WO2017072896A1 - Flow rate calculation device, flow rate calculation method, program, and recording medium - Google Patents

Flow rate calculation device, flow rate calculation method, program, and recording medium Download PDF

Info

Publication number
WO2017072896A1
WO2017072896A1 PCT/JP2015/080480 JP2015080480W WO2017072896A1 WO 2017072896 A1 WO2017072896 A1 WO 2017072896A1 JP 2015080480 W JP2015080480 W JP 2015080480W WO 2017072896 A1 WO2017072896 A1 WO 2017072896A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fuel
ship
series data
time
Prior art date
Application number
PCT/JP2015/080480
Other languages
French (fr)
Japanese (ja)
Inventor
将行 別府
領 角田
吾朗 島原
Original Assignee
日本郵船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本郵船株式会社 filed Critical 日本郵船株式会社
Priority to JP2016564101A priority Critical patent/JP6167249B1/en
Priority to PCT/JP2015/080480 priority patent/WO2017072896A1/en
Publication of WO2017072896A1 publication Critical patent/WO2017072896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like

Definitions

  • the present invention relates to a technique for specifying the fuel consumption of a marine motor.
  • Patent Document 1 describes that a smoothing process is performed on the measurement value in order to remove the influence of disturbance such as atmospheric pressure fluctuation included in the measurement value of the gas meter.
  • a fuel supply path in a ship is usually provided with a strainer having a filter for removing foreign matters contained in the fuel.
  • Some strainers have a function of cleaning the filter by intentionally generating a fuel flow (for example, a backwashing function). This cleaning removes foreign matter trapped in the filter and reduces clogging of the filter. If a flow meter is provided upstream of such a strainer, the fuel used for cleaning and discharged to the drain tank is not consumed by the prime mover, but the flow rate is measured by the flow meter. For this reason, a state in which the measured value of the flow meter does not indicate the net fuel consumption occurs with the cleaning of the filter. Therefore, an object of the present invention is to provide a technique for specifying the net fuel consumption of a prime mover when a strainer is used to wash a filter.
  • the present invention relates to a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, the fuel flowing through the fuel supply path.
  • a flow rate acquisition means for acquiring fuel flow time series data measured upstream of a strainer that performs filter cleaning using a filter, and a parameter for acquiring time series data of parameters correlated with the fuel consumption of the ship
  • a flow rate calculation apparatus comprising: an acquisition unit; and a correction unit that corrects a flow rate indicated by the time series data of the flow rate or a flow rate of fuel specified from the time series data based on the time series data of the parameter.
  • the parameters include the number of revolutions of a propeller for propelling the ship, the horsepower of the ship, the ship speed of the ship, the in-cylinder pressure of the internal combustion engine included in the prime mover, and the internal combustion engine
  • a configuration in which at least one of the number of rotations of the supercharger that supplies air and a parameter calculated from at least one of them is included may be employed.
  • the correction unit identifies and specifies the measured fuel flow rate increased with the cleaning based on the fuel flow rate measured while the ship is anchored.
  • a configuration in which the correction is performed based on the flow rate may be employed.
  • the correction unit specifies the measured fuel flow rate increased with the cleaning based on the parameter, and performs the correction based on the specified flow rate.
  • a configuration may be employed.
  • the present invention also relates to a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and the filter is formed using the fuel flowing through the fuel supply path.
  • the present invention uses a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and the fuel flowing through the fuel supply path. Obtaining the time-series data of the flow rate of the fuel measured upstream of the strainer for cleaning the filter, obtaining the time-series data of the parameters correlated with the fuel consumption of the ship, and the parameters And a step of correcting the flow rate indicated by the time-series data of the flow rate or the flow rate of the fuel specified from the time-series data is provided.
  • the present invention is also directed to a computer, a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and flowing through the fuel supply path.
  • a computer that continuously records a program for executing the step of correcting the flow rate indicated by the time-series data of the flow rate or the flow rate of the fuel specified from the time-series data based on the time-series data of the parameters
  • a readable recording medium is provided.
  • the schematic diagram of the ship which concerns on one Embodiment of this invention The figure which shows the structure of the fuel supply path
  • the schematic cross section which shows the structure of the strainer which concerns on the same embodiment.
  • the figure which shows the structure of the internal combustion engine and supercharger which concern on the same embodiment. 2 is an exemplary block diagram showing the configuration of a computer apparatus according to the embodiment.
  • FIG. The figure which shows the structural example of the table which concerns on the same embodiment.
  • the flowchart which shows the estimation process of the flow volume of the fuel which increases with one backwashing which the computer apparatus which concerns on the same embodiment performs.
  • FIG. 9 is another explanatory diagram of fuel flow rate correction processing performed by the computer device according to the embodiment.
  • FIG. 1 is a schematic view of a ship according to an embodiment of the present invention.
  • the ship 1 is, for example, a container ship, and includes a hull 100 that is a main body of the ship 1, a prime mover 200, a fuel tank 300, a fuel supply path 400, a computer device 500, a propulsion device 600, and a ship speedometer 700.
  • the prime mover 200 generates power for the ship 1 to propel using the fuel stored in the fuel tank 300 as a power source.
  • the fuel tank 300 stores liquid fuel (for example, heavy oil).
  • the fuel supply path 400 is a fuel supply path provided between the fuel tank 300 and the prime mover 200.
  • the propulsion device 600 generates the propulsive force of the ship 1 using the power generated by the prime mover 200.
  • the propulsion device 600 includes a propulsion shaft (propeller shaft) 610, a propeller 620 connected to the propulsion shaft 610, and a tachometer 630.
  • a general ship often does not have a shaft horsepower meter.
  • the shaft horsepower meter 640 is shown by a broken line in the sense that either the case where the shaft horsepower meter 640 is mounted on the ship 1 or the case where it is not mounted can be present. ing.
  • the propeller 620 provided on the stern side rotates as the propulsion shaft 610 rotates by the power generated by the prime mover 200.
  • the tachometer 630 is provided on the propulsion shaft 610, sequentially measures the number of revolutions of the propeller 620 per unit time (hereinafter referred to as “propeller revolution number”), and outputs time series data of the propeller revolution number to the computer device 500. To do.
  • the shaft horsepower meter 640 is provided on the propulsion shaft 610, sequentially measures the torque of the propulsion shaft 610, and outputs time series data of the shaft horsepower of the ship 1 calculated from this torque to the computer device 500.
  • the computer device 500 is a computer device arranged in a residential area 501 for sailors to work.
  • the computer device 500 functions as a data logger that aggregates data from the tachometer 630, the shaft horsepower meter 640, the ship speedometer 700, and the motor 200 and various instruments provided in the fuel supply path 400.
  • the ship speedometer 700 sequentially measures the ship speed of the ship 1.
  • the boat speedometer 700 includes, for example, a watercraft speedometer that measures the speed of the watercraft and a waterspeedometer that measures the speed of the groundwater.
  • the ship speed against water and the ship speed against ground are collectively referred to as “ship speed” without any particular distinction.
  • the anti-ship speedometer is, for example, an acoustic speedometer, but the method is not limited to the acoustic type.
  • the ground speedometer measures the speed of the ground ship using a satellite positioning system such as GPS (Global Positioning System), but the method is not limited to the method using the satellite positioning system.
  • GPS Global Positioning System
  • FIG. 2 is a diagram showing the configuration of the fuel supply path 400.
  • the fuel supply path 400 includes a flow meter 410 and two strainers 420 in the fuel flow path.
  • the broken-line arrows shown in FIG. 2 mean the direction in which the fuel flows.
  • the number of the strainers 420 arranged may be one or three or more.
  • all of the strainers 420 do not necessarily have a function of performing backwashing, and only a part of the strainers 420 perform functions of backwashing. You may have.
  • the flow meter 410 sequentially measures the flow rate of the fuel that has flowed out of the fuel tank 300, and outputs measured value data to the computer device 500.
  • the computer device 500 a control unit 510 described later
  • the flow rate of fuel flowing through the fuel supply path 400 per unit time (hereinafter referred to as “fuel flow rate”) is based on the flow rate of fuel measured by the flow meter 410. Calculated.
  • the fuel flow rate flowing through the position measured by the flow meter 410 is represented as “C1”.
  • the fuel supply path 400 includes a closed circuit CB for circulating fuel via the two strainers 420 and the prime mover 200 on the downstream side of the flow meter 410.
  • the total fuel flow rate of the fuel flowing into the strainer 420 arranged on the upstream side is expressed as C1 + C4.
  • C4 represents the fuel flow rate of the fuel that circulates in the closed circuit CB and returned to the upstream side of the strainer 420 and the downstream side of the flow meter 410.
  • the strainer 420 has a function of scavenging foreign matter in the fuel by the filter 424 and cleaning the filter 424 by generating a fuel flow in the fuel supply path 400.
  • the strainer 420 As a cleaning method performed by the strainer 420, for example, there is backwashing in which a fuel flow is generated from the downstream side to the upstream side of the fuel supply path 400. By cleaning the filter 424, foreign matter captured by the filter 424 is pushed away and discharged to a drain tank (not shown), so that clogging of the filter 424 is reduced.
  • FIG. 3 is a schematic cross-sectional view illustrating a configuration of a strainer 420 having a function of performing backwashing.
  • the dashed arrow shown in FIG. 3 means the direction in which the fuel flows.
  • the strainer 420 includes a cylindrical strainer body 420A, a lid 421 that covers an upper portion of the strainer body 420A, a bottom plate 422 of the strainer body 420A, a filter base 423 of the strainer body 420A, and a plurality of filters 424 of the strainer body 420A. Is provided.
  • Each of the plurality of filters 424 is formed in a cylindrical shape with a mesh-like member, and is fixed by a lid 421 and a filter base 423.
  • Each of the plurality of filters 424 is arranged such that the inner space thereof communicates with a hole 4231 formed in the filter base 423.
  • a plurality of holes 4231 are formed according to the arrangement of the plurality of filters 424, but the position and number thereof are not particularly limited.
  • An inflow port 425 into which fuel flowing from the upstream side flows is formed below the filter base 423.
  • the fuel that has flowed into the strainer main body 420 ⁇ / b> A from the inflow port 425 flows into the filter 424 (primary side) through the hole 4231.
  • the filter 424 performs a filter process for capturing foreign matter in the fuel that has flowed inward.
  • the fuel after this filter processing is performed flows to the outside (secondary side) of the filter 424 and flows out to the downstream side of the strainer 420 through the outlet 426.
  • the strainer 420 further includes a backwash mechanism 427 that backwashes the plurality of filters 424 and a drive shaft 428 that rotates the backwash mechanism 427.
  • the backwashing mechanism 427 is a mechanism (washing mechanism) that backwashes the plurality of filters 424.
  • the backwashing tube 4271 rotated by the drive shaft 428, the backwashing tube base 4272 that supports the backwashing tube 4271, and the backwashing.
  • An arm 4273 that is fixed to the tube 4271 and rotates together with the backwash tube 4271; a sliding portion 4274 that is provided on the upper side of the arm 4273 and that rotates in close contact with the lower surface of the filter base 423;
  • a backwash nozzle 4275 for discharging to the tank.
  • the tip of the backwash nozzle 4275 is connected to the valve 429.
  • the valve 429 is opened during backwashing, and the valve 429 is closed except during backwashing.
  • the drive shaft 428 transmits the rotational
  • the backwash pipe 4271 and the arm 4273 are rotated by the rotation of the drive shaft 428, and the plurality of filters 424 are sequentially connected to the backwash pipe 4271 and the arm 4273 through the holes 4231.
  • the fuel from the inflow port 425 does not flow into the filter 424 and is subject to backwashing.
  • the valve 429 is in an open state, so that a differential pressure between the inside and outside of the filter 424 is generated, and the fuel in the strainer body 420A flows into the inside from the outside of the filter 424.
  • the fuel that has flowed in is washed away to remove foreign matter adhering to the inside of the filter 424, and is discharged to the drain tank via the arm 4273, the backwash pipe 4271, and the backwash nozzle 4275.
  • the strainer 420 having the above configuration performs this backwashing, for example, periodically or at a timing corresponding to the fuel pressure difference (differential pressure) between the upstream and downstream of the filter. In the latter case, the strainer 420 measures the differential pressure, and performs backwashing when the differential pressure exceeds a threshold value due to clogging of the filter.
  • “C5” and “C6” shown in FIG. 2 represent the fuel flow rate of the fuel flowing from each of the two strainers 420 to the drain tank.
  • the fuel that has passed through each of the strainers 420 merges, and is then supplied to the downstream flow path.
  • the fuel flow rate of the merged fuel is “C2”.
  • the fuel with the fuel flow rate “C3” that is a part of the combined fuel is supplied to the prime mover 200, and the remaining fuel with the fuel flow rate “C4” is upstream of the strainer 420 and on the flow meter 410. Returned downstream.
  • the fuel flow rate “C3” varies depending on the amount of fuel consumed by the prime mover 200.
  • FIG. 4 is a diagram showing the configuration of the prime mover 200.
  • the dashed arrows in FIG. 4 mean gas flow.
  • the prime mover 200 includes an internal combustion engine 210, a supercharger (also referred to as a turbocharger) 220, an air cooler 221, a scavenging manifold 222, and an exhaust manifold 223.
  • the internal combustion engine 210 is a diesel engine, for example, and includes a cylinder 211. Although only one cylinder 211 is shown in FIG. 1, a plurality of cylinders 211 may be provided.
  • the cylinder 211 sucks in the pressurized gas supplied from the supercharger 220 through a scavenging port (not shown), generates an air-fuel mixture with the fuel supplied from the fuel supply path 400 in the combustion chamber 213, and Burn the mixture.
  • a cylindrical piston 212 is provided inside the cylinder 211. When the air-fuel mixture burns in the combustion chamber 213, heat energy is converted into kinetic energy, and the piston 212 reciprocates along the axial direction inside the cylinder 211.
  • the piston 212 is connected to a crankshaft (not shown) in the cylinder 211.
  • the propulsion shaft 610 described with reference to FIG. 1 is rotated by being directly or indirectly connected to the crankshaft.
  • the supercharger 220 includes a blower 2201 and a turbine 2202, and the blower 2201 and the turbine 2202 are connected via a rotating shaft 2203.
  • the supercharger 220 supplies pressurized gas to the combustion chamber 213 and is driven by exhaust gas from the combustion chamber 213.
  • the supercharger rotational speed sensor 250 is provided, for example, on the rotary shaft 2203, and sequentially measures the rotational speed of the supercharger 220 (rotary shaft 2203) (hereinafter referred to as “supercharger rotational speed”).
  • the time-series data of the rotational speed is output to the computer device 500.
  • the air cooler 221 cools the air that has been pressurized by the blower 2201 of the supercharger 220 and has risen in temperature with a cooling medium.
  • the scavenging manifold 222 temporarily stores the cooled pressurized gas, and then sends the pressurized gas into the combustion chamber 213 through the scavenging port.
  • the exhaust manifold 223 temporarily stores the exhaust gas generated by the combustion in the combustion chamber 213 and then supplies the exhaust gas to the turbine 2202 of the supercharger 220.
  • An in-cylinder pressure sensor 230 is disposed in the combustion chamber 213.
  • a general ship often does not have an in-cylinder pressure sensor. 4 and 5, the in-cylinder pressure sensor 230 is indicated by a broken line in the sense that either the case where the in-cylinder pressure sensor 230 is mounted on the ship 1 or the case where the in-cylinder pressure sensor 230 is not mounted can be present.
  • the in-cylinder pressure sensor 230 sequentially measures the pressure in the combustion chamber 213, that is, the in-cylinder pressure, and outputs time-series data of the in-cylinder pressure to the computer device 500.
  • the in-cylinder pressure time-series data is data in which in-cylinder pressures measured at each of a plurality of time points are arranged in order of measurement date and time.
  • the scavenging pressure sensor 240 is disposed, for example, in a conduction pipe that connects the scavenging manifold 222 and the internal combustion engine 210, and sequentially measures the scavenging pressure of the pressurized gas sent from the supercharger 220 to the internal combustion engine 210.
  • the series data is output to the computer device 500.
  • the time-series data of scavenging air pressure is data in which scavenging air pressures measured at each of a plurality of time points are arranged in order of measurement date and time.
  • each instrument of the tachometer 630, the shaft horsepower meter 640, the ship speedometer 700, the flow meter 410, the in-cylinder pressure sensor 230, the scavenging air pressure sensor 240, and the supercharger rotation speed sensor 250 Outputs the time-series data of the measurement values to the computer device 500 in a format that can specify the measurement date and time.
  • each of these meters sequentially outputs measurement value data (for example, in real time).
  • these instruments may include an instrument that accumulates measurement value data obtained by measurement during a predetermined period and outputs the data to the computer apparatus 500 at a predetermined timing.
  • FIG. 5 is a block diagram illustrating a configuration of the computer apparatus 500.
  • the computer device 500 includes a control unit 510, a storage unit 520, a display unit 530, a communication unit 540, an operation unit 550, and an interface 560 as hardware configurations.
  • the control unit 510 is a processor having a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM) as an arithmetic processing unit.
  • the CPU controls each unit of the computer device 500 by reading out the program stored in the ROM or the storage unit 520 to the RAM and executing the program. For example, the control unit 510 calculates the fuel flow rate based on the fuel flow rate measured by the flow meter 410.
  • the time-series data of the fuel flow rate is data in which the fuel flow rates measured at each of a plurality of time points are arranged in order of measurement date and time.
  • the storage unit 520 is a hard disk device, for example, and stores a program for operating the computer device 500 and a table T.
  • the table T includes time series data of the measured fuel flow rate, propeller rotational speed, in-cylinder pressure, scavenging air pressure, ship speed, turbocharger rotational speed, and shaft horsepower for the measurement date and time, respectively. It is a table stored in association with each other.
  • the shaft horsepower and the in-cylinder pressure are recorded on the table T when the shaft horsepower meter 640 is mounted on the ship 1.
  • the display unit 530 is a liquid crystal display, for example, and displays various types of information.
  • the communication unit 540 includes, for example, a communication circuit and an antenna for communicating with a network, and communicates with a computer device installed on land via the network.
  • the operation unit 550 includes, for example, a keyboard and a mouse, and receives an operation performed by an operator (here, a sailor).
  • the interface 560 receives data input from each instrument mounted on the ship 1.
  • the computer device 500 functions as a flow rate calculation device that calculates the fuel flow rate in the fuel supply path 400.
  • the control unit 510 realizes functions corresponding to the flow rate acquisition unit 511, the parameter acquisition unit 512, the correction unit 513, and the processing unit 514.
  • the flow rate acquisition unit 511 is a unit that acquires time series data of the fuel flow rate measured by the flow meter 410 via the interface 560.
  • the flow rate acquisition unit 511 records the acquired fuel flow time series data in the table T, and acquires the fuel flow time series data recorded in the table T.
  • the parameter acquisition means 512 is means for acquiring time-series data of parameters correlated with the fuel consumption of the ship 1 via the interface 560.
  • the parameter acquisition unit 512 records the time series data of the acquired parameters in the table T, and acquires the time series data of the parameters recorded in the table T.
  • the parameters that correlate with the fuel consumption include parameters that correlate with the propulsive force of the ship 1. Specifically, the propeller rotation speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotation speed including.
  • the correction unit 513 is a unit that corrects the time series data of the fuel flow rate acquired by the flow rate acquisition unit 511 based on the time series data of the parameters acquired by the parameter acquisition unit 512.
  • the correction means 513 corrects the direction in which the flow rate is subtracted from the flow rate indicated by the time series data, more specifically, increases the flow rate of fuel accompanying the cleaning of the filter 424 in the strainer 420 (backwashing in this embodiment). Perform correction to reduce the effect of.
  • the processing unit 514 is a unit that performs a predetermined process based on the time-series data of the fuel flow rate corrected by the correcting unit 513.
  • This process includes a process of calculating the fuel consumption of the ship 1 based on a value obtained by time-integrating the fuel flow rate of unit time indicated by the time series data of the corrected fuel flow rate. By using the fuel flow rate after the correction by the correction unit 513, the fuel consumption amount closer to the net fuel consumption amount of the prime mover 200 is calculated.
  • FIG. 7 is a graph showing an example of time-series data of the fuel flow rate measured by the flow meter 410 and time-series data of the propeller rotation speed measured by the tachometer 630 in a certain navigation performed by the ship 1. is there.
  • the horizontal axis represents time ( ⁇ 10 [s] (seconds)), and the vertical axis represents the fuel flow rate per unit time or the propeller rotational speed.
  • the unit of the fuel flow rate is [l / min] (liter amount per minute)
  • the unit of the propeller rotational speed is [rpm] (rotational speed per minute).
  • the scale of the vertical axis related to the fuel flow rate and the scale of the vertical axis related to the propeller rotational speed are substantially the same in length as the change in the propeller rotational speed and the change in the fuel flow rate accompanying the change in the propeller rotational speed. It has been adjusted to be. As shown in FIG. 7, the fuel flow rate increases and decreases in conjunction with the increase and decrease of the propeller rotational speed.
  • the flow meter 410 measures a sudden increase in the fuel flow rate. For example, the fuel flow rate measured by the flow meter 410 increases by an amount corresponding to the fuel flow rate “C5” or “C6”.
  • a similar change in the fuel flow rate may appear due to a temporary increase in fuel consumption due to a change in the propulsive force of the ship 1.
  • the ship may stop and move forward from a state in which the ship has moved backward.
  • the output of the prime mover 200 is increased, and the fuel consumption temporarily increases.
  • the fuel flow rate measured by the flow meter 410 increases sharply. Therefore, it is difficult to accurately determine whether or not the cause of the rapid change in the fuel flow rate is the backwashing performed by the strainer based only on the time series data of the fuel flow rate. Further, the output of the prime mover 200 may be increased while backwashing is performed.
  • the computer device 500 refers to the time-series data of the propeller rotational speed, and identifies the steep change indicated by the fuel flow time-series data that is caused by backwashing.
  • the propeller rotational speed has a correlation with the propulsive force of the ship 1 and is therefore a parameter having a correlation with the fuel flow rate.
  • FIG. 7 among the steep changes appearing in the fuel flow rate, those surrounded by a solid line circle appear during a period in which the propeller rotational speed is stable at a substantially constant value. Accordingly, it is presumed that the steep change in the fuel flow rate surrounded by the solid line circle is caused only by the backwashing in the strainer 420.
  • the steep change in the fuel flow rate surrounded by the dot-and-dash line circle is caused by both the backwashing and the increase in the propulsive force of the ship 1, or only due to the increase in the propulsive force of the ship 1.
  • the computer apparatus 500 estimates the fuel flow rate that increases with backwashing by the strainer 420 based on the fuel flow rate measured while the ship 1 is anchored.
  • the propeller rotation speed can be regarded as zero during the period when the ship 1 is anchored.
  • the computer device 500 compares the amount of increase in the fuel flow rate in the portion surrounded by the dot-and-dash line circle with the estimated fuel flow rate that increases due to the backwashing.
  • the computer device 500 identifies the steep change indicated by the fuel flow time series data as described above, the fuel that increases with back washing from the fuel flow indicated by the fuel flow time series data.
  • the fuel consumption amount of the ship 1 is calculated by reducing the flow rate.
  • FIG. 8 is a flowchart illustrating a process for estimating the flow rate of the fuel that increases with backwashing, which is performed by the computer device 500.
  • the control unit 510 of the computer device 500 determines whether or not the ship 1 is anchored (step S1).
  • the control unit 510 acquires time-series data of the propeller rotation speed from the tachometer 630 via the interface 560, and determines that the ship 1 is anchored when the propeller rotation speed is zero.
  • Control unit 510 may determine whether or not ship 1 is anchored based on information other than the propeller rotation speed.
  • control unit 510 may determine whether or not the ship 1 is anchored based on the ship speed measurement data measured by the ship speedometer 700, or the ship operator may operate the operation unit 550. You may perform based on the content of operation performed using.
  • control part 510 acquires the time series data of the fuel flow rate measured while the ship 1 was anchored from the flowmeter 410 (step S2).
  • FIG. 9 is a graph showing an example of time-series data of the fuel flow rate acquired while the ship 1 is anchored.
  • the horizontal axis represents time
  • the vertical axis represents the fuel flow rate per unit time.
  • the propeller rotation speed is set to zero during the period shown in this graph.
  • pairs of two rapid changes in the fuel flow rate that appear at short time intervals such as P1 and P2 and P3 and P4 appear at substantially constant time intervals.
  • P1 and P2 and P3 and P4 appear at substantially constant time intervals.
  • a pair of two rapid changes in the fuel flow rate appearing at a short time interval indicates a change in the fuel flow rate in response to one backwash.
  • two strainers 420 are installed in series as shown in FIG.
  • control unit 510 identifies (calculates) the fuel flow rate that increases with one backwash based on the time-series data of the fuel flow rate obtained in step S2 (step S3).
  • step S3 A specific example of the process performed by the control unit 510 in step S3 will be described using the graph of FIG.
  • Control unit 510 identifies P1, P2, and the like as portions where a sharp change in the fuel flow rate appears.
  • the control unit 510 performs time integration of the fuel flow rate (fuel flow rate per unit time) of the changed portion for each of the specified P1, P2, and the like, and calculates the fuel flow rate that increases with backwashing.
  • the control unit 510 integrates the fuel flow rate (unit: [l / min]) over a period ⁇ t (unit: [sec]) required for the change, so that the fuel flow rate corresponding to P1 is obtained. (The unit is [l]). Subsequently, the control unit 510 adds the fuel flow rates calculated with respect to P1 and P2, and calculates the fuel flow rate increased with backwashing according to the pair of P1 and P2. Control unit 510 similarly calculates the flow rate of fuel increased with backwashing according to these pairs for P3 and P4, P5 and P6, and the like. Thereby, the control unit 510 specifies the flow rate of the fuel increased with the backwashing for each of the plurality of backwashing times. Subsequently, the control unit 510 calculates the average value of the specified fuel flow rate. The average value of the fuel flow rate calculated in this way is the fuel flow rate that increases with one backwash calculated in step S3.
  • step S4 the control unit 510 records in the storage unit 520 the fuel flow rate that increases with one backwash calculated in step S3 (step S4).
  • the flow rate of fuel that increases with backwashing performed while the ship 1 is sailing is substantially the same as the flow rate of fuel that increases with backwashing that is performed while the ship 1 is anchored. Therefore, the fuel flow rate recorded in step S4 is used to exclude the fuel flow rate increased due to backwashing from the fuel flow rate measured during the navigation of the ship 1 in the flow rate calculation processing described below. .
  • FIG. 10 is a flowchart showing a flow rate calculation process performed by the computer device 500.
  • the flow rate calculation process is a process for calculating the fuel consumption amount of the ship 1 using the fuel flow rate measured by the flow meter 410.
  • the control unit 510 of the computer device 500 acquires the time series data of the fuel flow rate measured by the flow meter 410 during the fuel consumption measurement period of the ship 1 (for example, the navigation period of the ship 1) via the interface 560. (Step S11).
  • the control unit 510 acquires, via the interface 560, time-series data of the propeller rotational speed (that is, a parameter correlated with the fuel consumption) measured by the tachometer 630 during the fuel consumption measurement period ( Step S12).
  • Control unit 510 records the time-series data of the fuel flow rate acquired in step S11 and the time-series data of the propeller rotation speed acquired in step S12 in association with the measurement date and time in table T (FIG. 6) of storage unit 520. (Step S13).
  • control unit 510 detects a change in the fuel flow rate caused by backwashing based on the time-series data of the fuel flow rate recorded in the table T (step S14).
  • FIG. 11A and 11B are graphs showing time-series data of the fuel flow rate and time-series data of the propeller rotational speed.
  • FIG. 11A shows a portion where a sharp change in the fuel flow rate appears in a state where the ship 1 is not accelerated and the propeller rotational speed is stable at a substantially constant value.
  • FIG. 11B shows a portion where a steep change appears in the fuel flow rate in the vicinity of the timing at which the propeller rotation speed has increased due to the acceleration of the ship 1. As shown in FIG.
  • the control unit 510 starts a steep change in a curve indicating a time-series change in the fuel flow rate. After that, when an inflection point appears in the region of ⁇ ⁇ % ( ⁇ is 10% here) with reference to the fuel flow rate at the start of the change, the time point corresponding to the inflection point changes sharply. Specify the end point of. When the inflection point does not appear in the ⁇ ⁇ % region, the control unit 510 specifies the time point when the curve goes down from the ⁇ ⁇ % region as the end point of the steep change.
  • the coefficient k is, for example, a predetermined value. If an inflection point appears in the curve indicated by the fuel flow time-series data in the corrected region, control unit 510 identifies the time point corresponding to the inflection point as the end point of the steep change. In addition, if an inflection point does not appear in the corrected region, control unit 510 specifies the time point when the curve goes downward from the corrected region as the end point of the steep change. Note that the inflection point specified as the end point does not have to be included in the range based on the fuel flow rate at the start point of the steep change. The control unit 510 identifies the rate of change of the fuel flow rate per unit time in chronological order, and identifies the point at which the sign of the rate of change has changed from negative to positive as the end point of the sudden change in fuel flow rate. Also good.
  • the control unit 510 calculates the area of the region S surrounded by the straight line connecting the start point and the end point of the steep change and the curve indicating the time series data of the fuel flow rate, so that the steep change is achieved.
  • the corresponding increase in fuel flow (unit: [l]) is estimated.
  • Control unit 510 detects the change in the fuel flow rate caused by backwashing by performing the above-described determination for the entire measurement period. The above is the description of the processing in step S14.
  • Control unit 510 subsequently determines whether or not a change in fuel flow rate due to backwashing has been detected in step S14 (step S15). If it is determined as “NO” in step S15, control unit 510 proceeds to step S17 without correcting the fuel flow rate described below. If it is determined “YES” in step S15, control unit 510 corrects the time-series data of the fuel flow rate so as to exclude the influence of backwashing (step S16). When the time series data is corrected, control unit 510 rewrites the data indicating the fuel flow rate in table T to the corrected data.
  • FIGS. 12A and 12B are diagrams illustrating an example of the fuel flow rate correction process in step S16.
  • the horizontal axis represents time
  • the vertical axis represents the fuel flow rate per unit time.
  • the control unit 510 performs linear interpolation that connects the start point and end point of the change with a straight line for each of the steep changes in the fuel flow rate caused by the backwashing detected in step S14.
  • the time series data of the fuel flow rate is corrected. If backwashing is not performed, it is presumed that these rapid changes in the fuel flow rate did not appear. Therefore, with this correction, the value indicated by the time-series data of the fuel flow rate is the net fuel consumption of the prime mover 200.
  • FIG. 13 is a graph showing how the fuel flow time-series data in the graph shown in FIG. 7 is corrected in step S16.
  • the correction process in step S ⁇ b> 16 excludes the flow rate of fuel that has increased due to backwashing, and obtains time-series data indicating the fuel flow rate that is closer to the net fuel consumption of the prime mover 200.
  • the control unit 510 executes processing including calculation of fuel consumption (step S17).
  • the control unit 510 uses the fuel flow rate (unit: [l / min]) as a time-integrated value to calculate the fuel consumption amount (unit: [Ton]).
  • the control unit 510 may cause the display unit 530 to display information on the calculated fuel consumption amount and a graph (see FIG. 13) indicating time series data of the corrected fuel flow rate.
  • the control unit 510 may record the calculated fuel consumption information and the fuel flow time-series data in the storage unit 520 or transmit the information to the on-shore computer device via the communication unit 540.
  • the net flow rate (fuel consumption) of the fuel supplied to the prime mover 200 is calculated by the computer device 500, and the operator of the ship 1 or the like. Provided to.
  • the above-described embodiment is an embodiment of the present invention and may be variously modified. Below, the modification of embodiment mentioned above is shown. Note that the following modifications may be combined as appropriate.
  • (Modification 1) The fuel flow rate correction process is not limited to the method using the linear interpolation described above. For example, complementation may be performed using a curve corresponding to a change in the propeller rotation speed.
  • FIG. 14 is a diagram illustrating a curve used for complementation in this modification. As shown in FIG. 14, here, the propeller rotational speed is high in the order of the periods t3, t2, and t1, and the fuel flow rate reduced by the correction process is small in the order of the high propeller number. In other words, the fuel flow rate that is reduced by the correction process in the descending order of the number of propellers increases.
  • the computer device 500 calculates the fuel flow rate that increases with one backwash using the time series data of the fuel flow rate measured while the ship 1 is anchored.
  • the flow rate of fuel used in one backwash may be calculated using time-series data of the fuel flow rate measured during a period in which 1 is sailing and the propeller rotational speed is stable. Further, the flow rate of fuel that increases with one backwash need not be calculated. For example, when backwashing is performed at approximately regular time intervals, the value indicated by the time series data of the fuel flow rate during the period in which backwashing is estimated to be performed is the time series data of the fuel flow rate that increases with backwashing.
  • the time series data of the fuel flow rate measured by the flow meter 410 may be corrected by reducing the indicated value.
  • the time series data of the fuel flow rate can be corrected by the processing described in the above-described embodiment.
  • the parameters of the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotational speed are also parameters that are positively correlated with the propulsive force of the ship 1.
  • the propulsive force of the ship 1 increases and the fuel consumption increases as the horsepower of the ship 1 increases, the ship speed increases, the cylinder pressure of the prime mover 200 increases, or the turbocharger rotational speed increases.
  • the control unit 510 obtains time series data regarding one or more of the propeller rotation speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotation speed, and corrects the fuel flow rate. Just do it. However, since there may be a time difference between the timing at which the parameter time-series data changes and the timing at which the fuel flow rate changes, the control unit 510 may perform each process in consideration of this time difference. Good.
  • the parameter correlated with the propulsive force of the ship 1 is a parameter calculated from one or more of the propeller rotational speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotational speed. May be. Further, the parameter correlated with the propulsive force of the ship 1 may be a parameter other than the parameters described above. The parameter correlated with the propulsive force of the ship 1 may be, for example, a load (main engine load) of the internal combustion engine 210, that is, a work amount per unit time of the internal combustion engine 210.
  • the computer apparatus 500 corrects the time series data of the fuel flow rate using the time series data of the scavenging air pressure measured by the scavenging air pressure sensor 240.
  • the controller 510 does not have to acquire parameters that are not used for fuel flow rate correction. Moreover, the measurement for acquiring this does not need to be performed.
  • the filter in the strainer may be washed by a method other than back washing.
  • the filter may be cleaned by jetting a part of the fuel flowing through the fuel supply path at a high pressure.
  • the flow meter This is because the flow rate of the fuel measured by may increase.
  • the ship of the present invention may be a ship that performs electric propulsion (for example, a passenger ship).
  • power_engine of the ship in this case contains an electric motor.
  • the kinetic energy of the piston is converted into electric energy and stored in a storage battery.
  • power_engine converts the electrical energy taken out from this storage battery into mechanical energy, and produces the propulsive force of a ship by rotating the propulsion shaft with which a propulsion apparatus is provided.
  • the flow rate calculation device of the present invention may be realized by a land computer, not a shipboard computer.
  • the flow rate calculation apparatus of the present invention can be realized by various computer devices other than these.
  • the control unit 510 (correction means 513) of the computer device 500 is a fuel identified from the time series data of the fuel flow rate measured by the flow meter 410 based on the time series data of the parameters correlated with the fuel consumption of the ship 1. May be corrected, for example, the fuel consumption of the prime mover 200.
  • the control unit 510 corrects the direction in which the flow rate is subtracted from the flow rate of the fuel specified from the time series data, more specifically, increases in the flow rate of the fuel accompanying the cleaning (backwashing) of the filter 424 in the strainer 420. Make corrections to reduce the effect.
  • control unit 510 calculates a value obtained by multiplying the fuel flow rate increased with one backwash by the number of backwashes detected in the measurement period from the time integral value of the fuel flow time series data.
  • the net fuel consumption of the prime mover 200 during the measurement period may be calculated by performing a correction to be reduced.
  • the control unit 510 of the computer device 500 calculates the time series data of the net fuel consumption of the prime mover 200 estimated from the time series data of the propeller rotation speed (or other parameters correlated with the propulsive force of the ship 1). By subtracting from the fuel flow time-series data, time-series data mainly showing only the increase in fuel flow accompanying backwashing is generated, and based on the generated time-series data, fuel flow caused by backwashing is generated. A configuration for detecting a change in the above may be employed. For example, in the case illustrated in FIG. 7, as described above, the fuel flow rate also increases or decreases in conjunction with the increase or decrease of the propeller rotation speed.
  • control unit 510 subtracts the value obtained by multiplying the value indicated by the time-series data of the propeller rotational speed by the coefficient k from the fuel flow rate for each time point in the measurement period, thereby mainly causing the flow rate of fuel accompanying backwashing. It is only necessary to generate time series data indicating only an increase in the amount of fuel and to detect a change in fuel flow rate due to backwashing using the generated time series data.
  • Each function realized by the control unit 510 of the computer apparatus 500 according to the above-described embodiment may be realized by one or a plurality of hardware circuits, or may be realized by executing one or a plurality of programs. , Or a combination thereof.
  • the program includes a magnetic recording medium (magnetic tape, magnetic disk (HDD (Hard Disk Drive), FD (Flexible Disk)), etc.), optical recording medium (optical disk). Etc.), may be provided in a state stored in a computer-readable recording medium such as a magneto-optical recording medium or a semiconductor memory, or distributed via a network.

Abstract

Provided is a configuration for specifying the net fuel consumption of a prime mover in cases when a filter is cleaned with a strainer. A computer device (500) calculates the flow rate of the fuel flowing through a fuel supply passage (400) from a fuel tank (300) provided on a ship (1) to a prime mover (200) that generates the power for propelling the ship (1). A flow rate meter (410) provided to the fuel supply passage (400) measures the flow rate of the fuel upstream from a strainer (420) that cleans (such as backwashing) a filter (424) using the fuel flowing through the fuel supply passage (400). The computer device (500) obtains time-series data of the fuel flow rate measured by the flow rate meter (410), and also obtains time-series data of the rotational speed of a propeller (620) as parameters correlated with the fuel consumption of the ship (1). Furthermore, the computer device (500) performs the corrections by subtracting the fuel flow rate increased by the cleaning of the filter (424) performed by the strainer (420) from the fuel flow rate shown by the obtained time-series data of the fuel flow rate on the basis of the obtained time-series data of the propeller rotational speed.

Description

流量計算装置、流量計算方法、プログラム及び記録媒体Flow rate calculation device, flow rate calculation method, program, and recording medium
 本発明は、船舶の原動機の燃料消費量を特定する技術に関する。 The present invention relates to a technique for specifying the fuel consumption of a marine motor.
 船舶において、燃料タンクから当該船舶の原動機に至る燃料供給経路には、通常、当該船舶の燃料消費量を計測するために流量計が設けられている。船舶の運航管理者等は、流量計による計測値に含まれる誤差を低減し正確な燃料消費量を知りたい、というニーズを持っている。
 計測値の誤差を低減する技術を開示した特許文献として、例えば特許文献1がある。特許文献1には、ガスメータの計測値に含まれる、気圧変動等の外乱による影響を除去するために、当該計測値に平滑化処理を施すことが記載されている。
In a ship, a flow meter is usually provided in a fuel supply path from a fuel tank to a motor of the ship to measure the fuel consumption of the ship. Ship operation managers and the like have a need to know the exact fuel consumption by reducing the error included in the flow meter measurement.
As a patent document disclosing a technique for reducing an error of a measurement value, for example, there is Patent Document 1. Patent Document 1 describes that a smoothing process is performed on the measurement value in order to remove the influence of disturbance such as atmospheric pressure fluctuation included in the measurement value of the gas meter.
特許第3652485号公報Japanese Patent No. 36552485
 船舶における燃料供給経路には、通常、燃料に含まれる異物を除去するためのフィルタを有するストレーナが設けられている。ストレーナには、燃料の流れを意図的に発生させることでフィルタを洗浄する機能(例えば逆洗機能)を備えるものがある。この洗浄により、フィルタに捕捉されている異物が取り除かれて、当該フィルタの目詰まりが低減される。このようなストレーナよりも上流側に流量計が設けられていると、洗浄のために用いられドレンタンクに排出される燃料は、原動機により消費されないが、その流量が流量計により計測されてしまう。そのため、フィルタの洗浄に伴い流量計の計測値が正味の燃料消費量を示さない状態が生じる。
 そこで、本発明は、ストレーナでフィルタの洗浄が行われる場合において、原動機の正味の燃料消費量を特定するための技術を提供することを目的とする。
A fuel supply path in a ship is usually provided with a strainer having a filter for removing foreign matters contained in the fuel. Some strainers have a function of cleaning the filter by intentionally generating a fuel flow (for example, a backwashing function). This cleaning removes foreign matter trapped in the filter and reduces clogging of the filter. If a flow meter is provided upstream of such a strainer, the fuel used for cleaning and discharged to the drain tank is not consumed by the prime mover, but the flow rate is measured by the flow meter. For this reason, a state in which the measured value of the flow meter does not indicate the net fuel consumption occurs with the cleaning of the filter.
Therefore, an object of the present invention is to provide a technique for specifying the net fuel consumption of a prime mover when a strainer is used to wash a filter.
 上記目的を達成するため、本発明は、船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得する流量取得手段と、前記船舶の燃料消費量と相関するパラメータの時系列データを取得するパラメータ取得手段と、前記パラメータの時系列データに基づいて、前記流量の時系列データが示す流量又は当該時系列データから特定される燃料の流量を補正する補正手段とを備える流量計算装置を提供する。 In order to achieve the above object, the present invention relates to a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, the fuel flowing through the fuel supply path. A flow rate acquisition means for acquiring fuel flow time series data measured upstream of a strainer that performs filter cleaning using a filter, and a parameter for acquiring time series data of parameters correlated with the fuel consumption of the ship Provided is a flow rate calculation apparatus comprising: an acquisition unit; and a correction unit that corrects a flow rate indicated by the time series data of the flow rate or a flow rate of fuel specified from the time series data based on the time series data of the parameter.
 上述した流量計算装置において、前記パラメータは、前記船舶の推進力と相関するパラメータである、という構成が採用されてもよい。 In the above-described flow rate calculation apparatus, a configuration in which the parameter is a parameter correlated with the propulsive force of the ship may be employed.
 また、上述した流量計算装置において、前記パラメータは、前記船舶を推進させるためのプロペラの回転数、前記船舶の馬力、前記船舶の船速、前記原動機に含まれる内燃機関の筒内圧、前記内燃機関に給気する過給機の回転数、及びこれらのうちの少なくとも一つから算出されたパラメータのうちの少なくとも一つを含む、という構成が採用されてもよい。 In the above-described flow rate calculation apparatus, the parameters include the number of revolutions of a propeller for propelling the ship, the horsepower of the ship, the ship speed of the ship, the in-cylinder pressure of the internal combustion engine included in the prime mover, and the internal combustion engine A configuration in which at least one of the number of rotations of the supercharger that supplies air and a parameter calculated from at least one of them is included may be employed.
 また、上述した流量計算装置において、前記補正手段は、前記船舶の停泊中に計測された燃料の流量に基づいて、前記洗浄に伴い増加した前記計測された燃料の流量を特定し、特定した当該流量に基づいて前記補正を行う、という構成が採用されてもよい。 Further, in the above-described flow rate calculation device, the correction unit identifies and specifies the measured fuel flow rate increased with the cleaning based on the fuel flow rate measured while the ship is anchored. A configuration in which the correction is performed based on the flow rate may be employed.
 また、上述した流量計算装置において、前記補正手段は、前記パラメータに基づいて、前記洗浄に伴い増加した前記計測された燃料の流量を特定し、特定した当該流量に基づいて前記補正を行う、という構成が採用されてもよい。 Further, in the flow rate calculation apparatus described above, the correction unit specifies the measured fuel flow rate increased with the cleaning based on the parameter, and performs the correction based on the specified flow rate. A configuration may be employed.
 また、本発明は、船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、前記パラメータの時系列データに基づいて、前記流量の時系列データが示す流量又は当該時系列データから特定される燃料の流量を補正するステップとを備える流量計算方法を提供する。 The present invention also relates to a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and the filter is formed using the fuel flowing through the fuel supply path. Obtaining time-series data of fuel flow rate measured upstream of the strainer performing cleaning, obtaining time-series data of parameters correlated with the fuel consumption of the ship, and time-series data of the parameters And a step of correcting the flow rate indicated by the time-series data of the flow rate or the flow rate of the fuel specified from the time-series data based on the data.
 また、本発明は、コンピュータに、船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、前記パラメータの時系列データに基づいて、前記流量の時系列データが示す流量又は当該時系列データから特定される燃料の流量を補正するステップとを実行させるためのプログラムを提供する。 Further, the present invention uses a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and the fuel flowing through the fuel supply path. Obtaining the time-series data of the flow rate of the fuel measured upstream of the strainer for cleaning the filter, obtaining the time-series data of the parameters correlated with the fuel consumption of the ship, and the parameters And a step of correcting the flow rate indicated by the time-series data of the flow rate or the flow rate of the fuel specified from the time-series data is provided.
 また、本発明は、コンピュータに、コンピュータに、船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、前記パラメータの時系列データに基づいて、前記流量の時系列データが示す流量又は当該時系列データから特定される燃料の流量を補正するステップとを実行させるためのプログラムを持続的に記録したコンピュータ読み取り可能な記録媒体を提供する。 The present invention is also directed to a computer, a flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and flowing through the fuel supply path. Obtaining time-series data of fuel flow rate measured upstream of a strainer that cleans the filter using fuel, and obtaining time-series data of parameters correlated with the fuel consumption of the ship; A computer that continuously records a program for executing the step of correcting the flow rate indicated by the time-series data of the flow rate or the flow rate of the fuel specified from the time-series data based on the time-series data of the parameters A readable recording medium is provided.
 本発明によれば、ストレーナでフィルタの洗浄が行われる場合において、原動機の正味の燃料消費量を特定するための技術を提供することができる。 According to the present invention, it is possible to provide a technique for specifying the net fuel consumption of the prime mover when the filter is washed by the strainer.
本発明の一実施形態に係る船舶の模式図。The schematic diagram of the ship which concerns on one Embodiment of this invention. 同実施形態に係る船舶の燃料供給経路の構成を示す図。The figure which shows the structure of the fuel supply path | route of the ship which concerns on the embodiment. 同実施形態に係るストレーナの構成を示す模式断面図。The schematic cross section which shows the structure of the strainer which concerns on the same embodiment. 同実施形態に係る内燃機関及び過給機の構成を示す図。The figure which shows the structure of the internal combustion engine and supercharger which concern on the same embodiment. 同実施形態に係るコンピュータ装置の構成を示すブロック図。2 is an exemplary block diagram showing the configuration of a computer apparatus according to the embodiment. FIG. 同実施形態に係るテーブルの構成例を示す図。The figure which shows the structural example of the table which concerns on the same embodiment. 同実施形態に係る船舶の或る航行における燃料流量及びプロペラ回転数の時系列データの一例を示すグラフ。The graph which shows an example of the time series data of the fuel flow volume and propeller rotation speed in a certain navigation of the ship which concerns on the embodiment. 同実施形態に係るコンピュータ装置が行う1回の逆洗に伴い増加する燃料の流量の推定処理を示すフローチャート。The flowchart which shows the estimation process of the flow volume of the fuel which increases with one backwashing which the computer apparatus which concerns on the same embodiment performs. 同実施形態に係る船舶の停泊時における燃料流量の時系列データの一例を示すグラフ。The graph which shows an example of the time series data of the fuel flow rate at the time of anchoring of the ship which concerns on the embodiment. 同実施形態に係るコンピュータ装置が行う燃料の流量計算処理を示すフローチャート。The flowchart which shows the flow volume calculation process of the fuel which the computer apparatus concerning the embodiment performs. 同実施形態に係るコンピュータ装置が行う逆洗の終了時点の特定方法の説明図。Explanatory drawing of the specific method of the completion | finish time of the backwashing which the computer apparatus which concerns on the same embodiment performs. 同実施形態に係るコンピュータ装置が行う逆洗の終了時点の特定方法の説明図。Explanatory drawing of the specific method of the completion | finish time of the backwashing which the computer apparatus which concerns on the same embodiment performs. 同実施形態に係るコンピュータ装置が行う燃料流量の補正処理の一例の説明図。Explanatory drawing of an example of the correction process of the fuel flow volume which the computer apparatus which concerns on the same embodiment performs. 同実施形態に係るコンピュータ装置が行う燃料流量の補正処理の一例の説明図。Explanatory drawing of an example of the correction process of the fuel flow volume which the computer apparatus which concerns on the same embodiment performs. 同実施形態に係るコンピュータ装置が計算する燃料流量の時系列データを示すグラフ。The graph which shows the time series data of the fuel flow volume which the computer apparatus which concerns on the same embodiment calculates. 同実施形態に係るコンピュータ装置が行う燃料流量の補正処理の他の説明図。FIG. 9 is another explanatory diagram of fuel flow rate correction processing performed by the computer device according to the embodiment.
 以下、本発明の一実施形態について図面を参照しつつ説明する。以下の説明で参照する各図において、各部材、各領域等を認識可能な大きさとするために、実際とは縮尺を異ならせている場合がある。
 図1は、本発明の一実施形態に係る船舶の模式図である。
 船舶1は、例えばコンテナ船で、船舶1の本体である船体100と、原動機200と、燃料タンク300と、燃料供給経路400と、コンピュータ装置500と、推進装置600と、船速計700とを備える。
 原動機200は、燃料タンク300に貯留された燃料を動力源として、船舶1が推進するための動力を発生させる。燃料タンク300は、液体の燃料(例えば重油)を貯留する。燃料供給経路400は、燃料タンク300と原動機200との間に設けられた燃料供給経路である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In each of the drawings referred to in the following description, the scale may be different from the actual size so that each member, each region, and the like can be recognized.
FIG. 1 is a schematic view of a ship according to an embodiment of the present invention.
The ship 1 is, for example, a container ship, and includes a hull 100 that is a main body of the ship 1, a prime mover 200, a fuel tank 300, a fuel supply path 400, a computer device 500, a propulsion device 600, and a ship speedometer 700. Prepare.
The prime mover 200 generates power for the ship 1 to propel using the fuel stored in the fuel tank 300 as a power source. The fuel tank 300 stores liquid fuel (for example, heavy oil). The fuel supply path 400 is a fuel supply path provided between the fuel tank 300 and the prime mover 200.
 推進装置600は、原動機200が発生させた動力を用いて、船舶1の推進力を発生させる。具体的には、推進装置600は、推進軸(プロペラ軸)610と、推進軸610に接続されたプロペラ620と、回転計630とを備える。一般の船舶には、軸馬力計が搭載されていない場合もしばしばある。図1及び後述する図5では、船舶1に軸馬力計640が搭載されている場合と、搭載されていない場合とのどちらの場合もありうるという意味で、軸馬力計640を破線で図示している。推進装置600において、原動機200が発生させた動力により推進軸610が回転することにより、船尾側に設けられたプロペラ620が回転する。回転計630は、推進軸610上に設けられ、プロペラ620の単位時間当たりの回転数(以下「プロペラ回転数」という。)を逐次計測し、プロペラ回転数の時系列データをコンピュータ装置500へ出力する。軸馬力計640は、推進軸610上に設けられ、推進軸610のトルクを逐次計測し、このトルクから計算された船舶1の軸馬力の時系列データをコンピュータ装置500へ出力する。 The propulsion device 600 generates the propulsive force of the ship 1 using the power generated by the prime mover 200. Specifically, the propulsion device 600 includes a propulsion shaft (propeller shaft) 610, a propeller 620 connected to the propulsion shaft 610, and a tachometer 630. A general ship often does not have a shaft horsepower meter. In FIG. 1 and FIG. 5 to be described later, the shaft horsepower meter 640 is shown by a broken line in the sense that either the case where the shaft horsepower meter 640 is mounted on the ship 1 or the case where it is not mounted can be present. ing. In the propulsion device 600, the propeller 620 provided on the stern side rotates as the propulsion shaft 610 rotates by the power generated by the prime mover 200. The tachometer 630 is provided on the propulsion shaft 610, sequentially measures the number of revolutions of the propeller 620 per unit time (hereinafter referred to as “propeller revolution number”), and outputs time series data of the propeller revolution number to the computer device 500. To do. The shaft horsepower meter 640 is provided on the propulsion shaft 610, sequentially measures the torque of the propulsion shaft 610, and outputs time series data of the shaft horsepower of the ship 1 calculated from this torque to the computer device 500.
 コンピュータ装置500は、船員が活動するための居住区501に配置されたコンピュータ装置である。コンピュータ装置500は、回転計630、軸馬力計640、及び船速計700、更には原動機200、及び燃料供給経路400内に設けられた各種の計器からデータを集約する、データロガーとして機能する。 The computer device 500 is a computer device arranged in a residential area 501 for sailors to work. The computer device 500 functions as a data logger that aggregates data from the tachometer 630, the shaft horsepower meter 640, the ship speedometer 700, and the motor 200 and various instruments provided in the fuel supply path 400.
 船速計700は、船舶1の船速を逐次計測する。船速計700は、例えば、対水船速を計測する対水船速計、及び対地船速を計測する対水船速計を含む。本実施形態では、対水船速と対地船速とを特に区別することなく、「船速」と総称する。対水船速計は、例えば音響式船速計であるが、その方式は音響式に限られない。対地船速計は、GPS(Global Positioning System)等の衛星測位システムを利用して対地船速を計測するが、その方式は衛星測位システムを利用する方式に限られない。 The ship speedometer 700 sequentially measures the ship speed of the ship 1. The boat speedometer 700 includes, for example, a watercraft speedometer that measures the speed of the watercraft and a waterspeedometer that measures the speed of the groundwater. In the present embodiment, the ship speed against water and the ship speed against ground are collectively referred to as “ship speed” without any particular distinction. The anti-ship speedometer is, for example, an acoustic speedometer, but the method is not limited to the acoustic type. The ground speedometer measures the speed of the ground ship using a satellite positioning system such as GPS (Global Positioning System), but the method is not limited to the method using the satellite positioning system.
 図2は、燃料供給経路400の構成を示す図である。燃料供給経路400は、流量計410、及び2台のストレーナ420を、燃料の流路内に備える。図2に示す破線の矢印は、燃料が流れる方向を意味する。本実施形態では、燃料供給経路400に直列に2台のストレーナ420が配置されている場合を説明するが、配置されるストレーナ420の数は1個又は3個以上であってもよい。また、燃料供給経路400に複数のストレーナ420が配置される場合に、必ずしもこれら全てのストレーナ420が逆洗を行う機能を有していなくてよく、一部のストレーナ420だけが逆洗を行う機能を有していてもよい。 FIG. 2 is a diagram showing the configuration of the fuel supply path 400. The fuel supply path 400 includes a flow meter 410 and two strainers 420 in the fuel flow path. The broken-line arrows shown in FIG. 2 mean the direction in which the fuel flows. In the present embodiment, a case where two strainers 420 are arranged in series in the fuel supply path 400 will be described. However, the number of the strainers 420 arranged may be one or three or more. Further, when a plurality of strainers 420 are arranged in the fuel supply path 400, all of the strainers 420 do not necessarily have a function of performing backwashing, and only a part of the strainers 420 perform functions of backwashing. You may have.
 流量計410は、燃料タンク300から流出した燃料の流量を逐次計測し、計測値のデータを、コンピュータ装置500へ出力する。コンピュータ装置500(後述する制御部510)では、流量計410により計測された燃料の流量に基づいて、燃料供給経路400を流れる燃料の単位時間当たりの流量(以下、「燃料流量」という。)が計算される。図2では、流量計410によって計測される位置を流れる燃料流量を「C1」と表している。 The flow meter 410 sequentially measures the flow rate of the fuel that has flowed out of the fuel tank 300, and outputs measured value data to the computer device 500. In the computer device 500 (a control unit 510 described later), the flow rate of fuel flowing through the fuel supply path 400 per unit time (hereinafter referred to as “fuel flow rate”) is based on the flow rate of fuel measured by the flow meter 410. Calculated. In FIG. 2, the fuel flow rate flowing through the position measured by the flow meter 410 is represented as “C1”.
 燃料供給経路400は、2台のストレーナ420と原動機200とを経由して燃料が循環するための閉鎖回路CBを、流量計410よりも下流側に構成している。上流側に配置されたストレーナ420に流入する燃料の合計の燃料流量は、C1+C4と表される。「C4」は、閉鎖回路CBを循環して、ストレーナ420の上流側、且つ流量計410の下流側に戻された燃料の燃料流量を表す。ストレーナ420は、フィルタ424によって燃料内の異物を捕捉するとともに、燃料供給経路400において燃料の流れを発生させることでフィルタ424を洗浄する機能を有する。ストレーナ420で行われる洗浄の方法として、例えば、燃料供給経路400の下流側から上流側の方向に燃料の流れを発生させる逆洗がある。フィルタ424の洗浄によって、フィルタ424によって捕捉されていた異物が押し流されて、図示せぬドレンタンクに排出されるため、フィルタ424の目詰まりが低減される。 The fuel supply path 400 includes a closed circuit CB for circulating fuel via the two strainers 420 and the prime mover 200 on the downstream side of the flow meter 410. The total fuel flow rate of the fuel flowing into the strainer 420 arranged on the upstream side is expressed as C1 + C4. “C4” represents the fuel flow rate of the fuel that circulates in the closed circuit CB and returned to the upstream side of the strainer 420 and the downstream side of the flow meter 410. The strainer 420 has a function of scavenging foreign matter in the fuel by the filter 424 and cleaning the filter 424 by generating a fuel flow in the fuel supply path 400. As a cleaning method performed by the strainer 420, for example, there is backwashing in which a fuel flow is generated from the downstream side to the upstream side of the fuel supply path 400. By cleaning the filter 424, foreign matter captured by the filter 424 is pushed away and discharged to a drain tank (not shown), so that clogging of the filter 424 is reduced.
 図3は、逆洗を行う機能を有するストレーナ420の構成を示す模式断面図である。図3に示す破線の矢印は、燃料が流れる方向を意味する。
 ストレーナ420は、円筒形状のストレーナ本体420Aと、ストレーナ本体420Aの上部を覆う蓋体421と、ストレーナ本体420Aの底板422と、ストレーナ本体420Aのフィルタ台423と、ストレーナ本体420Aの複数のフィルタ424とを備える。複数のフィルタ424の各々は、網目状の部材で円筒状に構成され、蓋体421及びフィルタ台423によって固定されている。複数のフィルタ424の各々は、その内側の空間が、フィルタ台423に形成された孔4231と通じるように配置されている。孔4231は、複数のフィルタ424の配置に応じて複数形成されているが、その位置や数については特に問わない。フィルタ台423の下方には、上流側から流れてきた燃料が流入する流入口425が形成されている。流入口425からストレーナ本体420Aに流入した燃料は、孔4231を介してフィルタ424の内側(一次側)に流れ込む。フィルタ424は、内側に流れ込んできた燃料内の異物を捕捉するフィルタ処理を行う。このフィルタ処理が行われた後の燃料は、フィルタ424の外側(二次側)へと流れ、流出口426を介してストレーナ420の下流側に流出する。
FIG. 3 is a schematic cross-sectional view illustrating a configuration of a strainer 420 having a function of performing backwashing. The dashed arrow shown in FIG. 3 means the direction in which the fuel flows.
The strainer 420 includes a cylindrical strainer body 420A, a lid 421 that covers an upper portion of the strainer body 420A, a bottom plate 422 of the strainer body 420A, a filter base 423 of the strainer body 420A, and a plurality of filters 424 of the strainer body 420A. Is provided. Each of the plurality of filters 424 is formed in a cylindrical shape with a mesh-like member, and is fixed by a lid 421 and a filter base 423. Each of the plurality of filters 424 is arranged such that the inner space thereof communicates with a hole 4231 formed in the filter base 423. A plurality of holes 4231 are formed according to the arrangement of the plurality of filters 424, but the position and number thereof are not particularly limited. An inflow port 425 into which fuel flowing from the upstream side flows is formed below the filter base 423. The fuel that has flowed into the strainer main body 420 </ b> A from the inflow port 425 flows into the filter 424 (primary side) through the hole 4231. The filter 424 performs a filter process for capturing foreign matter in the fuel that has flowed inward. The fuel after this filter processing is performed flows to the outside (secondary side) of the filter 424 and flows out to the downstream side of the strainer 420 through the outlet 426.
 ストレーナ420は、更に、複数のフィルタ424を逆洗する逆洗機構427と、逆洗機構427を回転させる駆動軸428とを備える。逆洗機構427は、複数のフィルタ424の逆洗を行う機構(洗浄機構)で、駆動軸428により回転される逆洗管4271と、逆洗管4271を支える逆洗管基部4272と、逆洗管4271に固定され、逆洗管4271とともに回転するアーム4273と、アーム4273の上部に設けられ、フィルタ台423の下面に密接した状態で回転する摺動部4274と、逆洗された燃料をドレンタンクに排出する逆洗ノズル4275とを備える。逆洗ノズル4275の先端はバルブ429と接続されている。逆洗時にはバルブ429が開状態、逆洗時以外はバルブ429が閉状態となる。駆動軸428は、逆洗機構427に回転力を伝達する。 The strainer 420 further includes a backwash mechanism 427 that backwashes the plurality of filters 424 and a drive shaft 428 that rotates the backwash mechanism 427. The backwashing mechanism 427 is a mechanism (washing mechanism) that backwashes the plurality of filters 424. The backwashing tube 4271 rotated by the drive shaft 428, the backwashing tube base 4272 that supports the backwashing tube 4271, and the backwashing. An arm 4273 that is fixed to the tube 4271 and rotates together with the backwash tube 4271; a sliding portion 4274 that is provided on the upper side of the arm 4273 and that rotates in close contact with the lower surface of the filter base 423; And a backwash nozzle 4275 for discharging to the tank. The tip of the backwash nozzle 4275 is connected to the valve 429. The valve 429 is opened during backwashing, and the valve 429 is closed except during backwashing. The drive shaft 428 transmits the rotational force to the backwash mechanism 427.
 ストレーナ420で逆洗が行われるときには、駆動軸428の回転により逆洗管4271及びアーム4273が回転して、複数のフィルタ424が順次、孔4231を介して逆洗管4271及びアーム4273と接続される。このフィルタ424には、流入口425からの燃料は流入せず、逆洗の対象となる。フィルタ424の逆洗が行われるときには、バルブ429が開状態であるため、フィルタ424の内側と外側との差圧が発生し、ストレーナ本体420A内の燃料がフィルタ424の外側から内側に流入する。この流入した燃料は、フィルタ424の内側に付着した異物を洗い流して除去し、アーム4273、逆洗管4271、及び逆洗ノズル4275を介してドレンタンクに排出される。 When backwashing is performed by the strainer 420, the backwash pipe 4271 and the arm 4273 are rotated by the rotation of the drive shaft 428, and the plurality of filters 424 are sequentially connected to the backwash pipe 4271 and the arm 4273 through the holes 4231. The The fuel from the inflow port 425 does not flow into the filter 424 and is subject to backwashing. When the backwashing of the filter 424 is performed, the valve 429 is in an open state, so that a differential pressure between the inside and outside of the filter 424 is generated, and the fuel in the strainer body 420A flows into the inside from the outside of the filter 424. The fuel that has flowed in is washed away to remove foreign matter adhering to the inside of the filter 424, and is discharged to the drain tank via the arm 4273, the backwash pipe 4271, and the backwash nozzle 4275.
 以上の構成のストレーナ420は、例えば、定期的に、又はフィルタの上流と下流との間の燃料の圧力差(差圧)に応じたタイミングでこの逆洗を行う。後者の場合、ストレーナ420は、差圧を計測し、フィルタの目詰まりを原因として当該差圧が閾値以上になった場合に逆洗を行う。図2に示す「C5」、「C6」は、2台のストレーナ420の各々からドレンタンクに流れる燃料の燃料流量を表す。 The strainer 420 having the above configuration performs this backwashing, for example, periodically or at a timing corresponding to the fuel pressure difference (differential pressure) between the upstream and downstream of the filter. In the latter case, the strainer 420 measures the differential pressure, and performs backwashing when the differential pressure exceeds a threshold value due to clogging of the filter. “C5” and “C6” shown in FIG. 2 represent the fuel flow rate of the fuel flowing from each of the two strainers 420 to the drain tank.
 図2に戻り、ストレーナ420の各々を通過した燃料は、合流した後、更に下流側の流路に供給される。この合流後の燃料の燃料流量を「C2」とする。そして、この合流後の燃料の一部である燃料流量「C3」の燃料は、原動機200に供給され、残りである燃料流量「C4」の燃料は、ストレーナ420の上流側、且つ流量計410の下流側に戻される。燃料流量「C3」は、原動機200における燃料の消費量によって変化する。 Returning to FIG. 2, the fuel that has passed through each of the strainers 420 merges, and is then supplied to the downstream flow path. The fuel flow rate of the merged fuel is “C2”. The fuel with the fuel flow rate “C3” that is a part of the combined fuel is supplied to the prime mover 200, and the remaining fuel with the fuel flow rate “C4” is upstream of the strainer 420 and on the flow meter 410. Returned downstream. The fuel flow rate “C3” varies depending on the amount of fuel consumed by the prime mover 200.
 図4は、原動機200の構成を示す図である。図4の破線矢印は、気体の流れを意味する。図4に示すように、原動機200は、内燃機関210と、過給機(ターボチャージャともいう。)220と、空気冷却機221と、掃気マニホールド222と、排気マニホールド223とを備える。
 内燃機関210は、例えばディーゼル機関であり、シリンダ211を備える。図1には、シリンダ211が1つだけ示されているが、複数備えられてもよい。シリンダ211は、過給機220から供給される加圧気体を図示せぬ掃気ポートを介して吸気し、燃焼室213において、燃料供給経路400から供給された燃料との混合気を生成し、当該混合気を燃焼させる。シリンダ211の内部には、円柱状のピストン212が設けられている。燃焼室213で混合気が燃焼すると、熱エネルギーが運動エネルギーに変換されて、ピストン212が、シリンダ211の内側を軸方向に沿って往復移動する。ピストン212は、シリンダ211内で図示せぬクランク軸と連結される。図1で説明した推進軸610は、このクランク軸と直接的又は間接的に連結されることにより回転させられる。
FIG. 4 is a diagram showing the configuration of the prime mover 200. The dashed arrows in FIG. 4 mean gas flow. As shown in FIG. 4, the prime mover 200 includes an internal combustion engine 210, a supercharger (also referred to as a turbocharger) 220, an air cooler 221, a scavenging manifold 222, and an exhaust manifold 223.
The internal combustion engine 210 is a diesel engine, for example, and includes a cylinder 211. Although only one cylinder 211 is shown in FIG. 1, a plurality of cylinders 211 may be provided. The cylinder 211 sucks in the pressurized gas supplied from the supercharger 220 through a scavenging port (not shown), generates an air-fuel mixture with the fuel supplied from the fuel supply path 400 in the combustion chamber 213, and Burn the mixture. A cylindrical piston 212 is provided inside the cylinder 211. When the air-fuel mixture burns in the combustion chamber 213, heat energy is converted into kinetic energy, and the piston 212 reciprocates along the axial direction inside the cylinder 211. The piston 212 is connected to a crankshaft (not shown) in the cylinder 211. The propulsion shaft 610 described with reference to FIG. 1 is rotated by being directly or indirectly connected to the crankshaft.
 過給機220は、ブロア2201とタービン2202とを備え、ブロア2201とタービン2202とは回転軸2203を介して連結される。過給機220は、燃焼室213に加圧気体を供給するとともに、燃焼室213からの排気ガスにより駆動される。過給機回転数センサ250は、例えば回転軸2203上に設けられ、過給機220(回転軸2203)の回転数(以下「過給機回転数」という。)を逐次計測し、過給機回転数の時系列データをコンピュータ装置500へ出力する。 The supercharger 220 includes a blower 2201 and a turbine 2202, and the blower 2201 and the turbine 2202 are connected via a rotating shaft 2203. The supercharger 220 supplies pressurized gas to the combustion chamber 213 and is driven by exhaust gas from the combustion chamber 213. The supercharger rotational speed sensor 250 is provided, for example, on the rotary shaft 2203, and sequentially measures the rotational speed of the supercharger 220 (rotary shaft 2203) (hereinafter referred to as “supercharger rotational speed”). The time-series data of the rotational speed is output to the computer device 500.
 空気冷却機221は、過給機220のブロア2201により加圧されて温度上昇した空気を、冷却媒体により冷却する。掃気マニホールド222は、冷却された加圧気体を一時的に貯留した後、掃気ポートを介して燃焼室213に加圧気体を送り込む。排気マニホールド223は、燃焼室213での燃焼によって生成された排気ガスを一時的に貯留した後、過給機220のタービン2202に供給する。 The air cooler 221 cools the air that has been pressurized by the blower 2201 of the supercharger 220 and has risen in temperature with a cooling medium. The scavenging manifold 222 temporarily stores the cooled pressurized gas, and then sends the pressurized gas into the combustion chamber 213 through the scavenging port. The exhaust manifold 223 temporarily stores the exhaust gas generated by the combustion in the combustion chamber 213 and then supplies the exhaust gas to the turbine 2202 of the supercharger 220.
 燃焼室213には、筒内圧センサ230が配置されている。一般の船舶には、筒内圧センサが搭載されていない場合もしばしばある。図4,5では、船舶1に筒内圧センサ230が搭載されている場合と、搭載されていない場合とのどちらの場合もありうるという意味で、筒内圧センサ230を破線で図示している。筒内圧センサ230は、燃焼室213における圧力、即ち筒内圧を逐次計測し、筒内圧の時系列データをコンピュータ装置500へ出力する。筒内圧の時系列データは、複数の時点の各時点で計測した筒内圧を、計測日時の順番で並べたデータである。掃気圧センサ240は、例えば掃気マニホールド222と内燃機関210とを接続する導通管内に配置され、過給機220から内燃機関210に送り込まれる加圧気体の掃気圧を逐次計測し、掃気圧の時系列データを、コンピュータ装置500へ出力する。掃気圧の時系列データは、複数の時点の各時点で計測した掃気圧を、計測日時の順番で並べたデータである。 An in-cylinder pressure sensor 230 is disposed in the combustion chamber 213. A general ship often does not have an in-cylinder pressure sensor. 4 and 5, the in-cylinder pressure sensor 230 is indicated by a broken line in the sense that either the case where the in-cylinder pressure sensor 230 is mounted on the ship 1 or the case where the in-cylinder pressure sensor 230 is not mounted can be present. The in-cylinder pressure sensor 230 sequentially measures the pressure in the combustion chamber 213, that is, the in-cylinder pressure, and outputs time-series data of the in-cylinder pressure to the computer device 500. The in-cylinder pressure time-series data is data in which in-cylinder pressures measured at each of a plurality of time points are arranged in order of measurement date and time. The scavenging pressure sensor 240 is disposed, for example, in a conduction pipe that connects the scavenging manifold 222 and the internal combustion engine 210, and sequentially measures the scavenging pressure of the pressurized gas sent from the supercharger 220 to the internal combustion engine 210. The series data is output to the computer device 500. The time-series data of scavenging air pressure is data in which scavenging air pressures measured at each of a plurality of time points are arranged in order of measurement date and time.
 なお、図1,2,4で説明した回転計630、軸馬力計640、船速計700、流量計410、筒内圧センサ230、掃気圧センサ240、及び過給機回転数センサ250の各計器は、計測値の時系列データを、計測日時を特定可能な形式で、コンピュータ装置500へ出力する。これらの各計器は、本実施形態では、計測値のデータを逐次出力(例えばリアルタイムで出力)する。ただし、これらの計器には、所定の期間の計測により得た計測値のデータを蓄積しておき、所定のタイミングにまとめてコンピュータ装置500へ出力する計器が含まれていてもよい。 1, 2, 4, each instrument of the tachometer 630, the shaft horsepower meter 640, the ship speedometer 700, the flow meter 410, the in-cylinder pressure sensor 230, the scavenging air pressure sensor 240, and the supercharger rotation speed sensor 250. Outputs the time-series data of the measurement values to the computer device 500 in a format that can specify the measurement date and time. In the present embodiment, each of these meters sequentially outputs measurement value data (for example, in real time). However, these instruments may include an instrument that accumulates measurement value data obtained by measurement during a predetermined period and outputs the data to the computer apparatus 500 at a predetermined timing.
 図5は、コンピュータ装置500の構成を示すブロック図である。図5に示すように、コンピュータ装置500は、ハードウェア構成として、制御部510と、記憶部520と、表示部530と、通信部540と、操作部550と、インタフェース560とを備える。
 制御部510は、演算処理装置としてのCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を有するプロセッサである。CPUは、ROM又は記憶部520に記憶されたプログラムをRAMに読み出して実行することにより、コンピュータ装置500の各部を制御する。例えば、制御部510は、流量計410により計測された燃料の流量に基づいて燃料流量を計算する。燃料流量の時系列データは、複数の時点の各時点で計測した燃料流量を、計測日時の順番で並べたデータである。記憶部520は、例えばハードディスク装置で、コンピュータ装置500を動作させるためのプログラム、及びテーブルTを記憶する。図6に示すように、テーブルTは、計測された燃料流量、プロペラ回転数、筒内圧、掃気圧、船速、過給機回転数、及び軸馬力の時系列データを、それぞれに計測日時と対応づけて格納するテーブルである。なお、軸馬力、及び筒内圧は、船舶1に軸馬力計640が搭載されている場合に、テーブルTに記録される。
 表示部530は、例えば液晶ディスプレイであり、各種の情報を表示する。通信部540は、例えば、ネットワークと通信するための通信回路及びアンテナを備え、陸上に設置されたコンピュータ装置と当該ネットワーク経由で通信する。操作部550は、例えばキーボード及びマウスを備え、操作者(ここでは船員)が行った操作を受け付ける。インタフェース560は、船舶1に搭載された各計器からデータの入力を受け付ける。
FIG. 5 is a block diagram illustrating a configuration of the computer apparatus 500. As illustrated in FIG. 5, the computer device 500 includes a control unit 510, a storage unit 520, a display unit 530, a communication unit 540, an operation unit 550, and an interface 560 as hardware configurations.
The control unit 510 is a processor having a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM) as an arithmetic processing unit. The CPU controls each unit of the computer device 500 by reading out the program stored in the ROM or the storage unit 520 to the RAM and executing the program. For example, the control unit 510 calculates the fuel flow rate based on the fuel flow rate measured by the flow meter 410. The time-series data of the fuel flow rate is data in which the fuel flow rates measured at each of a plurality of time points are arranged in order of measurement date and time. The storage unit 520 is a hard disk device, for example, and stores a program for operating the computer device 500 and a table T. As shown in FIG. 6, the table T includes time series data of the measured fuel flow rate, propeller rotational speed, in-cylinder pressure, scavenging air pressure, ship speed, turbocharger rotational speed, and shaft horsepower for the measurement date and time, respectively. It is a table stored in association with each other. The shaft horsepower and the in-cylinder pressure are recorded on the table T when the shaft horsepower meter 640 is mounted on the ship 1.
The display unit 530 is a liquid crystal display, for example, and displays various types of information. The communication unit 540 includes, for example, a communication circuit and an antenna for communicating with a network, and communicates with a computer device installed on land via the network. The operation unit 550 includes, for example, a keyboard and a mouse, and receives an operation performed by an operator (here, a sailor). The interface 560 receives data input from each instrument mounted on the ship 1.
 コンピュータ装置500は、燃料供給経路400における燃料流量を計算する流量計算装置として機能する。この燃料流量の計算に関する機能として、制御部510は、流量取得手段511と、パラメータ取得手段512と、補正手段513と、処理手段514とに相当する機能を実現する。
 流量取得手段511は、インタフェース560を介して、流量計410により計測された燃料流量の時系列データを取得する手段である。流量取得手段511は、取得した燃料流量の時系列データをテーブルTに記録し、また、テーブルTに記録された燃料流量の時系列データを取得する。
The computer device 500 functions as a flow rate calculation device that calculates the fuel flow rate in the fuel supply path 400. As a function related to the calculation of the fuel flow rate, the control unit 510 realizes functions corresponding to the flow rate acquisition unit 511, the parameter acquisition unit 512, the correction unit 513, and the processing unit 514.
The flow rate acquisition unit 511 is a unit that acquires time series data of the fuel flow rate measured by the flow meter 410 via the interface 560. The flow rate acquisition unit 511 records the acquired fuel flow time series data in the table T, and acquires the fuel flow time series data recorded in the table T.
 パラメータ取得手段512は、インタフェース560を介して、船舶1の燃料消費量と相関するパラメータの時系列データを取得する手段である。パラメータ取得手段512は、取得したパラメータの時系列データをテーブルTに記録し、また、テーブルTに記録されたパラメータの時系列データを取得する。燃料消費量と相関するパラメータは、船舶1の推進力と相関するパラメータを含み、具体的には、プロペラ回転数、船舶1の馬力、船速、原動機200の筒内圧、及び過給機回転数を含む。 The parameter acquisition means 512 is means for acquiring time-series data of parameters correlated with the fuel consumption of the ship 1 via the interface 560. The parameter acquisition unit 512 records the time series data of the acquired parameters in the table T, and acquires the time series data of the parameters recorded in the table T. The parameters that correlate with the fuel consumption include parameters that correlate with the propulsive force of the ship 1. Specifically, the propeller rotation speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotation speed including.
 補正手段513は、パラメータ取得手段512により取得されたパラメータの時系列データに基づいて、流量取得手段511により取得された燃料流量の時系列データを補正する手段である。補正手段513は、この時系列データが示す流量から、当該流量を減じる方向の補正、より具体的には、ストレーナ420におけるフィルタ424の洗浄(本実施形態では逆洗)に伴う燃料の流量の増加の影響を低減する補正を行う。 The correction unit 513 is a unit that corrects the time series data of the fuel flow rate acquired by the flow rate acquisition unit 511 based on the time series data of the parameters acquired by the parameter acquisition unit 512. The correction means 513 corrects the direction in which the flow rate is subtracted from the flow rate indicated by the time series data, more specifically, increases the flow rate of fuel accompanying the cleaning of the filter 424 in the strainer 420 (backwashing in this embodiment). Perform correction to reduce the effect of.
 処理手段514は、補正手段513による補正後の燃料の流量の時系列データに基づいて、所定の処理を行う手段である。この処理は、補正後の燃料流量の時系列データが示す単位時間の燃料流量を時間積分した値に基づき、船舶1の燃料消費量を計算する処理を含む。補正手段513による補正が行われた後の燃料の流量を用いることで、原動機200の正味の燃料消費量により近い燃料消費量が計算される。 The processing unit 514 is a unit that performs a predetermined process based on the time-series data of the fuel flow rate corrected by the correcting unit 513. This process includes a process of calculating the fuel consumption of the ship 1 based on a value obtained by time-integrating the fuel flow rate of unit time indicated by the time series data of the corrected fuel flow rate. By using the fuel flow rate after the correction by the correction unit 513, the fuel consumption amount closer to the net fuel consumption amount of the prime mover 200 is calculated.
 図7は、船舶1により行われた或る航行において、流量計410により計測された燃料流量の時系列データ、及び回転計630により計測されたプロペラ回転数の時系列データの一例を示すグラフである。図7のグラフにおいて、横軸は時間(×10[s](秒))を表し、縦軸は単位時間当たりの燃料流量、又はプロペラ回転数を表す。このグラフにおいて、燃料流量の単位は[l/min](1分間当たりのリットル量)であり、プロペラ回転数の単位は[rpm](1分間あたりの回転数)である。図7のグラフにおいて、燃料流量に関する縦軸のスケールと、プロペラ回転数に関する縦軸のスケールは、プロペラ回転数の変化と、当該プロペラ回転数の変化に伴う燃料流量の変化とが概ね同じ長さとなるように調整されている。図7に示すように、プロペラ回転数の増減と連動して燃料流量は増減する。 FIG. 7 is a graph showing an example of time-series data of the fuel flow rate measured by the flow meter 410 and time-series data of the propeller rotation speed measured by the tachometer 630 in a certain navigation performed by the ship 1. is there. In the graph of FIG. 7, the horizontal axis represents time (× 10 [s] (seconds)), and the vertical axis represents the fuel flow rate per unit time or the propeller rotational speed. In this graph, the unit of the fuel flow rate is [l / min] (liter amount per minute), and the unit of the propeller rotational speed is [rpm] (rotational speed per minute). In the graph of FIG. 7, the scale of the vertical axis related to the fuel flow rate and the scale of the vertical axis related to the propeller rotational speed are substantially the same in length as the change in the propeller rotational speed and the change in the fuel flow rate accompanying the change in the propeller rotational speed. It has been adjusted to be. As shown in FIG. 7, the fuel flow rate increases and decreases in conjunction with the increase and decrease of the propeller rotational speed.
 燃料流量のグラフに着目すると、燃料流量の増加方向の急峻な変化が、複数回現れていることが分かる。この急峻な変化の原因の一つとして、ストレーナ420における逆洗がある。逆洗において逆流される燃料は、原動機200に投入されることなくドレンタンクへ排出される。原動機200には出力に応じた燃料が供給(投入)されなければならないので、燃料タンク300から流出する燃料の流量は、逆洗が行われると、逆洗に用いられてドレンタンクへ排出される流量だけ一時的に増加する。具体的には、閉鎖回路CB内の各部の圧力は、所定の圧力に保たれるため、逆洗により燃料の一部がドレンタンクに流れた場合、閉鎖回路CBよりも上流側(燃料タンク300)から閉鎖回路CBに燃料が移動することにより、流量計410が急な燃料流量の増加を計測する。例えば、流量計410により計測される燃料流量は、燃料流量「C5」或いは「C6」に応じた分だけ増加することになる。 Focusing on the graph of the fuel flow rate, it can be seen that a steep change in the increasing direction of the fuel flow rate appears multiple times. One of the causes of this steep change is backwashing in the strainer 420. The fuel that flows back in the backwashing is discharged into the drain tank without being put into the prime mover 200. Since the prime mover 200 must be supplied with fuel corresponding to the output, the flow rate of the fuel flowing out from the fuel tank 300 is used for backwashing and discharged to the drain tank when backwashing is performed. Only the flow rate increases temporarily. Specifically, since the pressure of each part in the closed circuit CB is maintained at a predetermined pressure, when a part of the fuel flows into the drain tank by backwashing, the upstream side of the closed circuit CB (the fuel tank 300 ) To the closed circuit CB, the flow meter 410 measures a sudden increase in the fuel flow rate. For example, the fuel flow rate measured by the flow meter 410 increases by an amount corresponding to the fuel flow rate “C5” or “C6”.
 しかしながら、燃料流量の同様の変化が、船舶1の推進力の変化による、燃料消費量の一時的な増加を原因として現われる場合がある。例えば、船舶の着桟操船又は離桟操船時において、当該船舶が後進した状態から停止し前進することがある。このとき、船舶の前方方向の推進力を急激に大きくする必要があり、原動機200の出力が上げられ、一時的に燃料消費量が増大する。その結果、流量計410により計測される燃料流量が急峻に増加する。
 よって、燃料流量の時系列データのみに基づき、燃料流量の急峻な変化の原因が、ストレーナで行われた逆洗であるか否かを正確に判別することは困難である。また、逆洗が行われる間に原動機200の出力が上げられる場合もある。
However, a similar change in the fuel flow rate may appear due to a temporary increase in fuel consumption due to a change in the propulsive force of the ship 1. For example, when a ship piers or leaves a berth, the ship may stop and move forward from a state in which the ship has moved backward. At this time, it is necessary to rapidly increase the propulsive force in the forward direction of the ship, the output of the prime mover 200 is increased, and the fuel consumption temporarily increases. As a result, the fuel flow rate measured by the flow meter 410 increases sharply.
Therefore, it is difficult to accurately determine whether or not the cause of the rapid change in the fuel flow rate is the backwashing performed by the strainer based only on the time series data of the fuel flow rate. Further, the output of the prime mover 200 may be increased while backwashing is performed.
 そこで、コンピュータ装置500は、プロペラ回転数の時系列データを参照して、燃料流量の時系列データが示す急峻な変化のうち逆洗に起因するものを特定する。なお、プロペラ回転数は船舶1の推進力と相関を持ち、従って、燃料流量と相関を持つパラメータである。
 図7において、燃料流量に現れている急峻な変化のうち、実線の丸印で囲んだものは、プロペラ回転数がおおよそ一定値で安定している期間に現れている。従って、実線の丸印で囲んだ燃料流量の急峻な変化はストレーナ420における逆洗のみに起因すると推定される。一方で、燃料流量に現れている急峻な変化のうち、破線の丸印で囲んだものは、プロペラ回転数が増加したタイミングの近辺で現れている。従って、一点鎖線の丸印で囲んだ燃料流量の急峻な変化は、逆洗と船舶1の推進力の増加の両方、又は船舶1の推進力の増加のみに起因していると推定される。
Therefore, the computer device 500 refers to the time-series data of the propeller rotational speed, and identifies the steep change indicated by the fuel flow time-series data that is caused by backwashing. Note that the propeller rotational speed has a correlation with the propulsive force of the ship 1 and is therefore a parameter having a correlation with the fuel flow rate.
In FIG. 7, among the steep changes appearing in the fuel flow rate, those surrounded by a solid line circle appear during a period in which the propeller rotational speed is stable at a substantially constant value. Accordingly, it is presumed that the steep change in the fuel flow rate surrounded by the solid line circle is caused only by the backwashing in the strainer 420. On the other hand, among the steep changes appearing in the fuel flow rate, the one surrounded by a broken-line circle appears near the timing when the propeller rotational speed increases. Therefore, it is presumed that the steep change in the fuel flow rate surrounded by the one-dot chain line circle is caused by both the backwashing and the increase in the propulsive force of the ship 1, or only by the increase in the propulsive force of the ship 1.
 図7において一点鎖線の丸印で囲んだ燃料流量の急峻な変化が、逆洗と船舶1の推進力の増加の両方に起因しているか、それとも船舶1の推進力の増加のみに起因しているかを判定するために、コンピュータ装置500は、船舶1の停泊中に計測された燃料流量に基づいて、ストレーナ420による逆洗に伴い増加する燃料の流量を推定する。船舶1が停泊中の期間は、プロペラ回転数はゼロとみなせる。コンピュータ装置500は、一点鎖線の丸印で囲んだ部分の燃料流量の増加量を、推定した逆洗に伴い増加する燃料の流量と比較することで、一点鎖線の丸印で囲んだ燃料流量の急峻な変化の原因に逆洗が含まれるか否かを判定する。
 コンピュータ装置500は、上記のように燃料流量の時系列データが示す急峻な変化のうち逆洗に起因するものを特定すると、燃料流量の時系列データが示す燃料流量から逆洗に伴い増加する燃料の流量を減じて、船舶1の燃料消費量を計算する。以下に、上述したコンピュータ装置500の処理の具体例を説明する。
In FIG. 7, the steep change in the fuel flow rate surrounded by the dot-and-dash line circle is caused by both the backwashing and the increase in the propulsive force of the ship 1, or only due to the increase in the propulsive force of the ship 1. In order to determine whether or not, the computer apparatus 500 estimates the fuel flow rate that increases with backwashing by the strainer 420 based on the fuel flow rate measured while the ship 1 is anchored. The propeller rotation speed can be regarded as zero during the period when the ship 1 is anchored. The computer device 500 compares the amount of increase in the fuel flow rate in the portion surrounded by the dot-and-dash line circle with the estimated fuel flow rate that increases due to the backwashing. It is determined whether backwashing is included in the cause of the steep change.
When the computer device 500 identifies the steep change indicated by the fuel flow time series data as described above, the fuel that increases with back washing from the fuel flow indicated by the fuel flow time series data. The fuel consumption amount of the ship 1 is calculated by reducing the flow rate. Hereinafter, a specific example of the processing of the computer device 500 described above will be described.
<A:逆洗に伴い増加する燃料の流量の推定処理>
 図8は、コンピュータ装置500が行う、逆洗に伴い増加する燃料の流量の推定処理を示すフローチャートである。
 まず、コンピュータ装置500の制御部510は、船舶1が停泊中かどうかを判定する(ステップS1)。制御部510は、インタフェース560を介して、回転計630からプロペラ回転数の時系列データを取得し、プロペラ回転数がゼロである場合は、船舶1が停泊中と判定する。なお、制御部510はプロペラ回転数以外の情報により船舶1が停泊中であるか否かの判定を行ってもよい。例えば、制御部510は、船舶1が停泊中であるか否かの判定を、船速計700により計測された船速の計測データに基づいて行ってもよいし、操船者が操作部550を用いて行った操作の内容に基づいて行ってもよい。
 ステップS1で「YES」と判定した場合、制御部510は、船舶1の停泊中に計測された燃料流量の時系列データを、流量計410から取得する(ステップS2)。
<A: Estimating the flow rate of fuel that increases with backwash>
FIG. 8 is a flowchart illustrating a process for estimating the flow rate of the fuel that increases with backwashing, which is performed by the computer device 500.
First, the control unit 510 of the computer device 500 determines whether or not the ship 1 is anchored (step S1). The control unit 510 acquires time-series data of the propeller rotation speed from the tachometer 630 via the interface 560, and determines that the ship 1 is anchored when the propeller rotation speed is zero. Control unit 510 may determine whether or not ship 1 is anchored based on information other than the propeller rotation speed. For example, the control unit 510 may determine whether or not the ship 1 is anchored based on the ship speed measurement data measured by the ship speedometer 700, or the ship operator may operate the operation unit 550. You may perform based on the content of operation performed using.
When it determines with "YES" at step S1, the control part 510 acquires the time series data of the fuel flow rate measured while the ship 1 was anchored from the flowmeter 410 (step S2).
 図9は、船舶1の停泊中に取得された燃料流量の時系列データの一例を示すグラフである。図9のグラフにおいて、横軸は時間を表し、縦軸は単位時間当たりの燃料流量を表す。このグラフに示される期間において、プロペラ回転数はゼロとする。なお、図9に示すグラフでは、P1とP2、P3とP4、のように、短い時間間隔で現れる2つの燃料流量の急峻な変化のペアが、概ね一定の時間間隔で現れている。以下の説明において、短い時間間隔で現れる2回の燃料流量の急峻な変化のペアが1回の逆洗に応じた燃料流量の変化を示すものとする。
 なお、図2のように2台のストレーナ420が直列に設置されている場合、その逆洗のタイミングが微妙にずれることで、短時間の間に燃料流量の急峻な変化が2個現れる場合と、全く同時のタイミングで逆洗が行われることで、2個の燃料流量の急峻な変化が、1つの変化に統合されて現れる場合とがある。また、手動の駆動機構を用いて逆洗が行われる場合は、図9で示した場合よりも不規則なタイミングで、燃料流量の急峻な変化が現れることになる。仮に逆洗を行うストレーナが3個以上備えられた場合も、燃料流量の急峻な変化が現われる。
FIG. 9 is a graph showing an example of time-series data of the fuel flow rate acquired while the ship 1 is anchored. In the graph of FIG. 9, the horizontal axis represents time, and the vertical axis represents the fuel flow rate per unit time. The propeller rotation speed is set to zero during the period shown in this graph. In the graph shown in FIG. 9, pairs of two rapid changes in the fuel flow rate that appear at short time intervals such as P1 and P2 and P3 and P4 appear at substantially constant time intervals. In the following description, it is assumed that a pair of two rapid changes in the fuel flow rate appearing at a short time interval indicates a change in the fuel flow rate in response to one backwash.
In addition, when two strainers 420 are installed in series as shown in FIG. 2, two steep changes in the fuel flow rate appear in a short time due to a slight shift in the backwash timing. In some cases, the backwashing is performed at exactly the same timing, so that a sudden change in the two fuel flow rates appears as a single change. Further, when backwashing is performed using a manual drive mechanism, a sharp change in the fuel flow rate appears at an irregular timing as compared with the case shown in FIG. Even if three or more strainers for backwashing are provided, a sharp change in the fuel flow rate appears.
 図8に戻り、コンピュータ装置500が行う処理の説明を続ける。次に、制御部510は、ステップS2で取得した燃料流量の時系列データに基づいて、1回の逆洗に伴い増加する燃料の流量を特定(計算)する(ステップS3)。図9のグラフを用いて、制御部510がステップS3において行う処理の具体例を説明する。制御部510は、燃料流量の急峻な変化が現れている部分としてP1、P2等を特定する。続いて、制御部510は、特定したP1,P2等の各々に関し、変化部分の燃料流量(単位時間当たりの燃料流量)の時間積分を行い、逆洗に伴い増加する燃料の流量を算出する。制御部510は、例えば、P1に関し、燃料流量(単位は[l/min])を、変化に要した期間Δt(単位は[sec])において時間積分することにより、P1に応じた燃料の流量(単位は[l])を算出する。続いて、制御部510は、P1とP2に関し算出した燃料の流量を加算して、P1とP2のペアに応じた逆洗に伴い増加した燃料の流量を算出する。制御部510は、P3とP4、P5とP6等のペアに関しても同様に、これらのペアに応じた逆洗に伴い増加した燃料の流量を算出する。これにより、制御部510は複数回の逆洗の各々に関し逆洗に伴い増加した燃料の流量を特定する。続いて、制御部510は特定した燃料の流量の平均値を算出する。このように算出される燃料の流量の平均値が、ステップS3において算出される、1回の逆洗に伴い増加する燃料の流量である。 Returning to FIG. 8, the description of the processing performed by the computer device 500 will be continued. Next, control unit 510 identifies (calculates) the fuel flow rate that increases with one backwash based on the time-series data of the fuel flow rate obtained in step S2 (step S3). A specific example of the process performed by the control unit 510 in step S3 will be described using the graph of FIG. Control unit 510 identifies P1, P2, and the like as portions where a sharp change in the fuel flow rate appears. Subsequently, the control unit 510 performs time integration of the fuel flow rate (fuel flow rate per unit time) of the changed portion for each of the specified P1, P2, and the like, and calculates the fuel flow rate that increases with backwashing. For example, with respect to P1, the control unit 510 integrates the fuel flow rate (unit: [l / min]) over a period Δt (unit: [sec]) required for the change, so that the fuel flow rate corresponding to P1 is obtained. (The unit is [l]). Subsequently, the control unit 510 adds the fuel flow rates calculated with respect to P1 and P2, and calculates the fuel flow rate increased with backwashing according to the pair of P1 and P2. Control unit 510 similarly calculates the flow rate of fuel increased with backwashing according to these pairs for P3 and P4, P5 and P6, and the like. Thereby, the control unit 510 specifies the flow rate of the fuel increased with the backwashing for each of the plurality of backwashing times. Subsequently, the control unit 510 calculates the average value of the specified fuel flow rate. The average value of the fuel flow rate calculated in this way is the fuel flow rate that increases with one backwash calculated in step S3.
 次に、制御部510は、ステップS3において計算した1回の逆洗に伴い増加する燃料の流量を、記憶部520に記録する(ステップS4)。なお、船舶1の航行中に行われる逆洗に伴い増加する燃料の流量は、船舶1が停泊中に行われる逆洗に伴い増加する燃料の流量と概ね同じである。従って、ステップS4において記録された燃料の流量は、次に説明する流量計算処理において、船舶1の航行中に計測された燃料流量から逆洗に伴い増加した燃料の流量を除外するために用いられる。 Next, the control unit 510 records in the storage unit 520 the fuel flow rate that increases with one backwash calculated in step S3 (step S4). Note that the flow rate of fuel that increases with backwashing performed while the ship 1 is sailing is substantially the same as the flow rate of fuel that increases with backwashing that is performed while the ship 1 is anchored. Therefore, the fuel flow rate recorded in step S4 is used to exclude the fuel flow rate increased due to backwashing from the fuel flow rate measured during the navigation of the ship 1 in the flow rate calculation processing described below. .
<B:流量計算処理>
 図10は、コンピュータ装置500が行う流量計算処理を示すフローチャートである。流量計算処理は、流量計410により計測された燃料流量を用いて船舶1の燃料消費量を計算する処理である。
 コンピュータ装置500の制御部510は、船舶1の燃料消費量の計測期間(例えば、船舶1の航行期間)において、流量計410により計測された燃料流量の時系列データを、インタフェース560を介して取得する(ステップS11)。また、制御部510は、燃料消費量の計測期間において、回転計630により計測されたプロペラ回転数(即ち、燃料消費量と相関するパラメータ)の時系列データを、インタフェース560を介して取得する(ステップS12)。制御部510は、ステップS11において取得した燃料流量の時系列データと、ステップS12において取得したプロペラ回転数の時系列データとを、計測日時と関連付けて記憶部520のテーブルT(図6)に記録する(ステップS13)。
<B: Flow rate calculation process>
FIG. 10 is a flowchart showing a flow rate calculation process performed by the computer device 500. The flow rate calculation process is a process for calculating the fuel consumption amount of the ship 1 using the fuel flow rate measured by the flow meter 410.
The control unit 510 of the computer device 500 acquires the time series data of the fuel flow rate measured by the flow meter 410 during the fuel consumption measurement period of the ship 1 (for example, the navigation period of the ship 1) via the interface 560. (Step S11). In addition, the control unit 510 acquires, via the interface 560, time-series data of the propeller rotational speed (that is, a parameter correlated with the fuel consumption) measured by the tachometer 630 during the fuel consumption measurement period ( Step S12). Control unit 510 records the time-series data of the fuel flow rate acquired in step S11 and the time-series data of the propeller rotation speed acquired in step S12 in association with the measurement date and time in table T (FIG. 6) of storage unit 520. (Step S13).
 次に、制御部510は、テーブルTに記録した燃料流量の時系列データに基づいて、逆洗を原因とした燃料流量の変化を検出する(ステップS14)。 Next, the control unit 510 detects a change in the fuel flow rate caused by backwashing based on the time-series data of the fuel flow rate recorded in the table T (step S14).
 以下に、ステップS14において制御部510が行う処理の具体例を説明する。図11A及び図11Bは、燃料流量の時系列データと、プロペラ回転数の時系列データを示したグラフである。図11Aは、船舶1の加速がなく、プロペラ回転数が概ね一定値で安定している状態において燃料流量に急峻な変化が現れている部分を示している。図11Bは、船舶1の加速によりプロペラ回転数が増加したタイミングの近辺で燃料流量に急峻な変化が現れている部分を示している。
 図11Aに示すように、船舶1に加速等がなく、プロペラ回転数が概ね一定値で安定している場合、制御部510は、燃料流量の時系列変化を示す曲線において、急峻な変化の開始の後、当該変化の開始時点の燃料流量を基準として±α%(αは、ここでは10%)の領域において変曲点が現れた場合、当該変曲点に応じた時点を、急峻な変化の終了時点として特定する。当該±α%の領域において変曲点が現れない場合、制御部510は、曲線が当該±α%の領域から下方に出る時点を、急峻な変化の終了時点として特定する。
Below, the specific example of the process which the control part 510 performs in step S14 is demonstrated. 11A and 11B are graphs showing time-series data of the fuel flow rate and time-series data of the propeller rotational speed. FIG. 11A shows a portion where a sharp change in the fuel flow rate appears in a state where the ship 1 is not accelerated and the propeller rotational speed is stable at a substantially constant value. FIG. 11B shows a portion where a steep change appears in the fuel flow rate in the vicinity of the timing at which the propeller rotation speed has increased due to the acceleration of the ship 1.
As shown in FIG. 11A, when the ship 1 is not accelerated or the like and the propeller rotational speed is stable at a substantially constant value, the control unit 510 starts a steep change in a curve indicating a time-series change in the fuel flow rate. After that, when an inflection point appears in the region of ± α% (α is 10% here) with reference to the fuel flow rate at the start of the change, the time point corresponding to the inflection point changes sharply. Specify the end point of. When the inflection point does not appear in the ± α% region, the control unit 510 specifies the time point when the curve goes down from the ± α% region as the end point of the steep change.
 一方、図11Bに示すように、船舶1の加速等によりプロペラ回転数が安定していない場合、制御部510は、燃料流量の時系列データを示す曲線において、急峻な変化の開始時点の燃料流量を基準とする±α%の領域を、プロペラ回転数の変化に応じて補正する。即ち、プロペラ回転数の変化量がΔrである場合、制御部510はΔrに応じた燃料流量の変化量として、Δf2=Δr×k(kは係数)を算出し、急峻な変化の開始時点の燃料流量にΔf2を加算した値を基準とする±α%の領域を、補正後の領域として設定する。係数kは、例えば、予め決められた値である。制御部510は、補正後の領域において燃料流量の時系列データが示す曲線に変曲点が現れれば、当該変曲点に応じた時点を、急峻な変化の終了時点として特定する。また、制御部510は、補正後の領域において変曲点が現れなければ、曲線が補正後の領域から下方に出る時点を、急峻な変化の終了時点として特定する。
 なお、終了時点として特定される変曲点は、急峻な変化の開始時点の燃料流量を基準した範囲内に含まれていることを条件としなくてもよい。制御部510は、単位時間当たりの燃料流量の変化率を時系列の順番で特定し、変化率の符号が負から正に変化した点を、燃料流量の急峻な変化の終了時点と特定してもよい。
On the other hand, as shown in FIG. 11B, when the propeller rotation speed is not stable due to the acceleration of the ship 1 or the like, the control unit 510 causes the fuel flow rate at the start of a steep change in the curve indicating the time series data of the fuel flow rate. Is corrected according to a change in the propeller rotational speed. That is, when the change amount of the propeller rotational speed is Δr, the control unit 510 calculates Δf2 = Δr × k (k is a coefficient) as the change amount of the fuel flow rate according to Δr, and at the start point of the steep change. A region of ± α% based on the value obtained by adding Δf2 to the fuel flow rate is set as a region after correction. The coefficient k is, for example, a predetermined value. If an inflection point appears in the curve indicated by the fuel flow time-series data in the corrected region, control unit 510 identifies the time point corresponding to the inflection point as the end point of the steep change. In addition, if an inflection point does not appear in the corrected region, control unit 510 specifies the time point when the curve goes downward from the corrected region as the end point of the steep change.
Note that the inflection point specified as the end point does not have to be included in the range based on the fuel flow rate at the start point of the steep change. The control unit 510 identifies the rate of change of the fuel flow rate per unit time in chronological order, and identifies the point at which the sign of the rate of change has changed from negative to positive as the end point of the sudden change in fuel flow rate. Also good.
 続いて、制御部510は急峻な変化の開始点と終了点とを結ぶ直線と、燃料流量の時系列データを示す曲線とにより囲まれる領域Sの面積を算出することにより、当該急峻な変化に応じた燃料流量の増加分(単位は[l])を概算する。なお、1回の逆洗に伴い、図9のP1とP2のように、燃料流量に2つの連続する急峻な変化が現れる場合、制御部510は、2つの連続する急峻な変化の各々に関し燃料流量の増加分を概算し、概算した値を合算する。制御部510は、概算した燃料流量が、ステップS4において記録した、1回の逆洗に伴い増加する流量の±β%(例えば、β=20%)の範囲内であれば、この急峻な変化が逆洗を原因とした変化であると判定し、範囲外であれば、逆洗を原因とした変化でないと判定する。制御部510は、上述した判定を計測期間の全体に関し行うことで、逆洗を原因とした燃料流量の変化を検出する。以上がステップS14の処理の説明である。 Subsequently, the control unit 510 calculates the area of the region S surrounded by the straight line connecting the start point and the end point of the steep change and the curve indicating the time series data of the fuel flow rate, so that the steep change is achieved. The corresponding increase in fuel flow (unit: [l]) is estimated. When two consecutive steep changes appear in the fuel flow rate as shown in P1 and P2 of FIG. 9 with one backwash, the control unit 510 performs fuel consumption for each of the two consecutive steep changes. Approximate the increase in flow rate and add the estimated values. If the estimated fuel flow rate is within the range of ± β% (for example, β = 20%) of the flow rate that increases with one backwash recorded in step S4, the controller 510 makes this steep change. Is determined to be a change caused by backwashing, and if it is out of the range, it is determined that the change is not caused by backwashing. Control unit 510 detects the change in the fuel flow rate caused by backwashing by performing the above-described determination for the entire measurement period. The above is the description of the processing in step S14.
 制御部510は、続いて、ステップS14において逆洗を原因とした燃料流量の変化が検出されたか否かを判定する(ステップS15)。ステップS15で「NO」と判定した場合、制御部510は次に説明する燃料流量の補正を行わないで、ステップS17に進む。
 ステップS15で「YES」と判定した場合、制御部510は、逆洗による影響を除外するように、燃料流量の時系列データを補正する(ステップS16)。時系列データを補正した場合、制御部510は、テーブルTの燃料流量を示すデータを補正後のデータに書き替える。
Control unit 510 subsequently determines whether or not a change in fuel flow rate due to backwashing has been detected in step S14 (step S15). If it is determined as “NO” in step S15, control unit 510 proceeds to step S17 without correcting the fuel flow rate described below.
If it is determined “YES” in step S15, control unit 510 corrects the time-series data of the fuel flow rate so as to exclude the influence of backwashing (step S16). When the time series data is corrected, control unit 510 rewrites the data indicating the fuel flow rate in table T to the corrected data.
 図12A及び図12Bは、ステップS16の燃料流量の補正処理の一例を説明する図である。図12のグラフにおいて、横軸は時間を表し、縦軸は単位時間当たりの燃料流量を表す。
 図12A,Bに示すように、制御部510は、ステップS14において検出した逆洗を原因とする急峻な燃料流量の変化の各々に関し、変化の開始点と終了点とを直線で結ぶ線形補完により、燃料流量の時系列データを補正する。仮に、逆洗が行われなかった場合、これらの燃料流量の急峻な変化は現われなかったと推定されるため、この補正により、燃料流量の時系列データが示す値は、原動機200の正味の燃料消費量により近い値を示すものとなる。図13は、図7に示すグラフの燃料流量の時系列データがステップS16において補正される様子を示したグラフである。図13に示すように、ステップS16の補正処理により、逆洗に伴い増加した燃料の流量が除外され、原動機200の正味の燃料消費量により近い燃料流量を示す時系列データが得られる。
12A and 12B are diagrams illustrating an example of the fuel flow rate correction process in step S16. In the graph of FIG. 12, the horizontal axis represents time, and the vertical axis represents the fuel flow rate per unit time.
As shown in FIGS. 12A and 12B, the control unit 510 performs linear interpolation that connects the start point and end point of the change with a straight line for each of the steep changes in the fuel flow rate caused by the backwashing detected in step S14. The time series data of the fuel flow rate is corrected. If backwashing is not performed, it is presumed that these rapid changes in the fuel flow rate did not appear. Therefore, with this correction, the value indicated by the time-series data of the fuel flow rate is the net fuel consumption of the prime mover 200. A value closer to the quantity is shown. FIG. 13 is a graph showing how the fuel flow time-series data in the graph shown in FIG. 7 is corrected in step S16. As shown in FIG. 13, the correction process in step S <b> 16 excludes the flow rate of fuel that has increased due to backwashing, and obtains time-series data indicating the fuel flow rate that is closer to the net fuel consumption of the prime mover 200.
 次に、制御部510は、燃料消費量の計算を含む処理を実行する(ステップS17)。ここでは、制御部510は、補正後の燃料流量の時系列データに基づいて、燃料流量(単位は[l/min])を時間積分した値に基づいて、計測期間における燃料消費量(単位は[ton])を計算する。更に、制御部510は、計算した燃料消費量の情報や、補正後の燃料流量の時系列データを示すグラフ(図13参照)を、表示部530に表示させてもよい。また、制御部510は、計算した燃料消費量の情報や燃料流量の時系列データを、記憶部520に記録したり、通信部540を介して陸上のコンピュータ装置に送信したりしてもよい。 Next, the control unit 510 executes processing including calculation of fuel consumption (step S17). Here, based on the time-series data of the corrected fuel flow rate, the control unit 510 uses the fuel flow rate (unit: [l / min]) as a time-integrated value to calculate the fuel consumption amount (unit: [Ton]). Further, the control unit 510 may cause the display unit 530 to display information on the calculated fuel consumption amount and a graph (see FIG. 13) indicating time series data of the corrected fuel flow rate. Further, the control unit 510 may record the calculated fuel consumption information and the fuel flow time-series data in the storage unit 520 or transmit the information to the on-shore computer device via the communication unit 540.
 以上説明した実施形態によれば、ストレーナ420において逆洗が行われる場合において、原動機200に供給される燃料の正味の流量(燃料消費量)がコンピュータ装置500により算出され、船舶1の操船者等に提供される。 According to the embodiment described above, when backwashing is performed in the strainer 420, the net flow rate (fuel consumption) of the fuel supplied to the prime mover 200 is calculated by the computer device 500, and the operator of the ship 1 or the like. Provided to.
 上述した実施形態は本発明の一実施形態であって、様々に変形されてもよい。以下に、上述した実施形態の変形例を示す。なお、以下に示す変形例は適宜、組み合わされてもよい。
(変形例1)
 燃料流量の補正処理は、上述した線形補完を用いた方法に限られない。
 例えば、プロペラ回転数の変化に応じた曲線により補完が行われてもよい。図14はこの変形例において補完に用いられる曲線を例示した図である。図14に示すように、ここでは、期間t3、t2、t1の順でプロペラ回転数が高く、このプロペラ数が高い順で補正処理により減じられる燃料流量が小さい。換言すると、プロペラ数が低い順で補正処理により減じられる燃料流量が大きくなっている。
The above-described embodiment is an embodiment of the present invention and may be variously modified. Below, the modification of embodiment mentioned above is shown. Note that the following modifications may be combined as appropriate.
(Modification 1)
The fuel flow rate correction process is not limited to the method using the linear interpolation described above.
For example, complementation may be performed using a curve corresponding to a change in the propeller rotation speed. FIG. 14 is a diagram illustrating a curve used for complementation in this modification. As shown in FIG. 14, here, the propeller rotational speed is high in the order of the periods t3, t2, and t1, and the fuel flow rate reduced by the correction process is small in the order of the high propeller number. In other words, the fuel flow rate that is reduced by the correction process in the descending order of the number of propellers increases.
(変形例2)
 上述した実施形態では、コンピュータ装置500は、船舶1の停泊中に計測された燃料流量の時系列データを用いて、1回の逆洗に伴い増加する燃料の流量を計算していたが、船舶1が航行中であって、プロペラ回転数が安定している期間に計測された燃料流量の時系列データを用いて、1回の逆洗において用いられる燃料の流量を計算してもよい。
 また、1回の逆洗に伴い増加する燃料の流量が算出されなくてもよい。例えば、逆洗が概ね一定時間間隔で行われる場合、逆洗が行われたと推定される期間における燃料流量の時系列データが示す値を、逆洗に伴い増加する燃料の流量の時系列データが示す値だけ減じることで、流量計410により計測される燃料流量の時系列データの補正が行われてもよい。
(Modification 2)
In the embodiment described above, the computer device 500 calculates the fuel flow rate that increases with one backwash using the time series data of the fuel flow rate measured while the ship 1 is anchored. The flow rate of fuel used in one backwash may be calculated using time-series data of the fuel flow rate measured during a period in which 1 is sailing and the propeller rotational speed is stable.
Further, the flow rate of fuel that increases with one backwash need not be calculated. For example, when backwashing is performed at approximately regular time intervals, the value indicated by the time series data of the fuel flow rate during the period in which backwashing is estimated to be performed is the time series data of the fuel flow rate that increases with backwashing. The time series data of the fuel flow rate measured by the flow meter 410 may be corrected by reducing the indicated value.
(変形例3)
 コンピュータ装置500が、船舶1の推進力と相関するパラメータとして、プロペラ回転数以外のパラメータを用いる場合も、上述した実施形態で説明した処理によって、燃料流量の時系列データを補正することができる。船舶1の馬力、船速、及び原動機200の筒内圧、過給機回転数の各パラメータも、船舶1の推進力と正の相関のあるパラメータである。船舶1の馬力が大きいほど、船速が大きいほど、原動機200の筒内圧が大きいほど、又は過給機回転数が多いほど、船舶1の推進力は増大し、燃料消費量も増大する。制御部510は、プロペラ回転数、船舶1の馬力、船速、原動機200の筒内圧、及び過給機回転数のうちの一つ以上に関し、時系列データを取得して、燃料流量の補正を行えばよい。
 ただし、パラメータの時系列データに変化が現れるタイミングと、燃料流量に変化が現れるタイミングとに時間差が現われる場合もあり得るので、制御部510は、この時間差を考慮して、各処理を行ってもよい。
(Modification 3)
Even when the computer device 500 uses a parameter other than the propeller rotational speed as a parameter correlated with the propulsive force of the ship 1, the time series data of the fuel flow rate can be corrected by the processing described in the above-described embodiment. The parameters of the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotational speed are also parameters that are positively correlated with the propulsive force of the ship 1. The propulsive force of the ship 1 increases and the fuel consumption increases as the horsepower of the ship 1 increases, the ship speed increases, the cylinder pressure of the prime mover 200 increases, or the turbocharger rotational speed increases. The control unit 510 obtains time series data regarding one or more of the propeller rotation speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotation speed, and corrects the fuel flow rate. Just do it.
However, since there may be a time difference between the timing at which the parameter time-series data changes and the timing at which the fuel flow rate changes, the control unit 510 may perform each process in consideration of this time difference. Good.
 また、船舶1の推進力と相関するパラメータは、プロペラ回転数、船舶1の馬力、船速、原動機200の筒内圧、及び過給機回転数のうちの一つ以上から算出されたパラメータであってもよい。
 更に、船舶1の推進力と相関するパラメータは、前掲のパラメータ以外のパラメータであってもよい。船舶1の推進力と相関するパラメータは、例えば、内燃機関210の負荷(主機負荷)、即ち、内燃機関210の単位時間当たりの仕事量であってもよい。この場合、コンピュータ装置500は、掃気圧センサ240によって計測される掃気圧の時系列データを用いて、燃料流量の時系列データを補正する。
 なお、上述した実施形態及びこの変形例で説明した船舶1の推進力と相関するパラメータのうち、燃料流量の補正に使用されないパラメータについては、制御部510はこれを取得しなくてもよいし、また、これを取得するための計測が行われなくてよい。
The parameter correlated with the propulsive force of the ship 1 is a parameter calculated from one or more of the propeller rotational speed, the horsepower of the ship 1, the ship speed, the in-cylinder pressure of the prime mover 200, and the supercharger rotational speed. May be.
Further, the parameter correlated with the propulsive force of the ship 1 may be a parameter other than the parameters described above. The parameter correlated with the propulsive force of the ship 1 may be, for example, a load (main engine load) of the internal combustion engine 210, that is, a work amount per unit time of the internal combustion engine 210. In this case, the computer apparatus 500 corrects the time series data of the fuel flow rate using the time series data of the scavenging air pressure measured by the scavenging air pressure sensor 240.
Of the parameters correlated with the propulsive force of the ship 1 described in the above-described embodiment and this modification, the controller 510 does not have to acquire parameters that are not used for fuel flow rate correction. Moreover, the measurement for acquiring this does not need to be performed.
(変形例4)
 本発明において、ストレーナにおけるフィルタの洗浄は、逆洗以外の方法で行われてもよい。本発明において、例えば、燃料供給経路を流れる燃料の一部を高圧でジェット噴射することにより、フィルタが洗浄されてもよい。意図的に燃料の流れを発生させてフィルタに付着した異物を押し流すことで、当該フィルタを洗浄する洗浄機構が採用された場合に、上述した実施形態で説明した理由と同様の理由により、流量計で計測される燃料の流量が増えることがあるからである。
(Modification 4)
In the present invention, the filter in the strainer may be washed by a method other than back washing. In the present invention, for example, the filter may be cleaned by jetting a part of the fuel flowing through the fuel supply path at a high pressure. When a cleaning mechanism that cleans the filter by adopting a flow of fuel intentionally to remove the foreign matter adhering to the filter is employed, for the same reason as described above, the flow meter This is because the flow rate of the fuel measured by may increase.
(変形例5)
 本発明の船舶は、電動推進を行う船舶であってもよい(例えば客船)。この場合の船舶の原動機は、電動機を含む。この船舶では、ピストンの運動エネルギーが電気エネルギーに変換されて蓄電池に蓄えられる。そして、原動機は、この蓄電池から取り出した電気エネルギーを力学的エネルギーに変換して、推進装置が備える推進軸を回転させることにより、船舶の推進力を発生させる。
(Modification 5)
The ship of the present invention may be a ship that performs electric propulsion (for example, a passenger ship). The motor | power_engine of the ship in this case contains an electric motor. In this ship, the kinetic energy of the piston is converted into electric energy and stored in a storage battery. And a motor | power_engine converts the electrical energy taken out from this storage battery into mechanical energy, and produces the propulsive force of a ship by rotating the propulsion shaft with which a propulsion apparatus is provided.
(変形例6)
 本発明の流量計算装置は、船上のコンピュータではなく、陸上のコンピュータで実現されてもよい。本発明の流量計算装置は、これら以外にも様々なコンピュータ装置で実現しうる。
(Modification 6)
The flow rate calculation device of the present invention may be realized by a land computer, not a shipboard computer. The flow rate calculation apparatus of the present invention can be realized by various computer devices other than these.
(変形例7)
 コンピュータ装置500の制御部510(補正手段513)は、船舶1の燃料消費量と相関するパラメータの時系列データに基づいて、流量計410により計測された燃料流量の時系列データから特定される燃料の流量、例えば原動機200の燃料消費量を補正してもよい。制御部510は、この時系列データから特定される燃料の流量から、流量を減じる方向の補正、より具体的には、ストレーナ420におけるフィルタ424の洗浄(逆洗)に伴う燃料の流量の増加の影響を低減する補正を行う。一例として、制御部510は、燃料流量の時系列データの時間積分値から、1回の逆洗に伴い増加する燃料の流量に対して計測期間において検出された逆洗の回数を乗じた値を減じる補正を行うことによって、計測期間における原動機200の正味の燃料消費量を算出してもよい。
(Modification 7)
The control unit 510 (correction means 513) of the computer device 500 is a fuel identified from the time series data of the fuel flow rate measured by the flow meter 410 based on the time series data of the parameters correlated with the fuel consumption of the ship 1. May be corrected, for example, the fuel consumption of the prime mover 200. The control unit 510 corrects the direction in which the flow rate is subtracted from the flow rate of the fuel specified from the time series data, more specifically, increases in the flow rate of the fuel accompanying the cleaning (backwashing) of the filter 424 in the strainer 420. Make corrections to reduce the effect. As an example, the control unit 510 calculates a value obtained by multiplying the fuel flow rate increased with one backwash by the number of backwashes detected in the measurement period from the time integral value of the fuel flow time series data. The net fuel consumption of the prime mover 200 during the measurement period may be calculated by performing a correction to be reduced.
(変形例8)
 コンピュータ装置500の制御部510が、プロペラ回転数(又は、その他の船舶1の推進力と相関するパラメータ)の時系列データにより推定される、原動機200の正味の燃料消費量の時系列データを、燃料流量の時系列データから減じることにより、主として逆洗に伴う燃料の流量の増加のみを示す時系列データを生成し、更に、生成した当該時系列データに基づき、逆洗を原因とした燃料流量の変化を検出する構成が採用されてもよい。例えば、図7に例示のケースでは、上述したように、プロペラ回転数の増減と連動して燃料流量も増減する。このため、制御部510は、計測期間内における個々の時点に関し、プロペラ回転数の時系列データが示す値に係数kを乗じた値を燃料流量から減じることで、主として逆洗に伴う燃料の流量の増加のみを示す時系列データを生成し、生成した時系列データを用いて、逆洗を原因とした燃料流量の変化を検出すればよい。
(Modification 8)
The control unit 510 of the computer device 500 calculates the time series data of the net fuel consumption of the prime mover 200 estimated from the time series data of the propeller rotation speed (or other parameters correlated with the propulsive force of the ship 1). By subtracting from the fuel flow time-series data, time-series data mainly showing only the increase in fuel flow accompanying backwashing is generated, and based on the generated time-series data, fuel flow caused by backwashing is generated. A configuration for detecting a change in the above may be employed. For example, in the case illustrated in FIG. 7, as described above, the fuel flow rate also increases or decreases in conjunction with the increase or decrease of the propeller rotation speed. For this reason, the control unit 510 subtracts the value obtained by multiplying the value indicated by the time-series data of the propeller rotational speed by the coefficient k from the fuel flow rate for each time point in the measurement period, thereby mainly causing the flow rate of fuel accompanying backwashing. It is only necessary to generate time series data indicating only an increase in the amount of fuel and to detect a change in fuel flow rate due to backwashing using the generated time series data.
(変形例9)
 上述した実施形態のコンピュータ装置500の制御部510が実現する各機能は、1又は複数のハードウェア回路により実現されてもよいし、1又は複数のプログラムを実行することにより実現されてもよいし、これらの組み合わせにより実現されてもよい。制御部510の機能がプログラムを用いて実現される場合、このプログラムは、磁気記録媒体(磁気テープ、磁気ディスク(HDD(Hard Disk Drive)、FD(Flexible Disk))等)、光記録媒体(光ディスク等)、光磁気記録媒体、半導体メモリ等のコンピュータ読み取り可能な記録媒体に記憶した状態で提供されてもよいし、ネットワークを介して配信されてもよい。また、本発明は、流量計算方法として把握することも可能である。
 本願の発明は、上述した実施形態に限定されることなく、請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。
(Modification 9)
Each function realized by the control unit 510 of the computer apparatus 500 according to the above-described embodiment may be realized by one or a plurality of hardware circuits, or may be realized by executing one or a plurality of programs. , Or a combination thereof. When the function of the control unit 510 is realized using a program, the program includes a magnetic recording medium (magnetic tape, magnetic disk (HDD (Hard Disk Drive), FD (Flexible Disk)), etc.), optical recording medium (optical disk). Etc.), may be provided in a state stored in a computer-readable recording medium such as a magneto-optical recording medium or a semiconductor memory, or distributed via a network. Moreover, this invention can also be grasped | ascertained as a flow volume calculation method.
The invention of the present application is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the invention. Absent.
1…船舶、100…船体、200…原動機、210…内燃機関、211…シリンダ、212…ピストン、213…燃焼室、220…過給機、2201…ブロア、2202…タービン、2203…回転軸、221…空気冷却機、222…掃気マニホールド、223…排気マニホールド、230…筒内圧センサ、240…掃気圧センサ、250…過給機回転数センサ、300…燃料タンク、400…燃料供給経路、410…流量計、420…ストレーナ、423…フィルタ、500…コンピュータ装置、510…制御部、511…流量取得手段、512…パラメータ取得手段、513…補正手段、514…処理手段、520…記憶部、530…表示部、540…インタフェース、550…通信部、560…操作部、600…推進装置、610…推進軸、620…プロペラ、630…回転計、640…軸馬力計、700…船速計。 DESCRIPTION OF SYMBOLS 1 ... Ship, 100 ... Hull, 200 ... Prime mover, 210 ... Internal combustion engine, 211 ... Cylinder, 212 ... Piston, 213 ... Combustion chamber, 220 ... Supercharger, 2201 ... Blower, 2202 ... Turbine, 2203 ... Rotating shaft, 221 DESCRIPTION OF SYMBOLS ... Air cooler, 222 ... Scavenging manifold, 223 ... Exhaust manifold, 230 ... In-cylinder pressure sensor, 240 ... Scavenging pressure sensor, 250 ... Supercharger rotation speed sensor, 300 ... Fuel tank, 400 ... Fuel supply path, 410 ... Flow rate 420, strainer, 423, filter, 500, computer device, 510, control unit, 511, flow rate acquisition unit, 512, parameter acquisition unit, 513, correction unit, 514, processing unit, 520, storage unit, 530, display , 540 ... interface, 550 ... communication part, 560 ... operation part, 600 ... propulsion device, 610 ... Shaft, 620 ... propeller, 630 ... tachometer, 640 ... horsepower gauge, 700 ... boat speed meter.

Claims (8)

  1.  船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得する流量取得手段と、
     前記船舶の燃料消費量と相関するパラメータの時系列データを取得するパラメータ取得手段と、
     前記パラメータの時系列データに基づいて、前記流量の時系列データ又は当該時系列データから特定される燃料の流量を補正する補正手段と
     を備える流量計算装置。
    A flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and more than a strainer that cleans a filter using the fuel flowing through the fuel supply path. A flow rate acquisition means for acquiring time series data of the flow rate of the fuel measured on the upstream side;
    Parameter acquisition means for acquiring time series data of parameters correlated with the fuel consumption of the ship;
    A flow rate calculation apparatus comprising: correction means for correcting the flow rate of fuel specified from the time series data of the flow rate or the time series data based on the time series data of the parameter.
  2.  前記パラメータは、
     前記船舶の推進力と相関するパラメータである
     ことを特徴とする請求項1に記載の流量計算装置。
    The parameter is
    The flow rate calculation device according to claim 1, wherein the flow rate calculation parameter correlates with a propulsive force of the ship.
  3.  前記パラメータは、
     前記船舶を推進させるためのプロペラの回転数、前記船舶の馬力、前記船舶の船速、前記原動機に含まれる内燃機関の筒内圧、前記内燃機関に給気する過給機の回転数、及びこれらのうちの少なくとも一つから算出されたパラメータのうちの少なくとも一つを含む
     ことを特徴とする請求項1又は請求項2に記載の流量計算装置。
    The parameter is
    The number of revolutions of the propeller for propelling the ship, the horsepower of the ship, the speed of the ship, the in-cylinder pressure of the internal combustion engine included in the prime mover, the number of revolutions of the supercharger supplying air to the internal combustion engine, and these The flow rate calculation device according to claim 1, comprising at least one of parameters calculated from at least one of the parameters.
  4.  前記補正手段は、
     前記船舶の停泊中に計測された燃料の流量に基づいて、前記洗浄に伴い増加した前記計測された燃料の流量を特定し、特定した当該流量に基づいて前記補正を行う
     ことを特徴とする請求項1から請求項3のいずれか1項に記載の流量計算装置。
    The correction means includes
    The flow rate of the measured fuel increased with the cleaning is specified based on the flow rate of fuel measured while the ship is anchored, and the correction is performed based on the specified flow rate. The flow rate calculation apparatus according to any one of claims 1 to 3.
  5.  前記補正手段は、
     前記パラメータに基づいて、前記洗浄に伴い増加した前記計測された燃料の流量を特定し、特定した当該流量に基づいて前記補正を行う
     ことを特徴とする請求項1から請求項4のいずれか1項に記載の流量計算装置。
    The correction means includes
    The flow rate of the measured fuel increased with the cleaning is specified based on the parameter, and the correction is performed based on the specified flow rate. The flow rate calculation device according to item.
  6.  船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、
     前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、
     前記パラメータの時系列データに基づいて、前記流量の時系列データ又は当該時系列データから特定される燃料の流量を補正するステップと
     を備える流量計算方法。
    A flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and more than a strainer that cleans a filter using the fuel flowing through the fuel supply path. Obtaining time-series data of the fuel flow rate measured upstream;
    Obtaining time-series data of parameters correlated with the fuel consumption of the ship;
    Correcting the flow rate of the fuel specified from the time series data of the flow rate or the time series data based on the time series data of the parameter.
  7.  コンピュータに、
     船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、
     前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、
     前記パラメータの時系列データに基づいて、前記流量の時系列データ又は当該時系列データから特定される燃料の流量を補正するステップと
     を実行させるためのプログラム。
    On the computer,
    A flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and more than a strainer that cleans a filter using the fuel flowing through the fuel supply path. Obtaining time-series data of the fuel flow rate measured upstream;
    Obtaining time-series data of parameters correlated with the fuel consumption of the ship;
    Correcting the flow rate of the fuel specified from the time-series data of the flow rate or the time-series data based on the time-series data of the parameter.
  8.  コンピュータに、
     船舶に搭載された燃料タンクと、前記船舶の原動機との間に設けられた燃料供給経路を流れる燃料の流量であって、前記燃料供給経路を流れる燃料を用いてフィルタの洗浄を行うストレーナよりも上流側で計測された燃料の流量の時系列データを取得するステップと、
     前記船舶の燃料消費量と相関するパラメータの時系列データを取得するステップと、
     前記パラメータの時系列データに基づいて、前記流量の時系列データ又は当該時系列データから特定される燃料の流量を補正するステップと
     を実行させるためのプログラムを持続的に記録したコンピュータ読み取り可能な記録媒体。
    On the computer,
    A flow rate of fuel flowing through a fuel supply path provided between a fuel tank mounted on a ship and a prime mover of the ship, and more than a strainer that cleans a filter using the fuel flowing through the fuel supply path. Obtaining time-series data of the fuel flow rate measured upstream;
    Obtaining time-series data of parameters correlated with the fuel consumption of the ship;
    Based on the time-series data of the parameter, the time-series data of the flow rate or the step of correcting the flow rate of the fuel specified from the time-series data is recorded continuously. Medium.
PCT/JP2015/080480 2015-10-29 2015-10-29 Flow rate calculation device, flow rate calculation method, program, and recording medium WO2017072896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016564101A JP6167249B1 (en) 2015-10-29 2015-10-29 Flow rate calculation device, flow rate calculation method, program, and recording medium
PCT/JP2015/080480 WO2017072896A1 (en) 2015-10-29 2015-10-29 Flow rate calculation device, flow rate calculation method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080480 WO2017072896A1 (en) 2015-10-29 2015-10-29 Flow rate calculation device, flow rate calculation method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2017072896A1 true WO2017072896A1 (en) 2017-05-04

Family

ID=58629982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080480 WO2017072896A1 (en) 2015-10-29 2015-10-29 Flow rate calculation device, flow rate calculation method, program, and recording medium

Country Status (2)

Country Link
JP (1) JP6167249B1 (en)
WO (1) WO2017072896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229904A1 (en) * 2018-05-30 2019-12-05 日本郵船株式会社 Data processing device, program, and recording medium
JP6910749B1 (en) * 2021-01-05 2021-07-28 浩 北原 Bunkering support system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112670U (en) * 1984-01-07 1985-07-30 日本郵船株式会社 Diesel engine fuel oil supply system
JPH02191090A (en) * 1989-01-20 1990-07-26 Tokico Ltd Operation controller for ship
JPH11200973A (en) * 1998-01-08 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd Fuel oil cleaning system of diesel engine
JP2015085924A (en) * 2013-10-31 2015-05-07 株式会社小野寺鐵工所 Fuel consumption monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112670U (en) * 1984-01-07 1985-07-30 日本郵船株式会社 Diesel engine fuel oil supply system
JPH02191090A (en) * 1989-01-20 1990-07-26 Tokico Ltd Operation controller for ship
JPH11200973A (en) * 1998-01-08 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd Fuel oil cleaning system of diesel engine
JP2015085924A (en) * 2013-10-31 2015-05-07 株式会社小野寺鐵工所 Fuel consumption monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019229904A1 (en) * 2018-05-30 2019-12-05 日本郵船株式会社 Data processing device, program, and recording medium
JP6617221B1 (en) * 2018-05-30 2019-12-11 日本郵船株式会社 Data processing apparatus, program, and recording medium
JP6910749B1 (en) * 2021-01-05 2021-07-28 浩 北原 Bunkering support system

Also Published As

Publication number Publication date
JP6167249B1 (en) 2017-07-19
JPWO2017072896A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
CN106368816B (en) A kind of online method for detecting abnormality of marine low speed diesel engine based on baseline offset
KR102390265B1 (en) Estimation Method for Aging Effects of Ship, Estimation System for Aging Effects of Ship, Calculation System for Optimum Ocean Route, and Operation Support System of Ship
KR102418938B1 (en) Marine Vessel Performance Diagnosis
JP6200463B2 (en) EGR unit and marine engine system
JP6167249B1 (en) Flow rate calculation device, flow rate calculation method, program, and recording medium
KR20160066601A (en) Method for diagnosing deterioration of intercooler
Mizythras et al. Numerical study of propulsion system performance during ship acceleration
JP6970545B2 (en) Ship performance analysis system and ship performance analysis method
CN105737922A (en) Method and device for early warning on fuel consumption rate of low-speed diesel engine of ship
JP6271410B2 (en) Ship equipment maintenance judgment device
Fonteinos et al. Ship hull fouling estimation using shipboard measurements, models for resistance components, and shaft torque calculation using engine model
US8657638B1 (en) Systems and methods for determining oil level in outboard motors
JP6047923B2 (en) Variable pitch propeller control device, ship equipped with variable pitch propeller control device, and variable pitch propeller control method
JP6282753B2 (en) Estimated value calculating device, estimated value calculating method, program, and recording medium
CN113853480A (en) Ship host monitoring method, host monitoring system, host state prediction system and navigation condition prediction system
JP6846896B2 (en) Analysis of ship propulsion performance
KR102421464B1 (en) System and method for calculating eeoi and computer-readable recording medium thereof
WO2016151810A1 (en) Output device, output method, program, and recording medium
Shin et al. Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA (Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients
WO2024057848A1 (en) Method for monitoring ship, and ship-monitoring device that carries out method for monitoring ship
CN117566082A (en) Ship flexible connection pipe safety state monitoring method, device and system
KR102612291B1 (en) Device for Estimating the Remaining Operating Distance of a Small Electric Propulsion Vessel and Method Thereof
JP2005120929A (en) Control device for diesel engine
JP6106806B2 (en) Determination apparatus, determination method, program, and recording medium
KR20180022444A (en) A system and method for recommending hull cleaning

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564101

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907260

Country of ref document: EP

Kind code of ref document: A1