WO2017069573A1 - Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same - Google Patents

Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same Download PDF

Info

Publication number
WO2017069573A1
WO2017069573A1 PCT/KR2016/011917 KR2016011917W WO2017069573A1 WO 2017069573 A1 WO2017069573 A1 WO 2017069573A1 KR 2016011917 W KR2016011917 W KR 2016011917W WO 2017069573 A1 WO2017069573 A1 WO 2017069573A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
filtration
nanoparticle
nanoparticles
separation device
Prior art date
Application number
PCT/KR2016/011917
Other languages
French (fr)
Korean (ko)
Inventor
조윤경
우현경
한자령
김태형
김윤근
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to US15/770,454 priority Critical patent/US11154860B2/en
Priority claimed from KR1020160137581A external-priority patent/KR101891890B1/en
Publication of WO2017069573A1 publication Critical patent/WO2017069573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the present invention relates to a centrifugal force-based nanoparticle separation device and a nanoparticle separation method using the same.
  • Nanovesicles are small vesicles of 40-120 nm in size that arise from cellular activity and are distinguished from other vesicles by origin and size. It was considered a cell byproduct at the time of discovery, but its importance was found to contribute to cellular activities such as tumor progression and metastasis, and cellular signal transduction. Nanovesicles are present in almost all body fluids in the body and contain genetic information of derived cells, attracting attention as new drug delivery systems as well as new markers for various diseases including cancer.
  • the present invention has been made to solve the above problems, the present inventors using a plurality of filters of different sizes, by performing a plurality of particles filtration from the sample using a centrifugal force, the centrifugal force lower than the conventional method for separating the endoplasmic reticulum In the simple method was confirmed the effect of separating the endoplasmic reticulum, based on which the present invention was completed.
  • a sample accommodating part 200 providing a space supported by injecting a fluid sample including nanoparticles
  • a filtration chamber unit 300 including a filtration membrane having pores of 1 nm to 1 ⁇ m capable of filtering nanoparticles from the fluid sample;
  • nanoparticle separation device comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
  • Another object of the present invention is to provide a third object of the present invention.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • a filtration chamber unit 300 including two or more filtration membranes capable of filtering a sample
  • nanoparticle separation device comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
  • Another object of the present invention is to provide a third object of the present invention.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • nanoparticle separation device characterized in that for filtering the nanoparticles from the sample, including a valve 700 that can selectively control the flow of the fluid in the micro-channel.
  • Another object of the present invention is to provide a third object of the present invention.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • a valve 700 capable of selectively controlling the flow of fluid in the microchannel
  • nanoparticle separation device characterized in that it can filter and recover a specific size range of nanoparticles from the sample, including a particle collecting unit 800 that can recover the filtered specific size range of nanoparticles.
  • a sample accommodating part 200 providing a space supported by injecting a fluid sample including nanoparticles
  • a filtration chamber unit 300 including a filtration membrane having pores of 1 nm to 1 ⁇ m capable of filtering nanoparticles from the fluid sample;
  • nano-particle separator comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
  • the fluid sample may be a biological sample selected from the group consisting of urine, blood, saliva, sputum, and the like, including aqueous solutions and cell bodies in which various nanoparticles are dispersed, rare biological particles, and the like.
  • the cleaning chamber unit 600 may further include a space for supporting the cleaning solution.
  • the filtration membrane may be made of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon.
  • the nanoparticle separation device may further include one or more fastening portions for attaching and detaching the filtration chamber 300.
  • the fastening part may be an elastic material selected from the group consisting of polydimethylsiloxane, silicone, latex, rubber, and the like.
  • the micro channel 500 may be connected to a channel through the device to change the channel of the fluid sample.
  • the present invention is a.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • a filtration chamber unit 300 including two or more filtration membranes capable of filtering a sample
  • nano-particle separator comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
  • the filtration membrane may be made of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon.
  • the filtration membrane may be selectively detachable from the housing part 100 by physical force.
  • the filtration membrane, the filtration chamber 300, two or more stacked in the same chamber may collect the nanoparticles through the filtration membrane having two or more sizes during fluid transfer in a single chamber.
  • the filtration membrane comprises a filtration membrane in a single chamber, wherein the plurality of chambers are arranged at different radial coordinates such that the fluid sample passes through the plurality of filtration membranes to perform plural particle filtration to a specific size range. Nanoparticles can be captured.
  • the filtration membrane Preferably, the filtration membrane,
  • a first filtration membrane having at least one or more pores of 100 nm to 1 ⁇ m diameter
  • It may include a second filtration membrane having at least one or more pores of 1 nm to 100 nm in diameter.
  • the micro channel 500 is disposed above or below the filtration chamber 300, and the chambers may be disposed at a distance from the center of the device to minimize loss of solution.
  • the present invention is a.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • nanoparticle separation device characterized in that for filtering the nanoparticles from the sample including a valve 700 that can selectively control the flow of fluid in the micro-channel.
  • the sample accommodating part 200 may perform sample purification to purify impurities of a sample.
  • the sample accommodating part 200 may include impurity separation including a space formed at an angle at which a lower portion thereof is distorted than a radial direction.
  • the sample accommodating part 200 may include a groove for preventing separated impurity backflow.
  • the sample accommodating part 200 may be formed of an inclined surface and a curve to minimize the loss and damage of the sample during sample transfer.
  • the valve 700 may be opened and closed according to an external signal.
  • the valve 700 which is external to the rotatable device for the whole process automation, may include a system capable of controlling the opening and closing of the valve and the rotational speed and direction of the body.
  • the waste liquid containing part 400 may be capable of separating high purity nanoparticles without a separate impurity treatment.
  • the filtration chamber part 300 may be connected to one or more of the waste liquid receiving parts 400 to prevent impurity diffusion after purification.
  • the nanoparticle separation device may further include one or more fastening portions for attaching and detaching the filtration chamber 300.
  • the nanoparticle separation device by injecting a BSA (bovine serum albumin) protein or Pluronic (PEO-PPO-PEO) polymer material can minimize non-specific binding to the surface.
  • BSA bovine serum albumin
  • Pluronic Pluronic
  • the filtration chamber 300 and the waste liquid receiving unit 400 may include a vent for performing smooth filtration.
  • the present invention is a.
  • a sample accommodating part 200 which provides a space supported by injecting a fluid sample
  • a valve 700 capable of selectively controlling the flow of fluid in the microchannel
  • Including a particle collecting unit 800 that can recover the filtered nanoparticles of a specific size range it provides a nanoparticle separation device, characterized in that to filter and recover a specific size range of nanoparticles from the sample.
  • the recovery of the nanoparticles is a maximum of 3000 rpm or less than the capillary pressure inside the pores present in the filter membrane when the solution to be recovered containing the nanoparticles and the lower surface adjacent to the waste liquid on the upper surface of the filter membrane After the waste liquid adjacent to the lower surface is discarded to the waste liquid receiving unit 400 using a rotation speed, a solution including nanoparticles located on the upper surface of the filtration membrane may be selectively recovered.
  • the particle collecting unit 800 may be connected to the upper surface of the filtration chamber 300 and a micro channel, and the lower surface of the filtration chamber 300 may be connected to the waste liquid receiving unit 400.
  • the present invention relates to a nanoparticle separation device and method. Specifically, since it is based on low centrifugal force and size, nanovesicles irrelevant to antibody specificity can be separated in a short time without a conventional ultracentrifuge, and by integrating and automating the entire process after sample injection, no additional expert personnel are required. Accurate metering of fluids reduces nanovesicle loss.
  • FIG. 1 is a perspective view of a nanoparticle separation device in which a nano vesicle separation process is integrated.
  • Figure 2 is a result of observing the nanoparticle separation process using the nanoparticle separation device of the present invention over time.
  • Figure 3 shows a front view of the nanoparticle separation device according to the present invention, (a) perspective view of the microfluidic device, (b) microfluidic device configuration, (c) particle separation process according to the filter and (d) filter I And SEM images of II.
  • Figure 4 is a process for separating nano vesicles using a nanoparticle separation device according to an embodiment of the present invention, (a) impurity precipitation, (b) nano vesicle concentration, (c) washing, (d) in filter II The remaining solution is removed and (e) nano vesicles collection process is shown.
  • Figure 5 shows the actual structure of the nanoparticle separation device according to an embodiment of the present invention, (a) separation of the nanoparticle separation device, (b) filter structure of the nanoparticle separation device and (c) nanoparticle separation Side view of the device and filter surface are shown in SEM image.
  • Figure 6 shows the result of measuring the degree of recovery of the vesicles by coating the nanoparticle separation device according to an embodiment of the present invention with a pluronic solution (pluronic) solution
  • Figure 7 shows the results confirming the performance of the filter of the nanoparticle separation device according to an embodiment of the present invention, (a) 100 nm particle filter capacity in the combination of AAO filter 200 nm and 100 nm, (b) TEPC 100 nm particle filter capability in filter 600 nm and AAO filter 20 nm combination and (c) filter capacity in 800 nm and 100 nm particle mixture liquid in TEPC filter 600 nm and AAO filter 20 nm filter were confirmed.
  • NTA nanoparticle tracking analysis
  • FIG. 9 is a result of analyzing the nano-vesicle concentration before / after performing the disk through NTA using the nanoparticle separation device according to the present invention, (a) results of nano-vesicle concentration separated from the supernatant cultured LNCaP cells, ( c) Powder concentration results from urine of bladder cancer patients, (b) SEM images confirming that vesicles isolated from urine of bladder cancer patients were filtered by filter II and (d) / (e) TEM images of vesicles recovered from filter II. It is shown.
  • NTA nanoparticle tracking analysis
  • FIG. 11 is a result of comparing the nano-vesicle acquisition efficiency according to three methods of nanoparticle separation device according to an embodiment of the present invention and a commercialization kit (Exospin) using the conventional ultracentrifugation (UC) and precipitation reagents, NTA The analysis results are shown.
  • FIGS. 1B and 3B are enlarged views of the nanoparticle separator 10 according to an embodiment of the present invention.
  • the nanoparticle separation apparatus 10 is a housing portion 100, a sample accommodating portion 200, filtration chamber portion 300, waste liquid receiving portion 400 and the microchannel 500, and as shown in Figure 1b and / or 3b, the cleaning chamber 600, the valve 700 and / or the particle collecting portion 800 is further It can be configured to include.
  • a fluid sample may be introduced, and centrifugal force by rotation of the device may be used to separate nanovesicles of a desired range from the fluid sample. It is also possible to separate several fluid samples simultaneously. By adopting such a configuration, it is expected that only nano vesicles can be separated at low centrifugal force irrespective of antibody specificity, so that the whole process can be integrated and used as a high recovery rate of automated nano vesicles.
  • the housing part 100 is a structure capable of self-rotation in order to provide centrifugal force for separating the nanovesicles from the fluid sample while providing a space in which the components to be described later are built.
  • the housing part 100 is It may be made of polycarbonate (PC) material, but is not limited thereto.
  • the sample accommodating part 200 is configured to provide a space in which a fluid sample to be separated is carried.
  • the sample accommodating part 200 is installed in the housing part 100 and is applied at the same time while the sample is applied thereto while applying centrifugal force.
  • the fluid sample may be a biological sample such as urine, blood, salivary fluid, sputum, and the like, including an aqueous solution in which nanoparticles are dispersed, a cell body, and rare biological particles, and preferably, urine, but is not limited thereto. .
  • the filtration chamber 300 is configured to collect desired nanoparticles including one or more filtration membranes, and the filtration chamber 300 may be detachable from the housing 100 by applying a physical force as necessary. In this case, in order to smoothly attach and detach, a fastening part (not shown) may be further included. Meanwhile, as illustrated in FIGS. 1B and 3B, the filtration chamber part 300 may include a first filtration part 310 and a second filtration part 320.
  • Nanoparticle separation device 10 by using a plurality of filter membranes having different pore sizes, is a principle to obtain a desired range of nano-vesicles from the sample, for example, to filter out impurities having a large particle size
  • the filter By combining the filter with a filter membrane of a size that can pass impurities of particles smaller than the size of the desired particle, the desired particle size nanoparticles collected between the filter membrane and the filter membrane can be filtered out.
  • the present invention may include a first filtration unit 310 and a second filtration unit 320 having a plurality of different pore sizes, depending on the nanoparticle size required, Or an additional filter for collecting.
  • the filtration membrane may be made of a laminated or separated structure according to the user's implementation, this laminated or separated structure may affect the collection of the separated nano-vesicles during the automated process. For example, until the nano-vesicles are collected, the stacked structure can collect nano-vesicles by physically separating and eluting the filters, whereas the separated structures can be integrated into the entire process without the need for separation of the filters, thereby providing more convenient Collection may be possible.
  • the first filtration unit 310 may be connected to the sample accommodating part 200 as shown in FIGS. 1B and 3B to filter out primary impurities in the fluid sample.
  • the first filtration unit 310 may have a plurality of pores having a diameter of 100 nm to 1 ⁇ m, preferably, to filter out impurities having a large particle size, and more preferably, have a 600 nm diameter. Can be.
  • the second filtration unit 320 is configured to collect only the desired nanoparticles while removing secondary impurities.
  • the second filtration unit 320 allows particles of a size smaller than a desired range to pass therethrough, Only nanovesicles in the range can be captured.
  • the second filtration unit 320 may be connected to the first filtration unit 310 and the washing chamber unit 600 to be described later.
  • the first filtration unit 310 and the second filtration unit 320 are filtered in the same chamber.
  • the first filtration unit 310 and the second filtration unit 320 are each formed as chambers independent of different radial coordinates, thereby forming the fluid.
  • the sample may be capable of performing a plurality of particle filtration through the plurality of filtration membranes.
  • the filtration chamber 300 may be connected to one or more washing chamber 600 as necessary.
  • the second filtration unit 320 may preferably have a plurality of pores having a diameter of 1 nm to 100 nm, more preferably. May have a 20 nm diameter.
  • the secondary impurities, which are impurities having a small particle size may be non-vascular proteins.
  • the method for separating nano vesicles using the filtration membrane according to the present invention requires two or more kinds of filtration membranes including small pores and large pores, as described above, to filter nano vesicles within a certain range, and conventionally, polycarbonate Filter membrane was prepared by using the material, and when the filtration membrane of small diameter pores (1 nm ⁇ 100 nm) using the polycarbonate material, the size of the pores is not uniform, the porosity is low, uniform vesicle separation Was not suitable.
  • the filter membrane using aluminum anodized it may have a relatively uniform size and high porosity, but there is a problem that the durability is weak and well broken.
  • the nanoparticle separation device 10 uses a low centrifugal force to separate the nano vesicles, thereby preventing degradation of durability due to the use of the anodized aluminum. For this reason, it is possible to use a filtration membrane of a material having a high porosity while having a uniform pore size.
  • preferred materials of the filtration membrane forming the first filtration unit 310 and the second filtration unit 320 are polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin polymer, anodized aluminum, nickel, silicon Etc., but most preferably, anodized aluminum.
  • the waste solution accommodating part 400 is configured to provide a space for accommodating the sample solution filtered from the first filtration part 310 and the second filtration part 320, as shown in FIGS. 1B and 3B. In order to accommodate the filtered sample, it may be connected to the first filtration unit 310 and the second filtration unit 320. At this time, the waste liquid receiving unit 400, may be composed of a single or a plurality depending on the position formed between the first filtration unit 310 and the second filtration unit 320. For example, when the position structure between the filtration chambers 300 is a stack type, the first filtration unit 310 and the second filtration unit 320 are directly connected in one chamber, so that only a single waste liquid receiving unit 400 is provided.
  • the filtered sample may be accommodated, and when the filtration chamber 300 is formed as a separate chamber, due to centrifugal force, it prevents the diffusion of impurities after purification due to the reverse flow of the previously separated filtrate, and
  • the waste liquid receiving unit 400 is preferably formed of one or more, but is not limited thereto.
  • the micro channel 500 is a configuration for providing a space for the flow of the sample between the above-described configuration, as shown in Figure 1b and 3b, respectively disposed between the chambers, the filtration chamber 300 ) May be disposed above or below the chambers, and the chambers may be disposed at a distance from the center of the apparatus to minimize loss of solution.
  • the micro channel 500 may be connected to a channel through the device to change the channel of the fluid sample.
  • the micro-channel unit 500 may be composed of first to third and / or seventh micro-channel unit 500, the micro-channel unit 500, as described above, the user's embodiment According to the arrangement between the filters according to, the arrangement of the micro channel 500 may vary.
  • the first micro channel 510 connects the sample receiving part 200 and the waste liquid receiving part 400 to the second micro channel 520.
  • the first microchannel 510 connects the sample accommodating part 200 and the waste liquid accommodating part 400-1.
  • the second microchannel unit 520 connects the sample receiving unit 200 and the first filtration unit 310, and the third microchannel unit 530 includes the first filtration unit 310 and the second filtration unit ( 320 is connected, and the fourth microchannel 540 connects the cleaning chamber 600 and the second filtration unit 320, and the fifth microchannel 550 is the third microchannel.
  • 530 and the waste liquid accommodating part 400-1, and the sixth microfluidic part 560 connects the second filtration part 320 and the waste liquid accommodating part 400-2, and the seventh microfluidic path.
  • the unit 570 is connected to the second filtration unit 320 and the particle collecting unit 800 to be described later.
  • the cleaning chamber part 600 is configured to provide a space in which a cleaning solution for cleaning the filtration membrane of the filtration chamber part 300 is supported. As shown in FIGS. 1B and 3B, the filtration chamber part 300 is provided. It can be connected with. At this time, the preferred washing solution may be phosphate buffer saline (PBS).
  • PBS phosphate buffer saline
  • the valve 700 is a configuration for opening and closing the flow path between the components in order to prevent the flow in the undesired direction due to the centrifugal force in the flow of the sample between the above-described components, on the fine flow path 500 connected to each component Can be placed in. At this time, the valve 700 may be automatically opened and closed through an external signal. Meanwhile, as described above, the arrangement of the valve 700 may vary according to the arrangement between the filtration membranes according to the embodiment of the user.
  • the first valve 710 is disposed on the first microchannel 510
  • the second valve 720 is the second microchannel 520
  • the third valve 730 is disposed on the third microchannel 530.
  • the first valve 710 is disposed on the first microchannel 510 and the second valve 720 is the second microchannel.
  • the third valve 730 is disposed on the third microchannel 530
  • the fourth valve 740 is disposed on the fourth microchannel 540
  • the fifth valve 750 is disposed on the sixth microchannel portion 560
  • the sixth valve 760 is disposed on the seventh microchannel portion 570.
  • the nanoparticle separation device 10 may affect the collection of nano-vesicles.
  • the second filtration unit 320 is separated from the nanoparticle separation device 10 to obtain the vesicles on the filter. You may have to go through the process.
  • the particle collecting part 800 collecting the vesicles from the second filtration part 320 having the independent chamber is further added. It can be configured to include.
  • the particle collecting unit 800 is configured to provide a space for collecting the obtained nano vesicles, as shown in Figure 3b, it may be connected to the second filter unit 320, thereby, After filtration in the second filter unit 320, the remaining nano vesicles may be accommodated in the particle collecting unit 800 due to centrifugal force. More specifically, the waste liquid is discarded to the waste liquid receiving portion 400 using a rotation speed of less than 3000 rpm or less than the capillary pressure inside the pores present in the filtration membrane, and then, on the upper surface of the filtration membrane of the second filter portion 320. Only located nanoparticles can be selectively recovered.
  • the nanoparticle separation device 10 according to an embodiment of the present invention, as described above, depending on the position of the plurality of filtration membranes according to the user's embodiment, the configuration can be changed. Such a difference in configuration may bring a difference in the integration up to the separation process of the nano-vesicles.
  • each configuration is as follows.
  • the nanoparticle separation device 10 may be composed of four identical units at the same time it is possible to separate the four types of samples, after the assembly of the adhesive layer 30 nm of the second filtration unit 320 Can be fixed and detachable smoothly.
  • the filtration unit in order to attach and detach the filtration unit, it may be fixed by a fastening unit having elasticity, and the preferred gasket material may be polydimethylsiloxane, silicone, latex or rubber, but is not limited thereto.
  • the vesicle separation process is performed after the injection of the sample (red water) and the washing liquid (yellow water), as shown in FIG. 2.
  • the process is automated and the process is as follows.
  • the disk is composed of three valves and four chambers (sample receiving part 200, filtration chamber part 300, waste liquid receiving part 400 and washing chamber part 600), the red circle is a closed valve Blue circle means open valve (see FIG. 2A).
  • the impurity treatment chamber extracts impurities from the sample using centrifugal force, and the blue arrow shows the filter washing (see FIG. 2B).
  • nano vesicles are filtered over a 30 nm filter (see FIG. 2D).
  • the cleaning solution is transferred to a chamber with a filter to remove impurities other than nanovesicles.
  • the valve 3 may be blocked to prevent backflow of the solution (see FIG. 2E).
  • the filtration membrane of the filtration chamber part 300 is a lamination type, the filtration membrane is separated to separate nano vesicles.
  • first filtration unit 310 for separating other vesicles
  • the nanoparticle separator 10 further includes a particle collecting part 800 capable of collecting nano vesicles.
  • the vesicles can be obtained without a separate filter after injection of the sample, and the entire process up to the separation process of the nano vesicles is integrated.
  • the filtration membrane of the nanoparticle separation device 10 may include a filtration membrane made of anodized aluminum, and the filtration membrane made of anodized aluminum is made of pores having a higher porosity and a relatively uniform diameter compared to other materials.
  • the process for separating the nano vesicles can be automated.
  • the control system for controlling the opening and closing of the valve 700, the rotational speed and the direction of the housing portion 100 may be further included.
  • Figure 4 shows a state using the nanoparticle separation device 10 according to an embodiment of the present invention.
  • a sample maximal 1 ml
  • a buffer solution 600 ⁇ l
  • the unit 600 is loaded. Thereafter, when the housing part 100 is rotated at a rotation speed of 3000 rpm, impurities of the sample are precipitated in the inclined chamber (FIG. 4A), and then the second valve 720 is opened to clear the supernatant. It is filtered through the filtration unit 310 and the second filtration unit 320 is moved to the waste liquid receiving unit (400-1) (Fig. 4b).
  • the conventional method requires a lot of time and various processes for sample processing using an ultracentrifuge or a precipitation reagent.
  • the total operating time is within 30 minutes and the G force operating range is also significantly lower than the ultracentrifugation separation and commercialization kit.
  • the microfluidic device was designed using a 3D CAD program and manufactured using a numerical milling machine (CNC milling machine). More specifically, according to the design by using a polycarbonate (PC, PC, I-Components Co. Ltd, Korea) was divided into a Top, Body and Base layer (layer) to process the nanoparticle separation device (see Figure 5). When processing was complete, all layers were laminated using two pressure-sensitive papers, double sided adhesive (DFM 200 clear 150 POLY H-9V-95, FLEXcon, USA) and a customized compression device.
  • the valve according to an embodiment of the present invention can be disposed on the top layer, and can be opened and closed automatically by an external signal as needed.
  • each layer is processed according to computer numerical control as described above, and the opposite side of the filtration chamber portion according to an embodiment of the present invention.
  • the face is filter I and filter II, respectively, inserting commercially available membranes such as track-etched PC membranes (SPI, 13 mm, pore diameter of 0.6 ⁇ m) and aluminum oxide anodes (Whatman, 13 mm, 0.02 ⁇ m). Carved for.
  • LNCaP cells a prostate cancer cell line
  • RPMI medium Gibco, UK
  • FBS System Biosciences Inc., CA
  • antibiotic / antifungal 1% antibiotic / antifungal
  • Proceed in an incubator Cell culture supernatants were harvested after 24 hours and extracellular vesicles were collected as described in each protocol.
  • urine samples from healthy donors were collected as in bladder cancer patients, and the first urine (15 ml) was collected from bladder cancer patients. Collected urine was stored until use at -80 °C.
  • the samples were thawed and used at RT, and 5 ml urine each was used to separate extracellular vesicles using ultracentrifugation (UC) and Exospin, and the nanoparticles according to the present invention.
  • UC ultracentrifugation
  • Exospin Exospin
  • 400 ⁇ l urine was used for separation of nano vesicles in the separator.
  • nanoparticle tracking was carried out through nanoparticle tracking analysis (NTA) to analyze the size and concentration.
  • NTA nanoparticle tracking analysis
  • FIG. 8 shows experimental data showing that 100 nm particles are filtered as a result of performing a disk experiment in a solution mixed with 100 nm and 800 nm nano beads.
  • the mixed solution contains both 100 nm and 800 nm particles and has a low concentration value.
  • disc performance showed that only 100 nm beads were detected and concentrated in the filter (see FIGS. 8B and C).
  • FIG. 9C shows that large impurities are actually filtered on filter I and extracellular vesicles of urine of bladder cancer patients are filtered by filter II
  • FIGS. 9D and e are results confirming that the nanovesicles are recovered in a rounded form. .
  • FIG. 10 shows experimental data showing that nano vesicles are filtered between 30 nm and 600 nm as a result of performing disk experiments in 1 mL of urine, while particles of various sizes are observed in urine (see FIG. 10A).
  • nano vesicles were detected between 30 nm and 600 nm, showing the concentration of nano vesicles in the range, and the total separation time was within 40 minutes (see FIG. 10B).
  • Ultracentrifugation is centrifuged at 300 x g for 10 minutes to remove cell debris from the sample samples obtained in Examples 1-3. Thereafter, the resulting pellet was centrifuged at 20,000 x g for 30 minutes, and the resulting pellet was discarded. The supernatant was then transferred to an 80 ml polypropylene ultracentrifuge tube and centrifuged at 4 ° C. and 50,000 ⁇ g for 1 hour on a Ti45 fixed angle rotor. After the centrifugation, the resulting pellet was discarded, and the supernatant was transferred to a new ultracentrifuge tube, followed by centrifugation at 4 ° C.
  • Example 3-1 in order to confirm the effect of the vesicle separation using the nanoparticle separation apparatus according to the present invention from the conventional vesicle separation method, the vesicles are separated using the Exospin exosome purificaition kit. The experiment was conducted.
  • Example 1-3 in order to remove the cell debris of the sample obtained through Example 1-3, centrifugation for 10 minutes at 300 ⁇ g, the supernatant centrifuged for 30 minutes at 20,000 ⁇ g, the resulting pellet Discarded. Again, the supernatant was mixed gently with half the volume of buffer A, and the resulting pellet was centrifuged at 20,000 ⁇ g for 1 hour at 4 ° C., and the resulting pellet was resuspended with 100 ⁇ l of PBS provided in the kit. The vesicle pellets were purified using a spin column provided according to the manufacturer's instructions, and 200 ⁇ of the separated vesicles were stored at 4 ° C. for immediate use / short term storage or at ⁇ 80 ° C. for long term storage.
  • the vesicle solution according to the separation method of Example 3 was analyzed using an enzyme immunoassay (ELISA).
  • ELISA enzyme immunoassay
  • Antifoam solution was prepared by maintaining the same input capacity for the three separation methods of Example 3, the plate was coated with an antibody (anti-CD9 antibody, MEM61, abcam, MA, US) overnight at 4 °C, 1 hour Blocked with 1% BSB-PBS buffer at 37 ° C. Thereafter, the cells were washed with 0.1% BSA-PBS buffer (wash buffer), incubated in PBS buffer (100 ⁇ l) with antifoam solution at 37 ° C for 1 hour, and then the solution was removed, and the plate was then washed twice with washing buffer. Washed.
  • the biotin-conjugate detection antibody solution (anti CD81 antibody, biotin, LifeSpan Biosciences, INC, WA, US), washed three times with washing buffer and diluted with PBS buffer (100 ⁇ l, 500 ng / ml) Add and incubate in the room for 1 hour. After washing three times with wash buffer, plates were incubated for 30 min at RT with HRP-conjugate streptavidin solution diluted in PBS buffer (100 ⁇ l, 1: 1000 in PBS).
  • NTA results show a high concentration yield of nano vesicles separated from the nanoparticle separator according to the present invention.
  • the concentrations of the detected extracellular vesicles were 1.33 ⁇ 0.07, 1.32 ⁇ 0.06 and 7.67 ⁇ 1.5 ⁇ 10 9 particles / ml, respectively. It confirmed that it was 5.8 times higher than the method.
  • the present invention relates to a nanoparticle separation device and method using a microfluidic device. Specifically, since it is based on low centrifugal force and size, nano-vesicles irrelevant to antibody specificity can be separated in a short time without a conventional ultracentrifuge, and by integrating and automating the entire process after sample injection, no additional expert personnel are required. Accurate metering of fluids reduces the loss of nano vesicles.

Abstract

The present invention relates to a centrifugal force-based nanoparticle separation apparatus and method. Specifically, the present invention is based on having a low centrifugal force and a small size, and can thus separate nanovesicles unrelated to antibody specificity in a short time and without using an ultracentrifuge. Further, the present invention requires no additional professional personnel and enables accurate fluid measurement by integrating and automating all processes following sample injection, and can thus reduce the loss of nanovesicles.

Description

원심력 기반 나노 입자 분리장치 및 이를 이용한 나노 입자 분리방법 Centrifugal force-based nanoparticle separation device and nanoparticle separation method using the same
본 발명은 원심력 기반 나노 입자 분리장치 및 이를 이용한 나노 입자 분리방법에 관한 것이다. The present invention relates to a centrifugal force-based nanoparticle separation device and a nanoparticle separation method using the same.
나노 소포체는 세포 활동에서 발생되는 40-120 nm 사이즈의 작은 소포체로, 발생지와 크기로 다른 소포체들과 구분된다. 발견 당시에는 세포 부산물로 여겨졌으나, 종양의 진행 및 전이, 세포 신호 전달 등의 세포 활동에 기여하는 것으로 그 중요성이 밝혀졌다. 나노 소포체는 신체의 거의 모든 체액에 존재하며, 유래된 세포의 유전정보를 포함하기 때문에 암을 포함한 각종 질병의 새로운 마커 뿐만 아니라 새로운 약물전달 시스템으로 주목 받고 있다. Nanovesicles are small vesicles of 40-120 nm in size that arise from cellular activity and are distinguished from other vesicles by origin and size. It was considered a cell byproduct at the time of discovery, but its importance was found to contribute to cellular activities such as tumor progression and metastasis, and cellular signal transduction. Nanovesicles are present in almost all body fluids in the body and contain genetic information of derived cells, attracting attention as new drug delivery systems as well as new markers for various diseases including cancer.
최근, 나노 소포체를 분리하는 연구가 지속적으로 늘어나고 있으며, 그 방법들은 밀도, 크기, affinity를 이용한 것으로 크게 분류 된다. 밀도를 이용한 분리 방법은 가장 일반적으로 이용되는 방법으로 항체의 유무에 무관하게 농축된 나노 소포체를 얻을 수 있다. 하지만 이 방법은 초원심분리기를 통한 많은 시간과 샘플 처리를 위한 여러 과정들을 필요로 한다. Affinity를 이용한 방법은 고순도의 나노 소포체를 단시간 안에 분리할 수 있지만, 값이 비싸며 소량의 나노 소포체만을 분리할 수 있고 특정 항체를 포함하지 않는 나노 소포체는 분리하기 어렵다. 따라서 단시간 내에 항체 특이성과 무관한 나노 소포체를 분리하는 시스템이 필요한 실정이다. Recently, researches for separating nano vesicles are continuously increasing, and methods are classified into using density, size, and affinity. The separation method using density is the most commonly used method to obtain a concentrated nano vesicle with or without antibodies. However, this method requires a lot of time and many processes for sample processing through ultracentrifuges. Affinity method can separate high purity nano vesicles in a short time, but it is expensive and only small amount of nano vesicles can be separated and nano vesicles that do not contain specific antibodies are difficult to separate. Therefore, there is a need for a system for separating nano vesicles irrelevant to antibody specificity in a short time.
기존의 필터를 이용한 나노 소포체 분리 방법은 초원심 분리 이전에 불순물들을 거르는 용도로 사용되었다. 일정 범위 내의 나노 소포체를 거르기 위해서는 지름이 작은 기공과 비교적 지름이 큰 기공을 포함하는 두 종류의 여과막이 필요하다. 하지만 기존의 기술로 만들어진 폴리카보네이트 재질의 여과막은 지름이 작은 기공 (1 nm ~ 100 nm)의 경우 기공의 크기가 균일하지 않으며 기공도가 낮아 분리에 적합하지 않다. 양극산화알루미늄 재질의 여과막은 비교적 크기가 균일하며 높은 기공도를 가졌지만 내구성이 약해서 잘 파괴되기 때문에 적용이 어려웠다. 하지만 여과막을 사용하는 방법 이외의 크기를 기반으로 하는 다른 방법들은 샘플 전 처리 과정을 필요로 하기 때문에 복잡한 과정이 요구 되고 전문 인력을 필요로 한다는 문제점을 지닌다. Conventional nano vesicle separation using filters has been used to filter out impurities prior to ultracentrifugation. In order to filter the nano-vesicles within a certain range, two types of filtration membranes including small diameter pores and relatively large pores are required. However, the polycarbonate filtration membrane made of the conventional technology is not suitable for separation in the case of small pores (1 nm ~ 100 nm), the size of the pores is not uniform and the porosity is low. The filtration membrane made of anodized aluminum was relatively uniform in size and had high porosity, but it was difficult to apply due to its weak durability and destruction. However, other methods based on size other than the use of a filtration membrane require a sample pretreatment process, which requires a complicated process and requires specialized personnel.
따라서, 원심력을 기반으로 하는 디스크 모양의 칩을 활용하여 소변 처리 및 나노 소포 추출 전과정이 일체화 되어 있는 장치 및 방법의 개발이 주요한 과제의 대상이 되고 있고, 이에 대한 연구가 이루어지고 있으나 (한국공개특허 10-2016-0017374), 아직은 미비한 실정이다.Therefore, the development of a device and method that integrates the whole process of urine treatment and nano-vesicle extraction using disc-shaped chips based on centrifugal force has been the main subject, and research on this has been made (Korea Patent Publication) 10-2016-0017374), which is still inadequate.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은 크기가 다른 복수개의 필터를 이용하고, 원심력을 이용하여 샘플로부터 복수의 입자 여과를 수행함으로써, 종래의 소포체 분리 방법보다 낮은 원심력에서 단순한 방법으로 소포체 분리 효과를 확인하였고, 이에 기초하여 본 발명을 완성하게 되었다.The present invention has been made to solve the above problems, the present inventors using a plurality of filters of different sizes, by performing a plurality of particles filtration from the sample using a centrifugal force, the centrifugal force lower than the conventional method for separating the endoplasmic reticulum In the simple method was confirmed the effect of separating the endoplasmic reticulum, based on which the present invention was completed.
이에, 본 발명의 목적은Thus, the object of the present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
나노 입자가 포함된 유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 providing a space supported by injecting a fluid sample including nanoparticles;
상기 유체 샘플로부터 나노 입자를 여과할 수 있는 1 nm 내지 1 ㎛의 기공을 갖는 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including a filtration membrane having pores of 1 nm to 1 μm capable of filtering nanoparticles from the fluid sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치를 제공하는 것이다.It is to provide a nanoparticle separation device comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
본 발명의 다른 목적은Another object of the present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 두 개 이상의 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including two or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치를 제공하는 것이다.It is to provide a nanoparticle separation device comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
본 발명의 또 다른 목적은Another object of the present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500); 및A micro flow path part 500 for providing a passage for the flow of the fluid sample; And
미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700)를 포함하여 시료로부터 나노입자를 여과하는 것을 특징으로 하는, 나노 입자 분리 장치를 제공하는 것이다.It provides a nanoparticle separation device, characterized in that for filtering the nanoparticles from the sample, including a valve 700 that can selectively control the flow of the fluid in the micro-channel.
본 발명의 또 다른 목적은Another object of the present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500);A micro flow path part 500 for providing a passage for the flow of the fluid sample;
미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700); 및A valve 700 capable of selectively controlling the flow of fluid in the microchannel; And
여과된 특정 크기 범위의 나노입자를 회수할 수 있는 입자포집부(800)를 포함하여 시료로부터 특정 크기 범위의 나노입자를 여과 및 회수할 수 있는 것을 특징으로 하는, 나노 입자 분리 장치를 제공하는 것이다.It is to provide a nanoparticle separation device, characterized in that it can filter and recover a specific size range of nanoparticles from the sample, including a particle collecting unit 800 that can recover the filtered specific size range of nanoparticles.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은In order to achieve the object of the present invention as described above, the present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
나노 입자가 포함된 유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 providing a space supported by injecting a fluid sample including nanoparticles;
상기 유체 샘플로부터 나노 입자를 여과할 수 있는 1 nm 내지 1 ㎛의 기공을 갖는 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including a filtration membrane having pores of 1 nm to 1 μm capable of filtering nanoparticles from the fluid sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치를 제공한다.It provides a nano-particle separator comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
바람직하게는, 상기 유체 샘플은, 각종 나노 입자가 분산된 수용액 및 세포체, 희귀 생체 입자 등을 포함하는 소변, 혈액, 타액 및 객담 등으로 이루어진 군으로부터 선택되는 생체 시료일 수 있다.Preferably, the fluid sample may be a biological sample selected from the group consisting of urine, blood, saliva, sputum, and the like, including aqueous solutions and cell bodies in which various nanoparticles are dispersed, rare biological particles, and the like.
바람직하게는, 세척용액이 담지되는 공간을 제공하는 세척챔버부(600)를 더 포함할 수 있다.Preferably, the cleaning chamber unit 600 may further include a space for supporting the cleaning solution.
바람직하게는, 상기 여과막은, 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머, 양극산화알루미늄, 니켈 및 실리콘으로 이루어진 군으로부터 선택되는 소재로 구성될 수 있다.Preferably, the filtration membrane may be made of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon.
바람직하게는, 상기 나노 입자 분리장치는, 상기 여과챔버부(300)의 탈부착을 위한 하나 이상의 체결부를 더 포함할 수 있다.Preferably, the nanoparticle separation device may further include one or more fastening portions for attaching and detaching the filtration chamber 300.
보다 바람직하게는, 상기 체결부는, 폴리디메틸실록산 (polydimethylsiloxane), 실리콘, 라텍스 및 고무 등으로 이루어진 군에서 선택되는 탄성 물질일 수 있다.More preferably, the fastening part may be an elastic material selected from the group consisting of polydimethylsiloxane, silicone, latex, rubber, and the like.
바람직하게는, 상기 미세유로부(500)는, 장치를 관통하는 유로와 연결되어 유체 샘플의 유로 변경이 가능할 수 있다.Preferably, the micro channel 500 may be connected to a channel through the device to change the channel of the fluid sample.
본 발명은The present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 두 개 이상의 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including two or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치를 제공한다.It provides a nano-particle separator comprising a micro-channel 500 for providing a passage for the flow of the fluid sample.
바람직하게는, 상기 여과막은, 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머, 양극산화알루미늄, 니켈 및 실리콘으로 이루어진 군으로부터 선택되는 소재로 구성될 수 있다.Preferably, the filtration membrane may be made of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon.
바람직하게는, 상기 여과막은, 물리적인 힘으로 상기 하우징부(100)로부터 선택적으로 탈부착될 수 있다.Preferably, the filtration membrane may be selectively detachable from the housing part 100 by physical force.
바람직하게는, 상기 여과막은, 상기 여과챔버부(300)는, 동일 챔버 내에서 두 개 이상 적층되어 단일 챔버에서 유체 이송 시 두 개 이상의 크기를 가지는 여과막을 통하여 나노 입자를 포집할 수 있다.Preferably, the filtration membrane, the filtration chamber 300, two or more stacked in the same chamber may collect the nanoparticles through the filtration membrane having two or more sizes during fluid transfer in a single chamber.
바람직하게는, 상기 여과막은, 단일 챔버에 하나의 여과막을 포함하며, 복수의 챔버가 서로 다른 방사상의 좌표에 배치되어 상기 유체 샘플이 복수의 여과막을 통과하여 복수의 입자 여과를 수행하여 특정 크기 범위의 나노 입자를 포집할 수 있다.Preferably, the filtration membrane comprises a filtration membrane in a single chamber, wherein the plurality of chambers are arranged at different radial coordinates such that the fluid sample passes through the plurality of filtration membranes to perform plural particle filtration to a specific size range. Nanoparticles can be captured.
바람직하게는, 상기 여과막은,Preferably, the filtration membrane,
100 nm 내지 1 μm 직경의 적어도 하나 이상의 기공을 갖는 제1 여과막; 및A first filtration membrane having at least one or more pores of 100 nm to 1 μm diameter; And
1 nm 내지 100 nm 직경의 적어도 하나 이상의 기공을 갖는 제2 여과막을 포함할 수 있다.It may include a second filtration membrane having at least one or more pores of 1 nm to 100 nm in diameter.
바람직하게는, 상기 미세유로부(500)는, 상기 여과챔버부(300) 상부 또는 하부에 배치되며, 상기 챔버들은 장치 중심부에서 일정 거리 떨어진 곳에 배치되어 용액의 손실을 최소화할 수 있다.Preferably, the micro channel 500 is disposed above or below the filtration chamber 300, and the chambers may be disposed at a distance from the center of the device to minimize loss of solution.
본 발명은The present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500); 및A micro flow path part 500 for providing a passage for the flow of the fluid sample; And
미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700)를 포함하여 시료로부터 나노입자를 여과하는 것을 특징으로 하는, 나노 입자 분리 장치를 제공한다.It provides a nanoparticle separation device, characterized in that for filtering the nanoparticles from the sample including a valve 700 that can selectively control the flow of fluid in the micro-channel.
바람직하게는, 상기 샘플수용부(200)는, 시료의 불순물을 정제 할 수 있는 샘플 정제를 수행할 수 있다.Preferably, the sample accommodating part 200 may perform sample purification to purify impurities of a sample.
바람직하게는, 상기 샘플수용부(200)는, 하부가 방사 방향보다 틀어진 각도로 형성된 공간을 포함하여 불순물 분리를 수행할 수 있다.Preferably, the sample accommodating part 200 may include impurity separation including a space formed at an angle at which a lower portion thereof is distorted than a radial direction.
바람직하게는, 상기 샘플수용부(200)는, 분리된 불순물 역류를 방지하기 위한 홈을 포함할 수 있다.Preferably, the sample accommodating part 200 may include a groove for preventing separated impurity backflow.
바람직하게는, 상기 샘플수용부(200)는, 경사면과 곡선으로 이루어져 샘플 이송시 상기 샘플의 손실 및 손상을 최소화할 수 있다.Preferably, the sample accommodating part 200 may be formed of an inclined surface and a curve to minimize the loss and damage of the sample during sample transfer.
바람직하게는, 상기 밸브(700)는, 외부 신호에 따라 개폐가 가능할 수 있다.Preferably, the valve 700 may be opened and closed according to an external signal.
바람직하게는, 상기 밸브(700)는, 전과정 자동화를 위하여 회전 가능한 장치 외부에 존재하며, 밸브의 개폐 및 몸체의 회전 속도와 방향을 제어할 수 있는 시스템을 포함할 수 있다.Preferably, the valve 700, which is external to the rotatable device for the whole process automation, may include a system capable of controlling the opening and closing of the valve and the rotational speed and direction of the body.
바람직하게는, 상기 폐액수용부(400)는, 별도의 불순물 처리 없이 고순도의 나노 입자 분리가 가능할 수 있다.Preferably, the waste liquid containing part 400 may be capable of separating high purity nanoparticles without a separate impurity treatment.
바람직하게는, 상기 여과챔버부(300)는, 하나 이상의 상기 폐액수용부(400)와 연결되어 정제 후 불순물 확산이 방지될 수 있다.Preferably, the filtration chamber part 300 may be connected to one or more of the waste liquid receiving parts 400 to prevent impurity diffusion after purification.
바람직하게는, 상기 나노 입자 분리장치는, 상기 여과챔버부(300)의 탈부착을 위한 하나 이상의 체결부를 더 포함할 수 있다.Preferably, the nanoparticle separation device may further include one or more fastening portions for attaching and detaching the filtration chamber 300.
바람직하게는, 상기 나노 입자 분리장치는, BSA (bovine serum albumin) 단백질 또는 Pluronic (PEO-PPO-PEO) 고분자 물질을 주입하여 표면에 비특이적 결합을 최소화할 수 있다.Preferably, the nanoparticle separation device, by injecting a BSA (bovine serum albumin) protein or Pluronic (PEO-PPO-PEO) polymer material can minimize non-specific binding to the surface.
보다 바람직하게는, 상기 여과챔버부(300) 및 폐액수용부(400)는, 원활한 여과를 수행하기 위한 통풍구(vent)를 포함할 수 있다.More preferably, the filtration chamber 300 and the waste liquid receiving unit 400 may include a vent for performing smooth filtration.
본 발명은The present invention
나노 입자 분리장치에 있어서,In the nano particle separator,
회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500);A micro flow path part 500 for providing a passage for the flow of the fluid sample;
미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700); 및A valve 700 capable of selectively controlling the flow of fluid in the microchannel; And
여과된 특정 크기 범위의 나노입자를 회수할 수 있는 입자포집부(800)를 포함하여 시료로부터 특정 크기 범위의 나노입자를 여과 및 회수할 수 있는 것을 특징으로 하는, 나노 입자 분리장치를 제공한다.Including a particle collecting unit 800 that can recover the filtered nanoparticles of a specific size range, it provides a nanoparticle separation device, characterized in that to filter and recover a specific size range of nanoparticles from the sample.
바람직하게는, 상기 나노입자 회수는, 여과막의 상면에는 나노입자를 포함하는 회수하고자 하는 용액 및 하면은 폐액에 인접해 있을 때, 상기 여과막에 존재하는 기공 내부의 모세관압력 보다 작은 최대 3000 rpm 이하의 회전속도를 사용하여 상기 하면에 인접한 폐액을 상기 폐액수용부(400)로 버린 후, 여과막의 상면에 위치한 나노입자를 포함하는 용액을 선택적으로 회수할 수 있다.Preferably, the recovery of the nanoparticles is a maximum of 3000 rpm or less than the capillary pressure inside the pores present in the filter membrane when the solution to be recovered containing the nanoparticles and the lower surface adjacent to the waste liquid on the upper surface of the filter membrane After the waste liquid adjacent to the lower surface is discarded to the waste liquid receiving unit 400 using a rotation speed, a solution including nanoparticles located on the upper surface of the filtration membrane may be selectively recovered.
바람직하게는, 상기 입자포집부(800)는, 상기 여과챔버부(300)의 상면과 미세유로로 연결되고, 여과챔버부(300)의 하면은 폐액수용부(400)와 연결될 수 있다.Preferably, the particle collecting unit 800 may be connected to the upper surface of the filtration chamber 300 and a micro channel, and the lower surface of the filtration chamber 300 may be connected to the waste liquid receiving unit 400.
본 발명은 나노 입자 분리장치 및 방법 관한 것이다. 구체적으로, 낮은 원심력과 크기를 기반으로 하기 때문에 항체 특이성과 무관한 나노 소포를 단시간 안에 종래의 초원심분리기 없이 분리할 수 있으며, 시료 주입후 전과정을 일체화 및 자동화시킴으로써, 추가적인 전문 인력이 필요하지 않고 유체의 정확한 계량이 가능하기 때문에 나노 소포의 손실을 줄일 수 있다.The present invention relates to a nanoparticle separation device and method. Specifically, since it is based on low centrifugal force and size, nanovesicles irrelevant to antibody specificity can be separated in a short time without a conventional ultracentrifuge, and by integrating and automating the entire process after sample injection, no additional expert personnel are required. Accurate metering of fluids reduces nanovesicle loss.
도 1은 나노 소포 분리 과정이 일체화되어 있는 나노 입자 분리장치의 사시도이다.1 is a perspective view of a nanoparticle separation device in which a nano vesicle separation process is integrated.
도 2는 본 발명의 나노 입자 분리장치를 이용한 나노 입자 분리 과정을 시간의 흐름에 따라 관찰한 결과이다.Figure 2 is a result of observing the nanoparticle separation process using the nanoparticle separation device of the present invention over time.
도 3은 본 발명에 따른 나노 입자 분리장치의 전면도를 나타낸 것이며, (a) 미세유동장치의 사시도, (b) 미세유동장치 구성, (c) 필터에 따른 입자 분리 과정 및 (d) 필터 Ⅰ 및 Ⅱ의 SEM 이미지를 나타낸 것이다.Figure 3 shows a front view of the nanoparticle separation device according to the present invention, (a) perspective view of the microfluidic device, (b) microfluidic device configuration, (c) particle separation process according to the filter and (d) filter I And SEM images of II.
도 4는 본 발명의 일실시예에 따른 나노 입자 분리장치를 이용하여 나노 소포를 분리하는 과정으로서, (a) 불순물 침전, (b) 나노 소포 농축, (c) 세척, (d) 필터 Ⅱ에서의 남은 용액 제거 및 (e) 나노 소포 수집 과정을 나타낸 것이다.Figure 4 is a process for separating nano vesicles using a nanoparticle separation device according to an embodiment of the present invention, (a) impurity precipitation, (b) nano vesicle concentration, (c) washing, (d) in filter II The remaining solution is removed and (e) nano vesicles collection process is shown.
도 5는 본 발명의 일실시예에 따른 나노 입자 분리장치의 실제 구조를 나타낸 것으로서, (a) 나노 입자 분리장치의 분리도, (b) 나노 입자 분리장치의 필터 구조 및 (c) 나노 입자 분리장치의 측면도 및 필터 표면을 SEM 이미지로 나타낸 것이다.Figure 5 shows the actual structure of the nanoparticle separation device according to an embodiment of the present invention, (a) separation of the nanoparticle separation device, (b) filter structure of the nanoparticle separation device and (c) nanoparticle separation Side view of the device and filter surface are shown in SEM image.
도 6은 본 발명의 일실시예에 따른 나노 입자 분리장치를 플루로닉 (pluronic) 용액으로 코팅하여 소포의 회수 정도를 측정한 결과를 나타낸 것이다Figure 6 shows the result of measuring the degree of recovery of the vesicles by coating the nanoparticle separation device according to an embodiment of the present invention with a pluronic solution (pluronic) solution
도 7은 본 발명의 일실시예에 따른 나노 입자 분리장치의 필터의 수행 능력을 확인한 결과를 나타낸 것으로서, (a) AAO 필터 200 ㎚ 및 100 ㎚ 조합에서의 100 ㎚ 입자 필터 능력, (b) TEPC 필터 600 ㎚ 및 AAO 필터 20 ㎚ 조합에서의 100 ㎚ 입자 필터 능력 및 (c) TEPC 필터 600 ㎚ 및 AAO 필터 20 ㎚ 필터에서의 800 ㎚ 및 100 ㎚ 입자 혼합액에서의 필터 능력을 확인한 것이다.Figure 7 shows the results confirming the performance of the filter of the nanoparticle separation device according to an embodiment of the present invention, (a) 100 nm particle filter capacity in the combination of AAO filter 200 nm and 100 nm, (b) TEPC 100 nm particle filter capability in filter 600 nm and AAO filter 20 nm combination and (c) filter capacity in 800 nm and 100 nm particle mixture liquid in TEPC filter 600 nm and AAO filter 20 nm filter were confirmed.
도 8은 100 nm와 800 nm의 나노 beads를 혼합한 용액에서, NTA (nanoparticle tracking analysis)를 이용하여 나노 입자의 크기와 농도를 분석한 결과이다. 8 is a result of analyzing the size and concentration of the nanoparticles using a nanoparticle tracking analysis (NTA) in a solution mixed with nano beads of 100 nm and 800 nm.
도 9는 본 발명에 따른 나노 입자 분리장치를 이용해서 NTA를 통한 디스크 수행 전/후 나노 소포 농도를 분석한 결과로서, (a) LNCaP 세포가 배양된 상층액으로부터 분리된 나노 소포 농도 결과, (c) 방광암 환자의 소변으로부터 분체 농도 결과, (b) 방광암 환자의 소변으로부터 분리된 소포가 필터 Ⅱ에 걸러지는지를 확인한 SEM 이미지 및 (d)/(e) 필터 Ⅱ로부터 회수한 소포의 TEM 이미지를 나타낸 것이다.9 is a result of analyzing the nano-vesicle concentration before / after performing the disk through NTA using the nanoparticle separation device according to the present invention, (a) results of nano-vesicle concentration separated from the supernatant cultured LNCaP cells, ( c) Powder concentration results from urine of bladder cancer patients, (b) SEM images confirming that vesicles isolated from urine of bladder cancer patients were filtered by filter II and (d) / (e) TEM images of vesicles recovered from filter II. It is shown.
도 10은 1 mL의 소변에서, NTA (nanoparticle tracking analysis)를 이용하여 30 nm와 600 nm 사이의 나노 소포의 크기와 농도를 분석한 결과이다. 10 is a result of analyzing the size and concentration of nano vesicles between 30 nm and 600 nm using NTA (nanoparticle tracking analysis) in 1 mL of urine.
도 11은 본 발명의 일실시예에 따른 나노 입자 분리장치와 종래의 초원심분리 (UC) 및 침전시약을 활용한 상용화 키트 (Exospin) 세가지 방법에 따른 나노 소포 획득 효율을 비교한 결과로서, NTA 분석 결과를 나타낸 것이다.11 is a result of comparing the nano-vesicle acquisition efficiency according to three methods of nanoparticle separation device according to an embodiment of the present invention and a commercialization kit (Exospin) using the conventional ultracentrifugation (UC) and precipitation reagents, NTA The analysis results are shown.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결' 되어 있다고 할 때, 이는 '직접적으로 연결' 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결' 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함' 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, in the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term 'comprising' of an element means that the element may further include other elements, not to exclude other elements unless specifically stated otherwise.
도 1a 및 도 3a는 본 발명의 일실시예에 따른 나노 입자 분리장치(10)의 사시도이며, 도 1b 및 도 3b는 본 발명의 일실시예에 따른 나노 입자 분리장치(10)의 확대도이다. 도 1a 및 도 3a에 도시된 바와 같이, 본 발명의 일실시예에 따른 나노 입자 분리장치(10)는 하우징부(100), 샘플수용부(200), 여과챔버부(300), 폐액수용부(400) 및 미세유로부(500)으로 구성될 수 있으며, 도 1b 및/또는 도 3b에 도시된 바와 같이, 세척챔버부(600), 밸브(700) 및/또는 입자포집부(800)를 더 포함하여 구성될 수 있다.1A and 3A are perspective views of a nanoparticle separator 10 according to an embodiment of the present invention, and FIGS. 1B and 3B are enlarged views of the nanoparticle separator 10 according to an embodiment of the present invention. . As shown in Figure 1a and 3a, the nanoparticle separation apparatus 10 according to an embodiment of the present invention is a housing portion 100, a sample accommodating portion 200, filtration chamber portion 300, waste liquid receiving portion 400 and the microchannel 500, and as shown in Figure 1b and / or 3b, the cleaning chamber 600, the valve 700 and / or the particle collecting portion 800 is further It can be configured to include.
본 발명의 일실시예에 따른 나노 입자 분리장치(10)는, 유체 샘플을 투입하고, 장치의 회전에 의한 원심력을 통해서, 상기 유체 샘플로부터 원하는 범위의 나노 소포의 분리가 가능할 수 있다. 또한, 여러 가지 유체 샘플을 동시에 분리가 가능할 수도 있다. 이와 같은 구성을 채택함으로써, 낮은 원심력에서도 항체 특이성과 무관하게 나노 소포만을 분리가 가능한바, 전과정을 일체화 및 자동화된 나노 소포의 회수율이 높은 장치로 사용 가능할 수 있을 것으로 기대된다. In the nanoparticle separation device 10 according to an embodiment of the present invention, a fluid sample may be introduced, and centrifugal force by rotation of the device may be used to separate nanovesicles of a desired range from the fluid sample. It is also possible to separate several fluid samples simultaneously. By adopting such a configuration, it is expected that only nano vesicles can be separated at low centrifugal force irrespective of antibody specificity, so that the whole process can be integrated and used as a high recovery rate of automated nano vesicles.
이하에서는, 본 발명의 일실시예에 따른 나노 입자 분리장치(10)를 구성하는 각각의 구성요소에 대하여 상세히 설명하기로 한다.Hereinafter, each component constituting the nanoparticle separation device 10 according to an embodiment of the present invention will be described in detail.
하우징부(100)는, 후술할 구성들이 내설되는 공간을 제공하면서, 유체 샘플로부터 나노 소포 분리를 위한 원심력을 제공하기 위해서, 자체 회전이 가능한 구성으로서, 이 때, 상기 하우징부(100)는, 폴리카보네이트 (Polycarbonate; PC) 소재로 이루어질 수 있으나, 이에 제한되는 것은 아니다.The housing part 100 is a structure capable of self-rotation in order to provide centrifugal force for separating the nanovesicles from the fluid sample while providing a space in which the components to be described later are built. In this case, the housing part 100 is It may be made of polycarbonate (PC) material, but is not limited thereto.
샘플수용부(200)는, 분리하고자하는 유체 샘플이 담지되는 공간을 제공하는 구성으로서, 상기 하우징부(100)에 내설되어 샘플이 투입되면서 동시에 원심력을 가할 때, 불순물의 빠른 분리를 위해서, 하단부가 방사 방향보다 틀어진 각도로 기울어진 경사면을 가지고, 또한, 분리된 상기 불순물의 역류를 막기 위해서, 홈 (미도시)을 포함하고, 상기 샘플수용부(200)는, 경사면과 곡선으로 이루어져 샘플 이송시 상기 샘플의 손실 및 손상을 최소화할 수 있다. 이 때, 상기 유체 샘플은 나노 입자가 분산된 수용액, 세포체 및 희귀 생체 입자를 포함하는 소변, 혈액, 태액, 객담 등의 생체 시료일 수 있으며, 바람직하게는 소변일 수 있으나, 이에 제한되는 것은 아니다.The sample accommodating part 200 is configured to provide a space in which a fluid sample to be separated is carried. The sample accommodating part 200 is installed in the housing part 100 and is applied at the same time while the sample is applied thereto while applying centrifugal force. Has an inclined surface inclined at an angle different from the radial direction, and further includes a groove (not shown) in order to prevent backflow of the separated impurities, and the sample accommodating part 200 is formed of an inclined surface and curved to convey the sample. Loss and damage of the sample can be minimized. In this case, the fluid sample may be a biological sample such as urine, blood, salivary fluid, sputum, and the like, including an aqueous solution in which nanoparticles are dispersed, a cell body, and rare biological particles, and preferably, urine, but is not limited thereto. .
여과챔버부(300)는, 하나 이상의 여과막을 포함하여 원하는 나노 입자를 포집하기 위한 구성으로서, 상기 여과챔버부(300)는 필요에 따라 물리적인 힘을 가하여 상기 하우징부(100)로부터 탈부착이 가능할 수 있으며, 이 때, 원활한 탈부착을 위해서, 체결부(미도시)를 더 포함할 수 있다. 한편, 도 1b 및 도 3b에 도시된 바와 같이, 상기 여과챔버부(300)는, 제1 여과부(310) 및 제2 여과부(320)으로 구성될 수 있다. The filtration chamber 300 is configured to collect desired nanoparticles including one or more filtration membranes, and the filtration chamber 300 may be detachable from the housing 100 by applying a physical force as necessary. In this case, in order to smoothly attach and detach, a fastening part (not shown) may be further included. Meanwhile, as illustrated in FIGS. 1B and 3B, the filtration chamber part 300 may include a first filtration part 310 and a second filtration part 320.
본 발명에 따른 나노 입자 분리장치(10)는, 기공 크기가 서로 다른 복수 개의 여과막을 이용함으로써, 상기 샘플로부터 원하는 범위의 나노 소포를 획득할 수 있는 원리이며, 예컨대, 입자 크기가 큰 불순물을 걸러내는 필터와 원하는 입자의 크기보다 작은 입자의 불순물을 통과할 수 있는 크기의 여과막을 조합함으로써, 여과막과 여과막 사이에서 포집된 원하는 입자 크기 나노 입자를 걸러낼 수 있다. Nanoparticle separation device 10 according to the present invention, by using a plurality of filter membranes having different pore sizes, is a principle to obtain a desired range of nano-vesicles from the sample, for example, to filter out impurities having a large particle size By combining the filter with a filter membrane of a size that can pass impurities of particles smaller than the size of the desired particle, the desired particle size nanoparticles collected between the filter membrane and the filter membrane can be filtered out.
따라서, 전술한 바와 같이, 본 발명에서는 서로 다른 복수 개의 기공 크기를 갖는 제1 여과부(310) 및 제2 여과부(320)를 포함할 수 있으나, 필요로 하는 나노입자 크기에 따라서, 여과시키거나 포집하기 위한 여과부를 추가하여 이용할 수 있다. Therefore, as described above, the present invention may include a first filtration unit 310 and a second filtration unit 320 having a plurality of different pore sizes, depending on the nanoparticle size required, Or an additional filter for collecting.
이 때, 상기 여과막은 사용자의 실시에 따라서, 적층 또는 분리된 구조로 이루어질 수 있으며, 이러한 적층 또는 분리된 구조는 자동화 과정 중에서 분리된 나노 소포를 수집하는데 영향을 미칠 수 있다. 예컨대, 나노 소포를 수집하기까지 적층 구조는 필터를 물리적으로 분리 및 용리함으로써, 나노 소포를 수집할 수 있으며, 반면에, 분리된 구조는 필터의 분리 과정이 필요 없이 전과정이 일체화되어 보다 편리한 소포의 수집이 가능할 수 있다. At this time, the filtration membrane may be made of a laminated or separated structure according to the user's implementation, this laminated or separated structure may affect the collection of the separated nano-vesicles during the automated process. For example, until the nano-vesicles are collected, the stacked structure can collect nano-vesicles by physically separating and eluting the filters, whereas the separated structures can be integrated into the entire process without the need for separation of the filters, thereby providing more convenient Collection may be possible.
보다 구체적으로, 제1 여과부(310)는, 상기 유체 샘플 내 1차 불순물을 걸러내기 위한 구성으로서, 도 1b 및 도 3b에 도시된 바와 같이, 상기 샘플수용부(200)와 연결될 수 있다. 이 때, 상기 제1 여과부(310)는 입자가 큰 불순물을 걸러내기 위해서, 바람직하게는, 100 nm 내지 1 μm 직경의 복수 개의 기공을 가질 수 있으며, 보다 바람직하게는, 600 nm 직경을 가질 수 있다.More specifically, the first filtration unit 310 may be connected to the sample accommodating part 200 as shown in FIGS. 1B and 3B to filter out primary impurities in the fluid sample. In this case, the first filtration unit 310 may have a plurality of pores having a diameter of 100 nm to 1 μm, preferably, to filter out impurities having a large particle size, and more preferably, have a 600 nm diameter. Can be.
제2 여과부(320)는, 2차 불순물을 제거함과 동시에 목적하는 나노 입자만을 포집하기 위한 구성으로서, 예컨대, 상기 제2 여과부(320)는 원하는 범위보다 작은 크기의 입자는 통과시키고, 원하는 범위의 나노 소포만을 포집할 수 있다. The second filtration unit 320 is configured to collect only the desired nanoparticles while removing secondary impurities. For example, the second filtration unit 320 allows particles of a size smaller than a desired range to pass therethrough, Only nanovesicles in the range can be captured.
한편, 상기 제2 여과부(320)는, 도 1b 및 도 3b에 도시된 바와 같이, 상기 제1 여과부(310) 및 후술할 세척챔버부(600)와 연결될 수 있으나, 전술한 바와 같이, 여과막의 조합 위치에 따라 여과막간의 적층 구조로 형성될 경우에는 (도 1b 참조), 제1 여과부(310) 및 제2 여과부(320)가 같은 챔버내에서 필터링이 진행된다. 반면, 여과막간 구조가 서로 분리된 구조로 형성될 경우에는 (도 3b 참조), 제1 여과부(310) 및 제2 여과부(320)가 각각 다른 방사상의 좌표에 독립된 챔버로 형성되어 상기 유체 샘플이 복수의 여과막을 통과하여 복수의 입자 여과를 수행 가능할 수 있다. 또한, 상기 여과챔버부(300)는 필요에 따라서, 하나 이상의 세척챔버부(600)와 연결될 수 있다.Meanwhile, as shown in FIGS. 1B and 3B, the second filtration unit 320 may be connected to the first filtration unit 310 and the washing chamber unit 600 to be described later. As described above, When the filtration membrane is formed in a stacked structure between the filtration membranes (see FIG. 1B), the first filtration unit 310 and the second filtration unit 320 are filtered in the same chamber. On the other hand, in the case where the structure between the filtration membranes is formed to be separated from each other (see FIG. 3B), the first filtration unit 310 and the second filtration unit 320 are each formed as chambers independent of different radial coordinates, thereby forming the fluid. The sample may be capable of performing a plurality of particle filtration through the plurality of filtration membranes. In addition, the filtration chamber 300 may be connected to one or more washing chamber 600 as necessary.
이 때, 원하는 범위의 나노 소포를 제외한 입자 크기가 작은 불순물을 걸러내기 위해서, 상기 제2 여과부(320)은 바람직하게는 1 nm 내지 100 nm 직경의 복수개의 기공을 가질 수 있으며, 보다 바람직하게는, 20 nm 직경을 가질 수 있다. 이 때, 상기 입자 크기가 작은 불순물인 2차 불순물은 비혈관 단백질일 수 있다. At this time, in order to filter out impurities having a small particle size except for nano-vesicles in a desired range, the second filtration unit 320 may preferably have a plurality of pores having a diameter of 1 nm to 100 nm, more preferably. May have a 20 nm diameter. At this time, the secondary impurities, which are impurities having a small particle size, may be non-vascular proteins.
또한, 본 발명에 따른 여과막을 이용한 나노 소포 분리 방법은 일정 범위 내의 나노 소포를 거르기 위해서 전술한 바와 같이, 지름이 작은 기공 및 큰 기공을 포함하는 두 종류 이상의 여과막을 필요로 하나, 종래에는 폴리카보네이트를 소재로하여 여과막을 제조하였으며, 상기 폴리카보네이트 소재를 이용하여 지름이 작은 기공 (1 nm ~ 100 nm)의 여과막을 제작할 경우, 기공의 크기가 균일하지 않고, 기공도가 낮아 균일한 소포의 분리에는 적합하지 않았다. 이와 더불어 양극산화 알루미늄을 이용하여 여과막을 제작할 경우에는, 비교적 크기가 균일하면서 높은 기공도를 가질 수 있으나, 내구도가 약해서 잘 파괴되는 문제점이 있었다. 이에, 본 발명의 일실시예에 따른 나노 입자 분리장치(10)는 낮은 원심력을 이용함으로써, 나노 소포를 분리하는바, 상기 양극산화 알루미늄의 사용으로 인한, 내구성 저하를 막을 수 있다. 이로 인해, 기공의 크기가 균일하면서 높은 기공도를 갖는 소재의 여과막의 사용이 가능할 수 있다.In addition, the method for separating nano vesicles using the filtration membrane according to the present invention requires two or more kinds of filtration membranes including small pores and large pores, as described above, to filter nano vesicles within a certain range, and conventionally, polycarbonate Filter membrane was prepared by using the material, and when the filtration membrane of small diameter pores (1 nm ~ 100 nm) using the polycarbonate material, the size of the pores is not uniform, the porosity is low, uniform vesicle separation Was not suitable. In addition, when manufacturing the filter membrane using aluminum anodized, it may have a relatively uniform size and high porosity, but there is a problem that the durability is weak and well broken. Thus, the nanoparticle separation device 10 according to an embodiment of the present invention uses a low centrifugal force to separate the nano vesicles, thereby preventing degradation of durability due to the use of the anodized aluminum. For this reason, it is possible to use a filtration membrane of a material having a high porosity while having a uniform pore size.
따라서, 상기 제1 여과부(310) 및 제2 여과부(320)를 이루는 여과막의 바람직한 소재는 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 오레핀 코폴리머, 양극산화 알루미늄, 니켈, 실리콘 등일 수 있으나, 가장 바람직하게는, 양극산화 알루미늄일 수 있다. Therefore, preferred materials of the filtration membrane forming the first filtration unit 310 and the second filtration unit 320 are polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin polymer, anodized aluminum, nickel, silicon Etc., but most preferably, anodized aluminum.
폐액수용부(400)는, 상기 제1 여과부(310) 및 제2 여과부(320)로부터 여과된 샘플 용액을 수용하는 공간을 제공하는 구성으로서, 도 1b 및 도 3b에 도시된 바와 같이, 여과된 샘플을 수용하기 위해서, 상기 제1 여과부(310) 및 제2 여과부(320)와 연결될 수 있다. 이 때, 폐액수용부(400)는, 상기 제1 여과부(310) 및 제2 여과부(320)간의 위치 형성에 따라 단일 또는 복수 개로 구성될 수 있다. 예컨대, 상기 여과챔버부(300)간의 위치 구조가 적층형일 경우에는 제1 여과부(310) 및 제2 여과부(320)가 한 챔버 내에서 직접적으로 연결되어 단일의 폐액수용부(400) 만으로도 여과된 샘플의 수용이 가능할 수 있고, 상기 여과챔버부(300)가 독립된 챔버로서의 구조로 형성될 경우에는 원심력으로 인해서, 앞서 분리된 여과액의 역류로 인한 정제 후 불순물의 확산을 막고, 유체의 정확한 계량을 위해서, 폐액수용부(400)는 하나 이상으로 형성되는 것이 바람직하나, 이에 제한되는 것은 아니다. The waste solution accommodating part 400 is configured to provide a space for accommodating the sample solution filtered from the first filtration part 310 and the second filtration part 320, as shown in FIGS. 1B and 3B. In order to accommodate the filtered sample, it may be connected to the first filtration unit 310 and the second filtration unit 320. At this time, the waste liquid receiving unit 400, may be composed of a single or a plurality depending on the position formed between the first filtration unit 310 and the second filtration unit 320. For example, when the position structure between the filtration chambers 300 is a stack type, the first filtration unit 310 and the second filtration unit 320 are directly connected in one chamber, so that only a single waste liquid receiving unit 400 is provided. The filtered sample may be accommodated, and when the filtration chamber 300 is formed as a separate chamber, due to centrifugal force, it prevents the diffusion of impurities after purification due to the reverse flow of the previously separated filtrate, and For accurate metering, the waste liquid receiving unit 400 is preferably formed of one or more, but is not limited thereto.
미세유로부(500)는, 상술한 각 구성간의 샘플의 유동을 위한 공간을 제공하는 구성으로서, 도 1b 및 도 3b에 도시된 바와 같이, 각각 챔버들 사이에 배치되고, 상기 여과챔버부(300) 상부 또는 하부에 배치되며, 상기 챔버들은 장치 중심부에서 일정 거리 떨어진 곳에 배치되어 용액의 손실의 최소화가 가능할 수 있다. 또한, 상기 미세유로부(500)는, 장치를 관통하는 유로와 연결되어 유체 샘플의 유로 변경이 가능할 수 있다. 한편, 상기 미세유로부(500)는, 제1 내지 제3 및/또는 제7 미세유로부(500)로 이루어질 수 있고, 상기 미세유로부(500)는, 전술한 바와 같이, 사용자의 실시예에 따른 필터간 배치에 따라서, 상기 미세유로부(500)의 배치가 달라질 수 있다.The micro channel 500 is a configuration for providing a space for the flow of the sample between the above-described configuration, as shown in Figure 1b and 3b, respectively disposed between the chambers, the filtration chamber 300 ) May be disposed above or below the chambers, and the chambers may be disposed at a distance from the center of the apparatus to minimize loss of solution. In addition, the micro channel 500 may be connected to a channel through the device to change the channel of the fluid sample. On the other hand, the micro-channel unit 500 may be composed of first to third and / or seventh micro-channel unit 500, the micro-channel unit 500, as described above, the user's embodiment According to the arrangement between the filters according to, the arrangement of the micro channel 500 may vary.
예컨대, 상기 여과챔버부(300)간의 위치 구조가 적층형일 경우에는 제1 미세유로부(510)는 샘플수용부(200) 및 폐액수용부(400)를 연결하며, 제2 미세유로부(520)는, 후술할 세척챔버부(600) 및 제1 여과부(310) - 제2 여과부(320)를 연결하고, 제3 미세유로부(530)는, 상기 제1 미세유로부(510) 및 제1 여과부(310) - 제2 여과부(320)를 연결한다.For example, when the position structure between the filtration chambers 300 is a stacked type, the first micro channel 510 connects the sample receiving part 200 and the waste liquid receiving part 400 to the second micro channel 520. ) Connects the washing chamber 600 and the first filtration unit 310 to the second filtration unit 320 to be described later, and the third micro channel 530 is the first micro channel 510. And a first filtration unit 310-a second filtration unit 320.
반면에, 상기 여과챔버부(300)간의 위치 구조가 독립된 챔버로 형성될 경우에는 제1 미세유로부(510)는 샘플수용부(200) 및 폐액수용부(400-1)를 연결하며, 제2 미세유로부(520)는, 샘플수용부(200) 및 제1 여과부(310)를 연결하고, 제3 미세유로부(530)는, 제1 여과부(310) 및 제 2여과부(320)를 연결하고, 제4 미세유로부(540)는, 세척챔버부(600) 및 제2 여과부(320)를 연결하고, 제5 미세유로부(550)는, 상기 제3 미세유로부(530) 및 폐액수용부(400-1)를 연결하고, 제6 미세유로부(560)는, 제2 여과부(320) 및 폐액수용부(400-2)를 연결하고, 제7 미세유로부(570)는, 제2 여과부(320) 및 후술할 입자포집부(800)와 연결된다.On the other hand, when the position structure between the filtration chambers 300 is formed as an independent chamber, the first microchannel 510 connects the sample accommodating part 200 and the waste liquid accommodating part 400-1. The second microchannel unit 520 connects the sample receiving unit 200 and the first filtration unit 310, and the third microchannel unit 530 includes the first filtration unit 310 and the second filtration unit ( 320 is connected, and the fourth microchannel 540 connects the cleaning chamber 600 and the second filtration unit 320, and the fifth microchannel 550 is the third microchannel. 530 and the waste liquid accommodating part 400-1, and the sixth microfluidic part 560 connects the second filtration part 320 and the waste liquid accommodating part 400-2, and the seventh microfluidic path. The unit 570 is connected to the second filtration unit 320 and the particle collecting unit 800 to be described later.
세척챔버부(600)는, 상기 여과챔버부(300)의 여과막을 세척하기 위한 세척용액이 담지되는 공간을 제공하는 구성으로서, 도 1b 및 3b에 도시된 바와 같이, 상기 여과챔버부(300)와 연결될 수 있다. 이 때, 바람직한 세척용액으로는 인산 완충 식염수 (Phosphate buffer saline; PBS)일 수 있다.The cleaning chamber part 600 is configured to provide a space in which a cleaning solution for cleaning the filtration membrane of the filtration chamber part 300 is supported. As shown in FIGS. 1B and 3B, the filtration chamber part 300 is provided. It can be connected with. At this time, the preferred washing solution may be phosphate buffer saline (PBS).
밸브(700)는, 상술한 각 구성간의 샘플의 흐름에 있어서, 원심력으로 인한 원하지 않는 방향으로 흐름을 막기 위해서 각 구성간의 유로를 개폐하는 구성으로서, 각 구성과 연결된 상기 미세유로부(500)상에 배치될 수 있다. 이 때, 상기 밸브(700)는, 외부의 신호를 통해서, 자동으로 개폐될 수 있다. 한편, 전술한 바와 같이, 사용자의 실시예에 따른 여과막간의 배치에 따라서 상기 밸브(700)의 배치가 달라질 수 있다. The valve 700 is a configuration for opening and closing the flow path between the components in order to prevent the flow in the undesired direction due to the centrifugal force in the flow of the sample between the above-described components, on the fine flow path 500 connected to each component Can be placed in. At this time, the valve 700 may be automatically opened and closed through an external signal. Meanwhile, as described above, the arrangement of the valve 700 may vary according to the arrangement between the filtration membranes according to the embodiment of the user.
예컨대, 상기 여과막간의 위치 구조가 적층형일 경우에는 제1 밸브(710)는, 상기 제1 미세유로부(510)상에 배치되고, 제2 밸브(720)는, 제2 미세유로부(520) 상에 배치되며, 제3 밸브(730)는, 상기 제3 미세유로부(530)상에 배치된다.For example, when the position structure between the filtration membranes is stacked, the first valve 710 is disposed on the first microchannel 510, and the second valve 720 is the second microchannel 520. The third valve 730 is disposed on the third microchannel 530.
반면에, 상기 여과막간 위치 구조가 독립된 챔버로 형성될 경우에는 제1 밸브(710)는, 제1 미세유로부(510)상에 배치되고, 제2 밸브(720)는, 제2 미세유로부(520)상에 배치되고, 제3 밸브(730)는, 제3 미세유로부(530)상에 배치되고, 제4 밸브(740)는, 제4 미세유로부(540)상에 배치되고, 제5 밸브(750)는, 제6 미세유로부(560) 상에 배치되고, 제 6밸브(760)는, 제7 미세유로부(570)상에 배치된다.On the other hand, when the filtration membrane position structure is formed as an independent chamber, the first valve 710 is disposed on the first microchannel 510 and the second valve 720 is the second microchannel. 520, the third valve 730 is disposed on the third microchannel 530, the fourth valve 740 is disposed on the fourth microchannel 540, and The fifth valve 750 is disposed on the sixth microchannel portion 560, and the sixth valve 760 is disposed on the seventh microchannel portion 570.
한편, 상술한 바와 같이, 본 발명의 일실시예에 다른 나노 입자 분리장치(10)는, 상기 여과챔버부(300)의 여과막의 배치에 따라서, 나노 소포를 수집하는데 있어서 영향을 줄 수 있다. 예컨대, 여과막이 적층으로 쌓여 놓은 구조의 경우에는, 나노 소포의 분리 및 획득을 샘플 주입 후, 상기 나노 입자 분리장치(10)로부터 제2 여과부(320)를 분리하여 상기 필터상의 소포를 획득하는 과정을 거쳐야할 수 있다. 이에, 보다 효율적으로 소포 분리를 위해서, 여과챔버부(300)과 독립된 챔버로서의 구조로 형성될 경우, 독립된 챔버를 가진 제2 여과부(320)로부터 소포를 수집하는, 입자포집부(800)를 더 포함하여 구성될 수 있다.On the other hand, as described above, the nanoparticle separation device 10 according to an embodiment of the present invention, according to the arrangement of the filtration membrane of the filtration chamber 300, may affect the collection of nano-vesicles. For example, in the case of the structure in which the filtration membranes are stacked in a stack, after the sample injection and separation of the nano vesicles are separated, the second filtration unit 320 is separated from the nanoparticle separation device 10 to obtain the vesicles on the filter. You may have to go through the process. Therefore, in order to separate the vesicles more efficiently, when the filtration chamber 300 is formed as a structure independent from the filtration chamber 300, the particle collecting part 800 collecting the vesicles from the second filtration part 320 having the independent chamber is further added. It can be configured to include.
보다 구체적으로, 입자포집부(800)는, 획득한 나노 소포를 수집하기 위한 공간을 제공하는 구성으로서, 도 3b에 도시된 바와 같이, 상기 제2 필터부(320)와 연결될 수 있으며, 이로 인해, 상기 제2 필터부(320)에서 여과 후, 남은 나노 소포가 원심력으로 인해 상기 입자포집부(800)로 수용이 가능할 수 있다. 보다 구체적으로, 여과막에 존재하는 기공 내부의 모세관압력 보다 작은 최대 3000 rpm 이하의 회전속도를 사용하여 폐액은 상기 폐액수용부(400)로 버린 후, 상기 제2 필터부(320)의 여과막 상면에 위치한 나노 입자만을 선택적으로 회수할 수 있다.More specifically, the particle collecting unit 800 is configured to provide a space for collecting the obtained nano vesicles, as shown in Figure 3b, it may be connected to the second filter unit 320, thereby, After filtration in the second filter unit 320, the remaining nano vesicles may be accommodated in the particle collecting unit 800 due to centrifugal force. More specifically, the waste liquid is discarded to the waste liquid receiving portion 400 using a rotation speed of less than 3000 rpm or less than the capillary pressure inside the pores present in the filtration membrane, and then, on the upper surface of the filtration membrane of the second filter portion 320. Only located nanoparticles can be selectively recovered.
한편, 본 발명의 일실시예에 다른 나노 입자 분리장치(10)는, 전술한 바와 같이, 사용자의 실시예에 따라 복수개의 여과막간의 위치에 따라서, 구성이 달라질 수 있다. 상기와 같은 구성의 차이는 나노 소포의 분리 과정까지의 일체화에 있어서 차이를 가져올 수 있다.On the other hand, the nanoparticle separation device 10 according to an embodiment of the present invention, as described above, depending on the position of the plurality of filtration membranes according to the user's embodiment, the configuration can be changed. Such a difference in configuration may bring a difference in the integration up to the separation process of the nano-vesicles.
예컨대, 도 1b에 도시한 바와 같이, 상기 여과챔버부(300)의 여과막 위치 구조가 적층형일 경우, 각 구성은 하기와 같다.For example, as illustrated in FIG. 1B, when the filtration membrane position structure of the filtration chamber part 300 is a stacked type, each configuration is as follows.
1) 소변 샘플을 넣고, 불순물을 분리하는 샘플수용부(200)1) Put the urine sample, the sample receiving unit 200 to separate the impurities
2) 나노 소포의 순도를 높이기 위한 세척 용액을 넣는 세척챔버부(600)2) cleaning chamber part 600 containing a cleaning solution to increase the purity of the nano-vesicles
3) 다른 소포들을 분리하기 위한 600 nm 제1 여과부(310)3) 600 nm first filter 310 for separating other vesicles
4) 나노 소포를 분리하기 위한 30 nm 제2 여과부(320)4) 30 nm second filter 320 for separating the nano-vesicles
5) 나노 소포 이외의 작은 불순물들을 수용하기 위한 폐액수용부(400)5) Waste solution containing part 400 for accommodating small impurities other than nano vesicles
6) 상기 샘플의 유동을 하기 위해 각 구성간을 연결하는, 미세유로부(500)6) connecting the respective components to the flow of the sample, micro-channel 500
7) 구성간의 선택적인 유체의 흐름을 조절하는 밸브(700)7) Valve 700 to regulate the flow of the selective fluid between the configurations
이와 같은 구성을 통해서, 도 1c에 도시한 바와 같이, 두 개의 서로 다른 크기의 여과막을 이용하여 샘플로부터 원하는 범위의 나노 입자를 걸러낼 수 있다.Through this configuration, as shown in Figure 1c, it is possible to filter the desired range of nanoparticles from the sample using two different sizes of filtration membrane.
또한, 도 1a에 도시한 바와 같이, 나노 입자 분리장치(10)는 4개의 동일 유닛으로 이루어져 동시에 4 종류의 샘플 분리가 가능할 수 있으며, 접착층 조립 이후에 30 nm의 제2 여과부(320)를 고정할 수 있으며 원활한 탈착이 가능하다. 이 때, 상기 여과부의 탈부착을 위해서, 탄성을 갖는 체결부로 고정될 수 있으며, 바람직한 개스킷 소재로는 폴리디메틸실록산 (polydimethylsiloxane), 실리콘, 라텍스 또는 고무 등일 수 있으나, 이에 제한되는 것은 아니다.In addition, as shown in Figure 1a, the nanoparticle separation device 10 may be composed of four identical units at the same time it is possible to separate the four types of samples, after the assembly of the adhesive layer 30 nm of the second filtration unit 320 Can be fixed and detachable smoothly. In this case, in order to attach and detach the filtration unit, it may be fixed by a fastening unit having elasticity, and the preferred gasket material may be polydimethylsiloxane, silicone, latex or rubber, but is not limited thereto.
다음으로 상기 여과챔버부(300)의 여과막 배치가 적층형일 경우에 소포 분리 과정은, 도 2에 도시한 바와 같이, 샘플 (붉은색 물)과 세척액 (노란색 물)을 주입한 후에는, 전과정이 자동화되어 진행되며 과정은 하기와 같다. Next, in the case where the filtration membrane arrangement of the filtration chamber part 300 is a lamination type, the vesicle separation process is performed after the injection of the sample (red water) and the washing liquid (yellow water), as shown in FIG. 2. The process is automated and the process is as follows.
1) 디스크는 3개의 밸브와 4개의 챔버 (샘플수용부(200), 여과챔버부(300), 폐액수용부(400) 및 세척챔버부(600))로 구성되어 있으며, 붉은 동그라미는 닫힌 밸브를 의미하고 파란 동그라미는 열린 밸브를 의미한다 (도 2a 참조).1) The disk is composed of three valves and four chambers (sample receiving part 200, filtration chamber part 300, waste liquid receiving part 400 and washing chamber part 600), the red circle is a closed valve Blue circle means open valve (see FIG. 2A).
2) 붉은 화살표와 같이, 불순물 처리 챔버에서는 원심력을 이용하여 샘플에서 불순물을 추출하며, 푸른 화살표는 필터 세척하는 모습이다 (도 2b 참조).2) Like the red arrow, the impurity treatment chamber extracts impurities from the sample using centrifugal force, and the blue arrow shows the filter washing (see FIG. 2B).
3) 다른 소포가 걸러진 후 열린 1번 밸브를 통해, 600 nm 필터를 포함하는 챔버로 이송되어 나노 소포를 거르고 다른 작은 불순물들은 버림 챔버로 원심력에 의해 이동된다. 이때, 밸브 2번을 막아 용액의 역류를 방지할 수 있다 (도 2c 참조)3) After the other vesicles have been filtered out, they are transferred to a chamber containing a 600 nm filter through an open valve 1 to filter out the nano vesicles and other small impurities are moved centrifugally to the discard chamber. At this time, the valve 2 may be blocked to prevent backflow of the solution (see FIG. 2C).
4) 모든 샘플 이송후, 나노 소포는 30 nm 필터 위에 걸러진다 (도 2d 참조)4) After all sample transfer, nano vesicles are filtered over a 30 nm filter (see FIG. 2D).
5) 세척 용액이 필터가 있는 챔버로 이송되어 나노 소포 외의 불순물들을 제거한다. 이때, 밸브 3번을 막아 용액의 역류를 방지할 수 있다 (도 2e 참조).5) The cleaning solution is transferred to a chamber with a filter to remove impurities other than nanovesicles. At this time, the valve 3 may be blocked to prevent backflow of the solution (see FIG. 2E).
6) 세척 후 불순물이 제거된 나노 소포는 30 nm 필터 위에 남아있게 되며, 이후, 필터를 분리 및 용리하여 나노 소포를 얻을 수 있다 (도 2f 참조).6) The nano vesicles from which impurities are removed after washing remain on the 30 nm filter, after which the nano vesicles can be obtained by separating and eluting the filter (see FIG. 2F).
상술한 6)에 나타낸 바와 같이, 상기 여과챔버부(300)의 여과막의 위치 구조가 적층형일 경우에는 여과막의 분리를 과정을 진행하여 나노 소포를 분리하게 된다.As shown in 6) above, when the position structure of the filtration membrane of the filtration chamber part 300 is a lamination type, the filtration membrane is separated to separate nano vesicles.
한편, 상기 여과챔버부(300)간의 독립된 챔버로서의 구조로 형성될 경우, 소포의 분리 전과정이 일체화 되어 각 구성은 도 3b에 도시된 바와 같이, 하기와 같다.On the other hand, when formed as a structure as an independent chamber between the filtration chamber 300, the entire process of separation of the vesicles are integrated so that each configuration is as shown in Figure 3b, as follows.
1) 소변 샘플을 넣고, 불순물을 분리하는 샘플수용부(200)1) Put the urine sample, the sample receiving unit 200 to separate the impurities
2) 나노 소포의 순도를 높이기 위한 세척 용액을 넣는 세척챔버부(600)2) cleaning chamber part 600 containing a cleaning solution to increase the purity of the nano-vesicles
3) 다른 소포들을 분리하기 위한 제1 여과부(310)3) first filtration unit 310 for separating other vesicles
4) 나노 소포를 분리하기 위한 제2 여과부(320)4) second filter 320 for separating nano-vesicles
5) 나노 소포 이외의 작은 불순물들을 수용하기 위한 폐액수용부(400)5) Waste solution containing part 400 for accommodating small impurities other than nano vesicles
6) 상기 샘플의 유동을 하기 위해 각 구성간을 연결하는, 미세유로부(500)6) connecting the respective components to the flow of the sample, micro-channel 500
7) 구성간의 선택적인 유체의 흐름을 조절하는 밸브(700)7) Valve 700 to regulate the flow of the selective fluid between the configurations
8) 나노 소포를 수집하는 입자포집부(800)8) Particle collecting unit 800 for collecting nano-vesicles
이와 같은 구성을 통해서, 도 3c에 도시한 바와 같이, 상기 나노 입자 분리장치(10)는 나노 소포를 수집할 수 있는 입자포집부(800)를 더 포함하여 전술한 상기 여과챔버부(300)의 위치 구조가 적층형일 경우와는 다르게, 샘플 주입 후에 별도의 필터 꺼냄 없이 소포를 획득할 수 있는바, 나노 소포의 분리과정까지의 전과정이 일체화된 특징을 가지고 있다.Through such a configuration, as shown in FIG. 3C, the nanoparticle separator 10 further includes a particle collecting part 800 capable of collecting nano vesicles. Unlike the case where the structure is stacked, the vesicles can be obtained without a separate filter after injection of the sample, and the entire process up to the separation process of the nano vesicles is integrated.
상기 나노 입자 분리장치(10)의 여과막은 양극산화 알루미늄 재질의 여과막을 포함할 수 있으며, 양극산화 알루미늄 재질의 여과막은 도 3d에 나타낸 바와 같이, 타재질에 비해 높은 기공도와 비교적 균일한 지름의 기공을 가지고 있다. The filtration membrane of the nanoparticle separation device 10 may include a filtration membrane made of anodized aluminum, and the filtration membrane made of anodized aluminum is made of pores having a higher porosity and a relatively uniform diameter compared to other materials. Have
한편, 나노 소포 분리를 위한 과정은 자동화되어 진행될 수 있다. 이 때, 상기 전과정 자동화를 위해서, 밸브(700)의 개폐, 하우징부(100)의 회전속도 및 방향을 제어하는 제어 시스템을 더 포함할 수 있다. On the other hand, the process for separating the nano vesicles can be automated. At this time, in order to automate the whole process, the control system for controlling the opening and closing of the valve 700, the rotational speed and the direction of the housing portion 100 may be further included.
보다 구체적으로, 도 4는 본 발명의 일실시예에 따른 나노 입자 분리장치(10)를 사용하는 상태를 도시한 것이다. 도 4에 도시된 바와 같이, 본 발명의 일실시예에 따른 나노 입자 분리장치(10)를 사용하기 위해서는 먼저 샘플 (최대 1 ㎖) 및 완충액 (600 ㎕)를 샘플수용부(200) 및 세척챔버부(600)에 로딩시킨다. 이 후, 3000 rpm의 회전속도로 하우징부(100)를 회전시키면 샘플의 불순물이 기울어진 챔버 내에서 침전되고(도 4a), 다음으로 제2 밸브(720)를 개방시켜 맑은 상층액은 제1 여과부(310) 및 제2 여과부(320)를 통해서 여과 되어 폐액수용부(400-1)로 이동하게 된다(도 4b). 이 후, 여과 과정 동안에 큰 입자는 600 ㎚ 직경을 갖는 제1 여과부(310)에서 걸러지고, 비혈관 단백질은 20 ㎚ 직경을 갖는 제2 여과부(320)로 통과되어 제거되면, 결국엔 제2 여과부(320) 상에는 나노 소포만이 농축되게 된다. 이 후, 제3 밸브(730)를 닫고, 제4 밸브(740)를 개방하여 세척챔버부(600)로부터 세척 완충액이 제2 여과부(320)로 흐르게 하여 세척을 진행한 뒤(도 4c), 제5 밸브(750)를 개방시키고, 1500 rpm의 회전속도로 하우징부(100)를 회전시키면, 제2 여과부(320) 아래에 남아 있던 용액이 완전히 폐액수용부(400-2)로 이동하게 된다 (도 4d). 마지막으로, 제6 밸브(760)를 개방하고, 1500 rpm의 회전속도로 하우징부(100)를 회전시키면, 제2 여과부(320)에 걸러진 농축된 소포가 입자포집부(800)로 이동하게 된다 (도 4e). 이로 인해, 낮은 원심력을 이용하여 나노 소포가 단시간에 분리될 수 있다.More specifically, Figure 4 shows a state using the nanoparticle separation device 10 according to an embodiment of the present invention. As shown in Figure 4, in order to use the nanoparticle separation device 10 according to an embodiment of the present invention, a sample (maximum 1 ml) and a buffer solution (600 µl) are first included in the sample accommodating part 200 and the washing chamber. The unit 600 is loaded. Thereafter, when the housing part 100 is rotated at a rotation speed of 3000 rpm, impurities of the sample are precipitated in the inclined chamber (FIG. 4A), and then the second valve 720 is opened to clear the supernatant. It is filtered through the filtration unit 310 and the second filtration unit 320 is moved to the waste liquid receiving unit (400-1) (Fig. 4b). Subsequently, during the filtration process, large particles are filtered out of the first filtration unit 310 having a diameter of 600 nm, and non-vascular proteins are passed through the second filtration unit 320 having a diameter of 20 nm to be removed. Only the nano vesicles are concentrated on the second filter unit 320. Thereafter, the third valve 730 is closed and the fourth valve 740 is opened so that the washing buffer flows from the washing chamber 600 to the second filtration unit 320 to perform washing (FIG. 4C). When the fifth valve 750 is opened and the housing part 100 is rotated at a rotational speed of 1500 rpm, the solution remaining under the second filtration part 320 completely moves to the waste liquid receiving part 400-2. (Figure 4d). Finally, when the sixth valve 760 is opened and the housing part 100 is rotated at a rotation speed of 1500 rpm, the concentrated vesicles filtered by the second filtration part 320 are moved to the particle collecting part 800. (FIG. 4E). Because of this, nano vesicles can be separated in a short time using a low centrifugal force.
하기 표 1에 나타낸 바와 같이, 본 발명의 분리법과 종래의 초원심 분리법, 상용화키트를 비교한 결과, 종래의 방법은 초원심분리기 혹은 침전시약을 이용한 많은 시간과 샘플 처리를 위한 여러 과정들을 필요로 하는반면, 분리된 필터부를 갖는 나노 입자 분리장치(10)의 경우, 전체 동작 시간은 30분 이내이며 G force 동작 범위도 초원심 분리 및 상용화키트에 비해 현저히 낮은 것을 확인할 수 있다. As shown in Table 1 below, as a result of comparing the separation method of the present invention and the conventional ultracentrifugation method and commercialization kit, the conventional method requires a lot of time and various processes for sample processing using an ultracentrifuge or a precipitation reagent. On the other hand, in the case of the nanoparticle separation device 10 having a separated filter unit, the total operating time is within 30 minutes and the G force operating range is also significantly lower than the ultracentrifugation separation and commercialization kit.
[규칙 제91조에 의한 정정 06.12.2016] 
Figure WO-DOC-TABLE-1
[Correction under Rule 91 06.12.2016]
Figure WO-DOC-TABLE-1
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
실시예 1. 실험 준비Example 1. Experimental Preparation
1-1. 본 발명에 따른 나노 입자 분리장치 제조1-1. Nanoparticle Separator Manufacture according to the Invention
본 발명에 따른 미세유동장치를 제조하기 위해서, 3D CAD 프로그램을 이용하여 상기 미세유동장치를 설계하고, 수치제어밀링 장치 (CNC milling machine)를 이용하여 제작하였다. 보다 구체적으로, 설계에 따라 폴리카보네이트 (Polycarbonate; PC, I-Components Co. Ltd, Korea)를 이용하여 Top, Body 및 Base 층 (layer)으로 나누어 나노 입자 분리장치를 가공하였다 (도 5 참조). 가공이 완료되면, 모든 층 (layer)을 두 개의 감압지 (pressure-sensitive), 양면 접착제 (DFM 200 clear 150 POLY H-9V-95, FLEXcon, USA) 및 커스터마이징된 압축 장치를 이용하여 라미네이트 하였다. 한편, 본 발명에 일실시예에 따른 밸브는 top 층에 배치시킬 수 있으며, 필요에 따라 외부 신호에 의해 자동적으로 개폐될 수 있다. 종래 알려진 멤브레인 필터가 융합된 lab-on-a-disc를 제조하는 일반적인 절차에 따라 상기 각 층은 전술한 바와 같이, 컴퓨터 수치 제어에 따라 가공되고, 본 발명의 일실시예에 따른 여과챔버부의 반대쪽 면은 필터 Ⅰ 및 필터 Ⅱ로써 각각 track-etched PC 막 (SPI, 13mm, 기공 직경 0.6 ㎛) 및 산화 알루미늄 양극막 (anodic aluminum oxide membrane; Whatman, 13mm, 0.02 ㎛) 같은 상업적으로 이용할 수 있는 막의 삽입을 위해서 조각하였다.In order to manufacture the microfluidic device according to the present invention, the microfluidic device was designed using a 3D CAD program and manufactured using a numerical milling machine (CNC milling machine). More specifically, according to the design by using a polycarbonate (PC, PC, I-Components Co. Ltd, Korea) was divided into a Top, Body and Base layer (layer) to process the nanoparticle separation device (see Figure 5). When processing was complete, all layers were laminated using two pressure-sensitive papers, double sided adhesive (DFM 200 clear 150 POLY H-9V-95, FLEXcon, USA) and a customized compression device. On the other hand, the valve according to an embodiment of the present invention can be disposed on the top layer, and can be opened and closed automatically by an external signal as needed. According to a general procedure for manufacturing a lab-on-a-disc fused to a conventionally known membrane filter, each layer is processed according to computer numerical control as described above, and the opposite side of the filtration chamber portion according to an embodiment of the present invention. The face is filter I and filter II, respectively, inserting commercially available membranes such as track-etched PC membranes (SPI, 13 mm, pore diameter of 0.6 μm) and aluminum oxide anodes (Whatman, 13 mm, 0.02 μm). Carved for.
한편, 나노 소포의 비특이적 흡착 및 최대 수율을 얻기 위해서, 1% 플루로닉 (pluronic) 용액 (PEO-PPO-PEO block copolymer)으로 모든 챔버 및 채널을 코팅하였다(도 6 참조). 보다 구체적으로 1% 플루로닉 용액을 모든 챔버 및 채널에 각각 1시간 동안 반응시킨 뒤, 플루로닉 용액을 제거하고 PBS 완충액으로 세척하였다.On the other hand, all chambers and channels were coated with 1% pluronic solution (PEO-PPO-PEO block copolymer) to obtain nonspecific adsorption and maximum yield of nano vesicles (see FIG. 6). More specifically, the 1% Pluronic solution was allowed to react in all chambers and channels for 1 hour, respectively, after which the Pluronic solution was removed and washed with PBS buffer.
1-2. 세포 배양1-2. Cell culture
전립선암 세포주인 LNCaP 세포를 10 % exo-free FBS (System Biosciences Inc., CA), 및 1 % 항생제/항진균제를 보충한 RPMI 배지 (Gibco, UK) 성장시켰으며, 5% CO2, 37 ℃ 조건의 인큐베이터에서 진행하였다. 세포 배양 상층액을 24시간 후에 수거하고, 세포 밖 소포는 각 프로토콜에 기재에 따라 수집하였다.LNCaP cells, a prostate cancer cell line, were grown in RPMI medium (Gibco, UK) supplemented with 10% exo-free FBS (System Biosciences Inc., CA), and 1% antibiotic / antifungal, and at 5% CO 2, 37 ° C. conditions. Proceed in an incubator. Cell culture supernatants were harvested after 24 hours and extracellular vesicles were collected as described in each protocol.
1-3. 임상 샘플 저장 및 처리1-3. Clinical Sample Storage and Processing
Institutional review board의 가이드라인에 따라서 방광암 환자와 마찬가지로 건강한 공여자의 소변 샘플을 수집하였으며, 첫 번째 소변 (15 ㎖)은 방광암 환자로부터 수집하였다. 수집된 소변들은 -80 ℃에서 사용될 때 까지 보관하였다.In accordance with the guidelines of the Institutional Review Board, urine samples from healthy donors were collected as in bladder cancer patients, and the first urine (15 ml) was collected from bladder cancer patients. Collected urine was stored until use at -80 ℃.
나노 소포를 분리하기 위해서, 상기 샘플을 해동시켜 RT에서 사용하였으며, 각각 5 ㎖ 소변은 초원심분리 (Ultracentrifugation; UC) 및 Exospin을 이용하여 세포 밖 소포를 분리하는데 사용하였고, 본 발명에 따른 나노 입자 분리장치에서 나노 소포 분리를 위해서, 400 ㎕ 소변을 사용하였다.To isolate nanovesicles, the samples were thawed and used at RT, and 5 ml urine each was used to separate extracellular vesicles using ultracentrifugation (UC) and Exospin, and the nanoparticles according to the present invention. For separation of nano vesicles in the separator, 400 μl urine was used.
실시예 2. 나노 beads를 혼합 용액 및 소변을 이용한 분리 효과 확인Example 2. Confirmation of the separation effect of the nano beads using a mixed solution and urine
2-1. 필터 조합에 따른 디스크 수행 효과 확인2-1. Check disk performance effect by filter combination
본 발명에 따른 나노 입자 분리장치의 필터 직경 조합에 따른 효과를 확인하기 위해서, 필터의 크기별 조합에 따른 실험을 진행하였다. In order to confirm the effect of the combination of the filter diameter of the nanoparticle separation device according to the present invention, the experiment was carried out according to the combination of the filter size.
보다 구체적으로, 200 ㎚ AAO 막의 필터 Ⅰ 및 20 ㎚ 막의 필터 Ⅱ를 조합하였을 때, 도 7a에 도시된 바와 같이, 대부분의 100 ㎚의 PS 나노입자는 200 ㎚ 직경 안에 끼어 20 ㎚ 필터 상에서는 PS 나노입자를 발견하지 못하였다. 다음으로 600 및 100 ㎚로 필터를 조합하였을 경우, 나노입자는 600 ㎚ 필터를 통과하였으나, 100 ㎚ 필터 상에 많은 입자들이 존재하였으나, 상기 입자가 회복되지 않았다. 마지막으로, 600 및 20 ㎚로 필터를 조합하였을 때, PS 나노입자의 높은 회복을 확인할 수 있었다 (도 7b 참조).More specifically, when the filter I of the 200 nm AAO membrane and the filter II of the 20 nm membrane are combined, as shown in FIG. 7A, most 100 nm PS nanoparticles are sandwiched within a 200 nm diameter and PS nanoparticles on the 20 nm filter. Did not find. Next, when the filters were combined at 600 and 100 nm, the nanoparticles passed through the 600 nm filter, but many particles were present on the 100 nm filter, but the particles did not recover. Finally, when the filters were combined at 600 and 20 nm, high recovery of the PS nanoparticles could be confirmed (see FIG. 7B).
다음으로, 800 ㎚ 및 100 ㎚ PS 나노입자 혼합한 용액을 이용해서, 상기 필터 크기에 따른 크기-선택성 분리 성능 실험을 진행하였다.Next, using a solution mixed with 800 nm and 100 nm PS nanoparticles, the size-selective separation performance experiment according to the filter size was conducted.
보다 구체적으로, 상기 600 및 20 ㎚로 필터를 조합하고 800 ㎚ 및 100 ㎚ PS 나노입자 혼합한 용액을 이용하여 디스크 수행 결과, 도 7c에 도시된 바와 같이, 800 ㎚의 나노입자는 필터 Ⅰ에서 통과하지 않고 걸러졌으며, 오직 100 ㎚의 나노입자만이 필터 Ⅱ에 위치하여 농축되는 것을 확인할 수 있었다.More specifically, as a result of performing a disk using a solution in which the filters were combined at 600 and 20 nm and mixed with 800 nm and 100 nm PS nanoparticles, as shown in FIG. 7C, 800 nm nanoparticles passed through the filter I. It was filtered without, and only 100 nm nanoparticles were found to be concentrated in the filter II.
본 실시예에서는, NTA (nanoparticle tracking analysis)를 통해 나노 입자를 트래킹하여 그 크기와 농도를 분석하였다. In this example, nanoparticle tracking was carried out through nanoparticle tracking analysis (NTA) to analyze the size and concentration.
도 8는 100 nm와 800 nm의 나노 beads를 혼합한 용액에서, 디스크 실험 수행 결과, 100 nm 입자가 걸러지는 것을 보여주는 실험 데이터로서, 혼합 용액에는 100 nm와 800 nm 입자를 모두 포함하며 낮은 농도 값을 보여준 반면 (도 8a 참조), 디스크 수행 결과, 필터에서는 100 nm의 beads만이 검출되었고 농축된 결과를 보여주었다(도 8b 및 c 참조).FIG. 8 shows experimental data showing that 100 nm particles are filtered as a result of performing a disk experiment in a solution mixed with 100 nm and 800 nm nano beads. The mixed solution contains both 100 nm and 800 nm particles and has a low concentration value. On the other hand (see FIG. 8A), disc performance showed that only 100 nm beads were detected and concentrated in the filter (see FIGS. 8B and C).
2-2. 세포 밖 소포 농축 수행 능력 확인2-2. Determine ability to carry out extracellular vesicle enrichment
상기 실시예 2-1에 따른 다른 크기의 PS 나노입자에 따른 디스크의 분리 효과를 확인한 후, 디스크의 CCS 및 소변 샘플로부터 세포 밖 소포 농축 수행 능력을 평가하였다.After confirming the separation effect of the disc according to the PS nanoparticles of different sizes according to Example 2-1, the ability to perform extracellular vesicle enrichment from the CCS and urine samples of the disc was evaluated.
보다 구체적으로, 1 ㎖의 CCS 또는 방광암 환자의 소변 샘플을 디스크 실험을 수행하여 NTA를 통해 농도를 분석한 결과, 도 9a 및 b에 도시된 바와 같이, 디스크 실험을 진행하기 전에 비해서 약 5배 가량 높은 농도를 보여주었다. More specifically, 1 mL of the urine samples of patients with CCS or bladder cancer by performing a disk experiment to analyze the concentration through NTA, as shown in Figure 9a and b, about 5 times compared to before the disk experiment Showed a high concentration.
도 9c는 실제로 필터 Ⅰ상에 거대 불순물이 걸러지고, 방광암 환자의 소변의 세포 밖 소포가 필터 Ⅱ에 걸러지는 것을 확인한 결과이며, 도 9d 및 e는 나노 소포가 둥근 형태로 회복된 것을 확인한 결과이다.FIG. 9C shows that large impurities are actually filtered on filter I and extracellular vesicles of urine of bladder cancer patients are filtered by filter II, and FIGS. 9D and e are results confirming that the nanovesicles are recovered in a rounded form. .
도 10은 실제로 1 mL의 소변에서 디스크 실험 수행 결과 30 nm와 600 nm 사이의 나노 소포가 걸러지는 것을 보여주는 실험 데이터로서, 소변에는 다양한 크기의 입자들이 관찰되는 반면(도 10a 참조), 디스크 수행 결과, 필터에서는 30 nm와 600 nm 사이의 나노 소포가 검출되어, 범위 내의 나노 소포들이 농축된 결과를 보여주었으며, 총 분리 시간은 40분 이내였다 (도 10b 참조).FIG. 10 shows experimental data showing that nano vesicles are filtered between 30 nm and 600 nm as a result of performing disk experiments in 1 mL of urine, while particles of various sizes are observed in urine (see FIG. 10A). In the filter, nano vesicles were detected between 30 nm and 600 nm, showing the concentration of nano vesicles in the range, and the total separation time was within 40 minutes (see FIG. 10B).
실시예 3. 소포 분리 방법에 따른 소포 분리 및 정량 비교 분석Example 3 Parcel Separation and Quantitative Comparative Analysis
본 발명에 따른 나노 입자 분리장치를 이용한 소포 분리 효과를 종래 소포 분리 방법과의 차이를 확인하기 위해서, 하기와 같이 초원심분리 (Ultracentrifugation), Exospin 및 본 발명에 따른 나노 입자 분리장치를 이용한 방법으로 실험을 진행하였다.In order to confirm the effect of the vesicle separation using the nanoparticle separation device according to the present invention from the conventional vesicle separation method, ultracentrifugation, Exospin and the method using the nanoparticle separation device according to the present invention are as follows. The experiment was conducted.
3-1. 초원심분리기 (Ultracentrifugation)에 따른 소포 분리3-1. Vesicle Separation by Ultracentrifugation
초원심분리 (UC)는, 상기 실시예 1-3을 통해 획득한 샘플 시료의 세포 파편을 제거하기 위해서, 300 × g에서 10분간 원심분리를 진행한다. 이 후, 상층액을 20,000 × g에서 30분간 원심분리를 진행하여 생성된 결과 펠릿은 폐기하였다. 다음으로 상기 상층액을 80 ㎖ 폴리프로필렌 초원심분리기 튜브로 이동시켜 Ti45 앵글로터 (Ti45 fixed angle rotor)에서 1시간 동안, 4 ℃ 및 50,000 × g에서 원심분리를 진행하였다. 상기 원심분리 후 결과 펠릿은 폐기하고, 상층액은 새로운 초원심분리기 튜브로 이동시켜 Ti45 앵글로터 (Ti45 fixed angle rotor)에서 2시간 동안, 4 ℃ 및 150,000 × g에서 원심분리를 진행하여 소포 펠릿을 수집하였다. 이 후, 상층액을 폐기하고, 펠릿은 10 ㎚ 프리-필터링된 PBS 1 ㎖로 재현탁시키고, 1 ㎖ 폴리카보네이트 초원심분리기 튜브로 이동시켜 MLA-130 앵글로터 (MLA-130 fixed angle rotor)에서 2시간 동안, 4 ℃ 및 150,000 × g에서 원심분리를 진행하였다. 결과 펠릿은 10 ㎚ 프리-필터링된 PBS 1 ㎖로 재현탁시키고, 즉시 사용할 경우에는 4 ℃에서 보관하거나, 장기 보존시에는 -80 ℃에서 보관하였다.Ultracentrifugation (UC) is centrifuged at 300 x g for 10 minutes to remove cell debris from the sample samples obtained in Examples 1-3. Thereafter, the resulting pellet was centrifuged at 20,000 x g for 30 minutes, and the resulting pellet was discarded. The supernatant was then transferred to an 80 ml polypropylene ultracentrifuge tube and centrifuged at 4 ° C. and 50,000 × g for 1 hour on a Ti45 fixed angle rotor. After the centrifugation, the resulting pellet was discarded, and the supernatant was transferred to a new ultracentrifuge tube, followed by centrifugation at 4 ° C. and 150,000 × g for 2 hours in a Ti45 fixed angle rotor to defoamer pellets. Collected. The supernatant is then discarded, and the pellet is resuspended with 1 ml of 10 nm pre-filtered PBS and transferred to a 1 ml polycarbonate ultracentrifuge tube in a MLA-130 fixed angle rotor. Centrifugation was performed at 4 ° C. and 150,000 × g for 2 hours. The resulting pellet was resuspended in 1 ml of 10 nm pre-filtered PBS and stored at 4 ° C. for immediate use or at −80 ° C. for long term storage.
3-2. Exospin exosome purification kit를 이용한 소포 분리3-2. Vesicle Separation Using Exospin Exosome Purification Kit
상기 실시예 3-1에 전술한 바와 같이, 본 발명에 따른 나노 입자 분리장치를 이용한 소포 분리의 효과를 종래 소포 분리 방법과의 차이를 확인하기 위해서, Exospin exosome purificaition kit를 이용하여 소포를 분리하는 실험을 진행하였다.As described above in Example 3-1, in order to confirm the effect of the vesicle separation using the nanoparticle separation apparatus according to the present invention from the conventional vesicle separation method, the vesicles are separated using the Exospin exosome purificaition kit. The experiment was conducted.
보다 구체적으로, 상기 실시예 1-3을 통해서 획득한 샘플의 세포 파편을 제거하기 위해서, 300 × g에서 10분간 원심분리를 진행하여, 상층액은 20,000 × g에서 30분간 원심분리하고, 결과 펠릿은 폐기하였다. 다시 상층액은 완충액 A의 절반 용량과 혼합하여 부드럽게 섞고, 밤새 4 ℃에서 배양한 혼합물을 20,000 × g에서 1시간 동안 원심분리하여 생성된 펠릿은 kit에 함께 제공된 PBS 100 ㎕로 재현탁시켰다. 소포 펠릿은 제조사설명서에 따라 제공된 스핀컬럼 (spin column)을 이용하여 정제하여 분리된 소포 200 ㎕는 즉시 사용/단기 보존시에는 4 ℃에서 보관하거나, 장기 보존시에는 -80 ℃에서 보관하였다.More specifically, in order to remove the cell debris of the sample obtained through Example 1-3, centrifugation for 10 minutes at 300 × g, the supernatant centrifuged for 30 minutes at 20,000 × g, the resulting pellet Discarded. Again, the supernatant was mixed gently with half the volume of buffer A, and the resulting pellet was centrifuged at 20,000 × g for 1 hour at 4 ° C., and the resulting pellet was resuspended with 100 μl of PBS provided in the kit. The vesicle pellets were purified using a spin column provided according to the manufacturer's instructions, and 200 분리 of the separated vesicles were stored at 4 ° C. for immediate use / short term storage or at −80 ° C. for long term storage.
3-3. 본 발명에 따른 나노 입자 분리장치에 따른 소포 분리 및 정량3-3. Vesicle separation and quantification according to nanoparticle separation device according to the present invention
본 발명의 일실시예에 따른 나노 입자 분리장치를 이용하여 소포를 분리하는 실험을 진행하였다. 보다 구체적으로, 표본 샘플 (소변 또는 복합 배지)에 큰 입자 또는 세포 파편은 300 × g에서 2분간 침전시키고, 맑은 상층액은 여과챔버부로 이동하여 500 × g에서 15분간 필터 Ⅰ 및 Ⅱ를 통해서 여과시킨다. 필터 Ⅱ를 PBS 용액으로 500 × g에서 10분간 세척을 진행한 후, 여과된 샘플 용액은 폐액수용부 2로 폐기된다. 이 때, 필터 Ⅱ (~100 ㎕)에서 여과된 소포는 입자포집부로 이동하고, 필터 Ⅱ는 100 ㎕ PBS로 세척시킨다. 상기 입자포집부로 이동한 소포가 함유된 용액은 추가 분석에 사용하였다.An experiment was performed to separate the vesicles by using the nanoparticle separation device according to an embodiment of the present invention. More specifically, large particles or cell debris in a sample sample (urine or complex medium) is precipitated at 300 x g for 2 minutes, and the clear supernatant is transferred to the filtration chamber and filtered through filters I and II for 15 minutes at 500 x g. Let's do it. After the filter II was washed with PBS solution at 500 x g for 10 minutes, the filtered sample solution was discarded into the waste solution holding part 2. At this time, the vesicles filtered in Filter II (˜100 μl) were transferred to the particle collection part, and Filter II was washed with 100 μl PBS. The solution containing the vesicles moved to the particle collection was used for further analysis.
실시예 4. 효소면역분석 검사 (Enzyme linked immunosorbent assay; ELISA)Example 4 Enzyme linked immunosorbent assay (ELISA)
각 소포 분리 방법에 따른 분리 효과를 비교하기 위해서, 상기 실시예 3의 분리방법에 따른 소포 용액을 효소면역분석 검사 (ELISA)를 이용하여 분석하였다.In order to compare the separation effect according to each vesicle separation method, the vesicle solution according to the separation method of Example 3 was analyzed using an enzyme immunoassay (ELISA).
소포 용액은 상기 실시예 3의 세가지 분리 방법에 대해 입력 용량이 동일하게 유지하여 준비하고, 플레이트를 4 ℃에서 밤새 항체 (항 CD9항체, MEM61, abcam, MA, US)로 코팅 한 후, 1시간 동안 37 ℃에서 1% BSB-PBS 완충액으로 차단시켰다. 이 후, 0.1% BSA-PBS 완충액 (세척 완충액)으로 세척하여, 소포 용액과 함께 PBS 완충액 (100 ㎕)에 1시간 동안 37 ℃에서 배양시킨 뒤, 용액을 제거한 후, 플레이트를 세척 완충액으로 두 번 세척하였다. 이 때, 세척 완충액을 사용하여 세 번 씻어낸 다음 PBS 완충액 (100 ㎕, 500 ng/㎖)으로 희석한 바이오틴-컨쥬 게이트 검출 항체 용액 (항 CD81항체, 비오틴, LifeSpan Biosciences, INC, WA, US)을 추가하고, 1시간 동안 방에서 배양시킨다. 세척 완충액을 사용하여 세 번 씻어낸 다음 플레이트는 PBS 완충액 (100 ㎕, 1 : 1000 in PBS)으로 희석한 HRP-컨쥬 게이트 스트렙타아비딘 용액과 함께 RT에서 30분간 배양시켰다. 그 다음, 100 ㎕의 TMB 용액을 추가하여 방에서 15분간 배양하고, 마지막으로 50 ㎕의 종결 용액을 각 웰에 추가하여 반응을 중단시킨 후, 용액의 흡광도는 450 nm에서 plate reader 분광광도계 (TECAN)을 이용하여 측정하였다.Antifoam solution was prepared by maintaining the same input capacity for the three separation methods of Example 3, the plate was coated with an antibody (anti-CD9 antibody, MEM61, abcam, MA, US) overnight at 4 ℃, 1 hour Blocked with 1% BSB-PBS buffer at 37 ° C. Thereafter, the cells were washed with 0.1% BSA-PBS buffer (wash buffer), incubated in PBS buffer (100 µl) with antifoam solution at 37 ° C for 1 hour, and then the solution was removed, and the plate was then washed twice with washing buffer. Washed. At this time, the biotin-conjugate detection antibody solution (anti CD81 antibody, biotin, LifeSpan Biosciences, INC, WA, US), washed three times with washing buffer and diluted with PBS buffer (100 μl, 500 ng / ml) Add and incubate in the room for 1 hour. After washing three times with wash buffer, plates were incubated for 30 min at RT with HRP-conjugate streptavidin solution diluted in PBS buffer (100 μl, 1: 1000 in PBS). Then, add 100 μl of TMB solution and incubate for 15 minutes in the room, finally add 50 μl of termination solution to each well to stop the reaction, and the absorbance of the solution was measured at 450 nm with a plate reader spectrophotometer (TECAN ) Was measured.
실시예 5. 소포체 분리 결과 확인Example 5 Confirmation of Results of Separation of Vesicles
상기 실시예를 통한 각 소포체 분리 방법에 따른 효율을 비교 분석하였다. 보다 구체적으로, 1 ㎖ LNCaP CCS를 이용하여 상기 세가지 방법으로 나노 소포를 분리하였으다.The efficiency according to the separation method of each endoplasmic reticulum through the above example was analyzed. More specifically, nano vesicles were isolated by the three methods using 1 ml LNCaP CCS.
그 결과, 도 11에 도시된 바와 같이, NTA 결과, 본 발명에 따른 나노 입자 분리장치로부터 분리된 나노 소포의 높은 농축 수율을 보여주고 있다.As a result, as shown in Figure 11, NTA results show a high concentration yield of nano vesicles separated from the nanoparticle separator according to the present invention.
보다 구체적으로, 도 11에 도시된 바와 같이, 검색된 세포 밖 소포의 농도는 각각 1.33 ± 0.07, 1.32 ± 0.06 및 7.67 ± 1.5 × 109 particles/㎖로 본 발명에 따른 디스크 방법의 회복력이 종래의 UC 방법보다 5.8배 높은 것을 확인하였다.More specifically, as shown in FIG. 11, the concentrations of the detected extracellular vesicles were 1.33 ± 0.07, 1.32 ± 0.06 and 7.67 ± 1.5 × 10 9 particles / ml, respectively. It confirmed that it was 5.8 times higher than the method.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명은 미세유동장치를 활용한 나노 입자 분리 장치 및 방법 관한 것이다. 구체적으로, 낮은 원심력과 크기를 기반으로 하기 때문에 항체 특이성과 무관한 나노 소포체를 단시간 안에 종래의 초원심분리기 없이 분리할 수 있으며, 시료 주입후 전과정을 일체화 및 자동화시킴으로써, 추가적인 전문 인력이 필요하지 않고 유체의 정확한 계량이 가능하기 때문에 나노 소포체의 손실을 줄일 수 있다.The present invention relates to a nanoparticle separation device and method using a microfluidic device. Specifically, since it is based on low centrifugal force and size, nano-vesicles irrelevant to antibody specificity can be separated in a short time without a conventional ultracentrifuge, and by integrating and automating the entire process after sample injection, no additional expert personnel are required. Accurate metering of fluids reduces the loss of nano vesicles.

Claims (29)

  1. 나노 입자 분리장치에 있어서,In the nano particle separator,
    회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
    나노 입자가 포함된 유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 providing a space supported by injecting a fluid sample including nanoparticles;
    상기 유체 샘플로부터 나노 입자를 여과할 수 있는 1 nm 내지 1 ㎛의 기공을 갖는 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including a filtration membrane having pores of 1 nm to 1 μm capable of filtering nanoparticles from the fluid sample;
    여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
    상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치.And a micro flow path portion 500 for providing a passage for the flow of the fluid sample.
  2. 제1항에 있어서, 상기 유체 샘플은, 각종 나노 입자가 분산된 수용액 및 세포체, 희귀 생체 입자 등을 포함하는 소변, 혈액, 타액 및 객담 등으로 이루어진 군으로부터 선택되는 생체 시료인 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 1, wherein the fluid sample is a biological sample selected from the group consisting of urine, blood, saliva, sputum and the like, including aqueous solutions and cell bodies, rare biological particles and the like dispersed in various nanoparticles, Nano particle separator.
  3. 제1항에 있어서, 상기 나노 입자 분리장치는, 세척용액이 담지되는 공간을 제공하는 세척챔버부(600)를 더 포함하는 것을 특징으로 하는, 나노 입자 분리장치.According to claim 1, The nanoparticle separation device, Nanoparticle separation device, characterized in that further comprising a washing chamber 600 for providing a space in which the cleaning solution is carried.
  4. 제1항에 있어서, 상기 여과막은, 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머, 양극산화알루미늄, 니켈 및 실리콘으로 이루어진 군으로부터 선택되는 소재로 구성되는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 1, wherein the filtration membrane is made of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon. Particle separator.
  5. 제1항에 있어서, 상기 나노 입자 분리장치는, 상기 여과챔버부(300)의 탈부착을 위한 하나 이상의 체결부를 더 포함하는 것을 특징으로 하는, 나노 입자 분리장치.According to claim 1, The nanoparticle separation device, Nanoparticle separation device, characterized in that it further comprises one or more fastening portion for detachable attachment of the filtration chamber (300).
  6. 제5항에 있어서, 상기 체결부는, 폴리디메틸실록산 (polydimethylsiloxane), 실리콘, 라텍스 및 고무 등으로 이루어진 군에서 선택되는 탄성 물질인 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separator of claim 5, wherein the fastening part is an elastic material selected from the group consisting of polydimethylsiloxane, silicone, latex, rubber, and the like.
  7. 제1항에 있어서, 상기 미세유로부(500)는, 장치를 관통하는 유로와 연결되어 유체 샘플의 유로 변경이 가능한 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separation device of claim 1, wherein the microchannel unit 500 is connected to a channel that penetrates the device to change a channel of the fluid sample.
  8. 나노 입자 분리장치에 있어서,In the nano particle separator,
    회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
    유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
    시료를 여과할 수 있는 두 개 이상의 여과막을 포함하는 여과챔버부(300);A filtration chamber unit 300 including two or more filtration membranes capable of filtering a sample;
    여과된 샘플 용액을 보관하기 위한 폐액수용부(400); 및Waste solution holding unit 400 for storing the filtered sample solution; And
    상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500)를 포함하는, 나노 입자 분리장치.And a micro flow path portion 500 for providing a passage for the flow of the fluid sample.
  9. 제8항에 있어서, 상기 여과막은, 폴리카보네이트, 폴리스타이렌, 폴리메틸메타크릴레이트, 사이클릭 올레핀 코폴리머, 양극산화알루미늄, 니켈 및 실리콘으로 이루어진 군으로부터 선택되는 소재로 구성되는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 8, wherein the filtration membrane is nano, characterized in that composed of a material selected from the group consisting of polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer, anodized aluminum, nickel and silicon. Particle separator.
  10. 제8항에 있어서, 상기 여과막은, 물리적인 힘으로 상기 하우징부(100)로부터 선택적으로 탈부착되는 것을 특징으로 하는, 나노 입자 분리장치.According to claim 8, The filtration membrane, Nanoparticle separation device, characterized in that the detachable detachment from the housing portion (100) by a physical force.
  11. 제8항에 있어서, 상기 여과막은, 상기 여과챔버부(300)는, 동일 챔버 내에서 두 개 이상 적층되어 단일 챔버에서 유체 이송 시 두 개 이상의 크기를 가지는 여과막을 통하여 나노 입자를 포집하는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 8, wherein the filtration membrane, the filtration chamber 300, two or more stacked in the same chamber to collect the nanoparticles through the filtration membrane having two or more sizes during fluid transfer in a single chamber A nanoparticle separator.
  12. 제8항에 있어서, 상기 여과막은 단일 챔버에 하나의 여과막을 포함하며, 복수의 챔버가 서로 다른 방사상의 좌표에 배치되어 상기 유체 샘플이 복수의 여과막을 통과하여 복수의 입자 여과를 수행하여 특정 크기 범위의 나노 입자를 포집하는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 8, wherein the filtration membrane comprises a single filtration membrane in a single chamber, and the plurality of chambers are disposed at different radial coordinates so that the fluid sample passes through the plurality of filtration membranes to perform plural particle filtration to a specific size. Nanoparticle separator, characterized in that to collect a range of nanoparticles.
  13. 제8항에 있어서, 상기 여과막은,The method of claim 8, wherein the filtration membrane,
    100 nm 내지 1 μm 직경의 적어도 하나 이상의 기공을 갖는 제1 여과막; 및A first filtration membrane having at least one or more pores of 100 nm to 1 μm diameter; And
    1 nm 내지 100 nm 직경의 적어도 하나 이상의 기공을 갖는 제2 여과막을 포함하는 것을 특징으로 하는, 나노 입자 분리장치.And a second filtration membrane having at least one or more pores having a diameter of 1 nm to 100 nm.
  14. 제8항에 있어서, 상기 미세유로부(500)는, 상기 여과챔버부(300) 상부 또는 하부에 배치되며, 상기 챔버들은 장치 중심부에서 일정 거리 떨어진 곳에 배치되어 용액의 손실을 최소화하는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 8, wherein the micro-channel 500 is disposed above or below the filtration chamber 300, the chambers are disposed at a distance away from the center of the device to minimize the loss of solution Nano particle separator.
  15. 나노 입자 분리장치에 있어서,In the nano particle separator,
    회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
    유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
    시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
    여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
    상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500); 및A micro flow path part 500 for providing a passage for the flow of the fluid sample; And
    미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700)를 포함하여 시료로부터 나노입자를 여과하는 것을 특징으로 하는, 나노 입자 분리 장치.And a valve (700) capable of selectively controlling the flow of fluid within the microchannel, characterized in that the nanoparticles are filtered from the sample.
  16. 제 15항에 있어서,The method of claim 15,
    상기 샘플수용부(200)는, 시료의 불순물을 정제 할 수 있는 샘플 정제를 수행 할 수 있는 것을 특징으로 하는 나노 입자 분리 장치.The sample accommodating part 200, the nanoparticle separation device, characterized in that to perform a sample purification that can purify the impurities of the sample.
  17. 제15항에 있어서, 상기 샘플수용부(200)는, 하부가 방사 방향보다 틀어진 각도로 형성된 공간을 포함하여 불순물 분리를 수행하는 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separation device of claim 15, wherein the sample accommodating part 200 performs impurity separation by including a space formed at an angle at which a lower portion thereof is distorted than a radial direction.
  18. 제15항에 있어서, 상기 샘플수용부(200)는, 분리된 불순물 역류를 방지하기 위한 홈을 포함하는 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separator according to claim 15, wherein the sample accommodating part 200 includes a groove for preventing separated impurity backflow.
  19. 제15항에 있어서, 상기 샘플수용부(200)는, 경사면과 곡선으로 이루어져 샘플 이송시 상기 샘플의 손실 및 손상을 최소화하는 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separation device of claim 15, wherein the sample accommodating part 200 is formed of an inclined surface and a curve to minimize loss and damage of the sample during sample transfer.
  20. 제15항에 있어서, 상기 밸브(700)는, 외부 신호에 따라 개폐가 가능한 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separator according to claim 15, wherein the valve 700 can be opened or closed in response to an external signal.
  21. 제15항에 있어서, 상기 밸브(700)는, 전과정 자동화를 위하여 회전 가능한 장치 외부에 존재하며, 밸브의 개폐 및 몸체의 회전 속도와 방향을 제어할 수 있는 시스템을 포함하는 것을 특징으로 하는, 나노 입자 분리장치.The method of claim 15, wherein the valve 700 is located outside the rotatable device for the whole process automation, characterized in that it comprises a system capable of controlling the opening and closing of the valve and the rotational speed and direction of the body, Particle separator.
  22. 제15항에 있어서, 상기 폐액수용부(400)는, 별도의 불순물 처리 없이 고순도의 나노 입자 분리가 가능한 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separator according to claim 15, wherein the waste liquid receiving part 400 is capable of separating nanoparticles of high purity without a separate impurity treatment.
  23. 제15항에 있어서, 상기 여과챔버부(300)는, 하나 이상의 상기 폐액수용부(400)와 연결되어 정제 후 불순물 확산이 방지되는 것을 특징으로 하는, 나노 입자 분리장치.The apparatus of claim 15, wherein the filtration chamber part 300 is connected to one or more of the waste liquid receiving parts 400 to prevent impurity diffusion after purification.
  24. 제15항에 있어서, 상기 나노 입자 분리장치는, 상기 여과챔버부(300)의 탈부착을 위한 하나 이상의 체결부를 더 포함하는 것을 특징으로 하는, 나노 입자 분리장치.16. The nanoparticle separator according to claim 15, wherein the nanoparticle separator further comprises at least one fastening part for detachable attachment of the filtration chamber part (300).
  25. 제15항에 있어서, 상기 나노 입자 분리장치는, BSA (bovine serum albumin) 단백질 또는 Pluronic (PEO-PPO-PEO) 고분자 물질을 주입하여 표면에 비특이적 결합을 최소화하는 것을 특징으로 하는, 나노 입자 분리장치.The nanoparticle separator of claim 15, wherein the nanoparticle separator minimizes nonspecific binding to a surface by injecting a BSA (bovine serum albumin) protein or a Pluronic (PEO-PPO-PEO) polymer material. .
  26. 제1항에 있어서, 상기 여과챔버부(300) 및 폐액수용부(400)는, 원활한 여과를 수행하기 위한 통풍구(vent)를 포함하는 것을 특징으로 하는, 나노 입자 분리장치.According to claim 1, wherein the filtration chamber 300 and the waste liquid receiving portion 400, characterized in that it comprises a vent (vent) for performing a smooth filtration, nanoparticle separation device.
  27. 나노 입자 분리장치에 있어서,In the nano particle separator,
    회전 가능한 디스크 형상의 하우징부(100);Rotatable disk-shaped housing portion 100;
    유체 샘플을 주입하여 담지되는 공간을 제공하는 샘플수용부(200);A sample accommodating part 200 which provides a space supported by injecting a fluid sample;
    시료를 여과할 수 있는 하나 이상의 여과막을 수용하는 여과챔버부(300);A filtration chamber unit 300 for receiving one or more filtration membranes capable of filtering a sample;
    여과된 샘플 용액을 보관하기 위한 폐액수용부(400); Waste solution holding unit 400 for storing the filtered sample solution;
    상기 유체 샘플의 유동을 위한 통로를 제공하는 미세유로부(500);A micro flow path part 500 for providing a passage for the flow of the fluid sample;
    미세 유로 내에서 선택적으로 유체의 흐름을 조절할 수 있는 밸브(700); 및A valve 700 capable of selectively controlling the flow of fluid in the microchannel; And
    여과된 특정 크기 범위의 나노입자를 회수할 수 있는 입자포집부(800)를 포함하여 시료로부터 특정 크기 범위의 나노입자를 여과 및 회수할 수 있는 것을 특징으로 하는, 나노 입자 분리 장치.Nanoparticle separation device, characterized in that it can filter and recover a specific size range of nanoparticles from a sample, including a particle collecting unit (800) capable of recovering the filtered specific size range of nanoparticles.
  28. 제27항에 있어서, 상기 나노입자 회수는, 여과막의 상면에는 나노입자를 포함하는 회수하고자 하는 용액 및 하면은 폐액에 인접해 있을 때, 상기 여과막에 존재하는 기공 내부의 모세관압력 보다 작은 최대 3000 rpm 이하의 회전속도를 사용하여 상기 하면에 인접한 폐액을 상기 폐액수용부(400)로 버린 후, 여과막의 상면에 위치한 나노입자를 포함하는 용액을 선택적으로 회수하는 것을 특징으로 하는, 나노 입자 분리 장치. 28. The method of claim 27, wherein the recovery of the nanoparticles, the upper surface of the membrane and the solution to be recovered containing the nanoparticles, when the lower surface adjacent to the waste liquid, the maximum 3000 rpm less than the capillary pressure inside the pores present in the filter membrane After discarding the waste liquid adjacent to the lower surface using the following rotational speed to the waste liquid receiving portion 400, characterized in that for selectively recovering a solution containing the nanoparticles located on the upper surface of the filter membrane, nanoparticle separation device.
  29. 제27항에 있어서, 상기 입자포집부(800)는, 상기 여과챔버부(300)의 상면과 미세유로로 연결되고, 여과챔버부(300)의 하면은 폐액수용부(400)와 연결되는 것을 특징으로 하는, 나노 입자 분리 장치.28. The method of claim 27, wherein the particle collecting unit 800, the upper surface of the filtration chamber 300 is connected to the micro channel, the lower surface of the filtration chamber 300 is characterized in that it is connected to the waste liquid receiving unit 400 Nanoparticle separation apparatus.
PCT/KR2016/011917 2015-10-23 2016-10-21 Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same WO2017069573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,454 US11154860B2 (en) 2015-10-23 2016-10-21 Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150147883 2015-10-23
KR10-2015-0147883 2015-10-23
KR1020160137581A KR101891890B1 (en) 2015-10-23 2016-10-21 Centrifugal force-baced nano particle isolation device, and nano particle isolation methods
KR10-2016-0137581 2016-10-21

Publications (1)

Publication Number Publication Date
WO2017069573A1 true WO2017069573A1 (en) 2017-04-27

Family

ID=58557298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011917 WO2017069573A1 (en) 2015-10-23 2016-10-21 Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same

Country Status (1)

Country Link
WO (1) WO2017069573A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229496A (en) * 2018-03-06 2019-09-13 中国科学院化学研究所 A kind of PPO nanocomposite and preparation method thereof
CN112940910A (en) * 2019-12-09 2021-06-11 中国科学院大连化学物理研究所 Islet vesicle enrichment device and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087486A2 (en) * 2000-05-15 2001-11-22 Tecan Trading Ag Microfluidics devices and methods for performing cell based assays
KR20120088202A (en) * 2011-01-31 2012-08-08 광주과학기술원 Biosensors for Detecting Microbes
KR20130080307A (en) * 2012-01-04 2013-07-12 삼성전자주식회사 Microfluidic apparatus comprising rotatable disc-type body, and method for separating target material and amplifying nucleic acid using the same
KR20150045816A (en) * 2013-10-21 2015-04-29 삼성전자주식회사 Microfluidic apparatus and target cell detecting method using the same
KR20150101308A (en) * 2014-02-26 2015-09-03 삼성전자주식회사 Microfluidic Device and Microfluidic System Including thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087486A2 (en) * 2000-05-15 2001-11-22 Tecan Trading Ag Microfluidics devices and methods for performing cell based assays
KR20120088202A (en) * 2011-01-31 2012-08-08 광주과학기술원 Biosensors for Detecting Microbes
KR20130080307A (en) * 2012-01-04 2013-07-12 삼성전자주식회사 Microfluidic apparatus comprising rotatable disc-type body, and method for separating target material and amplifying nucleic acid using the same
KR20150045816A (en) * 2013-10-21 2015-04-29 삼성전자주식회사 Microfluidic apparatus and target cell detecting method using the same
KR20150101308A (en) * 2014-02-26 2015-09-03 삼성전자주식회사 Microfluidic Device and Microfluidic System Including thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229496A (en) * 2018-03-06 2019-09-13 中国科学院化学研究所 A kind of PPO nanocomposite and preparation method thereof
CN112940910A (en) * 2019-12-09 2021-06-11 中国科学院大连化学物理研究所 Islet vesicle enrichment device and preparation method and application thereof
CN112940910B (en) * 2019-12-09 2022-07-15 中国科学院大连化学物理研究所 Islet vesicle enrichment device and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2017069573A1 (en) Centrifugal force-based nanoparticle separation apparatus and method for separating nanoparticles using the same
WO2015030485A1 (en) Device and method for detecting analyte by movement of particles
US11761952B2 (en) Exosome-total-isolation-chip (ExoTIC) device for isolation of exosome-based biomarkers
Leung et al. Comparison of ThinPrep and conventional preparations: nongynecologic cytology evaluation
WO2011136624A2 (en) Automatic biological sample purification device having a magnetic-field-applying unit, a method for extracting a target substance from a biological sample, and a protein expression and purification method
WO2012033291A2 (en) Apparatus for separating fine particles using magnetophoresis, and method for separating fine particles using same
WO2016080617A1 (en) Stationary liquid phase lab-on-a-chip
DE60236145D1 (en) CELL ISOLATION PROCESS AND USES THEREOF
Ramachandraiah et al. Inertial microfluidics combined with selective cell lysis for high throughput separation of nucleated cells from whole blood
WO2008048616A3 (en) Microfluidic magnetophoretic device and methods for using the same
KR101891890B1 (en) Centrifugal force-baced nano particle isolation device, and nano particle isolation methods
WO2017030408A1 (en) Method for concentrating and separating nucleated red blood cells in maternal blood, for non-invasive prenatal diagnosis
US9390956B2 (en) Method for the temporary connection of a product substrate to a carrier substrate
WO2016060301A1 (en) Novel biological activity testing structure for tracking single cell, using gelling agents
WO2022250490A1 (en) Micro-particle separation device and micro-particle separation method using same
WO2019107763A1 (en) Microfluidic device capable of removing microbubbles in channel by using porous thin film, sample injection device for preventing inflow of bubbles, and method for bonding panel of microfluidic element by using mold-releasing film
US5783087A (en) Method and apparatus for isolation and purification of immune complexes
WO2020106004A1 (en) Microfluidic device having separable structure using thin film
WO2021101068A1 (en) Multi-filter for separating blood components, and disease diagnosis kit using same
WO2021215878A1 (en) Microvesicle isolation method and microvesicle isolation device
WO2019147071A1 (en) Membrane structure body having matrix structure and biomolecule filter using same
WO2019039911A9 (en) Sample analysis chip, sample analysis device containing same, and cartridge mounted on sample analysis chip
WO2019023960A1 (en) Functionalized mesh and fluidic apparatus for capturing cells or molecules in solution
Feller et al. Specificity and polymorphism of diaminopeptidase IV in normal and neoplastic Tμ lymphocytes
WO2011111908A1 (en) Apparatus selectively collecting and recovering fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857830

Country of ref document: EP

Kind code of ref document: A1