WO2017071462A1 - 一种具有宽带光谱的光源 - Google Patents

一种具有宽带光谱的光源 Download PDF

Info

Publication number
WO2017071462A1
WO2017071462A1 PCT/CN2016/101693 CN2016101693W WO2017071462A1 WO 2017071462 A1 WO2017071462 A1 WO 2017071462A1 CN 2016101693 W CN2016101693 W CN 2016101693W WO 2017071462 A1 WO2017071462 A1 WO 2017071462A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
visible
infrared
spectrum
Prior art date
Application number
PCT/CN2016/101693
Other languages
English (en)
French (fr)
Inventor
苑高强
Original Assignee
高利通科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高利通科技(深圳)有限公司 filed Critical 高利通科技(深圳)有限公司
Publication of WO2017071462A1 publication Critical patent/WO2017071462A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry

Definitions

  • the present invention relates to a light source for material analysis, and more particularly to a light source having broadband spectral design features for spectral analysis and measurement.
  • the broadband source commonly used in spectroscopic analysis on the market is a tungsten-tungsten lamp, that is, a combination of a xenon lamp and a tungsten lamp by a reflective structure or a transmissive structure for spectral analysis measurement.
  • the spectrum of tungsten and xenon lamps is shown in Figure 1 (no absolute spectral intensity calibration), and 101 is the spectrum of tungsten lamps.
  • 102 is a xenon lamp spectrum
  • 103 is a xenon lamp peak spectrum 656. lnm.
  • the spectrum in Figure 1 is measured by a spectrometer with a CCD detector.
  • the visible light peak in the tungsten lamp spectrum 101 is between 571 nm and 637 nm.
  • a tungsten-tungsten lamp having a transmissive structure is illustrated as an example, as shown in FIG.
  • the design is to focus the light emitted by the tungsten lamp 201 with the lens 202 and pass through the aperture beam in the bulb of the xenon lamp 203 to form a broadband spectrum 204 with the light emitted by the xenon lamp (such as a ⁇ produced by Avantes, the Netherlands). Tungsten light broadband source - AvaLight-DH-S, etc.). It is known from the spectrum in Fig.
  • the xenon lamp spectrum (ultraviolet to visible) has a partial peak spectrum (such as 656.1 nm, etc.) which easily saturates the detector of the spectrometer; When the detector of the saturated helium spectrometer does not work properly.
  • some companies use a two-color spectroscope to filter out most of the 656. lnm spike spectrum to avoid saturation problems (such as a tungsten-tungsten broadband source produced by Avantes in the Netherlands - AvaLight-DH-S-BAL, etc.), but This will increase the cost because the dichroic mirror is made by the coating process.
  • the spectral responsivity of CCD or CMOS is very low in the near-infrared spectrum
  • the signal-to-noise ratio of the corresponding near-infrared spectral section is small and is not conducive to spectral analysis measurement.
  • high-power tungsten lamps can be used to increase near-infrared light intensity, this can lead to new problems such as increased power consumption and more heat generation, and in the case of increasing near-infrared pupils, the visible portion will also increase when visible light Partially strong to a certain extent The spectrometer produces saturation; the detector of this spectrometer does not work properly.
  • a light source having a broadband spectrum having a broad spectrum of broadband and nearly doubled near-infrared light, including ultraviolet light, visible light, and near-infrared light capable of solving broadband
  • the spectrum of xenon lamp in the spectrum is like 656.1nm spike spectrum and the relative intensity of visible light relative to ultraviolet light and near-infrared light is easy to make the saturation problem of spectrometer with CCD or CMOS as detector. It can solve the near-infrared optical signal noise in broadband spectrum. A lower than the problem.
  • the present invention provides a light source having a broadband spectrum, comprising: a first light source, a short pass filter, a second light source, a visible attenuation filter, a third light source, and a long pass filter.
  • a light combining device wherein the light combining device comprises three light input interfaces and one light output interface, wherein the first light source is an ultraviolet light source, and the second light source is a light source including ultraviolet light, visible light and near infrared light, and the third light source
  • the first light source is an ultraviolet light source
  • the second light source is a light source including ultraviolet light, visible light and near infrared light
  • the third light source For light sources including ultraviolet light, visible light, and near-infrared light, or near-infrared light sources,
  • the light emitted by the first light source passes through the short pass filter to obtain a gentle ultraviolet light, and the gentle ultraviolet light is coupled into the first optical input interface of the light combining device;
  • the light generated by the second light source passes through the visible attenuation filter to obtain light that is partially attenuated by the visible light, and the light that is partially attenuated by the visible light is coupled into the second optical input interface of the light combining device.
  • the light generated by the third light source passes through the long pass filter to obtain near-infrared light, and the near-infrared light is coupled into a third optical input interface of the light combining device;
  • the light combining device combines light entering by the three optical input interfaces and outputs a flat broadband spectrum including ultraviolet light, visible light, and near-infrared light through the light output interface.
  • the light combining device includes a first two-in-one Y-type optical fiber and a second two-in-one Y-type optical fiber.
  • the light emitted by the first light source passes through the short pass filter and is coupled into one of the input connectors of the first two-in-one Y-type optical fiber, and the light generated by the second light source passes through the Visible attenuation filter a further input connector that is post-coupled into the first two-in-one Y-type fiber;
  • an output connector of the first two-in-one fiber is connected to one of the input connectors of the second two-in-one fiber, and the light generated by the third source passes through the long-wave filter.
  • a further input connector coupled to the second two-in-one type of fiber;
  • the output connector output of the second two-in-one type of fiber includes a flat broadband spectrum of ultraviolet light, visible light, and near-infrared light.
  • the light combining device includes a three-in-one optical fiber, and the three-in-one optical fiber includes three optical input connectors and one optical output connector.
  • the light emitted by the first light source passes through the short pass filter and is coupled into the first optical input connector of the three-in-one optical fiber, and the light generated by the second light source passes through the visible attenuation filter.
  • the light sheet is post-coupled into the second optical input connector of the three-in-one optical fiber, and the light generated by the third light source is coupled to the third optical input of the three-in-one optical fiber after passing through the long-wavelength filter.
  • the light output connector of the three-in-one fiber outputs a flat broadband spectrum comprising ultraviolet light, visible light, and near-infrared light.
  • a near-infrared light multi-coupling a method in which visible light and ultraviolet light are less coupled, that is, an optical fiber used in the third light source uses a fiber having a larger core diameter to balance the light intensity of each portion.
  • the optical fiber is bifurcated or branched.
  • the light is coupled to the input or output of the fiber optic connector for direct coupling or coupling with a lens.
  • the light combining device includes a first light combining sheet, a second light combining sheet, a first mirror, and a second mirror.
  • the light emitted by the first light source passes through the short pass filter and is reflected by the first mirror to reach the second light combining sheet;
  • the light generated by the second light source passes through the visible attenuation filter and enters the first light combining sheet, and the light generated by the third light source passes through the long wave pass filter and passes through the second reflection Mirror reflection into the first light combining sheet, the first light combining sheet combines light generated by the second light source and the third light source to be output to the second light combining sheet;
  • the second light combining sheet combines the light output by the first light combining sheet with the light generated by the first light source
  • the output includes a flat broadband spectrum of ultraviolet, visible, and near-infrared light.
  • the output light intensity of the second light source and the third light source is adjusted by adjusting the driving current thereof.
  • the light output interfaces of the first light source, the second light source, and the third light source are further provided with a neutral light attenuating sheet for balancing light intensity.
  • the first light source is a xenon lamp, a hydrogen lamp or a xenon lamp
  • the second light source is a tungsten lamp or a xenon lamp
  • the third light source is a tungsten lamp or a xenon lamp.
  • the truncated peak spectrum portion of the present invention is designed to filter the visible light of the 656.1 nm peak of the ultraviolet light source by a short-wavelength filter to obtain a gentle ultraviolet spectrum, and then smooth the light spectrum.
  • the ultraviolet light, the visible light and the near-infrared light generated by the ultraviolet light and the second source spectrum, and the near-infrared spectrum generated by the third light source combine to obtain a broadband spectrum which is broadly broadband and nearly doubled by near-infrared light, including ultraviolet light, visible light, and near Infrared light.
  • the second technical problem to be solved by the present invention is directed to a spectrometer using CCD or CMOS as a detector.
  • the visible light is relatively high in intensity relative to ultraviolet light and near-infrared light, and it is easy to use CCD or CMOS as a detector.
  • a design scheme for attenuating visible light with an attenuating filter proposed by the problem of spectrometer saturation.
  • the present invention proposes to reduce the ultraviolet light and the visible light portion of the spectrum of the second light source with a visible attenuation filter to balance its relative intensity with ultraviolet light and near-infrared light.
  • the visible light portion is not saturated with a spectrometer that uses CCD or CMOS as a detector.
  • the third technical problem to be solved by the present invention is directed to a spectrometer using CCD or CMOS as a detector, the infrared spectrum has low responsivity, and the corresponding signal-to-noise ratio is small, which is disadvantageous to the problem of spectral analysis and measurement. Infrared light superposition design.
  • the present invention proposes a near-infrared light superposition design using a second light source and a third light source to increase the near-infrared spectrum portion and improve the signal-to-noise ratio thereof, that is, the long-wavelength filter will be used.
  • the near-infrared spectrum of the three sources is filtered by ultraviolet light and visible light. Then, the gentle ultraviolet light generated by the first light source and the ultraviolet light, the visible light and the near-infrared light generated by the second light source, and the near-infrared light generated by the third light source are combined.
  • a wideband spectrum that flattens broadband and nearly doubles near-infrared light, including the benefits of ultraviolet, visible, and near-infrared light
  • one of the technical problems to be solved by the present invention is to solve the problem that the xenon lamp spectrum in the broadband spectrum has a peak spectrum of 656. Inm, which easily saturates the spectrometer with CCD or CMOS as a detector. A proposed design for filtering out visible light in the spectrum of a xenon lamp is proposed.
  • the second technical problem to be solved by the present invention is directed to a spectrometer using a CCD or a CMOS as a detector.
  • a design scheme for attenuating visible light with an attenuating filter proposed in the broadband spectrum in which the intensity of visible light relative to ultraviolet light and near-infrared light is too large to easily saturate the spectrometer with CCD or CMOS as a detector.
  • the third technical problem to be solved by the present invention is to provide a second light source and a low signal-to-noise ratio (SNR) of a near-infrared light in a broadband spectrum of a spectrometer using CCD or CMOS as a detector.
  • SNR signal-to-noise ratio
  • FIG. 1 is a spectrum of a conventional tungsten lamp and a xenon lamp
  • FIG. 2 is a schematic diagram of a conventional tungsten light source in the prior art
  • FIG. 3 is a schematic structural diagram of a first embodiment of the present invention.
  • Figure 5 is a sample permeability measured by the present invention.
  • FIG. 6 is a schematic structural diagram of a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a third embodiment of the present invention.
  • a light source having a broadband spectrum includes a first light source, a short pass filter, a second light source, a visible attenuation filter, a third light source, a long pass filter, and a light combining device.
  • the light combining device comprises three light input interfaces and one light output interface, wherein the first light source is an ultraviolet light source, the second light source is a light source including ultraviolet light, visible light and near infrared light, and the third light source comprises ultraviolet light, visible light and a near-infrared light source or a near-infrared light source, the light emitted by the first light source passes through the short-wavelength filter to obtain a gentle ultraviolet light, and the gentle ultraviolet light is coupled into the first optical input interface of the light combining device;
  • the light generated by the two light sources passes through the visible attenuation filter to obtain the light whose visible light is partially attenuated, and the light whose visible light is attenuated is coupled into the second optical input interface of the light combining device; the light generated by the third light source passes through the long wave pass filter.
  • the near-infrared light is coupled, and the near-infrared light is coupled into the third optical input interface of the light combining device; the light combining device will be input by three light sources.
  • the light entering port bonded through the light output interface comprises a broadband spectrum gentle ultraviolet, visible and near infrared light.
  • the present invention utilizes a three-spectrum combination, that is, a broadband spectrum including ultraviolet light, visible light, and near-infrared light by performing de-spike spectrum, smoothing visible light, and intercepting near-infrared light treatment after combining three spectra.
  • the invention uses a short-wavelength filter to filter out the visible spectrum containing the peak line in the first light source to obtain a gentle ultraviolet spectrum, and the visible light portion of the second source spectrum is weakened by the visible attenuation filter, and the long-wavelength filter is used.
  • the ultraviolet and visible light of the third light source is filtered to obtain a near-infrared spectrum, and then the obtained ultraviolet spectrum, the attenuated portion of the visible light, and the near-infrared light are combined to obtain a broadband spectrum in which the broadband is nearly doubled and the near-infrared light is almost doubled.
  • a relatively high signal-to-noise ratio can be obtained at near-infrared light; in addition, when the overall light source intensity is increased, the intensity of ultraviolet light, visible light, and near-infrared light is increased. ⁇ , the visible portion does not saturate such spectrometers over a large dynamic range.
  • the broadband light source designed by the invention is economical and practical, and can be widely used for material analysis and measurement, and is convenient and practical.
  • a tungsten lamp is used as a light source including ultraviolet light, visible light, and near-infrared light, and a near-infrared light source. Therefore, in the following embodiments, the present invention employs a xenon lamp as a first light source, a first tungsten lamp as a second light source, and a second tungsten lamp as a third light source.
  • the first light source can also adopt other ultraviolet light sources, such as xenon lamps; Other light sources including ultraviolet light, visible light and near-infrared light, such as xenon lamps, etc.; the third light source may also use other near-infrared light sources or light sources including ultraviolet light, visible light and near-infrared light, such as xenon lamps.
  • the xenon lamp and the tungsten lamp in the following embodiments are not intended to limit the invention.
  • the light source having the broadband spectrum in this embodiment includes a xenon lamp 301, a short pass filter 302, a first tungsten lamp 304, a visible attenuation filter 305, a second tungsten lamp 307, and a long wave.
  • the pass filter 308 and the light combining device, the light combining device includes a first 2-in-1 Y-type fiber and a second 2-in-1 Y-type fiber, and the first 2-in-1 Y-type fiber includes two fiber input connectors 303 And a fiber optic output connector 310, the second 2-in-1 Y-fiber includes two fiber input connectors 309, 311 and a fiber output connector 312.
  • the first two-in-one Y-type fiber and the second two-in-one Y-type fiber are bifurcated or split.
  • the visible light containing the 656.1 nm spike spectrum in the xenon lamp spectrum is filtered to obtain a gentle ultraviolet spectrum, which is subjected to the first two-in-one Y-type.
  • the first fiber optic input connector 303 in the fiber is coupled into the fiber and into the first 2-in-1 Y-fiber output connector 310.
  • the visible portion thereof is attenuated to balance its relative intensity with the ultraviolet light and the near-infrared light emitted by the first tungsten lamp 304; when the overall light source intensity is increased, including ultraviolet light
  • the intensity of light, visible light, and near-infrared light which is not saturated with spectrometers that use CCD or CMOS as detectors; the attenuated visible and ultraviolet and near-infrared light passes through the first two-in-one Y-type fiber
  • a second fiber optic input connector 306 is coupled into the fiber and transmitted to the first 2-in-1 Y-fiber output connector 310.
  • a broadband spectrum including ultraviolet light, visible light, and near-infrared light can be obtained at the first 2-in-1 Y-type fiber output connector 310, and the broadband spectrum is passed through the first fiber connector of the second 2-in-1 Y-type fiber.
  • the 311 is coupled into the fiber and transmitted to the second 2-in-1 Y-fiber output connector 3 12 .
  • the light emitted by the second tungsten lamp 307 having the same performance as the first tungsten lamp 304 passes through the long-wavelength filter 308, wherein the ultraviolet light and the visible light are filtered to obtain near-infrared light, and the near-infrared light passes through.
  • the second fiber optic connector 309 of the second 2-in-1 Y-fiber is coupled into the fiber and transmitted to the second 2-in-1 Y-fiber output connector 312.
  • a flat broadband spectrum including ultraviolet light, visible low beam, and infrared light superimposed on the double-tungsten lamp near-infrared light can be obtained.
  • Spectral measurement using this broadband spectrum with a spectrometer using CCD or CMOS as a detector available in near-infrared light Higher signal-to-noise ratio;
  • the overall light source intensity including ultraviolet, visible, and near-infrared light
  • the visible portion of the visible light will not saturate such a spectrometer over a large dynamic range.
  • the light is coupled to the input or output of the fiber optic connector for direct coupling or coupling with a lens.
  • the near-infrared light obtained by the present invention nearly doubles the gradual wideband (including ultraviolet light, visible light, and near-infrared light) spectrum (no absolute spectral intensity calibration), and the spectral range thereof is about It is 350nm-l OOOnm; this spectrum is measured by a spectrometer using a CCD as a detector, and its spectral range mainly depends on the spectral response range of the CCD.
  • the spectral range of the present invention is larger than the above range, and a spectrometer having a wider spectral range can also measure a wider spectrum of the lamp.
  • 401 is the ultraviolet spectrum
  • 402 is the visible light spectrum
  • 403 is the near infrared spectrum.
  • the minimum light intensity in the broadband spectrum (gray value of 4810.38 at 998.00 nm) can meet the spectral measurement requirements, the highest value
  • the essential feature of the present invention is that the broadband spectrum is matched with a spectrometer using CCD or CMOS as a detector for spectral measurement, and a relatively high signal-to-noise ratio can be obtained at near-infrared light; and when an overall light source (including ultraviolet light, Visible light and near-infrared light) Intensity ⁇ , the visible light portion does not saturate such spectrometers over a large dynamic range.
  • an overall light source including ultraviolet light, Visible light and near-infrared light
  • Intensity ⁇ the visible light portion does not saturate such spectrometers over a large dynamic range.
  • FIG. 5 it is the transmittance of a certain glass sample (QB2) measured by the present invention.
  • 501 is a broadband light source with a combination of only one xenon lamp and one tungsten lamp (like the similar lamps that are commonly found on the market today).
  • the tungsten light source broadband source of Avantes in the Netherlands -AvaLight-DH-S is a tungsten light source broadband source of Avantes in the Netherlands -AvaLight-DH-S.
  • the measured transmittance of the glass sample, 502 is the transmittance of the glass sample measured by the present invention
  • 503 is the non-spectrum obtained in the near-infrared light by a broadband source having only one xenon lamp and one tungsten lamp combination.
  • the signal is noise.
  • a good spectrum can be measured in the near-infrared light in the transmittance 502; that is, the present invention performs spectral measurement in conjunction with a spectrometer using a CCD or a CMOS as a detector under the premise that a broadband spectrum can also be realized.
  • a very high signal-to-noise ratio can be obtained at near-infrared light; and when the overall light source intensity is increased, the visible light portion does not saturate such a spectrometer over a large dynamic range.
  • the light source having a broadband spectrum includes a xenon lamp 601, a short pass filter 602, a first tungsten lamp 60, a visible attenuation filter 605, a second tungsten lamp 607, and a long pass filter.
  • Sheet 608 and as a light combining device The three-in-one fiber, the three-in-one fiber includes a first fiber input connector 603, a second fiber input connector 606, a third fiber input connector 609, and a light output connector 610.
  • the three-in-one fiber is bifurcated or split.
  • the visible light spectrum of the 656.1 nm peak spectrum is filtered out to obtain a gentle ultraviolet spectrum, and the ultraviolet spectrum is first through the three-in-one fiber.
  • Fiber optic connector 603 is coupled into the fiber and then transmits light output connector 610.
  • the visible portion thereof is attenuated to balance the relative intensity of the ultraviolet light and the near-infrared light spectrum emitted by the first tungsten lamp 604; so that when the overall light source is increased
  • the intensity includes the intensity of ultraviolet light, visible light, and near-infrared light, which is not saturated with a spectrometer that uses CCD or CMOS as a detector; the light emitted by the attenuated first tungsten lamp 604 passes through a second in a three-in-one fiber.
  • a fiber optic connector 606 is coupled into the fiber and then transmits a light output connector 610.
  • the light emitted by the second tungsten lamp 607 passes through the long pass filter 608, wherein the ultraviolet light and the visible light are filtered to obtain near-infrared light, and the near-infrared light is coupled into the third fiber joint 609 in the three-in-one fiber.
  • the optical fiber is retransmitted to the optical output connector 610. In this way, a light broadband output spectrum of the double-tungsten lamp near-infrared light including ultraviolet, visible, and near-infrared light can be obtained at the light output connector 610.
  • a relatively high signal-to-noise ratio can be obtained at near-infrared light; in addition, when the overall light source intensity is increased, including the intensity of ultraviolet light, visible light, and near-infrared light.
  • the visible portion of the visible light is not saturated with such a spectrometer over a large dynamic range.
  • the light is coupled to the input or output of the fiber optic connector for direct coupling or coupling with a lens.
  • the light source having a broadband spectrum includes a xenon lamp 701, a short pass filter 702, a first tungsten lamp 74, a visible attenuation filter 705, a second tungsten lamp 708, and a long pass filter.
  • the sheet 709 and the light combining device, the light combining device comprises: a first mirror 703, a second mirror 710, a first light combining sheet 706 (short wave long mirror), and a second light combining sheet 707 (long wave passing mirror) ).
  • the spectrum of the xenon lamp containing 656.1 nm peak spectrum is filtered to obtain a gentle ultraviolet spectrum, which is reflected by the first mirror 703 and then passed through
  • the second light-supplied sheet (long-wavelength short-wave mirror) is reflected by 707 and output.
  • the visible portion thereof is attenuated to balance the relative intensity of the ultraviolet light and the near-infrared light emitted by the first tungsten lamp 704; when the overall light source intensity is increased Including ultraviolet light, visible light and near infrared
  • the intensity of the light ⁇ , the visible light portion is not saturated with the spectrometer using CCD or CMOS as a detector; the attenuated visible light and near-infrared light pass through the first combined light sheet (short wave long wave mirror) 706 and then pass through the second The light sheet (long-wavelength short-wave mirror) is output after 707.
  • the light emitted by the second tungsten lamp 708 passes through the long-wavelength filter 7 09, wherein the ultraviolet light and the visible light are filtered to obtain near-infrared light, which is reflected by the second mirror 710 and then passed through the second combined light.
  • the chip (long wave pass short wave mirror) is output after 707. In this way, a flat broadband spectrum including ultraviolet light, visible light, and near-infrared light superimposed on the double-tungsten lamp near-infrared light can be obtained at the second light combining sheet 707.
  • a relatively high signal-to-noise ratio can be obtained at near-infrared light; in addition, when the overall light source intensity is increased, including the intensity of ultraviolet light, visible light, and near-infrared light.
  • the visible portion of the visible light is not saturated with such a spectrometer over a large dynamic range.
  • the output light intensity of the first tungsten lamp and the second tungsten lamp can be adjusted by adjusting the drive current thereof.
  • the light output interfaces of the xenon lamp, the first tungsten lamp, and the second tungsten lamp may also be respectively provided with neutral light attenuating sheets for balancing the light intensity.
  • a near-infrared light multi-coupling (such as using a larger core fiber, etc.), a less coupling of visible light and ultraviolet light (such as using a smaller core fiber, etc.), that is, a third light source is used.
  • the fiber uses a larger core fiber to balance the light intensity of each part. It is possible to overcome the drawback that the near-infrared light portion of the CCD or COMS at the near-infrared light is relatively weak and the near-infrared light portion is relatively weak.
  • the first tungsten lamp may be other light sources including ultraviolet light, visible light, and near-infrared light; the second tungsten light may be other near-infrared light sources; and the xenon lamp may be other ultraviolet light sources.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种具有宽带光谱的光源,用短波通滤光片(302)将氘灯(301)含有尖峰谱线的可见光谱滤掉得到平缓的紫外光谱,用可见衰减滤光片(305)将第一钨灯(304)光谱中可见光部分减弱,用长波通滤光片(308)将第二钨灯(307)的紫外和可见光滤掉得近红外光谱。再将氘灯(301)产生的平缓紫外光和第一钨灯(304)光谱产生的紫外光、可见光与近红外光,以及第二钨灯(307)产生的近红外光谱通过合光装置合并即可得平缓宽带而且近红外光强度几乎加倍的宽带光谱光源。用该宽带光谱光源配合以CCD或CMOS作为探测器的光谱仪进行光谱测量时,在近红外光处可以获得比较高的信噪比;当增加整体光源强度时,在很大的动态范围内可见光部分不会对此类光谱仪饱和。

Description

一种具有宽带光谱的光源
技术领域
[0001] 本发明涉及一种用于材料分析的光源, 更具体的说是涉及一种用于光谱分析与 测量的具有宽带光谱设计特点的光源。
背景技术
[0002] 目前, 市场上光谱分析常用的宽带光源是氘钨灯, 即或利用反射结构或利用透 射结构将氘灯和钨灯所发出的光组合到一起做光谱分析测量之用。 钨灯和氘灯 的光谱图 1所示 (未做绝对光谱强度标定) , 101是钨灯光谱,
102是氘灯光谱, 103是氘灯尖峰光谱 656. lnm。 图 1中光谱是以 CCD为探测器的 光谱仪测量所得。 其中钨灯光谱 101中的可见光峰值在 571nm至 637nm之间。 当 用这类钨灯配合此类光谱仪进行光谱测量吋, 如需要增加整体光源强度 (包括 紫外光、 可见光和近红外光) 以增加近红外光吋, 当可见光部分强到一定程度 吋对此类光谱仪会产生饱和; 此吋光谱仪的探测器便不能正常工作。
[0003] 为简明起见, 仅以具有透射结构的氘钨灯作为一个例子说明, 如图 2所示。 其 设计是将¾钨灯 201发出的光用透镜 202聚焦并通过氘灯 203灯泡中的小孔光栏后 与氘灯发出的光合光得到宽带光谱 204 (如由荷兰 Avantes公司生产的一种氘钨灯 宽带光源 -AvaLight-DH-S等)。 由图 1中光谱便知, 此类氘钨灯存在两个固有的问 题: 一是氘灯光谱 (紫外光到可见光) 有部分尖峰光谱(如 656.1nm等)而容易使 光谱仪的探测器饱和; 当饱和吋光谱仪的探测器不能正常工作。 虽然, 有公司 采用二色分光镜滤掉大部分 656. lnm尖峰光谱以避免饱和问题 (如由荷兰 Avantes 公司生产的一种氘钨灯宽带光源 -AvaLight-DH-S-BAL等) , 但相对而言会增加 成本, 因为二色分光镜要由镀膜工艺制作而成。 二是因为 CCD或 CMOS光谱响应 度在近红外光谱段很低, 所以对于以 CCD或 CMOS作为探测器的光谱仪, 相应近 红外光谱段的信噪比小而不利于光谱分析测量。 虽然可以使用高功率钨灯以增 加近红外光强度, 但这会带来新的问题如加大功耗和产生更多热量等, 而且在 增加近红外光吋, 可见光部分也会增加, 当可见光部分强到一定程度吋对此类 光谱仪会产生饱和; 此吋光谱仪的探测器便不能正常工作。
[0004] 综上可知, 现有技术在实际使用上显然存在不便与缺陷, 所以有必要加以改进 技术问题
[0005] 针对上述的缺陷, 本发明的目的在于提供一种具有宽带光谱的光源, 该光源具 有平缓宽带而且近红外光几乎加倍的宽带光谱, 包括紫外光、 可见光和近红外 光, 能解决宽带光谱中氘灯光谱有如 656.1nm尖峰谱以及可见光相对紫外光、 近 红外光强度过大而容易使以 CCD或 CMOS作为探测器的光谱仪的饱和问题, 同吋 能够解决宽带光谱中近红外光信噪比低的问题。
问题的解决方案
技术解决方案
[0006] 为了实现上述目的, 本发明提供一种具有宽带光谱的光源, 包括: 第一光源、 短波通滤光片、 第二光源、 可见衰减滤光片、 第三光源、 长波通滤光片以及合 光装置, 所述合光装置包括三个光输入接口以及一个光输出接口, 其中第一光 源为紫外光光源, 第二光源为包括紫外光、 可见光与近红外光的光源, 第三光 源为包括紫外光、 可见光与近红外光的光源或近红外光光源,
[0007] 所述第一光源发出的光经过所述短波通滤光片后得到平缓的紫外光, 所述平缓 的紫外光耦合进入所述合光装置的第一个光输入接口;
[0008] 所述第二光源产生的光经过所述可见衰减滤光片后得到可见光部分被衰减的光 , 所述可见光部分被衰减的光耦合进入所述合光装置的第二个光输入接口;
[0009] 所述第三光源产生的光经过所述长波通滤光片后得到近红外光, 所述近红外光 耦合进入所述合光装置的第三个光输入接口;
[0010] 所述合光装置将由所述三个光输入接口进入的光进行合光后经所述光输出接口 输出包括紫外光、 可见光和近红外光的平缓宽带光谱。
[0011] 根据本发明的光源, 所述合光装置包括第一个二合一 Y型光纤以及第二个二合 一 Y型光纤,
[0012] 所述第一光源发出的光经过所述短波通滤光片后耦合进入所述第一个二合一 Y 型光纤的其中一个输入接头, 所述第二光源产生的光经过所述可见衰减滤光片 后耦合进入所述第一个二合一 Y型光纤的另一输入接头;
[0013] 所述第一个二合一 Υ型光纤的输出接头连接所述第二个二合一 Υ型光纤的其中 一个输入接头, 所述第三光源产生的光经过所述长波通滤光片后耦合进入所述 第二个二合一 Υ型光纤的另一输入接头;
[0014] 所述第二个二合一 Υ型光纤的输出接头输出包括紫外光、 可见光和近红外光的 平缓宽带光谱。
[0015] 根据本发明的光源, 所述合光装置包括三合一光纤, 三合一光纤包括三个光输 入接头以及一个光输出接头,
[0016] 所述第一光源发出的光经过所述短波通滤光片后耦合进入所述三合一光纤的第 一个光输入接头, 所述第二光源产生的光经过所述可见衰减滤光片后耦合进入 所述三合一光纤的第二个光输入接头, 所述第三光源产生的光经过所述长波通 滤光片后耦合进入所述三合一光纤的第三个光输入接头;
[0017] 所述三合一光纤的光输出接头输出包括紫外光、 可见光和近红外光的平缓宽带 光谱。
[0018] 根据本发明的光源, 采用近红外光多耦合、 可见光及紫外光少耦合的方法, 即 第三光源所用的光纤采用较大芯径的光纤以平衡各部分的光强。
[0019] 根据本发明的光源, 所述光纤为分叉或分劈式。
[0020] 根据本发明的光源, 所述光与光纤接头的输入或输出耦合为直接耦合或用透镜 耦合。
[0021] 根据本发明的光源, 所述合光装置包括第一合光片、 第二合光片、 第一反射镜 以及第二反射镜,
[0022] 所述第一光源发出的光经过所述短波通滤光片后经所述第一反射镜反射到达所 述第二合光片;
[0023] 所述第二光源产生的光经过所述可见衰减滤光片后进入第一合光片, 所述第三 光源产生的光经过所述长波通滤光片后经所述第二反射镜反射进入所述第一合 光片, 所述第一合光片将所述第二光源和第三光源产生的光进行合光后输出至 所述第二合光片;
[0024] 所述第二合光片将由所述第一合光片输出的光与所述第一光源产生的光合光后 输出包括紫外光、 可见光和近红外光的平缓宽带光谱。
[0025] 根据本发明的光源, 所述第二光源以及所述第三光源的输出光强通过调节其驱 动电流进行调节。
[0026] 根据本发明的光源, 所述第一光源、 第二光源和第三光源的光输出接口还设置 有用于平衡光强的中性光衰减片。
[0027] 根据本发明的光源, 所述第一光源为氘灯、 氢灯或氙灯,所述第二光源为钨灯 或氙灯, 所述第三光源为钨灯或氙灯。 本发明要解决的技术问题之一是针对宽 带光谱光源中氘灯光谱 (紫外光到可见光) 有位于可见光内的尖峰, 如 656.1nm 而容易使光谱仪的探测器饱和的问题, 而提出的滤掉其可见光的设计方案。
[0028] 为解决上述技术问题, 本发明提出的截断尖峰光谱部分的设计, 即用短波通滤 光片将紫外光光源的包含 656.1nm尖峰的可见光滤掉得到平缓的紫外光谱, 再将 此平缓紫外光和第二光源光谱产生的紫外光、 可见光与近红外光, 以及第三光 源产生的近红外光谱合并即可得平缓宽带而且近红外光几乎加倍的宽带光谱, 包括紫外光、 可见光和近红外光。
[0029] 本发明要解决的技术问题之二是针对以 CCD或 CMOS作为探测器的光谱仪,宽带 光谱光源中可见光相对紫外光、 近红外光强度过大而容易使以 CCD或 CMOS作为 探测器的光谱仪饱和的问题而提出的用衰减滤光片衰减可见光的设计方案。
[0030] 为解决上述技术问题, 本发明提出的用可见衰减滤光片将第二光源光谱中紫外 光和可见光部分减少以平衡其与紫外光和近红外光的相对强度。 当增加整体光 源强度包括紫外光、 可见光和近红外光吋, 可见光部分不会对以 CCD或 CMOS作 为探测器的光谱仪饱和。
[0031] 本发明要解决的技术问题之三是针对以 CCD或 CMOS作为探测器的光谱仪, 红 外谱响应度低, 相应的信噪比小不利于光谱分析测量的问题而提出的双钨灯近 红外光叠加设计方案。
[0032] 为解决上述技术问题, 本发明提出的采用第二光源和第三光源的近红外光叠加 设计以加大近红外谱部分而提高其信噪比, 即用长波通滤光片将第三光源的紫 外光和可见光滤掉得近红外光谱。 再将第一光源产生的平缓紫外光和第二光源 产生的紫外光、 可见光与近红外光, 以及第三光源产生的近红外光合光即可得 平缓宽带而且近红外光几乎加倍的宽带光谱, 包括紫外光、 可见光和近红外光 发明的有益效果
有益效果
[0033] 本发明的整体技术效果体现在以下方面。
[0034] (一) 在本发明中, 本发明要解决的技术问题之一是针对宽带光谱中氘灯光谱 有如 656. Inm尖峰谱而容易使以 CCD或 CMOS作为探测器的光谱仪饱和的问题而 提出的滤掉氘灯光谱中可见光的设计方案。
[0035] (二) 在本发明中, 本发明要解决的技术问题之二是针对以 CCD或 CMOS作为 探测器的光谱仪,
宽带光谱中可见光相对紫外光、 近红外光强度过大而容易使以 CCD或 CMOS作为 探测器的光谱仪饱和的问题而提出的用衰减滤光片衰减可见光的设计方案。
[0036] (三) 在本发明中, 本发明要解决的技术问题之三是针对以 CCD或 CMOS作为 探测器的光谱仪宽带光谱中近红外光信噪比低的问题而提出的第二光源和第三 光源的近红外光叠加的设计方案。
对附图的简要说明
附图说明
[0037] 图 1是常用钨灯和氘灯光谱;
[0038] 图 2是现有技术中通常的氘钨灯光源一种原理图;
[0039] 图 3是本发明的第一实施例的原理结构示意图;
[0040] 图 4是本发明的宽带光谱;
[0041] 图 5是用本发明测得的样品透过率;
[0042] 图 6是本发明的第二实施例的原理结构示意图;
[0043] 图 7是本发明的第三实施例的原理结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0044] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0045] 本发明的基本原理是: 具有宽带光谱的光源包括第一光源、 短波通滤光片、 第 二光源、 可见衰减滤光片、 第三光源、 长波通滤光片以及合光装置, 合光装置 包括三个光输入接口以及一个光输出接口, 其中第一光源为紫外光光源, 第二 光源为包括紫外光、 可见光与近红外光的光源, 第三光源为包括紫外光、 可见 光与近红外光的光源或近红外光光源, 第一光源发出的光经过短波通滤光片后 得到平缓的紫外光, 平缓的紫外光耦合进入合光装置的第一个光输入接口; 所 述第二光源产生的光经过可见衰减滤光片后得到可见光部分被衰减的光, 可见 光部分被衰减的光耦合进入合光装置的第二个光输入接口; 第三光源产生的光 经过长波通滤光片后得到近红外光, 近红外光耦合进入合光装置的第三个光输 入接口; 合光装置将由三个光输入接口进入的光进行合光后经光输出接口输出 包括紫外光、 可见光和近红外光的平缓宽带光谱。
[0046] 本发明利用三光谱合一, 即对三个光谱分别进行去尖峰光谱、 平抑可见光和截 取近红外光处理后再合光的方法获得了包括紫外光、 可见光到近红外光的宽带 光谱。 本发明用短波通滤光片将第一光源中含有尖峰谱线的可见光谱滤掉得到 平缓的紫外光谱, 用可见衰减滤光片将第二光源光谱中可见光部分减弱, 用长 波通滤光片将第三光源的紫外和可见光滤掉得近红外光谱, 然后将得到的平缓 的紫外光谱、 可见光部分被衰减的光以及近红外光合光即可得平缓宽带而且近 红外光几乎加倍的宽带光谱。 用该宽带光谱配合以 CCD或 CMOS作为探测器的光 谱仪进行光谱测量吋, 在近红外光处可以获得比较高的信噪比; 此外当增加整 体光源强度包括紫外光、 可见光和近红外光的强度吋, 在很大的动态范围内可 见光部分不会对此类光谱仪饱和。 采用本发明设计的宽带光源经济实用, 可广 泛用于材料分析与测量, 方便实用。
[0047] 由于在实际应用中, 常常采用氘灯作为紫外光光源使用, 将钨灯作为包括紫外 光、 可见光与近红外光的光源和近红外光光源使用。 因此, 在以下实施例中, 本发明采用氘灯作为第一光源、 第一钨灯作为第二光源, 第二钨灯作为第三光 源。 实际上第一光源还可采用其他紫外光光源, 例如氙灯等; 第二光源还可采 用其他包括紫外光、 可见光及近红外光的光源, 例如氙灯等; 第三光源还可采 用其他近红外光光源或包括紫外光、 可见光与近红外光的光源, 例如氙灯等。 以下实施例中的氘灯、 钨灯并不作为限制本发明之用。
[0048] 实施例一
[0049] 如图 3所示,本实施例中具有宽带光谱的光源包括氘灯 301, 短波通滤光片 302, 第一钨灯 304, 可见衰减滤光片 305, 第二钨灯 307, 长波通滤光片 308以及合光 装置, 合光装置包括第一个二合一 Y型光纤以及第二个二合一 Y型光纤, 第一个 二合一 Y型光纤包括两个光纤输入接头 303、 306以及一个光纤输出接头 310, 第 二个二合一 Y型光纤包括两个光纤输入接头 309、 311以及光纤输出接头 312。 第 一个二合一 Y型光纤以及第二个二合一 Y型光纤为分叉或分劈式。
[0050] 氘灯 301发出的光经过短波通滤光片 302后, 氘灯光谱中包含 656.1nm尖峰谱的 可见光被滤掉得到平缓的紫外光谱, 该紫外光谱经第一个二合一 Y型光纤中第一 个光纤输入接头 303耦合进入光纤, 再进入第一个二合一 Y型光纤输出接头 310。 第一钨灯 304发出的光经过可见衰减滤光片 305后, 其可见光部分被衰减以平衡 其与第一钨灯 304发出的紫外光和近红外光的相对强度; 当增加整体光源强度包 括紫外光、 可见光和近红外光的强度吋, 该可见光部分不会对以 CCD或 CMOS作 为探测器的光谱仪饱和; 该衰减的可见光与紫外光和近红外光经第一个二合一 Y 型光纤中第二个光纤输入接头 306耦合进入光纤, 并传输到第一个二合一 Y型光 纤输出接头 310。 如此便可以在第一个二合一 Y型光纤输出接头 310获得包括紫外 光、 可见光和近红外光的宽带光谱, 并且此宽带光谱经第二个二合一 Y型光纤 中第一个光纤接头 311耦合进入光纤, 再传输到第二个二合一 Y型光纤输出接头 3 12。
[0051] 此外, 与第一钨灯 304性能一样的第二钨灯 307发出的光经过长波通滤光片 308 后, 其中紫外光和可见光被滤掉而得近红外光, 该近红外光经第二个二合一 Y型 光纤中第二个光纤接头 309耦合进入光纤, 再传输到第二个二合一 Y型光纤输出 接头 312。 如此, 在第二个二合一 Y型光纤输出接头 312便可以获得双钨灯近红 外光叠加的包括紫外光、 可见近光和红外光的平缓宽带光谱。 用该宽带光谱配 合以 CCD或 CMOS作为探测器的光谱仪进行光谱测量吋, 在近红外光处可以获得 比较高的信噪比; 此外, 当增加整体光源强度 (包括紫外光、 可见光和近红外 光) 吋, 在很大的动态范围内可见光部分不会对此类光谱仪饱和。
[0052] 在本实施例中, 光与光纤接头的输入或输出耦合为直接耦合或用透镜耦合。
[0053] 如图 4所示,是本发明所获得的近红外光增加近一倍的平缓宽带 (包括紫外光、 可见光和近红外光) 光谱 (未做绝对光谱强度标定) , 其光谱范围约为 350nm-l OOOnm; 这个光谱是用以 CCD作为探测器的光谱仪测得的, 其光谱范围主要取 决于 CCD的光谱响应范围。 实际上本发明的光谱范围要大于上述范围, 如用具 有更宽光谱范围的光谱仪还可以测得此灯更宽的光谱。
其中 401是紫外光谱, 402可见光光谱以及 403是近红外光谱。 该宽带光谱中的最 小光强(在998.00nm处灰度值4810.83)可以满足光谱测量要求,其最高值
(在 559.60nm处灰度值 28220.01)也不会饱和。 实际上,对于依本发明所制作的宽 带光源因所用光纤的不同(如材料和芯径等)或所用耦合光学元件的不同,所得宽 带光谱各部分的光强分布会有所不同, 但都具有本发明的根本特征 -即用该宽带 光谱配合以 CCD或 CMOS作为探测器的光谱仪进行光谱测量吋, 在近红外光处可 以获得比较高的信噪比; 而且当增加整体光源 (包括紫外光、 可见光和近红外 光) 强度吋, 在很大的动态范围内可见光部分不会对此类光谱仪饱和。
[0054] 如图 5所示,是用本发明测得的某一玻璃样品 (QB2)透过率。 其中 501是用仅有一 个氘灯和一个钨灯组合的宽带光源(如同目前市场上常有的同类灯,
比如荷兰 Avantes的氘钨灯宽带光源 -AvaLight-DH-S)
测得的此玻璃样品透过率, 502是用本发明测得的此玻璃样品透过率; 503是用 仅有一个氘灯和一个钨灯组合的宽带光源在近红外光处得到的非光谱信号即噪 声。 显而易见, 透过率 502中在近红外光处可以测得很好的光谱; 也即本发明在 同样可以实现宽带光谱的前提下,配合以 CCD或 CMOS作为探测器的光谱仪进行 光谱测量吋, 在近红外光处可以获得非常高的信噪比; 而且当增加整体光源强 度吋, 在很大的动态范围内可见光部分不会对此类光谱仪饱和。
[0055] 实施例二
[0056] 如图 6所示, 具有宽带光谱的光源包括氘灯 601, 短波通滤光片 602, 第一钨灯 6 04, 可见衰减滤光片 605, 第二钨灯 607, 长波通滤光片 608以及作为合光装置的 三合一光纤, 三合一光纤包括第一个光纤输入接头 603、 第二个光纤输入接头 60 6, 第三个光纤输入接头 609以及光输出接头 610。 三合一光纤为分叉或分劈式。
[0057] 氘灯 601发出的光经过短波通滤光片 602后, 氘灯光谱中包含 656.1nm尖峰谱部 分可见光被滤掉得到平缓的紫外光谱, 该紫外光谱经三合一光纤中第一个光纤 接头 603耦合进入光纤, 再传输光输出接头 610。 第一钨灯 604发出的光经过可见 衰减滤光片 605后, 其可见光部分被衰减以平衡其与第一钨灯 604发出的紫外光 和近红外光光谱的相对强度; 以至于当增加整体光源强度包括紫外光、 可见光 和近红外光的强度吋, 该可见光部分不会对以 CCD或 CMOS作为探测器的光谱仪 饱和; 经过衰减的第一钨灯 604发出的光经三合一光纤中第二个光纤接头 606耦 合进入光纤, 再传输光输出接头 610。 第二钨灯 607发出的光经过长波通滤光片 6 08后, 其中紫外光和可见光被滤掉而得近红外光, 该近红外光经三合一光纤中 第三个光纤接头 609耦合进入光纤, 再传输光输出接头 610。 这样一来, 在光输 出接头 610便可以获得双钨灯近红外光叠加的包括紫外光、 可见光和近红外光平 缓宽带光谱。 用该光谱配合以 CCD或 CMOS作为探测器的光谱仪进行光谱测量吋 , 在近红外光处可以获得比较高的信噪比; 此外当增加整体光源强度包括紫外 光、 可见光和近红外光的强度吋, 在很大的动态范围内可见光部分不会对此类 光谱仪饱和。
[0058] 在本实施例中, 光与光纤接头的输入或输出耦合为直接耦合或用透镜耦合。
[0059] 实施例三
[0060] 如图 7所示, 具有宽带光谱的光源包括氘灯 701, 短波通滤光片 702, 第一钨灯 7 04, 可见衰减滤光片 705, 第二钨灯 708, 长波通滤光片 709以及合光装置, 合光 装置包括: 第一反射镜 703, 第二反射镜 710, 第一合光片 706 (短波通长反镜) , 第二合光片 707 (长波通短反镜) 。
[0061] 氘灯 701发出的光经过短波通滤光片 702后, 氘灯光谱中包含 656.1nm尖峰谱可 见光被滤掉得到平缓的紫外光谱, 该紫外光经第一反射镜 703反射后再经第二合 光片 (长波通短波反镜) 707反射后输出。 第一钨灯 704发出的光经过可见衰减 滤光片 705后, 其可见光部分被衰减后以平衡其与第一钨灯 704发出的紫外光和 近红外光光谱的相对强度; 当增加整体光源强度包括紫外光、 可见光和近红外 光的强度吋, 该可见光部分不会对以 CCD或 CMOS作为探测器的光谱仪饱和; 该 衰减的可见光与近红外光经第一合光片 (短波通长波反镜) 706后再经过第二合 光片 (长波通短波反镜) 707后输出。 第二钨灯 708发出的光经过长波通滤光片 7 09后, 其中紫外光和可见光被滤掉而得近红外光, 该近红外光经第二反射镜 710 反射后再经第二合光片 (长波通短波反镜) 707后输出。 这样一来, 在第二合光 片 707处便可以获得双钨灯近红外光叠加的包括紫外光、 可见光和近红外光平缓 宽带光谱。 用该光谱配合以 CCD或 CMOS作为探测器的光谱仪进行光谱测量吋, 在近红外光处可以获得比较高的信噪比; 此外当增加整体光源强度包括紫外光 、 可见光和近红外光的强度吋, 在很大的动态范围内可见光部分不会对此类光 谱仪饱和。
[0062] 在本发明中, 第一钨灯以及第二钨灯的输出光强可以通过调节其驱动电流进行 调节。
[0063] 氘灯、 第一钨灯和第二钨灯的光输出接口还可以分别设置有用于平衡光强的中 性光衰减片。
[0064] 在本发明中, 采用近红外光多耦合 (如用较大芯径光纤等) 、 可见光及紫外光 光少耦合 (如用较小芯径光纤等) 的方法, 即第三光源所用的光纤采用较大芯 径的光纤以平衡各部分的光强。 可以克服因为 CCD或 COMS在近红外光处的响应 度低而弓 I起的近红外光部分相对较弱的缺陷。
[0065] 第一钨灯可以为其它的包括紫外光、 可见光与近红外光的光源; 第二钨灯可以 为其它的近红外光光源; 以及氘灯可以为其它紫外光光源。
[0066] 当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的情况下 , 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但这些 相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims

权利要求书
[权利要求 1] 一种具有宽带光谱的光源, 其特征在于, 包括:
第一光源、 短波通滤光片、 第二光源、 可见衰减滤光片、 第三光源、 长波通滤光片以及合光装置, 所述合光装置包括三个光输入接口以及 一个光输出接口, 其中第一光源为紫外光光源, 第二光源为包括紫外 光、 可见光与近红外光的光源, 第三光源为包括紫外光、 可见光与近 红外光的光源或近红外光光源,
所述第一光源发出的光经过所述短波通滤光片后得到平缓的紫外光, 所述平缓的紫外光耦合进入所述合光装置的第一个光输入接口; 所述第二光源产生的光经过所述可见衰减滤光片后得到可见光部分被 衰减的光, 所述可见光部分被衰减的光耦合进入所述合光装置的第二 个光输入接口;
所述第三光源产生的光经过所述长波通滤光片后得到近红外光, 所述 近红外光耦合进入所述合光装置的第三个光输入接口;
所述合光装置将由所述三个光输入接口进入的光进行合光后经所述光 输出接口输出包括紫外光、 可见光和近红外光的平缓宽带光谱。
[权利要求 2] 根据权利要求 1所述的光源, 其特征在于, 所述合光装置包括第一个 二合一 Y型光纤以及第二个二合一 Y型光纤,
所述第一光源发出的光经过所述短波通滤光片后耦合进入所述第一个 二合一 Y型光纤的其中一个输入接头, 所述第二光源产生的光经过所 述可见衰减滤光片后耦合进入所述第一个二合一 Y型光纤的另一输入 接头;
所述第一个二合一 Y型光纤的输出接头连接所述第二个二合一 Y型光 纤的其中一个输入接头, 所述第三光源产生的光经过所述长波通滤光 片后耦合进入所述第二个二合一 Y型光纤的另一输入接头; 所述第二个二合一 Y型光纤的输出接头输出包括紫外光、 可见光和近 红外光的平缓宽带光谱。
[权利要求 3] 根据权利要求 1所述的光源, 其特征在于, 所述合光装置包括三合一 光纤, 三合一光纤包括三个光输入接头以及一个光输出接头,
所述第一光源发出的光经过所述短波通滤光片后耦合进入所述三合一 光纤的第一个光输入接头, 所述第二光源产生的光经过所述可见衰减 滤光片后耦合进入所述三合一光纤的第二个光输入接头, 所述第三光 源产生的光经过所述长波通滤光片后耦合进入所述三合一光纤的第三 个光输入接头;
所述三合一光纤的光输出接头输出包括紫外光、 可见光和近红外光的 平缓宽带光谱。
[权利要求 4] 根据权利要求 1-3所述的光源, 其特征在于, 采用近红外光多耦合、 可见光及紫外光光少耦合的方法, 即第三光源所用的光纤采用较大芯 径的光纤以平衡各部分的光强。
[权利要求 5] 根据权利要求 2或 3所述的光源, 其特征在于, 所述光纤为分叉或分劈 式。
[权利要求 6] 根据权利要求 2或 3所述的光源, 其特征在于, 所述光与光纤接头的输 入或输出耦合为直接耦合或用透镜耦合。
[权利要求 7] 根据权利要求 1所述的光源, 其特征在于, 所述合光装置包括第一合 光片、 第二合光片、 第一反射镜以及第二反射镜, 所述第一光源发出的光经过所述短波通滤光片后经所述第一反射镜反 射到达所述第二合光片;
所述第二光源产生的光经过所述可见衰减滤光片后进入第一合光片, 所述第三光源产生的光经过所述长波通滤光片后经所述第二反射镜反 射进入所述第一合光片, 所述第一合光片将所述第二光源和第三光源 产生的光进行合光后输出至所述第二合光片;
所述第二合光片将由所述第一合光片输出的光与所述第一光源产生的 光合光后输出包括紫外光、 可见光和近红外光的平缓宽带光谱。
[权利要求 8] 根据权利要求 1、 或 3或 7所述的光源, 其特征在于, 所述第二光源以 及所述第三光源的输出光强通过调节其驱动电流进行调节,或根据需 要只幵起所述第一光源、 第二光源以及第三光源中之一或两个。
[权利要求 9] 根据权利要求 1、 或 3或 7所述的光源, 其特征在于, 所述第一光源、 第二光源和第三光源的光输出接口还设置有用于平衡光强的中性光衰 减片。
[权利要求 10] 根据权利要求 1、 或 3或 7所述的宽带光源, 其特征在于, 所述第一光 源为氘灯、 氢灯或氙灯, 所述第二光源为钨灯或氙灯,第三光源为钨 灯或氙灯。
PCT/CN2016/101693 2015-10-26 2016-10-10 一种具有宽带光谱的光源 WO2017071462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510704799.7A CN105222891B (zh) 2015-10-26 2015-10-26 一种具有宽带光谱的光源
CN201510704799.7 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017071462A1 true WO2017071462A1 (zh) 2017-05-04

Family

ID=54991970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101693 WO2017071462A1 (zh) 2015-10-26 2016-10-10 一种具有宽带光谱的光源

Country Status (2)

Country Link
CN (1) CN105222891B (zh)
WO (1) WO2017071462A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222891B (zh) * 2015-10-26 2017-08-04 高利通科技(深圳)有限公司 一种具有宽带光谱的光源
EP3206061A1 (en) 2016-02-15 2017-08-16 Leica Instruments (Singapore) Pte. Ltd. Illumination filter system and observation system for a multispectral fluorescence microscope
CN106308751A (zh) * 2016-08-23 2017-01-11 江苏鹰利视医疗器械有限公司 一种实现窄带或宽带光谱复合照明的装置及其方法
CN107884069B (zh) * 2016-09-30 2023-08-22 高利通科技(深圳)有限公司 一种宽带光谱光源
CN110361333A (zh) * 2018-03-26 2019-10-22 高利通科技(深圳)有限公司 用于光谱分析的小型组合式光源装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012774A1 (en) * 2002-07-17 2004-01-22 Kla-Tencor Technologies Corporation Inspection system with multiple illumination sources
US20040150828A1 (en) * 2002-11-04 2004-08-05 Hendrix James Lee Flat spectrum illumination source for optical metrology
CN102353630A (zh) * 2011-06-28 2012-02-15 重庆大学 一种连续光谱光源
CN103471992A (zh) * 2013-09-03 2013-12-25 华中科技大学 一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
CN105222891A (zh) * 2015-10-26 2016-01-06 苑高强 一种具有宽带光谱的光源
CN205138642U (zh) * 2015-10-26 2016-04-06 苑高强 一种具有宽带光谱的光源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098146A2 (en) * 2006-02-20 2007-08-30 Auburn University Translational filter, shutter, aperture apparatus for selecting and combining filtered and unfiltered light
CN201096521Y (zh) * 2007-11-06 2008-08-06 南京理工大学 非接触式等离子体温度和电子密度测量装置
US8855492B2 (en) * 2012-01-18 2014-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Selectable multiple-wavelength access for optical network units in arrayed waveguide based wavelength division multiplexing passive optical network
CN102967301B (zh) * 2012-11-15 2015-05-06 浙江大学 多光源耦合增宽光谱降低光源相对强度噪声的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012774A1 (en) * 2002-07-17 2004-01-22 Kla-Tencor Technologies Corporation Inspection system with multiple illumination sources
US20040150828A1 (en) * 2002-11-04 2004-08-05 Hendrix James Lee Flat spectrum illumination source for optical metrology
CN102353630A (zh) * 2011-06-28 2012-02-15 重庆大学 一种连续光谱光源
CN103471992A (zh) * 2013-09-03 2013-12-25 华中科技大学 一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
CN105222891A (zh) * 2015-10-26 2016-01-06 苑高强 一种具有宽带光谱的光源
CN205138642U (zh) * 2015-10-26 2016-04-06 苑高强 一种具有宽带光谱的光源

Also Published As

Publication number Publication date
CN105222891B (zh) 2017-08-04
CN105222891A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017071462A1 (zh) 一种具有宽带光谱的光源
CN104000600B (zh) 经皮生物光学检测装置及经皮黄疸检测仪
CN102680211B (zh) 基于偏振分束干涉技术的保偏光纤偏振耦合强度测试方法
CN205138642U (zh) 一种具有宽带光谱的光源
CN103698006B (zh) 用于在线式分光测色仪的45度环形照明装置
US10048197B2 (en) Optical measurement device and optical measurement method
CN103090972B (zh) 用于反射差分光谱测量的紧凑式全光谱光学测头装置
CN107167448B (zh) 一种基于复合抛物面聚光器的小型近红外光谱仪光学系统
CN203275281U (zh) 基于积分球光谱测量的多光源合光系统
CN208537399U (zh) 一种先分光的光谱仪
CN205719259U (zh) 基于手机的显微光谱成像系统
WO2018059411A1 (zh) 一种宽带光谱光源
CN206161157U (zh) 一种宽带光谱光源
US20120075583A1 (en) Photometry device
CN207992046U (zh) 用于光谱分析的小型组合式光源装置
JP5604959B2 (ja) 光測定装置
CN108896277A (zh) 一种ccd器件量子效率校准装置及方法
US10942275B2 (en) System and method for improving signal-to-noise ratio in a laser imaging system
CN104422680A (zh) 一种拉曼信号采集装置
CN204085696U (zh) 色差仪光学系统
CN105785580B (zh) 一种偏振方向可控光强不变的线偏振光产生装置
CN205507249U (zh) 一种基于介质膜反射镜的双波段光路分离装置
CN103278241A (zh) 基于积分球光谱测量的多光源合光系统
CN101551271B (zh) 基于摆动镜和透射光栅的光谱仪
CN205608316U (zh) 偏振方向可控光强不变的线偏振光产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16858898

Country of ref document: EP

Kind code of ref document: A1