WO2017071533A1 - 一种基于双显示屏的狭缝光栅自由立体显示装置及方法 - Google Patents

一种基于双显示屏的狭缝光栅自由立体显示装置及方法 Download PDF

Info

Publication number
WO2017071533A1
WO2017071533A1 PCT/CN2016/102888 CN2016102888W WO2017071533A1 WO 2017071533 A1 WO2017071533 A1 WO 2017071533A1 CN 2016102888 W CN2016102888 W CN 2016102888W WO 2017071533 A1 WO2017071533 A1 WO 2017071533A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit grating
display screen
strip
polarization
display
Prior art date
Application number
PCT/CN2016/102888
Other languages
English (en)
French (fr)
Inventor
吴非
樊为
Original Assignee
成都工业学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都工业学院 filed Critical 成都工业学院
Publication of WO2017071533A1 publication Critical patent/WO2017071533A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers

Definitions

  • the present invention relates to a free stereoscopic display, and more particularly to a slot display free stereoscopic display device and method based on a dual display screen.
  • the autostereoscopic display based on binocular parallax is a 3D display that does not require any visual aid device.
  • it can be divided into a cylindrical lens grating autostereoscopic display and a slit grating free stereo display.
  • the slot grating free stereo display has the advantages of low cost, small weight and thin device thickness.
  • the slotted grating autostereoscopic display includes a display screen and a slit grating.
  • the display is used to display N (N is greater than or equal to 2) parallax images.
  • N is greater than or equal to 2) parallax images.
  • the light-transmissive strip and the light-blocking strip of the slit grating are arranged in phase, and the light of the N parallax images on the display screen is separated in the viewing area due to the shielding effect of the light blocking strip on the light and the light transmitting effect of the light-transmitting strip.
  • the viewer's eyes respectively view two of the parallax images, resulting in a stereoscopic effect.
  • the stereoscopic image viewed by the viewer's eyes has a problem of low resolution, which is only 1/N of the resolution of the display screen, thereby limiting the application of the slotted raster autostereoscopic display.
  • the object of the present invention is to overcome the above-mentioned deficiencies in the prior art, and to provide a slot-grid auto-stereoscopic display device and method based on a dual display screen with improved resolution of a stereoscopic image.
  • the present invention provides the following technical solutions:
  • a slit display free-stereoscopic display device based on a dual display screen comprising: a first display screen, a second display screen, a first polarization slit grating, and a second polarization slit grating, wherein the first display screen is used for displaying a parallax image and a strip light source arranged in parallel, the second display screen is configured to display a parallax image and a light transmissive strip arranged in phase, the first display screen being attached to the first polarizing slit grating, the first The second display screen is attached to the second polarization slit grating;
  • the first polarization slit grating and the second polarization slit grating are composed of a light-transmitting strip and a polarizing strip arranged in phase; a polarization direction of the polarizing strip in the first polarization slit grating and the second polarization slit grating
  • the polarization direction of the polarizing strip is orthogonal or opposite;
  • the parallax image on the first display screen is aligned with the polarizing strip in the first polarization slit grating
  • the parallax image on the second display screen is aligned with the polarizing strip in the second polarization slit grating
  • the strip light source on the first display screen is aligned with the light strip in the first polarization slit grating
  • the light strip on the second display screen and the second polarized slit grating The light strips are aligned.
  • the parallax image on the first display screen is equal to the width of the polarizing strip in the first polarization slit grating, and the parallax image on the second display screen and the polarized light in the second polarization slit grating
  • the strips are of equal width;
  • the strip light source on the first display screen is equal in width to the light transmissive strips in the first polarizing slit grating, and the light transmissive strips on the second display screen and the second
  • the width of the light-transmissive strips in the polarization slit grating is equal.
  • the first display screen is a liquid crystal display, a plasma display screen, an organic electroluminescence display screen or a projection screen;
  • the second display screen is any light intensity transmission type display screen;
  • the display screen and the second display screen are liquid crystal displays, the polarizing slit grating attached to the liquid crystal display can replace one of the polarizing plates in the liquid crystal display, but the polarizing plate can also be retained.
  • the width w of the light-transmitting strip in the first polarization slit grating and the width v of the polarizing strip in the second polarization slit grating satisfy the formula:
  • L is the optimum viewing distance
  • D is the pitch of the first polarization slit grating and the second polarization slit grating.
  • the width a of the polarizing strip in the first polarization slit grating and the width b of the light transmitting strip in the second polarization slit grating satisfy the formula:
  • L is the optimum viewing distance
  • D is the pitch of the first polarization slit grating and the second polarization slit grating.
  • the resolution H of the stereoscopic image viewed by the viewer satisfies the formula:
  • K is the number of viewpoints
  • M is the resolution of the first display screen
  • N is the resolution of the second display screen
  • a display method for a slit grating free stereoscopic display device based on a double display screen comprising the following steps:
  • the parallax image on the first display screen is aligned with the polarizing strip in the first polarization slit grating
  • the parallax image on the second display screen is aligned with the polarizing strip in the second polarization slit grating
  • the strip light source is aligned with the light strip in the first polarization slit grating
  • the light strip on the second display screen is aligned with the light strip in the second polarization slit grating
  • the polarization state of the light passing through the light-transmitting strip in the first polarization slit grating and the second polarization slit grating is unchanged, and the polarization strip in the first polarization slit grating causes the light passing through it to become specific polarization Directional polarized light, the polarizing strip in the second polarization slit grating has a modulation effect on the polarized light, so that the light passing through the polarizing strip in the first polarizing slit grating can only pass through the second polarizing slit grating Light bar
  • the strip light source on the first display screen may illuminate the The parallax image on the second display screen is viewed by the human eye, so that the parallax images on the first display screen and the second display screen can be viewed by the human eye, thereby improving the resolution of the stereoscopic image.
  • the width w of the light-transmitting strip in the first polarization slit grating and the width v of the polarizing strip in the second polarization slit grating satisfy the formula:
  • L is the optimum viewing distance
  • D is the pitch of the first polarization slit grating and the second polarization slit grating.
  • the width a of the polarizing strip in the first polarization slit grating and the width b of the light transmitting strip in the second polarization slit grating satisfy the formula:
  • L is the optimum viewing distance
  • D is the pitch of the first polarization slit grating and the second polarization slit grating.
  • the resolution H of the stereoscopic image viewed by the viewer satisfies the formula:
  • K is the number of viewpoints
  • M is the resolution of the first display screen
  • N is the resolution of the second display screen
  • the invention has the beneficial effects of improving the resolution of the stereoscopic image of the slit grating autostereoscopic display device.
  • FIG. 1 is a schematic diagram showing the principle, structure and parameters of a three-display-based slit grating free stereo display according to the present invention.
  • FIG. 2 is a schematic view showing the arrangement of a parallax image and a strip light source on the first display screen of the present invention.
  • FIG. 3 is a schematic view showing the arrangement of parallax images and light-transmitting strips on the second display screen of the present invention.
  • a slit display free-stereoscopic display device based on dual display screens comprising: a first display screen 1, a second display screen 2, a first polarization slit grating 3, and a second polarization slit grating 4
  • the polarization slit grating is a linearly polarized slit grating or a circularly polarized slit grating.
  • the first display screen 1 is used for display
  • the parallax image and the strip light source arranged between the phases are shown.
  • FIG. 2 is a schematic diagram showing the arrangement of the parallax image and the strip light source on the first display screen of the present invention.
  • the second display screen 2 is configured to display parallax images and light-transmissive strips arranged in phase
  • FIG. 3 is a schematic diagram of arrangement of parallax images and light-transmitting strips on the second display screen of the present invention.
  • the first display screen 1 is closely attached to the first polarization slit grating 3
  • the second display screen 2 is closely attached to the second polarization slit grating 4.
  • the first polarization slit grating 3 and the second polarization slit grating 4 are composed of a light-transmitting strip and a polarizing strip arranged in phase.
  • the polarization direction of the polarizing strip 9 in the first polarization slit grating 3 is orthogonal or opposite to the polarization direction of the polarizing strip 11 in the second polarization slit grating 4.
  • the parallax image 5 on the first display screen 1 is aligned and equal in width to the polarizing strip 9 in the first polarization slit grating 3, and the parallax image 7 on the second display screen 2 and the second polarization narrow
  • the polarizing strips 11 in the slit grating 4 are aligned and equal in width;
  • the strip light source 6 on the first display screen 1 is aligned with the light transmissive strips 10 in the first polarizing slit grating 3 and has the same width.
  • the light-transmitting strips on the second display screen 2 are aligned with the light-transmitting strips 12 in the second polarization slit grating 4 and have the same width.
  • the polarization states of the light passing through the light-transmitting strips in the first polarization slit grating 3 and the second polarization slit grating 4 are unchanged, passing through the first polarization slit grating 3 and the second polarization slit
  • the polarization of the light of the polarizing strip in the grating 4 is the same as the polarization direction of the polarizing strip through which it passes.
  • the parallax image 5 on the first display screen 2 can be viewed by the human eye through the light-transmitting strips in the second display screen 2 and the second polarization slit grating 4, on the first display screen 2
  • the strip light source 6 can illuminate the parallax image 7 on the second display screen 2 to be viewed by the human eye, so the first display Both the parallax images on the screen 1 and the second display screen 2 can be viewed by the human eye, thereby improving the resolution of the stereoscopic image.
  • a polarizing slit grating attached to the liquid crystal display can replace one polarizing plate in the liquid crystal display, but the polarizing plate can also be retained.
  • the width w of the light-transmitting strip 10 in the first polarization slit grating 3 and the width v of the polarizing strip 11 in the second polarization slit grating 4 satisfy the formula:
  • L is the optimal viewing distance
  • D is the distance between the first polarization slit grating 3 and the second polarization slit grating 4;
  • the width a of the polarizing strip in the first polarization slit grating 3 and the width b of the light transmitting strip in the second polarization slit grating 4 satisfy the formula:
  • L is the optimal viewing distance
  • D is the distance between the first polarization slit grating 3 and the second polarization slit grating 4;
  • K is the number of viewpoints
  • M is the resolution of the first display screen 1
  • N is the resolution of the second display screen 2.
  • the invention also provides a display method of a slit grating free stereoscopic display device based on dual display screen, comprising the following steps:
  • a parallax image 5 and a strip light source 6 which are arranged in phase are displayed on the first display screen 1, and a parallax image 7 and a light-transmitting strip which are arranged in phase are displayed on the second display screen 2.
  • the parallax image 5 on the first display screen 1 is aligned with the polarizing strip 9 in the first polarization slit grating 3, and the parallax image 7 on the second display screen 2 and the polarizing strip 11 in the second polarization slit grating 4 are aligned.
  • the strip light source 6 on the first display screen 1 is aligned with the light strip 9 in the first polarization slit grating 3, and the light strip on the second display screen 2 and the second polarization slit grating 4
  • the light transmissive strips 12 are aligned.
  • the polarization state of the light passing through the light-transmitting strips in the first polarization slit grating 3 and the second polarization slit grating 4 is constant, and the polarizing strip 9 in the first polarization slit grating 3 makes the light passing through it It becomes polarized light having a specific polarization direction, and the polarizing strip 11 in the second polarization slit grating 4 has a modulation effect on the polarized light, so that the light passing through the polarizing strip 9 in the first polarization slit grating 3 can only pass The light transmissive strip 12 in the second polarization slit grating 4.
  • the parallax image 5 on the first display screen 2 is seen through the light-transmitting strips in the second display screen 2 and the second polarization slit grating 4, and the strips on the first display screen 1
  • the light source 6 can illuminate the parallax image 7 on the second display screen 2 to be viewed by the human eye, so that the parallax images on the first display screen 1 and the second display screen 2 can be viewed by the human eye 13. Thereby the resolution of the stereoscopic image is improved.
  • the width w of the light-transmitting strip 10 in the first polarization slit grating 3 and the width v of the polarizing strip 11 in the second polarization slit grating 4 satisfy the formula:
  • L is the optimal viewing distance
  • D is the distance between the first polarization slit grating 3 and the second polarization slit grating 4;
  • the width a of the polarizing strip in the first polarization slit grating 3 and the width b of the light transmitting strip in the second polarization slit grating 4 satisfy the formula:
  • L is the optimal viewing distance
  • D is the distance between the first polarization slit grating 3 and the second polarization slit grating 4;
  • K is the number of viewpoints
  • M is the resolution of the first display screen 1
  • N is the resolution of the second display screen 2.
  • the resolution of the first display screen 1 is 1920 ⁇ 1080
  • the pixel width of the first display screen 1 is 0.2 mm
  • the resolution of the second display screen 2 is 1920 ⁇ . 1080
  • the pixel width of the second display screen 2 is 0.18 mm
  • the width a of the polarizing strip 9 in the first polarization slit grating 3 is 0.8 mm
  • the width v of the polarizing strip 11 in the second polarization slit grating 4 is 0.72 mm.
  • the width w of the light-transmitting strip 10 in the first polarization slit grating 3 is 0.2 mm
  • the width v of the light-transmitting strip 12 in the second polarization slit grating 4 is 0.18 mm.
  • the distance D between the first polarization slit grating 3 and the second polarization slit grating 4 is 10 mm, according to the formula or
  • the best viewing distance L is 90 mm. At the optimal viewing distance L, according to the formula
  • the resolution of the stereoscopic image that can be viewed by the viewer is 768 ⁇ 1080.
  • the resolution of the stereoscopic image viewed by the viewer is 480 ⁇ 1080. Therefore, the method and apparatus of the present invention can increase the resolution of a stereoscopic image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)

Abstract

一种基于双显示屏的狭缝光栅自由立体显示装置, 其中,第一显示屏(1)上的视差图像通过第二显示屏(2)和第二偏振狭缝光栅(4)中的透光条(9)被人眼(13)观看到,第一显示屏上的条状光源(6)照亮第二显示屏上的视差图像被人眼观看到,因此第一显示屏和第二显示屏上的视差图像均能够被人眼观看到,从而提高了观察者通过狭缝光栅自由立体显示装置观看到的立体图像的分辨率。还公开了一种基于双显示屏的狭缝光栅自由立体显示方法。

Description

一种基于双显示屏的狭缝光栅自由立体显示装置及方法 技术领域
本发明涉及自由立体显示,特别涉及一种基于双显示屏的狭缝光栅自由立体显示装置及方法。
背景技术
基于双目视差的自由立体显示是一种无需任何助视设备的3D显示。根据成像设备的不同,它可以分为柱透镜光栅自由立体显示和狭缝光栅自由立体显示。与柱透镜光栅自由立体显示相比,狭缝光栅自由立体显示具有成本低、重量小和器件厚度薄等优点。
狭缝光栅自由立体显示包括显示屏和狭缝光栅。显示屏用于显示N(N大于等于2)幅视差图像。狭缝光栅的透光条和挡光条相间排列,由于挡光条对光的遮挡作用和透光条对光的透光作用,将显示屏上的N幅视差图像的光线在观看区域分开。观看者的双眼分别观看到其中的两幅视差图像,从而产生立体感。但是,观看者的双眼观看到的立体图像存在分辨率较低的问题,仅仅是显示屏分辨率的1/N,从而限制了狭缝光栅自由立体显示的应用。
发明内容
本发明的目的在于克服现有技术中所存在的上述不足,提供一种提高了立体图像的分辨率基于双显示屏的狭缝光栅自由立体显示装置及方法。
为了实现上述发明目的,本发明提供了以下技术方案:
一种基于双显示屏的狭缝光栅自由立体显示装置,包括:第一显示屏、第二显示屏、第一偏振狭缝光栅、第二偏振狭缝光栅,所述第一显示屏用于显示相间排列的视差图像和条状光源,所述第二显示屏用于显示相间排列的视差图像和透光条,所述第一显示屏与所述第一偏振狭缝光栅贴合,所述第二显示屏与第二偏振狭缝光栅贴合;
所述第一偏振狭缝光栅和第二偏振狭缝光栅由透光条和偏光条相间排列组成;所述第一偏振狭缝光栅中偏光条的偏振方向与所述第二偏振狭缝光栅中偏光条的偏振方向正交或者相反;
所述第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条对应对齐,所述第二显示屏上的视差图像与所述第二偏振狭缝光栅中的偏光条对应对齐;所述第一显示屏上的条状光源与所述第一偏振狭缝光栅中的透光条对应对齐,所述第二显示屏上的透光条与所述第二偏振狭缝光栅中的透光条对应对齐。
优选的,所述第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条的宽度相等,所述第二显示屏上的视差图像与所述第二偏振狭缝光栅中的偏光条的宽度相等;所述第一显示屏上的条状光源与所述第一偏振狭缝光栅中的透光条的宽度相等,所述第二显示屏上的透光条与所述第二偏振狭缝光栅中的透光条的宽度相等。
优选的,所述第一显示屏为液晶显示屏、等离子显示屏、有机电致发光显示屏或投影屏;所述第二显示屏为任何光强透过型的显示屏;当所述第一显示屏和第二显示屏为液晶显示屏时,与该液晶显示屏贴合的偏振狭缝光栅能够代替该液晶显示屏中的一个偏振片,但同时也可以保留该偏振片。
优选的,所述第一偏振狭缝光栅中透光条的宽度w与第二偏振狭缝光栅中偏光条的宽度v满足公式:
Figure PCTCN2016102888-appb-000001
L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
优选的,所述第一偏振狭缝光栅中偏光条的宽度a与第二偏振狭缝光栅中透光条的宽度b满足公式:
Figure PCTCN2016102888-appb-000002
L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
优选的,当在最佳观看距离L处,观看者观看到的立体图像的分辨率H满足公式:
Figure PCTCN2016102888-appb-000003
其中,K为视点数,M为第一显示屏的分辨率,N为第二显示屏的分辨率。
一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,包含以下步骤:
在第一显示屏上显示相间排列的视差图像和条状光源,在第二显示屏上显示相间排列的视差图像和透光条;
第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条对应对齐,第二显示屏上的视差图像与第二偏振狭缝光栅中的偏光条对应对齐;第一显示屏上的条状光源与第一偏振狭缝光栅中的透光条对应对齐,第二显示屏上的透光条与第二偏振狭缝光栅中的透光条对应对齐;
经过所述第一偏振狭缝光栅和第二偏振狭缝光栅中透光条的光的偏振态不变,所述第一偏振狭缝光栅中的偏光条使得通过它的光变为具有特定偏振方向的偏振光,所述第二偏振狭缝光栅中的偏光条对偏振光具有调制作用,使得通过第一偏振狭缝光栅中的偏光条的光只能通过第二偏振狭缝光栅中的透光条;
通过所述第二显示屏和所述第二偏振狭缝光栅中的透光条看到所述第一显示屏上的视差图像,所述第一显示屏上的条状光源可以照亮所述第二显示屏上的视差图像被人眼观看到,因此所述第一显示屏和第二显示屏上的视差图像均能够被人眼观看到,从而提高了立体图像的分辨率。
优选的,所述第一偏振狭缝光栅中透光条的宽度w与第二偏振狭缝光栅中偏光条的宽度v满足公式:
Figure PCTCN2016102888-appb-000004
L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
优选的,所述第一偏振狭缝光栅中偏光条的宽度a与第二偏振狭缝光栅中透光条的宽度b满足公式:
Figure PCTCN2016102888-appb-000005
L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
优选的,当在最佳观看距离L处,观看者观看到的立体图像的分辨率H满足公式:
Figure PCTCN2016102888-appb-000006
其中,K为视点数,M为第一显示屏的分辨率,N为第二显示屏的分辨率。
与现有技术相比,本发明的有益效果:提高了狭缝光栅自由立体显示装置的立体图像的分辨率。
附图说明:
图1为本发明的基于双显示屏的狭缝光栅自由立体显示的原理、结构和参数示意图。
图2为本发明的第一显示屏上视差图像和条状光源的排列示意图。
图3为本发明的第二显示屏上视差图像和透光条的排列示意图。
图中标记:1-第一显示屏,2-第二显示屏,3-第一偏振狭缝光栅,4-第二偏振狭缝光栅,5-第一显示屏上的视差图像,6-第一显示屏上的条状光源,7-第二显示屏上的视差图像,8-第二显示屏上的条状光源,9-第一偏振狭缝光栅上的偏光条,10-第一偏振狭缝光栅上的透光条,11-第二偏振狭缝光栅上的偏光条,12-第二偏振狭缝光栅上的透光条,13-观看者的眼睛。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
一种基于双显示屏的狭缝光栅自由立体显示装置,参看图1,包括:第一显示屏1、第二显示屏2、第一偏振狭缝光栅3、第二偏振狭缝光栅4,所述偏振狭缝光栅为线偏振狭缝光栅或圆偏振狭缝光栅。所述第一显示屏1用于显 示相间排列的视差图像和条状光源,图2为本发明的第一显示屏上视差图像和条状光源的排列示意图。所述第二显示屏2用于显示相间排列的视差图像和透光条,图3为本发明的第二显示屏上视差图像和透光条的排列示意图。所述第一显示屏1与所述第一偏振狭缝光栅3紧密贴合,所述第二显示屏2与第二偏振狭缝光栅4紧密贴合。
所述第一偏振狭缝光栅3和第二偏振狭缝光栅4由透光条和偏光条相间排列组成。
所述第一偏振狭缝光栅3中偏光条9的偏振方向与所述第二偏振狭缝光栅4中偏光条11的偏振方向正交或者相反。
所述第一显示屏1上的视差图像5与第一偏振狭缝光栅3中的偏光条9对应对齐且宽度相等,所述第二显示屏2上的视差图像7与所述第二偏振狭缝光栅4中的偏光条11对应对齐且宽度相等;所述第一显示屏1上的条状光源6与所述第一偏振狭缝光栅3中的透光条10对应对齐且宽度相等,所述第二显示屏2上的透光条与所述第二偏振狭缝光栅4中的透光条12对应对齐且宽度相等。
经过所述第一偏振狭缝光栅3和所述第二偏振狭缝光栅4中透光条的光的偏振态不变,经过所述第一偏振狭缝光栅3和所述第二偏振狭缝光栅4中偏光条的光的偏振方向与它所经过的偏光条的偏振方向相同。
所述第一显示屏2上的视差图像5可以通过所述第二显示屏2和所述第二偏振狭缝光栅4中的透光条被人眼观看到,所述第一显示屏2上的条状光源6可以照亮所述第二显示屏2上的视差图像7被人眼观看到,因此所述第一显 示屏1和所述第二显示屏2上的视差图像均能够被人眼观看到,从而提高了立体图像的分辨率。在具体应用时,当所述显示屏为液晶显示屏,与该液晶显示屏贴合的偏振狭缝光栅能够代替该液晶显示屏中的一个偏振片,但同时也可以保留该偏振片。
所述第一偏振狭缝光栅3中透光条10的宽度w与第二偏振狭缝光栅4中偏光条11的宽度v满足公式:
Figure PCTCN2016102888-appb-000007
L为最佳观看距离,D为第一偏振狭缝光栅3与第二偏振狭缝光栅4的间距;
所述第一偏振狭缝光栅3中偏光条的宽度a与第二偏振狭缝光栅4中透光条的宽度b满足公式:
Figure PCTCN2016102888-appb-000008
L为最佳观看距离,D为第一偏振狭缝光栅3与第二偏振狭缝光栅4的间距;
当在最佳观看距离L处,观看者观看到的立体图像的分辨率H满足公式:
Figure PCTCN2016102888-appb-000009
其中,K为视点数,M为第一显示屏1的分辨率,N为第二显示屏2的分辨率。
本发明还提供一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,包含以下步骤:
在所述第一显示屏1上显示相间排列的视差图像5和条状光源6,在第二显示屏2上显示相间排列的视差图像7和透光条。
将第一显示屏1上的视差图像5与第一偏振狭缝光栅3中的偏光条9对应对齐,第二显示屏2上的视差图像7与第二偏振狭缝光栅4中的偏光条11对应对齐;第一显示屏1上的条状光源6与第一偏振狭缝光栅3中的透光条9对应对齐,第二显示屏2上的透光条与第二偏振狭缝光栅4中的透光条12对应对齐。
经过所述第一偏振狭缝光栅3和第二偏振狭缝光栅4中透光条的光的偏振态不变,且所述第一偏振狭缝光栅3中的偏光条9使得通过它的光变为具有特定偏振方向的偏振光,所述第二偏振狭缝光栅4中的偏光条11对偏振光具有调制作用,使得通过第一偏振狭缝光栅3中的偏光条9的光只能通过第二偏振狭缝光栅4中的透光条12。
然后通过所述第二显示屏2和所述第二偏振狭缝光栅4中的透光条看到所述第一显示屏2上的视差图像5,所述第一显示屏1上的条状光源6可以照亮所述第二显示屏2上的视差图像7被人眼观看到,因此所述第一显示屏1和第二显示屏2上的视差图像均能够被人眼13观看到,从而提高了立体图像的分辨率。
在实际应用中,所述第一偏振狭缝光栅3中透光条10的宽度w与第二偏振狭缝光栅4中偏光条11的宽度v满足公式:
Figure PCTCN2016102888-appb-000010
L为最佳观看距离,D为第一偏振狭缝光栅3与第二偏振狭缝光栅4的间距;
所述第一偏振狭缝光栅3中偏光条的宽度a与第二偏振狭缝光栅4中透光条的宽度b满足公式:
Figure PCTCN2016102888-appb-000011
L为最佳观看距离,D为第一偏振狭缝光栅3与第二偏振狭缝光栅4的间距;
当在最佳观看距离L处,观看者观看到的立体图像的分辨率H满足公式:
Figure PCTCN2016102888-appb-000012
其中,K为视点数,M为第一显示屏1的分辨率,N为第二显示屏2的分辨率。
结合上述公式,当显示装置的视点数K为4,第一显示屏1的分辨率为1920×1080,第一显示屏1的像素宽度为0.2mm,第二显示屏2的分辨率为1920×1080,第二显示屏2的像素宽度为0.18mm,第一偏振狭缝光栅3中偏光条9的宽度a为0.8mm,第二偏振狭缝光栅4中偏光条11的宽度v为0.72mm,第一偏振狭缝光栅3中透光条10的宽度w为0.2mm,第二偏振狭缝光栅4中透光条12的宽度v为0.18mm。第一偏振狭缝光栅3与第二偏振狭缝光栅4的间距D为10mm,则根据公式
Figure PCTCN2016102888-appb-000013
或者
Figure PCTCN2016102888-appb-000014
可得最佳观看距离L为90mm。在最佳观看距离L处,根据公式
Figure PCTCN2016102888-appb-000015
可得观看者观看到的立体图像的分辨率为768×1080。在基于上述参数的传统的四视点狭缝光栅自由立体显示装置中,观看者观看到的立体图像的分辨率为480×1080。因此,本发明的方法及装置可以增大立体图像的分辨率。

Claims (10)

  1. 一种基于双显示屏的狭缝光栅自由立体显示装置,其特征在于,包括:第一显示屏、第二显示屏、第一偏振狭缝光栅、第二偏振狭缝光栅,所述第一显示屏用于显示相间排列的视差图像和条状光源,所述第二显示屏用于显示相间排列的视差图像和透光条,所述第一显示屏与所述第一偏振狭缝光栅贴合,所述第二显示屏与第二偏振狭缝光栅贴合;
    所述第一偏振狭缝光栅和第二偏振狭缝光栅由透光条和偏光条相间排列组成;所述第一偏振狭缝光栅中偏光条的偏振方向与所述第二偏振狭缝光栅中偏光条的偏振方向正交或者相反;
    所述第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条对应对齐,所述第二显示屏上的视差图像与所述第二偏振狭缝光栅中的偏光条对应对齐;所述第一显示屏上的条状光源与所述第一偏振狭缝光栅中的透光条对应对齐,所述第二显示屏上的透光条与所述第二偏振狭缝光栅中的透光条对应对齐。
  2. 根据权利要求1所述的一种基于双显示屏的狭缝光栅自由立体显示装置,其特征在于,所述第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条的宽度相等,所述第二显示屏上的视差图像与所述第二偏振狭缝光栅中的偏光条的宽度相等;所述第一显示屏上的条状光源与所述第一偏振狭缝光栅中的透光条的宽度相等,所述第二显示屏上的透光条与所述第二偏振狭缝光栅中的透光条的宽度相等。
  3. 根据权利要求2所述的一种基于双显示屏的狭缝光栅自由立体显示装置,其特征在于,所述第一显示屏为液晶显示屏、等离子显示屏、有机电致发光显示屏或投影屏;所述第二显示屏为任何光强透过型的显示屏;当所述第一显示屏和第二显示屏为液晶显示屏时,与该液晶显示屏贴合的偏振狭缝光栅能够代替该液晶显示屏中的一个偏振片。
  4. 根据权利要求2所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,所述第一偏振狭缝光栅中透光条的宽度w与第二偏振狭缝光栅中偏光条的宽度v满足公式:
    Figure PCTCN2016102888-appb-100001
    L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
  5. 根据权利要求2所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,所述第一偏振狭缝光栅中偏光条的宽度a与第二偏振狭缝光栅中透光条的宽度b满足公式:
    Figure PCTCN2016102888-appb-100002
    L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
  6. 根据权利要求5所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,当在最佳观看距离L处,观看者观看到的立体图像的分辨率H满足公式:
    Figure PCTCN2016102888-appb-100003
    其中,K为视点数,M为第一显示屏的分辨率,N为第二显示屏的分辨率。
  7. 一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,包含以下步骤:
    在第一显示屏上显示相间排列的视差图像和条状光源,在第二显示屏上显示相间排列的视差图像和透光条;
    第一显示屏上的视差图像与第一偏振狭缝光栅中的偏光条对应对齐,第二显示屏上的视差图像与第二偏振狭缝光栅中的偏光条对应对齐;第一显示屏上的条状光源与第一偏振狭缝光栅中的透光条对应对齐,第二显示屏上的透光条与第二偏振狭缝光栅中的透光条对应对齐;
    经过所述第一偏振狭缝光栅和第二偏振狭缝光栅中透光条的光的偏振态不变,所述第一偏振狭缝光栅中的偏光条使得通过它的光变为具有特定偏振方向的偏振光,所述第二偏振狭缝光栅中的偏光条对偏振光具有调制作用,使得通过第一偏振狭缝光栅中的偏光条的光只能通过第二偏振狭缝光栅中的透光条;
    通过所述第二显示屏和所述第二偏振狭缝光栅中的透光条看到 所述第一显示屏上的视差图像,所述第一显示屏上的条状光源可以照亮所述第二显示屏上的视差图像被人眼观看到,因此所述第一显示屏和第二显示屏上的视差图像均能够被人眼观看到,从而提高了立体图像的分辨率。
  8. 根据权利要求8所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,所述第一偏振狭缝光栅中透光条的宽度w与第二偏振狭缝光栅中偏光条的宽度v满足公式:
    Figure PCTCN2016102888-appb-100004
    L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
  9. 根据权利要求8所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,所述第一偏振狭缝光栅中偏光条的宽度a与第二偏振狭缝光栅中透光条的宽度b满足公式:
    Figure PCTCN2016102888-appb-100005
    L为最佳观看距离,D为第一偏振狭缝光栅与第二偏振狭缝光栅的间距。
  10. 根据权利要求9所述的一种基于双显示屏的狭缝光栅自由立体显示装置的显示方法,其特征在于,当在最佳观看距离L处, 观看者观看到的立体图像的分辨率H满足公式:
    Figure PCTCN2016102888-appb-100006
    其中,K为视点数,M为第一显示屏的分辨率,N为第二显示屏的分辨率。
PCT/CN2016/102888 2015-10-30 2016-10-21 一种基于双显示屏的狭缝光栅自由立体显示装置及方法 WO2017071533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510728705.XA CN105182554B (zh) 2015-10-30 2015-10-30 一种基于双显示屏的狭缝光栅自由立体显示装置及方法
CN201510728705.X 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017071533A1 true WO2017071533A1 (zh) 2017-05-04

Family

ID=54904733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102888 WO2017071533A1 (zh) 2015-10-30 2016-10-21 一种基于双显示屏的狭缝光栅自由立体显示装置及方法

Country Status (2)

Country Link
CN (1) CN105182554B (zh)
WO (1) WO2017071533A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221443A (zh) * 2019-05-25 2019-09-10 成都工业学院 基于渐变狭缝光栅的一维集成成像3d显示装置
CN113703176A (zh) * 2021-09-11 2021-11-26 成都工业学院 基于渐变复合狭缝光栅的3d显示装置
CN113741049A (zh) * 2021-09-11 2021-12-03 成都工业学院 基于双偏振复合针孔阵列的高分辨率3d显示装置
CN113741051A (zh) * 2021-09-11 2021-12-03 成都工业学院 高成像效率和宽视角的3d显示装置
CN114895481A (zh) * 2022-05-18 2022-08-12 成都工业学院 基于狭缝光栅和偏振光栅的双视3d显示装置
CN114895479A (zh) * 2022-05-18 2022-08-12 成都工业学院 宽视角双视3d显示装置
CN116047786A (zh) * 2021-03-23 2023-05-02 成都工业学院 一种多分辨率立体显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182554B (zh) * 2015-10-30 2017-06-09 成都工业学院 一种基于双显示屏的狭缝光栅自由立体显示装置及方法
CN106291957A (zh) * 2016-08-30 2017-01-04 京东方科技集团股份有限公司 一种视差挡板、显示装置及其制造方法
CN107561724B (zh) * 2017-11-01 2020-08-07 京东方科技集团股份有限公司 立体显示装置和显示设备
CN108710219A (zh) * 2018-08-13 2018-10-26 成都工业学院 基于狭缝偏振片的自由立体双视显示装置及方法
CN108681091A (zh) * 2018-08-13 2018-10-19 成都工业学院 同视区高分辨率双视3d显示装置及方法
CN108663820A (zh) * 2018-08-13 2018-10-16 成都工业学院 一种宽视角和高分辨率双视3d显示装置及方法
CN110136570B (zh) * 2019-04-28 2022-02-22 维沃移动通信有限公司 一种屏幕显示方法及终端
CN114815295B (zh) * 2022-05-18 2024-05-03 成都工业学院 基于狭缝光栅的集成成像3d显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017251A (zh) * 2007-02-02 2007-08-15 四川大学 基于偏光视差条栅屏的三维自由立体显示装置
US20080123173A1 (en) * 2006-09-14 2008-05-29 Korea Institute Of Science And Technology Image display system
CN202794785U (zh) * 2012-06-12 2013-03-13 广东睿立宝莱科技股份有限公司 重叠式双屏液晶屏
CN203433242U (zh) * 2013-07-22 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置
CN103823308A (zh) * 2014-03-04 2014-05-28 四川大学 一种基于偏振光栅的集成成像双视3d显示装置
CN105182554A (zh) * 2015-10-30 2015-12-23 成都工业学院 一种基于双显示屏的狭缝光栅自由立体显示装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778543B2 (ja) * 1995-07-27 1998-07-23 日本電気株式会社 立体表示装置
JP2005010303A (ja) * 2003-06-17 2005-01-13 Sea Phone Co Ltd 表示装置
CN101313595A (zh) * 2005-07-11 2008-11-26 iz3D有限公司 适于三维成像的具有圆偏振和偏振眼镜的双面板液晶系统
WO2007070721A2 (en) * 2005-12-15 2007-06-21 Michael Mehrle Stereoscopic imaging apparatus incorporating a parallax barrier
CN101196615A (zh) * 2006-12-06 2008-06-11 万双 偏振光栅立体显示器
CN101666915B (zh) * 2009-09-17 2014-03-12 曹嘉灿 一种自由立体显示装置
CN102122077B (zh) * 2011-03-23 2012-05-23 四川大学 双狭缝光栅液晶自由立体显示器
KR20130010834A (ko) * 2011-07-19 2013-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN104049451B (zh) * 2013-03-12 2017-11-03 耿征 真三维显示装置和系统、真三维显示控制方法和装置
CN103823328B (zh) * 2014-03-07 2016-06-08 清华大学深圳研究生院 一种裸眼立体投影系统
CN103869489B (zh) * 2014-03-12 2017-02-01 深圳市华星光电技术有限公司 显示装置和显示系统
CN104020573B (zh) * 2014-06-04 2016-03-23 四川大学 一种基于正交偏振方向性背光源的多视点3d显示装置
CN104714305A (zh) * 2014-12-02 2015-06-17 上海理鑫光学科技有限公司 一种将二维图像进行三维成像的光学显示装置
CN104678560B (zh) * 2015-03-03 2017-07-18 深圳超多维光电子有限公司 立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123173A1 (en) * 2006-09-14 2008-05-29 Korea Institute Of Science And Technology Image display system
CN101017251A (zh) * 2007-02-02 2007-08-15 四川大学 基于偏光视差条栅屏的三维自由立体显示装置
CN202794785U (zh) * 2012-06-12 2013-03-13 广东睿立宝莱科技股份有限公司 重叠式双屏液晶屏
CN203433242U (zh) * 2013-07-22 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置
CN103823308A (zh) * 2014-03-04 2014-05-28 四川大学 一种基于偏振光栅的集成成像双视3d显示装置
CN105182554A (zh) * 2015-10-30 2015-12-23 成都工业学院 一种基于双显示屏的狭缝光栅自由立体显示装置及方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221443A (zh) * 2019-05-25 2019-09-10 成都工业学院 基于渐变狭缝光栅的一维集成成像3d显示装置
CN110221443B (zh) * 2019-05-25 2024-02-23 成都航空职业技术学院 基于渐变狭缝光栅的一维集成成像3d显示装置
CN116047786A (zh) * 2021-03-23 2023-05-02 成都工业学院 一种多分辨率立体显示装置
CN113703176A (zh) * 2021-09-11 2021-11-26 成都工业学院 基于渐变复合狭缝光栅的3d显示装置
CN113741049A (zh) * 2021-09-11 2021-12-03 成都工业学院 基于双偏振复合针孔阵列的高分辨率3d显示装置
CN113741051A (zh) * 2021-09-11 2021-12-03 成都工业学院 高成像效率和宽视角的3d显示装置
CN113741051B (zh) * 2021-09-11 2023-07-07 成都航空职业技术学院 高成像效率和宽视角的3d显示装置
CN113741049B (zh) * 2021-09-11 2024-05-10 成都工业学院 基于双偏振复合针孔阵列的高分辨率3d显示装置
CN114895481A (zh) * 2022-05-18 2022-08-12 成都工业学院 基于狭缝光栅和偏振光栅的双视3d显示装置
CN114895479A (zh) * 2022-05-18 2022-08-12 成都工业学院 宽视角双视3d显示装置
CN114895481B (zh) * 2022-05-18 2024-05-10 成都工业学院 基于狭缝光栅和偏振光栅的双视3d显示装置
CN114895479B (zh) * 2022-05-18 2024-05-10 成都工业学院 宽视角双视3d显示装置

Also Published As

Publication number Publication date
CN105182554B (zh) 2017-06-09
CN105182554A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017071533A1 (zh) 一种基于双显示屏的狭缝光栅自由立体显示装置及方法
US9052537B1 (en) 2D/3D image switching type liquid crystal display
KR100852758B1 (ko) 영상 디스플레이 장치
US9057909B2 (en) Liquid crystal lens and 3D display device
JP2006284873A (ja) 画像表示装置
US20080117506A1 (en) Three-dimensional image forming screen
TW201428347A (zh) 立體顯示裝置
CN109254412B (zh) 基于矩形针孔阵列的双视3d显示装置
CN111781737B (zh) 一种高分辨率双视3d显示装置及方法
WO2011125462A1 (ja) アクティブシャッターメガネ及び立体映像認識システム
CN109298538B (zh) 均匀光学效率的双视3d显示装置
WO2017016195A1 (zh) 显示装置及其工作方法
US9377676B2 (en) Autostereoscopic display device
CN101017251A (zh) 基于偏光视差条栅屏的三维自由立体显示装置
CN113009709B (zh) 基于复合针孔阵列的双视3d显示方法
KR100662046B1 (ko) 박판 편광판과 위상차판을 구비한 액정표시장치
CN110068934B (zh) 基于偏振片的一维集成成像双视3d显示装置及方法
CN111781734A (zh) 基于双显示屏的双视3d显示装置及方法
CN212276122U (zh) 基于双显示屏的双视3d显示装置
TWI386035B (zh) 立體顯示裝置及立體顯示方法
WO2015035713A1 (zh) 立体显示装置
KR20180047689A (ko) 패널 장치 및 디스플레이 장치
JP2003295115A (ja) 眼鏡なし立体映像表示装置
CN108663818B (zh) 一种自由立体双视显示装置及方法
CN109445117B (zh) 一种二维集成成像3d显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858968

Country of ref document: EP

Kind code of ref document: A1