WO2017070521A1 - Syrup dispensing cups and methods for improved shelf-life - Google Patents

Syrup dispensing cups and methods for improved shelf-life Download PDF

Info

Publication number
WO2017070521A1
WO2017070521A1 PCT/US2016/058192 US2016058192W WO2017070521A1 WO 2017070521 A1 WO2017070521 A1 WO 2017070521A1 US 2016058192 W US2016058192 W US 2016058192W WO 2017070521 A1 WO2017070521 A1 WO 2017070521A1
Authority
WO
WIPO (PCT)
Prior art keywords
day
syrup dispensing
mol
dispensing cup
pet
Prior art date
Application number
PCT/US2016/058192
Other languages
French (fr)
Inventor
Ronald D. Moffitt
T. Edwin Freeman
Yu Shi
Original Assignee
The Coca-Cola Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Coca-Cola Company filed Critical The Coca-Cola Company
Priority to EP16858328.4A priority Critical patent/EP3365266B1/en
Priority to US15/769,553 priority patent/US10279952B2/en
Publication of WO2017070521A1 publication Critical patent/WO2017070521A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D11/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
    • B65D11/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material of curved cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2543/00Lids or covers essentially for box-like containers
    • B65D2543/00009Details of lids or covers for rigid or semi-rigid containers
    • B65D2543/00018Overall construction of the lid
    • B65D2543/00259Materials used
    • B65D2543/00296Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/04Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
    • B67D1/0406Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers with means for carbonating the beverage, or for maintaining its carbonation

Definitions

  • This disclosure relates to syrup dispensing cups having improved shelf life, and methods and compositions for their production.
  • PET-based containers have found use as dispensing cups in automated cold beverage dispensing systems, in which a carbonated fluid is introduced into the cup to interact with its contents, such as syrup, to provide a mixture that is subsequently dispensed.
  • a carbonated fluid is introduced into the cup to interact with its contents, such as syrup, to provide a mixture that is subsequently dispensed.
  • PET-based containers allow oxygen to penetrate at a certain rates from the outside and thus have difficulty in maintaining storage stability of the contents sealed inside.
  • flavor scalping may occur and undesirably affect the organoleptic properties of the contents sealed in the container.
  • dispensing cups including cups for automated, carbonated cold beverage dispensing systems.
  • the dispensing cups will desirably have extended shelf life properties and a neutral impact on the organoleptic properties of the contents sealed therein.
  • New compositions and/or methods for making improved dispensing cups are generally needed, particularly new compositions and methods that do not undesirably alter processing and packaging performance.
  • This disclosure provides generally new compositions and methods for syrup dispensing cups that are stable over longer periods, that is, having improved barrier properties and reduced or minimal impact on the organoleptic properties of the syrup contained therein.
  • Syrup dispensing cups are generally fabricated by injection molding of thermoplastic polyester resin polyethylene terephthalate (also written poly(ethylene terephthalate) or simply PET), which formally contains polymerized units of the monomer ethylene terephthalate with repeating CioHg0 4 moieties.
  • PET is generally synthesized from its monomer bis(2- hydroxy ethyl) terephthalate, which itself can be prepared by the esterification reaction between terephthalic acid and ethylene glycol with water as a byproduct (Equation 1), or by transesterification reaction between ethylene glycol and dimethyl terephthalate with methanol as a byproduct (Equations 2 and 3). Polymerization of the resulting bis(2- hydroxy ethyl) terephthalate is through a poly condensation reaction of the monomers which is effected immediately after esterification or transesterification reactions, with water as the byproduct.
  • a syrup dispensing cup comprising:
  • a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space
  • the body structure comprises a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.30 dL/g when measured at a temperature of 25°C;
  • each sealing layer comprising a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %;
  • this disclosure provides a method for enhancing the shelf-life of a syrup dispensing cup, the method comprising:
  • the body structure has a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and an interior space;
  • each sealing layer comprises a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %
  • FIG. 1 illustrates a cross-sectional view of a syrup dispensing cup in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a lid structure in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates a cross-sectional view of a lid structure in accordance with another embodiment of the present disclosure.
  • FIG. 4 is a graph depicting injection molding performance as related to resin melt shear rheology.
  • FIG. 5 is a graph depicting measured and model calculated peak melting temperature for 136 PET homopolymer and co-polyester resins.
  • aspects of this disclosure provide for new syrup dispensing cups, methods, compositions, and structures, that improve the barrier properties of certain syrup dispensing cups made from the compositions and structures.
  • This disclosure further provides for syrup dispensing cups and their compositions and structures that are durable, heat sealable, and provide increased shelf-life while decreasing any adverse impact on the organoleptic properties of the syrup contained within the dispensing cup.
  • a "polyester” resin is one that contains units derived from one dicarboxylic acid monomer species and one diol monomer species.
  • Non-limiting suitable examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene furanoate (PEF), and the like, and can include a combination or mixture of polyester resins. In any instance, the long chain branched embodiment of the polyester resin can be used.
  • a "co-polyester” resin is a polyester resin that contains units derived from at least one other or additional dicarboxylic acid co-monomer along with the acid co- monomer in the polymer resin structure and/or at least one other or additional diol co- monomer along with the ethylene glycol co-monomer in the polymer resin structure.
  • Non- limiting examples include FDCA, PET-based polyester, PEF -based polyester, PEN-based polyester, aliphatic or aromatic polyester, and combinations thereof.
  • the mole fraction or percentage of the total other dicarboxylic co-monomers is less than the mole fraction or percentage of acid co-monomers in the resin.
  • the mole fraction or percentage of the total other diol co-monomers is less than the mole fraction or percentage of ethylene glycol co-monomers in the resin.
  • the long chained branched embodiments of the co-polyester resin can be used.
  • any of the foregoing polyester or co-polyester resin may be employed within the syrup dispensing cups described herein, the below disclosure is with respect to PET-based co-polyester resins.
  • the long chain branched version of the PET-based co-polyester resin may be utilized.
  • Non-limiting examples include the long chain branched versions of Indorama 3301 , Indorama 7804, and Eastman Eastar® EN067.
  • the disclosure provides for a syrup dispensing cup comprising a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space.
  • the body structure comprises a first PET-based co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C.
  • the first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second
  • PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and wherein the ratio of the first mol % to the second mol % is less than 1. That is, the first mol % is less than the second mol %.
  • FIG. 1 illustrates one embodiment of this disclosure, in which the syrup dispensing cup is shown in cross-section.
  • a silicon rubber dispensing valve with a retainer ring may be mounted to an opening to facilitate and enhance syrup mixing with the carbonated water supply, which is separate from the syrup dispensing cup.
  • the syrup dispensing valve which may assemble integral to the bottom opening of the cup, may include a silicon rubber and may be retained, for example, with a snap-ring.
  • the snap-ring comprises a polyolefin resin such as isotactic polypropylene (z-PP) or high density polyethylene (HDPE).
  • the silicon rubber may be configured to have a specific gravity less than water, thereby rendering it floatable in a recycling floatation bath following grinding of the cup to promote cup recyclability.
  • the sidewall structure can take the form of any number of different structural configurations.
  • the sidewall structure can take the shape of a frustum, which is the portion of a geometric shape such as a cone or pyramid that lies between two parallel planes that cut the geometric shape.
  • the two parallel planes correspond with the first opening at the first end and the second opening at the second end. Therefore, the FIG. 1 sidewall structure represents a conical frustum, having different diameter openings at the first and second ends, and this structure will be referred to herein as a conical side wall structural configuration.
  • the sidewall structure also may have a cylindrical structural configuration in which the first and second ends have the same diameter, or the sidewall structure also may have a polyhedron structural configuration having a polygonal cross section.
  • suitable polygonal cross structural configurations include a triangle, a square, a rectangle, a pentagon, and an octagon.
  • the body structure can be a monolayer formed of the first PET-based co-polyester resin, in which the monolayer can have an average thickness from about 0.04 cm to about 0.10 cm, alternatively from about 0.05 cm to about 0.09 cm, or alternatively from about 0.06 cm to about 0.08 cm.
  • the monolayer can have an average thickness of about 0.04 cm, about 0.05 cm, about 0.06 cm, about 0.07 cm, about 0.08 cm, about 0.09 cm, or about 0.10 cm.
  • the monolayer can have an average thickness of about 0.03 cm; alternatively, about 0.04 cm; alternatively, about 0.05 cm; alternatively, about 0.06 cm; alternatively, about 0.07 cm; alternatively, about 0.08 cm; alternatively, about 0.09 cm; alternatively, about 0.10 cm; alternatively, about 0.1 1 cm; or alternatively, about 0.12 cm; although other thicknesses outside these parameters are possible.
  • the body structure of the syrup dispensing cups described herein is manufactured via inj ection molding.
  • inj ection molding the molding conditions, particularly melt and mold temperatures, have a significant impact on the final properties of the molded material, regardless of the part design.
  • the first PET-based co-polyester resin selected for body structure production should have suitable rheological properties so as to facilitate efficient and effective molding.
  • the melt rheology of the first PET-based co-polyester resin should advantageously enable injection molding to occur with plastic pressures in a range for ease of commercial manufacturing.
  • the plastic pressure can be from about 2,500 psig to about 44,000 psig.
  • the plastic pressure can be from about 4,600 psig to about 30,000 psig.
  • the plastic pressure can be from about 7,000 psig to about 20,000 psig.
  • the first PET-based co-polyester resin can have a peak melting temperature from about 220 °C to about 260 °C.
  • the first PET co-polyester resin can have a peak melting temperature from about 225 °C to about 255 °C; alternatively from about 230 °C to 255 °C; alternatively from about 235 °C to about 255 °C.
  • the first PET-copolyester resin can have a melting temperature of about 220 °C, 221°C, about 222 °C, about 223 °C, about 224 °C, about 225 °C, about 226 °C, about 227 °C, about 228 °C, about 229 °C, about 230 °C, 231°C, about 232 °C, about 233 °C, about 234 °C, about 235 °C, about 236 °C, about 237 °C, about 238 °C, about 239 °C, about 240 °C, about 241 °C, about 242 °C, about 243 °C, about 244 °C, about 245 °C, about 246 °C, about 247 °C, about 248 °C, about 249 °C, about 250 °C, 251°C, about 252 °C, about 253 °C, about 254
  • the first PET-based co-polyester resin can have a crystalline volume fraction from about 0.02 minutes to about 0.45 minutes.
  • the first PET co-polyester resin can have a crystalline volume fraction from about 0.05 minutes to about 0.40 minutes; alternatively from about 0.10 minutes to about 0.35 minutes.
  • the first PET-copolyester resin can have a crystalline volume fraction of about 0.02 minutes, about 0.03 minutes, about 0.04 minutes, about 0.05 minutes, about 0.06 minutes, about 0.07 minutes, about 0.08 minutes, about 0.09 minutes, about 0.1 minutes, about 0.11 minutes, about 0.12 minutes, about 0.13 minutes, about 0.14, minutes, about 0.15 minutes, about 0.16 minutes, about 0.17 minutes, about 0.18 minutes, about 0.19 minutes, about 0.2 minutes, about 0.21 minutes, about 0.22 minutes, about 0.23 minutes, about 0.24 minutes, about 0.25, minutes, about 0.26 minutes, about 0.27 minutes, about 0.28 minutes, about 0.29 minutes, about 0.30 minutes, about 0.31 minutes, about 0.31 minutes, about 0.32 minutes, about 0.33 minutes, about 0.34, minutes, about 0.35 minutes, about 0.36 minutes, about 0.37 minutes, about 0.38 minutes, about 0.39 minutes, about 0.4 minutes, about 0.41 minutes, about 0.42 minutes, about 0.43 minutes, about 0.44, minutes, or about 0.45 minutes.
  • the first PET co-polyester resins as described herein can have an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C.
  • the first PET co-polyester resins can have an intrinsic viscosity from about 0.45 dL/g to about 0.75 dL/g; altematively, from about 0.50 dL/g to about 0.70 dL/g; and alternatively still, from about 0.55 to about 0.65 dL/g.
  • the first PET co- polyester resin incorporating the diacid and/or diol co-monomers in the mole percentages disclosed herein can have an intrinsic viscosity of about 0.45 dL/g, about 0.46 dL/g, about 0.47 dL/g, about 0.48 dL/g, about 0.49 dL/g, about 0.50 dL/g, about 0.51 dL/g, about 0.52 dL/g, about 0.53 dL/g, about 0.54 dL/g, about 0.55 dL/g, about 0.56 dL/g, about 0.57 dL/g, about 0.58, about 0.59 dL/g, about 0.60 dL/g, about 0.61 dL/g, about 0.62 dL/g, about 0.63 dL/g, about 0.64 dL/g, about 0.65 dL/g, about 0.66 dL/g, 0.67 dL/g, about 0.68 dL/g
  • the first PET co-polyester resin as described herein can have a zero-shear viscosity from about 20 p (poise) to about 1 ,000 p when measured at a temperature of 265 °C.
  • the first PET co-polyester resins can have an zero-shear viscosity from about 80 p to about 830 p; altematively, from about 130 p to about 610 p; and alternatively still, from about 200 p to about 435 p.
  • the first PET co-polyester resins incorporating the diacid and/or diol co-monomers in the mole percentages disclosed herein can have an zero-shear viscosity of about 80 p, about 90 p, aboutlOO p, about 110 p, about 120 p, about 130 p, about 140 p, about 150 p, about 160 p, about 170 p, about 180 p, about 190 p, about 200 p, about 210 p, about 220 p, about 230 p, about 240 p, about 250 p, about 260 p, about 270 p, about 280 p, about 290 p, about 300 p, about 310 p, about 320 p, about 330 p, about 340 p, about 350 p, about 360 p, about 370 p, about 380 p, about 390 p, about 400 p, about 410 p, about 420 p, about 430 p, about
  • the diacid and/or diol co-monomers are typically expressed in the mole (mol) percentages, and the diacid and/or diol co-monomers can be used in the first PET-based co-polyester resin according to this disclosure in any amount, and the amounts will generally vary depending on the specific co-monomer or co-monomers to be incorporated.
  • the first PET-based co-polyester resin can comprise greater than 0 mol % and up to about 20 mol % combined total of a diacid co-monomer and/or a diol co-monomer, based on the total co-monomer or co-monomers content in the first resin. That is, at least one co-monomer is present, but if desired, the first PET-based co- polyester resin can comprise either 0% diacid co-monomer or 0% diol co-monomer.
  • the total diacid and/or diol co-monomers that can be incorporated into the first PET-based co-polyester resin in ranges of about: from 0.01 to 15 mol %; alternatively from 0.1 to 10 mol %; alternatively, from 0.5 to 5 mol %; alternatively, from 0.01 to 1 mol %; or alternatively, from about 2 to 5 mol % of the total co-monomer content.
  • the diacid and/or diol co-monomers can be incorporated into the first resin in mole percentages of about 0.01 mol %, 0.02 mol %, 0.05 mol %, 0.1 mol %, 0.2 mol %, 0.5 mol %, 1 mol %, 2 mol %, 3 mol %, 4 mol %, 5 mol %, 6 mol %, 7 mol %, 8 mol %, 9 mol %, 10 mol %, 1 1 mol %, 12 mol %, 13 mol %, 14 mol %, 15 mol %, 16 mol %, 17 mol %, 18 mol %, 19 mol %, or 20 mol % of the total co-monomer content.
  • the diacid and/or diol co-monomer also may be incorporated into the first resin in ranges between any of these specific recited mole percentages (for example, from about 0.01 mol % to about 14.5 mole %), or alternatively still, may be present at less than, or less and equal to, any of these specific recited mole percentages (for example, less than about 20 mol % or less than about 10 mol %).
  • Non-limiting examples of suitable co-monomers includes dietheylene glycol (DEG), isophthalic acid (IP A), 1 ,4-Cyclohexanedimethanol (CHDM), dimethyl-2,6- naphthalenedicarboxylate (NDC), and trietheylene gylcol.
  • the one or more first co-monomers comprises DEG incorporated into the first resin at a mol % from about 0.10 to about 8.0.
  • the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0 and one or more other co-monomers incorporated into the first at a mol % from about 0.01 to 6.50.
  • DEG diethylene glycol
  • the syrup dispensing cups described herein have an oxygen transmission rate (OTR) that minimizes the transfer of oxygen gas through and into the body structure. Minimizing the OTR beneficially increases the shelf-life of the contents disposed within the syrup dispensing cups.
  • OTR is the steady state rate at which oxygen gas permeates through a particular material at specified conditions of temperature and zero relative humidity, and can be determined using ASTM D3985.
  • the syrup dispensing cup can have an OTR of less than about 6.0 x 10 "3 cmVpkg day at about 23 °C and 50 % relative humidity.
  • the syrup dispensing cup can have an OTR from about 1.0 x 10 "3 cmVpkg day to about 10.0 x 10 "3 cmVpkg day; alternatively, from about 1.0 x 10 "3 cmVpkg day to about 5.0 x 10 "3 cmVpkg day; alternatively still, from about 1.0 x 10 "3 cmVpkg day to about 3.5 x 10 "3 cmVpkg day.
  • the syrup dispensing cup can have an OTR from about 2.0 x 10 "3 cmVpkg day to about 3.3 x 10 "3 cmVpkg day. In yet another aspect, the syrup dispensing cup can have an OTR of about 3.3 x 10 "3 cmVpkg day. According to another aspect, the syrup dispensing cup can have an OTR of about 0.5 x 10 "3 cmVpkg day, 1.0 x 10 "3 cmVpkg day, 1.5 x 10 "3 cmVpkg day.
  • cm /pkg day 5.0 x 10 " cm /pkg day, 5.5 x 10 " cm /pkg day, 6.0 x 10 " cm /pkg day, 6.5 x 10 "3 cmVpkg day, 7.0 x 10 "3 cmVpkg day, 7.5 x 10 "3 cmVpkg day, 8.0 x 10 "3
  • cmVpkg day 8.5 x 10 "3 cmVpkg day, 9.0 x 10 "3 cmVpkg day, 9.5 x 10 "3 cmVpkg day, or 10.0 x 10 "3 cmVpkg day.
  • the syrup dispensing cup can have an OTR of less than about 22.8 x 10 "5 cmVmL day at about 23 °C and 50 % relative humidity.
  • the syrup dispensing cup can have an OTR from about 2.27 x 10 "5 cmVmL day to about 22.8 x 10 "5 cmVmL day; alternatively, from about 2.27 x 10 "5 cmVmL day to 11.4 x 10 "5 cmVmL day; alternatively still, from about 2.27 x 10 "5 cmVmL day to about 8.0 x 10 "5 cmVmL day.
  • the syrup dispensing cup can have an OTR of about 7.5 x 10 "5
  • the syrup dispensing cup can have an OTR of about 0.5 x 10 "5 cmVmL day, 1.0 x 10 "5 cmVmL day, 1.5 x 10 "5 cmVmL day, 2.0 x 10 "5 cmVmL day, 2.5 x 10 "5 cmVmL day, 3.0 x 10 "5 cmVmL day, 3.5 x 10 "5 cmVmL day, 4.0 x 10 "5 cmVmL day, 4.5 x 10 "5 cmVmL day, 5.0 x 10 "5 cmVmL day, 5.5 x 10 "5 cmVmL day, 6.0 x 10 "5 cmVmL day, 6.5 x 10 "5 cmVmL day, 7.0 x 10 "5 cmVmL day, 7.5 x 10 "5 cmVmL day, 8.0 x 10 "5 cmVmL day, 8.5 x 10 "5 cmVmL day, 9.0 x 10 "5 cmVmL day,
  • the syrup dispensing cups described herein have a water vapor transmission rate (WVTR) that reduces or minimizes the transfer of moisture through and into the body structure. Reducing and/or minimizing the WVTR beneficially increases the shelf-life of the contents disposed within the syrup dispensing cups.
  • WVTR is the steady state rate at which water vapor permeates through a particular material at specified conditions of temperature and relative humidity. The WVTR can be determined using the information in the following table.
  • the syrup dispensing cup can have a WVTR of less than about 4.0 x 10 "3 g/m 2 /day.
  • the syrup dispensing cup can have an WVTR from about 3.9 x 10 " g/m /day to about 9.3 x 10 " g/m /day; alternatively, from about 4.3 x 10 " g/m /day to about 7.5 x 10 " g/m /day; alternatively still, from about 4.8 x 10 " g/m /day to about 6.3 x 10 "3 g/m 2 /day.
  • the syrup dispensing cup can have an WVTR of about 0.5 x 10 "3 g/day, 1.0 x 10 "3 g/m 2 /day, 1.5 x 10 "3 g/m 2 /day, 2.0 x 10 "3 g/m 2 /day, 2.5 x 10 "3 g/m 2 /day, 3.0 x 10 "3 g/m 2 /day, 3.5 x 10 "3 g/m 2 /day, 4.0 x 10 "3 g/m 2 /day, 4.5 x 10 "3 g/m 2 /day, 5.0 x 10 "3 g/m 2 /day, 5.5 x 10 "3 g/m 2 /day, 6.0 x 10 "3 g/m 2 /day, 6.5 x 10 "3 g/m 2 /day, 7.0 x 10 "3 g/m 2 /day, 7.5 x 10 "3 g/m 2 /day, 8.0
  • the first PET co-polyester resins can also include one or more additives.
  • suitable additives include oxygen scavengers, nucleation agents, mold release agents (e.g., SUKANO POLYMERS addition level, 0.001 wt % to 1.000 wt % in final resin blend), color enhancing agents (e.g., liquid or solid, used in Sukano Polymers Tob S354-NT blue toner enhancer, addition level 0.30 wt % to 1.000 wt%), pigments, and impact modifiers, and combinations thereof.
  • oxygen scavengers e.g., oxygen scavengers, nucleation agents, mold release agents (e.g., SUKANO POLYMERS addition level, 0.001 wt % to 1.000 wt % in final resin blend), color enhancing agents (e.g., liquid or solid, used in Sukano Polymers Tob S354-NT blue toner enhancer, addition level 0.30 wt %
  • the first PET-based co-polyester resin may include one or more nucleation agents.
  • the addition of one or more nucleation agents may, among other things, beneficially reduce the cycle times. This is because the nucleation agents provide a surface on which crystal can start, thereby resulting in increased crystal formation, particularly in small crystal domains.
  • the additional of one or more nucleation agents may advantageously increase the durability of the syrup dispensing cup, e.g., with respect to stiffness (flexural modulus) and impact resistance.
  • Non-limiting examples of suitable nucleation agents include ADEKA Amfine NA-05, Sukano Polymers TH-03-12 MB05LP, and combinations thereof.
  • the first PET-based co-polyester resin may include one or more nucleation agents present at a concentration from about 0.01 ppm to about 1,000 ppm, alternatively from about 100 ppm to about 750 ppm, or alternatively from about 100 ppm to about 500 ppm.
  • the first PET-based co-polyester resin may not include one or more nucleation agents.
  • the first PET-based co-polyester resin may include one or more oxygen scavengers.
  • the addition of one or more oxygen scavengers may beneficially decrease the OTR of the syrup dispensing cup, thereby increasing shelf-life thereof.
  • the one or more oxygen scavengers are present at a ceoncentration from about 0.01 % to about 10 % by weight of the first PET-based co- polyester resin.
  • the one or more oxygen scavengers are present at a concentration of about 2.5 % or less by weight of the first PET-based co-polyester resin.
  • a suitable concentration of the one or more oxygen scavengers depends at least in part on the average thickness of the body structure.
  • the first PET-based co- polyester resin may not include one or more oxygen scavengers.
  • Non-limiting examples of suitable oxygen scavengers include Al 10ac,SolO2, Monoblox +, CESA Absorb, Oxy clear, Polyprotect JB, Diamond Clear C93, Diamond Clear 992, Diamond Clear 300, HyGuard, and combinations thereof.
  • the first PET-based co-polyester resin may include one or more nucleation agents at a concentration from about 0.01 ppm to about 1,000 ppm and one or more oxygen scavengers at a concentration from about 0.01 % to about 10 % by weight of the first resin.
  • Heat sealability and gas / permeate barrier properties can be competing packaging design attributes, since both may be strongly, but inversely affected by the extent and size distribution of the crystalline phase and the mobility of the amorphous phase (glass transition temperature).
  • co-monomer modification of a polymeric resin may be employed to reduce the average crystallizable chain sequence lengths and slow crystallization kinetics, leading to a decrease in the extent of crystallinity, as well as a lower glass transition temperature to increase chain mobility for the interfacial interdiffusion that occurs in order to enable the creation of an effective heat seal.
  • the permeation of gas and flavor components (scalping) into the polymer generally increases with the square of the amorphous phase volume fraction, and with a reduction in the glass transition temperature.
  • the first PET-based co-polyester resin can be modified by co-monomer insertion during polymerization to a substantially lesser extent than the second PET-based co-polyester resin.
  • first opening and the second opening of the body structure are sealed with a first sealing layer and a second sealing layer, respectively.
  • the first and second sealing layers may be prepared from the PET-based co-polyester resins and by the processes, in full or in part, as described in U. S. Patent No. 6,663,997 (the '997 patent), which is incorporated herein by reference. Applicants hereby incorporate all co-polyesters of the '997 patent by reference.
  • the first and second sealing layers can include one or more second co- monomers incorporated into the second resin at a second mol %, in which the ratio of the first mol % to the second mol % can be less than 1.
  • the ratio of the first mol % to the second mol % can be from about 0.01 to about 0.95;
  • the ratio of the first mol % to the second mol % is about 0.3.
  • the second PET-based co-polyester resin can have an intrinsic viscosity (I.V.) that is greater than, less than, or the same as the I.V. in the first PET-based co-polyester resin.
  • I.V. intrinsic viscosity
  • the second PET co-polyester resins as described herein can have an intrinsic viscosity from about 0.50 dL/g to about 1.0 dL/g when measured at a temperature of °25°C.
  • the diacid and/or diol co-monomers are typically expressed in the mole (mol) percentages, and the diacid and/or diol co-monomers can be used in the second PET-based co-polyester resin according to this disclosure in any amount, and the amounts will generally vary depending on the specific co-monomer or co-monomers to be incorporated.
  • the second PET-based co-polyester resin can comprise greater than 0 mol % and up to about 30 mol % combined total of a diacid co-monomer and/or a diol co-monomer, based on the total co-monomer or co-monomers content in the second resin. That is, at least one co-monomer is present, but if desired, the second PET-based co-polyester resin can comprise either 0% diacid co-monomer or 0% diol co-monomer.
  • the total diacid and/or diol co-monomers that can be incorporated into the second PET-based co-polyester resin in ranges of about: from 0 to 30 %.
  • suitable co-monomers includes dietheylene glycol (DEG), isophthalic acid (IP A), 1,4-Cyclohexanedimethanol (CHDM), dimethyl-2,6- naphthalenedicarboxylate (NDC), and trietheylene gylcol.
  • the second one or more second co-monomers may comprise DEG incorporated into the second resin at the same or a different mol % than is incorporated into the second resin. That is, the second one or more second co-monomers may comprise DEG incorporated into the second resin at a mol % greater than, less than, or the same as the first resin.
  • the one or more second co-monomers comprise DEG incorporated into the second resin at from about 0.10 mol % to about 20.0 mol %.
  • the second PET co- polyester resin can have a zero-shear viscosity that is the same or different from that of the first PET-based co-polyester resin. That is, the second PET co-polyester resin can have a zero-shear viscosity that is greater than, less than, or the same as that of the first PET co- polyester resin. In some instances or embodiments, the second PET-based co-polyester resin has a zero-shear viscosity from about 20 p to about 500 p when measured at a temperature of 265 °C.
  • the second PET-based co-polyester resin can have a peak melting temperature from about 160 °C to about 275 °C.
  • the second PET co-polyester resin can have a peak melting temperature from about 170 °C to about 264 °C; alternatively from about 165 °C to 270 °C; alternatively from about 170 °C to about 255 °C.
  • the second PET co- polyester resin can also include one or more additives.
  • suitable additives include oxygen scavengers, nucleation agents, and combinations thereof.
  • the syrup dispensing cup can also include a first lid structure and/or a second lid structure.
  • the first and/or second lid structures can include the respective sealing layer and one or more layers or coatings.
  • the first lid structure may include the first sealing layer, an oriented PET-based layer, and an inorganic coating, with the inorganic coating located between the sealing layer and the oriented PET-based layer.
  • the second lid structure may include the second sealing layer, an oriented PET-based layer, and an inorganic coating, with the inorganic coating located between the second sealing layer and the oriented PET-based layer.
  • the first lid structure and the second lid structure each include the first and second sealing layers, respectively, an oriented PET-based layer, and an inorganic coating located between the respective sealing layer and the oriented PET-based layer.
  • Non-limiting examples of suitable inorganic barrier coatings includes aluminum oxide, vapor deposited metalized coatings, silicon dioxide, amophous carbon, molecular self-assembled layers comprising barrier polymers, EVOH/polybutyed coatings, e.g. Eniroclear ® liquid coatings, and combinations thereof.
  • the syrup dispensing cup can further include a first lid structure, for example, as illustrated in FIG. 3, that includes the first sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the first sealing layer and oriented PET-based layer.
  • the syrup dispensing cup may, alternatively or in addition to the first lid structure, include a second lid structure that includes the second sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the second sealing layer and oriented PET-based layer.
  • Indorama 3301 Designated by Indorama (Auriga Polymers, Inc.) as Poly clear ® Splash PET for use in clear water bottle production.
  • Indorama 3301 has a nominal intrinsic viscosity of 0.74 dL/g, and a DSC peak melting point of 242 °C.
  • Indorama 3301 is an IPA-modified PET copoly ester with DEG at 3.1 mol % and IPA at 3.0 mol %. Resin intrinsic viscosity was measured to be 0.725 dL/g.
  • Indorama 7804 Designated by Indorama (Auriga Polymers, Inc.) as 0.75 dl/g IV development grade copoly ester, the resin contains an unknown nucleating package to accelerate crystallization rate.
  • DSC scans provided by Auriga Polymers, Inc. confirm the peak melting temperature to be 249 °C.
  • DEG content was 1.1 mol % and the resin intrinsic viscosity was measured to be 0.725 dL/g.
  • Eastman Eastar ® EN067 A clear, nominal 0.60 dL/g IV specialty grade PET resin from Eastman Chemical that has a peak melting temperature of 242 °C. This resin is PET copolyester resin comprising 1.4 mol % DEG and 4.3 mol % CHDM.
  • 'Dynamic shear rheology was calculated using a TA Instruments ARES strain-controlled melt rheometer using a dynamic strain of 3% over the angular frequency range of 0.3 to 500 rad/s at 245, 255, and 265 °C.
  • the three isothermal frequency sweeps were reduced to a flow master-curve referenced to 265 °C using horizontal time-temperature superposition.
  • T is the Arrhenius-based time-temperature superposition shift factor based upon the flow Activation energy, E A , the gas constant R, reference temperature, T r :
  • Peak melting temperatures and enthalpies were determined from the second heat melting scan at 10 °C / min, following a cooling crystallization scan performed from 300 °C at 10°C / min.
  • Co-monomer compositions were determined by base hydrolysis (saponification) of polyethylene terephthalate (PET) followed by derivatization (silylation) of the alcohols, glycols, and acids.
  • Agilent Technologies 6890 gas chromatograph with 5973 mass selective detector (GC/MS) was used for detection and quantitation of the silylated comonomers.
  • the silyl ethers and esters were separated using a 30 m x 0.25 mm ID (5 %-phenyl)-mefhylpolysiloxane coated fused-silica capillary column with a film thickness of 0.25 ⁇ .
  • the GC oven was programmed to start at 50 ⁇ C and hold for 2 min and ramp at 10 ⁇ C/min to a final temperature of 310 ⁇ C and hold for 2 min.
  • the helium carrier gas flow rate was set to 1 mL/min.
  • the system was calibrated using combined comonomer (diethylene gycol, isophthalic acid, cyclohexanedimethanol) standard solutions at five levels to bracket sample concentrations with correlation coefficient (R2) value greater than 0.995. Data processing was performed using Agilent Technologies Chemstation software to determine.
  • Resin molecular weights / distributions were determined as follows:4A monodispersed polystyrene (PS) standard of known molecular weight (Mw 51.5K) and polydispersity (1.03) was used for normalizing and calibrating the laser light scattering detector. Polydispersed polyethylene terephthalate (PET) standards of known molecular weight and polydispersity were used for back calculating the dn/dc (the change in refractive index over the change in concentration) value for PET in the solvent system. The PET standards (Mw 50K and 75K) were selected that have a similar molecular weight distribution to that of the PET samples.
  • PS monodispersed polystyrene
  • PET polyethylene terephthalate
  • Standards and samples were prepared by dissolving in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Then diluted with chloroform (CHC13) to reach a final concentration of 2 mg/mL in CHC13/HFIP (98:2 v/v). The polymer solutions were filtered (PTFE, 0.45 ⁇ ). Standards and samples were injected into the following system: Waters alliance GPCV 2000 coupled with a Waters 2489 UV/Visible Detector system (270 nm) and Precision Detectors PD2040 Laser Light Scattering Detector (685 nm).
  • HFIP 1,1,1,3,3,3-hexafluoroisopropanol
  • Injection molding was performed using a single-cavity cup mold installed on a Milacron FANUC Roboshot ® S 2000i 55B injection molding machine with a cold runner.
  • the press tonnage was 55 tons, and the 20: 1 L/D general purpose (CPM 9V linear taper) single screw was driven by a 6.7 hp motor. Barrel temperature for the extruder was controlled over four zones and the gate.
  • Indorama 3301 A 2 x 2 experiment design with replicated center points was employed to investigate the effect of mold temperature and cooling time on crystallization kinetics and crystalline development in the molded part.
  • the resin was dried to 0.008 wt. % moisture prior to the run.
  • the melt temperature was controlled at 526 °F. Cooling times were varied at 1.25 s (low) and 5.25 s (high) with a midpoint of 3.25 s. Mold set point temperatures were 90 °F (low) and 120 °F (high), with a midpoint of 105 °F.
  • Six trial items were run according to the test matrix outlined in the following Table.
  • Indorama 7804 A DOE run similar to the DOE run for Indorama 3301 could not be performed for Indorama 7804 because Indorama 7804 crystallized rapidly during the initial midpoint run conditions. DSC results confirmed the fast crystallization rates of Indorama 7804, as attempted isothermal crystallization half- time experiments in the temperature range from 140 - 200 °C could not be run as crystallization completed before a steady isothermal condition could be reached. As a result, one run for Indorama 7804 was performed at one set of conditions, as detailed in Table 4, that appeared to optimize the injection molding performance. It was discovered during the injection molding run that the male mold half temperature control would not permit cooling below 135 °F. This process limitation led to increased part crystallinity, especially at the gate.
  • Eastman Eastar EN067 This resin is a medical grade polyester. It is a grade of crystallized thermoplastic polyester in the form of pellets. Table 6: Injection molding conditions for Eastman Eastar EN067
  • a PET-based co-polyester resin having an intrinsic viscosity between 0.55 dL/g and 0.65 dL/g, preferably targeted at 0.65 dL/g can yield a plastic pressure of about 20,000 psig at an injection molding temperature of about 526 °F on the Milacron FANUC Roboshot ® S 2000i 55B injection molding machine.
  • the first linear regression model related the copolyester peak melting temperature to the di ethylene glycol (DEG) content and the collective content of the other monomers.
  • the second linear regression model considered related the copolyester peak melting temperature to the total co-monomer content, which includes DEG.
  • the parity plots for these model equations are shown in Figure 5 with the corresponding regression equations (Equation 4 and Equation 5) as follows:
  • Applicants reserve the right to proviso out or exclude any individual members of any such group, including any sub-ranges or combinations of sub-ranges within the group, if for any reason Applicants choose to claim less than the full measure of the disclosure, for example, to account for a reference that Applicants are unaware of at the time of the filing of the application.
  • Values or ranges may be expressed herein as “about”, from “about” one particular value, and/or to “about” another particular value. When such values or ranges are expressed, other embodiments disclosed include the specific value recited, from the one particular value, and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another embodiment. It will be further understood that there are a number of values disclosed herein, and that each value is also herein disclosed as
  • a syrup dispensing cup comprising:
  • a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space
  • the body structure comprises a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C, wherein the first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and wherein the ratio of the first mole % to the second mol % is less than 1.
  • the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0.
  • DEG diethylene glycol
  • the body structure further comprises one or more oxygen scavengers present at a concentration from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.
  • syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 6.0 x 10 "3 cm /pkg » day at about 23 °C and 50 % relative humidity..
  • syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 22.8 x 10 "5 cm /mL » day at at about 23 °C and 50 % relative humidity..
  • syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has a water vapor transmission rate of less than about 4.0 x 10 "3 g/m 2 /day at about 37.8 °C and about 90 % relative humidity.
  • the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the first sealing layer and oriented PET-based layer.
  • the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the first sealing layer and oriented PET- based layer.
  • the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the second sealing layer and oriented PET-based layer.
  • syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the second sealing layer and oriented PET- based layer.
  • a method for enhancing the shelf-life of a syrup dispensing cup comprising:
  • a body structure from the first PET-based co-polyester resin, wherein the body structure has a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and an interior space;
  • each sealing layer comprises a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %
  • the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0.
  • the body structure further comprises one or more oxygen scavengers present from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)

Abstract

Syrup dispensing cups are provided that include a body structure that includes a first polyester or co-polyester resin with one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25C. The body structure has a first opening that is sealed with a first sealing layer and a second opening sealed with a second sealing layer, in which each sealing layer includes a second PET-based co-polyester resin having one or more second co-monomers incorporated into the second resin at a second mol %, and the ratio of the first mole % to the second mol % is less than 1. Methods for or enhancing the shelf-life of syrup dispensing cups are also provided.

Description

SYRUP DISPENSING CUPS AND METHODS FOR
IMPROVED SHELF-LIFE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Application No. 62/245,894, filed October 23, 2015, which is incorporated herein by reference.
TECHNICAL FIELD
[0002] This disclosure relates to syrup dispensing cups having improved shelf life, and methods and compositions for their production.
BACKGROUND
[0003] Polyesters and particularly polyethylene terephthalate (PET) have been used for packaging for many years because of their excellent mechanical properties and relatively low cost. For example, PET-based containers have found use as dispensing cups in automated cold beverage dispensing systems, in which a carbonated fluid is introduced into the cup to interact with its contents, such as syrup, to provide a mixture that is subsequently dispensed. However compared to a glass bottle or a metal container, PET- based containers allow oxygen to penetrate at a certain rates from the outside and thus have difficulty in maintaining storage stability of the contents sealed inside. Additionally, as PET-based container materials are porous, flavor scalping may occur and undesirably affect the organoleptic properties of the contents sealed in the container.
[0004] Consequently, there remains a need for improved dispensing cups, including cups for automated, carbonated cold beverage dispensing systems. The dispensing cups will desirably have extended shelf life properties and a neutral impact on the organoleptic properties of the contents sealed therein. New compositions and/or methods for making improved dispensing cups are generally needed, particularly new compositions and methods that do not undesirably alter processing and packaging performance. SUMMARY
[0005] This disclosure provides generally new compositions and methods for syrup dispensing cups that are stable over longer periods, that is, having improved barrier properties and reduced or minimal impact on the organoleptic properties of the syrup contained therein.
[0006] Syrup dispensing cups are generally fabricated by injection molding of thermoplastic polyester resin polyethylene terephthalate (also written poly(ethylene terephthalate) or simply PET), which formally contains polymerized units of the monomer ethylene terephthalate with repeating CioHg04 moieties. Without intending to be bound by any theories or mechanisms, PET is generally synthesized from its monomer bis(2- hydroxy ethyl) terephthalate, which itself can be prepared by the esterification reaction between terephthalic acid and ethylene glycol with water as a byproduct (Equation 1), or by transesterification reaction between ethylene glycol and dimethyl terephthalate with methanol as a byproduct (Equations 2 and 3). Polymerization of the resulting bis(2- hydroxy ethyl) terephthalate is through a poly condensation reaction of the monomers which is effected immediately after esterification or transesterification reactions, with water as the byproduct.
Esterification (Equation 1)
n C6H4(C02H)2 + n HOCH2CH2OH→
[(CO)C6H4(C02CH2CH20)]n + In H20
Transesterification (Equations 2 and 3)
C6H4(C02CH3)2 + 2 HOCH2CH2OH→
C6H4(C02CH2CH2OH)2 + 2 CH3OH
n C6H4(C02CH2CH2OH)2
[(CO)C6H4(C02CH2CH20)]n + n HOCH2CH2OH
[0007] It has now been unexpectedly discovered that by employing certain diacid and/or diol co-units (co-monomers) to form PET-based co-polyester resins having certain rheological properties that acceptably permit thin- wall part injection molding within the range of commercial molding cycle times, performance improvements are achieved. It has also been unexpectedly discovered that when these features are combined with incorporating such co-monomers at a different mole percent (mol %) to form other co- polyester resins having suitable heat sealing abilities to form a sealing layer, a surprising improvement in barrier properties of the resulting syrup dispensing cup is attained.
[0008] According to one aspect, for example, this disclosure a syrup dispensing cup comprising:
a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space, wherein the body structure comprises a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.30 dL/g when measured at a temperature of 25°C;
wherein the first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %; and
wherein the ratio of the first mole % to the second mol % is less than 1.
[0009] In a further aspect, for example, this disclosure provides a method for enhancing the shelf-life of a syrup dispensing cup, the method comprising:
a) providing a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.30 dL/g when measured at a temperature of 25°C;
b) providing a body structure from the first PET-based co-polyester resin, wherein the body structure has a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and an interior space;
c) sealing the first opening with a first sealing layer; and
d) sealing the second opening with a second sealing layer,
wherein each sealing layer comprises a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and
wherein the ratio of the first mole % to the second mol % is less than 1.
[0010] These and various other aspects and embodiments of this disclosure are illustrated in the drawings, examples, data, and detailed description that follow. BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 illustrates a cross-sectional view of a syrup dispensing cup in accordance with an embodiment of the present disclosure.
[0012] FIG. 2 illustrates a cross-sectional view of a lid structure in accordance with an embodiment of the present disclosure.
[0013] FIG. 3 illustrates a cross-sectional view of a lid structure in accordance with another embodiment of the present disclosure.
[0014] FIG. 4 is a graph depicting injection molding performance as related to resin melt shear rheology.
[0015] FIG. 5 is a graph depicting measured and model calculated peak melting temperature for 136 PET homopolymer and co-polyester resins.
DETAILED DESCRIPTION
[0016] Aspects of this disclosure provide for new syrup dispensing cups, methods, compositions, and structures, that improve the barrier properties of certain syrup dispensing cups made from the compositions and structures. This disclosure further provides for syrup dispensing cups and their compositions and structures that are durable, heat sealable, and provide increased shelf-life while decreasing any adverse impact on the organoleptic properties of the syrup contained within the dispensing cup.
[0017] The following definitions are provided to further explain and elaborate various aspects of this disclosure.
[0018] A "polyester" resin is one that contains units derived from one dicarboxylic acid monomer species and one diol monomer species. Non-limiting suitable examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene furanoate (PEF), and the like, and can include a combination or mixture of polyester resins. In any instance, the long chain branched embodiment of the polyester resin can be used.
[0019] A "co-polyester" resin is a polyester resin that contains units derived from at least one other or additional dicarboxylic acid co-monomer along with the acid co- monomer in the polymer resin structure and/or at least one other or additional diol co- monomer along with the ethylene glycol co-monomer in the polymer resin structure. Non- limiting examples include FDCA, PET-based polyester, PEF -based polyester, PEN-based polyester, aliphatic or aromatic polyester, and combinations thereof.Typically, the mole fraction or percentage of the total other dicarboxylic co-monomers is less than the mole fraction or percentage of acid co-monomers in the resin. Also typically, the mole fraction or percentage of the total other diol co-monomers is less than the mole fraction or percentage of ethylene glycol co-monomers in the resin. In any instance, the long chained branched embodiments of the co-polyester resin can be used. For purposes of simplicity, although any of the foregoing polyester or co-polyester resin may be employed within the syrup dispensing cups described herein, the below disclosure is with respect to PET-based co-polyester resins. In some instances, the long chain branched version of the PET-based co-polyester resin may be utilized. Non-limiting examples include the long chain branched versions of Indorama 3301 , Indorama 7804, and Eastman Eastar® EN067.
[0020] In one aspect, the disclosure provides for a syrup dispensing cup comprising a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space. The body structure comprises a first PET-based co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C. The first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second
PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and wherein the ratio of the first mol % to the second mol % is less than 1. That is, the first mol % is less than the second mol %.
[0021] FIG. 1 illustrates one embodiment of this disclosure, in which the syrup dispensing cup is shown in cross-section. In certain instances, a silicon rubber dispensing valve with a retainer ring may be mounted to an opening to facilitate and enhance syrup mixing with the carbonated water supply, which is separate from the syrup dispensing cup. The syrup dispensing valve, which may assemble integral to the bottom opening of the cup, may include a silicon rubber and may be retained, for example, with a snap-ring. In some embodiments the snap-ring comprises a polyolefin resin such as isotactic polypropylene (z-PP) or high density polyethylene (HDPE). In one instance, the silicon rubber may be configured to have a specific gravity less than water, thereby rendering it floatable in a recycling floatation bath following grinding of the cup to promote cup recyclability.
[0022] The sidewall structure can take the form of any number of different structural configurations. Generally, the sidewall structure can take the shape of a frustum, which is the portion of a geometric shape such as a cone or pyramid that lies between two parallel planes that cut the geometric shape. In this description, the two parallel planes correspond with the first opening at the first end and the second opening at the second end. Therefore, the FIG. 1 sidewall structure represents a conical frustum, having different diameter openings at the first and second ends, and this structure will be referred to herein as a conical side wall structural configuration. The sidewall structure also may have a cylindrical structural configuration in which the first and second ends have the same diameter, or the sidewall structure also may have a polyhedron structural configuration having a polygonal cross section. Non-limiting examples of suitable polygonal cross structural configurations include a triangle, a square, a rectangle, a pentagon, and an octagon.
Body Structure
[0023] According to a further aspect, the body structure can be a monolayer formed of the first PET-based co-polyester resin, in which the monolayer can have an average thickness from about 0.04 cm to about 0.10 cm, alternatively from about 0.05 cm to about 0.09 cm, or alternatively from about 0.06 cm to about 0.08 cm. In another aspect, the monolayer can have an average thickness of about 0.04 cm, about 0.05 cm, about 0.06 cm, about 0.07 cm, about 0.08 cm, about 0.09 cm, or about 0.10 cm. In a further aspect, the monolayer can have an average thickness of about 0.03 cm; alternatively, about 0.04 cm; alternatively, about 0.05 cm; alternatively, about 0.06 cm; alternatively, about 0.07 cm; alternatively, about 0.08 cm; alternatively, about 0.09 cm; alternatively, about 0.10 cm; alternatively, about 0.1 1 cm; or alternatively, about 0.12 cm; although other thicknesses outside these parameters are possible.
[0024] In some instances, the body structure of the syrup dispensing cups described herein is manufactured via inj ection molding. In inj ection molding, the molding conditions, particularly melt and mold temperatures, have a significant impact on the final properties of the molded material, regardless of the part design. In such instances, the first PET-based co-polyester resin selected for body structure production should have suitable rheological properties so as to facilitate efficient and effective molding. The melt rheology of the first PET-based co-polyester resin should advantageously enable injection molding to occur with plastic pressures in a range for ease of commercial manufacturing. In one instance, the plastic pressure can be from about 2,500 psig to about 44,000 psig. In another instance, the plastic pressure can be from about 4,600 psig to about 30,000 psig. In yet another instance, the plastic pressure can be from about 7,000 psig to about 20,000 psig.
[0025] The first PET-based co-polyester resin can have a peak melting temperature from about 220 °C to about 260 °C. Alternatively, the first PET co-polyester resin can have a peak melting temperature from about 225 °C to about 255 °C; alternatively from about 230 °C to 255 °C; alternatively from about 235 °C to about 255 °C. In another aspect, the first PET-copolyester resin can have a melting temperature of about 220 °C, 221°C, about 222 °C, about 223 °C, about 224 °C, about 225 °C, about 226 °C, about 227 °C, about 228 °C, about 229 °C, about 230 °C, 231°C, about 232 °C, about 233 °C, about 234 °C, about 235 °C, about 236 °C, about 237 °C, about 238 °C, about 239 °C, about 240 °C, about 241 °C, about 242 °C, about 243 °C, about 244 °C, about 245 °C, about 246 °C, about 247 °C, about 248 °C, about 249 °C, about 250 °C, 251°C, about 252 °C, about 253 °C, about 254 °C, about 255 °C, about 256 °C, about 257 °C, about 258 °C, about 259 °C, or about 260 °C.
[0026] The first PET-based co-polyester resin can have a crystalline volume fraction from about 0.02 minutes to about 0.45 minutes. Alternatively, the first PET co-polyester resin can have a crystalline volume fraction from about 0.05 minutes to about 0.40 minutes; alternatively from about 0.10 minutes to about 0.35 minutes. In another aspect, the first PET-copolyester resin can have a crystalline volume fraction of about 0.02 minutes, about 0.03 minutes, about 0.04 minutes, about 0.05 minutes, about 0.06 minutes, about 0.07 minutes, about 0.08 minutes, about 0.09 minutes, about 0.1 minutes, about 0.11 minutes, about 0.12 minutes, about 0.13 minutes, about 0.14, minutes, about 0.15 minutes, about 0.16 minutes, about 0.17 minutes, about 0.18 minutes, about 0.19 minutes, about 0.2 minutes, about 0.21 minutes, about 0.22 minutes, about 0.23 minutes, about 0.24 minutes, about 0.25, minutes, about 0.26 minutes, about 0.27 minutes, about 0.28 minutes, about 0.29 minutes, about 0.30 minutes, about 0.31 minutes, about 0.31 minutes, about 0.32 minutes, about 0.33 minutes, about 0.34, minutes, about 0.35 minutes, about 0.36 minutes, about 0.37 minutes, about 0.38 minutes, about 0.39 minutes, about 0.4 minutes, about 0.41 minutes, about 0.42 minutes, about 0.43 minutes, about 0.44, minutes, or about 0.45 minutes.
[0027] The first PET co-polyester resins as described herein can have an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C. Alternatively, the first PET co-polyester resins can have an intrinsic viscosity from about 0.45 dL/g to about 0.75 dL/g; altematively, from about 0.50 dL/g to about 0.70 dL/g; and alternatively still, from about 0.55 to about 0.65 dL/g. In another aspect, the first PET co- polyester resin incorporating the diacid and/or diol co-monomers in the mole percentages disclosed herein can have an intrinsic viscosity of about 0.45 dL/g, about 0.46 dL/g, about 0.47 dL/g, about 0.48 dL/g, about 0.49 dL/g, about 0.50 dL/g, about 0.51 dL/g, about 0.52 dL/g, about 0.53 dL/g, about 0.54 dL/g, about 0.55 dL/g, about 0.56 dL/g, about 0.57 dL/g, about 0.58, about 0.59 dL/g, about 0.60 dL/g, about 0.61 dL/g, about 0.62 dL/g, about 0.63 dL/g, about 0.64 dL/g, about 0.65 dL/g, about 0.66 dL/g, 0.67 dL/g, about 0.68 dL/g, about 0.69 dL/g, about 0.70 dL/g, about 0.71 dL/g, about 0.72 dL/g, about 0.73 dL/g, about 0.74 dL/g, about 0.75 dL/g, about 0.76 dL/g, about 0.77 dL/g, about 0.78 dL/g, about 0.79 dL/g, about 0.80 dL/g, about 0.81 dL/g, about 0.82 dL/g, about 0.83 dL/g, about 0.84 dL/g, about 0.85 dL/g, about 0.86 dL/g, about 0.87 dL/g, about 0.88 dL/g, about 0.89 dL/g, about 0.90 dL/g, about 0.91 dL/g, about 0.92 dL/g, about 0.93 dL/g, about 0.94 dL/g, about 0.95 dL/g, about 0.96 dL/g, about 0.97 dL/g, about 0.98 dL/g, about 0.99 dL/g, about 1.0 dL/g, about 1.05 dL/g, about 1.1 dL/g, about 1.15 dL/g, aboutl .2 dL/g, about 1.25 dL/g, about 1.3 dL/g, or about 1.35 dL/g.
[0028] The first PET co-polyester resin as described herein can have a zero-shear viscosity from about 20 p (poise) to about 1 ,000 p when measured at a temperature of 265 °C. Altematively, the first PET co-polyester resins can have an zero-shear viscosity from about 80 p to about 830 p; altematively, from about 130 p to about 610 p; and alternatively still, from about 200 p to about 435 p. In another aspect, the first PET co-polyester resins incorporating the diacid and/or diol co-monomers in the mole percentages disclosed herein can have an zero-shear viscosity of about 80 p, about 90 p, aboutlOO p, about 110 p, about 120 p, about 130 p, about 140 p, about 150 p, about 160 p, about 170 p, about 180 p, about 190 p, about 200 p, about 210 p, about 220 p, about 230 p, about 240 p, about 250 p, about 260 p, about 270 p, about 280 p, about 290 p, about 300 p, about 310 p, about 320 p, about 330 p, about 340 p, about 350 p, about 360 p, about 370 p, about 380 p, about 390 p, about 400 p, about 410 p, about 420 p, about 430 p, about 440 p, about 450 p, about 475 p, about 500 p, about 525 p, about 550 p, about 575 p, about 600 p, about 650 p, about 700 p, about 750 p, about 800 p, about 850 p, about 900 p, about 950 p, or about 1,000 p.
[0029] Useful amounts of diacid and/or diol co-monomers are typically expressed in the mole (mol) percentages, and the diacid and/or diol co-monomers can be used in the first PET-based co-polyester resin according to this disclosure in any amount, and the amounts will generally vary depending on the specific co-monomer or co-monomers to be incorporated. For example, the first PET-based co-polyester resin can comprise greater than 0 mol % and up to about 20 mol % combined total of a diacid co-monomer and/or a diol co-monomer, based on the total co-monomer or co-monomers content in the first resin. That is, at least one co-monomer is present, but if desired, the first PET-based co- polyester resin can comprise either 0% diacid co-monomer or 0% diol co-monomer.
[0030] For example, the total diacid and/or diol co-monomers that can be incorporated into the first PET-based co-polyester resin in ranges of about: from 0.01 to 15 mol %; alternatively from 0.1 to 10 mol %; alternatively, from 0.5 to 5 mol %; alternatively, from 0.01 to 1 mol %; or alternatively, from about 2 to 5 mol % of the total co-monomer content. According to another aspect, the diacid and/or diol co-monomers can be incorporated into the first resin in mole percentages of about 0.01 mol %, 0.02 mol %, 0.05 mol %, 0.1 mol %, 0.2 mol %, 0.5 mol %, 1 mol %, 2 mol %, 3 mol %, 4 mol %, 5 mol %, 6 mol %, 7 mol %, 8 mol %, 9 mol %, 10 mol %, 1 1 mol %, 12 mol %, 13 mol %, 14 mol %, 15 mol %, 16 mol %, 17 mol %, 18 mol %, 19 mol %, or 20 mol % of the total co-monomer content. The diacid and/or diol co-monomer also may be incorporated into the first resin in ranges between any of these specific recited mole percentages (for example, from about 0.01 mol % to about 14.5 mole %), or alternatively still, may be present at less than, or less and equal to, any of these specific recited mole percentages (for example, less than about 20 mol % or less than about 10 mol %).
[0031] Non-limiting examples of suitable co-monomers includes dietheylene glycol (DEG), isophthalic acid (IP A), 1 ,4-Cyclohexanedimethanol (CHDM), dimethyl-2,6- naphthalenedicarboxylate (NDC), and trietheylene gylcol. In one embodiment, the one or more first co-monomers comprises DEG incorporated into the first resin at a mol % from about 0.10 to about 8.0. In another embodiment, the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0 and one or more other co-monomers incorporated into the first at a mol % from about 0.01 to 6.50. [0032] The syrup dispensing cups described herein have an oxygen transmission rate (OTR) that minimizes the transfer of oxygen gas through and into the body structure. Minimizing the OTR beneficially increases the shelf-life of the contents disposed within the syrup dispensing cups. The OTR is the steady state rate at which oxygen gas permeates through a particular material at specified conditions of temperature and zero relative humidity, and can be determined using ASTM D3985.
[0033] The syrup dispensing cup can have an OTR of less than about 6.0 x 10"3 cmVpkg day at about 23 °C and 50 % relative humidity. Alternatively, the syrup dispensing cup can have an OTR from about 1.0 x 10"3 cmVpkg day to about 10.0 x 10"3 cmVpkg day; alternatively, from about 1.0 x 10"3 cmVpkg day to about 5.0 x 10"3 cmVpkg day; alternatively still, from about 1.0 x 10"3 cmVpkg day to about 3.5 x 10"3 cmVpkg day. In another aspect, the syrup dispensing cup can have an OTR from about 2.0 x 10"3 cmVpkg day to about 3.3 x 10"3 cmVpkg day. In yet another aspect, the syrup dispensing cup can have an OTR of about 3.3 x 10"3 cmVpkg day. According to another aspect, the syrup dispensing cup can have an OTR of about 0.5 x 10"3 cmVpkg day, 1.0 x 10"3 cmVpkg day, 1.5 x 10"3 cmVpkg day. 2.0 x 10"3 cmVpkg day, 2.5 x 10"3 cmVpkg day, 3.0 x 10"3 cmVpkg day, 3.5 x 10"3 cmVpkg day, 4.0 x 10"3 cmVpkg day, 4.5 x 10"3
3 3 3 3 3 3 3
cm /pkg day, 5.0 x 10" cm /pkg day, 5.5 x 10" cm /pkg day, 6.0 x 10" cm /pkg day, 6.5 x 10"3 cmVpkg day, 7.0 x 10"3 cmVpkg day, 7.5 x 10"3 cmVpkg day, 8.0 x 10"3
cmVpkg day, 8.5 x 10"3 cmVpkg day, 9.0 x 10"3 cmVpkg day, 9.5 x 10"3 cmVpkg day, or 10.0 x 10"3 cmVpkg day.
[0034] The syrup dispensing cup can have an OTR of less than about 22.8 x 10"5 cmVmL day at about 23 °C and 50 % relative humidity. Alternatively, the syrup dispensing cup can have an OTR from about 2.27 x 10"5 cmVmL day to about 22.8 x 10"5 cmVmL day; alternatively, from about 2.27 x 10"5 cmVmL day to 11.4 x 10"5 cmVmL day; alternatively still, from about 2.27 x 10"5 cmVmL day to about 8.0 x 10"5 cmVmL day. In another aspect, the syrup dispensing cup can have an OTR of about 7.5 x 10"5
cmVmL day. In yet another aspect, the syrup dispensing cup can have an OTR of about 0.5 x 10"5 cmVmL day, 1.0 x 10"5 cmVmL day, 1.5 x 10"5 cmVmL day, 2.0 x 10"5 cmVmL day, 2.5 x 10"5 cmVmL day, 3.0 x 10"5 cmVmL day, 3.5 x 10"5 cmVmL day, 4.0 x 10"5 cmVmL day, 4.5 x 10"5 cmVmL day, 5.0 x 10"5 cmVmL day, 5.5 x 10"5 cmVmL day, 6.0 x 10"5 cmVmL day, 6.5 x 10"5 cmVmL day, 7.0 x 10"5 cmVmL day, 7.5 x 10"5 cmVmL day, 8.0 x 10"5 cmVmL day, 8.5 x 10"5 cmVmL day, 9.0 x 10"5 cmVmL day, 10.0 x 10"5 cmVmL day, 10.5 x 10"5 cmVmL day, l l.O x 10"5 cmVmL day, 11.5 x 10"5 cmVmL day, 12.0 x 10"5 cmVmL day, 12.5 x 10"5 cmVmL day, 13.0 x 10"5 cmVmL day, 13.5 x 10"5 cmVmL day, 14.0 x 10"5 cmVmL day, 14.5 x 10"5 cmVmL day, 15.0 x 10"5 cm 3 /mL day, 15.5 x 10" 5 cm 3 /mL day, 16.0 x 10" 5 cm 3 /mL day, 16.5 x 10" 5 cm 3 /mL day, 17.0 x 10"5 cmVmL day, 17.5 x 10"5 cmVmL day, 18.0 x 10"5 cmVmL day, 12.5 x 10"5 cmVmL day, 18.5 x 10"5 cmVmL day, 19.0 x 10"5 cmVmL day, 19.5 x 10"5 cmVmL day, 20.0 x 10"5 cmVmL day, 20.5 x 10"5 cmVmL day, 21.0 x 10"5 cmVmL day, 21.5 x 10"5 cmVmL day, 22.0 x 10"5 cmVmL, 22.5 x 10"5 cmVmL day, 23.0 x 10"5 cmVmL day, 23.5 x 10"5 cmVmL day, 24.0 x 10"5 cmVmL day, 24.5 x 10"5 cmVmL day, or 25.0 x 10"5 cmVmL day.
[0035] The syrup dispensing cups described herein have a water vapor transmission rate (WVTR) that reduces or minimizes the transfer of moisture through and into the body structure. Reducing and/or minimizing the WVTR beneficially increases the shelf-life of the contents disposed within the syrup dispensing cups. The WVTR is the steady state rate at which water vapor permeates through a particular material at specified conditions of temperature and relative humidity. The WVTR can be determined using the information in the following table.
Table 1. Basis for WVTR calculations
Figure imgf000013_0001
[0036] In one aspect, the syrup dispensing cup can have a WVTR of less than about 4.0 x 10"3 g/m2/day. Alternatively, the syrup dispensing cup can have an WVTR from about 3.9 x 10" g/m /day to about 9.3 x 10" g/m /day; alternatively, from about 4.3 x 10" g/m /day to about 7.5 x 10" g/m /day; alternatively still, from about 4.8 x 10" g/m /day to about 6.3 x 10"3 g/m2/day. According to another aspect, the syrup dispensing cup can have an WVTR of about 0.5 x 10"3 g/day, 1.0 x 10"3 g/m2/day, 1.5 x 10"3 g/m2/day, 2.0 x 10"3 g/m2/day, 2.5 x 10"3 g/m2/day, 3.0 x 10"3 g/m2/day, 3.5 x 10"3 g/m2/day, 4.0 x 10"3 g/m2/day, 4.5 x 10"3 g/m2/day, 5.0 x 10"3 g/m2/day, 5.5 x 10"3 g/m2/day, 6.0 x 10"3 g/m2/day, 6.5 x 10"3 g/m2/day, 7.0 x 10"3 g/m2/day, 7.5 x 10"3 g/m2/day, 8.0 x 10"3 g/m2/day, 8.5 x 10"3 g/m2/day, 9.0 x 10"3 g/m2/day, or 9.5 x 10"3 g/m2/day. In some aspects, the first PET co-polyester resins can also include one or more additives. Non-limiting examples of suitable additives include oxygen scavengers, nucleation agents, mold release agents (e.g., SUKANO POLYMERS addition level, 0.001 wt % to 1.000 wt % in final resin blend), color enhancing agents (e.g., liquid or solid, used in Sukano Polymers Tob S354-NT blue toner enhancer, addition level 0.30 wt % to 1.000 wt%), pigments, and impact modifiers, and combinations thereof.
[0037] In one aspect, the first PET-based co-polyester resin may include one or more nucleation agents. In instances where the body structure is fabricated via inj ection molding, the addition of one or more nucleation agents may, among other things, beneficially reduce the cycle times. This is because the nucleation agents provide a surface on which crystal can start, thereby resulting in increased crystal formation, particularly in small crystal domains. Also, the additional of one or more nucleation agents may advantageously increase the durability of the syrup dispensing cup, e.g., with respect to stiffness (flexural modulus) and impact resistance.
[0038] Non-limiting examples of suitable nucleation agents include ADEKA Amfine NA-05, Sukano Polymers TH-03-12 MB05LP, and combinations thereof. In one instance, the first PET-based co-polyester resin may include one or more nucleation agents present at a concentration from about 0.01 ppm to about 1,000 ppm, alternatively from about 100 ppm to about 750 ppm, or alternatively from about 100 ppm to about 500 ppm. In another instance, the first PET-based co-polyester resin may not include one or more nucleation agents.
[0039] In another aspect, the first PET-based co-polyester resin may include one or more oxygen scavengers. The addition of one or more oxygen scavengers may beneficially decrease the OTR of the syrup dispensing cup, thereby increasing shelf-life thereof. In one instance, the one or more oxygen scavengers are present at a ceoncentration from about 0.01 % to about 10 % by weight of the first PET-based co- polyester resin. In another instance, the one or more oxygen scavengers are present at a concentration of about 2.5 % or less by weight of the first PET-based co-polyester resin. A suitable concentration of the one or more oxygen scavengers depends at least in part on the average thickness of the body structure. In another instance, the first PET-based co- polyester resin may not include one or more oxygen scavengers.
[0040] Non-limiting examples of suitable oxygen scavengers include Al 10ac,SolO2, Monoblox +, CESA Absorb, Oxy clear, Polyprotect JB, Diamond Clear C93, Diamond Clear 992, Diamond Clear 300, HyGuard, and combinations thereof.
[0041] In certain aspects, the first PET-based co-polyester resin may include one or more nucleation agents at a concentration from about 0.01 ppm to about 1,000 ppm and one or more oxygen scavengers at a concentration from about 0.01 % to about 10 % by weight of the first resin. Sealing Layers
[0042] Heat sealability and gas / permeate barrier properties can be competing packaging design attributes, since both may be strongly, but inversely affected by the extent and size distribution of the crystalline phase and the mobility of the amorphous phase (glass transition temperature). To achieve enhanced heat sealability, co-monomer modification of a polymeric resin may be employed to reduce the average crystallizable chain sequence lengths and slow crystallization kinetics, leading to a decrease in the extent of crystallinity, as well as a lower glass transition temperature to increase chain mobility for the interfacial interdiffusion that occurs in order to enable the creation of an effective heat seal. However, the permeation of gas and flavor components (scalping) into the polymer, generally increases with the square of the amorphous phase volume fraction, and with a reduction in the glass transition temperature.
[0043] To improve the shelf-life of the contents, low oxygen transmission is desirable, and thus higher crystallinity with a dispersed, nucleated crystalline phase may be desirable to yield a more tortuous gas diffusion path. To achieve a desirable balance between heat sealability and barrier properties of the syrup dispensing cups, suitable co-monomer systems (type and composition) should be chosen for the second PET-based co-polyester resin. [0044] Without being bound to a single theory, the first PET-based co-polyester resin can be modified by co-monomer insertion during polymerization to a substantially lesser extent than the second PET-based co-polyester resin.
[0045] The first opening and the second opening of the body structure are sealed with a first sealing layer and a second sealing layer, respectively. In one aspect, the first and second sealing layers may be prepared from the PET-based co-polyester resins and by the processes, in full or in part, as described in U. S. Patent No. 6,663,997 (the '997 patent), which is incorporated herein by reference. Applicants hereby incorporate all co-polyesters of the '997 patent by reference.
[0046] The first and second sealing layers can include one or more second co- monomers incorporated into the second resin at a second mol %, in which the ratio of the first mol % to the second mol % can be less than 1. For example, in various instances, the ratio of the first mol % to the second mol % can be from about 0.01 to about 0.95;
alternatively from about 0.05 to about 0.5; alternatively still from about 0.1 to about 0.4. In another instance, the ratio of the first mol % to the second mol % is about 0.3.
[0047] As compared with the first PET-based co-polyester resin of the body structure, the second PET-based co-polyester resin can have an intrinsic viscosity (I.V.) that is greater than, less than, or the same as the I.V. in the first PET-based co-polyester resin. For example, in some instances and embodiments, the second PET co-polyester resins as described herein can have an intrinsic viscosity from about 0.50 dL/g to about 1.0 dL/g when measured at a temperature of °25°C.
[0048] Useful amounts of diacid and/or diol co-monomers are typically expressed in the mole (mol) percentages, and the diacid and/or diol co-monomers can be used in the second PET-based co-polyester resin according to this disclosure in any amount, and the amounts will generally vary depending on the specific co-monomer or co-monomers to be incorporated. For example, the second PET-based co-polyester resin can comprise greater than 0 mol % and up to about 30 mol % combined total of a diacid co-monomer and/or a diol co-monomer, based on the total co-monomer or co-monomers content in the second resin. That is, at least one co-monomer is present, but if desired, the second PET-based co-polyester resin can comprise either 0% diacid co-monomer or 0% diol co-monomer.
[0049] For example, the total diacid and/or diol co-monomers that can be incorporated into the second PET-based co-polyester resin in ranges of about: from 0 to 30 %. Non- limiting examples of suitable co-monomers includes dietheylene glycol (DEG), isophthalic acid (IP A), 1,4-Cyclohexanedimethanol (CHDM), dimethyl-2,6- naphthalenedicarboxylate (NDC), and trietheylene gylcol.
[0050] In some instances or embodiments, as compared with the one or more first co- monomers, the second one or more second co-monomers may comprise DEG incorporated into the second resin at the same or a different mol % than is incorporated into the second resin. That is, the second one or more second co-monomers may comprise DEG incorporated into the second resin at a mol % greater than, less than, or the same as the first resin. For example, in some instances or embodiments, for example, the one or more second co-monomers comprise DEG incorporated into the second resin at from about 0.10 mol % to about 20.0 mol %.
[0051] As compared with the first PET-based co-polyester resin, the second PET co- polyester resin can have a zero-shear viscosity that is the same or different from that of the first PET-based co-polyester resin. That is, the second PET co-polyester resin can have a zero-shear viscosity that is greater than, less than, or the same as that of the first PET co- polyester resin. In some instances or embodiments, the second PET-based co-polyester resin has a zero-shear viscosity from about 20 p to about 500 p when measured at a temperature of 265 °C.
[0052] The second PET-based co-polyester resin can have a peak melting temperature from about 160 °C to about 275 °C. Alternatively, the second PET co-polyester resin can have a peak melting temperature from about 170 °C to about 264 °C; alternatively from about 165 °C to 270 °C; alternatively from about 170 °C to about 255 °C.
[0053] As with the first PET co-polyester resin, in some instances, the second PET co- polyester resin can also include one or more additives. Non-limiting examples of suitable additives include oxygen scavengers, nucleation agents, and combinations thereof.
Lid Structures
[0054] According to a further aspect, the syrup dispensing cup can also include a first lid structure and/or a second lid structure. In one instance, the first and/or second lid structures can include the respective sealing layer and one or more layers or coatings. For example, in one instance, as illustrated in FIG. 2, the first lid structure may include the first sealing layer, an oriented PET-based layer, and an inorganic coating, with the inorganic coating located between the sealing layer and the oriented PET-based layer. In another instance, the second lid structure may include the second sealing layer, an oriented PET-based layer, and an inorganic coating, with the inorganic coating located between the second sealing layer and the oriented PET-based layer. In yet another instance, the first lid structure and the second lid structure each include the first and second sealing layers, respectively, an oriented PET-based layer, and an inorganic coating located between the respective sealing layer and the oriented PET-based layer.
[0055] Non-limiting examples of suitable inorganic barrier coatings includes aluminum oxide, vapor deposited metalized coatings, silicon dioxide, amophous carbon, molecular self-assembled layers comprising barrier polymers, EVOH/polybutyed coatings, e.g. Eniroclear® liquid coatings, and combinations thereof.
[0056] In certain instances, the syrup dispensing cup can further include a first lid structure, for example, as illustrated in FIG. 3, that includes the first sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the first sealing layer and oriented PET-based layer. The syrup dispensing cup may, alternatively or in addition to the first lid structure, include a second lid structure that includes the second sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the second sealing layer and oriented PET-based layer.
EXAMPLES
[0057] Cup injection molding experiments involving three PET-based co-polyester resins were performed at Omega Plastics in Clinton Twp, MI. These resins were
Indorama 3301, Indorama 7804, and Eastman Eastar® EN067. The technical descriptions of these resins are as follows:
Indorama 3301: Designated by Indorama (Auriga Polymers, Inc.) as Poly clear® Splash PET for use in clear water bottle production. Indorama 3301 has a nominal intrinsic viscosity of 0.74 dL/g, and a DSC peak melting point of 242 °C.
Indorama 3301 is an IPA-modified PET copoly ester with DEG at 3.1 mol % and IPA at 3.0 mol %. Resin intrinsic viscosity was measured to be 0.725 dL/g.
Indorama 7804: Designated by Indorama (Auriga Polymers, Inc.) as 0.75 dl/g IV development grade copoly ester, the resin contains an unknown nucleating package to accelerate crystallization rate. DSC scans provided by Auriga Polymers, Inc. confirm the peak melting temperature to be 249 °C. DEG content was 1.1 mol % and the resin intrinsic viscosity was measured to be 0.725 dL/g.
Eastman Eastar® EN067: A clear, nominal 0.60 dL/g IV specialty grade PET resin from Eastman Chemical that has a peak melting temperature of 242 °C. This resin is PET copolyester resin comprising 1.4 mol % DEG and 4.3 mol % CHDM.
[0058] Resin Analytical Characterization
[0059] Internal analytical characterizations of the three resin were determined with respect to resin melt rheology, DSC thermal characteristics, and co-monomer
compositions. The table below summarizes the results of each tested resin.
Table 2. Measured Characteristics of the PET co-polyester resins
Figure imgf000019_0001
'Dynamic shear rheology was calculated using a TA Instruments ARES strain-controlled melt rheometer using a dynamic strain of 3% over the angular frequency range of 0.3 to 500 rad/s at 245, 255, and 265 °C. The three isothermal frequency sweeps were reduced to a flow master-curve referenced to 265 °C using horizontal time-temperature superposition. The zero-shear viscosity was determined from fitting the master curve to the Carreau-Yasuda constitutive model: η ( Γ' ϊ ) = τ
[l + {ar^(rr)}¾] ¾
where aT is the Arrhenius-based time-temperature superposition shift factor based upon the flow Activation energy, EA, the gas constant R, reference temperature, Tr:
Figure imgf000020_0001
2 Peak melting temperatures and enthalpies were determined from the second heat melting scan at 10 °C / min, following a cooling crystallization scan performed from 300 °C at 10°C / min.
Co-monomer compositions were determined by base hydrolysis (saponification) of polyethylene terephthalate (PET) followed by derivatization (silylation) of the alcohols, glycols, and acids. Agilent Technologies 6890 gas chromatograph with 5973 mass selective detector (GC/MS) was used for detection and quantitation of the silylated comonomers. The silyl ethers and esters were separated using a 30 m x 0.25 mm ID (5 %-phenyl)-mefhylpolysiloxane coated fused-silica capillary column with a film thickness of 0.25 μπι. The GC oven was programmed to start at 50□ C and hold for 2 min and ramp at 10□ C/min to a final temperature of 310□ C and hold for 2 min. The helium carrier gas flow rate was set to 1 mL/min. The system was calibrated using combined comonomer (diethylene gycol, isophthalic acid, cyclohexanedimethanol) standard solutions at five levels to bracket sample concentrations with correlation coefficient (R2) value greater than 0.995. Data processing was performed using Agilent Technologies Chemstation software to determine.
4 Resin molecular weights / distributions were determined as follows:4A monodispersed polystyrene (PS) standard of known molecular weight (Mw 51.5K) and polydispersity (1.03) was used for normalizing and calibrating the laser light scattering detector. Polydispersed polyethylene terephthalate (PET) standards of known molecular weight and polydispersity were used for back calculating the dn/dc (the change in refractive index over the change in concentration) value for PET in the solvent system. The PET standards (Mw 50K and 75K) were selected that have a similar molecular weight distribution to that of the PET samples. Standards and samples were prepared by dissolving in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Then diluted with chloroform (CHC13) to reach a final concentration of 2 mg/mL in CHC13/HFIP (98:2 v/v). The polymer solutions were filtered (PTFE, 0.45μπι). Standards and samples were injected into the following system: Waters alliance GPCV 2000 coupled with a Waters 2489 UV/Visible Detector system (270 nm) and Precision Detectors PD2040 Laser Light Scattering Detector (685 nm). Molecular weight distribution was measured using two ΙΟμπι polystyrene/divinylbenzene (PS/DVB) PLgel MIXED- B LS columns (7.5 mm ID x 300 mm) and one ΙΟμπι PS/DVB PLgel Guard Column (7.5 mm ID x 50 mm) at 35□ C with a flow rate of lmL/min in CHC13/HFIP (98:2 v/v). Data processing was performed using Waters Empower Pro software to determine number-average molecular weight (Mn) and weight-average molecular weight (Mw).
' Polydispersity Index was determined using the following equation:
PDI =
[0060] Injection Molding Testing and Results
[0061] Indorama 3301, Indorama 7804, and Eastman Eastar® EN067 were each injected molded into the body structure of an exemplary syrup dispensing cup with the following dimensional characteristics detailed in the following table. Table 3. Dimensional Characteristics of Syrup Dispensing Cup
Figure imgf000021_0001
[0062] Injection molding was performed using a single-cavity cup mold installed on a Milacron FANUC Roboshot® S 2000i 55B injection molding machine with a cold runner. The press tonnage was 55 tons, and the 20: 1 L/D general purpose (CPM 9V linear taper) single screw was driven by a 6.7 hp motor. Barrel temperature for the extruder was controlled over four zones and the gate.
Indorama 3301: A 2 x 2 experiment design with replicated center points was employed to investigate the effect of mold temperature and cooling time on crystallization kinetics and crystalline development in the molded part. The resin was dried to 0.008 wt. % moisture prior to the run. The melt temperature was controlled at 526 °F. Cooling times were varied at 1.25 s (low) and 5.25 s (high) with a midpoint of 3.25 s. Mold set point temperatures were 90 °F (low) and 120 °F (high), with a midpoint of 105 °F. Six trial items were run according to the test matrix outlined in the following Table.
Table 4: Injection molding for Indorama 3301 DOE run sequence
Figure imgf000022_0001
Indorama 7804: A DOE run similar to the DOE run for Indorama 3301 could not be performed for Indorama 7804 because Indorama 7804 crystallized rapidly during the initial midpoint run conditions. DSC results confirmed the fast crystallization rates of Indorama 7804, as attempted isothermal crystallization half- time experiments in the temperature range from 140 - 200 °C could not be run as crystallization completed before a steady isothermal condition could be reached. As a result, one run for Indorama 7804 was performed at one set of conditions, as detailed in Table 4, that appeared to optimize the injection molding performance. It was discovered during the injection molding run that the male mold half temperature control would not permit cooling below 135 °F. This process limitation led to increased part crystallinity, especially at the gate. It should be noted that ejection was difficult as part stuck to male mold half. Temperature measurements of male mold half indicated 135 °C whereas the mold set point temperature was 120 °C. An attempt was made to switch core cooling to a different cooling system to balance the core with the rest of the mold. Cooling was inadequate to zero the temperature difference between the male core and the mold.
Table 5: Injection molding conditions for Indorama 7804
Figure imgf000023_0001
Eastman Eastar EN067: This resin is a medical grade polyester. It is a grade of crystallized thermoplastic polyester in the form of pellets. Table 6: Injection molding conditions for Eastman Eastar EN067
Figure imgf000024_0001
1 NR: Not recorded.
[0063] Melt Rheology and Injection Molding Performance
[0064] The zero-shear viscosities at 265 °C and injection molding plastic pressures for the three evaluated resins are shown as a function of the resin intrinsic viscosity in FIG. 4. Eastman Eastar® EN067 had the lowest zero-shear viscosity at 265 °C, followed by Indorama 3301 , and finally by Indorama 7804. Observed injection molding plastic pressures for the resins were found to rank similarly.
[0065] These results indicate that a PET-based co-polyester resin having an intrinsic viscosity between 0.55 dL/g and 0.65 dL/g, preferably targeted at 0.65 dL/g, can yield a plastic pressure of about 20,000 psig at an injection molding temperature of about 526 °F on the Milacron FANUC Roboshot® S 2000i 55B injection molding machine.
[0066] Peak Melting Temperatures and Co-Monomer Composition
[0067] Using an internal compilation of the DSC peak melting temperatures and compositions of 136 PET homopolymers and co-polymers, model equations were developed relating the co-monomer composition to the resin peak melting temperature. In injection molding, the molding conditions, particularly melt and mold temperatures, have a significant impact on the final properties of the molded material, regardless of the part design.
[0068] The first linear regression model related the copolyester peak melting temperature to the di ethylene glycol (DEG) content and the collective content of the other monomers. The second linear regression model considered related the copolyester peak melting temperature to the total co-monomer content, which includes DEG. The parity plots for these model equations are shown in Figure 5 with the corresponding regression equations (Equation 4 and Equation 5) as follows:
Tm (°C) = 254.7 - 1.730(mol % DEG) - 2.588(mol % other co-monomers) (4)
R2 = 0.8005
Tm (°C) = 255.2 - 2.240(mol % total co-monomers) (5)
R2 = 0.7797
[0069] As illustrated in FIG. 5, the results of the regression analysis indicated that only an additional 2% of the variation in the peak melting temperature data can be attributed to differentiating diethylene glycol (DEG) from other copolyester co-monomers. Both models indicate substantially similar values for the peak melting temperature of the homopolymer PET, i.e. about 255 °C in both cases.
[0070] The disclosures of various publications may be referenced throughout this specification, which are hereby incorporated by reference in pertinent part in order to more fully describe the state of the art to which the disclosed subject matter pertains. To the extent that any definition or usage provided by any document incorporated herein by reference conflicts with the definition or usage provided herein, the definition or usage provided herein controls.
[0071] Throughout the specification and claims, the word "comprise" and variations of the word, such as "comprising" and "comprises," means "including but not limited to," and is not intended to exclude, for example, other additives, components, elements, or steps. While methods and features are described in terms of "comprising" various steps or components, these methods and features can also "consist essentially of or "consist of the various steps or components. [0072] Unless indicated otherwise, when a range of any type is disclosed or claimed, for example a range of the percentages, WDEs, diameters, weights, and the like, it is intended to disclose or claim individually each possible number that such a range could reasonably encompass, including any sub-ranges or combinations of sub-ranges encompassed therein. When describing a range of measurements such as these, every possible number that such a range could reasonably encompass can, for example, refer to values within the range with one significant figure more than is present in the end points of a range, or refer to values within the range with the same number of significant figures as the end point with the most significant figures, as the context indicates or permits. For example, when describing a range of percentages such as from 85% to 95%, it is understood that this disclosure is intended to encompass each of 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, and 95%, as well as any ranges, sub-ranges, and combinations of sub-ranges encompassed therein. Applicants' intent is that these two methods of describing the range are interchangeable. Accordingly, Applicants reserve the right to proviso out or exclude any individual members of any such group, including any sub-ranges or combinations of sub-ranges within the group, if for any reason Applicants choose to claim less than the full measure of the disclosure, for example, to account for a reference that Applicants are unaware of at the time of the filing of the application.
[0073] Values or ranges may be expressed herein as "about", from "about" one particular value, and/or to "about" another particular value. When such values or ranges are expressed, other embodiments disclosed include the specific value recited, from the one particular value, and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that there are a number of values disclosed herein, and that each value is also herein disclosed as
"about" that particular value in addition to the value itself. In aspects, "about" can be used to mean within 10% of the recited value, within 5% of the recited value, or within 2% of the recited value.
[0074] In any application before the United States Patent and Trademark Office, the Abstract of this application is provided for the purpose of satisfying the requirements of 37 C.F.R. § 1.72 and the purpose stated in 37 C.F.R. § 1.72(b) "to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure." Therefore, the Abstract of this application is not intended to be used to construe the scope of the claims or to limit the scope of the subject matter that is disclosed herein. Moreover, any headings that are employed herein are also not intended to be used to construe the scope of the claims or to limit the scope of the subject matter that is disclosed herein. Any use of the past tense to describe an example otherwise indicated as constructive or prophetic is not intended to reflect that the constructive or prophetic example has actually been carried out.
[0075] Those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments disclosed herein without materially departing from the novel teachings and advantages according to this disclosure. Accordingly, all such modifications and equivalents are intended to be included within the scope of this disclosure as defined in the following claims. Therefore, it is to be understood that resort can be had to various other aspects, embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to one of ordinary skill in the art without departing from the spirit of the present disclosure or the scope of the appended claims.
[0076] Applicants reserve the right to proviso out any selection, feature, range, element, or aspect, for example, to limit the scope of any claim to account for a prior disclosure of which Applicants may be unaware.
[0077] The following numbered aspects, embodiments, and features of the disclosure are provided, with an emphasis on the ability to combine the various features which may disclosed only in certain embodiments, into other disclosed embodiments, as the context and technical reason allow.
1. A syrup dispensing cup comprising:
a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space, wherein the body structure comprises a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C, wherein the first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and wherein the ratio of the first mole % to the second mol % is less than 1.
2. The syrup dispensing cup according to aspect 1 , wherein the intrinsic viscosity is from about 0.6 dL/g to about 1.2 dL/g.
3. The syrup dispensing cup according to any of the above aspects, wherein the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0.
4. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the body structure further comprises one or more oxygen scavengers present at a concentration from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.
5. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 6.0 x 10"3 cm /pkg»day at about 23 °C and 50 % relative humidity..
6. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 22.8 x 10"5 cm /mL»day at at about 23 °C and 50 % relative humidity..
7. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup has a water vapor transmission rate of less than about 4.0 x 10"3 g/m2/day at about 37.8 °C and about 90 % relative humidity.
8. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the first sealing layer and oriented PET-based layer.
9. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the first sealing layer and oriented PET- based layer. 10. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the second sealing layer and oriented PET-based layer.
1 1. The syrup dispensing cup according to any of the above aspects as the context allows, wherein the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the second sealing layer and oriented PET- based layer.
12. A method for enhancing the shelf-life of a syrup dispensing cup, the method comprising:
a) providing a first polyester or co-polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25 °C;
b) fabricating a body structure from the first PET-based co-polyester resin, wherein the body structure has a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and an interior space;
c) sealing the first opening with a first sealing layer; and
d) sealing the second opening with a second sealing layer,
wherein each sealing layer comprises a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and
wherein the ratio of the first mole % to the second mol % is less than 1.
13. The method according to aspect 12, wherein the intrinsic viscosity is from about 0.6 dL/g to about 1.2 dL/g.
14. The method according to aspect 12 or 13, wherein the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0. 15. The method according to aspect 12, 13, or 14, wherein the body structure further comprises one or more oxygen scavengers present from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.
16. The method according to aspect 12, 13, 14, or 15, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 6.0 x 10"3 cmVpkg'day at about 23 °C and 50 % relative humidity..
17. The method according to aspect 12, 13, 14, 15, or 16, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 22.8 x 10"5 cmVmL'day at about 23 °C and 50 % relative humidity..
18. The method according to aspect 12, 13, 14, 15, 16, or 17, wherein the syrup dispensing cup has a water vapor transmission rate of less than about 4.0 x 10"3 g/m2/day at about 37.8 °C and about 90 % relative humidity.

Claims

CLAIMS We claim:
1. A syrup dispensing cup comprising:
a body structure having a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and having an interior space, wherein the body structure comprises a first polyester or co- polyester resin comprising one or more first co-monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C;
wherein the first opening is sealed with a first sealing layer and the second opening is sealed with a second sealing layer, each sealing layer comprising a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %; and
wherein the ratio of the first mole % to the second mol % is less than 1.
2. The syrup dispensing cup according to claim 1, wherein the intrinsic viscosity is from about 0.6 dL/g to about 1.2 dL/g.
3. The syrup dispensing cup according to claim 1, wherein the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0.
4. The syrup dispensing cup according to claim 1, wherein the body structure further comprises one or more oxygen scavengers present at a concentration from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.
5. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 6.0 x 10"3 cmVpkg day at about 23 °C and 50 % relative humidity.
6. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 22.8 x 10"5 cmVmL day at about 23 °C and 50 % relative humidity.
7. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup has a water vapor transmission rate of less than about 4.0 x 10"3 g/m2/day at about 37.8 °C and about 90 % relative humidity.
8. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the first sealing layer and oriented PET-based layer.
9. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup further comprises a first lid structure that comprises the first sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the first sealing layer and oriented PET-based layer.
10. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, an oriented PET-based layer, and an inorganic coating, in which the inorganic coating is located between the second sealing layer and oriented PET-based layer.
11. The syrup dispensing cup according to claim 1, wherein the syrup dispensing cup further comprises a second lid structure that comprises the second sealing layer, a foil layer, and an adhesive, in which the adhesive is located between the second sealing layer and oriented PET-based layer.
12. A method for enhancing the shelf-life of a syrup dispensing cup, the method comprising:
a) providing a first polyester or co-polyester resin comprising one or more first co- monomers incorporated into the first resin at a first mol % and having an intrinsic viscosity from about 0.45 dL/g to about 1.3 dL/g when measured at a temperature of 25°C; b) fabricating a body structure from the first PET-based co-polyester resin, wherein the body structure has a first end with a first opening, a second end with a second opening, a sidewall structure extending between the first end and the second end, and an interior space;
c) sealing the first opening with a first sealing layer; and
d) sealing the second opening with a second sealing layer,
wherein each sealing layer comprises a second PET-based co-polyester resin comprising one or more second co-monomers incorporated into the second resin at a second mol %, and
wherein the ratio of the first mole % to the second mol % is less than 1.
13. The method according to claim 12, wherein the intrinsic viscosity is from about 0.6 dL/g to about 1.2 dL/g.
14. The method according to claim 12, wherein the one or more first co-monomers comprises diethylene glycol (DEG) incorporated into the first resin at a mol % from about 0.10 to about 8.0.
15. The method according to claim 12, wherein the body structure further comprises one or more oxygen scavengers present at a concentration from about 0.01 % to about 10 % by weight of the first polyester or co-polyester resin.
16. The method according to claim 12, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 6.0 x 10"3 cmVpkg day at about 23 °C and 50 % relative humidity.
17. The method according to claim 12, wherein the syrup dispensing cup has an oxygen transmission rate of less than about 22.8 x 10"5 cmVmL day at about 23 °C and 50 % relative humidity.
18. The method according to claim 12, wherein the syrup dispensing cup has a water vapor transmission rate of less than about 4.0 x 10"3 g/m2/day at about 37.8 °C and about 90 % relative humidity.
PCT/US2016/058192 2015-10-23 2016-10-21 Syrup dispensing cups and methods for improved shelf-life WO2017070521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16858328.4A EP3365266B1 (en) 2015-10-23 2016-10-21 Syrup dispensing cups and methods for improved shelf-life
US15/769,553 US10279952B2 (en) 2015-10-23 2016-10-21 Syrup dispensing cups and methods for improved shelf-life

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562245894P 2015-10-23 2015-10-23
US62/245,894 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017070521A1 true WO2017070521A1 (en) 2017-04-27

Family

ID=58557898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/058192 WO2017070521A1 (en) 2015-10-23 2016-10-21 Syrup dispensing cups and methods for improved shelf-life

Country Status (3)

Country Link
US (1) US10279952B2 (en)
EP (1) EP3365266B1 (en)
WO (1) WO2017070521A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709835A (en) * 1984-03-13 1987-12-01 Coca-Cola Company Dispenser pouch for beverage syrups and concentrates
US4848596A (en) * 1986-10-14 1989-07-18 The Coca-Cola Company Disposable syrup package having integral disposable valve assembly
US4964532A (en) * 1985-05-28 1990-10-23 The Coca-Cola Company Open top tank having a removable and sealable lid with a flow rate control device supported therein
EP0572617B1 (en) * 1991-12-23 1997-02-12 Ebtech, Inc. Soft drink dispenser station
US20020014499A1 (en) * 2000-05-30 2002-02-07 Philippe Bonningue Apparatus and method for dispensing a product
DE102007001609A1 (en) 2007-01-04 2008-07-10 Spengler Gmbh & Co. Kg Device for preparing a carbonated mixed drink comprises a mixing chamber with a pressure-tight lid arranged between a feed unit and a release unit
US8795748B2 (en) 2012-02-02 2014-08-05 Sodastream Industries Ltd. Syrup capsule and method of using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890691B2 (en) 1997-02-27 2007-03-07 ヤマハ株式会社 Image recording / reproducing apparatus and storage medium storing image recording / reproducing program
US7358324B2 (en) * 2005-12-06 2008-04-15 Dak Americas Llc Manufacturing method of co-polyester resins for clear mono-layer containers with improved gas barrier characteristics
EP2754376B1 (en) * 2010-02-01 2015-03-25 Keurig Green Mountain, Inc. Method and apparatus for cartridge-based carbonation of beverages
DE102011052149A1 (en) * 2011-07-26 2013-01-31 Cavonic GmbH Packaging container, manufacturing method and manufacturing device
ITMI20111847A1 (en) * 2011-10-10 2013-04-11 Goglio Spa CARTRIDGE FOR COFFEE AND SOLUBLE PRODUCTS IN GENERAL
ITTV20120147A1 (en) * 2012-07-30 2014-01-31 Hausbrandt Trieste 1892 Spa CAPSULE FOR THE PREPARATION OF DRINKS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709835A (en) * 1984-03-13 1987-12-01 Coca-Cola Company Dispenser pouch for beverage syrups and concentrates
US4964532A (en) * 1985-05-28 1990-10-23 The Coca-Cola Company Open top tank having a removable and sealable lid with a flow rate control device supported therein
US4848596A (en) * 1986-10-14 1989-07-18 The Coca-Cola Company Disposable syrup package having integral disposable valve assembly
EP0572617B1 (en) * 1991-12-23 1997-02-12 Ebtech, Inc. Soft drink dispenser station
US20020014499A1 (en) * 2000-05-30 2002-02-07 Philippe Bonningue Apparatus and method for dispensing a product
DE102007001609A1 (en) 2007-01-04 2008-07-10 Spengler Gmbh & Co. Kg Device for preparing a carbonated mixed drink comprises a mixing chamber with a pressure-tight lid arranged between a feed unit and a release unit
US8795748B2 (en) 2012-02-02 2014-08-05 Sodastream Industries Ltd. Syrup capsule and method of using same

Also Published As

Publication number Publication date
EP3365266A1 (en) 2018-08-29
EP3365266A4 (en) 2019-04-17
EP3365266B1 (en) 2020-07-08
US20180305073A1 (en) 2018-10-25
US10279952B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
RU2652802C2 (en) Polyesters and articles made therefrom
KR930002459B1 (en) Copolyester, polyester composition containing the copolyester and polyester laminated structure having layer compound of copolyester
RU2319649C2 (en) Polyethyleneterephthalate copolymer composition having improved mechanical properties and draw-down rating
EP1616908B1 (en) Poly(glycolic acid)-based resin composition and formed article therefrom
US6500506B1 (en) Aromatic polyester composition and articles therefrom
TW201841975A (en) Oxygen scavenging plastic material
KR19990028447A (en) Molded plastic container for food and drink and its manufacturing method
WO2006124200A1 (en) Injection molded preform, stretch blow molded container and method for reducing the cycle time for making it
JP6970909B2 (en) Multi-layer container and its manufacturing method
KR20120051675A (en) Polyester resin composition
US20180355101A1 (en) Thermoplastic copolyesters comprising 1,4:3,6-dianhydrohexitol and various aromatic diacids
WO2022004811A1 (en) Polyethylene furanoate, highly-viscous polyethylene furanoate manufacturing method, polyester composition, polyester bottle, polyester bottle manufacturing method, and beverage product
US10279952B2 (en) Syrup dispensing cups and methods for improved shelf-life
KR102137899B1 (en) Polyester containers and films with reduced gas permeability
JP5303384B2 (en) Gas barrier thermoplastic polyester resin laminate, stretch blow molding preform comprising the laminate, and packaging container formed by molding the preform
KR0183460B1 (en) Process for preparing polyester resins which have excellent ultraviolet ray
EP0429654A1 (en) Liquid-crystal polyester container and manufacture thereof
TW201510062A (en) Polyester resin composition
JPS6147337A (en) Plastic vessel having excellent gas barrier property
JP2872358B2 (en) Hollow molded body
JP2741917B2 (en) Hollow molded body
EP4019249A1 (en) Resin layered body
JP2741916B2 (en) Hollow molded body
JP2005103777A (en) Polyester molded product and its manufacturing method
JP2741918B2 (en) Hollow molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016858328

Country of ref document: EP