WO2017070881A1 - Aluminum deposition and anodization on a metal substrate - Google Patents

Aluminum deposition and anodization on a metal substrate Download PDF

Info

Publication number
WO2017070881A1
WO2017070881A1 PCT/CN2015/093168 CN2015093168W WO2017070881A1 WO 2017070881 A1 WO2017070881 A1 WO 2017070881A1 CN 2015093168 W CN2015093168 W CN 2015093168W WO 2017070881 A1 WO2017070881 A1 WO 2017070881A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
aluminum
aluminum layer
alloy
magnesium
Prior art date
Application number
PCT/CN2015/093168
Other languages
French (fr)
Inventor
Chi-Hao Chang
Chien-Ting Lin
Kuan-Ting Wu
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to PCT/CN2015/093168 priority Critical patent/WO2017070881A1/en
Priority to US15/758,114 priority patent/US20180245232A1/en
Publication of WO2017070881A1 publication Critical patent/WO2017070881A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • Metals or metal alloys have been widely used in electronic devices, such as computers, cell phones, and portable media devices. Metals or metal alloys may be used as, for example, housing or support members of electronic devices. Some metals or metal alloys for example magnesium or magnesium alloy have a poor chemical stability, low hardness and wear resistance, and a corrosion issue, and lots of surface treatment processes may be required to perform on the metal or metal alloy surface due to high reactivity and high porosity on its surface.
  • Fig. 1 is a cross-sectional view of an example structure according to the disclosure.
  • Fig. 2 is a flowchart for an example process for making the structure according to the disclosure.
  • an illustrative structure comprising metal substrate 100, aluminum layer 110, and anodized aluminum layer 120.
  • the metal substrate 100 may be constructed of any suitable metal materials.
  • the substrate 100 can be selected from magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof.
  • the substrate can be magnesium or magnesium alloy.
  • the substrate 100 may have any size and shapes suitable for its intended use.
  • the substrate 100 may have curved surfaces, planar surfaces, edges, cavities, through-holes, or any combination thereof.
  • the metal substrate may also have any suitable thickness. In some examples, the thickness of the metal substrate can vary between 0.5 mm and 2 mm, between 1.0 mm and 1.5 mm, or between 1.2 mm and 1.5 mm.
  • the metal substrate may be used as a part of an electronic device, for example, laptop computer, pocket camera, mobile phone, GPS system, PDA, flash drives, mp3 players, radio, portable game system, etc.
  • the aluminum layer 110 is a layer of aluminum or alloy thereof that is deposited on the surface of the metal substrate according to the process of the disclosure, which will be explained in detail below.
  • the aluminum layer 110 can have any suitable thickness. In some examples, the thickness of the aluminum layer can vary between 10 and 50 ⁇ m, or between 25 and 35 ⁇ m.
  • the anodized aluminum layer 120 may be a layer wherein at least a portion of the aluminum layer 110 is anodized. Anodizing can increase corrosion resistance, wear resistance, mechanical strength, and metallic luster of the aluminum layer 110. In addition, anodizing can allow dyeing of the aluminum layer 110 to obtain a cosmetic appearance.
  • the anodized aluminum layer 120 can have any suitable thickness. In some examples, the thickness of the anodized aluminum layer 120 can vary between 5 and 25 ⁇ m, or between 15 and 20 ⁇ m.
  • Aluminum anodizing is an electrochemical process in which the aluminum surface is converted to aluminum oxide and an aluminum oxide layer is chemically built on the surface of the aluminum. During the anodizing process, the aluminium oxide is grown down into the surface and out from the surface of aluminum. Therefore, the aluminum layer 110 may need to have an initially applied thickness at least equal to or greater than the desired thickness of the layer 120, so that sufficient aluminum is available for the conversion.
  • Fig. 2 shows an illustrative process for making a structure according to the disclosure.
  • the process begins at step 210.
  • a metal substrate can be provided.
  • the metal substrate may have any suitable sizes or shapes, and can be consisted of magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof.
  • the metal substrate may be pretreated to prepare for the subsequent deposition step. The pretreatment may include polishing, grinding, degreasing, and/or cleaning.
  • Degreasing may consist of either dipping the metal substrate in organic solvents, such as trichloroethylene or perchloroethylene, or using the vapors from organic solvents to remove surface grease in alkaline condition including caustic soda, silicates and/or phosphates.
  • organic solvents such as trichloroethylene or perchloroethylene
  • vapors from organic solvents to remove surface grease in alkaline condition including caustic soda, silicates and/or phosphates.
  • an existing oxide layer present on the metal substrate may be removed by cleaning, for example, plasma cleaning, or any other suitable chemical process, for example, electro-polishing process. Cleaning power may be enhanced by the use of ultrasonic equipment during cleaning processes.
  • the deposition process is a process of coating the metal substrate with aluminum particles suspended in a fluid dispersion under the influence of an electric field pulse applied between the metal substrate and a counter electrode.
  • the deposition can comprise forming a stable suspension by adding aluminum powders in an aqueous polymer medium, immersing the metal substrate and a counter electrode in the suspension, and applying a pulsed current between the metal substrate and the counter electrode in the suspension.
  • the aluminum powders have an average particle size of from 0.1 to 10 ⁇ m. In some examples, the average particle size of the aluminum powders can range from 0.1 to 5 ⁇ m, or from 0.5 to 2 ⁇ m.
  • the polymer can be water soluble, and can be selected from an anionic polymer and a cationic polymer.
  • the anionic polymer can be acrylic or maleic-acid based polymers, polymethacrylates, hydrolyzed polyacrylamide, acrylic acid/acrylamide copolymers, or any combination of the above polymers.
  • the cationic polymer can be diallyldimethylammonium chloride (DADMAC) .
  • the concentration of the aluminum particles in the suspension can be from 5wt%to 15wt%, or from 10 to 15wt%.
  • any inert electrode may be used.
  • platinum, carbon, or lead can be used as the counter electrode.
  • graphite can be used as the counter electrode.
  • the applied pulsed current can have any suitable waveforms.
  • the pulsed current can be embodied in the form of square wave pulses.
  • the pulsed current can be embodied in the form of pulses superimposition on DC.
  • the duty cycle of the pulsed current can be from 3%to 50%. In some examples, the duty cycle can be from 5%to 30%.
  • the frequency of the pulsed current can be from 50 Hz to 1000 Hz. In some examples, the frequency can be from 100 Hz to 500 Hz, or from 200 Hz to 500 Hz.
  • the pulsed current can have an average current density ranging from 3 to 15 A/cm 2 . In some examples, the average current density can be from 5 to 12 A/cm 2 .
  • the deposition process can be carried out at a temperature of from ambient temperature to 40°C.
  • the pulsed current can be applied for 3 to 10 minutes. It is understood that the process can be regulated by controlling a variety of parameters, including the pulse duty cycle, pulse frequency, processing time, and concentration of aluminum particles in the suspension.
  • the aluminum layer initially deposited on the metal substrate by the process may have any suitable thickness. In some examples, the aluminum layer initially deposited by the process can have a thickness ranging from 15 ⁇ m to 60 ⁇ m. In some examples, the aluminum layer initially deposited by the process can have a thickness ranging from 30 ⁇ m to 40 ⁇ m.
  • the deposition process can have a high production yield and short processing time, and is also environment friendly.
  • the aluminum particles in the suspension are adsorbed by the polymers, for example, anionic polymers or cationic polymers, and gain a surface charge as a result of an electrostatic interaction with the polymer molecules, and the charged aluminum particles are capable of moving in the suspension towards the metal substrate under the influence of a voltage imposed between the metal substrate and the counter electrode.
  • the aluminum particles lose their charges by removing the polymer molecules at an instantaneous high temperature generated by the current pulse, and adhere to the surface of the substrate. As a result, a uniform and dense film forms over the whole substrate surface including the surface of cavities, edges and corners.
  • the deposited aluminum layer may be anodized.
  • the anodizing is an electrolytic passivation process used to increase resistance to corrosion and wear, increase surface hardness, and provide cosmetic and functional properties of the aluminum layer.
  • the anodizing may be performed by any suitable process, for example, chromic acid anodization, sulfuric acid anodization, or sulfuric acid hardcoat anodization.
  • the anodizing process may include dyeing and/or sealing.
  • the anodizing processes may produce a porous surface which can accept dyes easily.
  • the corrosion and wear resistance of the aluminum layer can be further improved by applying suitable sealing substances.
  • the anodized aluminum layer can have any suitable thickness and hardness.
  • the anodized aluminum layer can have a pencil hardness of 6-7H, measured according to ASTM D3363. It should be understood that the thickness and hardness can be controlled by the anodizing conditions such as electrolyte concentration, pH value, temperature, processing time, and current.
  • a cleaning step may be added before and/or after the step 230.
  • the process according to the disclosure can produce a dense and uniform high-quality aluminum layer on the metal substrate at a relatively low thickness, to thereby obtain a cost-effective structure, which is suitable for use as a housing or supporting members of electronic devices.
  • high-value raw materials may be used more sparingly due to a lower layer thickness.
  • the metal substrate used in the examples is a magnesium alloy workpiece (MgAZ91: 90%magnesium/9%aluminum/1%zinc) .
  • a suspension made up of 1,000g aluminum powders having an average particle size of 1-5 ⁇ m, 60g/L anionic polyacrylate dispersant (weight-average molecular weight at the range of 4,000-15,000, commercially available from Akzo Nobel or BASF) , 6,000g water was prepared.
  • the magnesium alloy workpiece was subjected to electro-polishing and cleaning, to remove the natural surface oxide layer and to improve the adhesion of aluminum on the magnesium alloy.
  • Deposition of aluminum was on magnesium alloy anode, along with graphite as a cathode.
  • the pulse powder conditions in Example 1, 2 and 3 were listed in the table below. The deposition process was carried out at room temperature for 3-10 minutes.
  • a uniform and dense aluminum layer was formed on the magnesium alloy workpiece. After cleaning, the magnesium alloy workpiece was anodized, cleaned and dried.
  • the magnesium alloy workpiece finally obtained in the Examples was subjected to natural salt spray test according to MIL-STD-810F.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An anodized electroplated cosmetic structure and a method for making the same are provided, in which an aluminum layer (110) is deposited on a metal substrate (100), and, the aluminum layer deposited on the metal substrate is anodized. In the depositing process of the method, aluminum powders are added into an aqueous polymer medium to form a suspension.

Description

Aluminum Deposition and Anodization on a Metal Substrate BACKGROUND
Metals or metal alloys have been widely used in electronic devices, such as computers, cell phones, and portable media devices. Metals or metal alloys may be used as, for example, housing or support members of electronic devices. Some metals or metal alloys for example magnesium or magnesium alloy have a poor chemical stability, low hardness and wear resistance, and a corrosion issue, and lots of surface treatment processes may be required to perform on the metal or metal alloy surface due to high reactivity and high porosity on its surface.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a cross-sectional view of an example structure according to the disclosure.
Fig. 2 is a flowchart for an example process for making the structure according to the disclosure.
DETAILED DESCRIPTION
Referring to Fig. 1, an illustrative structure is provided according to the disclosure, comprising metal substrate 100, aluminum layer 110, and anodized aluminum layer 120.
The metal substrate 100 may be constructed of any suitable metal materials.  For example, the substrate 100 can be selected from magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof. In some examples, the substrate can be magnesium or magnesium alloy. The substrate 100 may have any size and shapes suitable for its intended use. For example, the substrate 100 may have curved surfaces, planar surfaces, edges, cavities, through-holes, or any combination thereof. The metal substrate may also have any suitable thickness. In some examples, the thickness of the metal substrate can vary between 0.5 mm and 2 mm, between 1.0 mm and 1.5 mm, or between 1.2 mm and 1.5 mm. The metal substrate may be used as a part of an electronic device, for example, laptop computer, pocket camera, mobile phone, GPS system, PDA, flash drives, mp3 players, radio, portable game system, etc.
The aluminum layer 110 is a layer of aluminum or alloy thereof that is deposited on the surface of the metal substrate according to the process of the disclosure, which will be explained in detail below. The aluminum layer 110 can have any suitable thickness. In some examples, the thickness of the aluminum layer can vary between 10 and 50 μm, or between 25 and 35 μm.
The anodized aluminum layer 120 may be a layer wherein at least a portion of the aluminum layer 110 is anodized. Anodizing can increase corrosion resistance, wear resistance, mechanical strength, and metallic luster of the aluminum layer 110. In addition, anodizing can allow dyeing of the aluminum layer 110 to obtain a cosmetic appearance. The anodized aluminum layer 120 can have any suitable  thickness. In some examples, the thickness of the anodized aluminum layer 120 can vary between 5 and 25 μm, or between 15 and 20 μm. Aluminum anodizing is an electrochemical process in which the aluminum surface is converted to aluminum oxide and an aluminum oxide layer is chemically built on the surface of the aluminum. During the anodizing process, the aluminium oxide is grown down into the surface and out from the surface of aluminum. Therefore, the aluminum layer 110 may need to have an initially applied thickness at least equal to or greater than the desired thickness of the layer 120, so that sufficient aluminum is available for the conversion.
Fig. 2 shows an illustrative process for making a structure according to the disclosure. Referring to Fig. 2, the process begins at step 210. At step 210, a metal substrate can be provided. As discussed above, the metal substrate may have any suitable sizes or shapes, and can be consisted of magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof. In some examples, the metal substrate may be pretreated to prepare for the subsequent deposition step. The pretreatment may include polishing, grinding, degreasing, and/or cleaning. Degreasing may consist of either dipping the metal substrate in organic solvents, such as trichloroethylene or perchloroethylene, or using the vapors from organic solvents to remove surface grease in alkaline condition including caustic soda, silicates and/or phosphates. In some examples, to prepare the metal substrate, an existing oxide layer present on the metal substrate may be removed by cleaning, for example, plasma cleaning, or any other suitable chemical  process, for example, electro-polishing process. Cleaning power may be enhanced by the use of ultrasonic equipment during cleaning processes.
At step 220, aluminum or alloy thereof can be deposited onto the surface of the metal substrate, to form an aluminum layer. According to the disclosure, the deposition process is a process of coating the metal substrate with aluminum particles suspended in a fluid dispersion under the influence of an electric field pulse applied between the metal substrate and a counter electrode.
The deposition can comprise forming a stable suspension by adding aluminum powders in an aqueous polymer medium, immersing the metal substrate and a counter electrode in the suspension, and applying a pulsed current between the metal substrate and the counter electrode in the suspension.
The aluminum powders have an average particle size of from 0.1 to 10μm. In some examples, the average particle size of the aluminum powders can range from 0.1 to 5 μm, or from 0.5 to 2 μm. The polymer can be water soluble, and can be selected from an anionic polymer and a cationic polymer. In some examples, the anionic polymer can be acrylic or maleic-acid based polymers, polymethacrylates, hydrolyzed polyacrylamide, acrylic acid/acrylamide copolymers, or any combination of the above polymers. In some examples, the cationic polymer can be diallyldimethylammonium chloride (DADMAC) .
The concentration of the aluminum particles in the suspension can be from 5wt%to 15wt%, or from 10 to 15wt%.
As the counter electrode, any inert electrode may be used. In some examples, platinum, carbon, or lead can be used as the counter electrode. In some examples, graphite can be used as the counter electrode.
The applied pulsed current can have any suitable waveforms. In some examples, the pulsed current can be embodied in the form of square wave pulses. In some examples, the pulsed current can be embodied in the form of pulses superimposition on DC. The duty cycle of the pulsed current can be from 3%to 50%. In some examples, the duty cycle can be from 5%to 30%. The frequency of the pulsed current can be from 50 Hz to 1000 Hz. In some examples, the frequency can be from 100 Hz to 500 Hz, or from 200 Hz to 500 Hz. The pulsed current can have an average current density ranging from 3 to 15 A/cm2. In some examples, the average current density can be from 5 to 12 A/cm2.
The deposition process can be carried out at a temperature of from ambient temperature to 40℃. The pulsed current can be applied for 3 to 10 minutes. It is understood that the process can be regulated by controlling a variety of parameters, including the pulse duty cycle, pulse frequency, processing time, and concentration of aluminum particles in the suspension. The aluminum layer initially deposited on the metal substrate by the process may have any suitable thickness. In some  examples, the aluminum layer initially deposited by the process can have a thickness ranging from 15 μm to 60 μm. In some examples, the aluminum layer initially deposited by the process can have a thickness ranging from 30 μm to 40 μm.
By the deposition process according to the disclosure, a highly dense and uniform aluminum coating is deposited on the metal substrate. The deposition process can have a high production yield and short processing time, and is also environment friendly.
During the deposition process, the aluminum particles in the suspension are adsorbed by the polymers, for example, anionic polymers or cationic polymers, and gain a surface charge as a result of an electrostatic interaction with the polymer molecules, and the charged aluminum particles are capable of moving in the suspension towards the metal substrate under the influence of a voltage imposed between the metal substrate and the counter electrode. At the surface areas of the substrate, the aluminum particles lose their charges by removing the polymer molecules at an instantaneous high temperature generated by the current pulse, and adhere to the surface of the substrate. As a result, a uniform and dense film forms over the whole substrate surface including the surface of cavities, edges and corners.
At step 230, the deposited aluminum layer may be anodized. The anodizing  is an electrolytic passivation process used to increase resistance to corrosion and wear, increase surface hardness, and provide cosmetic and functional properties of the aluminum layer. The anodizing may be performed by any suitable process, for example, chromic acid anodization, sulfuric acid anodization, or sulfuric acid hardcoat anodization. In some examples, the anodizing process may include dyeing and/or sealing. The anodizing processes may produce a porous surface which can accept dyes easily. The corrosion and wear resistance of the aluminum layer can be further improved by applying suitable sealing substances.
The anodized aluminum layer can have any suitable thickness and hardness. In some examples, the anodized aluminum layer can have a pencil hardness of 6-7H, measured according to ASTM D3363. It should be understood that the thickness and hardness can be controlled by the anodizing conditions such as electrolyte concentration, pH value, temperature, processing time, and current.
It is understood that additional steps may be added before, among, or after the  steps  210, 220, and 230. For example, a cleaning step may be added before and/or after the step 230.
The process according to the disclosure can produce a dense and uniform high-quality aluminum layer on the metal substrate at a relatively low thickness, to thereby obtain a cost-effective structure, which is suitable for use as a housing or supporting members of electronic devices. In the process, high-value raw materials  may be used more sparingly due to a lower layer thickness.
The following examples further illustrate the process according to the disclosure. The examples are given by way of illustration only, and are not intended to limit the scope of the disclosure in any manner.
Examples:
The metal substrate used in the examples is a magnesium alloy workpiece (MgAZ91: 90%magnesium/9%aluminum/1%zinc) .
A suspension made up of 1,000g aluminum powders having an average particle size of 1-5μm, 60g/L anionic polyacrylate dispersant (weight-average molecular weight at the range of 4,000-15,000, commercially available from Akzo Nobel or BASF) , 6,000g water was prepared. Before the deposition, the magnesium alloy workpiece was subjected to electro-polishing and cleaning, to remove the natural surface oxide layer and to improve the adhesion of aluminum on the magnesium alloy. Deposition of aluminum was on magnesium alloy anode, along with graphite as a cathode. The pulse powder conditions in Example 1, 2 and 3 were listed in the table below. The deposition process was carried out at room temperature for 3-10 minutes.
A uniform and dense aluminum layer was formed on the magnesium alloy workpiece. After cleaning, the magnesium alloy workpiece was anodized, cleaned  and dried.
Figure PCTCN2015093168-appb-000001
Anti-corrosion Test:
The magnesium alloy workpiece finally obtained in the Examples was subjected to natural salt spray test according to MIL-STD-810F.
After 96 hours, no corrosion was observed on the surface of the magnesium alloy workpiece.

Claims (15)

  1. A method, comprising:
    depositing an aluminum layer on a metal substrate, the depositing comprising:
    adding aluminum powders into an aqueous polymer medium to form a suspension,
    immersing the metal substrate and a counter electrode in the suspension; and
    applying a pulsed current between the metal substrate and the counter electrode, and,
    anodizing the aluminum layer deposited on the metal substrate.
  2. The method of claim 1, wherein the metal substrate is selected from magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof.
  3. The method of claim 1, wherein the aluminum layer initially deposited on the metal substrate has a thickness ranging from 15 to 60 μm.
  4. The method of claim 3, wherein the aluminum layer initially deposited on the metal substrate has a thickness ranging from 30 to 40 μm.
  5. The method of claim 1, wherein the aluminum powers have an average particle size of from 0.1 to 10 μm.
  6. The method of claim 1, wherein the polymer is selected from an anionic polymer and a cationic polymer.
  7. The method of claim 6, wherein the anionic polymer is selected from acrylic-or maleic-acid based polymers, polymethacrylates, hydrolyzed polyacrylamide, acrylic acid/acrylamide copolymers, or any combination of the above polymers.
  8. The method of claim 1, wherein the pulsed current has a duty cycle ranging from 3% to 50%.
  9. The method of claim 1, wherein the pulsed current has a frequency ranging from 50Hz to 1000Hz.
  10. The method of claim 1, wherein the pulsed current has an average current density ranging from 3 to 15 A/cm2.
  11. The method of claim 1, wherein the concentration of the aluminum powders in the suspension is from 5 to 15wt%.
  12. The method of claim 1, wherein the counter electrode is an inert electrode, such as platinum, lead or carbon.
  13. The method of claim 1, further comprising dye coloring and/or sealing.
  14. A structure, which is obtainable by a method of claim 1, comprising
    a metal substrate,
    an aluminum layer deposited on the metal substrate, and
    an anodized aluminum layer,
    wherein the anodized aluminum layer has a thickness ranging between 5 and 25 μm, and the anodized aluminum layer has a pencil hardness of 6-7H.
  15. The structure of claim 14, wherein the metal substrate is selected from magnesium, magnesium alloy, aluminum, aluminum alloy, steel alloy, or any combination thereof.
PCT/CN2015/093168 2015-10-29 2015-10-29 Aluminum deposition and anodization on a metal substrate WO2017070881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/093168 WO2017070881A1 (en) 2015-10-29 2015-10-29 Aluminum deposition and anodization on a metal substrate
US15/758,114 US20180245232A1 (en) 2015-10-29 2015-10-29 Aluminum deposition and anodization on a metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093168 WO2017070881A1 (en) 2015-10-29 2015-10-29 Aluminum deposition and anodization on a metal substrate

Publications (1)

Publication Number Publication Date
WO2017070881A1 true WO2017070881A1 (en) 2017-05-04

Family

ID=58629709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093168 WO2017070881A1 (en) 2015-10-29 2015-10-29 Aluminum deposition and anodization on a metal substrate

Country Status (2)

Country Link
US (1) US20180245232A1 (en)
WO (1) WO2017070881A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177396A (en) * 1988-01-04 1989-07-13 Kao Corp Plating bath additive and combined plating bath using said additive
JPH02145795A (en) * 1988-11-25 1990-06-05 Nisshin Steel Co Ltd Anodically oxidizing method for electroplated aluminum film
EP1371758A1 (en) * 2002-06-11 2003-12-17 Sarthoise de Revetements Electrolytiques Aluminium deposition process on a piece made of plastic
CN103930600A (en) * 2011-03-07 2014-07-16 苹果公司 Anodized electroplated aluminum structures and methods for making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2027427C3 (en) * 1970-06-04 1979-01-18 Basf Farben + Fasern Ag, 2000 Hamburg Process for the production of aluminum coatings
EP0505886A1 (en) * 1991-03-28 1992-09-30 Siemens Aktiengesellschaft Manufacture of decorative aluminium coatings
US20050205425A1 (en) * 2002-06-25 2005-09-22 Integran Technologies Process for electroplating metallic and metall matrix composite foils, coatings and microcomponents
CN101622712B (en) * 2006-11-07 2011-06-15 希百特股份有限公司 Two-terminal switching devices and their methods of fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177396A (en) * 1988-01-04 1989-07-13 Kao Corp Plating bath additive and combined plating bath using said additive
JPH02145795A (en) * 1988-11-25 1990-06-05 Nisshin Steel Co Ltd Anodically oxidizing method for electroplated aluminum film
EP1371758A1 (en) * 2002-06-11 2003-12-17 Sarthoise de Revetements Electrolytiques Aluminium deposition process on a piece made of plastic
CN103930600A (en) * 2011-03-07 2014-07-16 苹果公司 Anodized electroplated aluminum structures and methods for making the same

Also Published As

Publication number Publication date
US20180245232A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
Zhang et al. Corrosion behaviors of Zn/Al–Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg–Al–Zn)
CN102888641B (en) Hard Anodic Oxidation of Aluminum Alloy electrolytic solution and method
Sun et al. Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by a cathodic electrochemical treatment
Wang et al. Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte
CN107079599B (en) Oxidized and coated article and method of making the same
Li et al. Electrodeposition and characterization of nano-structured black nickel thin films
CN102943298A (en) Magnesium alloy composite surface treatment method and magnesium alloy watch case
EP3090079B1 (en) Composition and method for inhibiting corrosion of an anodized material
Guo et al. Characterization of highly corrosion-resistant nanocrystalline Ni coating electrodeposited on Mg–Nd–Zn–Zr alloy from a eutectic-based ionic liquid
CN104711654B (en) Graphene oxide/electrophoretic paint composite coating and its electrophoretic deposition preparation method
CN102808210A (en) Micro-arc oxidation surface treatment method and product prepared by same
Mubarok et al. Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy
CN102817063A (en) Preparation method for light green superhydrophobic corrosion-resistant film on surface of magnesium-lithium alloy
KR101476235B1 (en) Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation
Huang et al. Electrodeposition of nickel coating in choline chloride-urea deep eutectic solvent
CN209779038U (en) Production system of corrosion-resistant and wear-resistant stainless steel-based coating structure
WO2017070881A1 (en) Aluminum deposition and anodization on a metal substrate
CN111020664B (en) Preparation method of graphene-containing micro-arc oxidation corrosion-resistant ceramic layer
Zhao et al. Influence of Y2O3/Nd2O3 particles additive on the corrosion resistance of MAO coating on AZ91D magnesium alloy
CN102888643B (en) Hard Anodic Oxidation of Aluminum Alloy electrolytic solution and method
CN105568339B (en) It is a kind of using magnesium/magnesium alloy as the multicoat composite material and preparation method of matrix
CN103436921A (en) Method for forming aluminum-manganese-titanium alloy through electrodeposition of ionic liquid
JP4783124B2 (en) A method for forming a lubricating film.
KR100853996B1 (en) Method for Treating the Surface on Magnesium and Its Alloys
RU90440U1 (en) COMPOSITION ALUMINUM-OXIDE COATING FOR PROTECTING STEEL FROM CORROSION AND WEAR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758114

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906947

Country of ref document: EP

Kind code of ref document: A1