WO2017071581A1 - 电子签名生成方法及系统 - Google Patents

电子签名生成方法及系统 Download PDF

Info

Publication number
WO2017071581A1
WO2017071581A1 PCT/CN2016/103376 CN2016103376W WO2017071581A1 WO 2017071581 A1 WO2017071581 A1 WO 2017071581A1 CN 2016103376 W CN2016103376 W CN 2016103376W WO 2017071581 A1 WO2017071581 A1 WO 2017071581A1
Authority
WO
WIPO (PCT)
Prior art keywords
signature
digital
electronic contract
image
digital signature
Prior art date
Application number
PCT/CN2016/103376
Other languages
English (en)
French (fr)
Inventor
冯亮
尹亚伟
费志军
Original Assignee
中国银联股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国银联股份有限公司 filed Critical 中国银联股份有限公司
Publication of WO2017071581A1 publication Critical patent/WO2017071581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • G06F21/645Protecting data integrity, e.g. using checksums, certificates or signatures using a third party
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3297Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving time stamps, e.g. generation of time stamps

Definitions

  • the present invention relates to techniques related to electronic contracts and, more particularly, to related techniques for electronic signatures in electronic contracts.
  • Cipheral patent application CN201310076065.X discloses a method and system for online contracting of electronic contracts.
  • the solution of the application includes receiving basic information of the electronic contract; Party A confirms the basic information of the electronic contract, and then generates an electronic contract; after Party B confirms the basic information of the contract, it sends a contract to the communication terminal designated by both parties.
  • Verification code respectively receive the contract verification code signed by both parties, complete the electronic contract and seal of both parties, and then send the electronic contract sealed by both parties to the receiving terminal designated by both parties.
  • the present invention provides an electronic contract signature generation method, which is implemented in a system comprising an electronic contract system, a certificate authority, and a trusted time stamp agent, the method comprising:
  • the trusted timestamp agent decrypts the second digital signature with a second one of the first pair of keys, and compares the obtained random number with the received random number to confirm the The legality of the identity of the electronic contract system, in the confirmation office Where the identity of the electronic contract system is legal, the encrypted total digital digest is decrypted with the second key of the second pair of keys;
  • the trusted timestamp agent obtains a third digital signature, a fourth digital signature based on the current timestamp, the total digital digest obtained after decryption, and the random number, and the fourth digital signature, encrypted Sending a third digital signature and a time stamp to the electronic contract system;
  • the electronic contract system confirms the legitimacy of the trusted timestamp agent based on the fourth digital signature, and in the case of determining that the trusted timestamp agent is legal, will be associated with the first digital signature, third Digital signature and time stamp related data are embedded in the intermediate signature image to obtain a final signature image.
  • step B) comprises:
  • the electronic contract system sets the binary value of the lower bits of each pixel in the signature image to 0 or 1, thereby generating an intermediate signature image.
  • the electronic contract system sets the binary value of the lowest bit of each pixel in the signature image to 0, thereby generating an intermediate signature image.
  • step C) comprises:
  • step C3) Generating a total digital summary based on the contract digital summary and the signed digital summary.
  • step C3) includes connecting the contract digital digest with the signed digital digest with a separator to generate a total digital digest.
  • step G comprises:
  • the trusted timestamp agent adds a current timestamp to the total digital digest, and encrypts a total digital digest with a current timestamp using a second symmetric key to obtain a third digital signature;
  • the trusted timestamp agent encrypts the random number using a first one of the second pair of keys to generate a fourth digital signature
  • the trusted timestamp agent encrypts the third digital signature and a timestamp using a second one of the first pair of keys
  • the electronic contract signature generation method comprises:
  • the electronic contract system decrypts the fourth digital signature using a second one of the second pair of keys to determine the legitimacy of the trusted timestamp proxy identity
  • the electronic contract signature generating method further includes inserting a final signature image into a corresponding position of the original electronic contract to obtain a signed electronic contract.
  • an electronic contract signature generation system comprising:
  • An image acquisition unit configured to acquire a signature image handwritten by a user
  • a first image generating unit configured to process the acquired signature image to obtain an intermediate signature image
  • a summary generation unit for generating a total digital summary based on the electronic contract and the signature image
  • a digital signature generating unit that encrypts the total digital digest using a first symmetric key to generate a first digital signature, encrypts a random number by a first key in the first pair of keys to generate a second digital signature, and passes the second Encrypting the total digital digest for the first key in the key to obtain an encrypted total digital digest, wherein the first key in the first key is from a certificate authority to identify the electronic contract a key of the system identity; the first of the second pair of keys is a key from a certificate authority to identify the trusted timestamp agent identity;
  • a sending unit configured to send the second digital signature, the encrypted total digital digest, and the random number to the trusted timestamp agent
  • a receiving unit configured to receive data from a trusted timestamp agent, wherein the trusted timestamp agent decrypts the second digital signature with a second one of the first pair of keys, and obtains the decryption Comparing the random number with the received random number to confirm the identity legality of the electronic contract system, and in the case of confirming that the identity of the electronic contract system is legal, the second of the second pair of keys Decrypting the encrypted total digital digest, and the trusted timestamp agent obtains a third digital signature, a fourth digital signature based on the current timestamp, the total digital digest obtained after decryption, and the random number, and Transmitting the fourth digital signature, the encrypted third digital signature, and the timestamp as data from the trusted timestamp agent;
  • a second image generating unit configured to confirm validity of the trusted timestamp proxy based on the fourth digital signature, and in a case where it is determined that the trusted timestamp proxy is legal, with a first digital signature, A third digital signature and time stamp related data is embedded in the intermediate signature image to obtain a final signature image.
  • the electronic contract signature generation system wherein the digest generating unit is configured to extract an original electronic contract a digital digest to obtain a digital summary of the contract; extracting a digital digest of the intermediate signature image to obtain a signed digital digest; and generating a total digital digest based on the contractual digital digest and the signed digital digest.
  • the electronic contract signature generation system wherein the second image generation unit is configured to decrypt the fourth digital signature using a second one of the second pair of keys to determine the trusted timestamp proxy identity Legitimacy; decrypting the third digital signature and the timestamp using the first one of the first pair of keys if the trusted timestamp proxy identity is valid; the second image generating unit will first sign the digital signature And the respective byte length information of the third digital signature and the time stamp obtained after decryption are written into the header reserved area of the image file of the intermediate signature image, and the binary bits of the pixel value of each pixel in the intermediate signature image are sequentially calculated.
  • the number of '1' is determined to be an odd number '1' or an even number '1', and a binary value a is generated for each pixel accordingly, and the second image generating unit obtains the first digital signature and decrypts the obtained
  • the third digital signature and the time stamp are embedded in the intermediate signature image, and in the embedding process, the first digital signature, the third digital signature obtained after decryption, and the time stamp binary digit string are pressed
  • the XOR operation is performed one by one with the binary value a, and the operation result is saved in the binary lowest bit of each pixel, thereby obtaining the final signature image.
  • the electronic signature generation system further includes an inserting unit for inserting the final signature image into a corresponding location of the original electronic contract to obtain a signed electronic contract.
  • embedding the first digital signature, the third digital signature obtained after decryption, and the time stamp into the intermediate signature image are all digitally watermarked into the intermediate signature image.
  • the electronic signature generation method provided by the present invention or the electronic signature generation system according to the present invention is used to enhance the security of the electronic contract.
  • FIG. 1 is a flow chart of an electronic contract signature generation method in accordance with an example of the present invention.
  • FIG. 2 is a block diagram showing the structure of an electronic contract signature generation system according to an example of the present invention.
  • FIG. 3 is a flow chart of an electronic contract signature generation method in accordance with a specific example of the present invention.
  • FIG. 1 is a flow chart of an electronic contract signature generation method in accordance with an example of the present invention.
  • the method is implemented in a system comprising an electronic contract system, a certificate authority, and a trusted time stamp agent, in which the electronic contract system is in communication with a certificate authority and a trusted timestamp agent;
  • the time-of-day center gets the timestamp.
  • the signature image handwritten by the user is obtained by the electronic contract system.
  • the electronic contract system for example, can scan the device to scan the signature handwritten by the user to obtain a signed image.
  • the electronic contract system can also take a photo of the signature handwritten by the user through the camera to obtain a signature image.
  • the electronic contract system can obtain signature images handwritten by the user in a variety of ways.
  • the acquired signature image is processed by an electronic contract system to obtain an intermediate signature image.
  • the electronic contract system sets the binary value of the lower bits of each pixel in the signature image to 0 or 1, thereby generating an intermediate signature image. More specifically, the lowest bit binary value can be set to 0 to generate an intermediate signature image.
  • a total digital summary is generated by the electronic contract system based on the electronic contract and the signed image.
  • the electronic contract system extracts a digital summary of the original electronic contract to obtain a contract digital summary; the electronic contract system extracts the digital abstract of the first intermediate signature image to obtain a signed digital abstract; based on the contract digital summary and the signed digital abstract Total number summary.
  • the contract digital summary and the signed digital summary are joined by a separator to generate a total digital summary.
  • the total digital digest is encrypted by the electronic contract system using a first symmetric key to generate a first digital signature, and the random number is encrypted by the first key in the first pair of keys to generate a second digital signature, Encrypting the total digital digest with a first one of the second pair of keys to obtain an encrypted total digital digest, wherein the first one of the first keys is from a certificate authority to identify the The key of the electronic contract system identity; the first of the second pair of keys is a key from a certificate authority that identifies the trusted timestamp agent identity.
  • a second digital signature, an encrypted total digital digest, and a random number are sent by the electronic contracting system to the trusted timestamp agent.
  • the trusted timestamp agent decrypts the second digital signature with the second one of the first pair of keys, and compares the obtained random number with the received random number to confirm the electronic contract system.
  • Identity legality in the case of confirming that the identity of the electronic contract system is legal, decrypting the encrypted total digital digest with the second key of the second pair of keys.
  • the trusted timestamp agent obtains a third digital signature, a fourth digital signature based on the current timestamp, the total digital digest obtained after decryption, and the random number, and the fourth digital signature, the encrypted third digital signature And the timestamp is sent to the electronic contract system.
  • the trusted timestamp agent adds the current timestamp to the total digital digest and encrypts the total digital digest with the current timestamp added using the second symmetric key to obtain a third digital signature from the timing center
  • the trusted timestamp agent encrypts the random number using the first one of the second pair of keys to generate a fourth digital signature; the trusted timestamp agent encrypts the third number using the second one of the first pair of keys
  • a signature and a timestamp; the fourth digital signature, the encrypted third digital signature, and a timestamp are sent to the electronic contracting system.
  • the electronic contract system confirms the legitimacy of the trusted timestamp agent based on the fourth digital signature, and In the case where it is determined that the trusted time stamp proxy is legal, data relating to the first digital signature, the third digital signature and the time stamp is embedded into the intermediate signature image, for example, in a digital watermark manner, thereby obtaining an intermediate signature image.
  • the electronic contract system decrypts the fourth digital signature using a second one of the second pair of keys to determine the legitimacy of the trusted timestamp proxy identity; the trusted timestamp proxy identity confirmation In the case of legality, the third digital signature and the timestamp are decrypted using the first key in the first pair of keys; the electronic contracting system signs the first digital signature, the third digital signature obtained after decryption, and the respective words of the timestamp
  • the section length information is written in the header reserved area of the image file of the second intermediate signature image; then, the number of '1's in the binary digit of the pixel value of each pixel in the second intermediate signature image is sequentially calculated to determine yes An odd number of '1's or an even number of '1's, and a binary value a is generated for each pixel accordingly.
  • the binary a value of pixel x is equal to a(x), where x characterizes the parity of the number of '1's. For example, if the number of '1' in a binary bit of a certain pixel is an even number, a is 0, and if the number of '1' in the binary bit of a certain pixel is an odd number, a is 1.
  • the first digital signature, the third digital signature, and the time stamp are represented in binary
  • the first digital signature The binary digit string of the three-digit signature and the time stamp is XORed one by one with the binary a(x) in the pixel x in the intermediate signature image, and the operation result is saved in the binary lowest bit of the pixel x (for example, The xth binary bit of the first digital signature, the third digital signature, and the timestamp is XORed with the xth pixel a(x) in the intermediate signature image, thereby obtaining a final signature image.
  • the electronic contract system sets the length of the binary bytes in the first digital signature, the third digital signature, and the timestamp to be less than the length of the pixels of the intermediate signature image, to avoid the absence of sufficient space to store the first digital signature, The problem of three-digit signatures and time-stamped binary strings.
  • the final signature image is inserted at the corresponding location of the original electronic contract, thereby obtaining the signed electronic contract.
  • the first pair of keys includes a private key and a public key, and in the case of private key encryption, the public key is decrypted accordingly.
  • the second pair of keys includes a private key and a public key, and in the case of private key encryption, the public key is decrypted accordingly.
  • the first key in the second pair of keys is a private key
  • the second key is a public key, and vice versa.
  • the electronic contract signature generation system is communicatively coupled to a certificate authority and a trusted timestamp agent.
  • the electronic contract signature generation system includes an image acquisition unit 50, a first image generation unit 52, a digest generation unit 54, a digital signature generation unit 56, a transmission unit 58, a reception unit 60, and a second image generation unit 62.
  • the electronic contract signature generation system is set up in an electronic contract system, which is sometimes referred to hereinafter as an electronic contract system.
  • the identity of the electronic contract signature generation system may be the same as the identity of the electronic contract system in which it is set up.
  • the image acquisition unit 50 acquires a signature image handwritten by the user.
  • the image acquisition unit 50 may be, for example, a scanning device that obtains a signature image by scanning a signature handwritten by the user.
  • the image acquisition unit 50 may also be a camera that obtains a signature image by photographing a signature handwritten by the user.
  • the image acquisition unit 50 is any component capable of obtaining a signature image of a user's handwritten signature.
  • the first image generation unit 52 processes the acquired signature image to obtain an intermediate signature image. For example, the first image generation unit 52 sets the binary value of the lower bits of each pixel in the signature image to 0 or 1, thereby generating an intermediate signature image. More specifically, the lowest bit binary value can be set to 0 to generate an intermediate signature image.
  • the digest generating unit 54 generates a total digital digest based on the electronic contract and the signature image. For example, the digest generating unit 54 extracts the digital digest of the original electronic contract to obtain a contract digital digest; the digest generating unit 54 extracts the digital digest of the first intermediate signature image to obtain the signed digital digest; the digest generating unit 54 is based on the contract number Abstract and signed digital summaries generate total digital summaries. In some embodiments, the contract digital summary and the signed digital summary are joined by a separator to generate a total digital summary.
  • the digital signature generation unit 56 encrypts the total digital digest using the first symmetric key to generate a first digital signature, encrypts the random number by the first key in the first pair of keys to generate a second digital signature, and passes the second pair of keys
  • the first key in the encryption encrypts the total digital digest to obtain an encrypted total digital digest, wherein the first key in the first key is from a certificate authority to identify the identity of the electronic contract system a first key of the second pair of keys is a key from a certificate authority to identify the trusted timestamp agent identity.
  • Transmitting unit 58 sends a second digital signature, an encrypted total digital digest, and a random number to the trusted timestamp agent.
  • Receiving unit 60 receives data from a trusted timestamp agent. Specifically, the trusted timestamp agent decrypts the second digital signature with the second key of the first pair of keys, and compares the obtained random number with the received random number to confirm the electronic contract system. Identity legality, in the case of confirming that the identity of the electronic contract system is legal, decrypting the encrypted total digital digest with the second key of the second pair of keys. Subsequently, the trusted timestamp agent obtains a third digital signature, a fourth digital signature based on the current timestamp, the total digital digest obtained after decryption, and the random number, and the fourth digital signature, the encrypted third digital signature, and the time. The stamp is sent to the electronic contract system.
  • the trusted timestamp agent adds the current timestamp to the total digital digest and encrypts the total digital digest with the current timestamp added using the second symmetric key to obtain a third digital signature from the timing center
  • the trusted timestamp agent encrypts the random number using the first one of the second pair of keys to generate a fourth digital signature;
  • the trusted timestamp agent encrypts the third number using the second one of the first pair of keys And a time stamp;
  • the fourth digital signature, the encrypted third digital signature, and the timestamp are transmitted to the electronic contract system as data from the trusted timestamp agent, and are received by the receiving unit 60.
  • the second image generation unit 62 confirms the legitimacy of the trusted timestamp proxy based on the fourth digital signature, and in the case of determining that the trusted timestamp proxy is legitimate, will be related to the first digital signature, the third digital signature, and the timestamp. Data is embedded in the intermediate signature image to obtain an intermediate signature image.
  • the second image generation unit 62 decrypts the fourth digital signature using a second one of the second pair of keys to determine the legitimacy of the trusted timestamp proxy identity; If the proxy identity is valid, the third digital signature and the timestamp are decrypted using the first one of the first pair of keys; the second image generating unit 62 also signs the first digital signature, the third digital signature obtained after decryption And the respective byte length information of the time stamp is written into the header reserved area of the image file of the second intermediate signature image; then, the '1' in the binary bit of the pixel value of each pixel in the second intermediate signature image is sequentially calculated.
  • the number is determined to be an odd number '1' or an even number '1', and a binary value a is generated for each pixel accordingly.
  • the binary a value of pixel x is equal to a(x), where x characterizes the parity of the number of '1's. For example, if the number of '1' in a binary bit of a certain pixel is an even number, a is 0, and if the number of '1' in the binary bit of a certain pixel is an odd number, a is 1.
  • the first digital signature, the third digital signature, and the timestamp are represented in binary, and The binary digit string of the first digital signature, the third digital signature, and the time stamp are XORed one by one with the binary a(x) in the pixel x in the intermediate signature image, and the operation result is stored in the binary of the pixel x.
  • the lowest bit, (eg, the xth binary bit of the first digital signature, the third digital signature, and the timestamp is XORed with the xth pixel a(x) in the intermediate signature image), thereby obtaining the final signature image.
  • the electronic contract system sets the length of the binary bytes in the first digital signature, the third digital signature, and the timestamp to be less than the length of the pixels of the intermediate signature image, to avoid the absence of sufficient space to store the first digital signature, The problem of three-digit signatures and time-stamped binary strings.
  • the electronic contract signature generation system further includes an insertion unit (not shown) that inserts the final signature image at a corresponding location of the original electronic contract to obtain an electronic contract with an electronic signature.
  • the electronic contract is a PDF/Word/image file
  • the insert unit can insert the final signature image into the signature specified by the electronic contract by operating the PDF/WORD/image format file application.
  • the electronic contract is a file in another format, the file is first converted into an image, and then the final signed image is inserted into the signature specified by the electronic contract.
  • the application environment includes implementation in an electronic contract system 30, a Certificate Authority Center (CA), a trusted timestamp agent 34, and a timing center 36, wherein the electronic contract system communicates with the CA system, the trusted timestamp agent 34.
  • CA Certificate Authority Center
  • the connection is made while the trusted timestamp agent 34 is in communication with the timing center 36, and the electronic contract signature generation system described in accordance with the present invention is implemented in the electronic contract system 30.
  • the electronic contract system 30 holds the second public key publ (agent) verifying the trusted timestamp agent 34, the first symmetric key Sym (con) of the encrypted digest, and the electronic contract signed from the CA 32
  • the first private key and the first public key constitute a first pair of keys
  • the second private key and the second public key constitute a second pair of keys.
  • the electronic contract signature generation system 30 acquires an image of the user's handwritten signature, that is, the handwritten signature image p_sign, through the image acquisition unit 50.
  • the first image generating unit 52 of the electronic contract system 30 sets the lowest binary bit of each pixel in the handwritten signature image p_sign to 0, thereby generating an intermediate signature image p_sign'.
  • the lowest binary bit of each pixel in the handwritten signature image p_sign may also be set to 1, or the bit of the next lowest binary bit of each pixel in the handwritten signature image p_sign may be set to zero.
  • setting the lowest binary bit of each pixel in the handwritten signature image p_sign is intended to obtain an image slightly different from the original handwritten signature image p_sign, so that the obtained image is different from the original image and different. This helps prevent counterfeit image conditions from occurring.
  • the electronic contract system 30 can obtain an image of the user's handwritten signature by scanning or the like.
  • the digest generating unit 54 of the electronic contract system 30 extracts the digital digest of the original electronic contract, thereby obtaining the contract digital digest hash(con).
  • the digital summary hash (con) extraction method is not limited, including the md5 algorithm and the SHA algorithm.
  • the digest generating unit 54 of the electronic contract system 30 extracts the digital digest of the signature image p_sign' to obtain a signature digest hash (p_sign').
  • the digest generating unit 54 of the electronic contract system 30 merges the contract digital digest hash(con) with the signature digest hash(p_sign'), thereby obtaining a total digest hash (whole).
  • a total number digest hash (whole) can be obtained by concatenating the digests hash sum (con) and hash (p_sign').
  • the digital signature generation unit 56 of the electronic contract system 30 encrypts the total digital digest hash (whole) using the first symmetric key Sym(con), thereby obtaining the first digital signature Sig(x).
  • the digital signature generation unit 56 of the electronic contract system 30 encrypts the random number as the second digital signature using the first private key priv(con) in the CA certificate indicating the identity of the electronic contract system 30, using the second private key priv( Agent) Encrypts the total number of abstract hashes (whole).
  • the transmitting unit 58 of the electronic contract system 30 transmits a second digital signature, an encrypted total digital digest hash (whole), and a random number to the trusted timestamp agent 34.
  • the trusted timestamp agent 34 receives the data sent by the electronic contract system 30 at step 212, decrypts the second digital signature using the first public key publ(con), and decrypts the obtained random number with the electronic
  • the random number sent by the contract system 30 at step 212 is aligned to confirm the identity.
  • the trusted timestamp agent 34 decrypts the received encrypted total digital summary hash (whole) using the first public key publ(con).
  • the trusted timestamp agent 34 adds the current timestamp t to the decrypted total digital digest hash (whole) and signs it using the second symmetric key Sym (agent) to generate a third digital signature Sig ( y).
  • the current timestamp t is from the timing center 36.
  • the second private key priv (agent) in the CA certificate indicating the identity of the trusted timestamp agent 34 encrypts the random number to generate a fourth digital signature, and encrypts the third number using the first public key publ (con)
  • the signature Sig(y) and the timestamp t, the fourth digital signature, the encrypted third digital signature Sig(y) and the timestamp t are sent to the electronic contract system 30.
  • receiving unit 60 of electronic contract system 30 receives the data transmitted by trusted timestamp agent 34 at step 217.
  • the second image generation unit 62 decrypts the fourth digital signature using the public key publ (agent) to determine the identity of the trusted timestamp agent 34; and after the identity is confirmed, decrypts using publ(con) in step 216. Encrypted third digital signature Sig(y) and timestamp t.
  • the second image generation unit 62 of the electronic contract system 30 embeds the decrypted first digital signature Sig(x), the third digital signature Sig(y), and the timestamp t into the signature picture p_sign', and The respective byte length information of the first digital signature Sig(x), the third digital signature Sig(y), and the time stamp t is written in the header reserved area of the signature image p_sign' file.
  • the second image generating unit 62 sequentially calculates the parity of the number of '1's in the binary bits of each pixel in the signature image p_sign', generates a binary number a for each pixel according to the parity, and agrees ' When the number of 1' is an even number, the binary number a is 0, and when the number is an odd number, the binary number a is 1.
  • the plug-in unit of the electronic contract system 30 pastes the final signature image p_sign" into the original electronic contract.
  • an asymmetric key, a digital signature, etc. are used to verify the accuracy, resistance, contract integrity, and correctness of the signature of the user, which greatly enhances the security of the electronic contract.
  • the digital watermark saves the summary information, which can effectively prevent the fraudulent behavior of the user by splicing the signature picture, and does not affect the use value of the original carrier, and is not easy to be detected and modified again.
  • the generation and verification of the entire digital signature is completely done automatically by the system background, without increasing the user's operational burden.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioethics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Storage Device Security (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)

Abstract

本发明提供电子合同签名生成方法,包括电子合同系统获取用户手写的签字图像;获得中间签字图像;生成总数字摘要;生成第一数字签名,生成第二数字签名,获得加密的总数字摘要;向所述可信时间戳代理发送所述第二数字签名、加密的总数字摘要以及所述随机数;以第一对密钥中的第二密钥解密所述第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认所述电子合同系统的身份合法性,在确认所述电子合同系统的身份合法的情况下,以所述第二对密钥中的第二密钥解密加密的总数字摘要;获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳发送给所述电子合同系统;得到最终签字图像。还提供电子合同签名生成系统。

Description

电子签名生成方法及系统 技术领域
本发明涉及与电子合同有关的技术,更为具体地,涉及电子合同中电子签名的相关技术。
背景技术
近年来,电子商务快速发展,作为电子商务的重要构成部分,电子合同免除了用户通过传真或邮件签名的麻烦,只需通过智能手机或平板电脑即可完成手写签名。中国专利申请CN201310076065.X就公开了一种电子合同在线订立的方法及系统。该申请的解决方案包括接收电子合同基本信息;甲方对电子合同的基本信息进行确认,随后生成电子合同;待乙方对合同的基本信息确认后,分别向甲乙双方指定的通信终端发送签订合同的验证码;分别接收甲乙双方回复的签订合同验证码,完成甲乙双方电子合同盖章;再将双方盖章的电子合同分别发送给甲乙双方指定的接收终端。
尽管电子合同带来了相当的方便度,但是如何在该过程中,确保电子签名的有效性与安全性是实施电子合同的关键环节。
发明内容
有鉴于此,本发明提供电子合同签名生成方法,其执行在包括电子合同系统、证书授权中心、可信时间戳代理构成的系统中,该方法包括:
A)由电子合同系统获取用户手写的签字图像;
B)由电子合同系统对所获取的签字图像进行处理,以获得中间签字图像;
C)由电子合同系统基于电子合同和签字图像生成总数字摘要;
D)由电子合同系统使用第一对称密钥加密所述总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥;
E)由电子合同系统向所述可信时间戳代理发送所述第二数字签名、加密的总数字摘要以及所述随机数;
F)所述可信时间戳代理以第一对密钥中的第二密钥解密所述第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认所述电子合同系统的身份合法性,在确认所 述电子合同系统的身份合法的情况下,以所述第二对密钥中的第二密钥解密加密的总数字摘要;
G)所述可信时间戳代理基于当前时间戳、解密后获得的所述总数字摘要、以及所述随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳发送给所述电子合同系统;
H)所述电子合同系统基于所述第四数字签名确认所述可信时间戳代理的合法性,并在确定所述可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据嵌入到所述中间签字图像中,以得到最终签字图像。
所述的电子合同签名生成方法,其中,所述步骤B)包括:
电子合同系统将该签字图像中每个像素的低位的二进制值设置为0或1,从而生成中间签字图像。示例地,所述电子合同系统将该签字图像中每个像素的最低位的二进制值设置为0,从而生成中间签字图像。
所述的电子合同签名生成方法,其中,所述步骤C)包括:
C1)所述电子合同系统提取原始电子合同的数字摘要,以获得合同数字摘要;
C2)所述电子合同系统提取所述中间签字图像的数字摘要,从而获得签字数字摘要;
C3)基于所述合同数字摘要与所述签字数字摘要生成总数字摘要。示例地,步骤C3)包括:以分隔符连接所述所述合同数字摘要与所述签字数字摘要,从而生成总数字摘要。
所述的电子合同签名生成方法,其中,所述步骤G)包括:
G1)所述可信时间戳代理添加当前时间戳到所述总数字摘要中,并使用第二对称密钥加密添加了当前时间戳的总数字摘要,从而获得第三数字签名;
G2)所述可信时间戳代理使用所述第二对密钥中的第一密钥加密所述随机数,从而生成第四数字签名;
G3)所述可信时间戳代理使用第一对密钥中的第二密钥加密所述第三数字签名与时间戳;
G4)将所述第四数字签名、加密的第三数字签名和时间戳发送给所述电子合同系统。
所述的电子合同签名生成方法,其中,所述步骤H)包括:
H1)所述电子合同系统使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;
H2)在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;
H3)电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长 度信息写入中间签字图像的图像文件的头部保留区域中,顺序计算中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a,电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳嵌入到中间签字图像中,并在嵌入过程中,将第一数字签名、解密后获得的第三数字签名和时间戳二进制数字串,按照前后顺序,逐一与二进制值a做异或操作,将所述操作结果保存在各像素的二进制最低位,由此,得到最终签字图像。
所述的电子合同签名生成方法,还包括将最终签字图像插入到原始电子合同的相应位置处,以获得签名的电子合同。
根据本发明,还提供电子合同签名生成系统,该系统包括:
图像获取单元,其用于获取用户手写的签字图像;
第一图像生成单元,其用于对所获取的签字图像进行处理以获得中间签字图像;
摘要生成单元,其用于基于电子合同和签字图像生成总数字摘要;
数字签名生成单元,其使用第一对称密钥加密所述总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥;
发送单元,其用于向所述可信时间戳代理发送所述第二数字签名、加密的总数字摘要以及所述随机数;
接收单元,其用于接收来自可信时间戳代理的数据,其中,所述可信时间戳代理以第一对密钥中的第二密钥解密所述第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认所述电子合同系统的身份合法性,在确认所述电子合同系统的身份合法的情况下,以所述第二对密钥中的第二密钥解密加密的总数字摘要,并且所述可信时间戳代理基于当前时间戳、解密后获得的所述总数字摘要、以及所述随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳作为来自可信时间戳代理的数据发送;
第二图像生成单元,其用于基于所述第四数字签名确认所述可信时间戳代理的合法性,并在确定所述可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据嵌入到所述中间签字图像中,从而获得最终签字图像。
所述的电子合同签名生成系统,其中,所述摘要生成单元设置成提取原始电子合同的 数字摘要,以获得合同数字摘要;提取所述中间签字图像的数字摘要,从而获得签字数字摘要;以及基于所述合同数字摘要与所述签字数字摘要生成总数字摘要。
所述的电子合同签名生成系统,其中,所述第二图像生成单元设置成使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;第二图像生成单元将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长度信息写入中间签字图像的图像文件的头部保留区域中,顺序计算中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a,第二图像生成单元将第一数字签名、解密后获得的第三数字签名和时间戳嵌入到中间签字图像中,并在嵌入过程中,将第一数字签名、解密后获得的第三数字签名和时间戳二进制数字串,按照前后顺序,逐一与二进制值a做异或操作,将所述操作结果保存在各像素的二进制最低位,由此,得到最终签字图像。
所述的电子签名生成系统,还包括插入单元,其用于将最终签字图像插入到原始电子合同的相应位置处,以获得签名的电子合同。
在上述各示例中,将第一数字签名、解密后获得的第三数字签名和时间戳嵌入到中间签字图像中都是以数字水印的方式将其嵌入到中间签字图像中。
执行本发明提供的电子签名生成方法或采用根据本发明的电子签名生成系统,增强了电子合同的安全度。
附图说明
图1是根据本发明示例的电子合同签名生成方法的流程图。
图2是根据本发明示例的电子合同签名生成系统的结构示意图。
图3是根据本发明的一个具体示例的电子合同签名生成方法的流程图。
具体实施方式
现在参照附图描述本发明的示意性示例。相同的附图标号表示相同的元件。下文描述的各实施例有助于本领域技术人员透彻理解本发明,且意在示例而非限制。除非另有限定,文中使用的术语(包括科学、技术和行业术语)具有与本发明所属领域的技术人员普遍理解的含义相同的含义。此外,流程图中各步骤的先后顺序也不以图示的顺序为限。
图1是根据本发明示例的电子合同签名生成方法的流程图。该方法执行在包括电子合同系统、证书授权中心、可信时间戳代理构成的系统中,在该系统中,电子合同系统与证书授权中心、可信时间戳代理通信连接;可信时间戳代理自授时中心获得时间戳。
在步骤10,由电子合同系统获取用户手写的签字图像。电子合同系统例如可以扫描设备扫描用户手写的签字,从而获得签字图像。电子合同系统也可以通过摄像头对用户手写的签字拍照从而获得签字图像。简言之,电子合同系统可以多种方式获得用户手写的签字图像。
在步骤12,由电子合同系统对所获取的签字图像进行处理,以获得中间签字图像。示例地,电子合同系统将该签字图像中每个像素的低位的二进制值设置为0或1,从而生成中间签字图像。更为具体地,可将该最低位的二进制值设置为0,以生成中间签字图像。
在步骤14,由电子合同系统基于电子合同和签字图像生成总数字摘要。示例地,电子合同系统提取原始电子合同的数字摘要,以获得合同数字摘要;电子合同系统提取所述第一中间签字图像的数字摘要,从而获得签字数字摘要;基于合同数字摘要与签字数字摘要生成总数字摘要。在某些实施方式中,以分隔符连接合同数字摘要与签字数字摘要,从而生成总数字摘要。
在步骤16,由电子合同系统使用第一对称密钥加密所述总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥。
在步骤18,由电子合同系统向所述可信时间戳代理发送第二数字签名、加密的总数字摘要以及随机数。
在步骤20,可信时间戳代理以第一对密钥中的第二密钥解密第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认电子合同系统的身份合法性,在确认电子合同系统的身份合法的情况下,以第二对密钥中的第二密钥解密加密的总数字摘要。
在步骤22,可信时间戳代理基于当前时间戳、解密后获得的总数字摘要、以及随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳发送给电子合同系统。示例地,可信时间戳代理添加当前时间戳到总数字摘要中,并使用第二对称密钥加密添加了当前时间戳的总数字摘要,从而获得第三数字签名,该当前时间戳来自授时中心;可信时间戳代理使用第二对密钥中的第一密钥加密随机数,从而生成第四数字签名;可信时间戳代理使用第一对密钥中的第二密钥加密第三数字签名与时间戳;将所述第四数字签名、加密的第三数字签名和时间戳发送给电子合同系统。
在步骤24,所述电子合同系统基于第四数字签名确认可信时间戳代理的合法性,并 在确定可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据例如以数字水印的方式嵌入到所述中间签字图像中,从而获得中间签字图像。示例地,电子合同系统使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长度信息写入第二中间签字图像的图像文件的头部保留区域中;然后,顺序计算第二中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a。例如像素x的二进制a值等于a(x),其中x表征的是‘1’的个数的奇偶性。举例来说,如果某个像素的二进制位中‘1’的个数为偶数,则a为0,如果某个像素的二进制位中‘1’的个数为奇数,则a为1。再次,在将第一数字签名、第三数字签名和时间戳嵌入在中间签名图像的过程中,将第一数字签名、第三数字签名和时间戳以二进制表示,且将第一数字签名、第三数字签名和时间戳的二进制数字串,按照前后顺序,逐一与中间签字图像中像素x中的二进制a(x)做异或操作,操作结果保存在该像素x的二进制最低位,(例如,第一数字签名、第三数字签名和时间戳的第x个二进制位与中间签字图像中第x个像素a(x)做异或操作),由此得到最终签字图像。一般来说,电子合同系统会将第一数字签名、第三数字签名和时间戳中的二进制字节长度设置成小于中间签字图像的像素的长度,避免出现没有充足空间存储第一数字签名、第三数字签名和时间戳的二进制字串的问题。
根据本发明的示例,将最终签字图像插入到原始电子合同的相应位置处,从而获得签名的电子合同。
在图1的示例中,第一对密钥包括私钥与公钥,在采用私钥加密的情况下,则相应地采用该公钥解密。本文中,第一对密钥中的第一密钥是私钥的话,则第二密钥为公钥,反之亦然。同样地,第二对密钥包括私钥与公钥,在采用私钥加密的情况下,则相应地采用该公钥解密。本文中,第二对密钥中的第一密钥是私钥的话,则第二密钥为公钥,反之亦然。
图2是根据本发明示例的电子合同签名生成系统的结构示意图。该电子合同签名生成系统与证书授权中心、可信时间戳代理通信连接。该电子合同签名生成系统包括图像获取单元50,第一图像生成单元52,摘要生成单元54,数字签名生成单元56,发送单元58,接收单元60以及第二图像生成单元62。在本示例中,该电子合同签名生成系统设置于电子合同系统,下文中有时也将其称作电子合同系统。对于该可信时间戳代理以及证书授权中心而言,该电子合同签名生成系统的身份与设置其的电子合同系统的身份可以是一致的。
图像获取单元50获取用户手写的签字图像。图像获取单元50例如可以是扫描设备,通过扫描用户手写的签字获得签字图像。图像获取单元50也可以是摄像头,通过拍摄用户手写的签字来获得签字图像。简言之,图像获取单元50是能够获得用户手写签字的签字图像的任何部件。
第一图像生成单元52对所获取的签字图像进行处理,以获得中间签字图像。示例地,第一图像生成单元52将该签字图像中每个像素的低位的二进制值设置为0或1,从而生成中间签字图像。更为具体地,可将该最低位的二进制值设置为0,以生成中间签字图像。
摘要生成单元54基于电子合同和签字图像生成总数字摘要。示例地,摘要生成单元54提取原始电子合同的数字摘要,以获得合同数字摘要;摘要生成单元54提取所述第一中间签字图像的数字摘要,从而获得签字数字摘要;摘要生成单元54基于合同数字摘要与签字数字摘要生成总数字摘要。在某些实施方式中,以分隔符连接合同数字摘要与签字数字摘要,从而生成总数字摘要。
数字签名生成单元56使用第一对称密钥加密总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥。
发送单元58向可信时间戳代理发送第二数字签名、加密的总数字摘要以及随机数。
接收单元60接收来自可信时间戳代理的数据。具体而言,可信时间戳代理以第一对密钥中的第二密钥解密第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认电子合同系统的身份合法性,在确认电子合同系统的身份合法的情况下,以第二对密钥中的第二密钥解密加密的总数字摘要。随后,可信时间戳代理基于当前时间戳、解密后获得的总数字摘要、以及随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳发送给电子合同系统。示例地,可信时间戳代理添加当前时间戳到总数字摘要中,并使用第二对称密钥加密添加了当前时间戳的总数字摘要,从而获得第三数字签名,该当前时间戳来自授时中心;可信时间戳代理使用第二对密钥中的第一密钥加密随机数,从而生成第四数字签名;可信时间戳代理使用第一对密钥中的第二密钥加密第三数字签名与时间戳;将所述第四数字签名、加密的第三数字签名和时间戳作为来自该可信时间戳代理的数据发送给电子合同系统,并由该接收单元60接收。
第二图像生成单元62基于第四数字签名确认可信时间戳代理的合法性,并在确定可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据嵌入到所述中间签字图像中,从而获得中间签字图像。示例地,第二图像生成单元62使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;第二图像生成单元62还将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长度信息写入第二中间签字图像的图像文件的头部保留区域中;然后,顺序计算第二中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a。例如像素x的二进制a值等于a(x),其中x表征的是‘1’的个数的奇偶性。举例来说,如果某个像素的二进制位中‘1’的个数为偶数,则a为0,如果某个像素的二进制位中‘1’的个数为奇数,则a为1。再次,在将第一数字签名、第三数字签名和时间戳例如以数字水印的方式嵌入在中间签名图像的过程中,将第一数字签名、第三数字签名和时间戳以二进制表示,且将第一数字签名、第三数字签名和时间戳的二进制数字串,按照前后顺序,逐一与中间签字图像中像素x中的二进制a(x)做异或操作,操作结果保存在该像素x的二进制最低位,(例如,第一数字签名、第三数字签名和时间戳的第x个二进制位与中间签字图像中第x个像素a(x)做异或操作),由此得到最终签字图像。一般来说,电子合同系统会将第一数字签名、第三数字签名和时间戳中的二进制字节长度设置成小于中间签字图像的像素的长度,避免出现没有充足空间存储第一数字签名、第三数字签名和时间戳的二进制字串的问题。
根据本发明的示例,该电子合同签名生成系统还包括插入单元(未图示),其将最终签字图像插入到原始电子合同的相应位置处,以获得具有电子签名的电子合同。
一般而言,电子合同为PDF/Word/图像文件,插入单元可通过操作PDF/WORD/图片格式文件的应用,将最终签名图像插入至电子合同指定的签名处。但如果电子合同是其他格式的文件,则先将该文件转化为图像,然后,再将最终签名图像插入至电子合同指定的签名处。
图3是根据本发明的一个具体示例的电子合同签名生成方法的流程图。该应用环境包括实现在电子合同系统30、证书授权中心CA(Certificate Authority Center)32、可信时间戳代理34以及授时中心36,其中该电子合同系统与该CA系统、可信时间戳代理34通信连接,而该可信时间戳代理34与授时中心36通信连接,且根据本发明描述的电子合同签名生成系统实现在电子合同系统30中。
在该示例中,电子合同系统30持有验证可信时间戳代理34的第二公钥publ(agent)、加密摘要的第一对称密钥Sym(con)、从CA 32申请的标示该电子合同系统身份的由CA发布的证书第一私钥priv(con);可信时间戳代理34持有验证电子合同系统30的第一公钥publ(con)、以及生成数字签名的对称密钥Sym(agent)、从CA 32申请的标示自身身份的CA的证书第二私钥priv(agent)。在本例中,第一私钥与第一公钥构成第一对密钥,而第二私钥与第二公钥构成第二对密钥。
在步骤200,电子合同签名生成系统30通过图像获取单元50获取用户手写签字的图像,即手写签字图像p_sign。
在步骤201,电子合同系统30的第一图像生成单元52将该手写签字图像p_sign中每个像素的最低二进制位设置为0,从而生成中间签字图像p_sign’。替代地,也可将该手写签字图像p_sign中每个像素的最低二进制位设置为1,或将该手写签字图像p_sign中每个像素的紧挨最低二进制位的位设置为0。需要说明的是,对该手写签字图像p_sign中每个像素的最低二进制位进行设置意在获得与原始手写签字图像p_sign略有不同的图像,如此使所获得的图像既不同于原始图像又存在不同,这有助于防止伪造图像情况的发生。电子合同系统30可通过扫描等方式获得用户手写签字的图像。
在步骤202,电子合同系统30的摘要生成单元54提取原始电子合同的数字摘要,从而获得合同数字摘要hash(con)。其中,数字摘要hash(con)的提取方式不限,包括md5算法和SHA算法等。
在步骤204,电子合同系统30的摘要生成单元54提取签字图像p_sign’的数字摘要从而获得签名摘要hash(p_sign’)。
在步骤206,电子合同系统30的摘要生成单元54合并合同数字摘要hash(con)与签名摘要hash(p_sign’),从而得到总数字摘要hash(whole)。作为示例,可通过分隔符连接数字摘要hash(con)和hash(p_sign’)来获得总数字摘要hash(whole)。
在步骤208,电子合同系统30的数字签名生成单元56使用第一对称密钥Sym(con)加密总数字摘要hash(whole),从而得到第一数字签名Sig(x)。
在步骤210,电子合同系统30的数字签名生成单元56使用标示电子合同系统30身份的CA证书中的第一私钥priv(con)加密随机数作为第二数字签名,使用第二私钥priv(agent)加密总数字摘要hash(whole)。
在步骤212,电子合同系统30的发送单元58向可信时间戳代理34发送第二数字签名、加密的总数字摘要hash(whole)以及随机数。
在步骤214,可信时间戳代理34接收到电子合同系统30在步骤212发送的各数据,使用第一公钥publ(con)解密该第二数字签名,并将解密后获得的随机数与电子合同系统30在步骤212发送的随机数比对以确认身份。
在步骤215,在身份确认的情况下,可信时间戳代理34使用第一公钥publ(con)解密所接收的加密的总数字摘要hash(whole)。
在步骤216,可信时间戳代理34的添加当前时间戳t到解密后的总数字摘要hash(whole)中,并使用第二对称密钥Sym(agent)进行签名,生成第三数字签名Sig(y)。当前时间戳t来自授时中心36。
在步骤217,可信时间戳代理34的使用标示自身身份的CA证书中的第二私钥priv(agent)加密随机数生成第四数字签名,使用第一公钥publ(con)加密第三数字签名Sig(y)和时间戳t,将第四数字签名、加密的第三数字签名Sig(y)和时间戳t发送至电子合同系统30。
在步骤218,电子合同系统30的接收单元60接收可信时间戳代理34在步骤217发送的数据。
在步骤219,第二图像生成单元62使用公钥publ(agent)解密第四数字签名,以确定可信时间戳代理34的身份;并在身份确认后,使用publ(con)解密在步骤216中加密的第三数字签名Sig(y)和时间戳t。
在步骤220,电子合同系统30的第二图像生成单元62将解密后的第一数字签名Sig(x)、第三数字签名Sig(y)和时间戳t嵌入到签名图片p_sign’中,并将第一数字签名Sig(x)、第三数字签名Sig(y)和时间戳t三者各自的字节长度信息写入签名图像p_sign’文件的头部保留区域中。该步骤中,第二图像生成单元62顺序计算签名图像p_sign’中每个像素的二进制位中‘1’的个数的奇偶性,根据奇偶性为每个像素生成一个二进制数a,并约定‘1’的个数为偶数时,二进制数a为0,个数为奇数时,二进制数a为1。其中,在将数字签名Sig(x)、Sig(y)和时间戳t嵌入在图片p_sign’中时,将三个对象的二进制数逐一与图片像素的二进制a做异或操作,操作结果保存在该像素的二进制最低位,从而得到最终签字图像p_sign”。
在步骤224,电子合同系统30的插入单元将最终签字图像p_sign”粘贴至原始电子合同中。
在本发明的各示例,采用非对称密钥、数字签名等方式,验证用户签名的准确性、抗否性、合同完整性和签字时间的正确性,很大程度增强了电子合同的安全度。此外,采用 数字水印保存摘要信息,可以有效防止通过拼接签字图片仿冒用户的诈骗行为,同时,不影响原载体的使用价值,也不容易被探知和再次修改。整个数字签名的生成和验证完全是系统后台自动完成,不增加用户操作负担。
尽管已结合附图在上文的描述中,公开了本发明的具体实施例,但是本领域技术人员可以理解到,可在不脱离本发明精神的情况下,对公开的具体实施例进行变形或修改。本发明的实施例仅用于示意并不用于限制本发明。

Claims (14)

  1. 一种电子合同签名生成方法,其执行在包括电子合同系统、证书授权中心、可信时间戳代理构成的系统中,其特征在于,该方法包括:
    A)由电子合同系统获取用户手写的签字图像;
    B)由电子合同系统对所获取的签字图像进行处理,以获得中间签字图像;
    C)由电子合同系统基于电子合同和签字图像生成总数字摘要;
    D)由电子合同系统使用第一对称密钥加密所述总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥;
    E)由电子合同系统向所述可信时间戳代理发送所述第二数字签名、加密的总数字摘要以及所述随机数;
    F)所述可信时间戳代理以第一对密钥中的第二密钥解密所述第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认所述电子合同系统的身份合法性,在确认所述电子合同系统的身份合法的情况下,以所述第二对密钥中的第二密钥解密加密的总数字摘要;
    G)所述可信时间戳代理基于当前时间戳、解密后获得的所述总数字摘要、以及所述随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳发送给所述电子合同系统;
    H)所述电子合同系统基于所述第四数字签名确认所述可信时间戳代理的合法性,并在确定所述可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据嵌入到所述中间签字图像中,以得到最终签字图像。
  2. 如权利要求1所述的电子合同签名生成方法,其特征在于,所述步骤B)包括:
    电子合同系统将该签字图像中每个像素的低位的二进制值设置为0或1,从而生成中间签字图像。
  3. 如权利要求2所述的电子合同签名生成方法,其特征在于,所述电子合同系统将该签字图像中每个像素的最低位的二进制值设置为0,从而生成中间签字图像。
  4. 如权利要求1所述的电子合同签名生成方法,其特征在于,所述步骤C)包括:
    C1)所述电子合同系统提取原始电子合同的数字摘要,以获得合同数字摘要;
    C2)所述电子合同系统提取所述中间签字图像的数字摘要,从而获得签字数字摘要;
    C3)基于所述合同数字摘要与所述签字数字摘要生成总数字摘要。
  5. 如权利要求4所述的电子合同签名生成方法,其特征在于,步骤C3)包括:以分隔符连接所述所述合同数字摘要与所述签字数字摘要,从而生成总数字摘要。
  6. 如权利要求4所述的电子合同签名生成方法,其特征在于,所述步骤G)包括:
    G1)所述可信时间戳代理添加当前时间戳到所述总数字摘要中,并使用第二对称密钥加密添加了当前时间戳的总数字摘要,从而获得第三数字签名;
    G2)所述可信时间戳代理使用所述第二对密钥中的第一密钥加密所述随机数,从而生成第四数字签名;
    G3)所述可信时间戳代理使用第一对密钥中的第二密钥加密所述第三数字签名与时间戳;
    G4)将所述第四数字签名、加密的第三数字签名和时间戳发送给所述电子合同系统。
  7. 如权利要求6所述的电子合同签名生成方法,其特征在于,所述步骤H)包括:
    H1)所述电子合同系统使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;
    H2)在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;
    H3)电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长度信息写入中间签字图像的图像文件的头部保留区域中,顺序计算中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a,电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳嵌入到中间签字图像中,并在嵌入过程中,将第一数字签名、解密后获得的第三数字签名和时间戳二进制数字串,按照前后顺序,逐一与二进制值a做异或操作,将所述操作结果保存在各像素的二进制最低位,由此,得到最终签字图像。
  8. 如权利要求7所述的电子合同签名生成方法,其特征在于,步骤H3)中电子合同系统将第一数字签名、解密后获得的第三数字签名和时间戳以数字水印的方式嵌入到中间签字图像中。
  9. 如权利要求1到8中任意一项所述的电子合同签名生成方法,还包括将最终签字图像插入到原始电子合同的相应位置处,以获得签名的电子合同。
  10. 一种电子合同签名生成系统,其特征在于,该系统包括:
    图像获取单元,其用于获取用户手写的签字图像;
    第一图像生成单元,其用于对所获取的签字图像进行处理以获得中间签字图像;
    摘要生成单元,其用于基于电子合同和签字图像生成总数字摘要;
    数字签名生成单元,其使用第一对称密钥加密所述总数字摘要以生成第一数字签名,通过第一对密钥中的第一密钥加密随机数以生成第二数字签名,通过第二对密钥中的第一密钥加密所述总数字摘要以获得加密的总数字摘要,其中,所述第一密钥中的第一密钥是来自证书授权中心的用以标识所述电子合同系统身份的密钥;所述第二对密钥中的第一密钥是来自证书授权中心的用以标识所述可信时间戳代理身份的密钥;
    发送单元,其用于向所述可信时间戳代理发送所述第二数字签名、加密的总数字摘要以及所述随机数;
    接收单元,其用于接收来自可信时间戳代理的数据,其中,所述可信时间戳代理以第一对密钥中的第二密钥解密所述第二数字签名,并将解密所获得的随机数与所接收的随机数进行对比,以确认所述电子合同系统的身份合法性,在确认所述电子合同系统的身份合法的情况下,以所述第二对密钥中的第二密钥解密加密的总数字摘要,并且所述可信时间戳代理基于当前时间戳、解密后获得的所述总数字摘要、以及所述随机数来获得第三数字签名、第四数字签名,并将第四数字签名、加密的第三数字签名和时间戳作为来自可信时间戳代理的数据发送;
    第二图像生成单元,其用于基于所述第四数字签名确认所述可信时间戳代理的合法性,并在确定所述可信时间戳代理合法的情况下,将与第一数字签名、第三数字签名和时间戳有关的数据嵌入到所述中间签字图像中,从而获得最终签字图像。
  11. 如权利要求10所述的电子合同签名生成系统,其特征在于,所述摘要生成单元设置成提取原始电子合同的数字摘要,以获得合同数字摘要;提取所述中间签字图像的数字摘要,从而获得签字数字摘要;以及基于所述合同数字摘要与所述签字数字摘要生成总数字摘要。
  12. 如权利要求11所述的电子合同签名生成系统,其特征在于,所述第二图像生成单元设置成使用第二对密钥中的第二密钥解密所述第四数字签名,以确定所述可信时间戳代理身份的合法性;在所述可信时间戳代理身份确认合法的情况下,使用第一对密钥中的第一密钥解密第三数字签名和时间戳;所述第二图像生成单元将第一数字签名、解密后获得的第三数字签名和时间戳的各自的字节长度信息写入中间签字图像的图像文件的头部保留区域中,顺序计算中间签字图像中每个像素的像素值的二进制位中‘1’的个数,以确定是奇数个‘1’还是偶数个‘1’,并据此为每个像素生成一个二进制值a,所述第二图像生成单元将第一数字签名、解密后获得的第三数字签名和时间戳嵌入到中间签字图像中,并在嵌入过程中,将第 一数字签名、解密后获得的第三数字签名和时间戳二进制数字串,按照前后顺序,逐一与二进制值a做异或操作,将所述操作结果保存在各像素的二进制最低位,由此,得到最终签字图像。
  13. 如权利要求12所述的电子合同签名生成系统,其特征在于,所述第二图像生成单元将第一数字签名、解密后获得的第三数字签名和时间戳以数字水印的方式嵌入到中间签字图像中。
  14. 如权利要求10到13中任意一项所述的电子签名生成系统,还包括插入单元,其用于将最终签字图像插入到原始电子合同的相应位置处,以获得签名的电子合同。
PCT/CN2016/103376 2015-10-30 2016-10-26 电子签名生成方法及系统 WO2017071581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510720374.5A CN105591750B (zh) 2015-10-30 2015-10-30 电子签名生成方法及系统
CN201510720374.5 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017071581A1 true WO2017071581A1 (zh) 2017-05-04

Family

ID=55931026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103376 WO2017071581A1 (zh) 2015-10-30 2016-10-26 电子签名生成方法及系统

Country Status (4)

Country Link
CN (1) CN105591750B (zh)
HK (1) HK1224461A1 (zh)
TW (1) TWI624795B (zh)
WO (1) WO2017071581A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107563913A (zh) * 2017-09-12 2018-01-09 杭州国辰机器人科技有限公司 一种远程合同签字装置及方法
WO2019030445A1 (fr) 2017-08-09 2019-02-14 Philippe Dewost Procédé de signature électronique d'un document par une pluralité de signataires
CN113111376A (zh) * 2021-04-09 2021-07-13 杭州天谷信息科技有限公司 一种防盗签的电子签章系统及其方法
CN113486406A (zh) * 2021-06-17 2021-10-08 傲雄在线(重庆)科技有限公司 一种电子签名保护还原方法、系统、电子设备及存储介质
CN114143008A (zh) * 2021-11-10 2022-03-04 重庆傲雄在线信息技术有限公司 一种基于hash的电子签名加解密方法及系统
CN114448623A (zh) * 2022-01-24 2022-05-06 中国银联股份有限公司 代理签名及验证方法、代理秘钥生成方法、装置和系统
CN114553430A (zh) * 2022-01-21 2022-05-27 华北电力大学 一种基于sdp的新型电力业务终端的安全接入系统
CN114553441A (zh) * 2022-04-22 2022-05-27 杭州天谷信息科技有限公司 一种电子合同签署方法及系统
CN114820147A (zh) * 2022-06-02 2022-07-29 杭州天谷信息科技有限公司 阶段性电子合同的签署方法及签名系统
CN115329294A (zh) * 2022-10-13 2022-11-11 深圳天谷信息科技有限公司 电子合同的生成方法、装置、设备及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591750B (zh) * 2015-10-30 2018-12-25 中国银联股份有限公司 电子签名生成方法及系统
CN108400874B (zh) * 2018-02-28 2021-03-30 上海霁洲信息科技有限公司 利用印章验证终端的数字签名功能对印文进行认证的方法
CN108875385B (zh) * 2018-05-07 2021-09-17 麒麟合盛网络技术股份有限公司 应用间通信的方法及装置
CN110943839A (zh) * 2018-09-21 2020-03-31 珠海金山办公软件有限公司 一种签名验证方法、装置、电子设备及可读存储介质
CN109800784B (zh) * 2018-12-11 2024-03-19 平安科技(深圳)有限公司 基于神经网络的合同核对方法及装置
CN109829317A (zh) * 2018-12-14 2019-05-31 平安科技(深圳)有限公司 一种基于手写签名图片生成电子合同的方法、装置及系统
TWI704794B (zh) * 2019-03-29 2020-09-11 區塊科技股份有限公司 基於區塊鏈的合約簽核與驗證系統及其實施方法
CN112887257A (zh) * 2019-11-29 2021-06-01 重庆傲雄在线信息技术有限公司 一种证据的加密存储平台
TWI772779B (zh) * 2020-04-15 2022-08-01 華南商業銀行股份有限公司 資金贖回系統及其方法
TWI782888B (zh) * 2020-04-15 2022-11-01 華南商業銀行股份有限公司 基於圖面的資金贖回系統及其方法
TWI782889B (zh) * 2020-04-15 2022-11-01 華南商業銀行股份有限公司 依據支付期限執行資金贖回的資金贖回系統及其方法
CN114095150B (zh) * 2021-11-12 2024-01-26 微位(深圳)网络科技有限公司 身份鉴定方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144247A1 (en) * 2010-05-20 2011-11-24 Hewlett-Packard Development Company, L.P. Digital signature method and apparatus
CN103581195A (zh) * 2013-11-13 2014-02-12 上海众人网络安全技术有限公司 基于动态口令的电子签章方法及电子签章验证方法
CN104463554A (zh) * 2013-09-25 2015-03-25 天津书生投资有限公司 一种电子印章的实现方法和装置
CN105591750A (zh) * 2015-10-30 2016-05-18 中国银联股份有限公司 电子签名生成方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW531713B (en) * 2001-05-31 2003-05-11 Jung-Sing Jwo Hand-writing digital signature system and method
ATE433164T1 (de) * 2004-03-12 2009-06-15 Ingenia Technology Ltd Verfahren und vorrichtungen zur erzeugung authentifizierbarer gegenstände und ihrer nachfolgenden überprüfung
CN101136046B (zh) * 2006-08-28 2011-01-05 鸿富锦精密工业(深圳)有限公司 电子签名验证系统及方法
EP2127195A2 (en) * 2007-01-22 2009-12-02 Global Crypto Systems Methods and systems for digital authentication using digitally signed images
CN101847249A (zh) * 2009-03-27 2010-09-29 上海德通能源环保科技有限公司 一种图像数字水印的实现方法
CN101931537B (zh) * 2010-09-15 2012-08-29 北京数字认证股份有限公司 一种用于限定签名内容的数字证书生成方法
CN103873255B (zh) * 2014-03-03 2017-05-10 杭州电子科技大学 一种基于可信第三方的电子合同网络签署方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144247A1 (en) * 2010-05-20 2011-11-24 Hewlett-Packard Development Company, L.P. Digital signature method and apparatus
CN104463554A (zh) * 2013-09-25 2015-03-25 天津书生投资有限公司 一种电子印章的实现方法和装置
CN103581195A (zh) * 2013-11-13 2014-02-12 上海众人网络安全技术有限公司 基于动态口令的电子签章方法及电子签章验证方法
CN105591750A (zh) * 2015-10-30 2016-05-18 中国银联股份有限公司 电子签名生成方法及系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030445A1 (fr) 2017-08-09 2019-02-14 Philippe Dewost Procédé de signature électronique d'un document par une pluralité de signataires
US11531746B2 (en) 2017-08-09 2022-12-20 Phileos Consulting Method for electronic signing of a document by a plurality of signatories
CN107563913A (zh) * 2017-09-12 2018-01-09 杭州国辰机器人科技有限公司 一种远程合同签字装置及方法
CN107563913B (zh) * 2017-09-12 2024-01-19 杭州国辰机器人科技有限公司 一种远程合同签字装置及方法
CN113111376A (zh) * 2021-04-09 2021-07-13 杭州天谷信息科技有限公司 一种防盗签的电子签章系统及其方法
CN113486406A (zh) * 2021-06-17 2021-10-08 傲雄在线(重庆)科技有限公司 一种电子签名保护还原方法、系统、电子设备及存储介质
CN113486406B (zh) * 2021-06-17 2024-02-20 重庆亲笔签数字科技有限公司 一种电子签名保护还原方法、系统、电子设备及存储介质
CN114143008B (zh) * 2021-11-10 2024-04-05 重庆亲笔签数字科技有限公司 一种基于hash的电子签名加解密方法及系统
CN114143008A (zh) * 2021-11-10 2022-03-04 重庆傲雄在线信息技术有限公司 一种基于hash的电子签名加解密方法及系统
CN114553430A (zh) * 2022-01-21 2022-05-27 华北电力大学 一种基于sdp的新型电力业务终端的安全接入系统
CN114553430B (zh) * 2022-01-21 2024-02-06 华北电力大学 一种基于sdp的电力业务终端的安全接入系统
CN114448623A (zh) * 2022-01-24 2022-05-06 中国银联股份有限公司 代理签名及验证方法、代理秘钥生成方法、装置和系统
CN114553441A (zh) * 2022-04-22 2022-05-27 杭州天谷信息科技有限公司 一种电子合同签署方法及系统
CN114820147A (zh) * 2022-06-02 2022-07-29 杭州天谷信息科技有限公司 阶段性电子合同的签署方法及签名系统
CN114820147B (zh) * 2022-06-02 2022-11-25 杭州天谷信息科技有限公司 阶段性电子合同的签署方法及签名系统
CN115329294B (zh) * 2022-10-13 2023-01-17 深圳天谷信息科技有限公司 电子合同的生成方法、装置、设备及存储介质
CN115329294A (zh) * 2022-10-13 2022-11-11 深圳天谷信息科技有限公司 电子合同的生成方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN105591750A (zh) 2016-05-18
CN105591750B (zh) 2018-12-25
HK1224461A1 (zh) 2017-08-18
TWI624795B (zh) 2018-05-21
TW201719517A (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
TWI624795B (zh) Electronic signature generation method and system
CN111628868B (zh) 数字签名生成方法、装置、计算机设备和存储介质
US8230216B2 (en) Information processing apparatus, control method therefor, information processing system, and program
US7958361B2 (en) Information processing apparatus and method
JP2007500464A (ja) 放送メディアのコンテンツ識別表示
CN1741449B (zh) 数据处理系统及其控制方法、计算机程序和可读记录介质
US7752449B1 (en) System and method for generating a non-repudiatable record of a data stream
US20030126432A1 (en) Content authentication for digital media based recording devices
US20030048908A1 (en) System and method for protecting the content of digital cinema products
JPH11355558A (ja) 透かし挿入装置
JP2002542523A (ja) デジタルデータにデジタル署名を挿入しデジタルデータ中のデジタル署名を認証するための方法及び装置
US7930544B2 (en) Data processing apparatus and its method
KR20070042511A (ko) 디지털 콘텐트 보안 시스템 및 방법
JP4325163B2 (ja) 安全保護されたマルチメディアデータ伝送方法
CN112632475B (zh) 一种基于国密和图片隐写的图片版权保护系统及保护方法
CN110474773B (zh) 具有数字水印的电子签章产生及验证方法及电子装置
JP2010068527A (ja) コンテンツファイル制作者の認証方式
JP2004234641A (ja) コンテンツファイル制作者の認証方式およびそのプログラム
KR102280505B1 (ko) 진본성과 무결성을 제공하는 전자 문서 관리 시스템 및 그 방법
CN111639937A (zh) 数字货币风险管控方法和系统
CN117336099B (zh) 基于区块链技术的智能合约的签署方法和签署系统
WO2022249553A1 (ja) 情報処理装置および方法、並びにプログラム
JP4804075B2 (ja) 登録局装置及びシステム
CN109391616B (zh) 一种信息管理方法及终端
JP2008311806A (ja) コンテンツ提供システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859016

Country of ref document: EP

Kind code of ref document: A1