WO2017071391A1 - 一种干扰管理的方法及装置 - Google Patents

一种干扰管理的方法及装置 Download PDF

Info

Publication number
WO2017071391A1
WO2017071391A1 PCT/CN2016/096433 CN2016096433W WO2017071391A1 WO 2017071391 A1 WO2017071391 A1 WO 2017071391A1 CN 2016096433 W CN2016096433 W CN 2016096433W WO 2017071391 A1 WO2017071391 A1 WO 2017071391A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
controller
centralized controller
virtual cell
interference management
Prior art date
Application number
PCT/CN2016/096433
Other languages
English (en)
French (fr)
Inventor
解芳
Original Assignee
普天信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普天信息技术有限公司 filed Critical 普天信息技术有限公司
Publication of WO2017071391A1 publication Critical patent/WO2017071391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for interference management.
  • the Long Term Evolution (LTE) system adopts Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • OFDM technology uses orthogonality between frequencies as a way to distinguish users, and carries user information in mutual Orthogonal different carriers can effectively combat frequency selective fading.
  • all interferences are from other cells, that is, inter-cell interference.
  • 5G ultra-dense network has a large number of interference sources due to dense cell distribution. Compared with traditional networks, 5G networks have less strong interference, more weak interference, lower interference ratio, and many interference sources. The interference caused by each interference source is roughly equivalent. At the same time, with the increase of the number of small stations, after the network is dense, the overlapping area of the cell increases, the interference of the neighboring area increases, the number of interfering cells increases, and the network dynamics increase, which makes the interference management more challenging.
  • ICIC and eICIC are traditional interference coordination methods. They are based on time domain and frequency domain. They avoid interference by orthogonality in time domain and frequency domain. However, this interference coordination method has low resource utilization. The highly dynamic change characteristics of interference in ultra-dense networks require a more flexible interference coordination method.
  • the interference in the ultra-dense network networking will be more complicated than the traditional network.
  • the traditional interference coordination scheme cannot completely solve the interference problem of the ultra-dense network. It is necessary to design the ultra-dense network well. Interference management methods and systems.
  • a method of interference management including:
  • the centralized controller receives channel measurement information of all served terminals that are sent by the respective base stations under the control of the centralized controller in a first time period;
  • the centralized controller generates cell collaboration information according to the channel measurement information
  • the centralized controller sends the cell cooperation information to a cluster controller of each virtual cell cluster, so that each cluster controller performs interference management on a base station in a respective virtual cell cluster;
  • the virtual cell cluster is a virtual cell cluster formed by the centralized controller to divide all base stations under the centralized controller, and each virtual cell cluster is provided with a cluster controller.
  • the method further includes:
  • the centralized controller receives channel measurement information of all served terminals that are sent by the respective base stations under the control of the centralized controller in a second time period;
  • the centralized controller divides the base station into multiple virtual cell clusters according to the channel measurement information
  • the second time period is composed of at least one first time period.
  • a method of interference management including:
  • the cluster controller receives the cell cooperation information sent by the centralized controller, and performs interference management on the base station in the virtual cell cluster where the cluster controller is located.
  • performing interference management on the base station in the virtual cell cluster where the cluster controller is located includes:
  • the cluster controller divides the terminals in the base station under the centralized controller into edge terminals and a central terminal;
  • the cluster controller performs interference alignment on the edge terminal, and the cluster controller performs interference avoidance on the central terminal.
  • a centralized controller that includes:
  • a receiving unit configured to receive channel measurement information of all served terminals sent by each base station managed by the centralized controller in a first time period
  • the centralized controller divides all base stations under the centralized controller into a plurality of virtual cell clusters, and each virtual cell cluster is provided with a cluster controller;
  • a collaboration information generating unit configured to generate cell collaboration information according to the channel measurement information
  • a sending unit configured to send the cell cooperation information to a cluster controller of each of the virtual cell clusters, so that each cluster controller performs interference management on a base station in a respective virtual cell cluster.
  • the receiving unit is further configured to receive channel measurement information of all served terminals that are sent by each base station that is managed by the centralized controller in a second time period;
  • a cell cluster dividing unit configured to divide the base station into multiple virtual cell clusters according to the channel measurement information
  • the second time period is composed of at least one first time period.
  • a cluster controller comprising:
  • a receiving unit configured to receive cell collaboration information sent by the centralized controller
  • a coordination unit configured to perform interference management on the base station in the virtual cell cluster where the cluster controller is located according to the cell cooperation information.
  • the cluster controller further includes:
  • a terminal identifying unit configured to divide the terminal in the base station under the centralized controller into an edge terminal and a central terminal;
  • the coordinating unit is configured to perform interference alignment on the edge terminal according to the cell cooperation information, and perform interference avoidance on the central terminal.
  • a system for interference management includes: the above centralized controller, the cluster controller, and a base station.
  • the invention provides a method and a system for interference management, which completes interference coordination of cells in a cluster by a cluster controller, and performs interference management between virtual cell clusters through a centralized controller, which can effectively reduce inter-cluster cells. Interference can also effectively reduce the interference between clusters of virtual cells, realize cross-layer interference management, improve system capacity, and reduce the huge demand for backhaul link capacity of various information exchanges, and reduce the complexity of algorithm implementation.
  • FIG. 1 is a flowchart of a method for interference management according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for interference management according to a second embodiment of the present invention.
  • FIG. 3 is a dynamic adjustment diagram of a cluster of the method for interference management of the present invention.
  • FIG. 4 is a schematic structural diagram of a centralized controller according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a cluster controller according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an interference management system according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram showing the operation of the interference management system of the present invention.
  • Figure 8 is a hierarchical functional diagram of the interference management system of the present invention.
  • FIG. 1 is a flow chart of a method for interference management according to a first embodiment of the present invention. As shown in Figure 1, the method includes:
  • the centralized controller receives channel measurement information of all served terminals that are sent by each base station under the control of the centralized controller in a first time period;
  • the centralized controller generates cell collaboration information according to the channel measurement information.
  • the centralized controller sends the cell cooperation information to a cluster controller of each virtual cell cluster, so that each cluster controller performs interference management on a base station in a respective virtual cell cluster;
  • the virtual cell cluster is a virtual cell cluster formed by the centralized controller to divide all base stations under the centralized controller, and each virtual cell cluster is provided with a cluster controller.
  • the embodiment is different from the existing macro base station-micro station architecture, and the centralized controller is set in the network architecture to obtain the base station information under its jurisdiction, and the base station is divided into clusters to simultaneously establish a cell cooperation set, thereby realizing information sharing of the cells in the cluster.
  • the cluster controller to complete the interference coordination of the cells in the cluster, through the set
  • the medium controller performs interference management between virtual cell clusters, which can effectively reduce interference between cells in the cluster, and can effectively reduce interference between clusters of virtual cells, realize cross-layer interference management, and improve system capacity.
  • the huge demand for the backhaul link capacity of various information exchanges is reduced, and the complexity of the algorithm implementation is reduced.
  • the method further includes:
  • the centralized controller receives channel measurement information of all served terminals that are sent by the respective base stations under the control of the centralized controller in a second time period;
  • the centralized controller divides the base station into multiple virtual cell clusters according to the channel measurement information
  • the second time period is composed of at least one first time period.
  • 3 is a dynamic adjustment diagram of clusters of the method of interference management of the present invention.
  • the centralized controller performs cluster and cooperative combination according to the channel measurement information.
  • a cell cooperation set is formed, and each cell in the set cooperates to provide services for the user. Since the cell cooperation set has overlapping coverage on the distribution and the surrounding cell cooperation set, the frequency domain resources in the multiple cell cooperation set are uniformly divided by the cluster controller.
  • FIG. 2 is a flow chart of a method for interference management provided by a second embodiment of the present invention. As shown in Figure 2, the method includes:
  • the cluster controller receives the cell cooperation information sent by the centralized controller, and performs interference management on the base station in the virtual cell cluster where the cluster controller is located.
  • the interference coordination of the cells in the cluster is completed by the cluster controller, and the interference management between the virtual cell clusters is performed by the centralized controller, which can effectively reduce the interference between the cells in the cluster, and can effectively reduce the virtual cells.
  • Inter-cluster interference enables cross-layer interference management, increases system capacity, and reduces the huge demand for backhaul link capacity of various information exchanges, reducing the complexity of algorithm implementation.
  • performing interference management on the base station in the virtual cell cluster where the cluster controller is located includes:
  • the cluster controller divides the terminals in the base station under the centralized controller into edge terminals and a central terminal;
  • the cluster controller performs interference alignment on the edge terminal, and the cluster controller is in the middle
  • the heart terminal uses interference-based resource avoidance mechanism for interference management.
  • the cluster controller divides the frequency domain resources into an edge frequency band and a central frequency band, and allocates corresponding frequency domain resources to corresponding terminals.
  • the cluster controller performs interference alignment on the edge terminals, considering the data and channel information transmission pressure and algorithm complexity, and can adopt a certain interference avoidance mechanism for the central terminal.
  • the cluster controller When the load of the edge terminal and the central terminal is unbalanced, the cluster controller performs load balancing between the cells under the jurisdiction of the base station to achieve higher interference management before performing interference alignment on the edge terminal and interference avoidance to the central terminal. effect.
  • FIG. 4 is a schematic structural diagram of a centralized controller according to an embodiment of the present invention.
  • the centralized controller is configured to divide all base stations under the centralized controller into a plurality of virtual cell clusters, each of which is provided with a cluster controller; and the centralized controller is further configured to generate collaboration.
  • Cell; the centralized controller includes:
  • the receiving unit 41 is configured to receive channel measurement information of all served terminals that are sent by the respective base stations under the control of the centralized controller in a first time period;
  • the cooperation information generating unit 42 is configured to generate cell cooperation information according to the channel measurement information
  • the sending unit 43 is configured to send the cell cooperation information to a cluster controller of each of the virtual cell clusters, so that each cluster controller performs interference management on a base station in a respective virtual cell cluster.
  • the receiving unit 41 is further configured to receive channel measurement information of all served terminals that are sent by the respective base stations that are managed by the centralized controller in a second time period;
  • a cell cluster dividing unit configured to divide the base station into multiple virtual cell clusters according to the channel measurement information
  • the second time period is composed of at least one first time period.
  • FIG. 5 is a schematic structural diagram of a cluster controller according to an embodiment of the present invention. As shown in FIG. 5, the cluster controller includes:
  • the receiving unit 51 is configured to receive cell collaboration information sent by the centralized controller.
  • the coordination unit 52 is configured to perform interference management on the base station in the virtual cell cluster where the cluster controller is located according to the cell cooperation information.
  • the cluster controller further includes:
  • a terminal identifying unit configured to divide the terminal in the base station under the centralized controller into an edge terminal and a central terminal;
  • the coordinating unit is configured to perform interference management on the edge terminal according to the cell cooperation information, and perform interference avoidance on the central terminal.
  • FIG. 6 is a schematic structural diagram of an interference management system according to an embodiment of the present invention. As shown in Figure 6, the system includes:
  • Centralized controller 61 Centralized controller 61, cluster controller 62 and base station 63;
  • All the base stations under the control of the centralized controller 61 are divided into a plurality of virtual cell clusters (as shown in Figure 7), each virtual cell cluster is provided with a cluster controller 62;
  • the centralized controller 61 is configured to receive channel measurement information of all served terminals that are sent by the respective base stations under the control of the centralized controller in a first time period, and generate cell collaboration information according to the channel measurement information, to each of the virtual
  • the cluster controller 62 of the cell cluster transmits the collaboration information;
  • the cluster controller 62 is further configured to receive the cell cooperation information sent by the centralized controller 61, and perform interference management on the base stations in the respective virtual cell clusters.
  • the cluster controller 62 performs load balancing between the cells under the jurisdiction to achieve higher interference before performing interference alignment on the edge terminal and performing interference avoidance on the central terminal. Management effect.
  • the interference coordination of the cells in the cluster is completed by the cluster controller, and the interference management between the virtual cell clusters is performed by the centralized controller, which can effectively reduce the interference between the cells in the cluster, and can effectively reduce the virtual cells.
  • Inter-cluster interference enables cross-layer interference management, increases system capacity, and reduces the huge demand for backhaul link capacity of various information exchanges, reducing the complexity of algorithm implementation.
  • Figure 8 is a hierarchical functional diagram of the interference management system of the present invention.
  • the layered interference management architecture of the interference management system of the present invention performs interference management by different functional units, and the centralized controller, the cluster controller, and the base station cooperate with each other to complete the interference management function of the entire network.
  • the centralized controller is responsible for cluster division, establishment of a cell cooperation set, and interference information exchange between clusters;
  • the cluster controller corresponds to a base station of the intra-cluster cell, and is responsible for interference alignment, load balancing, and frequency domain resource division;
  • the base station is responsible for interference coordination, scheduling frequency domain and power control.
  • the method and system for interference management provided by the invention can complete the interference coordination of the cells in the cluster by the cluster controller, and perform the interference management between the virtual cell clusters through the centralized controller, which can effectively reduce the interference between the cells in the cluster. It can also effectively reduce the interference between clusters of virtual cells, realize cross-layer interference management, improve system capacity, reduce the huge demand for backhaul link capacity of various information exchanges, and reduce the complexity of algorithm implementation.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to the program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种干扰管理的方法及系统,该方法包括:集中控制器接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;集中控制器根据所述信道测量信息生成小区协作信息;集中控制器向各虚拟小区簇的簇控制器发送小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理;其中,虚拟小区簇为集中控制器将该集中控制器所管辖的所有基站划分形成的虚拟小区簇,每个虚拟小区簇设有簇控制器。本发明既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。

Description

一种干扰管理的方法及装置
交叉引用
本申请引用于2015年10月26日提交的专利名称为“一种干扰管理的方法及装置”的第201510703595.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及通信技术领域,具体涉及一种干扰管理的方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)系统采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术,OFDM技术利用频率之间的正交性作为区分用户的方式,将用户的信息承载在相互正交的不同的载波上,可以有效对抗频率选择性衰落。另外,由于小区内用户使用的频率相互正交,所有的干扰全部来自于其他小区,即小区间干扰。
5G超密集网络由于小区分布密集,存在大量干扰源,与传统网络相比,5G网络中强干扰少,弱干扰多,最强干扰占比低,干扰源众多,各个干扰源造成的干扰大致相当;同时,随着小站数目的增多,网络密集后,小区的重叠区域增大,邻区的干扰增大,干扰小区增多,网络动态性增高,导致干扰管理更具挑战性。
传统方案中的小区间干扰协调(Inter Cell Interference Coordination,ICIC)和增强型的小区间干扰协调(Ehanced Inter Cell Interference Coordination,eICIC)策略无法完全解决密集网络部署的干扰问题。ICIC和eICIC为传统的干扰协调方法,它们基于时域和频域进行,通过时域和频域的正交避免干扰,然而这种干扰协调方法资源利用率低。超密集网络中干扰的高动态变化特性需要更为灵活的干扰协调方法。
超密集网络组网中的干扰将比传统的网络更为复杂,传统的干扰协调方案无法完全解决超密集网络的干扰问题,有必要为超密集组网设计合理 的干扰管理方法和系统。
发明内容
本发明的实施例采用如下技术方案:
一种干扰管理的方法,包括:
集中控制器接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;
所述集中控制器根据所述信道测量信息生成小区协作信息;
所述集中控制器向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理;
其中,虚拟小区簇为所述集中控制器将该集中控制器所管辖的所有基站划分形成的虚拟小区簇,每个虚拟小区簇设有簇控制器。
优选地,所述方法还包括:
所述集中控制器接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
所述集中控制器根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
其中,所述第二时间周期由至少一个第一时间周期组成。
一种干扰管理的方法,包括:
簇控制器接收集中控制器发送的小区协作信息,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
可选地,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理包括:
簇控制器将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
所述簇控制器对所述边缘终端进行干扰对齐,所述簇控制器对所述中心终端进行干扰避让。
一种集中控制器,包括:
接收单元,用于接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;
其中,所述集中控制器将该集中控制器所管辖的所有基站划分为多个虚拟小区簇,每个虚拟小区簇设有簇控制器;
协作信息生成单元,用于根据所述信道测量信息生成小区协作信息;
发送单元,用于向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理。
可选地,所述接收单元,还用于接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
还包括小区簇划分单元,用于根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
其中,所述第二时间周期由至少一个第一时间周期组成。
一种簇控制器,包括:
接收单元,用于接收所述集中控制器发送的小区协作信息;
协调单元,用于根据所述小区协作信息对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
可选地,该簇控制器还包括:
终端识别单元,用于将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
相应地,所述协调单元用于根据所述小区协作信息对所述边缘终端进行干扰对齐,对所述中心终端进行干扰避让。
一种干扰管理的系统,包括:上述集中控制器、上述簇控制器和基站。
本发明提供了一种干扰管理的方法及系统,通过簇控制器完成簇内小区的干扰协调,通过集中控制器进行虚拟小区簇之间的干扰管理,既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一个实施例提供的干扰管理的方法的流程图;
图2是本发明第二个实施例提供的干扰管理的方法的流程图;
图3是本发明干扰管理的方法的簇的动态调整图;
图4是本发明一个实施例提供的集中控制器的结构示意图;
图5是本发明一个实施例提供的簇控制器的结构示意图;
图6是本发明一个实施例提供的干扰管理系统的结构示意图;
图7是本发明干扰管理系统工作原理图;
图8是本发明干扰管理系统的分层功能图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明第一个实施例提供的干扰管理的方法的流程图。如图1所示,该方法包括:
S1:集中控制器接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;
S2:所述集中控制器根据所述信道测量信息生成小区协作信息;
S3:所述集中控制器向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理;
其中,虚拟小区簇为所述集中控制器将该集中控制器所管辖的所有基站划分形成的虚拟小区簇,每个虚拟小区簇设有簇控制器。
本实施例不同于已有的宏基站-微站架构,在网络架构中设置集中控制器,获得其管辖的基站信息,将基站划分为簇同时建立小区协作集合,实现簇内小区的信息共享,通过簇控制器完成簇内小区的干扰协调,通过集 中控制器进行虚拟小区簇之间的干扰管理,既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。
在一种可选的实施方式中,所述方法还包括:
所述集中控制器接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
所述集中控制器根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
其中,所述第二时间周期由至少一个第一时间周期组成。
为更好地进行超密集网络中的干扰管理,本申请中的虚拟小区簇的划分是动态变化的。图3是本发明干扰管理的方法的簇的动态调整图。如图3所示,集中控制器根据信道测量信息进行簇和协作结合划分,当用户位置稳定时,形成小区协作集合,集合内的各个小区协作共同为用户提供服务。由于小区协作集合在分布上与周围小区协作集合存在重叠覆盖,因此多个小区协作集合内的频域资源由簇控制器统一进行划分。
图2是本发明第二个实施例提供的干扰管理的方法的流程图。如图2所示,该方法包括:
S201:簇控制器接收集中控制器发送的小区协作信息,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
本实施例通过簇控制器完成簇内小区的干扰协调,通过集中控制器进行虚拟小区簇之间的干扰管理,既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。
可选地,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理包括:
簇控制器将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
所述簇控制器对所述边缘终端进行干扰对齐,所述簇控制器对所述中 心终端采用基于干扰的资源避让机制进行干扰管理。
簇控制器将频域资源划分为边缘频带和中心频带,将相应的频域资源分配给相应的终端。簇控制器对边缘终端进行干扰对齐,考虑数据和信道信息传输压力及算法复杂度,对中心终端可以采用一定的干扰避让机制。
当边缘终端和中心终端的负载不均衡时,在对边缘终端进行干扰对齐及对中心终端进行干扰避让之前,簇控制器对所管辖的基站进行小区间的负载均衡,以达到更高的干扰管理效果。
图4是本发明一个实施例提供的集中控制器的结构示意图。如图4所示,该集中控制器用于将该集中控制器所管辖的所有基站划分为多个虚拟小区簇,每个虚拟小区簇设有簇控制器;所述集中控制器还用于生成协作小区;该集中控制器包括:
接收单元41,用于接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;
协作信息生成单元42,用于根据所述信道测量信息生成小区协作信息;
发送单元43,用于向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理。
在一种可选的实施方式中,接收单元41,还用于接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
还包括小区簇划分单元,用于根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
其中,所述第二时间周期由至少一个第一时间周期组成。
图5是本发明一个实施例提供的簇控制器的结构示意图。如图5所示,该簇控制器包括:
接收单元51,用于接收所述集中控制器发送的小区协作信息;
协调单元52,用于根据所述小区协作信息对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
在一种可选的实施方式中,所述簇控制器还包括:
终端识别单元,用于将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
相应地,所述协调单元用于根据所述小区协作信息对所述边缘终端进行干扰管理,对所述中心终端进行干扰避让。
图6是本发明一个实施例提供的干扰管理系统的结构示意图。如图6所示,该系统包括:
集中控制器61、簇控制器62和基站63;
集中控制器61所管辖的所有基站被划分为多个虚拟小区簇(如图7所示),每个虚拟小区簇设有簇控制器62;
集中控制器61用于接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息,根据所述信道测量信息生成小区协作信息,向各所述虚拟小区簇的簇控制器62发送所述协作信息;
簇控制器62还用于接收集中控制器61发送的小区协作信息,对各自的虚拟小区簇中的基站进行干扰管理。当边缘终端和中心终端的负载不均衡时,在对边缘终端进行干扰对齐及对中心终端进行干扰避让之前,簇控制器62对所管辖的基站进行小区间的负载均衡,以达到更高的干扰管理效果。
本实施例通过簇控制器完成簇内小区的干扰协调,通过集中控制器进行虚拟小区簇之间的干扰管理,既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。
图8是本发明干扰管理系统的分层功能图。如图8所示,本发明的干扰管理系统的分层干扰管理架构由不同的功能单元完成干扰管理,集中控制器、簇控制器、基站相互配合完成整个网络的干扰管理功能。具体地,集中控制器负责簇的划分、小区协作集合的建立以及簇间的干扰信息交互;簇控制器对应于簇内小区的基站,负责干扰对齐、负载均衡、频域资源划分;处于最底层的基站负责干扰协调、调度频域及功率控制。
本发明提供的干扰管理的方法及系统,通过簇控制器完成簇内小区的干扰协调,通过集中控制器进行虚拟小区簇之间的干扰管理,既能够有效减小簇内小区之间的干扰,还能有效减小各虚拟小区簇之间的干扰,实现了跨层干扰管理,提升系统容量,同时减小各种信息交换对回传链路容量的巨大需求,降低算法实现复杂度。本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的干扰管理的方法及装置等实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的实施例的技术方案,而非对其限制;尽管参照前述实施例对本发明的实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种干扰管理的方法,其特征在于,包括:
    集中控制器接收该集中控制器所管辖的各个基站在第一时间周期内发送的所服务的所有终端的信道测量信息;
    所述集中控制器根据所述信道测量信息生成小区协作信息;
    所述集中控制器向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理;
    其中,虚拟小区簇为所述集中控制器将该集中控制器所管辖的所有基站划分形成的虚拟小区簇,每个虚拟小区簇设有簇控制器。
  2. 根据权利要求1所述的干扰管理的方法,其特征在于,所述方法还包括:
    所述集中控制器接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
    所述集中控制器根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
    其中,所述第二时间周期由至少一个第一时间周期组成。
  3. 一种干扰管理的方法,其特征在于,包括:
    簇控制器接收集中控制器发送的小区协作信息,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
  4. 根据权利要求3所述的干扰管理的方法,其特征在于,对所述簇控制器所在虚拟小区簇中的基站进行干扰管理包括:
    簇控制器将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
    所述簇控制器对所述边缘终端进行干扰对齐,所述簇控制器对所述中心终端进行干扰避让。
  5. 一种集中控制器,其特征在于,所述集中控制器用于将该集中控制器所管辖的所有基站划分为多个虚拟小区簇,每个虚拟小区簇设有簇控制器;所述集中控制器还用于生成协作小区;包括:
    接收单元,用于接收该集中控制器所管辖的各个基站在第一时间周期 内发送的所服务的所有终端的信道测量信息;
    协作信息生成单元,用于根据所述信道测量信息生成小区协作信息;
    发送单元,用于向各所述虚拟小区簇的簇控制器发送所述小区协作信息,以使各簇控制器对各自的虚拟小区簇中的基站进行干扰管理。
  6. 根据权利要求5所述的集中控制器,其特征在于:
    所述接收单元,还用于接收该集中控制器所管辖的各个基站在第二时间周期内发送的所服务的所有终端的信道测量信息;
    还包括小区簇划分单元,用于根据所述信道测量信息将所述基站划分为多个虚拟小区簇;
    其中,所述第二时间周期由至少一个第一时间周期组成。
  7. 一种簇控制器,其特征在于,包括:
    接收单元,用于接收所述集中控制器发送的小区协作信息;
    协调单元,用于根据所述小区协作信息对所述簇控制器所在虚拟小区簇中的基站进行干扰管理。
  8. 根据权利要求7所述的簇控制器,其特征在于,还包括:
    终端识别单元,用于将所述集中控制器管辖的基站中的终端分为边缘终端和中心终端;
    相应地,所述协调单元用于根据所述小区协作信息对所述边缘终端进行干扰对齐,对所述中心终端进行干扰避让。
  9. 一种干扰管理的系统,其特征在于,包括:
    如权利要求5-6任一项所述的集中控制器、如权利要求7-8任一项所述的簇控制器和基站。
PCT/CN2016/096433 2015-10-26 2016-08-23 一种干扰管理的方法及装置 WO2017071391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510703595.1A CN106612518A (zh) 2015-10-26 2015-10-26 一种干扰管理的方法及系统
CN201510703595.1 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017071391A1 true WO2017071391A1 (zh) 2017-05-04

Family

ID=58613925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096433 WO2017071391A1 (zh) 2015-10-26 2016-08-23 一种干扰管理的方法及装置

Country Status (2)

Country Link
CN (1) CN106612518A (zh)
WO (1) WO2017071391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086694A1 (en) * 2019-01-02 2022-03-17 Cohere Technologies, Inc. Distributed cooperative operation of wireless cells based on sparse channel representations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158962A (zh) * 2010-02-11 2011-08-17 华为技术有限公司 基站协作中的分簇方法、资源分配方法及相关设备
CN102215557A (zh) * 2010-04-02 2011-10-12 中兴通讯股份有限公司 一种长期演进下行系统的小区间干扰协调方法及装置
EP2923449A1 (en) * 2012-11-26 2015-09-30 Samsung Electronics Co., Ltd. Method and apparatus for allocating interference cancellation code for inter-base station coordinated communication in radio communication system
CN104980938A (zh) * 2015-05-12 2015-10-14 同济大学 一种基于基站间协作的上行干扰消除方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589666C (zh) * 2007-11-26 2010-02-10 北京邮电大学 蜂窝系统中基于动态小区组的分级式无线资源管理方法
US8145223B2 (en) * 2009-04-09 2012-03-27 Telefonaktiebolaget L M Ericsson (Publ) Inter-cell interference mitigation
CN101877918B (zh) * 2009-04-30 2014-11-12 清华大学 移动通信中基站动态分簇的设备和方法
US8605684B2 (en) * 2010-01-08 2013-12-10 Blackberry Limited System and method for coordinated multi-point network operation to reduce radio link failure
CN102480737B (zh) * 2010-11-23 2014-06-04 华为技术有限公司 一种协作通信的调度方法、装置和系统
CN103580821B (zh) * 2013-10-10 2016-06-22 工业和信息化部电信传输研究所 一种信息反馈方法
CN104717656B (zh) * 2013-12-11 2019-01-04 上海无线通信研究中心 动态确定协作小区的方法
EP3070988B1 (en) * 2013-12-13 2019-06-19 Huawei Technologies Co., Ltd. Scheduling method, device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158962A (zh) * 2010-02-11 2011-08-17 华为技术有限公司 基站协作中的分簇方法、资源分配方法及相关设备
CN102215557A (zh) * 2010-04-02 2011-10-12 中兴通讯股份有限公司 一种长期演进下行系统的小区间干扰协调方法及装置
EP2923449A1 (en) * 2012-11-26 2015-09-30 Samsung Electronics Co., Ltd. Method and apparatus for allocating interference cancellation code for inter-base station coordinated communication in radio communication system
CN104980938A (zh) * 2015-05-12 2015-10-14 同济大学 一种基于基站间协作的上行干扰消除方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086694A1 (en) * 2019-01-02 2022-03-17 Cohere Technologies, Inc. Distributed cooperative operation of wireless cells based on sparse channel representations
US11974167B2 (en) * 2019-01-02 2024-04-30 Cohere Technologies, Inc. Distributed cooperative operation of wireless cells based on sparse channel representations

Also Published As

Publication number Publication date
CN106612518A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
Hu et al. Edge and central cloud computing: A perfect pairing for high energy efficiency and low-latency
Qian et al. Dynamic cell association for non-orthogonal multiple-access V2S networks
Kamel et al. LTE wireless network virtualization: Dynamic slicing via flexible scheduling
Cao et al. Cooperative device-to-device communications in cellular networks
Chen et al. Distributed virtual resource allocation in small-cell networks with full-duplex self-backhauls and virtualization
López-Pérez et al. On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks
Parsaeefard et al. Dynamic resource allocation for virtualized wireless networks in massive-MIMO-aided and fronthaul-limited C-RAN
Liu et al. Joint clustering and inter-cell resource allocation for CoMP in ultra dense cellular networks
Kilzi et al. Mutual successive interference cancellation strategies in NOMA for enhancing the spectral efficiency of CoMP systems
CN101511107A (zh) 一种基于协同多点单用户多输入多输出的频率规划方法
JP2017534222A (ja) クラウドベースのアクセスネットワーク
Douik et al. Distributed hybrid scheduling in multi-cloud networks using conflict graphs
Kwak et al. Two time-scale edge caching and BS association for power-delay tradeoff in multi-cell networks
WO2013020394A1 (zh) 一种基于联合多点处理的资源分配方法、装置和基站
Li et al. Resource management for future mobile networks: Architecture and technologies
Harutyunyan et al. CU placement over a reconfigurable wireless fronthaul in 5G networks with functional splits
Reifert et al. Rate-splitting and common message decoding in hybrid cloud/mobile edge computing networks
CN102790739B (zh) 多小区联合上行协同调度方法和基站
CN103281706B (zh) 一种双层的动态CoMP通信协作簇划分方法
WO2017071391A1 (zh) 一种干扰管理的方法及装置
Yin et al. Semi-distributed joint power and spectrum allocation for LAA based small cell networks
Hajisami et al. Cloud-CFFR: coordinated fractional frequency reuse in cloud radio access network (C-RAN)
CN102387554B (zh) 一种小区间干扰协调资源分配方法
CN103442365B (zh) 一种降低站内CoMP系统干扰的频率复用方法
CN102685899B (zh) 物理资源分配方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858828

Country of ref document: EP

Kind code of ref document: A1