, a protection circuit, and the like. The drive circuit 23 executes the laser light output from the laser light source unit 22 according to the instruction of the control unit 20.
 解析部24は、例えば画像解析部とされ、上述のように車両90の周囲に対する監視のための撮像を行う8個の監視センサユニット7のカメラ(可視光カメラ7a、遠赤外光カメラ7b)からの撮像画像データを入力し、それぞれに対する画像解析を行う。この場合、解析部24は、各監視センサユニット7の可視光カメラ7aからの撮像画像を解析して、周囲の人を認識したり、周囲の物体、例えば建造物、道路状況、信号機、標識、ガードレール、障害物、先行車、対向車等を認識することができる。また天候、日照方向等を認識することもできる。また解析部24は遠赤外光カメラ7bによる画像を解析して周囲の温度分布を認識でき、これを可視光カメラ7aによる認識の補助に用いることができる。
 監視センサユニット7においてレーザーセンサやレーダーセンサが設けられる場合、解析部24は、それらのセンサの検出信号を解析し、各種の情報を得る。
 制御部20は、解析部24の画像解析や検出信号解析による周囲環境の認識情報に基づいて、各種の制御を行うことができる。
The analysis unit 24 is, for example, an image analysis unit, and cameras of the eight monitoring sensor units 7 that perform imaging for monitoring the periphery of the vehicle 90 as described above (visible light camera 7a, far infrared light camera 7b) The captured image data from are input and image analysis is performed on each. In this case, the analysis unit 24 analyzes the captured image from the visible light camera 7a of each monitoring sensor unit 7 to recognize surrounding people, or surrounding objects such as buildings, road conditions, traffic lights, signs, A guardrail, an obstacle, a leading vehicle, an oncoming vehicle, etc. can be recognized. In addition, weather, sunshine direction, etc. can also be recognized. Further, the analysis unit 24 can analyze the image by the far infrared light camera 7 b to recognize the temperature distribution around it, and can use this to assist the recognition by the visible light camera 7 a.
When a laser sensor or a radar sensor is provided in the monitoring sensor unit 7, the analysis unit 24 analyzes detection signals of these sensors and obtains various information.
The control unit 20 can perform various controls based on the recognition information of the surrounding environment by the image analysis of the analysis unit 24 and the detection signal analysis.
 ルーフモジュール1には画像投影部8が設けられている。画像投影部8は、例えば6個のプロジェクタ8a~8fを有する。プロジェクタ8a~8fは、例えばルーフモジュール1の底側から、各ウインドウ91に画像を投影できるように配置されている。
 プロジェクタ8a~8fの投影光源にはレーザ出力部22からのRGBレーザ光が利用される。このため各プロジェクタ8a~8fに対しては、光ファイバ6によりRGB各レーザ光が供給される。
 各プロジェクタ8a~8fの動作は制御部20により制御される。即ち制御部20によって投影動作や表示内容が指示される。
 なおプロジェクタ8a~8fは、独立した投影光源を備えるようにしてもよい。またプロジェクタ8a~8fは、ルーフモジュール1とは独立して車内に配置されるものであってもよい。
The roof module 1 is provided with an image projection unit 8. The image projection unit 8 has, for example, six projectors 8a to 8f. The projectors 8a to 8f are arranged such that an image can be projected onto each window 91 from the bottom side of the roof module 1, for example.
The RGB laser light from the laser output unit 22 is used as a projection light source of the projectors 8a to 8f. For this reason, laser light of RGB is supplied to each of the projectors 8a to 8f by the optical fiber 6.
The operation of each of the projectors 8a to 8f is controlled by the control unit 20. That is, the control unit 20 instructs the projection operation and the display content.
The projectors 8a to 8f may be provided with independent projection light sources. The projectors 8a to 8f may be disposed in the vehicle independently of the roof module 1.
<照明・監視>
 ヘッドライト部3、リアライト部4、周囲照明部5による照明及び監視について説明する。
 ヘッドライト部3はルーフモジュール1に設けられている。従って車両90の上方から従来よりも路面に対する光軸角度が深くなる状態で前方を照射する照明となる。このように比較的上方から照射する構成とすることで、乗員による路面の視認性を高めることができる。
 リアライト部4もルーフモジュール1に設けられ、比較的上方からの照射となるため、後方の路面の視認性を高めることができる。
<Lighting and monitoring>
The illumination and monitoring by the headlight unit 3, the rear light unit 4, and the surrounding illumination unit 5 will be described.
The headlight portion 3 is provided on the roof module 1. Therefore, the illumination illuminates the front with the optical axis angle to the road surface being deeper from above the vehicle 90 than in the prior art. Thus, the visibility of the road surface by the occupant can be enhanced by adopting a configuration in which irradiation is performed relatively from above.
The rear light portion 4 is also provided to the roof module 1 and emits light relatively from above, so the visibility of the road surface behind can be enhanced.
 次に周囲照明部5は、図2で説明したようにルーフモジュール1の周囲において光出力部51が配列されていることで、車両90の周囲360度に対する照明が可能とされている。
 そして各光出力部51の垂直方向の配光は、ルーフモジュール1の水平方向より下方とされている。
 例えば図4Aに、ルーフモジュール1の水平方向を一点鎖線Hで示しているが、周囲照明部5に配置されている光出力部51の光出射方向は、例えば破線で示す角度θ1の範囲となるように設定されている。例えばこのような配光で、周囲10m程度を照明するように設定されている。
Next, in the surrounding illumination unit 5, as described in FIG. 2, the light output units 51 are arranged around the roof module 1, so that illumination of 360 degrees around the vehicle 90 is enabled.
The light distribution in the vertical direction of each light output unit 51 is below the horizontal direction of the roof module 1.
For example, although the horizontal direction of the roof module 1 is shown by the alternate long and short dash line H in FIG. 4A, the light emission direction of the light output unit 51 disposed in the surrounding illumination unit 5 is, for example, the range of the angle θ1 indicated by the broken line Is set as. For example, it is set to illuminate around 10 m with such a light distribution.
 このような配光により、遠方に居る人に対するグレアフリーが実現される。また車両90の近傍に居る人が、周囲照明部5からの光を無意識に直視することがないようにされる。但し、子供等で眼の位置が低い場合は、無意識に直視する可能性もあり得る。そこで、周囲環境監視に応じて、人が存在することが認識された場合は、その人に向かう光出力部51からの光出力を停止させたり、配光を変化させるようにすることが考えられる。
 また、周囲照明部5の照明により、車両90自体が、その場所におけるインフラストラクチャとなって周囲を明るくする機能を持つ。市街地等で車両90が多数存在することで、夜間でも明るい環境を創出できる。
 また、周囲照明部5のカラー光源による路面描画を行って、周囲の人への情報提示や各種の報知を行うことも想定される。
Such light distribution realizes glare-free for people who are far away. Moreover, it is made for the person who exists in the vicinity of the vehicle 90 not to look straight at the light from the surrounding illumination part 5 unconsciously. However, when the position of the eye is low in a child or the like, there is a possibility that they may look unconsciously. Therefore, when it is recognized that a person is present according to the surrounding environment monitoring, it may be considered to stop the light output from the light output unit 51 directed to the person or change the light distribution .
In addition, the illumination of the ambient lighting unit 5 has the function of making the vehicle 90 itself an infrastructure at that location and brightening the surroundings. The presence of a large number of vehicles 90 in a city area etc. can create a bright environment even at night.
In addition, it is also assumed that the road surface is drawn by the color light source of the surrounding illumination unit 5 to present information to various people in the surrounding area and perform various types of notification.
 なお、本実施の形態では、周囲照明部5はルーフモジュール1の周囲として、車両90の上方から周囲を照明するものとしているが、周囲照明部5が車体の底部周囲に設けられていても良い。つまり周囲照明部5として配列される光出力部51は、ルーフモジュール1に設けられることに限られない。
 また周囲照明部5は、必ずしも全周360度方向に対する照明を行うものでなくてもよい。例えば側方のみ、側方と後方のみ、左側方のみ、右側方のみなどへの照明を行うようにしてもよい。またほぼ全周として300度方向、250度方向などの照明を行うものでもよい。
In the present embodiment, the surrounding illumination unit 5 illuminates the periphery from above the vehicle 90 as the periphery of the roof module 1, but the surrounding illumination unit 5 may be provided around the bottom of the vehicle body . That is, the light output unit 51 arranged as the ambient illumination unit 5 is not limited to being provided in the roof module 1.
Moreover, the surrounding illumination part 5 does not necessarily need to perform illumination with respect to the 360-degree direction all around. For example, illumination may be performed only on the side, only on the side and the rear, only on the left side, or only on the right side. In addition, illumination in the direction of 300 degrees, 250 degrees, etc. may be performed almost all around.
 周囲照明部5の光出力部51(Rレーザ光出力部5R、Gレーザ光出力部5G、Bレーザ光出力部5B)に対するレーザ光の供給方式の一例を図5で説明する。
 図5では、レーザライトエンジン2のレーザ光源部22におけるR、G、Bの各レーザダイオード22R、22G、22Bを示している。このレーザダイオード22R、22G、22Bの各出射光が回転反射板75に照射されるようにする。回転反射板75は軸Jを中心に回転駆動される。
 なお、ここでは回転反射板75は平板状の両面ミラーとして示しているが、回転反射板75に代えて多面体ミラーとされているポリゴンミラーを用いても良い。
An example of a method for supplying laser light to the light output unit 51 (R laser light output unit 5R, G laser light output unit 5G, B laser light output unit 5B) of the ambient illumination unit 5 will be described with reference to FIG.
FIG. 5 shows the R, G, and B laser diodes 22R, 22G, and 22B in the laser light source unit 22 of the laser light engine 2. The emitted light of each of the laser diodes 22R, 22G, and 22B is irradiated to the rotary reflection plate 75. The rotary reflection plate 75 is rotationally driven about the axis J.
Here, although the rotary reflection plate 75 is shown as a flat plate-like double-sided mirror, it may be replaced with a polygon mirror which is a polyhedral mirror in place of the rotary reflection plate 75.
 回転反射板75の周囲には、コリメータレンズCL及び光ファイバ6が配置されている。コリメータレンズCLで平行光とされたレーザ光は、入射端6aから光ファイバ6に進入する。
 ここで3つ1組のコリメータレンズCLと対応する3本の光ファイバ6は、周囲照明部5における1つの光出力部51に対応する。
A collimator lens CL and an optical fiber 6 are disposed around the rotary reflection plate 75. The laser light collimated by the collimator lens CL enters the optical fiber 6 from the incident end 6a.
Here, three optical fibers 6 corresponding to one set of three collimator lenses CL correspond to one light output unit 51 in the ambient illumination unit 5.
 例えば回転反射板75が実線の状態であるときは、回転反射板75で反射されたR、G、B各レーザ光は、実線で示すように、或る1組(3つ)のコリメータレンズCLによって1組(3本)の光ファイバ6に導入される。この3本の光ファイバ6は、周囲照明部5における或る1つの光出力部51の各レーザ光出力部(5R、5G、5B)にそれぞれレーザ光を供給する。
 また回転反射板75が破線の状態であるときは、回転反射板75で反射されたR、G、B各レーザ光は、破線で示すように、或る1組のコリメータレンズCLによって1組の光ファイバ6に導入される。この3本の光ファイバ6は、周囲照明部5における別の1つの光出力部51の各レーザ光出力部(5R、5G、5B)にレーザ光を供給する。
 さらに回転反射板75が一点鎖線の状態であるときは、回転反射板75で反射されたR、G、B各レーザ光は、一点鎖線で示すように、或る1組(3つ)のコリメータレンズCLによって1組(3本)の光ファイバ6に導入される。この3本の光ファイバ6は、周囲照明部5における別の1つの光出力部51の各レーザ光出力部(5R、5G、5B)にレーザ光を供給する。
For example, when the rotary reflection plate 75 is in a solid line state, each of the R, G, and B laser beams reflected by the rotary reflection plate 75 has a set (three) of collimator lenses CL, as indicated by a solid line. Are introduced into one set (three) of optical fibers 6. The three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of one light output section 51 in the surrounding illumination section 5.
When the rotary reflection plate 75 is in a broken line state, each of the R, G, and B laser beams reflected by the rotary reflection plate 75 is separated by a set of collimator lenses CL, as shown by the broken line. It is introduced into the optical fiber 6. The three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of another light output section 51 in the surrounding illumination section 5.
Furthermore, when the rotary reflecting plate 75 is in the state of the alternate long and short dash line, each of the R, G, and B laser beams reflected by the rotary reflecting plate 75 is a set of (three) collimators as shown by the alternate long and short dash line. It is introduced into one set (three) of optical fibers 6 by the lens CL. The three optical fibers 6 supply laser light to the respective laser light output sections (5R, 5G, 5B) of another light output section 51 in the surrounding illumination section 5.
 従って、レーザ光源部22におけるR、G、Bの各レーザダイオード22R、22G、22BからR、G、Bの各レーザ光を出力させつつ、回転反射板75を高速で回転させることで、周囲照明部5の各光出力部51にレーザ光を分配することができる。これによって周囲照明部5の各光出力部51がそれぞれレーザダイオード等の光源素子を備えなくとも、360度方向の照明を実現することができる。
 また、回転反射板75の回転位置に同期させて、回転反射板75へのレーザ照射をオン/オフすることで、特定の方向のみ照明を行ったり、特定の方向のみ照明をオフとすることもできる。
 また回転反射板75へ照射するR、G、B各レーザ光の光強度を制御することで、周囲照明部5の照明光の色を変化させることができる。
 また、回転反射板75の回転位置に同期させて、回転反射板75へ照射するR、G、B各レーザ光の光強度を制御することで、周囲照明部5の特定の方向への照明光の色を変化させることもできる。
Therefore, ambient illumination is achieved by rotating the rotary reflector 75 at high speed while outputting the respective R, G, B laser beams from the R, G, B laser diodes 22 R, 22 B in the laser light source unit 22. Laser light can be distributed to each light output unit 51 of the unit 5. Thus, illumination in the direction of 360 degrees can be realized without each light output unit 51 of the surrounding illumination unit 5 being provided with a light source element such as a laser diode.
Also, by turning on / off laser irradiation to the rotary reflector 75 in synchronization with the rotational position of the rotary reflector 75, illumination may be performed only in a specific direction or illumination may be turned off only in a specific direction. it can.
Further, by controlling the light intensity of each of the R, G, and B laser beams to be irradiated to the rotary reflecting plate 75, the color of the illumination light of the surrounding illumination unit 5 can be changed.
In addition, the illumination light to the specific direction of the surrounding illumination unit 5 is controlled by controlling the light intensity of each of the R, G, and B laser beams to be irradiated to the rotary reflector 75 in synchronization with the rotational position of the rotary reflector 75. You can also change the color of
 なお、図5では模式的に示しているため、レーザダイオード22R、22G、22Bの出射レーザ光が直接回転反射板75に照射されるようにしているが、実際には必要な光学系を介して照射されれば良い。
 例えばレーザダイオード22R、22G、22Bの出射レーザ光は、ヘッドライト部3やリアライト部4に供給する他の光ファイバ6も入射される。従って、レーザダイオード22R、22G、22Bの出射レーザ光が、ビームスプリッタ等の光学素子により分光され、一部が周囲照明部5用として、図5のように回転反射板75に照射されるようにすればよい。
 もちろんレーザダイオード22R、22G、22Bが、周囲照明部5への給光のための専用のレーザダイオードとされてもよい。
In addition, although schematically shown in FIG. 5, the emitted laser beams of the laser diodes 22R, 22G, and 22B are directly irradiated to the rotary reflecting plate 75, but in actuality through the necessary optical system. It only needs to be irradiated.
For example, the emitted laser beams of the laser diodes 22R, 22G, and 22B are also incident on the other optical fibers 6 supplied to the headlight portion 3 and the rear light portion 4. Accordingly, the emitted laser beams of the laser diodes 22R, 22G, 22B are split by an optical element such as a beam splitter, and a part is irradiated to the rotary reflector 75 as shown in FIG. do it.
Of course, the laser diodes 22R, 22G, 22B may be dedicated laser diodes for supplying light to the ambient illumination unit 5.
 次に、監視センサユニット7について説明する。監視センサユニット7による監視によっては、上述のように周囲の人や物体を認識できる。監視センサユニット7として、可視光カメラ7a、遠赤外光カメラ7bを備える場合は、人の認識精度を高めることができる。可視光カメラ7aによる撮像画像ではパターンマッチング等の手法で人を認識できるが、これに遠赤外光カメラ7bによる撮像画像を用いて、対象部分の温度判定を行うことで、人であるか否かをより正確に認識できる。動物についても同様である。
 また安全面を考慮すれば、車両90の近傍を監視することも重要である。例えば車両90の後方に配置した監視センサユニット7については、図4Bのように、ルーフモジュール1の水平方向(一点鎖線H)よりも下方、例えばθ2の範囲を垂直方向の画角とするように配置する。このようにして車両90の後ろに居る子供HM等を必ず認識できるようにする。
 監視センサユニット7によって、このような構成を取ることで安全性向上を実現する。
Next, the monitoring sensor unit 7 will be described. Depending on the monitoring by the monitoring sensor unit 7, surrounding people or objects can be recognized as described above. When the visible light camera 7a and the far infrared light camera 7b are provided as the monitoring sensor unit 7, the human recognition accuracy can be enhanced. In the image captured by the visible light camera 7a, a person can be recognized by a method such as pattern matching. However, it is a person by determining the temperature of the target portion using the image captured by the far infrared light camera 7b. Can more accurately recognize The same is true for animals.
Also, in view of safety, it is also important to monitor the vicinity of the vehicle 90. For example, as for the monitoring sensor unit 7 disposed at the rear of the vehicle 90, as shown in FIG. 4B, for example, the range θ2 below the horizontal direction (dotted dotted line H) of the roof module 1 is the vertical angle of view. Deploy. In this manner, the children HM and the like behind the vehicle 90 can always be recognized.
By adopting such a configuration, the monitoring sensor unit 7 realizes improvement in safety.
 本実施の形態では、周囲照明部5の照明を、監視機能を向上させるためにも用いる。
 監視センサユニット7により撮像を行う場合、照明具合によって画像の輪郭の明確度が変化する。これにより人を含めた物体認識精度が変動する。そこでより画像認識精度を向上させるために、周囲の物体に応じて、周囲照明部5による照明光の色を変化させる。
 周囲照明部5における各光出力部51は、R、G、Bの各レーザ光出力部(5R、5G、5B)を備えているため、多様な色の照明光を出力することが可能である。
 また上述のように、特定のレーザ光出力部(5R、5G、5B)へ供給するレーザ光強度を変化させることで、特定の方向のみに、特定の色の照明光を照射することもできる。
 なお、各光出力部51が、例えばLEDやレーザダイオード等の光源を有する場合も、それぞれR、G、B光源としてのLED等を配置することで、多様な色の照明光を出力することが可能であることはいうまでもない。
In the present embodiment, the illumination of the ambient illumination unit 5 is also used to improve the monitoring function.
When imaging is performed by the monitoring sensor unit 7, the clarity of the contour of the image changes depending on the degree of illumination. As a result, the object recognition accuracy including the human changes. Therefore, in order to further improve the image recognition accuracy, the color of the illumination light by the ambient illumination unit 5 is changed according to the surrounding objects.
Each light output unit 51 in the ambient illumination unit 5 includes R, G, and B laser light output units (5R, 5G, 5B), and thus can output illumination light of various colors. .
Further, as described above, by changing the laser light intensity supplied to the specific laser light output unit (5R, 5G, 5B), it is possible to irradiate the illumination light of the specific color only in the specific direction.
Even when each light output unit 51 has a light source such as an LED or a laser diode, it is possible to output illumination light of various colors by arranging LEDs as R, G, and B light sources, respectively. It goes without saying that it is possible.
 監視機能向上のために、具体的には、検出した物体の色に合わせた照明が行われるようにする。そこで制御部20は、周囲照明部5の照明に関して図6に示す色制御処理を行う。
 ステップS101で制御部20は、解析部24により或る方向で何らかの物体が検出されたか否かを監視している。何らかの物体が検出された場合、制御部20はステップS102で、その物体の色データを抽出する。具体的には解析部24から検出した物体を構成している色の情報を取得する。
 ステップS103で制御部20は、取得した色データから、主要色を判定する。例えば検出物体における支配的な色や、最も比率の大きい色などを主要色とする。
Specifically, in order to improve the monitoring function, illumination is performed in accordance with the color of the detected object. Therefore, the control unit 20 performs the color control process shown in FIG. 6 on the illumination of the surrounding illumination unit 5.
At step S101, the control unit 20 monitors whether or not any object is detected by the analysis unit 24 in a certain direction. When an object is detected, the control unit 20 extracts color data of the object in step S102. Specifically, the information of the color making up the detected object is acquired from the analysis unit 24.
At step S103, the control unit 20 determines the main color from the acquired color data. For example, the dominant color in the detection object, the color with the largest ratio, and the like are set as the primary color.
 ステップS104で制御部20は、当該物体の検出方向から、判定した主要色の照明が出力されるように制御する。
 具体的には、まず解析部24から、検出物体の方向(車体からみた方向)の情報を取得し、その方向を照明する光出力部51を特定する。そしてその光出力部51からの出力光が、主要色となるように、当該光出力部51に供給するR、G、Bレーザ光の各強度を制御する。
 このような処理により、例えば赤い服を着た人を何らかの物体として検出した場合には、その人に向かって、赤色の照明が行われる。また黄色の物体を検出した場合、その物体に向かって黄色の照明が行われる。
 このような主要色に合わせた照明を行うことで、監視センサユニット7による撮像画像上で、当該物体の輪郭が明確になる。これにより、解析部24では、物体の輪郭を精度良く判定でき、パターンマッチング等により、物体が何であるかを精度良く特定できる。
 制御部20は、ステップS105で解析部24による物体特定結果を取得する。そして検出物体が人であるか、人以外であるかによりステップS106で分岐する。人の場合は、対人用の処理を行い、人以外の場合は、対物体用の処理を行うことになる。
In step S104, the control unit 20 performs control such that illumination of the determined main color is output from the detection direction of the object.
Specifically, first, information on the direction of the detected object (the direction seen from the vehicle body) is acquired from the analysis unit 24, and the light output unit 51 that illuminates the direction is specified. Then, the respective intensities of the R, G, and B laser beams supplied to the light output unit 51 are controlled so that the output light from the light output unit 51 becomes the main color.
By this process, for example, when a person wearing a red dress is detected as an object, red illumination is performed toward the person. When a yellow object is detected, yellow illumination is performed toward the object.
By performing illumination according to such a main color, the contour of the object becomes clear on the image captured by the monitoring sensor unit 7. As a result, the analysis unit 24 can accurately determine the contour of the object, and can accurately identify what the object is by pattern matching or the like.
The control unit 20 acquires the object identification result by the analysis unit 24 in step S105. Then, the process branches in step S106 depending on whether the detected object is a person or not. In the case of a person, processing for the person is performed, and in the case of other than the person, processing for the object is performed.
 このように被検出体に対しては、被検出体に応じた色の照明光を照射することで、外部環境認識としての認識精度を向上させることができる。
 なお、被検出体に合わせた色の照明は、人の視覚上も認識しやすいものとなる。例えば歩行者が青い服を着ている場合、青の照明を当てることで、運転者にとって、その歩行者の視認性が高まる。これによって安全性を向上させることができる。
 また、環境認識精度を向上させた場合、例えば人を認識したときに、周囲照明部5の一部、つまり人がいる方向への照明を消灯したり、照明光強度を下げるなどして、周囲の人にまぶしさを感じさせないようにするなど、より高度な制御が可能となる。
As described above, by irradiating illumination light of a color according to the detection object to the detection object, it is possible to improve the recognition accuracy as external environment recognition.
In addition, illumination of the color according to the to-be-detected body becomes what is easy to recognize also on a person's vision. For example, when the pedestrian wears a blue dress, the illumination of the blue light increases the visibility of the pedestrian for the driver. This can improve safety.
In addition, when the environment recognition accuracy is improved, for example, when a person is recognized, the surrounding illumination unit 5 is turned off, the illumination in the direction in which the person is present, or the illumination light intensity is reduced. More sophisticated control is possible, such as preventing people from feeling dazzling.
<ウインドウ表示>
 各ウインドウ91(フロントウインドウ91F、左サイドウインドウ91LS、右サイドウインドウ91RS、リアウインドウ91RR)における画像表示について説明する。
 各ウインドウ91は、透過率制御が可能なパネルとして構成されており、全透過状態とすることで、乗員が通常に周囲を視認できる窓として機能する。
 さらに各ウインドウ91においては、画像投影部8から画像を投影するとともに、その投影部分の透過率を低下させることで、車室内の乗員に対する表示を行うことができる(車内用画像の表示)。また各ウインドウ91においては、画像投影部8から画像を投影するとともに、その投影部分の透過率を上昇させることで、車外に居る人に対する表示を行うことができる(車外用画像の表示)。
<Window display>
Image display in each window 91 (front window 91F, left side window 91LS, right side window 91RS, rear window 91RR) will be described.
Each window 91 is configured as a panel capable of transmittance control, and functions as a window through which the occupant can usually visually recognize the surroundings by being in the total transmission state.
Furthermore, in each window 91, an image can be projected from the image projection unit 8 and the transmittance of the projected portion can be reduced to display an occupant in the vehicle compartment (display of an image for in-vehicle use). Further, in each window 91, an image can be projected from the image projection unit 8 and the transmittance of the projected portion can be increased to perform display for a person outside the vehicle (display of the image for the outside of the vehicle).
 画像投影部8における各プロジェクタ8a~8fは、例えば図7のように配置されて画像投影を行う。各プロジェクタ8a~8fは、例えばルーフモジュール1の底面側において、図示のような投影方向が得られるように配置されている。
 プロジェクタ8aはフロントウインドウ91Fの全体に対して画像投影を行うように配置位置が設定されている。プロジェクタ8bはリアウインドウ91RRの全体に対して画像投影を行うように配置位置が設定されている。プロジェクタ8cは右サイドウインドウ91RSの車両前方側略半分の範囲に対して画像投影を行うように配置位置が設定されている。プロジェクタ8dは右サイドウインドウ91RSの車両後方側略半分の範囲に対して画像投影を行うように配置位置が設定されている。プロジェクタ8eは左サイドウインドウ91LSの車両前方側略半分の範囲に対して画像投影を行うように配置位置が設定されている。プロジェクタ8fは左サイドウインドウ91LSの車両後方側略半分の範囲に対して画像投影を行うように配置位置が設定されている。
 画像投影部8では、各プロジェクタ8a~8fがこのように配置されることで、全てのウインドウ91に対して、各種画像表示を行うことができるようにされている。
 各プロジェクタ8a~8fは、それぞれ独立した画像を投影しても良いし、隣接するウインドウに連続した1つの画像が形成されるように、部分毎の画像を投影してもよい。
The projectors 8a to 8f in the image projection unit 8 are arranged as shown in FIG. 7, for example, to project an image. Each of the projectors 8a to 8f is disposed, for example, on the bottom side of the roof module 1 so as to obtain a projection direction as illustrated.
The arrangement position of the projector 8a is set so as to project an image on the entire front window 91F. The arrangement position of the projector 8 b is set so as to project an image on the entire rear window 91 RR. The arrangement position of the projector 8c is set so as to project an image on a range substantially on the front half side of the right side window 91RS. The arrangement position of the projector 8d is set so as to project an image on a range substantially on the vehicle rear side half of the right side window 91RS. The arrangement position of the projector 8e is set so as to project an image on a substantially half of the front side of the left side window 91LS. The arrangement position of the projector 8 f is set so as to project an image on a range substantially on the rear side of the left side window 91 LS.
In the image projection unit 8, by arranging the projectors 8a to 8f in this manner, various images can be displayed on all the windows 91.
Each of the projectors 8a to 8f may project an independent image, or may project an image for each part so that one continuous image is formed in an adjacent window.
 図8は、プロジェクタ8aによりフロントウインドウ91Fに車内用画像100を表示させた状態を示している。フロントウインドウ91Fの大部分は、スルー状態(ほぼ透明と視認される透過率の状態)とされ、乗員は車両前方の風景を見ることができる。この状態において、フロントウインドウ91Fの一部の透過率が下げられ、その部分にプロジェクタ8aの投影画像が表示される。例えば走行速度、回転数、シフトポジション、走行距離、時刻、走行モード等が、車内用画像100として表示されている。 FIG. 8 shows a state in which the in-vehicle image 100 is displayed on the front window 91F by the projector 8a. Most of the front window 91F is in a through state (a state of transmissivity that is regarded as substantially transparent), and the occupant can view the scenery in front of the vehicle. In this state, the transmittance of part of the front window 91F is lowered, and the projection image of the projector 8a is displayed on that part. For example, a traveling speed, a rotation speed, a shift position, a traveling distance, a time, a traveling mode, and the like are displayed as the in-vehicle image 100.
 なお、完全自動運転を想定する場合、乗員からは各ウインドウ91(特にフロントウインドウ91F)が常にスルー状態である必要はない。従って車内用画像100としては、各ウインドウ91の透過率を下げて、映像シアターのような投影を行うようにしてもよい。
 また隣接するウインドウ91、例えばフロントウインドウ91Fと左右サイドウインドウ(91LS、91RS)にまたがって大画面による1つの車内用画像100を表示させるようにしてもよい。もちろん4つのウインドウ91を360度スクリーンとして画像を投影させても良い。このような複数のウインドウ91にまたがった表示は、プロジェクタ8a~8fによる投影画像の設定により可能である。即ち1つの画像を水平方向に分割して、各プロジェクタ8a~8fから投影させれば良い。
When fully automatic driving is assumed, it is not necessary for the occupant to always have the windows 91 (particularly, the front window 91F) in a through state. Therefore, as the in-vehicle image 100, the transmittance of each window 91 may be lowered to perform projection like a video theater.
In addition, one in-vehicle image 100 with a large screen may be displayed across the adjacent windows 91, for example, the front window 91F and the left and right side windows (91LS, 91RS). Of course, the image may be projected as the four windows 91 as a 360 degree screen. Such display across a plurality of windows 91 is possible by setting of projection images by the projectors 8a to 8f. That is, one image may be divided in the horizontal direction and projected from each of the projectors 8a to 8f.
  各ウインドウ91をスクリーンとして用いた車内用画像100の表示内容としては他にも各種考えられる。
 車内用画像100としては、例えば地図画像、ナビゲーション画像、車両状態に関するメッセージ画像、周囲状況の通知、アラート画像や文字、各種映像コンテンツ、携帯端末などの情報処理装置の表示画面の拡大画像、ウェブサイト画像などが想定される。
Various other display contents of the in-vehicle image 100 using each window 91 as a screen are conceivable.
As the in-vehicle image 100, for example, a map image, a navigation image, a message image regarding a vehicle state, a notification of the surrounding situation, an alert image or characters, various video contents, an enlarged image of a display screen of an information processing apparatus such as a portable terminal, a website An image etc. are assumed.
 図9は、例えばプロジェクタ8a、8e、8fによってフロントウインドウ91F及び左サイドウインドウ91LSに車外用画像101を表示させた例である。
 フロントウインドウ91F及び左サイドウインドウ91LSは、投影画像を外部から視認できる構造とする。
 図9の例では、道路を横断しようとする人に対して、先に渡ることを薦める映像を、フロントウインドウ91F及び左サイドウインドウ91LSを用いて表示している。特にフロントウインドウ91F及び左サイドウインドウ91LSを1つの大型のスクリーンとして扱い、画像をまたがって表示させることで、外部に対する視認性や、通知能力を拡大する。
FIG. 9 shows an example in which the car exterior image 101 is displayed on the front window 91F and the left side window 91LS by the projectors 8a, 8e, 8f, for example.
The front window 91F and the left side window 91LS have a structure in which the projected image can be viewed from the outside.
In the example of FIG. 9, the image which recommends passing ahead to the person who is going to cross the road is displayed using the front window 91F and the left side window 91LS. In particular, by treating the front window 91F and the left side window 91LS as one large screen and displaying them across images, the visibility to the outside and the notification capability are expanded.
 各ウインドウ91をスクリーンとして用いた車外用画像101の表示内容としては他にも各種考えられる。
 車外用画像101としては、車両90内の乗員の有無の通知情報、迎車中/サービス中/回送中等の表示、周囲歩行者等へのメッセージ、先行車両、後続車両等へのメッセージや注意喚起、アラート、車外の人に乗車を促す画像などが想定される。
 なお車内用画像100と車外用画像101を同時に投影することもできる。
Various other display contents of the car external image 101 using each window 91 as a screen are conceivable.
As the image 101 for external vehicles, notification information of presence or absence of the passenger in the vehicle 90, display during traveling / service / delivery etc., a message to surrounding pedestrians, etc., a message to a leading vehicle, a following vehicle, etc. An alert, an image prompting a person outside the vehicle to get on, etc. are assumed.
The in-vehicle image 100 and the in-vehicle image 101 can be simultaneously projected.
 車内に設置されたプロジェクタ8a~8fによってウインドウ91の内面側及び外面側に画像を表示する手法の一例を説明する。
 図10A,図10Bはウインドウ91の構造を模式的に示している。ウインドウ91は図10Aのように例えば水平方向の分割線で多数のライン状の領域に分割された構造とする。分割される領域としては、ミラー領域150,透過領域151,拡散領域152の3種類とする。このミラー領域150,透過領域151,拡散領域152の組が、上下方向に連続する状態でウインドウ91が形成されている。
 各領域(150,151,152)の垂直方向の幅は、例えば投影する画像のフレームにおける1~数ライン分、或は数10ライン分などとしてもよいし、さらに多数のラインの幅としてもよい。これは画像の垂直解像度や画像視認性に応じて設定されればよい。説明状、各領域の垂直方向の幅は、画像のxライン分とする。
An example of a method of displaying an image on the inner surface side and the outer surface side of the window 91 by the projectors 8a to 8f installed in the vehicle will be described.
10A and 10B schematically show the structure of the window 91. FIG. As shown in FIG. 10A, for example, the window 91 has a structure in which it is divided into a large number of linear regions by a dividing line in the horizontal direction. There are three types of areas to be divided: mirror area 150, transmission area 151, and diffusion area 152. The window 91 is formed such that the set of the mirror area 150, the transmission area 151, and the diffusion area 152 is continuous in the vertical direction.
The vertical width of each region (150, 151, 152) may be, for example, one to several lines in the frame of the image to be projected, or several tens of lines, or more lines. . This may be set according to the vertical resolution of the image or the image visibility. In the explanation, the vertical width of each area is equal to x lines of the image.
 ミラー領域150は、内部にミラー160が形成されている領域とする。ミラー160は、車室内方向から入射した光を下方に反射させる。
 透過領域151は、光が通常に高い透過率で透過する領域とする。
 拡散領域152は、内部に拡散板161が設けられている領域とする。
The mirror area 150 is an area in which the mirror 160 is formed. The mirror 160 reflects downward the light incident from the vehicle interior direction.
The transmissive region 151 is a region through which light is normally transmitted at high transmittance.
The diffusion region 152 is a region in which the diffusion plate 161 is provided.
 この場合、図10Bに示すように、車内側からミラー領域150に入射した光170は、ミラー160で反射され、透過領域151を上方から下方に通過し、拡散板161に達する。拡散板161は、図のように傾斜して配置されていることで、光170は拡散板161で外方に向かって拡散される。この状態で、ウインドウ91の外方から、光170による画像が視認される。
 また、車外からの光171は、透過領域151を介して車室内に達する。従って乗員は車外の光景を視認できる。
 また車内側から拡散領域152に入射した光172は、拡散板161に投射されて拡散する。この状態で、ウインドウ91の内方から、光172による画像が視認される。
In this case, as shown in FIG. 10B, the light 170 that has entered the mirror area 150 from the inside of the vehicle is reflected by the mirror 160, passes through the transmission area 151 from the top to the bottom, and reaches the diffusion plate 161. The light diffusion plate 161 is disposed to be inclined as shown in the figure, so that the light 170 is diffused outward by the diffusion plate 161. In this state, an image by the light 170 is viewed from the outside of the window 91.
In addition, light 171 from the outside of the vehicle reaches the vehicle interior through transmission region 151. Therefore, the passenger can see the scene outside the vehicle.
Further, the light 172 that has entered the diffusion region 152 from the inside of the vehicle is projected to the diffusion plate 161 and diffused. In this state, the image by the light 172 is viewed from the inside of the window 91.
 つまり、プロジェクタ8a~8fは、車内用画像100、車外用画像101を次のように投影光として出射すればよい。
 車内用画像100のフレームデータは、フレームの最初のxラインをブランク(階調ゼロの画素データ)、次のxラインもブランク、次のxラインに画像を構成する画素データを配置する。このようなデータ配置を垂直方向に繰り返して各フレームデータを形成する。そしてそのフレームデータに基づいて投影を行う。すると、画像を構成する投影光が拡散領域152に投影され、乗員による画像視認が可能となる。
 車外用画像101のフレームデータは、フレームの最初のxラインに画像を構成する画素データを配置し、次のxラインはブランク、次のxラインもブランクとする。このようなデータ配置を垂直方向に繰り返して各フレームデータを形成する。そしてそのフレームデータに基づいて投影を行う。すると、画像を構成する投影光がミラー領域150に投影され、外部からの画像視認が可能となる。
 車内用画像100と車外用画像101をウインドウ表裏に同時に表示する場合、車内用画像データと車外用画像データを合成する。即ち合成画像のフレームデータは、フレームの最初のxラインに車外用画像101を構成する画素データを配置し、次のxラインはブランク、次のxラインは車内用画像100を構成する画素データを配置する。これを垂直方向に繰り返してフレームデータを形成し、投影すればよい。
That is, the projectors 8a to 8f may emit the in-vehicle image 100 and the in-vehicle image 101 as projection light as follows.
In the frame data of the in-vehicle image 100, the first x line of the frame is blank (pixel data of gradation zero), the next x line is also blank, and the pixel data constituting the image is arranged in the next x line. Such data arrangement is repeated in the vertical direction to form each frame data. Then, projection is performed based on the frame data. Then, the projection light which comprises an image is projected on the spreading | diffusion area | region 152, and the image visual recognition by a passenger | crew is attained.
The frame data of the car external image 101 arranges pixel data constituting the image in the first x line of the frame, the next x line is blank, and the next x line is also blank. Such data arrangement is repeated in the vertical direction to form each frame data. Then, projection is performed based on the frame data. Then, the projection light which comprises an image is projected on the mirror area | region 150, and the image visual recognition from the outside is attained.
When the in-vehicle image 100 and the in-vehicle image 101 are simultaneously displayed on the front and back of the window, the in-vehicle image data and the out-vehicle image data are combined. That is, the frame data of the composite image arranges the pixel data forming the car exterior image 101 in the first x line of the frame, the next x line is blank, and the next x line is pixel data forming the car interior image 100 Deploy. This may be repeated in the vertical direction to form and project frame data.
 なお、以上の手法の場合、プロジェクタ8a~8fの投影位置がウインドウ91の領域(150、151、152)の位置に対して精密に合わせられなければならない。そのため、車内にウインドウ91上の画像表示状態を認識できるカメラ、或いは光量センサ等を設け、車内用画像100を投射した状態で、車内用画像100の表示が良好に行われる状態となるように投射位置の自動調整が行われるようにすることが望ましい。上記構成の場合、位置関係として車内用画像100が適切に表示される状態とすれば、車外用画像101も適切な投影が行われていることになるためである。 In the case of the above method, the projection positions of the projectors 8a to 8f must be precisely aligned with the position of the area (150, 151, 152) of the window 91. Therefore, a camera capable of recognizing an image display state on the window 91, a light quantity sensor, etc. is provided in the car, and in the state where the in-car image 100 is projected, the in-car image 100 is displayed well. It is desirable that automatic adjustment of the position be performed. In the case of the above configuration, if the in-vehicle image 100 is appropriately displayed as the positional relationship, appropriate projection of the in-vehicle image 101 is performed.
 ウインドウ91の内外での画像表示のための他の手法を図11,図12で説明する。
 図11Aは、車両内部のプロジェクタ8in(例えばプロジェクタ8a~8f)を配置することに加え、車両外部、例えばルーフモジュール1による天井部181の庇部分にプロジェクタ8outを配置する例である。
 ウインドウ91は、2層構造とし、車外側がガラス部183、車内側が液晶シャッタ部182とする。液晶シャッタ部182は、封入した液晶の両端電極への印加電圧により透過率が可変とされる層である。
 このようにすることで、プロジェクタ8inによって車内用画像100の投影が行われ、プロジェクタ8outによって車外用画像101の投影が行われる。プロジェクタ8in、8outによる画像投影部分においては、液晶シャッタ部182の透過率を低くすればよい。即ち制御部20は、各ウインドウ91上の領域として、車外用画像101を投影する領域と車内用画像100を投影する領域のそれぞれに応じた透過率制御をECU92に要求し、ウインドウ91の領域毎に透過率を制御させる。そして各領域に対する画像の投影を画像投影部8に指示する。このようにすることで、車内用画像100と車外用画像101をそれぞれ適切に表示させることができる。
Another method for displaying an image inside and outside the window 91 will be described with reference to FIGS.
FIG. 11A shows an example in which the projector 8 out is arranged outside the vehicle, for example, at the edge of the ceiling 181 by the roof module 1 in addition to the arrangement of the projector 8 in (for example, projectors 8 a to 8 f) inside the vehicle.
The window 91 has a two-layer structure, with the glass portion 183 on the outside of the vehicle and the liquid crystal shutter portion 182 on the inside of the vehicle. The liquid crystal shutter portion 182 is a layer whose transmittance is made variable by a voltage applied to both end electrodes of the enclosed liquid crystal.
By doing this, the projector 8in projects the in-vehicle image 100, and the projector 8out projects the vehicle external image 101. The transmittance of the liquid crystal shutter unit 182 may be lowered in the image projection portion by the projectors 8 in and 8 out. That is, the control unit 20 requests the ECU 92 to perform transmittance control according to each of the area on which the external image 101 is projected and the area on which the in-vehicle image 100 is projected as the area on each window 91. Control the transmittance. Then, the image projection unit 8 is instructed to project an image on each area. In this way, the in-vehicle image 100 and the in-vehicle image 101 can be appropriately displayed.
 車外のプロジェクタ8outの配置位置の例を図12に示す。例えばプロジェクタ8g~8pとして10個のプロジェクタ8outを配置する。例えばフロントウインドウ91Fへの投影を行うプロジェクタ8g,8h,8i、リアウインドウ91RRへの投影を行うプロジェクタ8j,8k,8l、右サイドウインドウ91RSへの投影を行うプロジェクタ8m,8n、左サイドウインドウ91LSへの投影を行うプロジェクタ8o,8pを設け、これらによって車両90の全周方向への表示を可能とする。
 なお、このようにプロジェクタ8outを設ける場合、プロジェクタ8outによって路面描画も可能となる。図ではプロジェクタ8m,8nが路面に対して投影を行っている状態を破線で示しているが、このように投影方向を変換させ、路面に各種の画像を表示することで、車外の人に対する通知等を行うことができる。例えば乗車や降車の案内を路面に表示するなどである。
An example of the arrangement position of the projector 8out outside the vehicle is shown in FIG. For example, ten projectors 8 out are arranged as the projectors 8 g to 8 p. For example, projectors 8g, 8h, 8i that project to the front window 91F, projectors 8j, 8k, 8l that project to the rear window 91RR, projectors 8m, 8n that project to the right side window 91RS, to the left side window 91LS The projectors 8o and 8p for projecting the light source 90 can be used to display the vehicle 90 in the entire circumferential direction.
When the projector 8 out is provided as described above, the road surface can be drawn by the projector 8 out. In the figure, the projectors 8m and 8n are shown by broken lines when projecting onto the road surface, but by changing the projection direction in this way and displaying various images on the road surface, notification to people outside the vehicle is given. Etc. can be done. For example, guidance for getting on and off is displayed on the road surface.
 図11Bは、さらに他の構造例である。ウインドウ91を3層構造とし、車外側から透過型OLED(Organic Electro-Luminescence Display)部184、ガラス部183、液晶シャッタ部182とする。この場合、プロジェクタ8in(例えばプロジェクタ8a~8f)によって車内用画像100の投影が行われるとともに、透過型OLED部184により車外用画像101を表示する。このような構造でも車内外に画像を表示することができる。また透過型OLED部184を用いることでウインドウ91の透過性も確保されるため、乗員の外部視認性も保たれる。 FIG. 11B is yet another structural example. The window 91 has a three-layer structure, and a transmissive OLED (Organic Electro-Luminescence Display) portion 184, a glass portion 183, and a liquid crystal shutter portion 182 are provided from the outside of the vehicle. In this case, the in-vehicle image 100 is projected by the projector 8 in (for example, the projectors 8a to 8f), and the transmission-type OLED unit 184 displays the in-vehicle image 101. Images can be displayed inside and outside the vehicle even with such a structure. In addition, since the transmission of the window 91 is secured by using the transmissive OLED section 184, the visibility of the occupant outside can be maintained.
 ここまで各種のウインドウ構造や表示デバイス(プロジェクタやOLED)等を示したが、ウインドウ91による車内外での画像表示の手法は他にも多様に考えられる。
 また、これまでのウインドウ91の構造例については、例えば図13Aの斜線部で示す表示領域190として、ウインドウ91の全体に適用してもよい。これにより画像表示の自由度の向上、大画面化を実現できる。
 また、図13Bのように、ウインドウ91において中央は透過領域191とし、表示領域190はウインドウ91の周囲部分としてもよい。或いは図13Cのように、ウインドウ91において上下のみに帯状の表示領域190を形成し、上下方向の中央は透過領域191としてもよい。
 これらにおいて透過領域191は、例えば単純なガラス領域として、常時透過率が高く、表示には用いない領域とする。透過領域191を設けることで、乗員の外部視認性を常時完全に確保する領域が得られるようにする。
Although various window structures, display devices (projectors, OLEDs) and the like have been described so far, various other image display methods can be considered using the window 91 inside and outside the vehicle.
In addition, the example of the structure of the window 91 up to this point may be applied to the entire window 91, for example, as the display area 190 indicated by the hatched portion in FIG. 13A. As a result, the degree of freedom in image display can be improved and the screen can be enlarged.
Further, as shown in FIG. 13B, in the window 91, the center may be a transmissive region 191, and the display region 190 may be a peripheral portion of the window 91. Alternatively, as shown in FIG. 13C, a belt-shaped display area 190 may be formed only at the top and bottom of the window 91, and the center in the top-bottom direction may be the transmission area 191.
In these cases, the transmissive region 191 is, for example, a simple glass region, which is always a region with high transmittance and is not used for display. By providing the transmissive region 191, it is possible to obtain a region that always ensures complete visibility of the exterior of the occupant.
<ターンシグナル>
 続いてターンシグナル機能について説明する。
 各ウインドウ91は、車外用画像101の表示として光出力部としても機能する。つまりウインドウ91を灯具として利用することもできる。一例として、ターンシグナル機能をウインドウ91を用いて実現する例を説明する。
 図14は、プロジェクタ8a~8fによる画像投影を利用した車外用画像101として、ターンシグナル画像101Tを表示させる例である。
<Turn signal>
Subsequently, the turn signal function will be described.
Each window 91 also functions as a light output unit as a display of the external image 101. That is, the window 91 can also be used as a lamp. As an example, an example in which the turn signal function is realized using the window 91 will be described.
FIG. 14 shows an example in which a turn signal image 101T is displayed as the image 101 for the outside of a vehicle using image projection by the projectors 8a to 8f.
 例えば図14は左折の際のターンシグナルを示している。図14A→図14B→図14C→図14A・・・というように表示が遷移していることでシーケンシャルなターンシグナルが表現される。即ち車体前部の光出力部であるフロントウインドウ91Fの発光位置と、車体左側面部前方の光出力部(左サイドウインドウ91LSの前方側)の発光位置が、ともに車両90の左前コーナー部95FLに向かうように、光が移動する。また車体後部の光出力部(リアウインドウ91RR)の発光位置と、車体左側面部後方の光出力部(左サイドウインドウ91LSの後方側)の発光位置がともに車両90の左後コーナー部95RLに向かうように、光が移動する。例えば左前コーナー部95FLと左後コーナー部95RLのそれぞれに向かって、光の波が押し寄せていくような表示となる。
 図示しないが、右折の際のターンシグナルも同様に、車体前部の光出力部であるフロントウインドウ91Fの発光位置と、車体右側面部前方の光出力部(右サイドウインドウ91RSの前方側)の発光位置が、ともに車両90の右前コーナー部95FR(図5参照)に向かうように光が移動する。また車体後部の光出力部(リアウインドウ91RR)の発光位置と、車体右側面部後方の光出力部(右サイドウインドウ91RSの後方側)の発光位置がともに車両90の右後コーナー部95RRに向かうように、光が移動する。
For example, FIG. 14 shows a turn signal when turning left. A sequential turn signal is expressed by the display transition as in FIG. 14A → FIG. 14B → FIG. 14C → FIG. 14A. That is, the light emission position of the front window 91F, which is the light output portion at the front of the vehicle body, and the light emission position of the light output unit (front side of the left side window 91LS) in front of the vehicle body left side face both toward the left front corner 95FL of the vehicle 90 So, the light moves. Also, the light emission position of the light output portion (rear window 91RR) at the rear of the vehicle body and the light emission position of the light output portion at the rear of the left side surface of the vehicle body (rear side of the left side window 91LS) are directed to the left rear corner portion 95RL of the vehicle 90 The light moves to For example, the display is such that the light wave is pushed toward each of the left front corner portion 95FL and the left rear corner portion 95RL.
Although not shown, the turn signal at the time of turning right similarly emits light from the light emission position of the front window 91F, which is the light output portion at the front of the vehicle body, and light emission from the light output portion at the front of the vehicle right side (front side of the right side window 91RS) The light moves so that the positions are both directed to the right front corner 95FR (see FIG. 5) of the vehicle 90. In addition, the light emission position of the light output portion (rear window 91RR) at the rear of the vehicle body and the light emission position of the light output portion at the rear of the right side surface of the vehicle body (rear side of the right side window 91RS) are both directed to the right rear corner portion 95RR of the vehicle 90 The light moves to
 ウインドウ91という大型の表示面を利用して、発光部分(光出力位置)を移動させることで、視認性が高く、また印象度の高いターンシグナルを実現できる。
 特にコーナー部95に注目すると、左折の場合はコーナー部95FL、95RLが点滅するように視認され、右折の場合はコーナー部95FR、95RRが点滅するように視認される。車両コーナー部での点滅となることで、視認者がターンシグナルとして通常に認識できる。
 また、シーケンシャルターンとして、発光端の上端位置は、コーナー部95に近づくほど高くなる。これによってターンシグナルとしての注意喚起機能が高まる。
By moving the light emitting portion (light output position) using the large display surface of the window 91, it is possible to realize a turn signal having high visibility and a high degree of impression.
In particular, focusing on the corner portion 95, the corner portions 95FL and 95RL are visually recognized to blink in the case of a left turn, and the corner portions 95FR and 95RR are visually perceived to blink in the case of a right turn. By the blinking at the vehicle corner, the viewer can usually recognize it as a turn signal.
Also, as the sequential turn, the upper end position of the light emitting end becomes higher as it approaches the corner portion 95. This enhances the alerting function as a turn signal.
 なお、例えば車体のコーナー部に向かってシーケンシャルに光が移動するようなターンシグナルは、図15Aのような車両90Aにおける灯具構成によっても可能である。
 図15Aの車両90Aは、車両後部のターンライト110L、110Rを有し、また車両側面後方にもターンライト111Rを有する(左側面側は図示されていないが同様)。
 そして右折の場合、ターンライト110R、111Rが、それぞれコーナー部95RRに向かって光が進行するようなシーケンシャル点灯を行う。例えばターンライト110R、111Rは4分割の点灯部を有し、図15B→図15C→図15D→図15Eのように、コーナー部95RRから遠い方の点灯部から順に点灯されていくようにする。このような点灯によって、光がコーナー部95RRに進行していくようなターンシグナル表示が可能である。
Note that, for example, a turn signal in which light sequentially moves toward a corner portion of a vehicle body is also possible by the lamp configuration in the vehicle 90A as shown in FIG. 15A.
A vehicle 90A in FIG. 15A has turnlights 110L and 110R at the rear of the vehicle, and also has a turnlight 111R at the rear side of the vehicle (the left side is the same although not shown).
Then, in the case of a right turn, the turn lights 110R and 111R perform sequential lighting such that light travels toward the corner portion 95RR. For example, the turn lights 110R and 111R have four divided lighting portions, and are lighted in order from the lighting portion farther from the corner portion 95RR as shown in FIG. 15B → FIG. 15C → FIG. 15D → FIG. By such lighting, a turn signal can be displayed such that light travels to the corner portion 95RR.
 さらに同様のシーケンシャルなターンシグナルは、図16Aのような車両90Bにおける灯具構成によっても可能である。
 図16Aの車両90Bは、車両前部にヘッドライト113の近傍にターンライト112L、112Rを有し、また車両側面前方にもターンライト111Lを有する(右側面側は図示されていないが同様)。
 そして左折の場合、ターンライト112L、111Lが、それぞれコーナー部95FLに向かって光が進行するようなシーケンシャル点灯を行う。例えばターンライト112L、111Lは4分割の点灯部を有し、図16B→図16C→図16D→図16Eのように、コーナー部95FLから遠い方の点灯部から順に点灯されていくようにする。このような点灯によって、光がコーナー部95FLに進行していくようなターンシグナル表示が可能である。
 なお、図15,図16のいずれの例もシーケンシャルターンとして、発光端の上端位置は、コーナー部95に近づくほど高くなるように灯具形状が設定されている。これによってターンシグナルとしての注意喚起機能が高まる。
Furthermore, a similar sequential turn signal is also possible by the lamp configuration in the vehicle 90B as shown in FIG. 16A.
A vehicle 90B in FIG. 16A has turn lights 112L and 112R in the vicinity of the headlight 113 at the front of the vehicle, and also has a turnlight 111L at the front side of the vehicle (the right side is not shown, but is the same).
Then, in the case of left turn, the turn lights 112L and 111L perform sequential lighting such that light travels toward the corner portion 95FL. For example, the turn lights 112L and 111L have four divisions of lighting parts, and as shown in FIG. 16B → FIG. 16C → FIG. 16D → FIG. By such lighting, a turn signal can be displayed such that light travels to the corner portion 95FL.
The shape of the lamp is set such that the upper end position of the light emitting end becomes higher toward the corner portion 95 as a sequential turn in both of the examples of FIGS. This enhances the alerting function as a turn signal.
<まとめ>
 以上、実施の形態を説明してきたが、実施の形態のルーフモジュール1は車両ウインドウ表示装置としての機能を有する。
 即ちルーフモジュール1は、車両の車室内に配置され、少なくとも車両のフロントウインドウ91Fとサイドウインドウ91RS、91LSに画像を投影する画像投影部8を有し、画像投影部8は、車両乗員がフロントウインドウ91Fとサイドウインドウ91RS、91LSを介して外方視認が可能な状態において、車両乗員に表示するための車内用画像100を表示させる投影を行う。
 これにより乗員に対する各種の情報表示を、車両のウインドウ91を利用して実現できる。ウインドウ91という広い領域を画面とすることで、情報提示能力も高いものとなる。また乗員の外方視認を妨げないことで、ウインドウ91本来の機能を阻害しない。
<Summary>
Although the embodiment has been described above, the roof module 1 of the embodiment has a function as a vehicle window display device.
That is, the roof module 1 includes the image projection unit 8 which is disposed in the vehicle interior of the vehicle and projects an image on at least the front window 91F and the side windows 91RS and 91LS of the vehicle. A projection for displaying the in-vehicle image 100 to be displayed to the vehicle occupant is performed in a state where the outward visual recognition is possible via the window 91F and the side windows 91RS and 91LS.
Thereby, various information displays for the occupant can be realized using the window 91 of the vehicle. By using a wide area such as the window 91 as a screen, the information presentation capability is also high. Further, the function of the window 91 is not impeded by not disturbing the occupant's outward visibility.
 実施の形態では、さらに車両90のウインドウ91の外面側に、車内用画像100とは異なる画像内容であって車外に対する表示のための車外用画像101の表示を行うようにしている。
 これにより乗員に対する各種の情報表示だけでなく、車外の人に対する情報表示を、車両90のウインドウ91を利用して実現できる。
In the embodiment, on the outer surface side of the window 91 of the vehicle 90, the display of the outside-vehicle image 101 for displaying outside the vehicle with image contents different from the in-vehicle image 100 is further performed.
As a result, not only various information displays for the occupants but also information displays for persons outside the vehicle can be realized using the window 91 of the vehicle 90.
 実施の形態では、フロントウインドウ91Fと少なくとも一方のサイドウインドウ(91RS又は91LS)にまたがって情報を表示させる(例えば図9)。
 即ちフロントウインドウ91Fと右サイドウインドウ91RS、もしくはフロントウインドウ91Fと左サイドウインドウ91LS、もしくはフロントウインドウ91Fと左右のサイドウインドウ91RS及び91LSを、1つの画面ととらえた状態で画像の投影を行う。
 これにより車両90のウインドウ91を、大型サイズの画面として用いた情報表示が可能となり、情報提示能力を向上させることができる。
In the embodiment, information is displayed across the front window 91F and at least one side window (91RS or 91LS) (for example, FIG. 9).
That is, the image is projected in a state where the front window 91F and the right side window 91RS, or the front window 91F and the left side window 91LS, or the front window 91F and the left and right side windows 91RS and 91LS are regarded as one screen.
This makes it possible to display information using the window 91 of the vehicle 90 as a screen of a large size, and can improve the information presentation capability.
 実施の形態では、車外用画像101として、車両のリアウインドウ91RRを含めて、車両90の全周囲方向に対する画像表示を行うことができる(図7参照)。
 即ちフロントウインドウ91F、左右サイドウインドウ91RS、91LS、リアウインドウ91RRを全周囲方向の画面として利用して情報表示を行う。これにより車外用画像101として、車両の前後左右に対する多様な情報表示が可能となる。
 なお、もちろん車内用画像100について、乗員が360°画面をみるような全周方向の画像表示を行うこともできる。
In the embodiment, it is possible to perform image display in the entire circumferential direction of the vehicle 90 as the vehicle external image 101, including the rear window 91RR of the vehicle (see FIG. 7).
That is, information is displayed using the front window 91F, the left and right side windows 91RS and 91LS, and the rear window 91RR as screens in the entire circumferential direction. As a result, various information can be displayed on the front, rear, left, and right of the vehicle as the image 101 for the external use of the vehicle.
Of course, with regard to the in-vehicle image 100, it is also possible to perform image display in the entire circumferential direction such that the passenger views a 360 ° screen.
 実施の形態では、車両外部への照明としてレーザ光を出力するレーザ光出力部(ヘッドライト部3、リアライト部4、周囲照明部5)と、レーザ光源部22及びレーザ光源の駆動回路23を有する発光駆動部(レーザライトエンジン2)とを有する。そしてレーザ光出力部は、レーザ光源部22から出力されたレーザ光が導光路である光ファイバ6によって供給されて光出力が行われる。この場合に、画像投影部8のプロジェクタ8a~8fも、レーザ光源部22から出力され光ファイバ6によって供給されたレーザ光を用いて投影を行うようにしている(図3参照)。
 つまりルーフモジュール1は、車両外部への照明としての車両用灯具としての機能を備えるとともに、照明及び投影に共通のレーザ光源部22からのレーザ光を用いる。これによりルーフモジュール1は車両用灯具としての機能を備えた画像投影装置となるとともに、レーザ光源を共用することで、構成の効率化を実現できる。
 なお発光駆動部(レーザライトエンジン2)としてはLEDなどのレーザ光源以外の光源を用いてもよく、また複数の種類の異なる光源を用いるものでもよい。
In the embodiment, a laser light output unit (headlight unit 3, rear light unit 4, surrounding illumination unit 5) that outputs laser light as illumination to the outside of the vehicle, laser light source unit 22, and drive circuit 23 of the laser light source And a light emission drive unit (laser light engine 2). In the laser light output unit, the laser light output from the laser light source unit 22 is supplied by the optical fiber 6 which is a light guide, and light output is performed. In this case, the projectors 8a to 8f of the image projection unit 8 also perform projection using the laser light output from the laser light source unit 22 and supplied by the optical fiber 6 (see FIG. 3).
That is, the roof module 1 has a function as a vehicle lamp as illumination to the outside of the vehicle, and uses laser light from the laser light source unit 22 common to illumination and projection. As a result, the roof module 1 becomes an image projection apparatus having a function as a vehicle lamp, and by sharing the laser light source, the configuration can be made more efficient.
In addition, as a light emission drive part (laser light engine 2), light sources other than laser light sources, such as LED, may be used, and several different types of light sources may be used.
 実施の形態では、画像投影部8による投影画像及び投影位置を制御する制御部20を備え、制御部20は、ウインドウ91における車内用画像100及び車外用画像101の投影位置について、車両側システム(ECU92)への通知出力を行うようにしている。
 例えばECU92は、フロントウインドウ91F、サイドウインドウ91RS、91LS、リアウインドウ91RRの透過率を位置毎に制御可能な構成である(図3参照)。この場合に制御部20は、車内用画像100と車外用画像101の投影位置をECU92に通知することにより、車内用画像100と車外用画像101の投影位置に応じてのウインドウ91の透過率制御を実行させることが可能となる。従って車内用画像100と車外用画像101の表示について、制御部20はウインドウ91の任意の領域を用いて投影/表示させることができる。またこのため情報提示能力が向上する。
In the embodiment, the control unit 20 controls the projection image and the projection position by the image projection unit 8, and the control unit 20 controls the projection position of the in-vehicle image 100 and the outside image 101 in the window 91 The notification output to the ECU 92) is performed.
For example, the ECU 92 is configured to be able to control the transmittance of the front window 91F, the side windows 91RS and 91LS, and the rear window 91RR for each position (see FIG. 3). In this case, the control unit 20 controls the transmittance of the window 91 according to the projected positions of the in-vehicle image 100 and the out-vehicle image 101 by notifying the ECU 92 of the projected positions of the in-vehicle image 100 and the out-vehicle image 101. It is possible to execute Therefore, the control unit 20 can project / display the in-vehicle image 100 and the in-vehicle image 101 using any area of the window 91. This also improves the ability to present information.
 また、車外用画像101として、ターンシグナル画像101Tの表示も実行する(図14参照)。即ちウインドウ表示によって左右のいずれかが顕著化されることでターン方向を示すようなターンシグナル画像101Tの表示を行うことで、多様な画像、或いは動的画像として、より印象度や視認性が高いターンシグナル光を発生させることができる。
 またコーナー部95に注目すると、図14に示したターンシグナル表示は、コーナー部95が点滅する表示動作となる。即ち左右のコーナー部のいずれかの点滅によってターン方向を示すことでターンシグナルとしての認識性を高くできる。
Further, the display of the turn signal image 101T is also executed as the external image 101 (see FIG. 14). That is, by displaying the turn signal image 101T showing the turn direction by making either the left or right prominent by the window display, the degree of impression or the visibility is higher as various images or dynamic images. Turn signal light can be generated.
Further, focusing on the corner portion 95, the turn signal display shown in FIG. 14 is a display operation in which the corner portion 95 blinks. That is, by indicating the turn direction by blinking either of the left and right corner portions, the recognition as a turn signal can be enhanced.
 1…ルーフモジュール、2…レーザライトエンジン、3…ヘッドライト部、4…リアライト部、5…周囲照明部、6…光ファイバ、7…監視センサユニット、8…画像投影部、20…制御部、21…電源回路部、22…レーザ光源部、23…駆動回路、24…解析部、91…ウインドウ、91F…フロントウインドウ、91RS…右サイドウインドウ、91LS…左サイドウインドウ、91RR…リアウインドウ DESCRIPTION OF SYMBOLS 1 ... Roof module, 2 ... Laser light engine, 3 ... Headlight part, 4 ... Rear light part, 5 ... Ambient illumination part, 6 ... Optical fiber, 7: ... Monitoring sensor unit, 8 ... Image projection part, 20 ... Control part , 21: power supply circuit unit, 22: laser light source unit, 23: drive circuit, 24: analysis unit, 91: window, 91 F: front window, 91 RS: right side window, 91 LS: left side window, 91 RR: rear window

Claims (5)

  1.  車両の車室内に配置され、少なくとも車両のフロントウインドウとサイドウインドウに画像を投影する画像投影部を有し、
     前記画像投影部は、車両乗員が前記フロントウインドウと前記サイドウインドウを介して外方視認が可能な状態において、車両乗員に表示するための車内用画像を表示させる投影を行う
     車両ウインドウ表示装置。
    An image projection unit disposed in a vehicle compartment of the vehicle and projecting an image on at least a front window and a side window of the vehicle,
    The image window projection device performs projection for displaying an in-vehicle image to be displayed to a vehicle occupant in a state in which the vehicle occupant can view outward through the front window and the side window.
  2.  さらに車両のウインドウの外面側に、前記車内用画像とは異なる画像内容であって車外に対する表示のための車外用画像の表示を行う
     請求項1に記載の車両ウインドウ表示装置。
    The vehicle window display device according to claim 1, further comprising displaying on the outer surface side of a window of the vehicle an external image for display that is different from the in-vehicle image and for displaying outside the vehicle.
  3.  フロントウインドウと少なくとも一方のサイドウインドウにまたがって情報を表示させる
     請求項1又は請求項2に記載の車両ウインドウ表示装置。
    The vehicle window display device according to claim 1 or 2, wherein information is displayed across the front window and at least one side window.
  4.  前記車外用画像として、車両のリアウインドウを含めて、車両の全周囲方向に対する画像表示を行う
     請求項1乃至請求項3のいずれかに記載の車両ウインドウ表示装置。
    The vehicle window display device according to any one of claims 1 to 3, wherein an image display is performed in the entire circumferential direction of the vehicle, including a rear window of the vehicle, as the vehicle exterior image.
  5.  車両外部への照明としてレーザ光を出力するレーザ光出力部と、
     レーザ光源及びレーザ光源の駆動回路を有する発光駆動部とを有し、
     前記レーザ光出力部は、前記レーザ光源から出力されたレーザ光が導光路によって供給されて光出力が行われ、
     前記画像投影部は、前記レーザ光源から出力され導光路によって供給されたレーザ光を用いて投影を行う
     請求項1乃至請求項4のいずれかに記載の車両ウインドウ表示装置。
    A laser light output unit that outputs laser light as illumination to the outside of the vehicle;
    And a light emission drive unit having a laser light source and a drive circuit for the laser light source,
    In the laser light output unit, the laser light output from the laser light source is supplied by a light guide to perform light output.
    The vehicle window display device according to any one of claims 1 to 4, wherein the image projection unit performs projection using a laser beam output from the laser light source and supplied by a light guide.
PCT/JP2016/079323 2015-10-27 2016-10-03 Vehicle window display device WO2017073249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547689A JPWO2017073249A1 (en) 2015-10-27 2016-10-03 Vehicle window display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-210747 2015-10-27
JP2015210747 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073249A1 true WO2017073249A1 (en) 2017-05-04

Family

ID=58630300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079323 WO2017073249A1 (en) 2015-10-27 2016-10-03 Vehicle window display device

Country Status (2)

Country Link
JP (1) JPWO2017073249A1 (en)
WO (1) WO2017073249A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189998A (en) * 2016-04-11 2017-10-19 トヨタ自動車株式会社 Vehicular display device
CN109383241A (en) * 2017-08-11 2019-02-26 通用汽车环球科技运作有限责任公司 For sun-proof system and method
JP2019048578A (en) * 2017-09-11 2019-03-28 本田技研工業株式会社 Vehicle display system
US10860028B2 (en) * 2017-08-14 2020-12-08 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and program
KR20210018501A (en) * 2018-08-28 2021-02-17 제트카베 그룹 게엠베하 Vehicle lamp using semiconductor light emitting device
JP2022145766A (en) * 2019-02-15 2022-10-04 マクセル株式会社 Vehicle information display device and information display system vehicles
JP7316469B1 (en) 2020-06-10 2023-07-27 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Methods and systems for displaying visual content on automobiles and methods for providing automobiles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298201A (en) * 2008-06-10 2009-12-24 Denso Corp Vehicle display
JP2012019291A (en) * 2010-07-06 2012-01-26 Ricoh Co Ltd Image formation device, connection control method, and program
JP2014071020A (en) * 2012-09-28 2014-04-21 Fuji Heavy Ind Ltd Sight line guidance system
JP2014078271A (en) * 2012-04-13 2014-05-01 Adc Technology Inc On-vehicle image display device
JP2015123855A (en) * 2013-12-26 2015-07-06 株式会社小糸製作所 Vehicular lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699706B2 (en) * 2011-03-15 2015-04-15 住友電気工業株式会社 In-vehicle display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298201A (en) * 2008-06-10 2009-12-24 Denso Corp Vehicle display
JP2012019291A (en) * 2010-07-06 2012-01-26 Ricoh Co Ltd Image formation device, connection control method, and program
JP2014078271A (en) * 2012-04-13 2014-05-01 Adc Technology Inc On-vehicle image display device
JP2014071020A (en) * 2012-09-28 2014-04-21 Fuji Heavy Ind Ltd Sight line guidance system
JP2015123855A (en) * 2013-12-26 2015-07-06 株式会社小糸製作所 Vehicular lamp

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189998A (en) * 2016-04-11 2017-10-19 トヨタ自動車株式会社 Vehicular display device
CN109383241A (en) * 2017-08-11 2019-02-26 通用汽车环球科技运作有限责任公司 For sun-proof system and method
CN109383241B (en) * 2017-08-11 2022-02-11 通用汽车环球科技运作有限责任公司 System and method for sun protection
US10860028B2 (en) * 2017-08-14 2020-12-08 Honda Motor Co., Ltd. Vehicle control apparatus, vehicle control method, and program
JP2019048578A (en) * 2017-09-11 2019-03-28 本田技研工業株式会社 Vehicle display system
KR20210018501A (en) * 2018-08-28 2021-02-17 제트카베 그룹 게엠베하 Vehicle lamp using semiconductor light emitting device
KR102427776B1 (en) 2018-08-28 2022-08-01 제트카베 그룹 게엠베하 Vehicle lamp using semiconductor light emitting device
JP2022145766A (en) * 2019-02-15 2022-10-04 マクセル株式会社 Vehicle information display device and information display system vehicles
JP7397925B2 (en) 2019-02-15 2023-12-13 マクセル株式会社 Vehicle information display device and vehicle information display system
JP7316469B1 (en) 2020-06-10 2023-07-27 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Methods and systems for displaying visual content on automobiles and methods for providing automobiles
JP2023536211A (en) * 2020-06-10 2023-08-24 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Methods and systems for displaying visual content on automobiles and methods for providing automobiles

Also Published As

Publication number Publication date
JPWO2017073249A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6847045B2 (en) Vehicle lighting
JP7302063B2 (en) Image projection device and image projection method
WO2017073249A1 (en) Vehicle window display device
WO2017073250A1 (en) Vehicle lamp
JP7241081B2 (en) Vehicle display system and vehicle
JP7282789B2 (en) VEHICLE DISPLAY SYSTEM, VEHICLE SYSTEM AND VEHICLE
JPWO2020031917A1 (en) Vehicle display system and vehicle
CN114466761A (en) Head-up display and image display system
JPWO2020031912A1 (en) Vehicle display system and vehicle
JP7452955B2 (en) heads up display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859486

Country of ref document: EP

Kind code of ref document: A1