WO2017071174A1 - 一种导频设计的方法及基站 - Google Patents

一种导频设计的方法及基站 Download PDF

Info

Publication number
WO2017071174A1
WO2017071174A1 PCT/CN2016/080825 CN2016080825W WO2017071174A1 WO 2017071174 A1 WO2017071174 A1 WO 2017071174A1 CN 2016080825 W CN2016080825 W CN 2016080825W WO 2017071174 A1 WO2017071174 A1 WO 2017071174A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
terminal
base station
cell
channel
Prior art date
Application number
PCT/CN2016/080825
Other languages
English (en)
French (fr)
Inventor
朱亚军
李明菊
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2017071174A1 publication Critical patent/WO2017071174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a base station for pilot design.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrums are currently used primarily in systems such as Wireless-Fidelity (Wi-Fi), Bluetooth, radar, and medical.
  • Wi-Fi Wireless-Fidelity
  • LTE Long Term Evolution
  • Seamless switching between licensed and unlicensed bands For the user, this means a better broadband experience, higher speed, better stability and better mobility.
  • the sampled values in time and frequency are interpolated in the time domain and the frequency domain according to the sampled values, and finally the channel estimation values on the entire time-frequency plane are obtained, that is, the measurement of the channel or the radio resource management is completed.
  • the current pilot The design cannot meet the measurement accuracy requirements of the terminal for a single channel.
  • a technical problem to be solved by embodiments of the present invention is to provide a method and a base station for pilot design. In order to solve the problem that the measurement accuracy of the channel to the channel cannot be satisfied.
  • a first aspect of the embodiments of the present invention provides a pilot design method for designing a pilot for a terminal to perform a single measurement on a channel, including:
  • the base station determines resource resources occupied by the pilot according to the measurement accuracy requirement of the channel to the terminal;
  • the base station multiplexes pilots of at least two cells in a frequency domain or a time domain;
  • the base station sends a construction rule of the pilot pattern to the terminal, so that the terminal determines, according to the configuration rule, a cell to which each pilot belongs.
  • the base station sends the configuration rule of the pilot pattern to the terminal by using radio resource control signaling, medium access control signaling, or physical layer signaling.
  • the base station configures the identifier information of the cell in the pilot corresponding to the cell, so that the terminal determines the cell to which each pilot belongs according to the identifier of the cell.
  • the base station multiplexes pilots of at least two cells in the frequency domain or the time domain, the time domain resources occupied by each pilot are continuous.
  • a second aspect of the embodiments of the present invention provides a base station, configured to design a pilot for a terminal to perform a single measurement on a channel, including:
  • a determining unit configured to determine resource particles occupied by the pilot according to the measurement accuracy requirement of the channel for the terminal
  • a multiplexing unit configured to multiplex pilots of at least two cells in a frequency domain or a time domain
  • a sending unit configured to send a pilot pattern formed by pilot multiplexing of the at least two cells to the terminal, so that the terminal completes channel measurement according to the pilot pattern.
  • the sending unit is further configured to:
  • the sending unit is specifically configured to:
  • the sending unit is further configured to:
  • the identifier information of the cell is configured in the pilot corresponding to the cell, so that the terminal determines the cell to which each pilot belongs according to the identifier of the cell.
  • the base station multiplexes pilots of at least two cells in the frequency domain or the time domain, the time domain resources occupied by each pilot are continuous.
  • the post-generated pilot pattern is sent to the terminal, so that the terminal can complete the channel measurement according to the pilot pattern. Since the density of the pilot is increased according to the high precision requirement of the single measurement, the accuracy of the channel measurement is ensured, and after the pilots of at least two cells are multiplexed in the frequency domain or the time domain, the terminal measurement can be reduced.
  • the energy consumption of the channels of the multiple cells improves the efficiency of channel measurement, and facilitates the terminal to quickly select the cell handover after learning the channel quality of multiple cells, thereby improving the user experience.
  • FIG. 1 is a schematic flow chart of a method for designing a pilot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a pilot designed by using a method of pilot design according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another pilot designed using a method of pilot design according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the composition of a base station according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for designing a pilot according to the present invention.
  • the method is used to design a pilot for a terminal to perform a single measurement on a channel, and the method includes the following step:
  • the base station determines, according to the measurement accuracy requirement of the channel by the terminal, the resource particles occupied by the pilot.
  • the pilot of the channel measurement for the channel occupies a resource element (Resource Block, RB for short) in 168 resource elements (RE elements). 8 (occupied 16 for dual antenna ports), and have a fixed position, distributed in different positions in the time-frequency plane (the abscissa is the time domain and the ordinate is the frequency domain).
  • resource Block Resource Block
  • RE elements resource elements
  • Such pilot density and pattern are sufficient for channel measurement in LTE systems, but for the application in this application, the terminal needs to use unlicensed spectrum, and in the case of only one measurement, the demand for measurement accuracy is usually higher than the traditional one. Measurement accuracy requirements, so the traditional pilot density and pattern can not meet the accuracy requirements of channel measurement.
  • the RE occupied by the pilot needs to be first determined according to the measurement accuracy requirement of the channel. For example, if the channel condition needs to be detected for a long time, the density of the pilot needs to be increased, and the pilot can be configured to occupy 1 at this time. 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols in the sub-frames, so as to achieve more sampling of the channel, more accurate estimation of the channel, and improve radio resource management (Radio Resource Management)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the validity of RRM for short is beneficial to the demodulation of data, and finally it is beneficial for the terminal to judge the idle state of the channel and decide whether to compete for the channel.
  • the goal of radio resource management is to provide service quality guarantee for terminals in the network under the condition of limited bandwidth.
  • the basic starting point is that the network traffic is unevenly distributed, the channel characteristics are fluctuating due to channel weakness and interference.
  • Flexible allocation and dynamic adjustment of the available resources of the wireless transmission part and the network maximizing the utilization of the wireless spectrum, preventing network congestion and keeping the signaling load as small as possible.
  • the research content of radio resource management mainly includes the following parts: power control, channel allocation, scheduling, handover, access control, load control, end-to-end quality of service and adaptive coding and modulation.
  • the base station multiplexes pilots of at least two cells in a frequency domain or a time domain.
  • the cell where the terminal is currently located may have multiple neighboring cells
  • the terminal needs to perform cell handover and measures the channel corresponding to the cell, and the measurement of each neighboring cell is performed separately, the signaling overhead is compared. Large, and the energy consumption of the terminal is also large. Therefore, pilots of at least two cells can be multiplexed in the frequency domain or in the time domain, so that pilots of more than two cells can be transmitted through one RB. Thereby, the energy consumption of the terminal for channel measurement is greatly reduced.
  • the position of the pilot configuration in the embodiment of the present invention may be arbitrarily set, and the pattern may be arbitrarily set, and the number of occupied REs may be determined according to the measurement accuracy requirement.
  • the number of cell pilots configured in one RB can also be determined according to the measurement accuracy requirement. Generally, the more the number of cell pilots, the higher the measurement accuracy.
  • the pilot of the cell 1 can be configured on the subcarrier corresponding to the frequency 1 and the subcarrier symmetric with the frequency 1, where, in the time-frequency plane If the subcarrier number corresponding to the frequency 1 is n, and n is an integer greater than or equal to 1, the subcarrier number of the frequency 1 symmetry is (n+6); the pilot of the cell 2 is placed in the subcarrier corresponding to the frequency 2 and The frequency 2 is symmetric on the subcarrier; in the time division duplex LTE system, pilots of different cells can be sequentially arranged between the OFDM symbol, the time slot or the RB of the frequency 1.
  • the number of cell pilots configured in the RB may be determined by the measurement accuracy requirement, and the upper limit may be determined by the number of REs in the RB.
  • the base station sends a pilot pattern formed by pilot multiplexing of the at least two cells to the terminal, so that the terminal completes channel measurement according to the pilot pattern.
  • the base station determines the number of REs occupied by the pilot according to the measurement accuracy requirement of the single measurement higher than the traditional measurement, and multiplexes the pilots of the at least two cells in the frequency domain or the time domain, the inclusion
  • the pilot pattern formed by the pilot multiplexing of the at least two cells is sent to the terminal, and the terminal may complete channel measurement on at least two cells according to at least two pilots in the pilot pattern.
  • it also includes:
  • the base station sends a construction rule of the pilot pattern to the terminal, so that the terminal determines, according to the configuration rule, a cell to which each pilot belongs.
  • the base station may be configured by radio resource control (RRC) signaling, media access control (MAC) signaling, or physical Layer signaling sends the construction rules of the pilot pattern to the terminal.
  • RRC radio resource control
  • MAC media access control
  • physical Layer signaling sends the construction rules of the pilot pattern to the terminal.
  • the base station may further configure the identifier information of the cell in the pilot corresponding to the cell, so that the terminal determines, according to the identifier of the cell, the cell to which each pilot belongs.
  • the terminal after receiving the pilot in the RB, the terminal can determine the cell corresponding to each pilot, and then obtain the channel condition corresponding to each cell according to the pilot measurement.
  • the base station multiplexes pilots of at least two cells in a frequency domain or a time domain
  • the time domain resources occupied by each pilot are continuous.
  • the time domain resource is an OFDM symbol.
  • each pilot when multiplexing in the frequency domain, can be configured to occupy one subframe, that is, 14 OFDM symbols, so that continuous sampling for a long time can further improve the accuracy of channel quality measurement.
  • each pilot can be configured to occupy less than 14 OFDM symbols, which may be determined according to the channel measurement accuracy requirement, and the number of symbols occupied by each pilot may be the same or different, which is not limited in the embodiment of the present invention.
  • the pilot of each cell may also be adjusted and changed according to the change of the channel measurement accuracy requirement of the terminal, and then the notification terminal may be sent.
  • the current measurement accuracy is high, so it is required to occupy 14 consecutive OFDM symbols.
  • the base station can also adjust the pilot corresponding to the cell channel to occupy 10 OFDM symbols to satisfy the terminal.
  • Current measurement accuracy requirements save a portion of the measurement time.
  • the post-generated pilot pattern is sent to the terminal, so that the terminal can complete the channel measurement according to the pilot pattern. Since the density of the pilot is increased according to the high precision requirement of the single measurement, the accuracy of the channel measurement is ensured, and after the pilots of at least two cells are multiplexed in the frequency domain or the time domain, the terminal measurement can be reduced.
  • the energy consumption of the channels of the multiple cells improves the efficiency of channel measurement, and facilitates the terminal to quickly select the cell handover after learning the channel quality of multiple cells, thereby improving the user experience.
  • FIG. 2 a schematic diagram of a pilot structure designed by using a method for designing a pilot according to an embodiment of the present invention.
  • pilots of two cells are multiplexed based on a frequency domain, where one RB includes 12 subcarriers in the vertical direction * 168 REs in the horizontal 14 OFDM symbols.
  • Slanted striped box For the RE occupied by the pilot 1 of the cell 1, the block of the cross grid is the RE occupied by the pilot 2 of the cell 2, and the blank block is the unoccupied RE.
  • FIG. 1 For the RE occupied by the pilot 1 of the cell 1, the block of the cross grid is the RE occupied by the pilot 2 of the cell 2, and the blank block is the unoccupied RE.
  • pilot 1 occupies 14 OFDM symbols of the first horizontal row, that is, frequency 1, and 14 OFDM symbols of the seventh horizontal row, that is, frequency 1 symmetric frequency
  • pilot 2 occupies the first
  • the two horizontal rows are 14 OFDM symbols of frequency 2
  • the 14th OFDM symbol of the eighth horizontal row that is, the frequency 2 symmetric frequency, thereby achieving an increase in pilot density and frequency domain multiplexing of pilots of different cells.
  • the number of symbols occupied by each pilot may be the same or different, and may be all 14 OFDM symbols of one subframe, or may not occupy all symbols in one subframe.
  • the pattern of the RS can also be designed by multiplexing in the time domain.
  • FIG. 3 is a schematic diagram of another pilot structure designed by using the method of pilot design according to an embodiment of the present invention:
  • pilots of two cells are multiplexed based on the time domain, wherein one RB includes 12 subcarriers in the vertical direction and 168 REs in the horizontal 14 OFDM symbols.
  • the block of the diagonal stripe is the RE occupied by the pilot 1 of the cell 1
  • the block of the cross grid is the RE occupied by the pilot 2 of the cell 2
  • the blank block is the unoccupied RE.
  • pilot 1 occupies a first horizontal row, that is, a first OFDM symbol of frequency 1, that is, a time slot
  • a seventh horizontal row that is, a first OFDM symbol of a frequency 1 symmetric frequency.
  • the pilot 2 occupies the first 7 OFDM symbols of the first horizontal row, that is, the frequency 1, and the last 7 OFDM symbols of the seventh horizontal row, that is, the frequency 1 symmetric frequency, thereby realizing the increase of the pilot density and the pilot of different cells.
  • Time domain multiplexing Improve the accuracy of a single measurement and reduce the terminal energy consumption.
  • the number of symbols occupied by each pilot may be the same or different, and may be all 14 OFDM symbols of one subframe, or may not occupy all symbols in one subframe.
  • the base station includes:
  • the determining unit 100 is configured to determine, according to the measurement accuracy requirement of the channel by the terminal, the resource particles occupied by the pilot;
  • the multiplexing unit 200 is configured to multiplex pilots of at least two cells in a frequency domain or a time domain;
  • the sending unit 300 is configured to send a pilot pattern formed by pilot multiplexing of the at least two cells to the terminal, so that the terminal completes channel measurement according to the pilot pattern.
  • the sending unit 300 is further configured to:
  • a construction rule of the pilot pattern is sent to the terminal, so that the terminal determines a cell to which each pilot belongs according to the construction rule.
  • the sending unit 300 is specifically configured to:
  • the sending unit 300 is further configured to:
  • the identifier information of the cell is configured in the pilot corresponding to the cell, so that the terminal determines the cell to which each pilot belongs according to the identifier of the cell.
  • the base station multiplexes pilots of at least two cells in the frequency domain or the time domain, the time domain resources occupied by each pilot are continuous.
  • the above determining unit 100, the multiplexing unit 200, and the transmitting unit 300 may exist independently or may be integrated.
  • the determining unit 100, the multiplexing unit 200, or the sending unit 300 may be separately set in hardware and independent of the processor of the base station, and configured.
  • the form may be in the form of a microprocessor; it may also be embedded in the processor of the base station in hardware, or may be stored in the memory of the base station in software, so that the processor of the base station invokes the above determining unit 100.
  • the operations corresponding to the multiplexing unit 200 and the transmitting unit 300 may exist independently or may be integrated.
  • the determining unit 100, the multiplexing unit 200, or the sending unit 300 may be separately set in hardware and independent of the processor of the base station, and configured.
  • the form may be in the form of a microprocessor; it may also be embedded in the processor of the base station in hardware, or may be stored in the memory of the base station in software, so that the processor of the base station invokes the above determining
  • the sending unit 300 can also be used as an interface circuit of the base station, and can be integrated with the determining unit 100 or the multiplexing unit 200, or can be independently set.
  • the determining unit 100 may be a processor of the base station, and the functions of the multiplexing unit 200 and the transmitting unit 300 may be embedded in the processor. It can also be set independently of the processor, or it can be stored in the memory in the form of software, and its function can be called by the processor.
  • the embodiment of the invention does not impose any limitation.
  • the above processor may be a central processing unit (CPU), a microprocessor, a single chip microcomputer, or the like.
  • the present invention has the following advantages:
  • the pilot patterns generated by the pilot multiplexing of the at least two cells are sent to the terminal, so that the terminal can according to the pilot pattern.
  • Complete channel measurement Since the density of the pilot is increased according to the high precision requirement of the single measurement, the accuracy of the channel measurement is ensured, and after the pilots of at least two cells are multiplexed in the frequency domain or the time domain, the terminal measurement can be reduced.
  • the energy consumption of the channels of the multiple cells improves the efficiency of channel measurement, and facilitates the terminal to quickly select the cell handover after learning the channel quality of multiple cells, thereby improving the user experience.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种导频设计的方法及基站,所述方法包括:基站根据终端对信道的测量精度要求确定导频占用的资源粒子;所述基站将至少两个小区的导频在频域上或时域上进行复用;所述基站将至少两个小区的导频复用后形成的的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。采用本发明,可满足终端对信道进行单次测量的测量精度要求。

Description

一种导频设计的方法及基站
本申请要求于2015年10月27日提交中国专利局,申请号为201510713076.3、发明名称为“一种导频设计的方法及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种导频设计的方法及基站。
背景技术
随着通信业务量的急剧增加,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)授权频谱显得越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用,3GPP正讨论如何在授权频谱的帮助下使用非授权频谱,如2.4GHz和5GHz频段。这些非授权频谱目前主要是(无线保真Wireless-Fidelity,简称Wi-Fi)、蓝牙、雷达和医疗等系统在使用。相比Wi-Fi等网络,工作在未授权频段的长期演进(Long Term Evolution,简称LTE)网络有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和未授权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和更好的移动性。
在非授权频谱上,多个系统间需要竞争去使用资源,为了保证系统间的公平共享,竞争使用资源的系统在占用信道之前需要去监听信道是否正在被别的系统所占用。如果信道是空闲的话,那么该系统就可以去占用信道。如果信道是忙的话,那么该系统无法占用信道。而在非授权频谱上,占用信道的机会是无法确定的,因此终端可能无法获得多次测量的机会。如果基于单次测量的话,终端需要根据已知的导频信号进行测量,具体地,已知的导频信号按照一定的导频图样分布在时频平面上,终端通过导频信道得到信道在不同时间和频率上的采样值,并根据这些采样值进行时域和频域插值,最终获得整个时频平面上的信道估计值,也即完成对信道或者说无线资源管理的测量。但是目前的导频 设计无法满足终端对信道单次的测量精度要求。
发明内容
本发明实施例所要解决的技术问题在于,提供一种导频设计的方法及基站。以解决无法满足终端对信道的测量精度要求的问题。
为了解决上述技术问题,本发明实施例第一方面提供了一种导频设计的方法,用于设计供终端对信道进行单次测量的导频,包括:
基站根据终端对信道的测量精度要求确定导频占用的资源粒子;
所述基站将至少两个小区的导频在频域上或时域上进行复用;
所述基站将至少两个小区的导频复用后生成的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。
其中,还包括:
所述基站将导频图样的构造规则发送给所述终端,以便所述终端根据所述构造规则确定每个导频归属的小区。
其中,所述基站通过无线资源控制信令、媒体接入控制信令或物理层信令将所述导频图样的构造规则发送给所述终端。
其中,还包括:
所述基站将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
其中,若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。
本发明实施例第二方面提供了一种基站,用于设计供终端对信道进行单次测量的导频,包括:
确定单元,用于根据终端对信道的测量精度要求确定导频占用的资源粒子;
复用单元,用于将至少两个小区的导频在频域上或时域上进行复用;
发送单元,用于将所述至少两个小区的导频复用后形成的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。
其中,所述发送单元还用于:
将所述导频图样的构造规则发送给所述终端,以便所述终端根据所述构造 规则确定每个导频归属的小区。
其中,所述发送单元具体用于:
通过无线资源控制信令、媒体接入控制信令或物理层信令将所述导频图样的构造规则发送给所述终端。
其中,所述发送单元还用于:
将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
其中,若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。
实施本发明实施例,具有如下有益效果:
根据终端对信道的测量精度要求确定导频占用的资源粒子,并且将至少两个小区的导频在频域上或时域上进行复用之后,将所述至少两个小区的导频复用后生成的导频图样发送给终端,从而使得终端可以根据所述导频图样完成信道测量。由于根据单次测量的高精度要求增加了导频的密度,从而确保了信道测量的精度,而将至少两个小区的导频在频域上或时域上进行复用之后,可以减少终端测量多个小区的信道的能量消耗,提升了信道测量的效率,便于终端获知多个小区的信道质量后迅速选择小区切换,从而提升了用户的业务体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例导频设计的方法的流程示意图;
图2是使用本发明实施例导频设计的方法设计的一种导频的架构示意图;
图3是使用本发明实施例导频设计的方法设计的另一种导频的架构示意图;
图4是本发明实施例基站的组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,为本发明导频设计的方法的第一实施例的流程示意图,在本实施例中,该方法用于设计供终端对信道进行单次测量的导频,所述方法包括以下步骤:
S101,基站根据终端对信道的测量精度要求确定导频占用的资源粒子。
在现有协议(3GPP TS 36.211)中,当只有一个天线端口时,终端对信道测量的导频占用一个资源块(Resource Block,简称RB)的168个资源粒子(Resource Element,简称RE)中的8个(双天线端口时占用16个),且具备固定的位置,分散地分布在时频平面(横坐标为时域,纵坐标为频域)的不同位置上。这样的导频密度和图样对于LTE系统中信道测量已经足够,但是对于本申请中,终端要使用非授权频谱,且只进行单次测量的场景下,其对于测量精度的需求通常高于传统的测量精度需求,因此传统的导频密度和图样已经无法满足信道测量的精度要求。因此,在本实施例中,需要首先根据信道的测量精度要求确定导频占用的RE,例如,需要检测较长时间的信道情况,则导频的密度需要增加,此时可配置导频占用1个子帧中的14个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,从而实现对信道进行更多的采样,对信道的估计检测更加准确,利于提升无线资源管理(Radio Resource Management,简称RRM)的有效性,利于数据的解调,最终也就利于终端判断信道的空闲状态并决定是否竞争使用该信道。其中,无线资源管理目标是在有限带宽的条件下,为网络内的终端提供业务质量保障,其基本出发点是在网络话务量分布不均匀、信道特性因信道衰弱和干扰而起伏变化等情况下,灵活分配和动态调整无线传输部分和网络的可用资源,最大程度地提高无线频谱利用率,防止网络拥塞和保持尽可能小的信令负荷。无线资源管理的研究内容主要包括以下几个部分:功率控制、信道分配、调度、切换、接入控制、负载控制、端到端的服务质量和自适应编码调制。
S102,所述基站将至少两个小区的导频在频域上或时域上进行复用。
可选地,由于终端当前所在的小区可能具备多个邻区,若终端需要进行小区切换,并对小区所对应的信道进行测量时,每一个邻区的测量都单独进行的话,信令开销较大,且终端的能量消耗也较大,因此,可以将至少两个小区的导频在频域上或时域上进行复用,从而通过一个RB便可以传送2个以上的小区的导频,从而大大降低了终端进行信道测量时的能耗。
且本发明实施例中的导频配置的位置可以任意设置,图案也可以任意设置,而占用的RE数可根据测量精度需求确定。当然,在一个RB中配置的小区导频数量也可以根据测量精度需求确定,一般而言,小区导频的数量越多,测量精度越高。
例如,在频分双工LTE系统中,由于频率信道的对称性,可以将小区1的导频配置在频率1对应的子载波以及与频率1对称的子载波上,此处,在时频平面上若频率1对应的子载波序号为n,n为大于等于1的整数,则频率1对称的子载波序号为(n+6);将小区2的导频配置在频率2对应的子载波以及频率2对称的子载波上;而在时分双工LTE系统中,可以在频率1的OFDM符号、时隙(time slot)或RB之间依次配置不同小区的导频。
需要说明的是,在RB中配置的小区导频数量可以由测量精度需求确定,其上限可以以RB中的RE数量决定。
S103,所述基站将所述至少两个小区的导频复用后形成的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。
当基站根据单次测量高于传统测量的测量精度需求确定了导频占用的RE数量,并将至少两个小区的导频在频域上或时域上进行复用后,便可以将包含所述至少两个小区的导频复用后形成的导频图样发送给所述终端,终端便可以根据所述导频图样中的至少两个导频完成对至少两个小区的信道测量。
可选地,还包括:
所述基站将导频图样的构造规则发送给所述终端,以便所述终端根据所述构造规则确定每个导频归属的小区。
具体地,所述基站可以通过无线资源控制(Radio Resource Control,简称RRC)信令、媒体接入控制(Media Access Control,简称MAC)信令或物理 层信令将所述导频图样的构造规则发送给所述终端。
或者,所述基站还可以将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
这样,终端在接收到RB中的导频之后,便可以确定每个导频所对应的小区,然后根据导频测量得到每个小区对应的信道状况。
可选地,若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。其中时域资源即为OFDM符号。
连续的OFDM符号使得信道的采样具备时间上的连续性,使得信道质量的测量更加准确。且在本发明实施例中,在频域上复用时,可以配置每个导频占用一个子帧即14个OFDM符号,这样较长时间的连续采样可以进一步提升信道质量测量的准确度。
当然,也可以配置每个导频占用少于14个OFDM符号,具体可根据信道测量精度需求确定,且每个导频占用的符号数量可以相同也可以不同,本发明实施例不作任何限定。
需要说明的是,在本发明实施例中,每个小区的导频还可以根据终端的信道测量精度要求的改变而进行调整和改变,然后在下发通知终端即可。例如,当前测量精度要求较高,因此需要占用连续的14个OFDM符号,而在测量精度要求降低之后,基站也可以调整该小区信道对应的导频,使其占用10个OFDM符号就可以满足终端当前的测量精度要求,从而节省一部分测量时间。
根据终端对信道的测量精度要求确定导频占用的资源粒子,并且将至少两个小区的导频在频域上或时域上进行复用之后,将所述至少两个小区的导频复用后生成的导频图样发送给终端,从而使得终端可以根据所述导频图样完成信道测量。由于根据单次测量的高精度要求增加了导频的密度,从而确保了信道测量的精度,而将至少两个小区的导频在频域上或时域上进行复用之后,可以减少终端测量多个小区的信道的能量消耗,提升了信道测量的效率,便于终端获知多个小区的信道质量后迅速选择小区切换,从而提升了用户的业务体验。
请参照图2,为使用本发明实施例导频设计的方法设计的一种导频的架构示意图,在本实施例中,基于频域复用了两个小区的导频,其中,一个RB包括了纵向12个子载波*横向14个OFDM符号共168个RE。斜线条纹的方框 为小区1的导频1所占用RE,交叉网格的方框为小区2的导频2所占用的RE,空白方框即为未被占用的RE。如图2所示,在一个RB中,导频1占用第一横排即频率1的14个OFDM符号,以及第七横排即频率1对称频率的14个OFDM符号,而导频2占用第二横排即频率2的14个OFDM符号,以及第八横排即频率2对称频率的14个OFDM符号,从而实现对导频密度的增加以及不同小区导频的频域复用。提高单次测量的精度,减低终端能耗。此处每个导频占用的符号数量可以相同也可以不同,可以是一个子帧的所有14个OFDM符号,也可以不占用一个子帧中的所有符号。同理的,当小区之间无法实现时间上的同步的时候,那么还可以通过时域上的复用来设计RS的图案。
请参照图3,为使用本发明实施例导频设计的方法设计的另一种导频的架构示意图:
基于时域复用了两个小区的导频,其中,一个RB包括了纵向12个子载波*横向14个OFDM符号共168个RE。斜线条纹的方框为小区1的导频1所占用RE,交叉网格的方框为小区2的导频2所占用的RE,空白方框即为未被占用的RE。如图3所示,在一个RB中,导频1占用第一横排即频率1的前7个OFDM符号即一个时隙,以及第七横排即频率1对称频率的前7个OFDM符号,而导频2占用第一横排即频率1的后7个OFDM符号,以及第七横排即频率1对称频率的后7个OFDM符号,从而实现对导频密度的增加以及不同小区导频的时域复用。提高单次测量的精度,减低终端能耗。此处每个导频占用的符号数量可以相同也可以不同,可以是一个子帧的所有14个OFDM符号,也可以不占用一个子帧中的所有符号。
请参照图4,为本发明实施例基站的组成示意图,在本实施例中,所述基站包括:
确定单元100,用于根据终端对信道的测量精度要求确定导频占用的资源粒子;
复用单元200,用于将至少两个小区的导频在频域上或时域上进行复用;
发送单元300,用于将所述至少两个小区的导频复用后形成的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。
可选地,所述发送单元300还用于:
将导频图样的构造规则发送给所述终端,以便所述终端根据所述构造规则确定每个导频归属的小区。
所述发送单元300具体用于:
通过无线资源控制信令、媒体接入控制信令或物理层信令将所述导频图样的构造规则发送给所述终端。
可选地,所述发送单元300还用于:
将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。
以上确定单元100、复用单元200和发送单元300可以独立存在,也可以集成设置,确定单元100、复用单元200或发送单元300可以以硬件的形式独立于基站的处理器单独设置,且设置形式可以是微处理器的形式;也可以以硬件形式内嵌于该基站的处理器中,还可以以软件形式存储于该基站的存储器中,以便于该基站的处理器调用执行以上确定单元100、复用单元200和发送单元300对应的操作。
当然,发送单元300也可以作为该基站的接口电路,可以与确定单元100或复用单元200集成,也可以独立设置。
例如,在本发明基站的实施例(图4所示的实施例)中,确定单元100可以为该基站的处理器,而复用单元200和发送单元300的功能可以内嵌于该处理器中,也可以独立于处理器单独设置,也可以以软件的形式存储于存储器中,由处理器调用实现其功能。本发明实施例不做任何限制。以上处理器可以为中央处理单元(CPU)、微处理器、单片机等。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
通过上述实施例的描述,本发明具有以下优点:
根据终端对信道的测量精度要求确定导频占用的资源粒子,并且将至少两 个小区的导频在频域上或时域上进行复用之后,将所述至少两个小区的导频复用后生成的导频图样发送给终端,从而使得终端可以根据所述导频图样完成信道测量。由于根据单次测量的高精度要求增加了导频的密度,从而确保了信道测量的精度,而将至少两个小区的导频在频域上或时域上进行复用之后,可以减少终端测量多个小区的信道的能量消耗,提升了信道测量的效率,便于终端获知多个小区的信道质量后迅速选择小区切换,从而提升了用户的业务体验。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,简称ROM)或随机存储记忆体(Random Access Memory,简称RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种导频设计的方法,用于设计供终端对信道进行单次测量的导频,其特征在于,包括:
    基站根据终端对信道的测量精度要求确定导频占用的资源粒子;
    所述基站将至少两个小区的导频在频域上或时域上进行复用;
    所述基站将所述至少两个小区的导频复用后形成的导频图样发送给所述终端,以便所述终端根据所述导频图样完成信道测量。
  2. 如权利要求所述1的方法,其特征在于,还包括:
    所述基站将导频图样的构造规则发送给所述终端,以便所述终端根据所述构造规则确定每个导频归属的小区。
  3. 如权利要求2所述的方法,其特征在于,所述基站通过无线资源控制信令、媒体接入控制信令或物理层信令将所述导频图样的构造规则发送给所述终端。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    所述基站将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
  5. 如权利要求1-4任一项所述的方法,其特征在于,若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。
  6. 一种基站,用于设计供终端对信道进行单次测量的导频,其特征在于,包括:
    确定单元,用于根据终端对信道的测量精度要求确定导频占用的资源粒子;
    复用单元,用于将至少两个小区的导频在频域上或时域上进行复用;
    发送单元,用于将所述至少两个小区的导频复用后形成的导频图样发送给 所述终端,以便所述终端根据所述导频图样完成信道测量。
  7. 如权利要求6所述的基站,其特征在于,所述发送单元还用于:
    将所述导频图样的构造规则发送给所述终端,以便所述终端根据所述构造规则确定每个导频归属的小区。
  8. 如权利要求7所述的基站,其特征在于,所述发送单元具体用于:
    通过无线资源控制信令、媒体接入控制信令或物理层信令将所述导频图样的构造规则发送给所述终端。
  9. 如权利要求6所述的基站,其特征在于,所述发送单元还用于:
    将小区的标识信息配置在该小区对应的导频中,以便所述终端根据小区的标识确定每个导频归属的小区。
  10. 如权利要求6-9任一项所述的基站,其特征在于,若所述基站将至少两个小区的导频在频域上或时域上进行复用,则每个导频占用的时域资源连续。
PCT/CN2016/080825 2015-10-27 2016-04-29 一种导频设计的方法及基站 WO2017071174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510713076.3 2015-10-27
CN201510713076.3A CN105430672A (zh) 2015-10-27 2015-10-27 一种导频设计的方法及基站

Publications (1)

Publication Number Publication Date
WO2017071174A1 true WO2017071174A1 (zh) 2017-05-04

Family

ID=55508538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080825 WO2017071174A1 (zh) 2015-10-27 2016-04-29 一种导频设计的方法及基站

Country Status (2)

Country Link
CN (1) CN105430672A (zh)
WO (1) WO2017071174A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430672A (zh) * 2015-10-27 2016-03-23 东莞酷派软件技术有限公司 一种导频设计的方法及基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599279A (zh) * 2004-07-28 2005-03-23 焦秉立 一种使用正交调制的导频信道设计方法和系统
CN101841354A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 一种下行测量导频传输方法和装置
CN103298002A (zh) * 2012-03-05 2013-09-11 华为技术有限公司 虚拟小区测量方法、用户设备、基站及通信系统
CN103327619A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 一种控制信令的发送、解调方法与系统及终端
CN105430672A (zh) * 2015-10-27 2016-03-23 东莞酷派软件技术有限公司 一种导频设计的方法及基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2663689C (en) * 2006-10-04 2013-01-22 Qualcomm Incorporated Uplink ack transmission for sdma in a wireless communication system
CN101162987B (zh) * 2007-11-10 2011-06-22 中兴通讯股份有限公司 一种时分双工系统上行特殊时隙中导频信号的发送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599279A (zh) * 2004-07-28 2005-03-23 焦秉立 一种使用正交调制的导频信道设计方法和系统
CN101841354A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 一种下行测量导频传输方法和装置
CN103298002A (zh) * 2012-03-05 2013-09-11 华为技术有限公司 虚拟小区测量方法、用户设备、基站及通信系统
CN103327619A (zh) * 2012-03-19 2013-09-25 中兴通讯股份有限公司 一种控制信令的发送、解调方法与系统及终端
CN105430672A (zh) * 2015-10-27 2016-03-23 东莞酷派软件技术有限公司 一种导频设计的方法及基站

Also Published As

Publication number Publication date
CN105430672A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
TWI753247B (zh) 使用者設備之無線通訊方法及装置、電腦可讀介質
US20210083821A1 (en) Communication of Resource Status Information between a Base Station Central Unit and a Base Station Distributed Unit
JP7053571B2 (ja) 復号ベースのチャネルビジーレシオの決定を用いたlte-v2vのための輻輳制御
JP6896865B2 (ja) 位相追跡基準信号のための周波数領域パターンを選択または送信するためのシステムおよび方法
US10491263B2 (en) Data transmission method and data transmission device
RU2759513C1 (ru) Переключение части ширины полосы
CN108886776B (zh) 终端、无线通信系统以及无线通信方法
EP3834529A1 (en) Nr v2x - methods for congestion control
US11533641B2 (en) Transmission of measurement reports in a wireless communication system
TW201714461A (zh) 針對v2x應用的資源配置延遲的最小化
KR102251134B1 (ko) 무선 통신 시스템에서 단말의 물리 사이드링크 제어 채널의 블라인드 디코딩 수행 방법 및 상기 방법을 이용하는 단말
JP2020523915A (ja) 通信装置、ユーザ機器、通信装置によって実行される方法、及びユーザ機器によって実行される方法
JP6797808B2 (ja) 端末及び無線通信方法
JP7054405B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7001583B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7418507B2 (ja) 端末、無線通信方法、基地局及びシステム
BR112019015467A2 (pt) Técnicas para agrupamento de reconhecimentos de comunicação do tipo máquina aprimorada
KR20110083455A (ko) 무선 통신 시스템에서의 선호 요소 반송파 결정 방법 및 장치와, 그를 이용하는 요소 반송파 구성방법 및 수신장치
WO2016182050A1 (ja) ユーザ端末、無線基地局、無線通信システム及び無線通信方法
CN107889251B (zh) 一种时域资源单元集合结构的确定方法、网络设备及终端
WO2018228573A1 (zh) 信号传输方法、相关装置及系统
CN108476491A (zh) 一种无线通信方法、设备及系统
WO2017071174A1 (zh) 一种导频设计的方法及基站
KR20200105695A (ko) 데이터 송신 방법, 장치 및 시스템
US20220304042A1 (en) Enhanced Configured Grants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16858622

Country of ref document: EP

Kind code of ref document: A1