WO2017072944A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2017072944A1
WO2017072944A1 PCT/JP2015/080691 JP2015080691W WO2017072944A1 WO 2017072944 A1 WO2017072944 A1 WO 2017072944A1 JP 2015080691 W JP2015080691 W JP 2015080691W WO 2017072944 A1 WO2017072944 A1 WO 2017072944A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
virtual
armature
slots
Prior art date
Application number
PCT/JP2015/080691
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 梅田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/080691 priority Critical patent/WO2017072944A1/en
Priority to JP2017547306A priority patent/JP6407448B2/en
Priority to CN201580084085.9A priority patent/CN108352749B/en
Publication of WO2017072944A1 publication Critical patent/WO2017072944A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • This invention relates to a rotating electrical machine having an armature and a rotor that rotates relative to the armature.
  • a rotating electric machine in which an armature is configured by winding a plurality of armature coils on a plurality of magnetic teeth of an armature core in two layers. Also, conventionally, by providing an additional coil in the armature core with the coil end tilted in the opposite direction to the coil end of the base coil provided in the armature core, rotation that maintains good operating characteristics of the rotating electric machine.
  • An electric machine has been proposed (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a rotating electrical machine that has good operating characteristics and can be easily manufactured.
  • a rotating electrical machine has a plurality of magnetic pole teeth spaced apart from each other in the circumferential direction, an armature core in which slots are formed between the magnetic pole teeth, and a pair of slots disposed in different slots.
  • a plurality of armature coils each including a coil side and a coil end connecting between a pair of coil sides, each armature coil being wound on the magnetic pole teeth by lap winding, and a three-phase current flowing through each armature coil
  • An armature coil group and a rotor having a plurality of magnetic poles arranged in the circumferential direction and rotating with respect to the armature core and the armature coil group, the armature coil group having one coil side at the top of the slot And a plurality of base coils in which the other coil side is arranged at the lower opening of the slot, and a plurality of upper layer coils in which one and the other coil sides are both arranged at the upper opening of the slot,
  • Each of the one and the other coil sides has a plurality of
  • the number of pole slots q ′ satisfies the relationship N ⁇ q ′ ⁇ N + 1, and the coil ends of each base coil straddle the N + 1 number of magnetic pole teeth in the same direction with respect to the circumferential direction of the armature core.
  • Each coil end of each upper layer coil and each lower layer coil straddles the N magnetic pole teeth, and each coil side of a plurality of virtual base coils having the same configuration as the base coil is connected to the upper opening of each slot and
  • the two temporary connections have the relationship that the currents flowing in the two coil sides respectively arranged in the upper openings of the two slots arranged at all of the lower openings and sandwiching the N magnetic pole teeth are in the opposite directions.
  • a base coil is a virtual specific coil, a virtual base coil sandwiched between two virtual specific coils is a virtual adjustment coil, and a virtual coil pair and a virtual adjustment coil configured by two virtual specific coils are included in the armature core.
  • each base coil is arranged avoiding the respective positions of all virtual specific coils and all virtual adjustment coils, and each upper coil and each Each coil side of the lower layer coil is arranged at the position of each coil side of each virtual specific coil, and among each slot, a slot sandwiched between one and the other coil sides of each upper layer coil, and each lower layer coil
  • the slot sandwiched between one and the other coil side is a deep groove type slot that has a lowermost opening in addition to an upper opening and a lower opening.
  • the armature coil group further includes a plurality of lowermost coils, one of the other coil sides being arranged at the lowermost opening of the deep groove type slot, and the coil end of the lowermost coil is
  • the upper layer coil, the lower layer coil, and the base coil are arranged so as to avoid the magnetic pole teeth that do not straddle, and the number of the magnetic pole teeth that the coil end of the lowermost layer coil straddles is the same in each lower layer coil.
  • the operating characteristics are good and the manufacturing can be facilitated.
  • FIG. 10 It is a block diagram which shows the rotary electric machine by Embodiment 1 of this invention. It is an expanded view which shows the armature of FIG. 5 is a configuration diagram showing a rotating electrical machine according to Comparative Example 1.
  • It is a principal part enlarged view of the armature of the rotary electric machine of FIG. 10 is a table showing a winding coefficient Kd of a rotating electrical machine according to Comparative Example 1.
  • surface which shows the winding coefficient Kd of the rotary electric machine of FIG. 10 is a configuration diagram showing a rotating electrical machine according to Comparative Example 2.
  • FIG. 10 is a table showing a winding coefficient Kd of a rotating electrical machine according to Comparative Example 2. It is a block diagram which shows the rotary electric machine by Embodiment 2 of this invention. It is an expanded view which shows the armature of FIG. 12 is a table showing a winding coefficient Kd of the rotating electrical machine of FIG.
  • FIG. 1 is a block diagram showing a rotating electrical machine according to Embodiment 1 of the present invention.
  • a rotating electrical machine 1 includes an armature 2 that is a cylindrical stator, a rotating shaft 3 disposed on an axis of the armature 2, an armature that is fixed to the rotating shaft 3 and is integrally formed with the rotating shaft 3. And a rotor 4 that is rotated with respect to 2.
  • the rotor 4 is disposed inside the armature 2. Further, the rotor 4 is provided on a cylindrical rotor core 5 made of a magnetic material (for example, iron) and an outer peripheral surface of the rotor core 5 (that is, a surface facing the inner peripheral surface of the armature 2). And a plurality of magnets 6 provided. The magnets 6 are arranged at intervals from each other in the circumferential direction of the rotor core 5. In the rotor 4, a plurality of magnetic poles arranged in the circumferential direction of the rotor core 5 are formed by the magnets 6. In this example, 14 magnets 6 are provided on the outer peripheral surface of the rotor core 5, and the number of magnetic poles P of the rotor 4 is 14.
  • a magnetic material for example, iron
  • the armature 2 has an armature core 7 made of a magnetic material (for example, iron) and an armature coil group 8 provided on the armature core 7.
  • armature core 7 made of a magnetic material (for example, iron)
  • armature coil group 8 provided on the armature core 7.
  • the armature core 7 has a cylindrical back yoke 9 and a plurality of magnetic pole teeth 10 projecting radially inward from the inner peripheral portion of the back yoke 9 (that is, toward the rotor 4).
  • the magnetic pole teeth 10 are provided at intervals in the circumferential direction of the armature core 7. Thereby, between each magnetic pole tooth 10, the slot 11 opened to the radial inside of the armature core 7 (that is, toward the rotor 4) is formed.
  • the number of magnetic pole teeth 10 and the number of slots 11 (number of slots) Q are the same. In this example, the number of magnetic pole teeth 10 and the number of slots Q are both 36.
  • the slot 11 located directly above the center of the rotating shaft 3 in FIG. 1 is assumed.
  • the reference slot number of FIG. The number of each slot 11 is set to No. 1 in the counterclockwise order. 2, No. 3,. 36.
  • No. 1 in FIG. 1 and no. No. 2 of the magnetic pole teeth 10 located between the two slots 11. 1 and no. No. 1 magnetic teeth 10 are numbered in the order of the counterclockwise order. 2, No. 3,. 36.
  • the number of slots per pole (that is, the number of slots 11 per magnetic pole of the rotor 4)
  • q ′ which is a coefficient indicating the relationship between the number of slots Q and the number of magnetic poles P, is expressed by the following equation (1). Is done.
  • FIG. 2 is a development view showing the armature 2 of FIG.
  • the armature coil group 8 includes a plurality of base coils 12, a plurality of upper layer coils 13, a plurality of lower layer coils 14, and a plurality of lowermost layer coils 15 as armature coils.
  • Each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 is composed of a wire bundle wound around a plurality of magnetic pole teeth 10. That is, each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 is wound around the magnetic pole teeth 10 by lap winding. Further, the wire type and the number of turns of the conductor bundles constituting the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 are all the same.
  • Each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 includes a pair of coil sides 21 arranged in different slots 11 and a pair of coil sides 21 across the plurality of magnetic pole teeth 10. It has a pair of coil ends 22 to be connected. Each coil side 21 is a substantially straight portion along the slot 11. Each coil end 22 connects between the ends of the coil sides 21 outside the armature core 7 in the axial direction.
  • the slots 11 are deep groove-type slots 111, and other slots than the deep groove-type slots 111 are provided.
  • the slot 11 is a normal slot 112.
  • each normal slot 112 has an upper opening (that is, an upper layer) and a lower opening (that is, a lower layer) that are spaces for arranging the coil sides 21.
  • the upper opening of the normal slot 112 is located on the radially inner side of the armature core 7 (that is, the opening side of the normal slot 112) than the lower opening of the normal slot 112.
  • each deep groove type slot 111 has an upper opening (that is, an upper layer), a lower opening (that is, a lower layer), and a lowermost opening (that is, a lowermost layer) that are spaces for arranging the coil sides 21.
  • the upper opening of the deep groove type slot 111 is located on the inner side in the radial direction of the armature core 7 (that is, the opening side of the deep groove type slot 111) than the lower opening of the deep groove type slot 111, and the lower opening of the deep groove type slot 111 is the deep groove type. It is located on the radially inner side of the armature core 7 (that is, the opening side of the deep groove type slot 111) from the lowermost opening of the slot 111.
  • each deep groove type slot 111 and each normal slot 112 exists at the same position in the radial direction of the armature core 7, and the lower opening of each deep groove type slot 111 and each normal slot 112 is the armature core 7. It exists in the same position about the radial direction. Therefore, the lowermost opening of each deep groove type slot 111 exists at a position radially outside the lower opening of the normal slot 112.
  • Each base coil 12 is provided on the armature core 7 in a state where one coil side 21 is disposed at the upper opening of the slot 11 and the other coil side 21 is disposed at the lower opening of the slot 11. Further, the coil end 22 of each base coil 12 straddles the plurality of magnetic pole teeth 10 while being inclined in the same direction with respect to the circumferential direction of the armature core 7.
  • each base coil 12 is a long-pitch coil having a coil pitch larger than the number of slots per pole q ′.
  • the upper coil 13 is provided on the armature core 7 with one and the other coil sides 21 arranged at the upper opening of the slot 11.
  • the lower layer coil 14 is provided on the armature core 7 with one and the other coil sides 21 arranged at the lower opening of the slot 11.
  • the lowermost layer coil 15 is provided on the armature core 7 with one and the other coil sides 21 arranged at the lowermost opening of the deep groove type slot 111.
  • the phases of currents flowing through the base coils 12, the upper layer coils 13, the lower layer coils 14, and the lowermost layer coils 15 are indicated by U, V, and W, respectively.
  • the direction of the current flowing through each coil side 21 is indicated by upper and lower case letters U, V, and W, and a black circle mark and an X mark in a white circle mark indicating the coil side 21. It shows with. Therefore, the winding direction of each coil 12, 13, 14, 15 can be understood from the current direction of each coil side 21.
  • the upper layer coils 13 and the lower layer coils 14 are specified.
  • the rotary electric machine by the comparative example 1 which does not contain the lowermost layer coil 15 is assumed.
  • FIG. 3 is a configuration diagram illustrating the rotating electrical machine 1A according to the first comparative example.
  • 4 is a development view showing the armature 2 of the rotating electrical machine 1A of FIG.
  • FIG. 5 is an enlarged view of a main part of the armature 2 of the rotating electrical machine 1A of FIG. 4 and 5, the current phase flowing through each coil and the direction of the current flowing through each coil side are shown in the same manner as in FIG.
  • the configuration of the rotating electrical machine 1A according to Comparative Example 1 is the same as the configuration of the rotating electrical machine 1 according to the first embodiment except for the configuration of the armature coil group 8 and the configuration of the slot 11 of the armature core 7.
  • a normal slot 112 is provided in the armature core 7 instead of each deep groove type slot 111 according to the first embodiment. That is, in Comparative Example 1, all the slots 11 provided in the armature core 7 have the same configuration as the normal slots 112.
  • the armature coil group 8 according to Comparative Example 1 has only a plurality of virtual base coils 12 a having the same configuration as the base coil 12.
  • Each virtual base coil 12 a has a pair of coil sides 21 a having the same configuration as the coil side 21 of the base coil 12 and a pair of coil ends 22 a having the same configuration as the coil end 22 of the base coil 12.
  • Each virtual base coil 12 a is regularly arranged on the armature core 7 with one coil side 21 a arranged at the upper opening of the slot 11 and the other coil side 21 a arranged at the lower opening of the slot 11.
  • Each coil side 21a of each virtual base coil 12a is disposed in all the upper and lower openings of each slot 11.
  • the ideal state of a rotating electrical machine is that the magnitudes of the resultant vectors of the induced voltages produced by the U-phase, V-phase, and W-phase armature coils are the same, and the resultant vectors of the induced voltages of the phases are phase differences in terms of electrical angles. It is in a state of being distributed every 120 °. Therefore, in the rotating electrical machine 1A according to the comparative example 1, selection of the current phase (U phase, V phase, W phase) connected to each virtual base coil 12a and each virtual base coil so that the ideal state of the rotating electrical machine is obtained. Selection of the winding direction of 12a is performed.
  • the arrangement of the virtual base coils 12 a of the respective phases is the same except that the direction of the current flowing through the coil side 21 a is reversed.
  • the value of the number of slots per pole q ′ of the rotating electrical machine 1A according to Comparative Example 1 is 18/7. That is, in the armature 2 in the comparative example 1, the seven magnetic poles correspond to one set corresponding to the eighteen slots 11, so that the arrangement of the virtual base coils 12a of each phase is eighteen. It is configured to be repeated in a group of slots 11.
  • each virtual base coil 12a is regularly stacked on the armature core 7 in a two-layer lap winding
  • N is a natural number of 2 or more
  • the number of slots per pole q ′ is expressed by the following formula (2 )
  • the two virtual base coils 12a having a specific relationship with respect to the current phase and current direction are adjusted by adjusting the current phase and winding direction of the U phase, V phase, and W phase of each virtual base coil 12a.
  • the virtual coil pairs 23 configured by the above can appear at regular intervals.
  • the relationship between the two virtual specific coils 12A included in the common virtual coil pair 23 is 2 across the N magnetic pole teeth 10.
  • the currents flowing in the two coil sides 21a arranged at the upper openings (or the lower openings) of the two slots 11 are in the same phase and opposite directions.
  • Each virtual base coil 12a in Comparative Example 1 is a coil in which the coil end 22a straddles the N + 1 magnetic pole teeth 10. From this, in the comparative example 1, the coil pitch of each virtual base coil 12a is 3.
  • N ⁇ 1 virtual base coils 12a exist as virtual adjustment coils 12B.
  • N ⁇ 1 virtual adjustment coils 12B are also present at regular intervals in the circumferential direction of the armature core 7.
  • the current phase of the virtual adjustment coil 12B and the current phase of the virtual coil pair 23 including the two virtual specific coils 12A sandwiching the virtual adjustment coil 12B are obtained. Are different from each other.
  • the current phase of the virtual adjustment coil 12B sandwiched between the virtual specific coil 12A of the V phase virtual coil pair 23 is sandwiched between the virtual specific coil 12A of the W phase and U phase virtual coil pair 23.
  • the current phase of the virtual adjustment coil 12B sandwiched between the virtual specific coil 12A of the virtual coil pair 23 of the V phase and W phase virtual coil pair 23 is the U phase.
  • FIG. 6 is a table showing the winding coefficient Kd of the rotating electrical machine 1A according to Comparative Example 1.
  • the winding coefficient Kd is an index indicating the characteristics of the rotating electrical machine.
  • the torque characteristic is better as the numerical value of the fundamental wave component is closer to 1
  • the higher frequency vibration is as the numerical value of higher order components such as fifth order, seventh order,. Indicates that the operating characteristics of the rotating electrical machine are good.
  • the numerical value of the winding coefficient Kd shows a good tendency for both the fundamental wave component and the higher-order component.
  • each base coil 12 is arranged at the position of the virtual base coil 12a.
  • the coil sides 21 of the upper layer coil 13 and the lower layer coil 14 are arranged at the positions of the coil sides 21a of the virtual specific coil 12A where the arrangement of the base coil 12 is avoided.
  • the upper layer coil 13 and the lower layer coil 14 are arranged one by one for the common virtual coil pair 23 in which the arrangement of the base coil 12 is avoided. Therefore, the number of the upper layer coils 13 and the number of the lower layer coils 14 included in the armature coil group 8 are the same.
  • the current phase of the upper layer coil 13 is the same as the current phase of the virtual coil pair 23 having the coil side 21 a corresponding to the coil side 21 of the upper layer coil 13. Further, the winding direction of the upper layer coil 13 is determined so that the direction of the current flowing through the coil side 21 of the upper layer coil 13 is the same as the direction of the current flowing through the coil side 21a of the virtual specific coil 12A.
  • the current phase of the lower coil 14 is the same as the current phase of the virtual coil pair 23 having the coil side 21 a corresponding to the coil side 21 of the lower coil 14. Further, the winding direction of the lower layer coil 14 is determined so that the direction of the current flowing through the coil side 21 of the lower layer coil 14 is the same as the direction of the current flowing through the coil side 21a of the virtual specific coil 12A.
  • the armature 2 according to the present embodiment is different from the armature 2 according to the comparative example 1 in that the base coil 12 at the position of each virtual specific coil 12A is eliminated when FIG. 2 is compared with FIG. . If the base coil 12 at the position of each virtual specific coil 12A is simply eliminated, the induced voltage produced by the armature 2 will decrease, but in the armature 2 according to the present embodiment, each coil of each virtual specific coil 12A. Either the coil side 21 of the upper layer coil 13 or the coil side 21 of the lower layer coil 14 is disposed at the position of the side 21a. Thereby, the fall of the induced voltage by having eliminated the base coil 12 of the position of each virtual specific coil 12A is prevented.
  • three virtual adjustment coils 12B (for example, No. 2, No. 8, No. 14) that are adjacent to each other in the circumferential direction of the armature core 7 and have different current phases are used.
  • the U-phase, V-phase, and W-phase virtual adjustment coils 12B) having the coil sides 21a arranged at the upper openings of the slots 11 are virtual base coils 12a that generate induced voltages having a phase difference of 120 °. .
  • the magnitudes of the respective synthesized vectors of the induced voltages generated by the U-phase, V-phase, and W-phase virtual base coils 12a are In the same manner, it is possible to maintain a state in which the phase difference of the combined vector of the induced voltage of each phase is distributed every 120 ° in electrical angle.
  • the U-phase, V-phase, and W-phase virtual adjustment coils 12B exist in the same number (one in this example) within the range of the electrical angle width ⁇ °.
  • the electrical angle width ⁇ ° is determined depending on the number of slots Q and the number of magnetic poles P, that is, the number of slots per pole q ′, and is expressed by the following equation (3).
  • gcd (Q, P) is the greatest common divisor of the number of slots Q and the number of magnetic poles P of the rotor 4.
  • the base coil 12 is arranged avoiding all positions of the virtual adjustment coils 12B. Therefore, in the present embodiment, it is possible to prevent the relationship between the magnitude of the combined vector and the phase difference between the induced voltages generated by the U-phase, V-phase, and W-phase base coils 12 from being lost.
  • Each slot 11 sandwiched between the coil sides 21 is a deep groove type slot 111.
  • each deep groove type slot 111 exists for every three slots 11. That is, in this embodiment, No. 2, No. 5, no. 8, no. 11, no. 14, no. 17, no. 20, no. 23, no. 26, no. 29, no. 32, no.
  • the 35 slots 11 are deep groove type slots 111.
  • each coil end 22 of each lowermost layer coil 15 has a magnetic pole tooth 10 (in this example, No. 6, No. 12, No. 18, No. 18) on which none of the base coil 12, the upper layer coil 13 and the lower layer coil 14 straddles. No. 24, No. 30, and No. 36 magnetic pole teeth 10) are arranged so as to be avoided.
  • the number of magnetic pole teeth 10 straddled by the coil ends 22 of the lowermost layer coils 15 is the same in each lowermost layer coil 15.
  • each coil end 22 of each lowermost layer coil 15 straddles the three magnetic pole teeth 10. That is, the coil pitch of each lowermost layer coil 15 is 3.
  • One and the other coil sides 21 of the lowermost layer coil 15 are disposed at the lowermost openings of the two deep groove slots 111 adjacent to each other. Thereby, each coil end 22 of each lowermost layer coil 15 is parallel to the circumferential direction of the armature core 7.
  • the lowermost layer of the deep groove type slot 111 sandwiched between the pair of coil sides 21 of the upper layer coil 13 corresponding to the one virtual coil pair 23 is the lowermost layer.
  • One coil side 21 of the coil 15 is disposed, and the lowermost layer coil 15 is disposed at the lowermost opening of the other deep groove type slot 111 sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23.
  • the other coil side 21 is arranged.
  • the current phase of the lowermost layer coil 15 is the current phase of the upper layer coil 13 having a pair of coil sides 21 sandwiching one deep groove type slot 111 and the lower layer coil 14 having a pair of coil sides 21 sandwiching the other deep groove type slot 111.
  • the phase is different from each of the current phases. For example, no. 2 and no.
  • the current phase of the lowermost layer coil 15 having the coil side 21 disposed at the lowermost opening of each of the deep groove type slots 111 of No. 5 is No. 5.
  • V-phase upper layer coil 13 having a pair of coil sides 21 sandwiching two deep groove-type slots 111 that is, upper layer coil 13 having coil sides 21 arranged at the upper openings of No. 1 and No. 3 slots 11) Current phase, and no.
  • U-phase lower layer coil 14 having a pair of coil sides 21 sandwiching the deep groove type slot 111 of No. 5 (that is, the lower layer coil 14 having the coil side 21 disposed at the lower opening of the No. 4 and No. 6 slots 11)
  • the W phase is different from each of the current phases.
  • the direction of the current on the coil side 21 of each lowermost layer coil 15 is the deep groove type slot in which the coil side 21 of the lowermost layer coil 15 is arranged among the coil sides 21 of the base coil 12 in the same phase as the lowermost layer coil 15.
  • the direction of the current flowing in the coil side 21 arranged at 111 is the same.
  • the current phases of the three lowermost coils 15 adjacent to each other in the circumferential direction of the armature core 7 are different from each other as shown in FIG. For example, no. 2, No. 8, no.
  • the current phases of the three lowest-layer coils 15 having the coil sides 21 arranged at the lowermost openings of the 14 deep groove-type slots 111 are different W-phase, V-phase, and U-phase, respectively.
  • each deep groove type slot 111 in which each one coil side 21 of each phase which is different from each other, that is, each U-phase, V-phase, and W-phase bottom layer coil 15 is arranged, is in the circumferential direction of the armature core 7. It appears for every n slots 11 represented by the following formula (4).
  • N Q / ⁇ gcd (Q, P) ⁇ m ⁇ (4)
  • each deep groove type slot 111 (for example, each No. 2, No. 8, No. 14 deep groove type slot in which one coil side 21 of each lowermost layer coil 15 of a different phase is arranged. 111) appears for each of the six slots 11, and the relationship of Expression (4) is established.
  • the three lowermost coils 15 adjacent to each other in the circumferential direction of the armature core 7 are coils that generate an induced voltage having a phase difference of 120 °.
  • the U-phase, V-phase, and W-phase lowermost coils 15 are arranged in the same number (one in this example) within the range of the electrical angle width ⁇ °.
  • the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, and the lower layer coil 14 is equally large in each phase by the addition of each lowermost layer coil 15.
  • the armature core 7 is divided into a plurality (two in this example) of divided cores 31 arranged in the circumferential direction of the armature core 7.
  • the divided cores 31 are connected to each other by welding or the like, for example.
  • the position of the boundary 32 of each divided core 31 is such that the magnetic pole teeth 10 (No. 18 in this example) in which none of the coil ends 22 of the base coil 12, the upper layer coil 13, the lower layer coil 14 and the lowermost layer coil 15 straddle. And No. 36 magnetic pole teeth 10).
  • the boundary 32 of each divided core 31 is formed along the radial direction of the armature core 7.
  • the armature 2 is constituted by a plurality (two in this example) of divided armatures 33 each having a base coil 12, an upper layer coil 13, a lower layer coil 14, and a lowermost layer coil 15 provided in a divided core 31.
  • FIG. 7 is a table showing the winding coefficient Kd of the rotating electrical machine 1 of FIG. It can be seen that the numerical value of the winding coefficient Kd of the rotating electrical machine 1 according to the present embodiment is good for both the fundamental wave component and the higher-order component even when compared with the winding coefficient Kd of the rotating electrical machine 1A of Comparative Example 1.
  • the armature 2 When the armature 2 is manufactured, the armature 2 is manufactured by manufacturing a plurality of divided armatures 33 in advance, arranging the divided armatures 33 in a ring shape, and fixing the divided cores 31 to each other.
  • the coil sides 21 are inserted into the slots 11 of the split core 31 in the order of the lowermost layer coils 15, the lower layer coils 14, the base coils 12, and the upper layer coils 13.
  • the child coils 12 to 15 are attached to the split core 31. Thereby, the split armature 33 is completed.
  • the split armature 33 there are magnetic teeth 10 at regular intervals where none of the coil ends 22 of the armature coils 12 to 15 straddle. Therefore, when the split armature 33 is manufactured, the work of sequentially mounting the lowermost layer coil 15, the lower layer coil 14, the base coil 12, and the upper layer coil 13 to the split core 31 is performed between the magnetic pole teeth 10 where the coil end 22 does not straddle. It may be performed individually for each section.
  • the slot 11 that accommodates the coil side 21 a of the virtual adjustment coil 12 ⁇ / b> B in the virtual base coil mounted state is a deep groove type slot 111 that is deeper than the normal slot 112, and one of the lowermost layer coils 15. Since the other coil side 21 is disposed at the lowermost opening of the deep groove type slot 111, the lowermost layer coil 15 may be disposed away from the base coil 12 in the radial direction of the armature core 7. It is possible to avoid the coil end 22 of the lowermost layer coil 15 from intersecting with the coil end 22 of the base coil 12.
  • each lower layer coil 15 generates an induced voltage that increases the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, and the lower layer coil 14 in each phase (U phase, V phase, W phase). It is possible to prevent a decrease in the induced voltage of each phase while maintaining the balance of the induced voltage of each phase (U phase, V phase, W phase) of the armature coil group 8. Thereby, the operating characteristic of the rotary electric machine 1 can be maintained satisfactorily.
  • the armature core 7 is divided into a plurality of divided cores 31 arranged in the circumferential direction of the armature core 7, and the position of the boundary 32 of each divided core 31 spans all the armature coils 12 to 15. Therefore, the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 can be wound around each divided core 31. Accordingly, it is possible to facilitate the mounting operation of the coils 12 to 15 to the split core 31 and to facilitate the manufacture of the armature 2.
  • the armature 2 is composed of a plurality of divided armatures 33, each component constituting the armature 2 can be reduced in size and weight. Thereby, even after completion of the rotating electrical machine 1, the armature 2 can be disassembled and reassembled in units of the split armature 33, and workability such as repair and maintenance of the rotating electrical machine 1 can be improved. Further, even when the armature 2 is damaged, it is not necessary to repair and replace the entire armature 2, thereby reducing the cost required for repairing and replacing the rotating electrical machine 1 and shortening the working time. it can.
  • Embodiment 2 Before describing the rotating electrical machine 1 according to Embodiment 2, the configuration of the rotating electrical machine 1B according to Comparative Example 2 will be described.
  • FIG. 8 is a configuration diagram showing the rotating electrical machine 1B according to the second comparative example.
  • FIG. 9 is a development view showing the armature 2 of FIG.
  • each virtual base coil 12a is in a virtual base coil mounting state in which the virtual base coils 12a are regularly arranged on the armature core 7 by two-layer wrapping.
  • the number Q of the slots 11 is 54
  • the number of magnetic poles P of the rotor 4 is 14. Therefore, the value of the number of slots per pole q ′ in Comparative Example 2 is 27/7 ( ⁇ 3.85), which is a value larger than 3 and smaller than 4 (3 ⁇ q ′ ⁇ 4).
  • the distance between the 54 slots 11 is also 27 slots.
  • the coil sides 21a of the lower openings of the slots 11 are the coil sides 21a of two common virtual base coils 12a. 28 and no. No. 31 of the slot 11 slot No. 24 and no.
  • the coil sides 21a of the lower openings of the 27 slots 11 are also the coil sides 21a of the two common virtual base coils 12a.
  • the two virtual base coils 12a having the flowing relationship become the virtual specific coils 12A, respectively, and the virtual coil pairs 23 constituted by the two virtual specific coils 12A are arranged at intervals of 27 slots.
  • the virtual coil pairs 23 are arranged at intervals of 27 slots.
  • each phase (U phase, V phase, W phase) is repeated in the same order.
  • the virtual base coil 12a of FIG. 1 and no. 4 is a U-phase, no. 10 and no.
  • the virtual coil pair 23 having the two coil sides 21a between the upper ends of the top 13 is the W phase, 19 and No. Since the virtual coil pair 23 having the two coil sides 21a between the upper ends of the 22 is the V phase, the set arranged in the order of the U phase, the W phase, and the V phase is repeated.
  • a plurality of virtual base coils 12a exist as virtual adjustment coils 12B between two virtual specific coils 12A included in the common virtual coil pair 23.
  • the two virtual adjustment coils 12 ⁇ / b> B existing between the two virtual specific coils 12 ⁇ / b> A of the common virtual coil pair 23 are present at the same interval as the virtual coil pair 23 in the circumferential direction of the armature core 7.
  • Current phases are different from each other. Therefore, in the armature 2 according to the comparative example 2, the current phases of the two virtual adjustment coils 12B sandwiched between the virtual specific coils 12A of the U-phase virtual coil pair 23 are V-phase, W-phase, and W-phase virtual coil pairs.
  • the current phases of two virtual adjustment coils 12B sandwiched between 23 virtual specific coils 12A are V-phase, U-phase, and V-phase virtual coil pairs 23 of two virtual adjustment coils 12B sandwiched between virtual specific coils 12A.
  • the current phase is the U phase and the W phase.
  • Each U-phase, V-phase, and W-phase virtual adjustment coil 12B is a virtual base coil 12a that generates an induced voltage with a phase difference of 120 °.
  • Other configurations of Comparative Example 2 are the same as those of Comparative Example 1.
  • FIG. 10 is a table showing the winding coefficient Kd of the rotating electrical machine 1B according to Comparative Example 2.
  • the numerical value of the winding coefficient Kd shows a good tendency for both the fundamental wave component and the higher-order component.
  • FIG. 11 is a block diagram showing a rotating electrical machine 1 according to Embodiment 2 of the present invention.
  • FIG. 12 is a development view showing the armature 2 of FIG.
  • each base coil 12 avoids the positions of all the virtual specific coils 12A and all the virtual adjustment coils 12B included in the virtual coil pair 23 of each phase,
  • the virtual base coil 12a is disposed at the position.
  • the coil sides 21 of the upper layer coil 13 and the lower layer coil 14 are arranged at the positions of the coil sides 21a of the virtual specific coils 12A of the respective phases where the arrangement of the base coil 12 is avoided.
  • Each slot 11 sandwiched between the coil sides 21 is a deep groove type slot 111.
  • the number of deep groove type slots 111 sandwiched between the common upper layer coils 13 and the number of deep groove type slots 111 sandwiched between the common lower layer coils 14 are each two (plural). .
  • one deep groove slot 111 is the first deep groove slot 111A
  • the other deep groove slot 111 is the second deep groove slot 111.
  • 111B is used.
  • the first deep groove type slots 111A exist at regular intervals in the circumferential direction of the armature core 7
  • the second deep groove type slots 111B are the same as the first deep groove type slots 111A in the circumferential direction of the armature core 7. It exists at regular intervals.
  • the depth dimension of the first deep groove type slot 111A and the depth dimension of the second deep groove type slot 111B are different from each other. Accordingly, the position of the lowermost opening of the first deep groove type slot 111A and the position of the lowermost opening of the second deep groove type slot 111B are different from each other in the radial direction of the armature core 7.
  • the depth dimension of each first deep groove type slot 111A is smaller than the depth dimension of each second deep groove type slot 111B. Therefore, in the present embodiment, the lowermost opening of each first deep groove type slot 111A is located radially inward from the lowermost opening of each second deep groove type slot 111B.
  • the depth dimensions of the first deep groove type slots 111A are the same, and the depth dimensions of the second deep groove type slots 111B are also the same.
  • the lower opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B is located radially inward from the lowermost opening of each of the first and second deep groove type slots 111A and 111B. Yes.
  • the upper opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B is radially inward of the lower opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B. positioned.
  • Each coil side 21 of each lowermost layer coil 15 is the bottom of each of all the deep groove type slots 111 (that is, all the first and second deep groove type slots 111A and 111B), as in the first embodiment. Placed in the mouth.
  • four U-phase, V-phase, and W-phase lowermost coils 15 are provided on the armature core 7 by four.
  • the lowermost layer coil 15 having a pair of coil sides 21 arranged at the lowermost openings of the different first deep groove type slots 111A is defined as the first lowermost layer coil 15A.
  • the lowermost layer coil 15 having a pair of coil sides 21 arranged at the lowermost opening of the different second deep groove type slots 111B is defined as the second lowermost layer coil 15B. Therefore, in the present embodiment, the first lowermost layer coil 15A is disposed radially inward from the second lowermost layer coil 15B. Further, the coil ends 22 of the first and second lowermost layer coils 15 ⁇ / b> A and 15 ⁇ / b> B are parallel to the circumferential direction of the armature core 7.
  • the first lowermost layer coil 15 ⁇ / b> A is a first deep groove type slot sandwiched between a pair of coil sides 21 of the upper layer coil 13 corresponding to one virtual coil pair 23 out of two adjacent virtual coil pairs 23.
  • One coil side 21 is arranged at the lowermost port of 111A, and the lowermost port of the first deep groove type slot 111A sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23.
  • the armature core 7 is provided with the other coil side 21 disposed.
  • the second lowermost layer coil 15B is a second deep groove-type slot sandwiched between a pair of coil sides 21 of the upper layer coil 13 corresponding to one virtual coil pair 23 out of two virtual coil pairs 23 adjacent to each other.
  • One coil side 21 is arranged at the lowermost opening of 111B, and at the lowermost opening of the second deep groove type slot 111B sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23.
  • the armature core 7 is provided with the other coil side 21 disposed.
  • the first and second lowermost layer coils 15A, 15B are magnetic pole teeth 10 (No. 9, No. 18, No. 27, No. 36) in which none of the base coil 12, the upper layer coil 13 and the lower layer coil 14 straddles. , No. 45, No. 54 magnetic pole teeth 10) are disposed.
  • the first deep groove type slots 111A are present at regular intervals in the circumferential direction of the armature core 7, and the second deep groove type slots 111B are also at regular intervals in the circumferential direction of the armature core 7 as with the first deep groove type slots 111A. Exists.
  • the number of the magnetic teeth 10 which each coil end 22 of 1st and 2nd lowest layer coil 15A, 15B straddles is the same in each 1st and 2nd lowest layer coil 15A, 15B. . That is, the coil pitches of the first and second lowermost coils 15A and 15B are all the same. In the present embodiment, the number of magnetic pole teeth 10 that the coil ends 22 of the first and second lowermost layer coils 15A and 15B straddle is five.
  • the first and second lowermost layer coils 15A and 15B are the first sandwiched between the pair of coil sides 21 of the common upper layer coil 13 (or the common lower layer coil 14) when FIG. 12 is compared with FIG.
  • the first and second lowermost coils 15A, 15B having the coil sides 21 arranged in the second deep groove type slots 111A, 111B are adjacent to each other in the radial direction of the armature core 7.
  • the coil sides 21 of the first and second bottom layer coils 15A and 15B are accommodated in the coil sides 21 of the first and second bottom layer coils 15A and 15B adjacent to each other in the radial direction of the armature core 7.
  • the current phases of the first and second lowermost coils 15A and 15B adjacent to each other in the radial direction of the armature core 7 are the same as each other.
  • the current phases of the first and second lowermost coils 15A and 15B adjacent to each other in the radial direction of the armature core 7 are the first and second lowermost coils 15A and 15B.
  • the current phases of the first and second lowermost layer coils 15 adjacent to each other in the radial direction of the armature core 7 are a pair of coil sides sandwiching the first and second deep groove type slots 111A and 111B.
  • W-phase lower layer coil 14 having a pair of coil sides 21 sandwiching the eight deep groove type slots 111A and 111B (ie, a lower layer coil having a coil side 21 disposed at the lower opening of the slots 11 of No. 6 and No. 9) 14)
  • the V phase is different from each of the current phases.
  • the direction of the current of the coil side 21 of the first and second lowest layer coils 15A and 15B is the coil side 21 of the base coil 12 in the same phase as the first and second lowest layer coils 15A and 15B.
  • the direction of the current flowing in the coil side 21 arranged in the first and second deep groove type slots 111A and 111B in which the coil sides 21 of the first and second lowermost layer coils 15A and 15B are arranged is the same. Yes.
  • the same number of U-phase, V-phase, and W-phase first lowermost coils 15A are arranged (one in this example), and the U-phase , V-phase, and W-phase second lowermost layer coils 15B are arranged in the same number (one in this example).
  • each first deep groove type slot 111A in which each one coil side 21 of each first lowermost layer coil 15A having a different phase is arranged in the circumferential direction of the armature core 7 ( It appears for every n slots 11 represented by 4).
  • each second deep groove type slot 111B in which each one coil side 21 of each second lowermost layer coil 15B having a different phase is arranged in the circumferential direction of the armature core 7 (the above formula ( It appears for every n slots 11 represented by 4).
  • each of the first deep groove type slots 111A (for example, No. 2, No. 11, No. 20) in which each one coil side 21 of each first lowermost layer coil 15A is arranged.
  • each second deep groove type slot 111B (for example, No. 3, No. 12, No. 12) in which one coil side 21 of each second lowermost layer coil 15B is arranged. .22 each of the second deep groove type slots 111B) appears for every nine slots 11, and the relationship of equation (4) is established.
  • the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coils 15A and 15B is evenly increased in each phase.
  • the armature core 7 is divided into a plurality (two in this example) of divided cores 31 arranged in the circumferential direction of the armature core 7.
  • the divided cores 31 are connected to each other by welding or the like, for example.
  • the positions of the boundaries 32 of the divided cores 31 are the magnetic pole teeth 10 (in this example, No. .27 and No. 54 magnetic pole teeth 10).
  • the boundary 32 of each divided core 31 is formed along the radial direction of the armature core 7.
  • the armature 2 is constituted by a plurality (two in this example) of divided armatures 33 configured by providing the divided core 31 with the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coils 15A and 15B. Yes. Other configurations are the same as those in the first embodiment.
  • FIG. 13 is a table showing the winding coefficient Kd of the rotating electrical machine 1 of FIG.
  • the numerical value of the winding coefficient Kd of the rotating electrical machine 1 according to the present embodiment is good for both the fundamental wave component and the higher-order component even when compared with the winding coefficient Kd of the rotating electrical machine 1B according to Comparative Example 2 (FIG. 10). I understand that.
  • the number of slots per pole q ′ is expressed by the formula (2 If the condition (1) is satisfied, the upper layer coil 13 and the lower layer coil 14 having a coil pitch N smaller than the coil pitch N + 1 of each base coil 12 can be obtained while maintaining the arrangement of the coil sides 21. Further, by arranging the coil sides 21 of the lowermost layer coils 15 of the respective phases at the lowermost openings of the deep groove type slots 111, the outer sides in the radial direction from the base coil 12, the upper layer coil 13, and the lower layer coil 14, respectively. Each lowermost layer coil 15 can be arranged by removing. Thereby, manufacture of the rotary electric machine 1 can be made easy, maintaining the operating characteristic of the rotary electric machine 1 favorable.
  • the armature core 7 is divided into the plurality of divided cores 31, but the armature core 7 may be a single component that is not divided into the plurality of divided cores 31.
  • this invention is applied to the inner rotor type rotary electric machine 1 by which the rotor 4 is arrange
  • the present invention may be applied to an outer rotor type rotating electrical machine in which an armature is disposed on the inner side.
  • a radial gap type ie, inner rotor type and outer rotor type
  • rotating electric machine in which the armature and the rotor face each other in the radial direction
  • an axial gap type in which the armature and the rotor face each other in the axial direction.
  • the present invention may be applied to a rotating electric machine.
  • the rotating electrical machine 1 can be applied to any of an electric motor, a generator, and a generator motor, for example.
  • the rotary electric machine 1 by each said embodiment can also be applied to induction machines other than a synchronous machine, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Given, in a dynamo-electric machine, a virtual base coil mounted state in which a virtual coil pair comprising two virtual specific coils and a virtual adjustment coil sandwiched between two virtual specific coils appear at fixed intervals, the base coils are arranged around the respective positions of all virtual specific coils and all virtual adjustment coils. The respective coil sides of each upper layer coil and each lower layer coil are arranged at the positions of the respective coil sides of each virtual specific coil. Slots sandwiched between one coil side and the other coil side of each upper layer coil, and slots sandwiched between one coil side and the other coil side of each lower layer coil are deep-groove slots for which, in addition to an upper aperture and a lower aperture, a lowest aperture also exists. One coil side and the other coil side of a plurality of the lowest layer coils are arranged at the lowest aperture of the deep-groove slot.

Description

回転電機Rotating electric machine
 この発明は、電機子と、電機子に対して回転する回転子とを有する回転電機に関するものである。 This invention relates to a rotating electrical machine having an armature and a rotor that rotates relative to the armature.
 従来、電機子コアの複数の磁極ティースに複数の電機子コイルを2層重ね巻きで巻いて電機子を構成した回転電機が知られている。また、従来、電機子コアに設けられたベースコイルのコイルエンドとは逆向きにコイルエンドを傾けた追加コイルを電機子コアに設けることにより、回転電機の動作特性を良好に保つようにした回転電機が提案されている(例えば特許文献1参照)。 Conventionally, a rotating electric machine is known in which an armature is configured by winding a plurality of armature coils on a plurality of magnetic teeth of an armature core in two layers. Also, conventionally, by providing an additional coil in the armature core with the coil end tilted in the opposite direction to the coil end of the base coil provided in the armature core, rotation that maintains good operating characteristics of the rotating electric machine. An electric machine has been proposed (see, for example, Patent Document 1).
国際公開WO2015/121960International Publication WO2015 / 121960
 しかし、特許文献1に示されている従来の回転電機では、追加コイルを電機子コアに設けるときに、電機子コアに設けられたベースコイル等の他のコイルのコイルエンドを避けながら電機子コアのスロットに追加コイルを挿入する必要があるので、追加コイルを電機子コアに取り付ける作業に手間がかかることが想定される。 However, in the conventional rotating electric machine shown in Patent Document 1, when the additional coil is provided in the armature core, the armature core is avoided while avoiding the coil ends of other coils such as the base coil provided in the armature core. Since it is necessary to insert an additional coil into the slot, it is assumed that it takes time and labor to attach the additional coil to the armature core.
 この発明は、上記のような課題を解決するためになされたものであり、動作特性が良好であり、かつ、製造を容易にすることができる回転電機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a rotating electrical machine that has good operating characteristics and can be easily manufactured.
 この発明による回転電機は、周方向について互いに間隔を置いて設けられた複数の磁極ティースを有し、各磁極ティース間にスロットが形成されている電機子コア、互いに異なるスロットに配置された一対のコイル辺と一対のコイル辺間を繋ぐコイルエンドとをそれぞれ含む複数の電機子コイルを有し、各電機子コイルが重ね巻きで上記磁極ティースに巻かれ、各電機子コイルに三相電流が流れる電機子コイル群、及び周方向へ並ぶ複数の磁極を持ち、電機子コア及び電機子コイル群に対して回転される回転子を備え、電機子コイル群は、一方のコイル辺がスロットの上口に配置され他方のコイル辺がスロットの下口に配置された複数のベースコイルと、一方及び他方のコイル辺がいずれもスロットの上口に配置された複数の上層コイルと、一方及び他方のコイル辺がいずれもスロットの下口に配置された複数の下層コイルとを電機子コイルとして有し、Nを2以上の自然数とすると、1つの磁極当たりのスロットの数である毎極スロット数q’は、N<q’<N+1の関係を満たし、各ベースコイルのコイルエンドは、電機子コアの周方向に対して同じ向きに傾いた状態でN+1個の上記磁極ティースを跨いでおり、各上層コイル及び各下層コイルのそれぞれのコイルエンドは、N個の上記磁極ティースを跨いでおり、ベースコイルと同じ構成の複数の仮想ベースコイルの各コイル辺を各スロットの上口及び下口のすべてに配置し、かつN個の磁極ティースを挟む2つのスロットの上口にそれぞれ配置された2つのコイル辺に流れる電流が同相逆向きになる関係を持つ2つの仮想ベースコイルを仮想特定コイルとし、2つの仮想特定コイル間に挟まれた仮想ベースコイルを仮想調整コイルとして、2つの仮想特定コイルで構成された仮想コイル対と仮想調整コイルとが、電機子コアの周方向について一定間隔で現れるようにした仮想ベースコイル装着状態を想定すると、各ベースコイルは、すべての仮想特定コイル及びすべての仮想調整コイルのそれぞれの位置を避けて配置され、各上層コイル及び各下層コイルのそれぞれのコイル辺は、各仮想特定コイルのそれぞれのコイル辺の位置に配置され、各スロットのうち、各上層コイルの一方及び他方のコイル辺間に挟まれたスロットと、各下層コイルの一方及び他方のコイル辺間に挟まれたスロットとは、上口及び下口に加えて最下口が存在する深溝型スロットになっており、電機子コイル群は、一方及び他方のコイル辺がいずれも深溝型スロットの最下口に配置された複数の最下層コイルを電機子コイルとしてさらに有し、最下層コイルのコイルエンドは、上層コイル、下層コイル及びベースコイルがいずれも跨らない磁極ティースを避けて配置されており、最下層コイルのコイルエンドが跨ぐ上記磁極ティースの数は、各最下層コイルで同じになっている。 A rotating electrical machine according to the present invention has a plurality of magnetic pole teeth spaced apart from each other in the circumferential direction, an armature core in which slots are formed between the magnetic pole teeth, and a pair of slots disposed in different slots. A plurality of armature coils each including a coil side and a coil end connecting between a pair of coil sides, each armature coil being wound on the magnetic pole teeth by lap winding, and a three-phase current flowing through each armature coil An armature coil group and a rotor having a plurality of magnetic poles arranged in the circumferential direction and rotating with respect to the armature core and the armature coil group, the armature coil group having one coil side at the top of the slot And a plurality of base coils in which the other coil side is arranged at the lower opening of the slot, and a plurality of upper layer coils in which one and the other coil sides are both arranged at the upper opening of the slot, Each of the one and the other coil sides has a plurality of lower layer coils arranged at the lower opening of the slot as an armature coil, and when N is a natural number of 2 or more, it is the number of slots per magnetic pole. The number of pole slots q ′ satisfies the relationship N <q ′ <N + 1, and the coil ends of each base coil straddle the N + 1 number of magnetic pole teeth in the same direction with respect to the circumferential direction of the armature core. Each coil end of each upper layer coil and each lower layer coil straddles the N magnetic pole teeth, and each coil side of a plurality of virtual base coils having the same configuration as the base coil is connected to the upper opening of each slot and The two temporary connections have the relationship that the currents flowing in the two coil sides respectively arranged in the upper openings of the two slots arranged at all of the lower openings and sandwiching the N magnetic pole teeth are in the opposite directions. A base coil is a virtual specific coil, a virtual base coil sandwiched between two virtual specific coils is a virtual adjustment coil, and a virtual coil pair and a virtual adjustment coil configured by two virtual specific coils are included in the armature core. Assuming a virtual base coil mounting state that appears at regular intervals in the circumferential direction, each base coil is arranged avoiding the respective positions of all virtual specific coils and all virtual adjustment coils, and each upper coil and each Each coil side of the lower layer coil is arranged at the position of each coil side of each virtual specific coil, and among each slot, a slot sandwiched between one and the other coil sides of each upper layer coil, and each lower layer coil The slot sandwiched between one and the other coil side is a deep groove type slot that has a lowermost opening in addition to an upper opening and a lower opening. The armature coil group further includes a plurality of lowermost coils, one of the other coil sides being arranged at the lowermost opening of the deep groove type slot, and the coil end of the lowermost coil is The upper layer coil, the lower layer coil, and the base coil are arranged so as to avoid the magnetic pole teeth that do not straddle, and the number of the magnetic pole teeth that the coil end of the lowermost layer coil straddles is the same in each lower layer coil.
 この発明による回転電機によれば、動作特性が良好であり、かつ、製造を容易にすることができる。 According to the rotating electrical machine of the present invention, the operating characteristics are good and the manufacturing can be facilitated.
この発明の実施の形態1による回転電機を示す構成図である。It is a block diagram which shows the rotary electric machine by Embodiment 1 of this invention. 図1の電機子を示す展開図である。It is an expanded view which shows the armature of FIG. 比較例1による回転電機を示す構成図である。5 is a configuration diagram showing a rotating electrical machine according to Comparative Example 1. FIG. 図3の回転電機の電機子を示す展開図である。It is an expanded view which shows the armature of the rotary electric machine of FIG. 図4の回転電機の電機子の要部拡大図である。It is a principal part enlarged view of the armature of the rotary electric machine of FIG. 比較例1による回転電機の巻線係数Kdを示す表である。10 is a table showing a winding coefficient Kd of a rotating electrical machine according to Comparative Example 1. 図1の回転電機の巻線係数Kdを示す表である。It is a table | surface which shows the winding coefficient Kd of the rotary electric machine of FIG. 比較例2による回転電機を示す構成図である。10 is a configuration diagram showing a rotating electrical machine according to Comparative Example 2. FIG. 図8の電機子を示す展開図である。It is an expanded view which shows the armature of FIG. 比較例2による回転電機の巻線係数Kdを示す表である。10 is a table showing a winding coefficient Kd of a rotating electrical machine according to Comparative Example 2. この発明の実施の形態2による回転電機を示す構成図である。It is a block diagram which shows the rotary electric machine by Embodiment 2 of this invention. 図11の電機子を示す展開図である。It is an expanded view which shows the armature of FIG. 図11の回転電機の巻線係数Kdを示す表である。12 is a table showing a winding coefficient Kd of the rotating electrical machine of FIG.
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1による回転電機を示す構成図である。図において、回転電機1は、円筒状の固定子である電機子2と、電機子2の軸線上に配置された回転軸3と、回転軸3に固定され、回転軸3と一体に電機子2に対して回転される回転子4とを有している。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing a rotating electrical machine according to Embodiment 1 of the present invention. In the figure, a rotating electrical machine 1 includes an armature 2 that is a cylindrical stator, a rotating shaft 3 disposed on an axis of the armature 2, an armature that is fixed to the rotating shaft 3 and is integrally formed with the rotating shaft 3. And a rotor 4 that is rotated with respect to 2.
 回転子4は、電機子2の内側に配置されている。また、回転子4は、磁性材料(例えば鉄等)で構成された円柱状の回転子コア5と、回転子コア5の外周面(即ち、電機子2の内周面に対向する面)に設けられた複数の磁石6とを有している。各磁石6は、回転子コア5の周方向について互いに間隔を置いて配置されている。回転子4には、各磁石6によって回転子コア5の周方向へ並ぶ複数の磁極が形成されている。この例では、14個の磁石6が回転子コア5の外周面に設けられており、回転子4の磁極数Pが14になっている。 The rotor 4 is disposed inside the armature 2. Further, the rotor 4 is provided on a cylindrical rotor core 5 made of a magnetic material (for example, iron) and an outer peripheral surface of the rotor core 5 (that is, a surface facing the inner peripheral surface of the armature 2). And a plurality of magnets 6 provided. The magnets 6 are arranged at intervals from each other in the circumferential direction of the rotor core 5. In the rotor 4, a plurality of magnetic poles arranged in the circumferential direction of the rotor core 5 are formed by the magnets 6. In this example, 14 magnets 6 are provided on the outer peripheral surface of the rotor core 5, and the number of magnetic poles P of the rotor 4 is 14.
 電機子2は、磁性材料(例えば鉄等)で構成された電機子コア7と、電機子コア7に設けられた電機子コイル群8とを有している。 The armature 2 has an armature core 7 made of a magnetic material (for example, iron) and an armature coil group 8 provided on the armature core 7.
 電機子コア7は、円筒状のバックヨーク9と、バックヨーク9の内周部から径方向内側へ(即ち、回転子4に向けて)突出する複数の磁極ティース10とを有している。各磁極ティース10は、電機子コア7の周方向について互いに間隔を置いて設けられている。これにより、各磁極ティース10間には、電機子コア7の径方向内側へ(即ち、回転子4に向けて)開放されたスロット11が形成されている。電機子コア7では、磁極ティース10の数とスロット11の数(スロット数)Qとが同じになっている。この例では、磁極ティース10の数及びスロット数Qがともに36になっている。 The armature core 7 has a cylindrical back yoke 9 and a plurality of magnetic pole teeth 10 projecting radially inward from the inner peripheral portion of the back yoke 9 (that is, toward the rotor 4). The magnetic pole teeth 10 are provided at intervals in the circumferential direction of the armature core 7. Thereby, between each magnetic pole tooth 10, the slot 11 opened to the radial inside of the armature core 7 (that is, toward the rotor 4) is formed. In the armature core 7, the number of magnetic pole teeth 10 and the number of slots 11 (number of slots) Q are the same. In this example, the number of magnetic pole teeth 10 and the number of slots Q are both 36.
 ここでは、説明の便宜上、図1の回転軸3の中心から真上に位置するスロット11を基準スロットとし、基準スロット11の番号をNo.1としている。また、図1の基準スロットNo.1から反時計まわりの順に各スロット11の番号をNo.2、No.3、…、No.36としている。また、図1のNo.1及びNo.2のスロット11間に位置する磁極ティース10の番号をNo.1とし、No.1の磁極ティース10から反時計まわりの順に各磁極ティース10の番号をNo.2、No.3、…、No.36としている。 Here, for convenience of explanation, the slot 11 located directly above the center of the rotating shaft 3 in FIG. 1 is assumed. In addition, the reference slot number of FIG. The number of each slot 11 is set to No. 1 in the counterclockwise order. 2, No. 3,. 36. Further, No. 1 in FIG. 1 and no. No. 2 of the magnetic pole teeth 10 located between the two slots 11. 1 and no. No. 1 magnetic teeth 10 are numbered in the order of the counterclockwise order. 2, No. 3,. 36.
 また、スロット数Qと磁極数Pとの関係を示す係数である毎極スロット数(即ち、回転子4の1つの磁極当たりのスロット11の数)q’は、以下の式(1)で表される。 Further, the number of slots per pole (that is, the number of slots 11 per magnetic pole of the rotor 4) q ′, which is a coefficient indicating the relationship between the number of slots Q and the number of magnetic poles P, is expressed by the following equation (1). Is done.
 q’=Q/P …(1) Q '= Q / P (1)
 従って、この例では、毎極スロット数q’の値が36/14=18/7≒2.57となっている。 Therefore, in this example, the value of the number of slots per pole q ′ is 36/14 = 18 / 7≈2.57.
 図2は、図1の電機子2を示す展開図である。電機子コイル群8は、複数のベースコイル12と、複数の上層コイル13と、複数の下層コイル14と、複数の最下層コイル15とを電機子コイルとして有している。 FIG. 2 is a development view showing the armature 2 of FIG. The armature coil group 8 includes a plurality of base coils 12, a plurality of upper layer coils 13, a plurality of lower layer coils 14, and a plurality of lowermost layer coils 15 as armature coils.
 ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15のそれぞれは、複数の磁極ティース10にまとめて巻かれた導線束により構成されている。即ち、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15のそれぞれは、重ね巻きで磁極ティース10に巻かれている。また、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15のそれぞれを構成する導線束の線種及びターン数は、すべて同じである。 Each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 is composed of a wire bundle wound around a plurality of magnetic pole teeth 10. That is, each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 is wound around the magnetic pole teeth 10 by lap winding. Further, the wire type and the number of turns of the conductor bundles constituting the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 are all the same.
 ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15のそれぞれは、互いに異なるスロット11に配置された一対のコイル辺21と、複数の磁極ティース10を跨いで一対のコイル辺21間を繋ぐ一対のコイルエンド22とを有している。各コイル辺21は、スロット11に沿った略直線部である。各コイルエンド22は、電機子コア7の軸線方向外側でコイル辺21の端部間を繋いでいる。 Each of the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 includes a pair of coil sides 21 arranged in different slots 11 and a pair of coil sides 21 across the plurality of magnetic pole teeth 10. It has a pair of coil ends 22 to be connected. Each coil side 21 is a substantially straight portion along the slot 11. Each coil end 22 connects between the ends of the coil sides 21 outside the armature core 7 in the axial direction.
 電機子コア7に設けられている複数のスロット11のうち、電機子コア7の周方向について一定間隔で存在する一部のスロット11は深溝型スロット111とされ、深溝型スロット111以外の他のスロット11は通常スロット112とされている。 Among the plurality of slots 11 provided in the armature core 7, some of the slots 11 existing at regular intervals in the circumferential direction of the armature core 7 are deep groove-type slots 111, and other slots than the deep groove-type slots 111 are provided. The slot 11 is a normal slot 112.
 各通常スロット112の深さ寸法は、すべて同じになっている。各通常スロット112には、コイル辺21を配置するための空間である上口(即ち、上層)及び下口(即ち、下層)が存在している。通常スロット112の上口は、通常スロット112の下口よりも電機子コア7の径方向内側(即ち、通常スロット112の開口側)に位置している。 The depth dimensions of each normal slot 112 are all the same. Each normal slot 112 has an upper opening (that is, an upper layer) and a lower opening (that is, a lower layer) that are spaces for arranging the coil sides 21. The upper opening of the normal slot 112 is located on the radially inner side of the armature core 7 (that is, the opening side of the normal slot 112) than the lower opening of the normal slot 112.
 各深溝型スロット111の深さ寸法は、すべて同じになっている。また、各深溝型スロット111は、各通常スロット112よりも深くなっている。各深溝型スロット111には、コイル辺21を配置するための空間である上口(即ち、上層)、下口(即ち、下層)及び最下口(即ち、最下層)が存在している。深溝型スロット111の上口は深溝型スロット111の下口よりも電機子コア7の径方向内側(即ち、深溝型スロット111の開口側)に位置し、深溝型スロット111の下口は深溝型スロット111の最下口よりも電機子コア7の径方向内側(即ち、深溝型スロット111の開口側)に位置している。 The depth dimensions of each deep groove type slot 111 are all the same. Further, each deep groove type slot 111 is deeper than each normal slot 112. Each deep groove type slot 111 has an upper opening (that is, an upper layer), a lower opening (that is, a lower layer), and a lowermost opening (that is, a lowermost layer) that are spaces for arranging the coil sides 21. The upper opening of the deep groove type slot 111 is located on the inner side in the radial direction of the armature core 7 (that is, the opening side of the deep groove type slot 111) than the lower opening of the deep groove type slot 111, and the lower opening of the deep groove type slot 111 is the deep groove type. It is located on the radially inner side of the armature core 7 (that is, the opening side of the deep groove type slot 111) from the lowermost opening of the slot 111.
 各深溝型スロット111及び各通常スロット112のそれぞれの上口は電機子コア7の径方向について同位置に存在し、各深溝型スロット111及び各通常スロット112のそれぞれの下口は電機子コア7の径方向について同位置に存在している。従って、各深溝型スロット111のそれぞれの最下口は、通常スロット112の下口よりも径方向外側の位置に存在している。 The upper opening of each deep groove type slot 111 and each normal slot 112 exists at the same position in the radial direction of the armature core 7, and the lower opening of each deep groove type slot 111 and each normal slot 112 is the armature core 7. It exists in the same position about the radial direction. Therefore, the lowermost opening of each deep groove type slot 111 exists at a position radially outside the lower opening of the normal slot 112.
 各ベースコイル12は、一方のコイル辺21をスロット11の上口に配置し、他方のコイル辺21をスロット11の下口に配置した状態で電機子コア7に設けられている。また、各ベースコイル12のコイルエンド22は、電機子コア7の周方向に対して同じ方向に傾いた状態で複数の磁極ティース10を跨いでいる。 Each base coil 12 is provided on the armature core 7 in a state where one coil side 21 is disposed at the upper opening of the slot 11 and the other coil side 21 is disposed at the lower opening of the slot 11. Further, the coil end 22 of each base coil 12 straddles the plurality of magnetic pole teeth 10 while being inclined in the same direction with respect to the circumferential direction of the armature core 7.
 コイルエンド22が跨ぐ磁極ティース10の数(即ち、共通のコイルにおける一方及び他方のコイル辺21間に挟まれる磁極ティース10の数)をコイルピッチとすると、各ベースコイル12のコイルピッチは、すべて同じになっている。各ベースコイル12は、コイルピッチが毎極スロット数q’よりも大きい長節巻きのコイルである。 If the coil pitch is the number of magnetic teeth 10 that the coil ends 22 straddle (that is, the number of magnetic teeth 10 sandwiched between one and the other coil sides 21 in a common coil), the coil pitch of each base coil 12 is all It is the same. Each base coil 12 is a long-pitch coil having a coil pitch larger than the number of slots per pole q ′.
 上層コイル13は、一方及び他方のコイル辺21をいずれもスロット11の上口に配置した状態で電機子コア7に設けられている。下層コイル14は、一方及び他方のコイル辺21をいずれもスロット11の下口に配置した状態で電機子コア7に設けられている。最下層コイル15は、一方及び他方のコイル辺21をいずれも深溝型スロット111の最下口に配置した状態で電機子コア7に設けられている。 The upper coil 13 is provided on the armature core 7 with one and the other coil sides 21 arranged at the upper opening of the slot 11. The lower layer coil 14 is provided on the armature core 7 with one and the other coil sides 21 arranged at the lower opening of the slot 11. The lowermost layer coil 15 is provided on the armature core 7 with one and the other coil sides 21 arranged at the lowermost opening of the deep groove type slot 111.
 なお、図2では、各ベースコイル12、各上層コイル13、各下層コイル14及び各最下層コイル15のそれぞれに流れる電流の相をU、V、Wで示している。また、図2では、各コイル辺21に流れる電流の向きを、U、V、Wの大文字及び小文字と、コイル辺21を示す白抜きの丸印の中に黒丸印及びX印を付した記号とで示している。従って、各コイル12,13,14,15の巻き回し方向は、各コイル辺21の電流の向きで分かるようになっている。 In FIG. 2, the phases of currents flowing through the base coils 12, the upper layer coils 13, the lower layer coils 14, and the lowermost layer coils 15 are indicated by U, V, and W, respectively. In FIG. 2, the direction of the current flowing through each coil side 21 is indicated by upper and lower case letters U, V, and W, and a black circle mark and an X mark in a white circle mark indicating the coil side 21. It shows with. Therefore, the winding direction of each coil 12, 13, 14, 15 can be understood from the current direction of each coil side 21.
 ここで、本実施の形態による回転電機1での各ベースコイル12、各上層コイル13、各下層コイル14及び各最下層コイル15のそれぞれの位置を特定するために、上層コイル13、下層コイル14及び最下層コイル15を含まない比較例1による回転電機を想定する。 Here, in order to specify the respective positions of the base coils 12, the upper layer coils 13, the lower layer coils 14, and the lowermost layer coils 15 in the rotating electrical machine 1 according to the present embodiment, the upper layer coils 13 and the lower layer coils 14 are specified. And the rotary electric machine by the comparative example 1 which does not contain the lowermost layer coil 15 is assumed.
 図3は、比較例1による回転電機1Aを示す構成図である。また、図4は、図3の回転電機1Aの電機子2を示す展開図である。さらに、図5は、図4の回転電機1Aの電機子2の要部拡大図である。なお、図4及び図5では、各コイルに流れる電流相と、各コイル辺に流れる電流の向きとが、図2と同様の方法で示されている。 FIG. 3 is a configuration diagram illustrating the rotating electrical machine 1A according to the first comparative example. 4 is a development view showing the armature 2 of the rotating electrical machine 1A of FIG. Further, FIG. 5 is an enlarged view of a main part of the armature 2 of the rotating electrical machine 1A of FIG. 4 and 5, the current phase flowing through each coil and the direction of the current flowing through each coil side are shown in the same manner as in FIG.
 比較例1による回転電機1Aの構成は、電機子コイル群8の構成及び電機子コア7のスロット11の構成以外、実施の形態1による回転電機1の構成と同様である。比較例1では、実施の形態1による各深溝型スロット111に代えて通常スロット112が電機子コア7に設けられている。即ち、比較例1では、電機子コア7に設けられているすべてのスロット11が通常スロット112と同じ構成になっている。 The configuration of the rotating electrical machine 1A according to Comparative Example 1 is the same as the configuration of the rotating electrical machine 1 according to the first embodiment except for the configuration of the armature coil group 8 and the configuration of the slot 11 of the armature core 7. In Comparative Example 1, a normal slot 112 is provided in the armature core 7 instead of each deep groove type slot 111 according to the first embodiment. That is, in Comparative Example 1, all the slots 11 provided in the armature core 7 have the same configuration as the normal slots 112.
 比較例1による電機子コイル群8は、ベースコイル12と同じ構成の複数の仮想ベースコイル12aのみを有している。各仮想ベースコイル12aは、ベースコイル12のコイル辺21と同じ構成の一対のコイル辺21aと、ベースコイル12のコイルエンド22と同じ構成の一対のコイルエンド22aとを有している。 The armature coil group 8 according to Comparative Example 1 has only a plurality of virtual base coils 12 a having the same configuration as the base coil 12. Each virtual base coil 12 a has a pair of coil sides 21 a having the same configuration as the coil side 21 of the base coil 12 and a pair of coil ends 22 a having the same configuration as the coil end 22 of the base coil 12.
 各仮想ベースコイル12aは、一方のコイル辺21aをスロット11の上口に配置し他方のコイル辺21aをスロット11の下口に配置した状態で電機子コア7に規則的に並べられている。各仮想ベースコイル12aの各コイル辺21aは、各スロット11の上口及び下口のすべてに配置されている。これにより、比較例1による回転電機1Aの電機子2の状態は、各仮想ベースコイル12aが2層重ね巻きで電機子コア7に規則的に配置された仮想ベースコイル装着状態となっている。 Each virtual base coil 12 a is regularly arranged on the armature core 7 with one coil side 21 a arranged at the upper opening of the slot 11 and the other coil side 21 a arranged at the lower opening of the slot 11. Each coil side 21a of each virtual base coil 12a is disposed in all the upper and lower openings of each slot 11. Thereby, the state of the armature 2 of the rotating electrical machine 1 </ b> A according to the comparative example 1 is a virtual base coil mounting state in which each virtual base coil 12 a is regularly arranged on the armature core 7 by two-layer lap winding.
 回転電機の理想状態は、U相、V相、W相の各電機子コイルがつくる誘起電圧のそれぞれの合成ベクトルの大きさが同じで、各相の誘起電圧の合成ベクトルが電気角で位相差120°ごとに分布している状態である。従って、比較例1による回転電機1Aでは、回転電機の理想状態になるように、各仮想ベースコイル12aに接続される電流相(U相、V相、W相)の選択と、各仮想ベースコイル12aの巻き回し方向の選択とが行われている。回転電機1Aでは、各相の仮想ベースコイル12aの配置順及び各仮想ベースコイル12aの巻き回し方向をそれぞれ調整することにより、回転子4の磁極がつくる磁束に対応するおよそ正弦波状の誘起電圧が発生するようになっている。 The ideal state of a rotating electrical machine is that the magnitudes of the resultant vectors of the induced voltages produced by the U-phase, V-phase, and W-phase armature coils are the same, and the resultant vectors of the induced voltages of the phases are phase differences in terms of electrical angles. It is in a state of being distributed every 120 °. Therefore, in the rotating electrical machine 1A according to the comparative example 1, selection of the current phase (U phase, V phase, W phase) connected to each virtual base coil 12a and each virtual base coil so that the ideal state of the rotating electrical machine is obtained. Selection of the winding direction of 12a is performed. In the rotating electrical machine 1A, by adjusting the arrangement order of the virtual base coils 12a of each phase and the winding direction of the virtual base coils 12a, an induced voltage of approximately sinusoidal shape corresponding to the magnetic flux generated by the magnetic poles of the rotor 4 is obtained. It is supposed to occur.
 図4では、No.1~No.18のスロット11と、No.19~No.36のスロット11とに分けてみると、コイル辺21aに流れる電流の向きが反転していることを除いて、各相の仮想ベースコイル12aの配置が同じになっていることが分かる。これは、比較例1による回転電機1Aの毎極スロット数q’の値が18/7であることによるものである。即ち、比較例1での電機子2では、18個のスロット11に対して7個の磁極が対応して1組となっていることから、各相の仮想ベースコイル12aの配置が18個のスロット11のまとまりで繰り返される構成となっている。 In FIG. 1-No. 18 slot 11, 19-No. When divided into 36 slots 11, it can be seen that the arrangement of the virtual base coils 12 a of the respective phases is the same except that the direction of the current flowing through the coil side 21 a is reversed. This is because the value of the number of slots per pole q ′ of the rotating electrical machine 1A according to Comparative Example 1 is 18/7. That is, in the armature 2 in the comparative example 1, the seven magnetic poles correspond to one set corresponding to the eighteen slots 11, so that the arrangement of the virtual base coils 12a of each phase is eighteen. It is configured to be repeated in a group of slots 11.
 各仮想ベースコイル12aが2層重ね巻きで電機子コア7に規則的に配置された仮想ベースコイル装着状態では、Nを2以上の自然数とすると、毎極スロット数q’が以下の式(2)を満たすとき、各仮想ベースコイル12aのU相、V相、W相の電流相及び巻き回し方向を調整することにより、電流相及び電流の向きに関して特定の関係を持つ2つの仮想ベースコイル12aで構成された仮想コイル対23が、一定間隔で出現するようにすることができる。仮想コイル対23を構成する2つの仮想ベースコイル12aをそれぞれ仮想特定コイル12Aとすると、共通の仮想コイル対23に含まれる2つの仮想特定コイル12Aの関係は、N個の磁極ティース10を挟む2つのスロット11の上口同士(又は下口同士)に配置された2つのコイル辺21aに流れる電流が同相逆向きになる関係になっている。 In a virtual base coil mounting state in which each virtual base coil 12a is regularly stacked on the armature core 7 in a two-layer lap winding, if N is a natural number of 2 or more, the number of slots per pole q ′ is expressed by the following formula (2 ), The two virtual base coils 12a having a specific relationship with respect to the current phase and current direction are adjusted by adjusting the current phase and winding direction of the U phase, V phase, and W phase of each virtual base coil 12a. The virtual coil pairs 23 configured by the above can appear at regular intervals. Assuming that the two virtual base coils 12a constituting the virtual coil pair 23 are respectively the virtual specific coils 12A, the relationship between the two virtual specific coils 12A included in the common virtual coil pair 23 is 2 across the N magnetic pole teeth 10. The currents flowing in the two coil sides 21a arranged at the upper openings (or the lower openings) of the two slots 11 are in the same phase and opposite directions.
 N<q’<N+1 …(2) N <q '<N + 1 ... (2)
 これは、U相、V相、W相の各仮想ベースコイル12aがつくる誘起電圧のそれぞれの合成ベクトルの大きさが各相で同じで、かつ各合成ベクトルの位相差が120°ごとに分布する理想状態になるように、各仮想ベースコイル12aの配置を決めることによる。 This is because the magnitudes of the synthesized vectors of the induced voltages generated by the U-phase, V-phase, and W-phase virtual base coils 12a are the same in each phase, and the phase difference of each synthesized vector is distributed every 120 °. This is because the arrangement of the virtual base coils 12a is determined so as to be in an ideal state.
 毎極スロット数q’の値は、上述のように約2.57であるので、2よりも大きく3よりも小さい値(2<q’<3)である。従って、比較例1による回転電機1Aの電機子2の構成は、式(2)から、N=2としたときの電機子2の構成であることが分かる。比較例1での各仮想ベースコイル12aは、コイルエンド22aがN+1個の磁極ティース10を跨ぐコイルになっている。このことから、比較例1では、各仮想ベースコイル12aのコイルピッチが3になっている。 Since the value of the number of slots per pole q ′ is about 2.57 as described above, it is a value larger than 2 and smaller than 3 (2 <q ′ <3). Therefore, it can be seen from the formula (2) that the configuration of the armature 2 of the rotating electrical machine 1A according to the comparative example 1 is the configuration of the armature 2 when N = 2. Each virtual base coil 12a in Comparative Example 1 is a coil in which the coil end 22a straddles the N + 1 magnetic pole teeth 10. From this, in the comparative example 1, the coil pitch of each virtual base coil 12a is 3.
 共通の仮想コイル対23に含まれる2つの仮想特定コイル12A間には、N-1個の仮想ベースコイル12aが仮想調整コイル12Bとして存在している。N-1個の仮想調整コイル12Bも、仮想コイル対23と同様に、電機子コア7の周方向について一定間隔で存在している。比較例1による電機子2では、図4に示すように、仮想調整コイル12Bの電流相と、仮想調整コイル12Bを挟む2つの仮想特定コイル12Aで構成された仮想コイル対23の電流相とが、互いに異なっている。比較例1による電機子2では、V相の仮想コイル対23の仮想特定コイル12Aに挟まれた仮想調整コイル12Bの電流相がW相、U相の仮想コイル対23の仮想特定コイル12Aに挟まれた仮想調整コイル12Bの電流相がV相、W相の仮想コイル対23の仮想特定コイル12Aに挟まれた仮想調整コイル12Bの電流相がU相になっている。 Between the two virtual specific coils 12A included in the common virtual coil pair 23, N−1 virtual base coils 12a exist as virtual adjustment coils 12B. Similarly to the virtual coil pair 23, N−1 virtual adjustment coils 12B are also present at regular intervals in the circumferential direction of the armature core 7. In the armature 2 according to the comparative example 1, as illustrated in FIG. 4, the current phase of the virtual adjustment coil 12B and the current phase of the virtual coil pair 23 including the two virtual specific coils 12A sandwiching the virtual adjustment coil 12B are obtained. Are different from each other. In the armature 2 according to the comparative example 1, the current phase of the virtual adjustment coil 12B sandwiched between the virtual specific coil 12A of the V phase virtual coil pair 23 is sandwiched between the virtual specific coil 12A of the W phase and U phase virtual coil pair 23. The current phase of the virtual adjustment coil 12B sandwiched between the virtual specific coil 12A of the virtual coil pair 23 of the V phase and W phase virtual coil pair 23 is the U phase.
 図6は、比較例1による回転電機1Aの巻線係数Kdを示す表である。巻線係数Kdは、回転電機の特性を示す指標であり、基本波成分の数値が1に近いほどトルク特性が良く、5次、7次、…等の高次成分の数値が小さいほど高周波振動が小さくなって、回転電機の動作特性が良いことを示す。比較例1による回転電機1Aでは、巻線係数Kdの数値が基本波成分、高次成分ともに良好な傾向を示していることが分かる。 FIG. 6 is a table showing the winding coefficient Kd of the rotating electrical machine 1A according to Comparative Example 1. The winding coefficient Kd is an index indicating the characteristics of the rotating electrical machine. The torque characteristic is better as the numerical value of the fundamental wave component is closer to 1, and the higher frequency vibration is as the numerical value of higher order components such as fifth order, seventh order,. Indicates that the operating characteristics of the rotating electrical machine are good. In the rotating electrical machine 1A according to Comparative Example 1, it can be seen that the numerical value of the winding coefficient Kd shows a good tendency for both the fundamental wave component and the higher-order component.
 実施の形態1による回転電機1では、図2を図4と比較すると、各仮想コイル対23を構成するすべての仮想特定コイル12Aの位置、及びすべての仮想調整コイル12Bの位置を避けて、各仮想ベースコイル12aの位置に各ベースコイル12が配置されている。 In the rotating electrical machine 1 according to the first embodiment, when FIG. 2 is compared with FIG. 4, the positions of all the virtual specific coils 12A constituting each virtual coil pair 23 and the positions of all the virtual adjustment coils 12B are avoided. Each base coil 12 is arranged at the position of the virtual base coil 12a.
 ベースコイル12のコイルエンド22はN+1個の磁極ティース10を跨いでいる。即ち、ベースコイル12のコイルピッチはN+1になっている。この例では、N=2であることから、ベースコイル12のコイルピッチが3になっている。 The coil end 22 of the base coil 12 straddles the N + 1 magnetic teeth 10. That is, the coil pitch of the base coil 12 is N + 1. In this example, since N = 2, the coil pitch of the base coil 12 is 3.
 上層コイル13及び下層コイル14のそれぞれのコイル辺21は、ベースコイル12の配置が回避されている仮想特定コイル12Aのそれぞれのコイル辺21aの位置に配置されている。これにより、上層コイル13及び下層コイル14は、ベースコイル12の配置が回避されている共通の仮想コイル対23につき1つずつ配置されている。従って、電機子コイル群8に含まれる上層コイル13の数と下層コイル14の数とは、同じになっている。また、上層コイル13及び下層コイル14のそれぞれのコイルエンド22は、N個の磁極ティース10を跨いでいる。即ち、上層コイル13及び下層コイル14のそれぞれのコイルピッチは、いずれもN(この例では、N=2)になっている。 The coil sides 21 of the upper layer coil 13 and the lower layer coil 14 are arranged at the positions of the coil sides 21a of the virtual specific coil 12A where the arrangement of the base coil 12 is avoided. Thereby, the upper layer coil 13 and the lower layer coil 14 are arranged one by one for the common virtual coil pair 23 in which the arrangement of the base coil 12 is avoided. Therefore, the number of the upper layer coils 13 and the number of the lower layer coils 14 included in the armature coil group 8 are the same. The coil ends 22 of the upper layer coil 13 and the lower layer coil 14 straddle the N magnetic pole teeth 10. That is, the coil pitch of each of the upper layer coil 13 and the lower layer coil 14 is N (N = 2 in this example).
 上層コイル13の電流相は、上層コイル13のコイル辺21に対応するコイル辺21aを持つ仮想コイル対23の電流相と同じ相とされている。また、上層コイル13のコイル辺21に流れる電流の向きが仮想特定コイル12Aのコイル辺21aに流れる電流の向きと同じになるように、上層コイル13の巻き回し方向が決められている。 The current phase of the upper layer coil 13 is the same as the current phase of the virtual coil pair 23 having the coil side 21 a corresponding to the coil side 21 of the upper layer coil 13. Further, the winding direction of the upper layer coil 13 is determined so that the direction of the current flowing through the coil side 21 of the upper layer coil 13 is the same as the direction of the current flowing through the coil side 21a of the virtual specific coil 12A.
 下層コイル14の電流相は、下層コイル14のコイル辺21に対応するコイル辺21aを持つ仮想コイル対23の電流相と同じ相とされている。また、下層コイル14のコイル辺21に流れる電流の向きが仮想特定コイル12Aのコイル辺21aに流れる電流の向きと同じになるように、下層コイル14の巻き回し方向が決められている。 The current phase of the lower coil 14 is the same as the current phase of the virtual coil pair 23 having the coil side 21 a corresponding to the coil side 21 of the lower coil 14. Further, the winding direction of the lower layer coil 14 is determined so that the direction of the current flowing through the coil side 21 of the lower layer coil 14 is the same as the direction of the current flowing through the coil side 21a of the virtual specific coil 12A.
 即ち、本実施の形態による電機子2は、図2を図4と比較すると、各仮想特定コイル12Aの位置のベースコイル12を無くしている点で、比較例1による電機子2と異なっている。各仮想特定コイル12Aの位置のベースコイル12を単に無くした場合、電機子2がつくる誘起電圧が低下してしまうが、本実施の形態による電機子2では、各仮想特定コイル12Aのそれぞれのコイル辺21aの位置に上層コイル13のコイル辺21及び下層コイル14のコイル辺21のいずれかが配置されている。これにより、各仮想特定コイル12Aの位置のベースコイル12を無くしたことによる誘起電圧の低下が防止される。 That is, the armature 2 according to the present embodiment is different from the armature 2 according to the comparative example 1 in that the base coil 12 at the position of each virtual specific coil 12A is eliminated when FIG. 2 is compared with FIG. . If the base coil 12 at the position of each virtual specific coil 12A is simply eliminated, the induced voltage produced by the armature 2 will decrease, but in the armature 2 according to the present embodiment, each coil of each virtual specific coil 12A. Either the coil side 21 of the upper layer coil 13 or the coil side 21 of the lower layer coil 14 is disposed at the position of the side 21a. Thereby, the fall of the induced voltage by having eliminated the base coil 12 of the position of each virtual specific coil 12A is prevented.
 ここで、図4に示すように、電機子コア7の周方向について互いに隣り合うとともに電流相が互いに異なっている3つの仮想調整コイル12B(例えば、No.2、No.8、No.14のスロット11のそれぞれの上口に配置されたコイル辺21aを持つU相、V相、W相の仮想調整コイル12B)は、互いに位相差が120°となる誘起電圧をつくる仮想ベースコイル12aである。これにより、回転電機1Aの電機子2では、すべての仮想調整コイル12Bをなくした場合、U相、V相、W相の各仮想ベースコイル12aがつくる誘起電圧のそれぞれの合成ベクトルの大きさが同じで、各相の誘起電圧の合成ベクトルの位相差が電気角で120°ごとに分布する状態を保つことができる。また、U相、V相、W相の各仮想調整コイル12Bは、電気角幅α°の範囲内に同数ずつ(この例では、1つずつ)存在している。電気角幅α°は、スロット数Q及び磁極数P、即ち毎極スロット数q’に依存して決まり、以下の式(3)で表される。 Here, as shown in FIG. 4, three virtual adjustment coils 12B (for example, No. 2, No. 8, No. 14) that are adjacent to each other in the circumferential direction of the armature core 7 and have different current phases are used. The U-phase, V-phase, and W-phase virtual adjustment coils 12B) having the coil sides 21a arranged at the upper openings of the slots 11 are virtual base coils 12a that generate induced voltages having a phase difference of 120 °. . Thereby, in the armature 2 of the rotating electrical machine 1A, when all the virtual adjustment coils 12B are eliminated, the magnitudes of the respective synthesized vectors of the induced voltages generated by the U-phase, V-phase, and W-phase virtual base coils 12a are In the same manner, it is possible to maintain a state in which the phase difference of the combined vector of the induced voltage of each phase is distributed every 120 ° in electrical angle. Also, the U-phase, V-phase, and W-phase virtual adjustment coils 12B exist in the same number (one in this example) within the range of the electrical angle width α °. The electrical angle width α ° is determined depending on the number of slots Q and the number of magnetic poles P, that is, the number of slots per pole q ′, and is expressed by the following equation (3).
 α°=180°×P/gcd(Q,P)=1260° …(3) Α ° = 180 ° × P / gcd (Q, P) = 1260 ° (3)
 ただし、gcd(Q,P)は、スロット数Qと回転子4の磁極数Pとの最大公約数である。 However, gcd (Q, P) is the greatest common divisor of the number of slots Q and the number of magnetic poles P of the rotor 4.
 本実施の形態では、上述したように、各仮想調整コイル12Bのすべての位置を避けてベースコイル12が配置されている。従って、本実施の形態では、U相、V相、W相の各ベースコイル12がつくる誘起電圧のそれぞれの合成ベクトルの大きさ及び位相差の関係が崩れることが防止されている。 In the present embodiment, as described above, the base coil 12 is arranged avoiding all positions of the virtual adjustment coils 12B. Therefore, in the present embodiment, it is possible to prevent the relationship between the magnitude of the combined vector and the phase difference between the induced voltages generated by the U-phase, V-phase, and W-phase base coils 12 from being lost.
 本実施の形態による電機子コア7では、図2を図4と比較すると、仮想ベースコイル装着状態で各仮想調整コイル12Bのそれぞれのコイル辺21aを収容する各スロット11のすべてが、深溝型スロット111になっている。即ち、本実施の形態による電機子コア7では、図2に示すように、各上層コイル13の一方及び他方のコイル辺21間に挟まれた各スロット11と、各下層コイル14の一方及び他方のコイル辺21間に挟まれた各スロット11とが、深溝型スロット111になっている。 In the armature core 7 according to the present embodiment, when FIG. 2 is compared with FIG. 4, all the slots 11 that accommodate the coil sides 21 a of the virtual adjustment coils 12 </ b> B in the virtual base coil mounted state are all deep groove type slots. 111. That is, in the armature core 7 according to the present embodiment, as shown in FIG. 2, each slot 11 sandwiched between one and the other coil sides 21 of each upper coil 13 and one and the other of each lower coil 14. Each slot 11 sandwiched between the coil sides 21 is a deep groove type slot 111.
 従って、本実施の形態では、3個のスロット11ごとに各深溝型スロット111が存在している。即ち、本実施の形態では、No.2、No.5、No.8、No.11、No.14、No.17、No.20、No.23、No.26、No.29、No.32、No.35のスロット11が深溝型スロット111になっている。 Therefore, in the present embodiment, each deep groove type slot 111 exists for every three slots 11. That is, in this embodiment, No. 2, No. 5, no. 8, no. 11, no. 14, no. 17, no. 20, no. 23, no. 26, no. 29, no. 32, no. The 35 slots 11 are deep groove type slots 111.
 共通の仮想コイル対23に対応する上層コイル13と下層コイル14との間には、図2に示すように、ベースコイル12、上層コイル13及び下層コイル14のそれぞれのコイルエンド22が跨らない磁極ティース10が存在している。各最下層コイル15のそれぞれのコイルエンド22は、ベースコイル12、上層コイル13及び下層コイル14がいずれも跨らない磁極ティース10(この例では、No.6、No.12、No.18、No.24、No.30、No.36の磁極ティース10)を避けて配置されている。また、最下層コイル15のそれぞれのコイルエンド22が跨ぐ磁極ティース10の数は、各最下層コイル15で同じになっている。本実施の形態では、各最下層コイル15のそれぞれのコイルエンド22が3個の磁極ティース10を跨いでいる。即ち、各最下層コイル15のそれぞれのコイルピッチは、いずれも3になっている。 As shown in FIG. 2, the coil ends 22 of the base coil 12, the upper layer coil 13, and the lower layer coil 14 do not straddle between the upper layer coil 13 and the lower layer coil 14 corresponding to the common virtual coil pair 23. The magnetic pole teeth 10 are present. Each coil end 22 of each lowermost layer coil 15 has a magnetic pole tooth 10 (in this example, No. 6, No. 12, No. 18, No. 18) on which none of the base coil 12, the upper layer coil 13 and the lower layer coil 14 straddles. No. 24, No. 30, and No. 36 magnetic pole teeth 10) are arranged so as to be avoided. Further, the number of magnetic pole teeth 10 straddled by the coil ends 22 of the lowermost layer coils 15 is the same in each lowermost layer coil 15. In the present embodiment, each coil end 22 of each lowermost layer coil 15 straddles the three magnetic pole teeth 10. That is, the coil pitch of each lowermost layer coil 15 is 3.
 最下層コイル15の一方及び他方のコイル辺21は、互いに隣り合う2つの深溝型スロット111のそれぞれの最下口に配置されている。これにより、各最下層コイル15のそれぞれのコイルエンド22は、電機子コア7の周方向と平行になっている。 One and the other coil sides 21 of the lowermost layer coil 15 are disposed at the lowermost openings of the two deep groove slots 111 adjacent to each other. Thereby, each coil end 22 of each lowermost layer coil 15 is parallel to the circumferential direction of the armature core 7.
 即ち、互いに隣り合う2つの仮想コイル対23のうち、一方の仮想コイル対23に対応する上層コイル13の一対のコイル辺21間に挟まれた一方の深溝型スロット111の最下口に最下層コイル15の一方のコイル辺21が配置され、他方の仮想コイル対23に対応する下層コイル14の一対のコイル辺21間に挟まれた他方の深溝型スロット111の最下口に最下層コイル15の他方のコイル辺21が配置されている。 That is, of the two virtual coil pairs 23 adjacent to each other, the lowermost layer of the deep groove type slot 111 sandwiched between the pair of coil sides 21 of the upper layer coil 13 corresponding to the one virtual coil pair 23 is the lowermost layer. One coil side 21 of the coil 15 is disposed, and the lowermost layer coil 15 is disposed at the lowermost opening of the other deep groove type slot 111 sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23. The other coil side 21 is arranged.
 最下層コイル15の電流相は、一方の深溝型スロット111を挟む一対のコイル辺21を持つ上層コイル13の電流相、及び他方の深溝型スロット111を挟む一対のコイル辺21を持つ下層コイル14の電流相のそれぞれと異なる相になっている。例えば、No.2及びNo.5の深溝型スロット111のそれぞれの最下口に配置されたコイル辺21を持つ最下層コイル15の電流相は、No.2の深溝型スロット111を挟む一対のコイル辺21を持つV相の上層コイル13(即ち、No.1及びNo.3のスロット11の上口に配置されたコイル辺21を持つ上層コイル13)の電流相、及びNo.5の深溝型スロット111を挟む一対のコイル辺21を持つU相の下層コイル14(即ち、No.4及びNo.6のスロット11の下口に配置されたコイル辺21を持つ下層コイル14)の電流相のそれぞれと異なるW相になっている。 The current phase of the lowermost layer coil 15 is the current phase of the upper layer coil 13 having a pair of coil sides 21 sandwiching one deep groove type slot 111 and the lower layer coil 14 having a pair of coil sides 21 sandwiching the other deep groove type slot 111. The phase is different from each of the current phases. For example, no. 2 and no. The current phase of the lowermost layer coil 15 having the coil side 21 disposed at the lowermost opening of each of the deep groove type slots 111 of No. 5 is No. 5. V-phase upper layer coil 13 having a pair of coil sides 21 sandwiching two deep groove-type slots 111 (that is, upper layer coil 13 having coil sides 21 arranged at the upper openings of No. 1 and No. 3 slots 11) Current phase, and no. U-phase lower layer coil 14 having a pair of coil sides 21 sandwiching the deep groove type slot 111 of No. 5 (that is, the lower layer coil 14 having the coil side 21 disposed at the lower opening of the No. 4 and No. 6 slots 11) The W phase is different from each of the current phases.
 また、各最下層コイル15のコイル辺21の電流の向きは、最下層コイル15と同じ相のベースコイル12のコイル辺21のうち、最下層コイル15のコイル辺21が配置された深溝型スロット111に配置されているコイル辺21に流れる電流の向きと同じになっている。 The direction of the current on the coil side 21 of each lowermost layer coil 15 is the deep groove type slot in which the coil side 21 of the lowermost layer coil 15 is arranged among the coil sides 21 of the base coil 12 in the same phase as the lowermost layer coil 15. The direction of the current flowing in the coil side 21 arranged at 111 is the same.
 電機子コア7の周方向について互いに隣り合う3つの最下層コイル15の電流相は、図2に示すように、互いに異なっている。例えば、No.2、No.8、No.14のそれぞれの深溝型スロット111の最下口に配置されたコイル辺21を持つ3つの最下層コイル15の電流相は、互いに異なるW相、V相、U相になっている。 The current phases of the three lowermost coils 15 adjacent to each other in the circumferential direction of the armature core 7 are different from each other as shown in FIG. For example, no. 2, No. 8, no. The current phases of the three lowest-layer coils 15 having the coil sides 21 arranged at the lowermost openings of the 14 deep groove-type slots 111 are different W-phase, V-phase, and U-phase, respectively.
 即ち、互いに異なる相、即ちU相、V相、W相の各最下層コイル15のそれぞれの一方のコイル辺21が配置されている各深溝型スロット111は、電機子コア7の周方向について、以下の式(4)で表されるn個のスロット11ごとに現れている。 That is, each deep groove type slot 111 in which each one coil side 21 of each phase which is different from each other, that is, each U-phase, V-phase, and W-phase bottom layer coil 15 is arranged, is in the circumferential direction of the armature core 7. It appears for every n slots 11 represented by the following formula (4).
 n=Q/{gcd(Q,P)×m}…(4) N = Q / {gcd (Q, P) × m} (4)
 ただし、mは、電機子コイル群8の相数(この例では、m=3)である。 However, m is the number of phases of the armature coil group 8 (in this example, m = 3).
 この例では、互いに異なる相の各最下層コイル15のそれぞれの一方のコイル辺21が配置されている各深溝型スロット111(例えば、No.2、No.8、No.14の各深溝型スロット111)が、6個のスロット11ごとに現れており、式(4)の関係が成立している。 In this example, each deep groove type slot 111 (for example, each No. 2, No. 8, No. 14 deep groove type slot in which one coil side 21 of each lowermost layer coil 15 of a different phase is arranged. 111) appears for each of the six slots 11, and the relationship of Expression (4) is established.
 従って、電機子コア7の周方向について互いに隣り合う3つの最下層コイル15は、互いに位相差が120°となる誘起電圧をつくるコイルになっている。これにより、回転電機1Aの電機子2では、電機子コア7に最下層コイル15を追加して、すべての深溝型スロット111に最下層コイル15のコイル辺21を配置した場合でも、U相、V相、W相の各電機子コイル12,13,14,15がつくる誘起電圧のそれぞれの合成ベクトルの大きさが同じで、各相の誘起電圧の合成ベクトルの位相差が電気角で120°となる状態を保つことができる。 Therefore, the three lowermost coils 15 adjacent to each other in the circumferential direction of the armature core 7 are coils that generate an induced voltage having a phase difference of 120 °. Thereby, in the armature 2 of the rotating electrical machine 1A, even when the lowermost layer coil 15 is added to the armature core 7 and the coil sides 21 of the lowermost layer coil 15 are arranged in all the deep groove type slots 111, the U phase, The magnitudes of the combined vectors of the induced voltages generated by the V-phase and W-phase armature coils 12, 13, 14, and 15 are the same, and the phase difference of the combined vectors of the induced voltages of the phases is 120 ° in electrical angle. Can be maintained.
 U相、V相、W相の各最下層コイル15は、仮想調整コイル12Bと同様に、電気角幅α°の範囲内に同数ずつ(この例では、1つずつ)配置されている。これにより、本実施の形態による電機子2では、ベースコイル12、上層コイル13及び下層コイル14がつくる誘起電圧の合成ベクトルの大きさが、各最下層コイル15の追加によって各相で均等に大きくなる。 As with the virtual adjustment coil 12B, the U-phase, V-phase, and W-phase lowermost coils 15 are arranged in the same number (one in this example) within the range of the electrical angle width α °. As a result, in the armature 2 according to the present embodiment, the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, and the lower layer coil 14 is equally large in each phase by the addition of each lowermost layer coil 15. Become.
 電機子コア7は、電機子コア7の周方向へ並ぶ複数(この例では、2個)の分割コア31に分割されている。各分割コア31は、例えば溶接等により互いに連結されている。各分割コア31の境界32の位置は、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15のそれぞれのコイルエンド22がいずれも跨らない磁極ティース10(この例では、No.18及びNo.36のそれぞれの磁極ティース10)の位置になっている。各分割コア31の境界32は、電機子コア7の径方向に沿って形成されている。電機子2は、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15を分割コア31に設けて構成した複数(この例では、2個)の分割電機子33によって構成されている。 The armature core 7 is divided into a plurality (two in this example) of divided cores 31 arranged in the circumferential direction of the armature core 7. The divided cores 31 are connected to each other by welding or the like, for example. The position of the boundary 32 of each divided core 31 is such that the magnetic pole teeth 10 (No. 18 in this example) in which none of the coil ends 22 of the base coil 12, the upper layer coil 13, the lower layer coil 14 and the lowermost layer coil 15 straddle. And No. 36 magnetic pole teeth 10). The boundary 32 of each divided core 31 is formed along the radial direction of the armature core 7. The armature 2 is constituted by a plurality (two in this example) of divided armatures 33 each having a base coil 12, an upper layer coil 13, a lower layer coil 14, and a lowermost layer coil 15 provided in a divided core 31.
 図7は、図1の回転電機1の巻線係数Kdを示す表である。本実施の形態による回転電機1の巻線係数Kdの数値は、比較例1による回転電機1Aの巻線係数Kdと比較しても、基本波成分、高次成分ともに良好であることが分かる。 FIG. 7 is a table showing the winding coefficient Kd of the rotating electrical machine 1 of FIG. It can be seen that the numerical value of the winding coefficient Kd of the rotating electrical machine 1 according to the present embodiment is good for both the fundamental wave component and the higher-order component even when compared with the winding coefficient Kd of the rotating electrical machine 1A of Comparative Example 1.
 電機子2を製造するときには、複数の分割電機子33を予め製造しておき、各分割電機子33を環状に並べて各分割コア31同士を固定することにより電機子2を製造する。 When the armature 2 is manufactured, the armature 2 is manufactured by manufacturing a plurality of divided armatures 33 in advance, arranging the divided armatures 33 in a ring shape, and fixing the divided cores 31 to each other.
 分割電機子33を製造するときには、各最下層コイル15、各下層コイル14、各ベースコイル12及び各上層コイル13の順番でコイル辺21を分割コア31の各スロット11に挿入して、各電機子コイル12~15を分割コア31に装着する。これにより、分割電機子33が完成する。 When the split armature 33 is manufactured, the coil sides 21 are inserted into the slots 11 of the split core 31 in the order of the lowermost layer coils 15, the lower layer coils 14, the base coils 12, and the upper layer coils 13. The child coils 12 to 15 are attached to the split core 31. Thereby, the split armature 33 is completed.
 分割電機子33では、電機子コイル12~15のコイルエンド22がいずれも跨っていない磁極ティース10が一定間隔で存在している。従って、分割電機子33を製造するときには、最下層コイル15、下層コイル14、ベースコイル12及び上層コイル13を分割コア31に順次装着する作業を、コイルエンド22が跨っていない各磁極ティース10間の区間ごとに個別に行ってもよい。 In the split armature 33, there are magnetic teeth 10 at regular intervals where none of the coil ends 22 of the armature coils 12 to 15 straddle. Therefore, when the split armature 33 is manufactured, the work of sequentially mounting the lowermost layer coil 15, the lower layer coil 14, the base coil 12, and the upper layer coil 13 to the split core 31 is performed between the magnetic pole teeth 10 where the coil end 22 does not straddle. It may be performed individually for each section.
 このような回転電機1では、仮想ベースコイル装着状態で仮想調整コイル12Bのコイル辺21aを収容するスロット11が、通常スロット112よりも深い深溝型スロット111になっており、最下層コイル15の一方及び他方のコイル辺21がいずれも深溝型スロット111の最下口に配置されているので、ベースコイル12に対して最下層コイル15を電機子コア7の径方向外側に離して配置することができ、最下層コイル15のコイルエンド22がベースコイル12のコイルエンド22と交差することを回避することができる。これにより、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15を電機子コア7に巻くときに、各コイル12~15のそれぞれのコイルエンド22が互いに邪魔にならないようにすることができ、電機子2の製造を容易にすることができる。また、ベースコイル12、上層コイル13及び下層コイル14がつくる誘起電圧の合成ベクトルの大きさを各相(U相、V相、W相)で大きくする誘起電圧を各最下層コイル15によってつくることができ、電機子コイル群8の各相(U相、V相、W相)の誘起電圧のバランスを維持しながら、各相の誘起電圧の低下を防止することができる。これにより、回転電機1の動作特性を良好に維持することができる。 In such a rotating electric machine 1, the slot 11 that accommodates the coil side 21 a of the virtual adjustment coil 12 </ b> B in the virtual base coil mounted state is a deep groove type slot 111 that is deeper than the normal slot 112, and one of the lowermost layer coils 15. Since the other coil side 21 is disposed at the lowermost opening of the deep groove type slot 111, the lowermost layer coil 15 may be disposed away from the base coil 12 in the radial direction of the armature core 7. It is possible to avoid the coil end 22 of the lowermost layer coil 15 from intersecting with the coil end 22 of the base coil 12. Thus, when the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 are wound around the armature core 7, the coil ends 22 of the coils 12 to 15 are prevented from interfering with each other. The armature 2 can be easily manufactured. Also, each lower layer coil 15 generates an induced voltage that increases the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, and the lower layer coil 14 in each phase (U phase, V phase, W phase). It is possible to prevent a decrease in the induced voltage of each phase while maintaining the balance of the induced voltage of each phase (U phase, V phase, W phase) of the armature coil group 8. Thereby, the operating characteristic of the rotary electric machine 1 can be maintained satisfactorily.
 また、電機子コア7は、電機子コア7の周方向へ並ぶ複数の分割コア31に分割されており、各分割コア31の境界32の位置は、各電機子コイル12~15がいずれも跨らない磁極ティース10の位置になっているので、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15を分割コア31ごとに巻くことができる。従って、各コイル12~15の分割コア31への装着作業を容易にすることができ、電機子2の製造を容易にすることができる。 The armature core 7 is divided into a plurality of divided cores 31 arranged in the circumferential direction of the armature core 7, and the position of the boundary 32 of each divided core 31 spans all the armature coils 12 to 15. Therefore, the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coil 15 can be wound around each divided core 31. Accordingly, it is possible to facilitate the mounting operation of the coils 12 to 15 to the split core 31 and to facilitate the manufacture of the armature 2.
 また、電機子2は複数の分割電機子33で構成されているので、電機子2を構成する各部品の小形軽量化を図ることができる。これにより、回転電機1の完成後も、分割電機子33単位で電機子2の分解及び再組立を行うことができ、回転電機1の修理及びメンテナンス等の作業性を向上させることができる。また、電機子2が損傷した場合であっても、電機子2全体を修理、交換する必要がなくなり、回転電機1の修理及び交換に要するコストの低減化及び作業時間の短縮化を図ることができる。 Further, since the armature 2 is composed of a plurality of divided armatures 33, each component constituting the armature 2 can be reduced in size and weight. Thereby, even after completion of the rotating electrical machine 1, the armature 2 can be disassembled and reassembled in units of the split armature 33, and workability such as repair and maintenance of the rotating electrical machine 1 can be improved. Further, even when the armature 2 is damaged, it is not necessary to repair and replace the entire armature 2, thereby reducing the cost required for repairing and replacing the rotating electrical machine 1 and shortening the working time. it can.
 実施の形態2.
 実施の形態2による回転電機1を説明する前に、比較例2による回転電機1Bの構成を説明する。
Embodiment 2. FIG.
Before describing the rotating electrical machine 1 according to Embodiment 2, the configuration of the rotating electrical machine 1B according to Comparative Example 2 will be described.
 図8は、比較例2による回転電機1Bを示す構成図である。また、図9は、図8の電機子2を示す展開図である。比較例2による回転電機1Bでは、比較例1と同様に、各仮想ベースコイル12aが2層重ね巻きで電機子コア7に規則的に配置された仮想ベースコイル装着状態になっている。また、比較例2による回転電機1Bでは、スロット11の数Qが54、回転子4の磁極数Pが14になっている。従って、比較例2での毎極スロット数q’の値は、27/7(≒3.85)になっており、3よりも大きく4よりも小さい値(3<q’<4)になっている。このことから、比較例2による回転電機1Bの電機子2の構成は、式(2)から、N=3としたときの電機子2の構成になっている。即ち、比較例2では、各仮想ベースコイル12aのコイルピッチがN+1=4になっている。 FIG. 8 is a configuration diagram showing the rotating electrical machine 1B according to the second comparative example. FIG. 9 is a development view showing the armature 2 of FIG. In the rotating electrical machine 1B according to the comparative example 2, as in the comparative example 1, each virtual base coil 12a is in a virtual base coil mounting state in which the virtual base coils 12a are regularly arranged on the armature core 7 by two-layer wrapping. In the rotating electrical machine 1B according to the comparative example 2, the number Q of the slots 11 is 54, and the number of magnetic poles P of the rotor 4 is 14. Therefore, the value of the number of slots per pole q ′ in Comparative Example 2 is 27/7 (≈3.85), which is a value larger than 3 and smaller than 4 (3 <q ′ <4). ing. From this, the configuration of the armature 2 of the rotating electrical machine 1B according to the comparative example 2 is the configuration of the armature 2 when N = 3 from Expression (2). That is, in Comparative Example 2, the coil pitch of each virtual base coil 12a is N + 1 = 4.
 比較例2では、U相に着目すると、No.1及びNo.4のスロット11の上口同士、No.24及びNo.27のスロット11の下口同士、No.28及びNo.31のスロット11の上口同士、No.51及びNo.54のスロット11の下口同士のそれぞれに、同相逆向きの電流が流れるコイル辺21aの組が配置されていることが分かる。また、同相逆向きの電流が流れるコイル辺21aの組がそれぞれ上口にあるNo.1及びNo.4のスロット11とNo.28及びNo.31のスロット11との距離は27スロット分であり、同相逆向きの電流が流れるコイル辺21aの組が下口にあるNo.24及びNo.27のスロット11とNo.51及びNo.54のスロット11との間の距離も27スロット分であることが分かる。さらに、No.1及びNo.4のスロット11の上口同士、No.51及びNo.54のスロット11の下口同士のそれぞれのコイル辺21aが共通の2つの仮想ベースコイル12aのコイル辺21aになっており、No.28及びNo.31のスロット11の上口同士、No.24及びNo.27のスロット11の下口同士のそれぞれのコイル辺21aも共通の2つの仮想ベースコイル12aのコイル辺21aになっていることが分かる。このようなことから、図9では、3個(N=3)の磁極ティース10を挟む2つのスロット11の上口同士(又は下口同士)の2つのコイル辺21aに同相逆向きの電流が流れる関係を持つ2つの仮想ベースコイル12aがそれぞれ仮想特定コイル12Aとなり、2つの仮想特定コイル12Aで構成された仮想コイル対23が、27スロット間隔で配置されていることが分かる。また、V相、W相についても、U相と同様に、仮想コイル対23が、27スロット間隔で配置されている。 In Comparative Example 2, focusing on the U phase, no. 1 and no. 4 of the slot 11 of No. 4, 24 and no. No. 27 of slot 11 of slot 27, 28 and no. No. 31 of the slot 11 slot No. 51 and no. It can be seen that a set of coil sides 21a through which currents in the opposite phase flow are arranged at the lower openings of the 54 slots 11. In addition, each pair of coil sides 21a through which in-phase and reverse currents flow are respectively located at the upper openings. 1 and no. 4 slot 11 and No. 4 slot. 28 and no. No. 31 has a slot 11 distance of 27 slots, and a pair of coil sides 21a through which currents in the same phase and opposite direction flow are located in the lower opening. 24 and no. 27 slot 11 and no. 51 and no. It can be seen that the distance between the 54 slots 11 is also 27 slots. Furthermore, no. 1 and no. 4 of the slot 11 of No. 4, 51 and no. 54, the coil sides 21a of the lower openings of the slots 11 are the coil sides 21a of two common virtual base coils 12a. 28 and no. No. 31 of the slot 11 slot No. 24 and no. It can be seen that the coil sides 21a of the lower openings of the 27 slots 11 are also the coil sides 21a of the two common virtual base coils 12a. For this reason, in FIG. 9, currents in the same phase and opposite directions are applied to the two coil sides 21 a of the upper slots (or the lower slots) of the two slots 11 sandwiching the three (N = 3) magnetic pole teeth 10. It can be seen that the two virtual base coils 12a having the flowing relationship become the virtual specific coils 12A, respectively, and the virtual coil pairs 23 constituted by the two virtual specific coils 12A are arranged at intervals of 27 slots. For the V phase and the W phase, as with the U phase, the virtual coil pairs 23 are arranged at intervals of 27 slots.
 一定のスロット間隔で出現する各仮想コイル対23の電流相の順序は、各相(U相、V相、W相)が同じ順番で繰り返される順序となっている。図9の仮想ベースコイル12aでは、スロット11の上口のコイル辺21aを基準に考えると、No.1及びNo.4の上口同士の2つのコイル辺21aを持つ仮想コイル対23がU相、No.10及びNo.13の上口同士の2つのコイル辺21aを持つ仮想コイル対23がW相、No.19及びNo.22の上口同士の2つのコイル辺21aを持つ仮想コイル対23がV相であることから、U相、W相、V相の順に並ぶ組が繰り返されている。 The order of the current phase of each virtual coil pair 23 appearing at a fixed slot interval is such that each phase (U phase, V phase, W phase) is repeated in the same order. In the virtual base coil 12a of FIG. 1 and no. 4 is a U-phase, no. 10 and no. The virtual coil pair 23 having the two coil sides 21a between the upper ends of the top 13 is the W phase, 19 and No. Since the virtual coil pair 23 having the two coil sides 21a between the upper ends of the 22 is the V phase, the set arranged in the order of the U phase, the W phase, and the V phase is repeated.
 また、比較例2による回転電機1Bでは、共通の仮想コイル対23に含まれる2つの仮想特定コイル12A間に複数の仮想ベースコイル12aが仮想調整コイル12Bとして存在している。比較例2では、N=3であることから、共通の仮想コイル対23に含まれる2つの仮想特定コイル12A間に、2つ(即ち、N-1=2)の仮想調整コイル12Bが存在している。また、共通の仮想コイル対23の2つの仮想特定コイル12A間に存在する2つの仮想調整コイル12Bは、電機子コア7の周方向について、仮想コイル対23と同じ間隔で存在している。さらに、比較例2による電機子2でも、比較例1と同様に、2つの仮想調整コイル12Bの電流相と、仮想調整コイル12Bを挟む2つの仮想特定コイル12Aで構成された仮想コイル対23の電流相とが、互いに異なっている。従って、比較例2による電機子2では、U相の仮想コイル対23の仮想特定コイル12Aに挟まれた2個の仮想調整コイル12Bの電流相がV相及びW相、W相の仮想コイル対23の仮想特定コイル12Aに挟まれた2個の仮想調整コイル12Bの電流相がV相及びU相、V相の仮想コイル対23の仮想特定コイル12Aに挟まれた2つの仮想調整コイル12Bの電流相がU相及びW相となっている。 Also, in the rotating electrical machine 1B according to the comparative example 2, a plurality of virtual base coils 12a exist as virtual adjustment coils 12B between two virtual specific coils 12A included in the common virtual coil pair 23. In Comparative Example 2, since N = 3, there are two (that is, N−1 = 2) virtual adjustment coils 12B between the two virtual specific coils 12A included in the common virtual coil pair 23. ing. Further, the two virtual adjustment coils 12 </ b> B existing between the two virtual specific coils 12 </ b> A of the common virtual coil pair 23 are present at the same interval as the virtual coil pair 23 in the circumferential direction of the armature core 7. Further, in the armature 2 according to the comparative example 2, similarly to the comparative example 1, the current phase of the two virtual adjustment coils 12B and the virtual coil pair 23 configured by the two virtual specific coils 12A sandwiching the virtual adjustment coil 12B. Current phases are different from each other. Therefore, in the armature 2 according to the comparative example 2, the current phases of the two virtual adjustment coils 12B sandwiched between the virtual specific coils 12A of the U-phase virtual coil pair 23 are V-phase, W-phase, and W-phase virtual coil pairs. The current phases of two virtual adjustment coils 12B sandwiched between 23 virtual specific coils 12A are V-phase, U-phase, and V-phase virtual coil pairs 23 of two virtual adjustment coils 12B sandwiched between virtual specific coils 12A. The current phase is the U phase and the W phase.
 U相、V相、W相の各仮想調整コイル12Bは、互いに位相差が120°となる誘起電圧をつくる仮想ベースコイル12aである。また、U相、V相、W相の各仮想調整コイル12Bは、式(3)で表される電気角幅α°(α°=1260°)の範囲内に同数ずつ(この例では、2つずつ)存在している。比較例2の他の構成は比較例1と同様である。 Each U-phase, V-phase, and W-phase virtual adjustment coil 12B is a virtual base coil 12a that generates an induced voltage with a phase difference of 120 °. In addition, the U-phase, V-phase, and W-phase virtual adjustment coils 12B have the same number within the range of the electrical angle width α ° (α ° = 1260 °) expressed by Expression (3) (in this example, 2 Exist) one by one. Other configurations of Comparative Example 2 are the same as those of Comparative Example 1.
 図10は、比較例2による回転電機1Bの巻線係数Kdを示す表である。比較例2による回転電機1Bでは、巻線係数Kdの数値が基本波成分、高次成分ともに良好な傾向を示していることが分かる。 FIG. 10 is a table showing the winding coefficient Kd of the rotating electrical machine 1B according to Comparative Example 2. In the rotating electrical machine 1B according to Comparative Example 2, it can be seen that the numerical value of the winding coefficient Kd shows a good tendency for both the fundamental wave component and the higher-order component.
 図11は、この発明の実施の形態2による回転電機1を示す構成図である。また、図12は、図11の電機子2を示す展開図である。各ベースコイル12は、図12を図9と比較すると、各相の仮想コイル対23に含まれるすべての仮想特定コイル12Aの位置、及びすべての仮想調整コイル12Bの位置を避けて、他のすべての仮想ベースコイル12aの位置に配置されている。これにより、各ベースコイル12のそれぞれのコイルエンド22は、4個(N+1=4)の磁極ティース10を跨いでいる。即ち、各ベースコイル12のコイルピッチは、4になっている。上層コイル13及び下層コイル14のそれぞれのコイル辺21は、ベースコイル12の配置が回避されている各相の仮想特定コイル12Aのそれぞれのコイル辺21aの位置に配置されている。上層コイル13及び下層コイル14のそれぞれのコイルエンド22は、3個(N=3)の磁極ティース10を跨いでいる。即ち、上層コイル13及び下層コイル14のそれぞれのコイルピッチは、いずれも3になっている。 FIG. 11 is a block diagram showing a rotating electrical machine 1 according to Embodiment 2 of the present invention. FIG. 12 is a development view showing the armature 2 of FIG. When comparing FIG. 12 with FIG. 9, each base coil 12 avoids the positions of all the virtual specific coils 12A and all the virtual adjustment coils 12B included in the virtual coil pair 23 of each phase, The virtual base coil 12a is disposed at the position. Thereby, each coil end 22 of each base coil 12 straddles four (N + 1 = 4) magnetic pole teeth 10. That is, the coil pitch of each base coil 12 is 4. The coil sides 21 of the upper layer coil 13 and the lower layer coil 14 are arranged at the positions of the coil sides 21a of the virtual specific coils 12A of the respective phases where the arrangement of the base coil 12 is avoided. Each coil end 22 of the upper layer coil 13 and the lower layer coil 14 straddles three (N = 3) magnetic pole teeth 10. That is, the coil pitch of each of the upper layer coil 13 and the lower layer coil 14 is 3.
 本実施の形態による電機子コア7では、図12を図9と比較すると、仮想ベースコイル装着状態で各仮想調整コイル12Bのそれぞれのコイル辺21aを収容する各スロット11のすべてが、深溝型スロット111になっている。即ち、本実施の形態による電機子コア7では、図12に示すように、各上層コイル13の一方及び他方のコイル辺21間に挟まれた各スロット11と、各下層コイル14の一方及び他方のコイル辺21間に挟まれた各スロット11とが、深溝型スロット111になっている。 In the armature core 7 according to the present embodiment, when FIG. 12 is compared with FIG. 9, all the slots 11 that accommodate the respective coil sides 21a of the virtual adjustment coils 12B in the virtual base coil mounted state are deep groove type slots. 111. That is, in the armature core 7 according to the present embodiment, as shown in FIG. 12, each slot 11 sandwiched between one and the other coil sides 21 of each upper layer coil 13 and one and the other of each lower layer coil 14. Each slot 11 sandwiched between the coil sides 21 is a deep groove type slot 111.
 また、本実施の形態では、共通の上層コイル13で挟まれた深溝型スロット111の数、及び共通の下層コイル14で挟まれた深溝型スロット111の数は、それぞれ2つ(複数)である。 In the present embodiment, the number of deep groove type slots 111 sandwiched between the common upper layer coils 13 and the number of deep groove type slots 111 sandwiched between the common lower layer coils 14 are each two (plural). .
 共通の上層コイル13で挟まれた互いに異なる2つの深溝型スロット111のうち、一方の深溝型スロット111が第1の深溝型スロット111Aとされ、他方の深溝型スロット111が第2の深溝型スロット111Bとされている。また、共通の下層コイル14で挟まれた互いに異なる2つの深溝型スロット111のうち、一方の深溝型スロット111が第1の深溝型スロット111Aとされ、他方の深溝型スロット111が第2の深溝型スロット111Bとされている。各第1の深溝型スロット111Aは電機子コア7の周方向について一定間隔で存在し、各第2の深溝型スロット111Bは電機子コア7の周方向について各第1の深溝型スロット111Aと同じ一定間隔で存在している。 Of the two different deep groove slots 111 sandwiched between the common upper layer coils 13, one deep groove slot 111 is the first deep groove slot 111A, and the other deep groove slot 111 is the second deep groove slot 111. 111B. Of the two different deep groove slots 111 sandwiched between the common lower layer coils 14, one deep groove slot 111 is the first deep groove slot 111A, and the other deep groove slot 111 is the second deep groove slot 111. The mold slot 111B is used. The first deep groove type slots 111A exist at regular intervals in the circumferential direction of the armature core 7, and the second deep groove type slots 111B are the same as the first deep groove type slots 111A in the circumferential direction of the armature core 7. It exists at regular intervals.
 第1の深溝型スロット111Aの深さ寸法と、第2の深溝型スロット111Bの深さ寸法とは、互いに異なっている。従って、第1の深溝型スロット111Aの最下口の位置と、第2の深溝型スロット111Bの最下口の位置とは、電機子コア7の径方向について互いに異なっている。本実施の形態では、各第1の深溝型スロット111Aの深さ寸法が各第2の深溝型スロット111Bの深さ寸法よりも小さくなっている。従って、本実施の形態では、各第1の深溝型スロット111Aの最下口が各第2の深溝型スロット111Bの最下口よりも径方向内側に位置している。 The depth dimension of the first deep groove type slot 111A and the depth dimension of the second deep groove type slot 111B are different from each other. Accordingly, the position of the lowermost opening of the first deep groove type slot 111A and the position of the lowermost opening of the second deep groove type slot 111B are different from each other in the radial direction of the armature core 7. In the present embodiment, the depth dimension of each first deep groove type slot 111A is smaller than the depth dimension of each second deep groove type slot 111B. Therefore, in the present embodiment, the lowermost opening of each first deep groove type slot 111A is located radially inward from the lowermost opening of each second deep groove type slot 111B.
 各第1の深溝型スロット111Aの深さ寸法は互いに同じであり、各第2の深溝型スロット111Bの深さ寸法も互いに同じである。通常スロット112、第1及び第2の深溝型スロット111A,111Bのそれぞれの下口は、第1及び第2の深溝型スロット111A,111Bのそれぞれの最下口よりも径方向内側に位置している。通常スロット112、第1及び第2の深溝型スロット111A,111Bのそれぞれの上口は、通常スロット112、第1及び第2の深溝型スロット111A,111Bのそれぞれの下口よりも径方向内側に位置している。 The depth dimensions of the first deep groove type slots 111A are the same, and the depth dimensions of the second deep groove type slots 111B are also the same. The lower opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B is located radially inward from the lowermost opening of each of the first and second deep groove type slots 111A and 111B. Yes. The upper opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B is radially inward of the lower opening of each of the normal slot 112 and the first and second deep groove type slots 111A and 111B. positioned.
 各最下層コイル15のそれぞれのコイル辺21は、実施の形態1と同様に、すべての深溝型スロット111(即ち、すべての第1及び第2の深溝型スロット111A,111B)のそれぞれの最下口に配置されている。本実施の形態では、U相、V相、W相の最下層コイル15が4つずつ電機子コア7に設けられている。 Each coil side 21 of each lowermost layer coil 15 is the bottom of each of all the deep groove type slots 111 (that is, all the first and second deep groove type slots 111A and 111B), as in the first embodiment. Placed in the mouth. In the present embodiment, four U-phase, V-phase, and W-phase lowermost coils 15 are provided on the armature core 7 by four.
 共通の最下層コイル15の一方及び他方のコイル辺21は、同じ深さ寸法を持つ2つの深溝型スロット111にそれぞれ配置されている。本実施の形態による電機子2では、互いに異なる第1の深溝型スロット111Aのそれぞれの最下口に配置された一対のコイル辺21を持つ最下層コイル15が第1の最下層コイル15Aとされ、互いに異なる第2の深溝型スロット111Bの最下口に配置された一対のコイル辺21を持つ最下層コイル15が第2の最下層コイル15Bとされている。従って、本実施の形態では、第1の最下層コイル15Aが第2の最下層コイル15Bよりも径方向内側に配置されている。また、第1及び第2の最下層コイル15A,15Bのそれぞれのコイルエンド22は、電機子コア7の周方向と平行になっている。 One and the other coil sides 21 of the common lowermost layer coil 15 are respectively disposed in two deep groove type slots 111 having the same depth dimension. In the armature 2 according to the present embodiment, the lowermost layer coil 15 having a pair of coil sides 21 arranged at the lowermost openings of the different first deep groove type slots 111A is defined as the first lowermost layer coil 15A. The lowermost layer coil 15 having a pair of coil sides 21 arranged at the lowermost opening of the different second deep groove type slots 111B is defined as the second lowermost layer coil 15B. Therefore, in the present embodiment, the first lowermost layer coil 15A is disposed radially inward from the second lowermost layer coil 15B. Further, the coil ends 22 of the first and second lowermost layer coils 15 </ b> A and 15 </ b> B are parallel to the circumferential direction of the armature core 7.
 第1の最下層コイル15Aは、互いに隣り合う2つの仮想コイル対23のうち、一方の仮想コイル対23に対応する上層コイル13の一対のコイル辺21間に挟まれた第1の深溝型スロット111Aの最下口に一方のコイル辺21を配置し、他方の仮想コイル対23に対応する下層コイル14の一対のコイル辺21間に挟まれた第1の深溝型スロット111Aの最下口に他方のコイル辺21を配置した状態で、電機子コア7に設けられている。 The first lowermost layer coil 15 </ b> A is a first deep groove type slot sandwiched between a pair of coil sides 21 of the upper layer coil 13 corresponding to one virtual coil pair 23 out of two adjacent virtual coil pairs 23. One coil side 21 is arranged at the lowermost port of 111A, and the lowermost port of the first deep groove type slot 111A sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23. The armature core 7 is provided with the other coil side 21 disposed.
 第2の最下層コイル15Bは、互いに隣り合う2つの仮想コイル対23のうち、一方の仮想コイル対23に対応する上層コイル13の一対のコイル辺21間に挟まれた第2の深溝型スロット111Bの最下口に一方のコイル辺21を配置し、他方の仮想コイル対23に対応する下層コイル14の一対のコイル辺21間に挟まれた第2の深溝型スロット111Bの最下口に他方のコイル辺21を配置した状態で、電機子コア7に設けられている。 The second lowermost layer coil 15B is a second deep groove-type slot sandwiched between a pair of coil sides 21 of the upper layer coil 13 corresponding to one virtual coil pair 23 out of two virtual coil pairs 23 adjacent to each other. One coil side 21 is arranged at the lowermost opening of 111B, and at the lowermost opening of the second deep groove type slot 111B sandwiched between the pair of coil sides 21 of the lower layer coil 14 corresponding to the other virtual coil pair 23. The armature core 7 is provided with the other coil side 21 disposed.
 第1及び第2の最下層コイル15A,15Bは、ベースコイル12、上層コイル13及び下層コイル14がいずれも跨らない磁極ティース10(No.9、No.18、No.27、No.36、No.45、No.54の磁極ティース10)を避けて配置されている。第1の深溝型スロット111Aは電機子コア7の周方向について一定間隔で存在し、第2の深溝型スロット111Bも電機子コア7の周方向について、第1の深溝型スロット111Aと同じ一定間隔で存在している。これにより、第1及び第2の最下層コイル15A,15Bのそれぞれのコイルエンド22が跨ぐ磁極ティース10の数は、各第1及び第2の最下層コイル15A,15Bですべて同じになっている。即ち、第1及び第2の最下層コイル15A,15Bのそれぞれのコイルピッチはすべて同じになっている。本実施の形態では、第1及び第2の最下層コイル15A,15Bのそれぞれのコイルエンド22が跨ぐ磁極ティース10の数が5個になっている。 The first and second lowermost layer coils 15A, 15B are magnetic pole teeth 10 (No. 9, No. 18, No. 27, No. 36) in which none of the base coil 12, the upper layer coil 13 and the lower layer coil 14 straddles. , No. 45, No. 54 magnetic pole teeth 10) are disposed. The first deep groove type slots 111A are present at regular intervals in the circumferential direction of the armature core 7, and the second deep groove type slots 111B are also at regular intervals in the circumferential direction of the armature core 7 as with the first deep groove type slots 111A. Exists. Thereby, the number of the magnetic teeth 10 which each coil end 22 of 1st and 2nd lowest layer coil 15A, 15B straddles is the same in each 1st and 2nd lowest layer coil 15A, 15B. . That is, the coil pitches of the first and second lowermost coils 15A and 15B are all the same. In the present embodiment, the number of magnetic pole teeth 10 that the coil ends 22 of the first and second lowermost layer coils 15A and 15B straddle is five.
 第1及び第2の最下層コイル15A,15Bは、図12を図9と比較すると、共通の上層コイル13(又は、共通の下層コイル14)の一対のコイル辺21間に挟まれた第1及び第2の深溝型スロット111A,111Bに配置されているコイル辺21を持つ第1及び第2の最下層コイル15A,15Bは、電機子コア7の径方向について互いに隣接している。電機子コア7の径方向について互いに隣接する第1及び第2の最下層コイル15A,15Bのそれぞれのコイル辺21には、第1又は第2の最下層コイル15A,15Bのコイル辺21を収容する第1又は第2の深溝型スロット111A,111Bに配置されている他のコイル辺21と、その深溝型スロット111A,111Bの両隣にある2つのスロット11にそれぞれ配置されているコイル辺21とのいずれかと同相同向きの電流が流れるようになっている。 The first and second lowermost layer coils 15A and 15B are the first sandwiched between the pair of coil sides 21 of the common upper layer coil 13 (or the common lower layer coil 14) when FIG. 12 is compared with FIG. The first and second lowermost coils 15A, 15B having the coil sides 21 arranged in the second deep groove type slots 111A, 111B are adjacent to each other in the radial direction of the armature core 7. The coil sides 21 of the first and second bottom layer coils 15A and 15B are accommodated in the coil sides 21 of the first and second bottom layer coils 15A and 15B adjacent to each other in the radial direction of the armature core 7. Other coil sides 21 arranged in the first or second deep groove type slots 111A and 111B, and coil sides 21 arranged in the two slots 11 adjacent to the deep groove type slots 111A and 111B, respectively A current in the same direction as any of the above flows.
 本実施の形態では、電機子コア7の径方向について互いに隣接する第1及び第2の最下層コイル15A,15Bのそれぞれの電流相が、互いに同じ相になっている。また、本実施の形態では、電機子コア7の径方向について互いに隣接する第1及び第2の最下層コイル15A,15Bのそれぞれの電流相が、第1及び第2の最下層コイル15A,15Bの両側に位置する第1及び第2の深溝型スロット111A,111Bを挟む上層コイル13及び下層コイル14のそれぞれの電流相と異なる相になっている。即ち、電機子コア7の径方向について互いに隣接する第1及び第2の最下層コイル15のそれぞれの電流相は、一方の第1及び第2の深溝型スロット111A,111Bを挟む一対のコイル辺21を持つ上層コイル13の電流相、及び他方の第1及び第2の深溝型スロット111A,111Bを挟む一対のコイル辺21を持つ下層コイル14の電流相のそれぞれと異なる相になっている。 In the present embodiment, the current phases of the first and second lowermost coils 15A and 15B adjacent to each other in the radial direction of the armature core 7 are the same as each other. In the present embodiment, the current phases of the first and second lowermost coils 15A and 15B adjacent to each other in the radial direction of the armature core 7 are the first and second lowermost coils 15A and 15B. Are different from the current phases of the upper layer coil 13 and the lower layer coil 14 sandwiching the first and second deep groove type slots 111A and 111B located on both sides of the coil. That is, the current phases of the first and second lowermost layer coils 15 adjacent to each other in the radial direction of the armature core 7 are a pair of coil sides sandwiching the first and second deep groove type slots 111A and 111B. 21 and a current phase of the lower layer coil 14 having a pair of coil sides 21 sandwiching the other first and second deep groove type slots 111A and 111B.
 例えば、No.2の第1の深溝型スロット111Aの最下口に配置されたコイル辺21を持つ第1の最下層コイル15Aの電流相、及びNo.3の第2の深溝型スロット111Bの最下口に配置されたコイル辺21を持つ第2の最下層コイル15Bの電流相は、No.2及びNo.3の深溝型スロット111A,111Bを挟む一対のコイル辺21を持つU相の上層コイル13(即ち、No.1及びNo.4のスロット11の上口に配置されたコイル辺21を持つ上層コイル13)の電流相、及びNo.7及びNo.8の深溝型スロット111A,111Bを挟む一対のコイル辺21を持つW相の下層コイル14(即ち、No.6及びNo.9のスロット11の下口に配置されたコイル辺21を持つ下層コイル14)の電流相のそれぞれと異なるV相になっている。 For example, No. Current phase of the first lowermost layer coil 15A having the coil side 21 arranged at the lowermost opening of the first deep groove type slot 111A, and No. 2 3, the current phase of the second lowermost layer coil 15B having the coil side 21 arranged at the lowermost opening of the second deep groove type slot 111B is No. 3. 2 and no. U-phase upper coil 13 having a pair of coil sides 21 sandwiching three deep groove type slots 111A and 111B (that is, an upper layer coil having coil sides 21 disposed at the upper openings of No. 1 and No. 4 slots 11) 13), and No. 13). 7 and no. W-phase lower layer coil 14 having a pair of coil sides 21 sandwiching the eight deep groove type slots 111A and 111B (ie, a lower layer coil having a coil side 21 disposed at the lower opening of the slots 11 of No. 6 and No. 9) 14) The V phase is different from each of the current phases.
 また、第1及び第2の最下層コイル15A,15Bのコイル辺21の電流の向きは、第1及び第2の最下層コイル15A,15Bと同じ相のベースコイル12のコイル辺21のうち、第1及び第2の最下層コイル15A,15Bのコイル辺21が配置された第1及び第2の深溝型スロット111A,111Bに配置されているコイル辺21に流れる電流の向きと同じになっている。 Moreover, the direction of the current of the coil side 21 of the first and second lowest layer coils 15A and 15B is the coil side 21 of the base coil 12 in the same phase as the first and second lowest layer coils 15A and 15B. The direction of the current flowing in the coil side 21 arranged in the first and second deep groove type slots 111A and 111B in which the coil sides 21 of the first and second lowermost layer coils 15A and 15B are arranged is the same. Yes.
 電気角幅α°(α=1260°)の範囲内には、U相、V相、W相の第1の最下層コイル15Aが同数ずつ(この例では、1つずつ)配置され、U相、V相、W相の第2の最下層コイル15Bが同数ずつ(この例では、1つずつ)配置されている。 Within the range of electrical angle width α ° (α = 1260 °), the same number of U-phase, V-phase, and W-phase first lowermost coils 15A are arranged (one in this example), and the U-phase , V-phase, and W-phase second lowermost layer coils 15B are arranged in the same number (one in this example).
 即ち、互いに異なる相の各第1の最下層コイル15Aのそれぞれの一方のコイル辺21が配置されている各第1の深溝型スロット111Aは、電機子コア7の周方向について、上記の式(4)で表されるn個のスロット11ごとに現れている。また、互いに異なる相の各第2の最下層コイル15Bのそれぞれの一方のコイル辺21が配置されている各第2の深溝型スロット111Bも、電機子コア7の周方向について、上記の式(4)で表されるn個のスロット11ごとに現れている。この例では、各第1の最下層コイル15Aのそれぞれの一方のコイル辺21が配置されている各第1の深溝型スロット111A(例えば、No.2、No.11、No.20の各第1の深溝型スロット111A)、及び各第2の最下層コイル15Bのそれぞれの一方のコイル辺21が配置されている各第2の深溝型スロット111B(例えば、No.3、No.12、No.22の各第2の深溝型スロット111B)のそれぞれが、9個のスロット11ごとに現れており、式(4)の関係が成立している。 That is, each first deep groove type slot 111A in which each one coil side 21 of each first lowermost layer coil 15A having a different phase is arranged in the circumferential direction of the armature core 7 ( It appears for every n slots 11 represented by 4). In addition, each second deep groove type slot 111B in which each one coil side 21 of each second lowermost layer coil 15B having a different phase is arranged in the circumferential direction of the armature core 7 (the above formula ( It appears for every n slots 11 represented by 4). In this example, each of the first deep groove type slots 111A (for example, No. 2, No. 11, No. 20) in which each one coil side 21 of each first lowermost layer coil 15A is arranged. 1 deep groove type slot 111A), and each second deep groove type slot 111B (for example, No. 3, No. 12, No. 12) in which one coil side 21 of each second lowermost layer coil 15B is arranged. .22 each of the second deep groove type slots 111B) appears for every nine slots 11, and the relationship of equation (4) is established.
 これにより、本実施の形態による電機子2では、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15A,15Bがつくる誘起電圧の合成ベクトルの大きさが各相で均等に大きくなる。 As a result, in the armature 2 according to the present embodiment, the magnitude of the resultant vector of the induced voltage generated by the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coils 15A and 15B is evenly increased in each phase.
 電機子コア7は、電機子コア7の周方向へ並ぶ複数(この例では、2個)の分割コア31に分割されている。各分割コア31は、例えば溶接等により互いに連結されている。各分割コア31の境界32の位置は、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15A,15Bのそれぞれのコイルエンド22がいずれも跨らない磁極ティース10(この例では、No.27及びNo.54のそれぞれの磁極ティース10)の位置になっている。各分割コア31の境界32は、電機子コア7の径方向に沿って形成されている。電機子2は、ベースコイル12、上層コイル13、下層コイル14及び最下層コイル15A,15Bを分割コア31に設けて構成した複数(この例では、2つ)の分割電機子33によって構成されている。他の構成は実施の形態1と同様である。 The armature core 7 is divided into a plurality (two in this example) of divided cores 31 arranged in the circumferential direction of the armature core 7. The divided cores 31 are connected to each other by welding or the like, for example. The positions of the boundaries 32 of the divided cores 31 are the magnetic pole teeth 10 (in this example, No. .27 and No. 54 magnetic pole teeth 10). The boundary 32 of each divided core 31 is formed along the radial direction of the armature core 7. The armature 2 is constituted by a plurality (two in this example) of divided armatures 33 configured by providing the divided core 31 with the base coil 12, the upper layer coil 13, the lower layer coil 14, and the lowermost layer coils 15A and 15B. Yes. Other configurations are the same as those in the first embodiment.
 図13は、図11の回転電機1の巻線係数Kdを示す表である。本実施の形態による回転電機1の巻線係数Kdの数値は、比較例2による回転電機1Bの巻線係数Kd(図10)と比較しても、基本波成分、高次成分ともに良好であることが分かる。 FIG. 13 is a table showing the winding coefficient Kd of the rotating electrical machine 1 of FIG. The numerical value of the winding coefficient Kd of the rotating electrical machine 1 according to the present embodiment is good for both the fundamental wave component and the higher-order component even when compared with the winding coefficient Kd of the rotating electrical machine 1B according to Comparative Example 2 (FIG. 10). I understand that.
 このように、毎極スロット数q’が3よりも大きく4よりも小さい値である場合であっても、実施の形態1と同様の効果を得ることができる。 As described above, even when the number of slots per pole q ′ is larger than 3 and smaller than 4, the same effect as in the first embodiment can be obtained.
 即ち、実施の形態1及び2で示した通り、回転電機1の電機子2のスロット数Qと、回転子4の磁極数Pとの組み合わせにかかわらず、毎極スロット数q’が式(2)の条件を満たしていれば、各コイル辺21の配置を維持したまま、各ベースコイル12のコイルピッチN+1よりも小さいコイルピッチNを持つ上層コイル13及び下層コイル14を得ることができる。また、各相の最下層コイル15のそれぞれのコイル辺21を各深溝型スロット111のそれぞれの最下口に配置することにより、ベースコイル12、上層コイル13及び下層コイル14のそれぞれから径方向外側に外して各最下層コイル15を配置することができる。これにより、回転電機1の動作特性を良好に維持しながら、回転電機1の製造を容易にすることができる。 That is, as shown in the first and second embodiments, regardless of the combination of the number Q of slots of the armature 2 of the rotating electrical machine 1 and the number of magnetic poles P of the rotor 4, the number of slots per pole q ′ is expressed by the formula (2 If the condition (1) is satisfied, the upper layer coil 13 and the lower layer coil 14 having a coil pitch N smaller than the coil pitch N + 1 of each base coil 12 can be obtained while maintaining the arrangement of the coil sides 21. Further, by arranging the coil sides 21 of the lowermost layer coils 15 of the respective phases at the lowermost openings of the deep groove type slots 111, the outer sides in the radial direction from the base coil 12, the upper layer coil 13, and the lower layer coil 14, respectively. Each lowermost layer coil 15 can be arranged by removing. Thereby, manufacture of the rotary electric machine 1 can be made easy, maintaining the operating characteristic of the rotary electric machine 1 favorable.
 なお、各上記実施の形態では、電機子コア7が複数の分割コア31に分割されているが、電機子コア7を複数の分割コア31に分割しない単一部品としてもよい。 In each of the above embodiments, the armature core 7 is divided into the plurality of divided cores 31, but the armature core 7 may be a single component that is not divided into the plurality of divided cores 31.
 また、各上記実施の形態では、電機子2の内側に回転子4が配置されたインナロータ型の回転電機1にこの発明が適用されているが、これに限定されず、筒状の回転子の内側に電機子が配置されたアウタロータ型の回転電機にこの発明を適用してもよい。さらに、電機子と回転子とが径方向について対向するラジアルギャップ型(即ち、インナロータ型及びアウタロータ型)の回転電機だけでなく、例えば、電機子と回転子とが軸線方向について対向するアキシャルギャップ型の回転電機にこの発明を適用してもよい。 Moreover, in each said embodiment, although this invention is applied to the inner rotor type rotary electric machine 1 by which the rotor 4 is arrange | positioned inside the armature 2, it is not limited to this, A cylindrical rotor is used. The present invention may be applied to an outer rotor type rotating electrical machine in which an armature is disposed on the inner side. Furthermore, not only a radial gap type (ie, inner rotor type and outer rotor type) rotating electric machine in which the armature and the rotor face each other in the radial direction, but also an axial gap type in which the armature and the rotor face each other in the axial direction. The present invention may be applied to a rotating electric machine.
 また、各上記実施の形態による回転電機1は、例えば電動機、発電機及び発電電動機のいずれにも適用することができる。また、各上記実施の形態による回転電機1は、同期機以外の例えば誘導機等に適用することもできる。 Further, the rotating electrical machine 1 according to each of the above embodiments can be applied to any of an electric motor, a generator, and a generator motor, for example. Moreover, the rotary electric machine 1 by each said embodiment can also be applied to induction machines other than a synchronous machine, for example.

Claims (3)

  1.  周方向について互いに間隔を置いて設けられた複数の磁極ティースを有し、各上記磁極ティース間にスロットが形成されている電機子コア、
     互いに異なる上記スロットに配置された一対のコイル辺と上記一対のコイル辺間を繋ぐコイルエンドとをそれぞれ含む複数の電機子コイルを有し、各上記電機子コイルが重ね巻きで上記磁極ティースに巻かれ、各上記電機子コイルに三相電流が流れる電機子コイル群、及び
     周方向へ並ぶ複数の磁極を持ち、上記電機子コア及び上記電機子コイル群に対して回転される回転子
     を備え、
     上記電機子コイル群は、一方の上記コイル辺が上記スロットの上口に配置され他方の上記コイル辺が上記スロットの下口に配置された複数のベースコイルと、一方及び他方の上記コイル辺がいずれも上記スロットの上口に配置された複数の上層コイルと、一方及び他方の上記コイル辺がいずれも上記スロットの下口に配置された複数の下層コイルとを上記電機子コイルとして有し、
     Nを2以上の自然数とすると、1つの上記磁極当たりの上記スロットの数である毎極スロット数q’は、N<q’<N+1の関係を満たし、
     各上記ベースコイルの上記コイルエンドは、上記電機子コアの周方向に対して同じ向きに傾いた状態でN+1個の上記磁極ティースを跨いでおり、
     各上記上層コイル及び各上記下層コイルのそれぞれの上記コイルエンドは、N個の上記磁極ティースを跨いでおり、
     上記ベースコイルと同じ構成の複数の仮想ベースコイルの各上記コイル辺を各上記スロットの上口及び下口のすべてに配置し、かつN個の上記磁極ティースを挟む2つの上記スロットの上口にそれぞれ配置された2つの上記コイル辺に流れる電流が同相逆向きになる関係を持つ2つの上記仮想ベースコイルを仮想特定コイルとし、上記2つの仮想特定コイル間に挟まれた上記仮想ベースコイルを仮想調整コイルとして、上記2つの仮想特定コイルで構成された仮想コイル対と上記仮想調整コイルとが、上記電機子コアの周方向について一定間隔で現れるようにした仮想ベースコイル装着状態を想定すると、
     各上記ベースコイルは、すべての上記仮想特定コイル及びすべての上記仮想調整コイルのそれぞれの位置を避けて配置され、
     各上記上層コイル及び各上記下層コイルのそれぞれの上記コイル辺は、各上記仮想特定コイルのそれぞれの上記コイル辺の位置に配置され、
     各上記スロットのうち、各上記上層コイルの一方及び他方の上記コイル辺間に挟まれた上記スロットと、各上記下層コイルの一方及び他方の上記コイル辺間に挟まれた上記スロットとは、上口及び下口に加えて最下口が存在する深溝型スロットになっており、
     上記電機子コイル群は、一方及び他方の上記コイル辺がいずれも上記深溝型スロットの最下口に配置された複数の最下層コイルを上記電機子コイルとしてさらに有し、
     上記最下層コイルの上記コイルエンドは、上記上層コイル、上記下層コイル及び上記ベースコイルがいずれも跨らない上記磁極ティースを避けて配置されており、
     上記最下層コイルの上記コイルエンドが跨ぐ上記磁極ティースの数は、各上記最下層コイルで同じになっている回転電機。
    An armature core having a plurality of magnetic pole teeth spaced apart from each other in the circumferential direction and having slots formed between the magnetic pole teeth;
    It has a plurality of armature coils each including a pair of coil sides arranged in different slots and a coil end connecting the pair of coil sides, and each armature coil is wound around the magnetic pole teeth by lap winding. Each armature coil includes an armature coil group through which a three-phase current flows, and a plurality of magnetic poles arranged in the circumferential direction, and a rotor that is rotated with respect to the armature core and the armature coil group,
    The armature coil group includes a plurality of base coils in which one of the coil sides is disposed at the upper opening of the slot and the other coil side is disposed at the lower opening of the slot; Both have a plurality of upper layer coils arranged at the upper opening of the slot, and a plurality of lower layer coils each of which one and the other coil sides are arranged at the lower opening of the slot, as the armature coil,
    When N is a natural number of 2 or more, the number of slots per pole q ′, which is the number of slots per one magnetic pole, satisfies the relationship N <q ′ <N + 1,
    The coil ends of the base coils straddle N + 1 magnetic pole teeth in a state of being inclined in the same direction with respect to the circumferential direction of the armature core,
    The coil ends of the upper coil and the lower coil straddle the N magnetic teeth,
    The coil sides of a plurality of virtual base coils having the same configuration as the base coil are arranged in all the upper and lower openings of the slots, and the upper openings of the two slots sandwiching the N magnetic teeth. The two virtual base coils having a relationship in which the currents flowing in the two coil sides arranged in opposite directions are in phase and opposite directions are set as virtual specific coils, and the virtual base coil sandwiched between the two virtual specific coils is virtual Assuming a virtual base coil mounting state in which the virtual coil pair composed of the two virtual specific coils and the virtual adjustment coil appear at regular intervals in the circumferential direction of the armature core as the adjustment coil,
    Each of the base coils is arranged avoiding the respective positions of all the virtual specific coils and all the virtual adjustment coils,
    The coil sides of each of the upper layer coils and the lower layer coils are arranged at positions of the coil sides of the virtual specific coils,
    Of each of the slots, the slot sandwiched between one and other coil sides of each upper coil and the slot sandwiched between one and other coil sides of each lower coil are In addition to the mouth and lower mouth, it is a deep groove type slot where the bottom mouth exists,
    The armature coil group further includes, as the armature coil, a plurality of lowermost coils in which one and the other coil sides are arranged at the lowermost opening of the deep groove type slot,
    The coil end of the lowermost layer coil is arranged to avoid the magnetic pole teeth where none of the upper layer coil, the lower layer coil and the base coil straddles,
    The rotating electrical machine in which the number of the magnetic teeth that the coil ends of the lowermost layer coils are the same in each lowermost layer coil.
  2.  上記電機子コアは、上記電機子コアの周方向へ並ぶ複数の分割コアに分割されており、
     各上記分割コアの境界の位置は、各上記電機子コイルがいずれも跨らない上記磁極ティースの位置となっている請求項1に記載の回転電機。
    The armature core is divided into a plurality of divided cores arranged in the circumferential direction of the armature core,
    2. The rotating electrical machine according to claim 1, wherein a position of a boundary between each of the divided cores is a position of the magnetic pole teeth where none of the armature coils extends.
  3.  共通の上記上層コイルで挟まれた上記深溝型スロットの数、及び共通の上記下層コイルで挟まれた上記深溝型スロットの数は、それぞれ複数であり、
     共通の上記上層コイルで挟まれた互いに異なる上記深溝型スロットのうち、一方の上記深溝型スロットの最下口の位置と、他方の上記深溝型スロットの最下口の位置とは、上記電機子コアの径方向について互いに異なっており、
     共通の上記下層コイルで挟まれた互いに異なる上記深溝型スロットのうち、一方の上記深溝型スロットの最下口の位置と、他方の上記深溝型スロットの最下口の位置とは、上記電機子コアの径方向について互いに異なっている請求項1又は請求項2に記載の回転電機。
    The number of the deep groove type slots sandwiched between the common upper layer coils and the number of the deep groove type slots sandwiched between the common lower layer coils are plural, respectively.
    Among the different deep groove type slots sandwiched between the common upper layer coils, the position of the lowermost opening of one of the deep groove type slots and the position of the lowermost opening of the other deep groove type slot are the armature Different from each other in the radial direction of the core,
    Of the different deep groove-type slots sandwiched between the common lower layer coils, the position of the lowermost opening of one of the deep groove-type slots and the position of the lowermost opening of the other deep groove-type slot are the armature The rotating electrical machine according to claim 1 or 2, wherein the radial directions of the core are different from each other.
PCT/JP2015/080691 2015-10-30 2015-10-30 Dynamo-electric machine WO2017072944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/080691 WO2017072944A1 (en) 2015-10-30 2015-10-30 Dynamo-electric machine
JP2017547306A JP6407448B2 (en) 2015-10-30 2015-10-30 Rotating electric machine
CN201580084085.9A CN108352749B (en) 2015-10-30 2015-10-30 Rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080691 WO2017072944A1 (en) 2015-10-30 2015-10-30 Dynamo-electric machine

Publications (1)

Publication Number Publication Date
WO2017072944A1 true WO2017072944A1 (en) 2017-05-04

Family

ID=58631394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080691 WO2017072944A1 (en) 2015-10-30 2015-10-30 Dynamo-electric machine

Country Status (3)

Country Link
JP (1) JP6407448B2 (en)
CN (1) CN108352749B (en)
WO (1) WO2017072944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502927B2 (en) 2020-08-12 2024-06-19 株式会社Subaru Stator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713953A (en) * 1980-06-25 1982-01-25 Hitachi Ltd Three-phase ac generator for bicycle
JPS57206241A (en) * 1981-06-10 1982-12-17 Mitsubishi Electric Corp Ac generator
JP2005130628A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Dc brushless motor
WO2015121960A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713953A (en) * 1980-06-25 1982-01-25 Hitachi Ltd Three-phase ac generator for bicycle
JPS57206241A (en) * 1981-06-10 1982-12-17 Mitsubishi Electric Corp Ac generator
JP2005130628A (en) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd Dc brushless motor
WO2015121960A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Rotating electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502927B2 (en) 2020-08-12 2024-06-19 株式会社Subaru Stator

Also Published As

Publication number Publication date
CN108352749B (en) 2020-01-07
JPWO2017072944A1 (en) 2018-02-22
JP6407448B2 (en) 2018-10-17
CN108352749A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6173494B2 (en) Rotating electric machine
US7408281B2 (en) Stator and brushless motor
JP6239090B2 (en) Rotating electric machine
US10651700B2 (en) Rotating electrical machine
EP3355446B1 (en) Rotary electric machine
JP6161707B2 (en) Synchronous motor
US9793772B2 (en) Stator for rotating electric machine
US8022589B2 (en) Brushless motor
JP5858145B2 (en) coil
JP6046180B2 (en) Electric motor having a three-layer winding structure
US20150326084A1 (en) Rotary electric machine
JP2009509488A (en) Electric drive machine
KR101092072B1 (en) Stator Core with Magmate for Serial or Parallel Wiring
JP2020080607A (en) Rotary electric machine
JP2015057012A (en) Dynamo-electric machine
JP6324623B2 (en) Rotating electric machine
JP6407448B2 (en) Rotating electric machine
JP2010268575A (en) Rotating electric machine
JP2010088271A (en) Permanent magnet type synchronous motor
JP5947744B2 (en) Rotating electric machine stator and rotating electric machine
JP2013128378A (en) Permanent magnet type rotary electric machine
JP2016034192A (en) Stator and rotary electric machine
JP6271088B2 (en) Rotating electric machine
JP2021175334A (en) Stator having distributed winding coil structure, and three-phase ac motor having the same
JP2017005769A (en) Dynamo-electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907308

Country of ref document: EP

Kind code of ref document: A1