WO2017069250A1 - Particle analysis device and particle analysis method - Google Patents

Particle analysis device and particle analysis method Download PDF

Info

Publication number
WO2017069250A1
WO2017069250A1 PCT/JP2016/081301 JP2016081301W WO2017069250A1 WO 2017069250 A1 WO2017069250 A1 WO 2017069250A1 JP 2016081301 W JP2016081301 W JP 2016081301W WO 2017069250 A1 WO2017069250 A1 WO 2017069250A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
velocity
magnetic field
magnetic susceptibility
Prior art date
Application number
PCT/JP2016/081301
Other languages
French (fr)
Japanese (ja)
Inventor
山口 哲司
健太郎 西方
かほる 中山
啓二郎 櫻本
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2017545812A priority Critical patent/JP6726675B2/en
Publication of WO2017069250A1 publication Critical patent/WO2017069250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
    • G01N27/76Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids by investigating susceptibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/16Measuring susceptibility

Definitions

  • the present invention relates to a particle analysis apparatus and particle analysis method for analyzing particles.
  • a particle analyzer as shown in Patent Document 1 is used.
  • This particle analyzer is configured to irradiate a cell containing a dispersion medium in which particles are dispersed with a laser beam and measure the particle size distribution based on fluctuations in the intensity of the scattered light. .
  • the present invention has been made as a result of intensive studies by the inventors of the present application, and is capable of measuring the characteristics of various particles together with the magnetic susceptibility of the particles with a single device, enabling detailed particle analysis.
  • the purpose is to provide.
  • the particle analyzer calculates the magnetic susceptibility of a particle based on a magnetic field forming mechanism that forms a magnetic field gradient with respect to the dispersion medium containing the particle, the magnetophoretic velocity of the particle, and the particle diameter of the particle.
  • a magnetic susceptibility measurement unit comprising a magnetic susceptibility calculation unit, and a particle in the dispersion medium by a dynamic light scattering method or a static light scattering method at a location where there is substantially no magnetic field influence by the magnetic field formation mechanism.
  • a characteristic analysis unit that performs at least one of particle size distribution measurement, zeta potential measurement, gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light.
  • the particle analysis method includes forming a magnetic field gradient with respect to a dispersion medium containing particles by a magnetic field forming mechanism, and determining the magnetic susceptibility of the particles based on the magnetophoretic velocity and the particle diameter of the particles. Calculating, particle size distribution measurement by dynamic light scattering method or static light scattering method, zeta potential measurement, gel in a place where there is substantially no magnetic field influence by the magnetic field formation mechanism for particles in the dispersion medium Performing at least one of structural analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light.
  • the magnetic susceptibility of the particles the particle size distribution measurement by the dynamic light scattering method or the static light scattering method in a place where there is substantially no magnetic field influence by the magnetic field formation mechanism of the particles, zeta potential
  • At least one measurement result of measurement, gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis can be obtained with one particle analyzer. And it becomes possible to obtain the knowledge about the particle
  • the magnetic susceptibility measured by the magnetic susceptibility measurement unit and the characteristic What is necessary is just to further provide the measurement result display part which displays at least 1 of the measurement result measured by the analysis unit on the same screen.
  • a laser light source that emits laser light to a cell containing the dispersion medium, and the dispersion medium
  • the magnetic susceptibility calculation unit is configured to calculate the magnetic susceptibility based on a magnetophoretic velocity that is a particle velocity calculated by the particle velocity calculation unit in a state where a magnetic field gradient is formed by the magnetic field forming mechanism. Anything can be used.
  • One specific embodiment for accurately measuring the magnetophoretic velocity with scattered light is one in which the particle velocity calculator is configured to calculate the velocity of particles based on the Doppler method. .
  • the particle further includes a reference optical path through which laser light reaches the reference light without passing through the cell from the laser light source to the detector,
  • the velocity calculation unit is configured to calculate the velocity of the particles based on the Doppler shift appearing in the interference light in which the scattered light detected by the detector and the reference light interfere with each other is exemplified.
  • the particle velocity calculation unit calculates the velocity of the particles based on the autocorrelation function of the intensity of the scattered light detected by the detector. The thing comprised as follows is mentioned.
  • the characteristic analysis unit is An electric field forming mechanism that forms an electric field gradient with respect to the dispersion medium, and an electrophoretic velocity that is a velocity of particles calculated by the particle velocity calculating unit in a state where the electric field gradient is formed by the electric field forming mechanism. And a zeta potential calculator that calculates the zeta potential.
  • the characteristic analysis unit Is further provided with a particle size distribution calculation unit for calculating the particle size distribution of the particles in the dispersion medium by a dynamic light scattering method or a static light scattering method based on the intensity signal of the scattered light obtained from the particles,
  • the magnetic susceptibility calculation unit may be configured to calculate the magnetic susceptibility of particles based on the particle size distribution calculated by the particle size distribution calculation unit.
  • the characteristic analysis unit can obtain the Raman obtained from the particles. Based on the spectrum of scattered light or the spectrum of fluorescence, the elemental analysis unit for performing elemental analysis of the particles, the result of elemental analysis of the particles by the elemental analysis unit, and the magnetic susceptibility of the particles calculated by the magnetic susceptibility calculation unit And a surface analysis unit that analyzes an organic substance that forms the surface of the particle.
  • the characteristic analysis unit includes What is necessary is just to further include a gel structure analysis unit for calculating the interstitial distance of the gel structure or the hardness of the gel based on the intensity signal of the obtained scattered light.
  • the gel means a group of particles such as colloidal particles, a group of fillers, and a fibrous substance that form a framework structure, and a liquid such as moisture is held inside the framework structure.
  • the characteristic analysis unit calculates the molecular weight of the particles based on the intensity signal of the scattered light obtained from the particles. What is necessary is just to further provide the calculation part.
  • the characteristic analysis unit uses the scattered light intensity signal at a plurality of scattering angles obtained from the particle. Based on this, any shape analysis unit that analyzes the shape of the particles may be used.
  • the particle analyzer according to the present invention, the particle susceptibility, particle size distribution measurement by dynamic light scattering method or static light scattering method, zeta potential measurement, gel structure analysis, molecular weight in one device Since at least one measurement result of measurement, elemental analysis, and shape analysis can be obtained, it is possible to obtain detailed characteristics of particles that could not be obtained conventionally.
  • grain analyzer which concerns on 1st Embodiment of this invention The schematic diagram shown about the structure of the particle
  • grain analyzer of 1st Embodiment The schematic diagram which shows the particle
  • grain analyzer of 2nd Embodiment The schematic diagram which shows the display form of the measurement result in the particle
  • Magnetic susceptibility measurement unit 21 Magnetic susceptibility calculator R ... Reference optical path R1 ... First beam splitter R2 ; Second beam splitter R3 ... Mirror R4 ... Modulator V ..Particle velocity calculation part P ... Measurement Result display area
  • the particle analyzer 100 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the horizontal direction in FIG. 1 is defined as the X axis
  • the vertical direction in the paper is defined as the Y axis
  • the direction perpendicular to the paper surface is defined as the Z axis.
  • the particle analyzer 100 of the first embodiment irradiates particles dispersed in a dispersion medium with laser light, and based on the scattered light of the laser light scattered by the particles, the particle size distribution of the particles, the zeta potential, It measures molecular weight, gel structure, and magnetic susceptibility. That is, the particle analyzer 100 includes a characteristic analysis unit 1 that measures particle size distribution, zeta potential, molecular weight, and gel structure of particles, and a magnetic susceptibility measurement unit 2 that measures the magnetic susceptibility of particles.
  • the particle analyzer 100 includes, as a hardware configuration, a cell C in which the dispersion medium is accommodated, an irradiation optical system I that irradiates the cell C with laser light, and The reference light path R for obtaining the reference light, the light receiving optical system D that receives the scattered light scattered by the particles in the cell C or the laser light, and the intensity of the scattered light obtained by the light receiving optical system D And a calculation mechanism COM for performing various calculations based on the calculation.
  • the cell C, the irradiation optical system I, the reference optical path R, the light receiving optical system D, and the calculation mechanism COM are configured to be shared by the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2.
  • the characteristic analysis unit 1 includes an electric field forming mechanism E that forms an electric field gradient with respect to the dispersion medium in the cell C.
  • the magnetic susceptibility measurement unit 2 includes a magnetic field forming mechanism M that forms a magnetic field gradient with respect to the dispersion medium in the cell C.
  • the cell C is a transparent cell formed of glass, quartz, resin, or the like in which a dispersion medium is accommodated, as shown in FIGS.
  • the cell C has a substantially square cross section.
  • the shape of the cell C is not limited to that shown in the figure, and may be, for example, a cylindrical shape.
  • 2 and 3 are a perspective view and a view when the cell C is viewed from the irradiation direction side of the laser beam.
  • the cell C is in the depth direction of FIG. It is a thing of the substantially rectangular parallelepiped shape extended in.
  • the electric field forming mechanism E and the magnetic field forming mechanism M are provided inside or around the cell C. In FIG. 2 and FIG. 3, the electric field forming mechanism E is not shown.
  • the cell C is configured so that the irradiation point IP of the laser light emitted from the irradiation optical system I can be appropriately changed by a driving mechanism (not shown). More specifically, the drive mechanism is configured such that the irradiation point IP of the laser beam in the cell C can be changed at least in the magnetic field gradient as shown in FIG. 2 or outside the magnetic field gradient as shown in FIG. It is. As will be described later, in order to calculate the magnetophoretic velocity of particles and the magnetic susceptibility of particles for data obtained from scattered light, reflected light, and transmitted light obtained when the laser light irradiation point IP is in a magnetic field gradient. Used.
  • substantially no magnetic field influence refers to a state in which no magnetic force acts on the particles, or only a magnetic force that affects only the measurement error in calculating the particle diameter.
  • the irradiation optical system I includes the laser light source IL shown in FIG. 1 and a lens (not shown).
  • the focusing position of the laser in the cell C can be changed by moving the lens.
  • the irradiation optical system I may further include a polarizing filter that allows only specific polarized light to pass therethrough.
  • the light receiving optical system D is composed of four detectors provided apart from the cell C. That is, the light receiving optical system D includes a transmitted light detector D1, a front detector D2, a side detector D3, and a rear detector D4.
  • the transmitted light detector D1 detects transmitted light transmitted through the cell C, which is a photodiode. Based on this transmitted light, for example, the concentration of particles in the dispersion medium is measured. In addition, in the functional block diagram to be described later, the description of the calculation unit relating to concentration calculation is omitted, but the concentration is also displayed as one of the measurement results.
  • the forward detector D2 uses a photomultiplier tube and detects forward scattered light emitted from the cell C. A zeta potential is calculated based on the forward scattered light.
  • the position of the front detector D2 can be changed by rotating in the XY plane around the cell C. That is, an angle ⁇ formed by a straight line connecting the cell C and the transmitted light detector D1 and a straight line connecting the cell C and the front detector D2 is adjusted to be an angle suitable for detecting scattered light. It is possible.
  • the side detector D3 also uses a photomultiplier tube and detects side scattered light emitted from the cell C.
  • concentration of particles in the dispersion medium is lower than a predetermined concentration
  • the particle size distribution is calculated based on the side scattered light.
  • the molecular weight is calculated based on the side scattered light.
  • the back detector D4 also uses a photomultiplier tube and detects backscattered light emitted from the cell C. When the concentration of particles in the dispersion medium is higher than a predetermined concentration, the particle size distribution is calculated based on the backscattered light.
  • the reference light path R is configured such that laser light reaches as reference light from the laser light source IL to the front detector D2 without passing through the cell C. That is, the reference optical path R includes a first beam splitter R1 provided between the laser light source IL and the cell C, and a second beam splitter provided between the cell C and the front detector D2. R2 and a mirror R3 and a modulator R4 for guiding a part of the laser beam reflected by the first beam splitter R1 to the second beam splitter R2. The forward scattered light and the reference light after passing through the second beam splitter R2 become interference light, and the Doppler shift is detected in the forward detector D2.
  • the electric field forming mechanism E is composed of two parallel plate electrodes provided in the cell C. A predetermined voltage is applied between these parallel plate electrodes to form an electric field gradient in the Y-axis direction, and the particles are electrophoresed in the Y-axis direction.
  • the electric field forming mechanism E is not limited to the parallel plate electrode, and may be a pair of cylindrical or semi-cylindrical electrodes, for example.
  • the magnetic field forming mechanism M uses an electromagnet M2 provided so as to be sandwiched outside the cell C.
  • a magnetic field gradient is formed in the X-axis direction or the Z-axis direction by the magnetic field forming mechanism M, and the particles are magnetophoresed in the X-axis direction or the Z-axis direction. That is, the direction of particle movement is different between electrophoresis and magnetophoresis.
  • the magnetic field gradient refers to a magnetic field gradient formed at a portion where the density of magnetic lines of force changes between a pair of magnetic poles.
  • it refers to a magnetic field portion formed at the outer edge portion of the pair of electromagnets M2.
  • the place where the magnetic field gradient is formed in the cell C can be determined by the size of the electromagnet M2 and the position with respect to the cell C.
  • the magnetic field forming mechanism M includes a pair of electromagnets M2 and a holding block M1 that holds the electromagnets M2.
  • the holding block M1 is formed of a non-magnetic material and has a portion covering the upper and lower surfaces and one side surface of the cell C as shown in FIG.
  • An electromagnet M2 is attached to a portion of the holding block M1 that covers the upper and lower surfaces of the cell C, and the N pole and the S pole are formed to face each other in the vertical direction.
  • An opening for allowing the laser beam to pass is provided in a portion covering the side surface of the cell C of the holding block M1.
  • the holding block M1 is configured to be movable in the X-axis direction, which is the left-right direction in FIG.
  • the holding block M1 moves to an operating position where the electromagnet M2 is disposed above and below the cell C.
  • the holding block M1 moves to the retracted position as shown by the dotted line in FIG. Further, the electromagnet M2 is not energized at the retracted position.
  • the energization may be performed only when the magnetophoretic velocity is measured, and the holding block M1 may be always fixed at the operating position.
  • the state in which the magnetic field gradient is formed in the cell C is formed by moving the holding block M1 between the operating position and the retracted position. You may make it switch the state which is not performed.
  • the calculation mechanism COM is a so-called computer including a CPU, a memory, input / output means, an A / D / D / A converter, and the like.
  • a program for the particle analyzer 100 stored in the memory is executed, and a software part is realized in the configuration of the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2 by cooperating with various devices. That is, the calculation mechanism COM functions as a software configuration of the characteristic analysis unit 1 as shown in FIG. 4 as a particle size distribution calculation unit 11, a zeta potential calculation unit 12, a molecular weight calculation unit 13, and a gel structure analysis unit 14. Demonstrate.
  • the calculation mechanism COM exhibits a function as the magnetic susceptibility calculation unit 21 as a software configuration of the magnetic susceptibility measurement unit 2. Further, as the software configuration shared by the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2, the functions as the particle velocity calculation unit V and the measurement result display unit P are exhibited.
  • the particle size distribution calculating unit 11 is based on the intensity signal of scattered light obtained from the side detector D3 or the rear detector D4, and the particle size distribution of the particles in the dispersion medium by a dynamic light scattering method. Is calculated.
  • an autocorrelation function is obtained by the photon correlation method, and a particle diffusion coefficient is calculated from the autocorrelation function.
  • the particle diameter is obtained from the diffusion coefficient and the Stokes-Einstein equation.
  • the particle size distribution calculating unit 11 is configured to calculate the particle size based on the intensity of scattered light obtained when laser light is irradiated outside the magnetic field gradient. is there.
  • the particle velocity calculation unit V calculates the velocity of particles based on a change in the frequency of scattered light generated when laser light is scattered by particles.
  • the particle velocity is calculated by a laser Doppler velocimeter based on the Doppler method. More specifically, the velocity of the particles is calculated based on the Doppler shift that appears in the interference light obtained by the interference between the scattered light detected by the front detector D2 and the reference light.
  • the particle velocity calculated by the particle velocity calculator V corresponds to the magnetophoretic velocity.
  • the velocity of the particles calculated in a state where the holding block M1 is in the retracted position and there is no magnetic field gradient in the cell C and an electric field gradient is formed by the electric field forming mechanism E corresponds to the electrophoresis velocity.
  • the zeta potential calculation unit 12 shown in FIG. 4 is configured to calculate the zeta potential based on the electrophoretic velocity or particle mobility calculated by the particle velocity calculation unit V.
  • the molecular weight calculation unit 13 is configured to calculate the molecular weight of the particles based on the intensity signal of the side scattered light obtained from the side detector D3 by measurement by the static light scattering method.
  • the absolute molecular weight of the particles is calculated using the Debye plot.
  • the gel structure analysis unit 14 calculates the interstitial distance of the gel structure or the hardness of the gel based on the intensity signal of the scattered light obtained from the particles.
  • the interstitial distance is calculated using the fact that the pattern of the autocorrelation function of the intensity of scattered light changes according to the interstitial distance of the gel.
  • the magnetic susceptibility calculator 21 is configured to calculate the magnetic susceptibility based on the particle magnetophoretic velocity calculated by the particle velocity calculator V and the particle size distribution calculated by the particle size distribution calculator 11. It is. That is, the light receiving optical system D and the particle velocity calculating unit V are commonly used for calculating the magnetic susceptibility and the zeta potential. For the particle size, a representative value such as an average value of the particle size distribution is used. Thus, the particle velocity and particle diameter are shared between the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2, and the magnetic susceptibility measurement unit 2 itself measures for measuring the magnetophoretic velocity and particle diameter. The mechanism is omitted.
  • the measurement result display unit P displays at least one of the magnetic susceptibility measured by the magnetic susceptibility measurement unit 2 and the measurement result measured by the characteristic analysis unit 1 on the same screen. It is constituted as follows.
  • the same screen means that the same screen is displayed on the display, for example. In other words, each measurement result is not displayed separately on an individual page, but is displayed on the same page.
  • at least six graphs are displayed on the same page. More specifically, the horizontal axis is the particle diameter, the vertical axis is the particle diameter-susceptibility graph with the magnetic susceptibility at that particle diameter, the horizontal axis is the particle diameter, and the vertical axis is the frequency of appearance of the particle diameter.
  • Concentration-intensity graph of the intensity of light to be emitted the horizontal axis represents the aspect ratio of particles calculated from the extinction ratio of S-wave and P-wave of laser light
  • the vertical axis represents the frequency of appearance of particles having the aspect ratio.
  • the molecular weight-frequency graph and the lattice interval-frequency graph with the horizontal axis output from the gel structure analysis unit 14 and the vertical axis with the frequency of appearance of the lattice interval are displayed on the same page.
  • the particle diameter, zeta potential, molecular weight, and gel structure can be measured together with the magnetic susceptibility by one device and one cell C.
  • each result can be recognized at a glance, and the user can understand more detailed information on the characteristics of particles than before. .
  • the configuration of the entire apparatus can be simplified and made compact.
  • the particle diameter is calculated by the dynamic light scattering method based on the scattered light obtained in the state where the laser beam is irradiated to the region where the magnetic field gradient is not formed, so that the particle diameter is smaller than 1 ⁇ m. Also, the particle diameter can be calculated accurately. This is because the particle diameter is calculated reflecting the three-dimensional Brownian motion.
  • the accuracy of the magnetic susceptibility itself can be increased by the cooperation of the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2.
  • the particle size may be calculated based on the static light scattering method instead of the dynamic light scattering method. Further, when the holding block M1 is made of a material that does not have magnetism, the position of the holding block M1 is fixed at the operating position, and the particles obtained from the state in which the magnetic field forming mechanism E is not energized.
  • the particle size distribution calculating unit 11 may be configured to calculate the particle size based on the scattered light.
  • the direction of the magnetic field formed by the magnetic field forming mechanism M is reversed every predetermined period to reverse the direction of the magnetic force acting on the particles, and the magnetophoretic velocity is measured.
  • You may comprise so that it can do.
  • the holding block M1 may be configured to be rotatable about the center of the cell C as a rotation axis.
  • the energization direction is reversed every predetermined period, so that the reversal of the direction of the magnetic force is repeated and the magnetophoretic velocity in both directions is measured a plurality of times. Also good.
  • the magnetic field forming mechanism M as shown in FIGS.
  • the direction of the magnetic force generated by the magnetic field gradient formed by the electric field forming mechanism E and the direction of the force generated by the electric field forming mechanism E may coincide with each other in the Z-axis direction, for example.
  • the opposing direction of the pair of magnets M2 and the opposing direction of the pair of electrode plates may be arranged so as to intersect each other.
  • the particle velocity calculation unit V may calculate the particle velocity based on the change in the frequency of the scattered light by other methods than the Doppler method. Specifically, the diffusion coefficient may be calculated from the autocorrelation function of the scattered light intensity, and the velocity of the particles may be calculated from the diffusion coefficient.
  • the cell C itself may not be moved, but a part or all of the optical system itself of the particle analyzer 100 may be configured to be movable.
  • the particle analyzer 100 is a rotation detector D6 in which the light receiving optical system D is configured to be rotatable in a plane centered on the cell C as shown in FIG. Can be detected by one detector.
  • the rotation detector D6 is replaced with a detector for measuring Raman light or fluorescence.
  • a video camera D5 is provided at the position of the transmitted light detector D1 in the first embodiment.
  • the magnetic field forming mechanism M is provided outside the cell C.
  • the calculation mechanism COM includes a particle size distribution calculation unit 11, a particle velocity calculation unit V, an element analysis unit 15, a shape analysis unit 17, and a surface analysis unit 16 which are software configurations of the characteristic analysis unit 1. It is comprised so that the function as may be demonstrated.
  • the calculation mechanism COM is configured to exhibit a function as a magnetic susceptibility calculation unit 21 that is a software configuration of the magnetic susceptibility measurement unit 2.
  • the calculation mechanism COM also functions as a measurement result display unit P that displays the magnetic susceptibility and various measurement results on the same screen.
  • the magnetic susceptibility calculation unit 21 performs magnetization based on the particle diameter and magnetophoretic velocity calculated by the particle size distribution calculation unit 11 and the particle velocity calculation unit V based on a still image or a moving image captured by the video camera D5. The rate is calculated.
  • the particle size distribution calculating unit 11 is configured to calculate the particle size by analyzing the still image captured by the video camera D5.
  • the boundary between the particle and the background in the still image is detected by the difference in luminance, and the particle diameter is calculated from the area inside the boundary.
  • the particle velocity calculation unit V calculates the particle velocity based on the moving image captured by the video camera D5. More specifically, in the state where a magnetic field gradient is formed in the cell C by the magnetic field forming mechanism M, the movement of particles in the Z-axis direction, which is the direction of the magnetic force, is extracted from the moving image, and the movement per number of frames. The magnetophoretic velocity is calculated from the distance.
  • the element analysis unit 15 performs elemental analysis of particles based on the Raman scattered light or fluorescence spectrum obtained by the rotation detector D6. That is, the element contained in the particle is specified by comparing the peak of the spectrum of Raman scattered light or fluorescence with the peak of various elements.
  • the surface analysis unit 16 analyzes the organic matter forming the surface of the particle based on the elemental analysis result of the particle by the elemental analysis unit 15 and the magnetic susceptibility of the particle calculated by the magnetic susceptibility calculation unit 21. It is configured. For example, when the surface of a base material having a spherical particle is coated with an organic material, the magnetic susceptibility calculated by the magnetic susceptibility calculation unit 21 is obtained by weighted average of the magnetic susceptibility of the base material and the magnetic susceptibility of the coating by the composition ratio. It is the value. Moreover, if the element which comprises particle
  • the shape analysis unit 17 analyzes the shape of particles based on the intensity signals of scattered light at a plurality of scattering angles obtained by the rotation detector D6.
  • the aspect ratio is analyzed based on the intensity of scattered light for each scattering angle.
  • the measurement result display unit P displays the appearance frequency of the film thickness for each particle diameter, the magnetic susceptibility for each particle diameter, the aspect ratio of the particles, the Raman spectrum, and the fluorescence spectrum on the same screen. It is configured.
  • the shape of the particles can be obtained together with the film thickness, it is possible to evaluate not only the uniformity of the particle diameter but also the uniformity of the shape and the uniformity of the composition.
  • the particle size distribution calculating unit 11 extracts a one-dimensional or two-dimensional Brownian motion of particles based on the moving image of the video camera D5, calculates a diffusion coefficient based on the speed of the Brownian motion, May be calculated. Note that when the particles are imaged by the video camera D5, the cell C may be illuminated with incoherent light such as a halogen light source instead of the laser light source IL.
  • the video camera D5 may capture not only transmitted light but also reflected light and scattered light to acquire an image.
  • the element analysis unit 15 may perform element analysis based on a fluorescence spectrum.
  • the surface analysis unit 16 may calculate characteristics other than the film thickness based on the elemental analysis result and the magnetic susceptibility.
  • the particle analyzer 100 includes a magnetic field forming mechanism M that forms a magnetic field gradient with respect to a dispersion medium containing particles as shown in FIG. 11, and based on the magnetophoretic velocity of particles and the particle diameter of particles.
  • a magnetic susceptibility measuring unit 2 comprising a magnetic susceptibility calculating unit 21 for calculating the magnetic susceptibility of particles, and a dynamic light scattering method or static light scattering at a location where there is substantially no magnetic field effect by the magnetic field forming mechanism M.
  • a characteristic analysis unit 1 that performs only particle size distribution measurement by the method.
  • the characteristic analysis unit 1 includes a first laser light source IL1 that emits laser light to a portion of the cell C where a magnetic field gradient is not formed by the magnetic field forming mechanism M, and the first laser light source IL1 in the cell C.
  • a first detector D21 that detects scattered light obtained by scattering the emitted laser light by particles, and a particle size distribution by a dynamic light scattering method or a static light scattering method based on the output of the first detector D21.
  • a particle size distribution calculating unit 11 for calculating is provided.
  • the magnetic susceptibility measurement unit 2 includes a second laser light source IL2 that emits laser light to a portion of the cell C where a magnetic field gradient is formed by the magnetic field forming mechanism M, and the second laser light source in the cell C.
  • a second detector D22 for detecting scattered light obtained by scattering the laser light emitted from IL2 by particles; a particle velocity calculating unit V for calculating a magnetophoretic velocity of particles based on the output of the second detector D22;
  • a magnetic susceptibility calculation unit 21 that calculates the magnetic susceptibility of particles based on the magnetophoretic velocity calculated by the particle velocity calculation unit V and the particle diameter of the particles calculated by the particle size distribution calculation unit 11. is there.
  • Such a particle analyzer 100 according to the third embodiment can obtain an accurate value even when the particle diameter is small while having a simple configuration, and thus an accurate magnetic susceptibility can be obtained.
  • the characteristic analysis unit 1 uses the dynamic light scattering method or the static light scattering method, the zeta potential measurement for the particles in the dispersion medium at a place where there is substantially no magnetic field influence by the magnetic field formation mechanism. It is sufficient to perform at least one of gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light. If it is such, it becomes possible to know various characteristics of particles better by combining with magnetic susceptibility.
  • the irradiation optical system I and the light receiving optical system D are not limited to those shown in each embodiment.
  • detectors that are not necessary in the light receiving optical system D in accordance with the measurement and analysis performed in the characteristic analysis unit 1 may be omitted.
  • the laser light source IL, the various detectors, the particle velocity calculation unit, and the measurement result display unit P may constitute either the characteristic analysis unit 1 or the magnetic susceptibility measurement unit 2.
  • the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2 may be elements constituting the particle analyzer 100 independently of each other.
  • the particle analyzer 100 further has an X-ray analysis mechanism including an X-ray tube, an X-ray, and a fluorescent X-ray detector, so that element analysis can be performed even if the particles in the dispersion medium are inorganic. .
  • the particle analyzer 100 of the present invention may be configured to perform all the measurements shown in the first and second embodiments and display all the measurement results shown in FIGS. 5 and 10 on the same screen. Good.
  • the characteristics of a large number of particles can be measured together with the magnetic susceptibility of the particles with a single device, and detailed particle analysis becomes possible.

Abstract

In order to be capable of measuring particle magnetization of particles and the characteristics of a plurality of particles, using one device, and in order to be capable of detailed particle analysis, the present invention comprises: a magnetization measurement unit comprising a magnetic field-formation mechanism and a magnetization calculation unit, said magnetic field-formation mechanism forming a magnetic field gradient relative to a dispersion medium including particles, and said magnetization calculation unit calculating the magnetization of said particles on the basis of the magnetophoretic velocity of the particles and the diameter of the particles; and a characteristics analysis unit that performs at least one out of particle diameter distribution measurement, zeta potential measurement, gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis, performing same on particles in the dispersion medium and by using dynamic light scattering or static light scattering at a location where there is substantially no magnetic-field effect caused by the magnetic field-formation mechanism M.

Description

粒子分析装置、及び、粒子分析方法Particle analyzer and particle analysis method
 本発明は、粒子について分析する粒子分析装置、粒子分析方法に関するものである。 The present invention relates to a particle analysis apparatus and particle analysis method for analyzing particles.
 例えば製造された粒子が所望の特性を有しているかどうかを確認するために特許文献1に示されるような粒子分析装置が用いられている。この粒子分析装置は、粒子が分散している分散媒が収容されたセルに対してレーザ光を照射し、その散乱光の強度のゆらぎに基づいて粒子径分布を測定するように構成されている。 For example, in order to confirm whether or not the produced particles have desired characteristics, a particle analyzer as shown in Patent Document 1 is used. This particle analyzer is configured to irradiate a cell containing a dispersion medium in which particles are dispersed with a laser beam and measure the particle size distribution based on fluctuations in the intensity of the scattered light. .
特開2010-78469号公報JP 2010-78469 A
 ところで、本願発明者は1つの粒子分析装置によって粒子の物性についてより詳細で有益な情報を得るにはどうすればよいのかについて考え直した。その結果、粒子の磁化率と、その他の粒子の特性を1つの測定装置において測定すべきであることが初めて見出された。 By the way, the inventor of the present application has reconsidered how to obtain more detailed and useful information about the physical properties of the particles with one particle analyzer. As a result, it has been found for the first time that the magnetic susceptibility of particles and other particle properties should be measured in one measuring device.
 本発明は、本願発明者の鋭意検討の結果なされたものであり、1つの装置で粒子の磁化率とともに様々な粒子の特性を測定することができ、詳細な粒子分析を可能とする粒子分析装置を提供することを目的とする。 The present invention has been made as a result of intensive studies by the inventors of the present application, and is capable of measuring the characteristics of various particles together with the magnetic susceptibility of the particles with a single device, enabling detailed particle analysis. The purpose is to provide.
 すなわち、本発明に係る粒子分析装置は、粒子を含む分散媒に対して磁場勾配を形成する磁場形成機構と、粒子の磁気泳動速度及び粒子の粒子径に基づいて当該粒子の磁化率を算出する磁化率算出部と、を具備する磁化率測定ユニットと、前記分散媒中の粒子について、前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、散乱光による形状解析の少なくとも1つを行う特性分析ユニットと、を備えたことを特徴とする。 That is, the particle analyzer according to the present invention calculates the magnetic susceptibility of a particle based on a magnetic field forming mechanism that forms a magnetic field gradient with respect to the dispersion medium containing the particle, the magnetophoretic velocity of the particle, and the particle diameter of the particle. A magnetic susceptibility measurement unit comprising a magnetic susceptibility calculation unit, and a particle in the dispersion medium by a dynamic light scattering method or a static light scattering method at a location where there is substantially no magnetic field influence by the magnetic field formation mechanism. And a characteristic analysis unit that performs at least one of particle size distribution measurement, zeta potential measurement, gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light.
 また、本発明に係る粒子分析方法は、粒子を含む分散媒に対して磁場勾配を磁場形成機構により形成することと、粒子の磁気泳動速度及び粒子の粒子径に基づいて当該粒子の磁化率を算出することと、前記分散媒中の粒子について、前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、散乱光による形状解析の少なくとも1つを行うことと、を備えたことを特徴とする。 Further, the particle analysis method according to the present invention includes forming a magnetic field gradient with respect to a dispersion medium containing particles by a magnetic field forming mechanism, and determining the magnetic susceptibility of the particles based on the magnetophoretic velocity and the particle diameter of the particles. Calculating, particle size distribution measurement by dynamic light scattering method or static light scattering method, zeta potential measurement, gel in a place where there is substantially no magnetic field influence by the magnetic field formation mechanism for particles in the dispersion medium Performing at least one of structural analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light.
 このようなものであれば、粒子の磁化率と、粒子の前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、形状解析の少なくとも1つの測定結果を1つの粒子分析装置で得ることができる。そして、磁化率と前記特性分析ユニットで得られる測定結果の組み合わせによって従来では得られなかった粒子についての知見を得ることが可能となる。 If this is the case, the magnetic susceptibility of the particles, the particle size distribution measurement by the dynamic light scattering method or the static light scattering method in a place where there is substantially no magnetic field influence by the magnetic field formation mechanism of the particles, zeta potential At least one measurement result of measurement, gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis can be obtained with one particle analyzer. And it becomes possible to obtain the knowledge about the particle | grains which were not obtained conventionally by the combination of the magnetic susceptibility and the measurement result obtained by the said characteristic analysis unit.
 ユーザが粒子の特性を磁化率と前記特性ユニットの測定結果から容易に理解でき、従来ではなかった粒子の知見を得やすくするには、前記磁化率測定ユニットで測定された磁化率と、前記特性分析ユニットで測定された測定結果の少なくとも1つを同一画面上に表示する測定結果表示部をさらに備えたものであればよい。 In order for the user to easily understand the characteristics of the particle from the magnetic susceptibility and the measurement result of the characteristic unit, and to easily obtain the knowledge of the particle that was not conventional, the magnetic susceptibility measured by the magnetic susceptibility measurement unit and the characteristic What is necessary is just to further provide the measurement result display part which displays at least 1 of the measurement result measured by the analysis unit on the same screen.
 微小な粒子であってもその磁気泳動速度を正確に測定でき、正確な磁化率を得られるようにするには、分散媒が収容されたセルにレーザ光を射出するレーザ光源と、前記分散媒中の粒子により散乱された散乱光を検出する検出器と、粒子により散乱されたレーザ光の散乱光の周波数の変化に基づいて粒子の速度を算出する粒子速度算出部と、をさらに備え、前記磁化率算出部が、前記磁場形成機構により磁場勾配が形成されている状態で前記粒子速度算出部により算出される粒子の速度である磁気泳動速度に基づいて前記磁化率を算出するように構成されたものであればよい。 In order to be able to accurately measure the magnetophoretic velocity of even minute particles and to obtain an accurate magnetic susceptibility, a laser light source that emits laser light to a cell containing the dispersion medium, and the dispersion medium A detector for detecting scattered light scattered by the particles therein, and a particle velocity calculation unit for calculating the velocity of the particles based on a change in the frequency of the scattered light of the laser light scattered by the particles, The magnetic susceptibility calculation unit is configured to calculate the magnetic susceptibility based on a magnetophoretic velocity that is a particle velocity calculated by the particle velocity calculation unit in a state where a magnetic field gradient is formed by the magnetic field forming mechanism. Anything can be used.
 散乱光により磁気泳動速度を正確に測定するための具体的な態様の1つとしては、前記粒子速度算出部が、ドップラー法に基づいて粒子の速度を算出するように構成されたものが挙げられる。 One specific embodiment for accurately measuring the magnetophoretic velocity with scattered light is one in which the particle velocity calculator is configured to calculate the velocity of particles based on the Doppler method. .
 ドップラー法に基づいて磁気泳動速度を測定するための具体的な構成としては、前記レーザ光源から前記検出器まで前記セルを介さずにレーザ光が参照光として到達する参照光路をさらに備え、前記粒子速度算出部が、前記検出器で検出される散乱光と参照光が干渉した干渉光に表れるドップラーシフトに基づいて粒子の速度を算出するように構成されたものが挙げられる。 As a specific configuration for measuring the magnetophoretic velocity based on the Doppler method, the particle further includes a reference optical path through which laser light reaches the reference light without passing through the cell from the laser light source to the detector, A configuration in which the velocity calculation unit is configured to calculate the velocity of the particles based on the Doppler shift appearing in the interference light in which the scattered light detected by the detector and the reference light interfere with each other is exemplified.
 検出された散乱光により磁気泳動速度を算出する別の態様としては、前記粒子速度算出部が、前記検出器で検出される散乱光の強度の自己相関関数に基づいて、粒子の速度を算出するように構成されたものが挙げられる。 As another aspect of calculating the magnetophoretic velocity based on the detected scattered light, the particle velocity calculation unit calculates the velocity of the particles based on the autocorrelation function of the intensity of the scattered light detected by the detector. The thing comprised as follows is mentioned.
 前記磁化率測定ユニットと、前記特性分析ユニットで粒子の速度の測定に関する構成を共有し、コンパクトな構成でありながら粒子の磁化率とゼータ電位を測定できるようにするには、前記特性分析ユニットが、前記分散媒に対して電場勾配を形成する電場形成機構と、前記電場形成機構により電場勾配が形成されている状態で前記粒子速度算出部により算出される粒子の速度である電気泳動速度に基づいてゼータ電位を算出するゼータ電位算出部と、を備えたものであればよい。 In order to share the configuration related to the measurement of particle velocity between the magnetic susceptibility measurement unit and the characteristic analysis unit, and to be able to measure the magnetic susceptibility and zeta potential of the particle in a compact configuration, the characteristic analysis unit is An electric field forming mechanism that forms an electric field gradient with respect to the dispersion medium, and an electrophoretic velocity that is a velocity of particles calculated by the particle velocity calculating unit in a state where the electric field gradient is formed by the electric field forming mechanism. And a zeta potential calculator that calculates the zeta potential.
 前記磁化率測定ユニットと、前記特性分析ユニットで粒子の粒子径の測定に関する構成を共有できるようにしつつ、微小な粒子であっても正確な値を得られるようにするには、前記特性分析ユニットが、粒子から得られる散乱光の強度信号に基づいて、動的光散乱法又は静的光散乱法により前記分散媒中の粒子群の粒子径分布を算出する粒子径分布算出部をさらに備え、前記磁化率算出部が、前記粒子径分布算出部で算出される粒子径分布に基づいて粒子の磁化率を算出するように構成されていればよい。 In order to allow the magnetic susceptibility measurement unit and the characteristic analysis unit to share the configuration related to the measurement of the particle diameter of the particles, in order to obtain an accurate value even for a minute particle, the characteristic analysis unit Is further provided with a particle size distribution calculation unit for calculating the particle size distribution of the particles in the dispersion medium by a dynamic light scattering method or a static light scattering method based on the intensity signal of the scattered light obtained from the particles, The magnetic susceptibility calculation unit may be configured to calculate the magnetic susceptibility of particles based on the particle size distribution calculated by the particle size distribution calculation unit.
 前記磁化率測定ユニットで得られる磁化率に基づいて、従来の装置では得られなかった粒子の特性を前記特性分析ユニットにおいて測定できるようにするには、前記特性分析ユニットが、粒子から得られるラマン散乱光のスペクトル、又は、蛍光のスペクトルに基づいて、粒子の元素分析を行う元素分析部と、前記元素分析部による粒子の元素分析結果と、前記磁化率算出部で算出される粒子の磁化率に基づいて、粒子の表面を形成する有機物を解析する表面解析部と、をさらに備えたものであればよい。 Based on the magnetic susceptibility obtained by the magnetic susceptibility measurement unit, in order to enable the characteristic analysis unit to measure the characteristics of the particles that could not be obtained by a conventional apparatus, the characteristic analysis unit can obtain the Raman obtained from the particles. Based on the spectrum of scattered light or the spectrum of fluorescence, the elemental analysis unit for performing elemental analysis of the particles, the result of elemental analysis of the particles by the elemental analysis unit, and the magnetic susceptibility of the particles calculated by the magnetic susceptibility calculation unit And a surface analysis unit that analyzes an organic substance that forms the surface of the particle.
 磁化率との組み合わせにより、ゲルの特性をより多面的に得られるようにするには、前記分散媒及び粒子群又はフィラー群あるいは繊維状物質がゲル構造をなし、前記特性分析ユニットが、粒子から得られる散乱光の強度信号に基づいて、ゲル構造の格子間距離又はゲルの硬さを算出するゲル構造解析部をさらに備えたものであればよい。ここで、ゲルとはコロイド粒子等の粒子群やフィラー群、繊維状物質が互いに連なって骨組み構造をなし、その骨組み構造の内部に水分等の液体が保持されているようなもののことを言う。 In order to obtain the properties of the gel in a multifaceted manner in combination with the magnetic susceptibility, the dispersion medium and the particle group, the filler group, or the fibrous substance form a gel structure, and the characteristic analysis unit includes What is necessary is just to further include a gel structure analysis unit for calculating the interstitial distance of the gel structure or the hardness of the gel based on the intensity signal of the obtained scattered light. Here, the gel means a group of particles such as colloidal particles, a group of fillers, and a fibrous substance that form a framework structure, and a liquid such as moisture is held inside the framework structure.
 粒子の磁化率と分子量の組み合わせから例えば粒子の定性をより精度よく行えるようにするには、前記特性分析ユニットが、粒子から得られる散乱光の強度信号に基づいて、粒子の分子量を算出する分子量算出部をさらに備えたものであればよい。 In order to enable, for example, the qualitative determination of particles more accurately from the combination of the magnetic susceptibility and molecular weight of the particles, the characteristic analysis unit calculates the molecular weight of the particles based on the intensity signal of the scattered light obtained from the particles. What is necessary is just to further provide the calculation part.
 例えば粒子の表面形状と磁化率を考慮して、より現実に近い粒子の特性を得られるようにするには、前記特性分析ユニットが、粒子から得られる複数の散乱角度における散乱光の強度信号に基づいて、粒子の形状を解析する形状解析部をさらに備えたものであればよい。 For example, in order to obtain a more realistic particle characteristic in consideration of the surface shape and magnetic susceptibility of the particle, the characteristic analysis unit uses the scattered light intensity signal at a plurality of scattering angles obtained from the particle. Based on this, any shape analysis unit that analyzes the shape of the particles may be used.
 このように本発明に係る粒子分析装置によれば、1つの装置において粒子の磁化率と、動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、形状解析の少なくとも1つの測定結果を得らえるので、従来では得られなかった粒子の詳細な特性を得ることが可能となる。 Thus, according to the particle analyzer according to the present invention, the particle susceptibility, particle size distribution measurement by dynamic light scattering method or static light scattering method, zeta potential measurement, gel structure analysis, molecular weight in one device Since at least one measurement result of measurement, elemental analysis, and shape analysis can be obtained, it is possible to obtain detailed characteristics of particles that could not be obtained conventionally.
本発明の第1実施形態に係る粒子分析装置を示す模式図。The schematic diagram which shows the particle | grain analyzer which concerns on 1st Embodiment of this invention. 磁気泳動速度測定時における第1実施形態の粒子分析装置の構成、及び、レーザ光の照射点について示す模式図。The schematic diagram shown about the structure of the particle | grain analyzer of 1st Embodiment at the time of a magnetophoretic velocity measurement, and the irradiation point of a laser beam. 粒子径測定時における第1実施形態の粒子分析装置の構成、及び、レーザ光の照射点について示す模式図。The schematic diagram shown about the structure of the particle analyzer of 1st Embodiment at the time of particle diameter measurement, and the irradiation point of a laser beam. 第1実施形態の粒子分析装置の模式的機能ブロック図。The typical functional block diagram of the particle analyzer of a 1st embodiment. 第1実施形態の粒子分析装置における測定結果の表示形態を示す模式図。The schematic diagram which shows the display form of the measurement result in the particle | grain analyzer of 1st Embodiment. 第1実施形態の粒子分析装置の第1変形例を示す模式図。The schematic diagram which shows the 1st modification of the particle | grain analyzer of 1st Embodiment. 第1実施形態の粒子分析装置の第2変形例を示す模式図。The schematic diagram which shows the 2nd modification of the particle | grain analyzer of 1st Embodiment. 本発明の第2実施形態に係る粒子分析装置を示す模式図。The schematic diagram which shows the particle | grain analyzer which concerns on 2nd Embodiment of this invention. 第2実施形態の粒子分析装置の模式的機能ブロック図。The typical functional block diagram of the particle | grain analyzer of 2nd Embodiment. 第2実施形態の粒子分析装置における測定結果の表示形態を示す模式図。The schematic diagram which shows the display form of the measurement result in the particle | grain analyzer of 2nd Embodiment. 本発明の第3実施形態に係る粒子分析装置を示す模式図。The schematic diagram which shows the particle | grain analyzer which concerns on 3rd Embodiment of this invention.
100・・・粒子分析装置
I  ・・・照射光学系
IL ・・・レーザ光源
D  ・・・受光光学系
D1 ・・・透過光検出器
D2 ・・・前方検出器
D3 ・・・側方検出器
D4 ・・・後方検出器
D5 ・・・ビデオカメラ
D6 ・・・回転検出器
COM・・・演算機構
M  ・・・磁場形成機構
E  ・・・電場形成機構
1  ・・・特性分析ユニット
11 ・・・粒子径分布算出部
12 ・・・ゼータ電位算出部
13 ・・・分子量算出部
14 ・・・ゲル構造解析部
15 ・・・元素分析部
16 ・・・表面解析部
17 ・・・形状解析部
2  ・・・磁化率測定ユニット
21 ・・・磁化率算出部
R  ・・・参照光路
R1 ・・・第1ビームスプリッタ
R2 ・・・第2ビームスプリッタ
R3 ・・・ミラー
R4 ・・・モジュレータ
V  ・・・粒子速度算出部
P  ・・・測定結果表示部
DESCRIPTION OF SYMBOLS 100 ... Particle analyzer I ... Irradiation optical system IL ... Laser light source D ... Light receiving optical system D1 ... Transmitted light detector D2 ... Front detector D3 ... Side detector D4: Rear detector D5: Video camera D6: Rotation detector COM ... Arithmetic mechanism M ... Magnetic field forming mechanism E ... Electric field forming mechanism 1 ... Characteristic analysis unit 11・ Particle size distribution calculation unit 12 ・ ・ ・ Zeta potential calculation unit 13 ・ ・ ・ Molecular weight calculation unit 14 ・ ・ ・ Gel structure analysis unit 15 ・ ・ ・ Element analysis unit 16 ・ ・ ・ Surface analysis unit 17 ・ ・ ・ Shape analysis unit 2 ... Magnetic susceptibility measurement unit 21 ... Magnetic susceptibility calculator R ... Reference optical path R1 ... First beam splitter R2 ... Second beam splitter R3 ... Mirror R4 ... Modulator V ..Particle velocity calculation part P ... Measurement Result display area
 本発明の第1実施形態に係る粒子分析装置100について図1乃至5を参照しながら説明する。なお、以下では図1における紙面水平方向をX軸、紙面上下方向をY軸、紙面に対して垂直な方向をZ軸と定義している。 The particle analyzer 100 according to the first embodiment of the present invention will be described with reference to FIGS. In the following, the horizontal direction in FIG. 1 is defined as the X axis, the vertical direction in the paper is defined as the Y axis, and the direction perpendicular to the paper surface is defined as the Z axis.
 第1実施形態の粒子分析装置100は、分散媒中に分散する粒子に対してレーザ光を照射し、粒子により散乱されたレーザ光の散乱光に基づいて、粒子の粒子径分布、ゼータ電位、分子量、ゲル構造、及び、磁化率を測定するものである。すなわち、前記粒子分析装置100は、粒子の粒子径分布、ゼータ電位、分子量、ゲル構造を測定する特性分析ユニット1と、粒子の磁化率を測定する磁化率測定ユニット2と、を備えている。 The particle analyzer 100 of the first embodiment irradiates particles dispersed in a dispersion medium with laser light, and based on the scattered light of the laser light scattered by the particles, the particle size distribution of the particles, the zeta potential, It measures molecular weight, gel structure, and magnetic susceptibility. That is, the particle analyzer 100 includes a characteristic analysis unit 1 that measures particle size distribution, zeta potential, molecular weight, and gel structure of particles, and a magnetic susceptibility measurement unit 2 that measures the magnetic susceptibility of particles.
 この粒子分析装置100は、図1乃至図3に示すようにハードウェアの構成として、前記分散媒が収容されたセルCと、前記セルCに対してレーザ光を照射する照射光学系Iと、参照光を得るための参照光路Rと、前記セルC中の粒子により散乱された散乱光又は前記レーザ光を受光する受光光学系Dと、前記受光光学系Dで得られた散乱光の強度に基づいて各種演算を行う演算機構COMとを備えている。前記セルC、前記照射光学系I、前記参照光路R、前記受光光学系D、前記演算機構COMは、前記特性分析ユニット1及び前記磁化率測定ユニット2で共用されるように構成してある。さらに前記特性分析ユニット1は、前記セルC内の分散媒に対して電場勾配を形成する電場形成機構Eを備えている。また前記磁化率測定ユニット2は、前記セルC内の分散媒に対して磁場勾配を形成する磁場形成機構Mを備えている。 As shown in FIGS. 1 to 3, the particle analyzer 100 includes, as a hardware configuration, a cell C in which the dispersion medium is accommodated, an irradiation optical system I that irradiates the cell C with laser light, and The reference light path R for obtaining the reference light, the light receiving optical system D that receives the scattered light scattered by the particles in the cell C or the laser light, and the intensity of the scattered light obtained by the light receiving optical system D And a calculation mechanism COM for performing various calculations based on the calculation. The cell C, the irradiation optical system I, the reference optical path R, the light receiving optical system D, and the calculation mechanism COM are configured to be shared by the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2. Further, the characteristic analysis unit 1 includes an electric field forming mechanism E that forms an electric field gradient with respect to the dispersion medium in the cell C. The magnetic susceptibility measurement unit 2 includes a magnetic field forming mechanism M that forms a magnetic field gradient with respect to the dispersion medium in the cell C.
 各部について説明する。 Each part will be explained.
 前記セルCは、図1乃至図3に示すように分散媒が内部に収容されたガラス、石英、又は、樹脂等で形成された透明セルである。図1に示すようにこのセルCは横断面が概略正方形状のものである。なお、セルCの形状は図示されているものに限られず、例えば円筒状に形成されたものであってもよい。図2及び図3はレーザ光の照射方向側から前記セルCを視た場合の図と、斜視参考図であり、図2及び図3に示されるように前記セルCは図1の紙面奥行方向に延びる概略直方体形状のものである。このセルCの内部又は周囲には図1に示すように前記電場形成機構E及び前記磁場形成機構Mが設けてある。なお、図2及び図3においては電場形成機構Eについては記載を省略してある。 The cell C is a transparent cell formed of glass, quartz, resin, or the like in which a dispersion medium is accommodated, as shown in FIGS. As shown in FIG. 1, the cell C has a substantially square cross section. The shape of the cell C is not limited to that shown in the figure, and may be, for example, a cylindrical shape. 2 and 3 are a perspective view and a view when the cell C is viewed from the irradiation direction side of the laser beam. As shown in FIGS. 2 and 3, the cell C is in the depth direction of FIG. It is a thing of the substantially rectangular parallelepiped shape extended in. As shown in FIG. 1, the electric field forming mechanism E and the magnetic field forming mechanism M are provided inside or around the cell C. In FIG. 2 and FIG. 3, the electric field forming mechanism E is not shown.
 さらに、前記セルCは図示しない駆動機構により前記照射光学系Iから射出されたレーザ光の照射点IPを適宜変更できるように構成してある。より具体的には前記駆動機構は前記セルC内のレーザ光の照射点IPを図2に示すように少なくとも磁場勾配中か、図3に示すように磁場勾配の外側に変更できるように構成してある。後述するようにレーザ光の照射点IPが磁場勾配中にある場合に得られる散乱光、反射光、透過光から得られるデータについては、粒子の磁気泳動速度及び粒子の磁化率を算出するために用いられる。また、レーザ光の照射点IPが磁場勾配の外側にあり、前記磁場形成機構Eによる磁場影響が実質的に無い箇所で得られる散乱光から得られるデータは少なくとも粒子径を算出するために用いられる。ここで、磁場影響が実質的に無いとは粒子に対して磁力が作用していない、又は、粒子径の算出において測定誤差程度の影響しか与えない程度の磁力しか作用していない状態をいう。 Further, the cell C is configured so that the irradiation point IP of the laser light emitted from the irradiation optical system I can be appropriately changed by a driving mechanism (not shown). More specifically, the drive mechanism is configured such that the irradiation point IP of the laser beam in the cell C can be changed at least in the magnetic field gradient as shown in FIG. 2 or outside the magnetic field gradient as shown in FIG. It is. As will be described later, in order to calculate the magnetophoretic velocity of particles and the magnetic susceptibility of particles for data obtained from scattered light, reflected light, and transmitted light obtained when the laser light irradiation point IP is in a magnetic field gradient. Used. Further, data obtained from scattered light obtained at a location where the laser beam irradiation point IP is outside the magnetic field gradient and the magnetic field forming mechanism E is substantially free from the magnetic field is used to calculate at least the particle diameter. . Here, “substantially no magnetic field influence” refers to a state in which no magnetic force acts on the particles, or only a magnetic force that affects only the measurement error in calculating the particle diameter.
 前記照射光学系Iは、図1に示すレーザ光源ILと、図示しないレンズを備えたものである。前記レンズを移動させることにより前記セルC内におけるレーザの集光位置が変更できるようにしてある。例えば前記照射光学系Iは特定の偏光だけを通す偏光フィルタをさらにそなえたものであってもよい。 The irradiation optical system I includes the laser light source IL shown in FIG. 1 and a lens (not shown). The focusing position of the laser in the cell C can be changed by moving the lens. For example, the irradiation optical system I may further include a polarizing filter that allows only specific polarized light to pass therethrough.
 前記受光光学系Dは、前記セルCから離間させて設けてある4つの検出器からなるものである。すなわち、前記受光光学系Dは、透過光検出器D1と、前方検出器D2と、側方検出器D3と、後方検出器D4と、を備えている。 The light receiving optical system D is composed of four detectors provided apart from the cell C. That is, the light receiving optical system D includes a transmitted light detector D1, a front detector D2, a side detector D3, and a rear detector D4.
 前記透過光検出器D1は、フォトダイオードからなるものである前記セルC内を透過した透過光を検出する。この透過光に基づいて例えば分散媒中の粒子の濃度が測定される。なお、後述する機能ブロック図では濃度の算出に関する演算部の記載は省略しているが、測定結果の1つとして濃度についても表示される。 The transmitted light detector D1 detects transmitted light transmitted through the cell C, which is a photodiode. Based on this transmitted light, for example, the concentration of particles in the dispersion medium is measured. In addition, in the functional block diagram to be described later, the description of the calculation unit relating to concentration calculation is omitted, but the concentration is also displayed as one of the measurement results.
 前記前方検出器D2は、光電子倍増管を用いたものであり、前記セルCから射出される前方散乱光を検出するためのものである。この前方散乱光に基づいてゼータ電位が算出される。ここで、前記前方検出器D2の位置は前記セルCを中心としてXY平面内を回転させて変更できるようにしてある。すなわち、前記セルCと前記透過光検出器D1とを結ぶ直線と前記セルCと前記前方検出器D2とを結ぶ直線のなす角θは散乱光を検出するのに適した角度となるように調整可能にしてある。 The forward detector D2 uses a photomultiplier tube and detects forward scattered light emitted from the cell C. A zeta potential is calculated based on the forward scattered light. Here, the position of the front detector D2 can be changed by rotating in the XY plane around the cell C. That is, an angle θ formed by a straight line connecting the cell C and the transmitted light detector D1 and a straight line connecting the cell C and the front detector D2 is adjusted to be an angle suitable for detecting scattered light. It is possible.
 前記側方検出器D3も、光電子倍増管を用いたものであり、前記セルCから射出される側方散乱光を検出するためのものである。分散媒中の粒子の濃度が所定濃度よりも低い場合には、この側方散乱光に基づいて粒子径分布が算出される。また、この側方散乱光に基づいて分子量の算出も行われる。 The side detector D3 also uses a photomultiplier tube and detects side scattered light emitted from the cell C. When the concentration of particles in the dispersion medium is lower than a predetermined concentration, the particle size distribution is calculated based on the side scattered light. Further, the molecular weight is calculated based on the side scattered light.
 前記後方検出器D4も、光電子倍増管を用いたものであり、前記セルCから射出される後方散乱光を検出するためのものである。分散媒中の粒子の濃度が所定濃度よりも高い場合には、この後方散乱光に基づいて粒子径分布が算出される。 The back detector D4 also uses a photomultiplier tube and detects backscattered light emitted from the cell C. When the concentration of particles in the dispersion medium is higher than a predetermined concentration, the particle size distribution is calculated based on the backscattered light.
 前記参照光路Rは、図1に示すように前記レーザ光源ILから前記前方検出器D2まで前記セルCを介さずにレーザ光が参照光として到達するように構成してある。すなわち、前記参照光路Rは、前記レーザ光源ILと前記セルCとの間に設けられた第1ビームスプリッタR1と、前記セルCと前記前方検出器D2との間に設けられた第2ビームスプリッタR2と、前記第1ビームスプリッタR1で反射されたレーザ光の一部を前記第2ビームスプリッタR2まで導く、ミラーR3及びモジュレータR4とを備えている。前記第2ビームスプリッタR2を通過した後の前方散乱光と参照光は干渉光となり、前記前方検出器D2においてはドップラーシフトが検出されるようにしてある。 As shown in FIG. 1, the reference light path R is configured such that laser light reaches as reference light from the laser light source IL to the front detector D2 without passing through the cell C. That is, the reference optical path R includes a first beam splitter R1 provided between the laser light source IL and the cell C, and a second beam splitter provided between the cell C and the front detector D2. R2 and a mirror R3 and a modulator R4 for guiding a part of the laser beam reflected by the first beam splitter R1 to the second beam splitter R2. The forward scattered light and the reference light after passing through the second beam splitter R2 become interference light, and the Doppler shift is detected in the forward detector D2.
 前記電場形成機構Eは、前記セルC内に設けられた2枚の平行平板電極からなるものである。これらの平行平板電極間に所定の電圧が印加されてY軸方向に電場勾配が形成され、粒子はY軸方向に電気泳動することになる。なお、電場形成機構Eについても平行平板電極に限られず、例えば一対の円筒状又は半円筒状の電極であってもよい。 The electric field forming mechanism E is composed of two parallel plate electrodes provided in the cell C. A predetermined voltage is applied between these parallel plate electrodes to form an electric field gradient in the Y-axis direction, and the particles are electrophoresed in the Y-axis direction. The electric field forming mechanism E is not limited to the parallel plate electrode, and may be a pair of cylindrical or semi-cylindrical electrodes, for example.
 前記磁場形成機構Mは、前記セルCの外側に挟むように設けられた電磁石M2を用いたものである。この磁場形成機構MによりX軸方向又はZ軸方向に磁場勾配が形成されるようにしてあり、X軸方向又はZ軸方向に粒子は磁気泳動することになる。すなわち、電気泳動と磁気泳動において粒子の運動方向はそれぞれ異なるようにしてある。ここで、磁場勾配とは一対の磁極間において磁力線の密度が変化している部分に形成されるものを言う。例えば第1実施形態であれば一対の電磁石M2において外縁部に形成される磁場部分のことを言う。前記セルC内において磁場勾配が形成される場所は、前記電磁石M2の大きさや前記セルCに対する位置によって決めることができる。 The magnetic field forming mechanism M uses an electromagnet M2 provided so as to be sandwiched outside the cell C. A magnetic field gradient is formed in the X-axis direction or the Z-axis direction by the magnetic field forming mechanism M, and the particles are magnetophoresed in the X-axis direction or the Z-axis direction. That is, the direction of particle movement is different between electrophoresis and magnetophoresis. Here, the magnetic field gradient refers to a magnetic field gradient formed at a portion where the density of magnetic lines of force changes between a pair of magnetic poles. For example, in the first embodiment, it refers to a magnetic field portion formed at the outer edge portion of the pair of electromagnets M2. The place where the magnetic field gradient is formed in the cell C can be determined by the size of the electromagnet M2 and the position with respect to the cell C.
 前記磁場形成機構Mは、一対の電磁石M2と、前記電磁石M2を保持する保持ブロックM1とからなる。前記保持ブロックM1は、非磁性体で形成してあり、図1に示されるようにセルCの上下面と一方の側面を覆う部分を有している。保持ブロックM1のセルCの上下面を覆う部分には電磁石M2が取り付けてあり、上下方向でN極とS極が対向して形成されるようにしてある。保持ブロックM1のセルCの側面を覆う部分にはレーザ光を通過させるための開口を設けてある。前記保持ブロックM1は図1における紙面左右方向であるX軸方向に移動可能に構成してある。すなわち、前記セルCに対して磁場勾配を形成して磁気泳動速度を測定する場合には電磁石M2が前記セルCの上下に配置される動作位置に前記保持ブロックM1は移動する。一方、磁場を形成する必要が無い場合には図1の点線で示されるように前記保持ブロックM1は退避位置に移動する。さらに退避位置においては前記電磁石M2に対して通電は行われていない。このように構成することで、前記電磁訳M2の通電を繰り返すことにより前記保持ブロックM1自体が磁化してしまったとしても、磁気泳動速度を測定する時以外は前記保持ブロックM1を退避位置に移動させて前記セルCに対して磁場が実質的に形成されないようにすることができる。なお、前記磁場形成機構Mに電磁石M2を用いる場合には、磁気泳動速度を測定する時以外は通電しないようにし、保持ブロックM1については常に動作位置に固定するようにしてもよい。また、前記磁場形成機構Mに永久磁石を用いる場合には、前記保持ブロックM1を動作位置と退避位置との間で移動させることで、磁場勾配が前記セルC内に形成されている状態と形成されていない状態を切り替えるようにしてもよい。 The magnetic field forming mechanism M includes a pair of electromagnets M2 and a holding block M1 that holds the electromagnets M2. The holding block M1 is formed of a non-magnetic material and has a portion covering the upper and lower surfaces and one side surface of the cell C as shown in FIG. An electromagnet M2 is attached to a portion of the holding block M1 that covers the upper and lower surfaces of the cell C, and the N pole and the S pole are formed to face each other in the vertical direction. An opening for allowing the laser beam to pass is provided in a portion covering the side surface of the cell C of the holding block M1. The holding block M1 is configured to be movable in the X-axis direction, which is the left-right direction in FIG. That is, when measuring the magnetophoretic velocity by forming a magnetic field gradient with respect to the cell C, the holding block M1 moves to an operating position where the electromagnet M2 is disposed above and below the cell C. On the other hand, when it is not necessary to form a magnetic field, the holding block M1 moves to the retracted position as shown by the dotted line in FIG. Further, the electromagnet M2 is not energized at the retracted position. With this configuration, even if the holding block M1 itself is magnetized by repeating energization of the electromagnetic translation M2, the holding block M1 is moved to the retracted position except when the magnetophoretic velocity is measured. Thus, a magnetic field can be substantially not formed in the cell C. In the case where the electromagnet M2 is used for the magnetic field forming mechanism M, the energization may be performed only when the magnetophoretic velocity is measured, and the holding block M1 may be always fixed at the operating position. In the case where a permanent magnet is used for the magnetic field forming mechanism M, the state in which the magnetic field gradient is formed in the cell C is formed by moving the holding block M1 between the operating position and the retracted position. You may make it switch the state which is not performed.
 前記演算機構COMは、CPU、メモリ、入出力手段、A/D・D/Aコンバータ等からなるいわゆるコンピュータである。前記メモリに格納されている粒子分析装置100用プログラムが実行され、各種機器と協業することにより前記特性分析ユニット1及び前記磁化率測定ユニット2の構成のうちソフトウェア部分を実現する。すなわち、前記演算機構COMは前記特性分析ユニット1のソフトウェアの構成として、図4に示すように粒子径分布算出部11、ゼータ電位算出部12、分子量算出部13、ゲル構造解析部14としての機能を発揮する。また、前記演算機構COMは、前記磁化率測定ユニット2のソフトウェアの構成として磁化率算出部21としての機能を発揮する。また、前記特性分析ユニット1及び前記磁化率測定ユニット2の共用されるソフトウェアの構成として粒子速度算出部V、測定結果表示部Pとしての機能を発揮するように構成してある。 The calculation mechanism COM is a so-called computer including a CPU, a memory, input / output means, an A / D / D / A converter, and the like. A program for the particle analyzer 100 stored in the memory is executed, and a software part is realized in the configuration of the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2 by cooperating with various devices. That is, the calculation mechanism COM functions as a software configuration of the characteristic analysis unit 1 as shown in FIG. 4 as a particle size distribution calculation unit 11, a zeta potential calculation unit 12, a molecular weight calculation unit 13, and a gel structure analysis unit 14. Demonstrate. In addition, the calculation mechanism COM exhibits a function as the magnetic susceptibility calculation unit 21 as a software configuration of the magnetic susceptibility measurement unit 2. Further, as the software configuration shared by the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2, the functions as the particle velocity calculation unit V and the measurement result display unit P are exhibited.
 各部について説明する。 Each part will be explained.
 前記粒子径分布算出部11は、前記側方検出器D3又は前記後方検出器D4から得られる散乱光の強度信号に基づいて、動的光散乱法により前記分散媒中の粒子群の粒子径分布を算出するように構成してある。ここでは、光子相関法により自己相関関数を求め、この自己相関関数から粒子の拡散係数が算出される。そして拡散係数とストークス・アインスタインの式から粒子径が求められる。また、前記粒子径分布算出部11は、図3に示すように前記磁場勾配の外側にレーザ光が照射された場合に得られる散乱光の強度に基づいて粒子径を算出するように構成してある。 The particle size distribution calculating unit 11 is based on the intensity signal of scattered light obtained from the side detector D3 or the rear detector D4, and the particle size distribution of the particles in the dispersion medium by a dynamic light scattering method. Is calculated. Here, an autocorrelation function is obtained by the photon correlation method, and a particle diffusion coefficient is calculated from the autocorrelation function. The particle diameter is obtained from the diffusion coefficient and the Stokes-Einstein equation. Further, as shown in FIG. 3, the particle size distribution calculating unit 11 is configured to calculate the particle size based on the intensity of scattered light obtained when laser light is irradiated outside the magnetic field gradient. is there.
 前記粒子速度算出部Vは、レーザ光が粒子により散乱されて発生する散乱光の周波数の変化に基づいて粒子の速度を算出するものである。第1実施形態では、ドップラー法に基づく、レーザ・ドップラー速度計により粒子の速度は算出される。より具体的には、前記前方検出器D2で検出される散乱光と参照光が干渉した干渉光に表れるドップラーシフトに基づいて粒子の速度が算出される。ここで、図2に示すようにレーザ光の前記セルC内の照射点が磁場勾配中にある場合には、前記粒子速度算出部Vで算出される粒子の速度は磁気泳動速度に相当する。また、前記保持ブロックM1が退避位置にあり、セルC内に磁場勾配がなく前記電場形成機構Eにより電場勾配が形成されている状態で算出される粒子の速度は電気泳動速度に相当する。 The particle velocity calculation unit V calculates the velocity of particles based on a change in the frequency of scattered light generated when laser light is scattered by particles. In the first embodiment, the particle velocity is calculated by a laser Doppler velocimeter based on the Doppler method. More specifically, the velocity of the particles is calculated based on the Doppler shift that appears in the interference light obtained by the interference between the scattered light detected by the front detector D2 and the reference light. Here, as shown in FIG. 2, when the irradiation point of the laser beam in the cell C is in a magnetic field gradient, the particle velocity calculated by the particle velocity calculator V corresponds to the magnetophoretic velocity. Further, the velocity of the particles calculated in a state where the holding block M1 is in the retracted position and there is no magnetic field gradient in the cell C and an electric field gradient is formed by the electric field forming mechanism E corresponds to the electrophoresis velocity.
 図4に示される前記ゼータ電位算出部12は、前記粒子速度算出部Vにより算出される粒子の電気泳動速度又は粒子の移動度に基づいてゼータ電位を算出するように構成してある。 The zeta potential calculation unit 12 shown in FIG. 4 is configured to calculate the zeta potential based on the electrophoretic velocity or particle mobility calculated by the particle velocity calculation unit V.
 前記分子量算出部13は、静的光散乱法による計測により前記側方検出器D3から得られる側方散乱光の強度信号に基づいて、粒子の分子量を算出するように構成してある。ここでは、Debyeプロットを用いて粒子の絶対分子量を計算するようにしてある。 The molecular weight calculation unit 13 is configured to calculate the molecular weight of the particles based on the intensity signal of the side scattered light obtained from the side detector D3 by measurement by the static light scattering method. Here, the absolute molecular weight of the particles is calculated using the Debye plot.
 前記ゲル構造解析部14は、粒子から得られる散乱光の強度信号に基づいて、ゲル構造の格子間距離又はゲルの硬さを算出するものである。ここでは、ゲルの格子間距離に応じて散乱光の強度の自己相関関数のパターンが変化することを利用して格子間距離を算出するようにしてある。 The gel structure analysis unit 14 calculates the interstitial distance of the gel structure or the hardness of the gel based on the intensity signal of the scattered light obtained from the particles. Here, the interstitial distance is calculated using the fact that the pattern of the autocorrelation function of the intensity of scattered light changes according to the interstitial distance of the gel.
 前記磁化率算出部21は、前記粒子速度算出部Vにより算出される粒子の磁気泳動速度と、前記粒子径分布算出部11で算出される粒子径分布に基づいて磁化率を算出するように構成してある。すなわち、磁化率とゼータ電位の算出には前記受光光学系D及び前記粒子速度算出部Vを共通して使用している。また、粒子径は粒子径分布の例えば平均値等の代表値を用いるようにしている。このように粒子の速度と粒子径については前記特性分析ユニット1と前記磁化率測定ユニット2間で共通化してあり、前記磁化率測定ユニット2自体では磁気泳動速度及び粒子径を測定するための測定機構を省略してある。 The magnetic susceptibility calculator 21 is configured to calculate the magnetic susceptibility based on the particle magnetophoretic velocity calculated by the particle velocity calculator V and the particle size distribution calculated by the particle size distribution calculator 11. It is. That is, the light receiving optical system D and the particle velocity calculating unit V are commonly used for calculating the magnetic susceptibility and the zeta potential. For the particle size, a representative value such as an average value of the particle size distribution is used. Thus, the particle velocity and particle diameter are shared between the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2, and the magnetic susceptibility measurement unit 2 itself measures for measuring the magnetophoretic velocity and particle diameter. The mechanism is omitted.
 前記測定結果表示部Pは、図5に示すように前記磁化率測定ユニット2で測定された磁化率と、前記特性分析ユニット1で測定された測定結果の少なくとも1つを同一画面上に表示するように構成してある。ここで、同一画面とは例えばディスプレイにおいて同じ画面に表示されていることをいう。また、言い換えると各測定結果は個別のページに別々に表示されるのではなく、同一のページ内に表示してある。第1実施形態では図5に示すように少なくとも6つのグラフが同一のページ内に表示されるようにしてある。より具体的には、横軸を粒子径、縦軸をその粒子径の時の磁化率とした粒子径-磁化率グラフと、横軸を粒子径、縦軸をその粒子径の出現頻度とした粒子径-頻度グラフと、横軸をゼータ電位、縦軸をそのゼータ電位の出現頻度としたゼータ電位-頻度グラフと、横軸を濃度、縦軸をその濃度における前記前方検出器D2から出力される光の強度とした濃度-強度グラフと、横軸を偏光させたレーザ光のS波とP波の消光比から算出される粒子のアスペクト比、縦軸をそのアスペクト比の粒子の出現頻度とした分子量-頻度グラフと、横軸を前記ゲル構造解析部14から出力される格子間隔、縦軸をその格子間隔の出現頻度とした格子間隔-頻度グラフとが同一ページに表示される。 As shown in FIG. 5, the measurement result display unit P displays at least one of the magnetic susceptibility measured by the magnetic susceptibility measurement unit 2 and the measurement result measured by the characteristic analysis unit 1 on the same screen. It is constituted as follows. Here, the same screen means that the same screen is displayed on the display, for example. In other words, each measurement result is not displayed separately on an individual page, but is displayed on the same page. In the first embodiment, as shown in FIG. 5, at least six graphs are displayed on the same page. More specifically, the horizontal axis is the particle diameter, the vertical axis is the particle diameter-susceptibility graph with the magnetic susceptibility at that particle diameter, the horizontal axis is the particle diameter, and the vertical axis is the frequency of appearance of the particle diameter. The particle size-frequency graph, the zeta potential on the horizontal axis, the zeta potential-frequency graph with the vertical axis representing the frequency of appearance of the zeta potential, the horizontal axis represents the concentration, and the vertical axis is output from the front detector D2 at that concentration. Concentration-intensity graph of the intensity of light to be emitted, the horizontal axis represents the aspect ratio of particles calculated from the extinction ratio of S-wave and P-wave of laser light, and the vertical axis represents the frequency of appearance of particles having the aspect ratio. The molecular weight-frequency graph and the lattice interval-frequency graph with the horizontal axis output from the gel structure analysis unit 14 and the vertical axis with the frequency of appearance of the lattice interval are displayed on the same page.
 このように複数のグラフが表示されることにより、磁化率だけでなく、様々な粒子の特性について併せて確認することができる。例えば、図5に示されるように磁化率は1つのピークしかないところを粒子径の分布には2つのピークがある場合等といった不一致がある場合には粒子の製造工程において不純物が混入している可能性があること等を発見する事が可能となる。また、粒子群の磁化率が所望の値に制御できていない場合には、例えば磁性体金属の凝集によって極端に粒径の大きい粒子が発生している事などについても粒子径分布やゼータ電位等のその他の測定結果を磁化率の測定結果と併せて確認することで原因を究明する事が可能となる。 By displaying a plurality of graphs in this way, it is possible to confirm not only the magnetic susceptibility but also the characteristics of various particles. For example, as shown in FIG. 5, when there is a discrepancy such as a case where the magnetic susceptibility has only one peak and there are two peaks in the particle size distribution, impurities are mixed in the particle manufacturing process. It becomes possible to discover that there is a possibility. In addition, when the magnetic susceptibility of the particle group is not controlled to a desired value, for example, an extremely large particle is generated due to the aggregation of magnetic metal, etc., particle size distribution, zeta potential, etc. It is possible to investigate the cause by confirming the other measurement results of the above together with the measurement result of the magnetic susceptibility.
 このように構成された第1実施形態の粒子分析装置100によれば、1つの装置、1つの前記セルCで磁化率とともに、粒子径、ゼータ電位、分子量、ゲル構造を測定することができる。また、同一画面上に磁化率とともにその他の測定結果が表示されているので、各結果を一目で全体的に認識することが可能となり、従来よりも粒子の特性に関する詳細な情報をユーザは理解できる。 According to the particle analyzer 100 of the first embodiment configured as described above, the particle diameter, zeta potential, molecular weight, and gel structure can be measured together with the magnetic susceptibility by one device and one cell C. In addition, since other measurement results are displayed together with the magnetic susceptibility on the same screen, each result can be recognized at a glance, and the user can understand more detailed information on the characteristics of particles than before. .
 また、磁化率の算出に必要な粒子径及び磁気泳動速度は前記特性分析ユニット1の構成と共通化した機構で算出されるので、装置全体の構成を簡略化、及び、コンパクト化を実現できる。 Further, since the particle diameter and magnetophoretic velocity necessary for calculating the magnetic susceptibility are calculated by a mechanism shared with the configuration of the characteristic analysis unit 1, the configuration of the entire apparatus can be simplified and made compact.
 さらに、粒子径は磁場勾配が形成されていない領域に対してレーザ光が照射された状態で得られる散乱光に基づいて動的光散乱法により算出されるので、1μmよりも小さい粒子であっても正確に粒子径を算出することができる。これは3次元のブラウン運動を反映して粒子径が算出されるからである。 Further, the particle diameter is calculated by the dynamic light scattering method based on the scattered light obtained in the state where the laser beam is irradiated to the region where the magnetic field gradient is not formed, so that the particle diameter is smaller than 1 μm. Also, the particle diameter can be calculated accurately. This is because the particle diameter is calculated reflecting the three-dimensional Brownian motion.
 したがって、前記特性分析ユニット1と前記磁化率測定ユニット2が協業することにより、磁化率自体の正確さも高めることができる。 Therefore, the accuracy of the magnetic susceptibility itself can be increased by the cooperation of the characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2.
 次に第1実施形態の変形例について説明する。 Next, a modification of the first embodiment will be described.
 粒子径については動的光散乱法ではなく静的光散乱法に基づいて算出されるように構成してもよい。また、前記保持ブロックM1が磁気を帯びない材料で形成している場合には前記保持ブロックM1の位置を動作位置に固定しておき前記磁場形成機構Eに通電していない状態で得られる粒子からの散乱光に基づいて粒子径を算出するように粒子径分布算出部11を構成してもよい。 The particle size may be calculated based on the static light scattering method instead of the dynamic light scattering method. Further, when the holding block M1 is made of a material that does not have magnetism, the position of the holding block M1 is fixed at the operating position, and the particles obtained from the state in which the magnetic field forming mechanism E is not energized. The particle size distribution calculating unit 11 may be configured to calculate the particle size based on the scattered light.
 図6(a)及び図6(b)に示すように前記磁場形成機構Mで形成される磁場の向きを所定周期ごとに逆転させて粒子に対する磁力の作用方向を反転させて磁気泳動速度を測定できるように構成してもよい。より具体的には前記磁石M2として永久磁石を用いている場合には前記保持ブロックM1は前記セルCの中心を回転軸として回転可能に構成すればよい。このようにして粒子の磁力による移動方向を変更して複数回の測定を行うことにより、散乱光の周波数の変化を確実に捉えられるようにできる。なお、前記磁場形成機構Mに電磁石を用いる場合には通電方向を所定周期ごとに逆転させることで、磁力の作用方向の反転を繰り返して両方の方向の磁気泳動速度を複数回測定するようにしてもよい。 As shown in FIGS. 6A and 6B, the direction of the magnetic field formed by the magnetic field forming mechanism M is reversed every predetermined period to reverse the direction of the magnetic force acting on the particles, and the magnetophoretic velocity is measured. You may comprise so that it can do. More specifically, when a permanent magnet is used as the magnet M2, the holding block M1 may be configured to be rotatable about the center of the cell C as a rotation axis. Thus, by changing the moving direction by the magnetic force of the particles and performing the measurement a plurality of times, it is possible to reliably capture the change in the frequency of the scattered light. When an electromagnet is used for the magnetic field forming mechanism M, the energization direction is reversed every predetermined period, so that the reversal of the direction of the magnetic force is repeated and the magnetophoretic velocity in both directions is measured a plurality of times. Also good.
 また、粒子の磁気泳動と電気泳動の向きを一致させて、移動方向の違いによる測定誤差を低減できるようにするには、図7(a)や図(b)に示すように磁場形成機構Mにより形成される磁場勾配による磁力の作用方向と電場形成機構Eにより形成される電場勾配による力の向きが例えばZ軸方向で一致するようにすればよい。言い換えると、一対の磁石M2の対向方向と、一対の電極板の対向方向が交差するように配置すればよい。 Further, in order to match the direction of particle magnetophoresis and electrophoresis so that the measurement error due to the difference in the moving direction can be reduced, the magnetic field forming mechanism M as shown in FIGS. The direction of the magnetic force generated by the magnetic field gradient formed by the electric field forming mechanism E and the direction of the force generated by the electric field forming mechanism E may coincide with each other in the Z-axis direction, for example. In other words, the opposing direction of the pair of magnets M2 and the opposing direction of the pair of electrode plates may be arranged so as to intersect each other.
 前記粒子速度算出部Vは、ドップラー法ではなくその他の方法で散乱光の周波数の変化に基づいて粒子の速度を算出するものであってもよい。具体的には、散乱光の強度の自己相関関数から拡散係数を算出し、その拡散係数から粒子の速度を算出するように構成してもよい。 The particle velocity calculation unit V may calculate the particle velocity based on the change in the frequency of the scattered light by other methods than the Doppler method. Specifically, the diffusion coefficient may be calculated from the autocorrelation function of the scattered light intensity, and the velocity of the particles may be calculated from the diffusion coefficient.
 前記セルCに対するレーザ光の照射点IPを変更するには、前記セルC自体を動かすのではなく、前記粒子分析装置100の光学系自体の一部又は全部を移動可能に構成してもよい。 In order to change the irradiation point IP of the laser beam to the cell C, the cell C itself may not be moved, but a part or all of the optical system itself of the particle analyzer 100 may be configured to be movable.
 次に第2実施形態の粒子分析装置100について図8乃至図10を参照しながら説明する。なお、第1実施形態において説明した部材と対応する部材には同じ符号を付すこととする。 Next, the particle analyzer 100 of the second embodiment will be described with reference to FIGS. Note that members corresponding to those described in the first embodiment are denoted by the same reference numerals.
 第2実施形態の粒子分析装置100は、図8に示すように受光光学系DがセルCを中心にある平面において回転可能に構成された回転検出器D6であり、様々な散乱角の散乱光を1つの検出器で検出できるように構成してある。ここで、回転検出器D6は、ラマン光又は蛍光を測定する場合にはそのための検出器に交換される。また、第1実施形態における透過光検出器D1の位置にはビデオカメラD5が設けてある。なお、第1実施形態と同様に前記セルCの外側には前記磁場形成機構Mが設けてある。 The particle analyzer 100 according to the second embodiment is a rotation detector D6 in which the light receiving optical system D is configured to be rotatable in a plane centered on the cell C as shown in FIG. Can be detected by one detector. Here, the rotation detector D6 is replaced with a detector for measuring Raman light or fluorescence. Further, a video camera D5 is provided at the position of the transmitted light detector D1 in the first embodiment. As in the first embodiment, the magnetic field forming mechanism M is provided outside the cell C.
 さらに演算機構COMは、図9に示すように前記特性分析ユニット1のソフトウェアの構成である粒子径分布算出部11、粒子速度算出部V、元素分析部15、形状解析部17、表面解析部16としての機能を発揮するように構成してある。また、前記演算機構COMは前記磁化率測定ユニット2のソフトウェアの構成である磁化率算出部21としての機能を発揮するように構成してある。加えて、前記演算機構COMは磁化率と各種測定結果を同一画面上に表示する測定結果表示部Pとしての機能も発揮するようにしてある。 Further, as shown in FIG. 9, the calculation mechanism COM includes a particle size distribution calculation unit 11, a particle velocity calculation unit V, an element analysis unit 15, a shape analysis unit 17, and a surface analysis unit 16 which are software configurations of the characteristic analysis unit 1. It is comprised so that the function as may be demonstrated. The calculation mechanism COM is configured to exhibit a function as a magnetic susceptibility calculation unit 21 that is a software configuration of the magnetic susceptibility measurement unit 2. In addition, the calculation mechanism COM also functions as a measurement result display unit P that displays the magnetic susceptibility and various measurement results on the same screen.
 各部について説明する。 Each part will be explained.
 前記磁化率算出部21は、前記ビデオカメラD5で撮像される静止画像又は動画像に基づいて前記粒子径分布算出部11及び前記粒子速度算出部Vが算出する粒子径及び磁気泳動速度に基づき磁化率を算出するようにしてある。 The magnetic susceptibility calculation unit 21 performs magnetization based on the particle diameter and magnetophoretic velocity calculated by the particle size distribution calculation unit 11 and the particle velocity calculation unit V based on a still image or a moving image captured by the video camera D5. The rate is calculated.
 すなわち、前記粒子径分布算出部11は、前記ビデオカメラD5で撮像された静止画像を画像解析して粒子径を算出するように構成してある。ここでは静止画像中において粒子と背景との境界を輝度の差により検出し、その境界の内側の面積から粒子径を算出するようにしてある。 That is, the particle size distribution calculating unit 11 is configured to calculate the particle size by analyzing the still image captured by the video camera D5. Here, the boundary between the particle and the background in the still image is detected by the difference in luminance, and the particle diameter is calculated from the area inside the boundary.
 前記粒子速度算出部Vは、前記ビデオカメラD5で撮像された動画像に基づいて粒子の速度を算出するようにしてある。より具体的には前記磁場形成機構Mにより磁場勾配が前記セルC内に形成されている状態において磁力作用方向であるZ軸方向の粒子の動きを動画像から抽出し、そのフレーム数当たりの移動距離から磁気泳動速度を算出するようにしてある。 The particle velocity calculation unit V calculates the particle velocity based on the moving image captured by the video camera D5. More specifically, in the state where a magnetic field gradient is formed in the cell C by the magnetic field forming mechanism M, the movement of particles in the Z-axis direction, which is the direction of the magnetic force, is extracted from the moving image, and the movement per number of frames. The magnetophoretic velocity is calculated from the distance.
 前記元素分析部15は、前記回転検出器D6により得られるラマン散乱光又は蛍光のスペクトルに基づいて、粒子の元素分析を行うものである。すなわち、ラマン散乱光又は蛍光のスペクトルのピークと各種元素のピークとを比較して粒子に含まれている元素を特定するようにしてある。 The element analysis unit 15 performs elemental analysis of particles based on the Raman scattered light or fluorescence spectrum obtained by the rotation detector D6. That is, the element contained in the particle is specified by comparing the peak of the spectrum of Raman scattered light or fluorescence with the peak of various elements.
 前記表面解析部16は、前記元素分析部15による粒子の元素分析結果と、前記磁化率算出部21で算出される粒子の磁化率に基づいて、粒子の表面を形成する有機物を解析するように構成してある。例えば粒子が球状の母材の表面に有機物でコーティングが施されている場合、前記磁化率算出部21で算出される磁化率は母材の磁化率とコーティングの磁化率が組成比率で加重平均された値となっている。また、元素解析結果により粒子を構成する元素及びその比率が分かれば、母材とコーティングの組成比率も分かる。これらのことから、前記表面解析部16は、元素分析結果、磁化率、さらには前記粒子径分布算出部11で算出される粒子径に基づいてコーティングの膜厚を算出するようにしてある。 The surface analysis unit 16 analyzes the organic matter forming the surface of the particle based on the elemental analysis result of the particle by the elemental analysis unit 15 and the magnetic susceptibility of the particle calculated by the magnetic susceptibility calculation unit 21. It is configured. For example, when the surface of a base material having a spherical particle is coated with an organic material, the magnetic susceptibility calculated by the magnetic susceptibility calculation unit 21 is obtained by weighted average of the magnetic susceptibility of the base material and the magnetic susceptibility of the coating by the composition ratio. It is the value. Moreover, if the element which comprises particle | grains, and its ratio are known from an elemental analysis result, the composition ratio of a base material and a coating can also be known. For these reasons, the surface analysis unit 16 calculates the coating thickness based on the elemental analysis results, the magnetic susceptibility, and the particle diameter calculated by the particle size distribution calculation unit 11.
 前記形状解析部17は、前記回転検出器D6により得られる複数の散乱角度における散乱光の強度信号に基づいて、粒子の形状を解析するものである。ここでは、例えば散乱角ごとの散乱光の強度に基づいてどのようなアスペクト比を有しているかを解析するようにしてある。 The shape analysis unit 17 analyzes the shape of particles based on the intensity signals of scattered light at a plurality of scattering angles obtained by the rotation detector D6. Here, for example, the aspect ratio is analyzed based on the intensity of scattered light for each scattering angle.
 前記測定結果表示部Pは、図10に示すように粒子径ごとの膜厚の出現頻度や、粒子径ごとの磁化率、粒子のアスペクト比、ラマンスペクトル、蛍光スペクトルを同一画面上に表示するように構成してある。 As shown in FIG. 10, the measurement result display unit P displays the appearance frequency of the film thickness for each particle diameter, the magnetic susceptibility for each particle diameter, the aspect ratio of the particles, the Raman spectrum, and the fluorescence spectrum on the same screen. It is configured.
 このように構成された第2実施形態の粒子分析装置100であれば、磁化率と元素分析結果の組み合わせにより従来は分からなかった粒子のコーティングの膜厚等を得ることができる。 With the particle analyzer 100 according to the second embodiment configured as described above, it is possible to obtain a coating thickness of a particle coating that has not been known in the past by combining the magnetic susceptibility and the elemental analysis result.
 さらに、膜厚とともに粒子の形状を得ることができるので、粒子径の均一性だけでなく、その形状の均一性や組成の均一性についても併せて評価する事が可能となる。 Furthermore, since the shape of the particles can be obtained together with the film thickness, it is possible to evaluate not only the uniformity of the particle diameter but also the uniformity of the shape and the uniformity of the composition.
 次に第2実施形態の粒子分析装置100について変形例を説明する。 Next, a modification of the particle analyzer 100 of the second embodiment will be described.
 前記粒子径分布算出部11は、前記ビデオカメラD5の動画像に基づいて粒子の1次元又は2次元のブラウン運動を抽出し、そのブラウン運動の速度に基づいて拡散係数を算出して、粒子径を算出するように構成してもよい。なお、前記ビデオカメラD5で粒子を撮像する場合には前記セルCをレーザ光源ILではなくハロゲン光源等のインコヒーレント光で照明してもよい。また、前記ビデオカメラD5は透過光だけでなく反射光や散乱光を撮像して画像を取得するものであっても構わない。 The particle size distribution calculating unit 11 extracts a one-dimensional or two-dimensional Brownian motion of particles based on the moving image of the video camera D5, calculates a diffusion coefficient based on the speed of the Brownian motion, May be calculated. Note that when the particles are imaged by the video camera D5, the cell C may be illuminated with incoherent light such as a halogen light source instead of the laser light source IL. The video camera D5 may capture not only transmitted light but also reflected light and scattered light to acquire an image.
 加えて前記元素分析部15は蛍光のスペクトルによって元素分析を行うものであってもよい。 In addition, the element analysis unit 15 may perform element analysis based on a fluorescence spectrum.
 前記表面解析部16は、膜厚以外の特性について元素分析結果と磁化率に基づいて算出するものであってもよい。 The surface analysis unit 16 may calculate characteristics other than the film thickness based on the elemental analysis result and the magnetic susceptibility.
 次に第3実施形態の粒子分析装置100について説明する。なお、前記実施形態で説明した部材に対応する部材には同じ符号を付すこととする。 Next, the particle analyzer 100 of the third embodiment will be described. In addition, the same code | symbol shall be attached | subjected to the member corresponding to the member demonstrated by the said embodiment.
 第3実施形態の粒子分析装置100は、図11に示すように粒子を含む分散媒に対して磁場勾配を形成する磁場形成機構Mと、粒子の磁気泳動速度及び粒子の粒子径に基づいて当該粒子の磁化率を算出する磁化率算出部21と、を具備する磁化率測定ユニット2と、前記磁場形成機構Mによる磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定のみを行う特性分析ユニット1と、を備えたものである。 The particle analyzer 100 according to the third embodiment includes a magnetic field forming mechanism M that forms a magnetic field gradient with respect to a dispersion medium containing particles as shown in FIG. 11, and based on the magnetophoretic velocity of particles and the particle diameter of particles. A magnetic susceptibility measuring unit 2 comprising a magnetic susceptibility calculating unit 21 for calculating the magnetic susceptibility of particles, and a dynamic light scattering method or static light scattering at a location where there is substantially no magnetic field effect by the magnetic field forming mechanism M. And a characteristic analysis unit 1 that performs only particle size distribution measurement by the method.
 前記特性分析ユニット1は、前記セルCにおいて前記磁場形成機構Mにより磁場勾配が形成されていない部分へレーザ光を射出する第1レーザ光源IL1と、前記セルC内において前記第1レーザ光源IL1から射出されたレーザ光が粒子により散乱された散乱光を検出する第1検出器D21と、前記第1検出器D21の出力に基づいて動的光散乱法又は静的光散乱法により粒子径分布を算出する粒子径分布算出部11とを備えたものである。 The characteristic analysis unit 1 includes a first laser light source IL1 that emits laser light to a portion of the cell C where a magnetic field gradient is not formed by the magnetic field forming mechanism M, and the first laser light source IL1 in the cell C. A first detector D21 that detects scattered light obtained by scattering the emitted laser light by particles, and a particle size distribution by a dynamic light scattering method or a static light scattering method based on the output of the first detector D21. A particle size distribution calculating unit 11 for calculating is provided.
 一方前記磁化率測定ユニット2は、前記セルCにおいて前記磁場形成機構Mにより磁場勾配が形成されている部分へレーザ光を射出する第2レーザ光源IL2と、前記セルC内において前記第2レーザ光源IL2から射出されたレーザ光が粒子により散乱された散乱光を検出する第2検出器D22と、前記第2検出器D22の出力に基づいて粒子の磁気泳動速度を算出する粒子速度算出部Vと、前記粒子速度算出部Vにより算出された磁気泳動速度と前記粒子径分布算出部11で算出された粒子の粒子径に基づいて粒子の磁化率を算出する磁化率算出部21を備えたものである。 On the other hand, the magnetic susceptibility measurement unit 2 includes a second laser light source IL2 that emits laser light to a portion of the cell C where a magnetic field gradient is formed by the magnetic field forming mechanism M, and the second laser light source in the cell C. A second detector D22 for detecting scattered light obtained by scattering the laser light emitted from IL2 by particles; a particle velocity calculating unit V for calculating a magnetophoretic velocity of particles based on the output of the second detector D22; And a magnetic susceptibility calculation unit 21 that calculates the magnetic susceptibility of particles based on the magnetophoretic velocity calculated by the particle velocity calculation unit V and the particle diameter of the particles calculated by the particle size distribution calculation unit 11. is there.
 このような第3実施形態の粒子分析装置100であれば、簡素な構成でありながら粒子径が小さい場合でも正確な値を得て、ひいては正確な磁化率を得ることが可能となる。 Such a particle analyzer 100 according to the third embodiment can obtain an accurate value even when the particle diameter is small while having a simple configuration, and thus an accurate magnetic susceptibility can be obtained.
 その他の実施形態について説明する。 Other embodiments will be described.
 前記特性分析ユニット1は、前記分散媒中の粒子について、前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、散乱光による形状解析の少なくとも1つを行うものであればよい。このようなものであれば、磁化率と組み合わせることで粒子の様々な特性をよりよく知ることが可能となる。 The characteristic analysis unit 1 uses the dynamic light scattering method or the static light scattering method, the zeta potential measurement for the particles in the dispersion medium at a place where there is substantially no magnetic field influence by the magnetic field formation mechanism. It is sufficient to perform at least one of gel structure analysis, molecular weight measurement, elemental analysis, and shape analysis by scattered light. If it is such, it becomes possible to know various characteristics of particles better by combining with magnetic susceptibility.
 前記照射光学系I及び前記受光光学系Dについては各実施形態に示したものに限られない。例えば前記特性分析ユニット1において行う測定、解析に合わせて前記受光光学系Dにおいて必要のない検出器については省略しても構わない。 The irradiation optical system I and the light receiving optical system D are not limited to those shown in each embodiment. For example, detectors that are not necessary in the light receiving optical system D in accordance with the measurement and analysis performed in the characteristic analysis unit 1 may be omitted.
 前記レーザ光源IL、各種検出器、粒速度算出部、測定結果表示部Pは前記特性分析ユニット1又は前記磁化率測定ユニット2のいずれを構成するものであっても構わない。また、前記特性分析ユニット1及び前記磁化率測定ユニット2とは独立に前記粒子分析装置100を構成する要素であっても構わない。 The laser light source IL, the various detectors, the particle velocity calculation unit, and the measurement result display unit P may constitute either the characteristic analysis unit 1 or the magnetic susceptibility measurement unit 2. The characteristic analysis unit 1 and the magnetic susceptibility measurement unit 2 may be elements constituting the particle analyzer 100 independently of each other.
 前記粒子分析装置100はさらにX線管及びX線、蛍光X線検出器を含むX線解析機構を有し、分散媒中の粒子が無機物であっても元素解析ができるようにしても構わない。 The particle analyzer 100 further has an X-ray analysis mechanism including an X-ray tube, an X-ray, and a fluorescent X-ray detector, so that element analysis can be performed even if the particles in the dispersion medium are inorganic. .
 本発明の粒子分析装置100は第1実施形態と第2実施形態に示した全ての測定を行い、図5及び図10に示した測定結果を全て同一画面上に表示するように構成してもよい。 The particle analyzer 100 of the present invention may be configured to perform all the measurements shown in the first and second embodiments and display all the measurement results shown in FIGS. 5 and 10 on the same screen. Good.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の組み合わせや変形を行っても構わない。 In addition, various combinations and modifications of the embodiments may be performed without departing from the spirit of the present invention.
 本発明に係る粒子分析装置によれば、1つの装置で粒子の磁化率とともに多数の粒子の特性を測定することができ、詳細な粒子分析が可能となる。 According to the particle analyzer according to the present invention, the characteristics of a large number of particles can be measured together with the magnetic susceptibility of the particles with a single device, and detailed particle analysis becomes possible.

Claims (13)

  1.  粒子を含む分散媒に対して磁場勾配を形成する磁場形成機構と、粒子の磁気泳動速度及び粒子の粒子径に基づいて当該粒子の磁化率を算出する磁化率算出部と、を具備する磁化率測定ユニットと、
     前記分散媒中の粒子について、前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、散乱光による形状解析の少なくとも1つを行う特性分析ユニットと、を備えたことを特徴とする粒子分析装置。
    Magnetic susceptibility comprising: a magnetic field forming mechanism that forms a magnetic field gradient for a dispersion medium containing particles; and a magnetic susceptibility calculator that calculates the magnetic susceptibility of the particles based on the magnetophoretic velocity of the particles and the particle diameter of the particles A measurement unit;
    For particles in the dispersion medium, particle size distribution measurement, zeta potential measurement, gel structure analysis, molecular weight measurement by a dynamic light scattering method or a static light scattering method at a place where there is substantially no magnetic field effect by the magnetic field formation mechanism. And a characteristic analysis unit that performs at least one of elemental analysis and shape analysis by scattered light.
  2.  前記磁化率測定ユニットで測定された磁化率と、前記特性分析ユニットで測定された測定結果の少なくとも1つを同一画面上に表示する測定結果表示部をさらに備えた請求項1記載の粒子分析装置。 2. The particle analyzer according to claim 1, further comprising a measurement result display unit that displays at least one of the magnetic susceptibility measured by the magnetic susceptibility measurement unit and the measurement result measured by the characteristic analysis unit on the same screen. .
  3.  分散媒が収容されたセルにレーザ光を射出するレーザ光源と、
     前記分散媒中の粒子により散乱された散乱光を検出する検出器と、
     粒子により散乱されたレーザ光の散乱光の周波数の変化に基づいて粒子の速度を算出する粒子速度算出部と、をさらに備え、
     前記磁化率算出部が、前記磁場形成機構により磁場勾配が形成されている状態で前記粒子速度算出部により算出される粒子の速度である磁気泳動速度に基づいて前記磁化率を算出するように構成された請求項1記載の粒子分析装置。
    A laser light source for emitting laser light to a cell containing a dispersion medium;
    A detector for detecting scattered light scattered by particles in the dispersion medium;
    A particle velocity calculator that calculates the velocity of the particles based on the change in the frequency of the scattered light of the laser light scattered by the particles, and
    The magnetic susceptibility calculation unit is configured to calculate the magnetic susceptibility based on a magnetophoretic velocity that is a particle velocity calculated by the particle velocity calculation unit in a state where a magnetic field gradient is formed by the magnetic field forming mechanism. The particle analyzer according to claim 1.
  4.  前記粒子速度算出部が、ドップラー法に基づいて粒子の速度を算出するように構成された請求項3に記載の粒子分析装置。 The particle analyzer according to claim 3, wherein the particle velocity calculation unit is configured to calculate a particle velocity based on a Doppler method.
  5.  前記レーザ光源から前記検出器まで前記セルを介さずにレーザ光が参照光として到達する参照光路をさらに備え、
     前記粒子速度算出部が、前記検出器で検出される散乱光と参照光が干渉した干渉光に表れるドップラーシフトに基づいて粒子の速度を算出するように構成された請求項3に記載の粒子分析装置。
    A reference light path through which the laser light reaches the reference light without passing through the cell from the laser light source to the detector;
    The particle analysis according to claim 3, wherein the particle velocity calculation unit is configured to calculate a particle velocity based on a Doppler shift appearing in interference light in which scattered light detected by the detector and reference light interfere with each other. apparatus.
  6.  前記粒子速度算出部が、前記検出器で検出される散乱光の強度の自己相関関数に基づいて、粒子の速度を算出するように構成された請求項3に記載の粒子分析装置。 4. The particle analyzer according to claim 3, wherein the particle velocity calculation unit is configured to calculate a particle velocity based on an autocorrelation function of the intensity of scattered light detected by the detector.
  7.  前記特性分析ユニットが、
      前記分散媒に対して電場勾配を形成する電場形成機構と、
      前記電場形成機構により電場勾配が形成されている状態で前記粒子速度算出部により算出される粒子の速度である電気泳動速度に基づいてゼータ電位を算出するゼータ電位算出部と、を備えた請求項3に記載の粒子分析装置。
    The characteristic analysis unit comprises:
    An electric field forming mechanism for forming an electric field gradient with respect to the dispersion medium;
    A zeta potential calculation unit that calculates a zeta potential based on an electrophoretic velocity that is a velocity of particles calculated by the particle velocity calculation unit in a state where an electric field gradient is formed by the electric field forming mechanism. 4. The particle analyzer according to 3.
  8.  前記特性分析ユニットが、
      粒子から得られる散乱光の強度信号に基づいて、動的光散乱法又は静的光散乱法により前記分散媒中の粒子群の粒子径分布を算出する粒子径分布算出部をさらに備え、
     前記磁化率算出部が、前記粒子径分布算出部で算出される粒子径分布に基づいて粒子の磁化率を算出するように構成されている請求項1に記載の粒子分析装置。
    The characteristic analysis unit comprises:
    Based on the intensity signal of the scattered light obtained from the particles, further comprising a particle size distribution calculating unit for calculating the particle size distribution of the particles in the dispersion medium by a dynamic light scattering method or a static light scattering method,
    The particle analyzer according to claim 1, wherein the magnetic susceptibility calculation unit is configured to calculate the magnetic susceptibility of particles based on the particle size distribution calculated by the particle size distribution calculation unit.
  9.  前記特性分析ユニットが
      粒子から得られるラマン散乱光のスペクトル、又は、蛍光のスペクトルに基づいて、粒子の元素分析を行う元素分析部と、
      前記元素分析部による粒子の元素分析結果と、前記磁化率算出部で算出される粒子の磁化率に基づいて、粒子の表面を形成する有機物を解析する表面解析部と、をさらに備えた請求項1に記載の粒子分析装置。
    An element analysis unit that performs elemental analysis of particles based on a spectrum of Raman scattered light obtained from the particles or a spectrum of fluorescence;
    The surface analysis part which analyzes the organic substance which forms the surface of particles based on the elemental analysis result of the particles by the element analysis part, and the magnetic susceptibility of the particles calculated by the magnetic susceptibility calculation part 2. The particle analyzer according to 1.
  10.  前記分散媒及び粒子群がゲル構造をなし、
     前記特性分析ユニットが、
      粒子から得られる散乱光の強度信号に基づいて、ゲル構造の格子間距離又はゲルの硬さを算出するゲル構造解析部をさらに備えた請求項1に記載の粒子分析装置。
    The dispersion medium and the particle group have a gel structure,
    The characteristic analysis unit comprises:
    The particle analyzer according to claim 1, further comprising a gel structure analysis unit that calculates an interstitial distance of the gel structure or a gel hardness based on an intensity signal of scattered light obtained from the particles.
  11.  前記特性分析ユニットが、
      粒子から得られる散乱光の強度信号に基づいて、粒子の分子量を算出する分子量算出部をさらに備えた請求項1に記載の粒子分析装置。
    The characteristic analysis unit comprises:
    The particle analyzer according to claim 1, further comprising a molecular weight calculator that calculates the molecular weight of the particle based on an intensity signal of scattered light obtained from the particle.
  12.  前記特性分析ユニットが、
      粒子から得られる複数の散乱角度における散乱光の強度信号に基づいて、粒子の形状を解析する形状解析部をさらに備えた請求項1に記載の粒子分析装置。
    The characteristic analysis unit comprises:
    The particle analyzer according to claim 1, further comprising a shape analysis unit that analyzes the shape of the particle based on intensity signals of scattered light at a plurality of scattering angles obtained from the particle.
  13.  粒子を含む分散媒に対して磁場勾配を磁場形成機構により形成すること、
     粒子の磁気泳動速度及び粒子の粒子径に基づいて当該粒子の磁化率を算出すること、
     前記分散媒中の粒子について、前記磁場形成機構による磁場影響が実質的に無い箇所での動的光散乱法又は静的光散乱法による粒子径分布測定、ゼータ電位測定、ゲル構造解析、分子量測定、元素分析、散乱光による形状解析の少なくとも1つを行うこと、を備えたことを特徴とする粒子分析方法。
     
    Forming a magnetic field gradient for the dispersion medium containing particles by a magnetic field forming mechanism;
    Calculating the magnetic susceptibility of the particle based on the magnetophoretic velocity of the particle and the particle diameter of the particle;
    For particles in the dispersion medium, particle size distribution measurement, zeta potential measurement, gel structure analysis, molecular weight measurement by a dynamic light scattering method or a static light scattering method at a place where there is substantially no magnetic field effect by the magnetic field formation mechanism. A particle analysis method comprising: performing at least one of element analysis and shape analysis using scattered light.
PCT/JP2016/081301 2015-10-23 2016-10-21 Particle analysis device and particle analysis method WO2017069250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017545812A JP6726675B2 (en) 2015-10-23 2016-10-21 Particle analyzer and particle analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209291 2015-10-23
JP2015-209291 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017069250A1 true WO2017069250A1 (en) 2017-04-27

Family

ID=58557061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081301 WO2017069250A1 (en) 2015-10-23 2016-10-21 Particle analysis device and particle analysis method

Country Status (2)

Country Link
JP (1) JP6726675B2 (en)
WO (1) WO2017069250A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190162A1 (en) * 2017-04-14 2018-10-18 リオン株式会社 Particle measuring device and particle measuring method
JP2018179971A (en) * 2017-04-14 2018-11-15 リオン株式会社 Particle measuring device and method for measuring particles
WO2019039601A1 (en) * 2017-08-25 2019-02-28 株式会社カワノラボ Analyzing device and analysis method
CN112577859A (en) * 2020-12-02 2021-03-30 苏州海狸生物医学工程有限公司 Experimental device and method for measuring basic physical parameters of magnetic microspheres
JP2021135240A (en) * 2020-02-28 2021-09-13 学校法人東日本学園 Evaluation method and evaluation device for moving particles
JP7405414B2 (en) 2020-03-26 2023-12-26 国立研究開発法人宇宙航空研究開発機構 Measuring device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112271B1 (en) * 1970-12-18 1976-04-17
JPH07128215A (en) * 1993-10-29 1995-05-19 Shimadzu Corp Suspended particle analyzing method and device
JP2001505236A (en) * 1996-11-06 2001-04-17 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウエルス システム オブ ハイアー エデュケイション Novel polymerized crystalline colloid array sensor
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method
JP2010078469A (en) * 2008-09-26 2010-04-08 Horiba Ltd Instrument for measuring physical property of particle
JP2012215893A (en) * 2007-02-07 2012-11-08 Ppg Industries Ohio Inc Crystalline colloidal arrays responsive to activator
JP2013253882A (en) * 2012-06-07 2013-12-19 Osaka Univ Magnetic susceptibility measuring device
WO2015030184A1 (en) * 2013-08-30 2015-03-05 国立大学法人大阪大学 Dispersoid analysis method and dispersoid analysis device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291955A (en) * 1989-05-02 1990-12-03 Shigeki Maeda Non-destructive inspection apparatus for long material
JP2002357594A (en) * 2001-03-28 2002-12-13 Olympus Optical Co Ltd Device and method for identifying magnetic particles
JP4411440B2 (en) * 2006-06-02 2010-02-10 国立大学法人 筑波大学 Particle characteristic measuring apparatus and particle characteristic measuring method
JP5643497B2 (en) * 2009-08-31 2014-12-17 株式会社堀場製作所 Particle measuring device using scattered light
JP5732287B2 (en) * 2011-03-17 2015-06-10 オルガノ株式会社 Membrane filtration system and filtration membrane damage detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112271B1 (en) * 1970-12-18 1976-04-17
JPH07128215A (en) * 1993-10-29 1995-05-19 Shimadzu Corp Suspended particle analyzing method and device
JP2001505236A (en) * 1996-11-06 2001-04-17 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウエルス システム オブ ハイアー エデュケイション Novel polymerized crystalline colloid array sensor
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method
JP2012215893A (en) * 2007-02-07 2012-11-08 Ppg Industries Ohio Inc Crystalline colloidal arrays responsive to activator
JP2010078469A (en) * 2008-09-26 2010-04-08 Horiba Ltd Instrument for measuring physical property of particle
JP2013253882A (en) * 2012-06-07 2013-12-19 Osaka Univ Magnetic susceptibility measuring device
WO2015030184A1 (en) * 2013-08-30 2015-03-05 国立大学法人大阪大学 Dispersoid analysis method and dispersoid analysis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190162A1 (en) * 2017-04-14 2018-10-18 リオン株式会社 Particle measuring device and particle measuring method
JP2018179971A (en) * 2017-04-14 2018-11-15 リオン株式会社 Particle measuring device and method for measuring particles
US10837890B2 (en) 2017-04-14 2020-11-17 Rion Co., Ltd. Particle measuring device and particle measuring method
WO2019039601A1 (en) * 2017-08-25 2019-02-28 株式会社カワノラボ Analyzing device and analysis method
JPWO2019039601A1 (en) * 2017-08-25 2020-10-15 株式会社カワノラボ Analytical device and analytical method
JP2021135240A (en) * 2020-02-28 2021-09-13 学校法人東日本学園 Evaluation method and evaluation device for moving particles
JP7405414B2 (en) 2020-03-26 2023-12-26 国立研究開発法人宇宙航空研究開発機構 Measuring device and method
CN112577859A (en) * 2020-12-02 2021-03-30 苏州海狸生物医学工程有限公司 Experimental device and method for measuring basic physical parameters of magnetic microspheres

Also Published As

Publication number Publication date
JP6726675B2 (en) 2020-07-22
JPWO2017069250A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6726675B2 (en) Particle analyzer and particle analysis method
Douglass et al. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination
US7738695B2 (en) Method and device for 3 dimensional imaging of suspended micro-objects providing high-resolution microscopy
JP6661198B2 (en) Particle analyzer
JP6726687B2 (en) Particle analyzer and particle analysis method
JP6985558B2 (en) How to calibrate the investigated volume of a lightsheet-based nanoparticle tracking / counting device
Londoño et al. Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems
CN102998287A (en) Information processing apparatus, information processing method, program, and information processing system
WO2018105721A1 (en) Particle analyzing device, particle separating device, particle analysis method, and particle separating method
JP2009229239A (en) Particle size measuring device and method
CN108496066A (en) Micro spectrometer and between imaging pattern and spectrometer pattern switch micro spectrometer method
JP6238425B2 (en) Magnetic susceptibility measuring device
US20180136111A1 (en) Magnetophorisis measuring system for determining motion status of object and quantifying amount of magnetic particles contained therein
Nguyen et al. Volumetric-correlation PIV to measure particle concentration and velocity of microflows
CN103256888B (en) A kind of super-resolution moving grating confocal imaging apparatus and method
CN218674714U (en) Magneto-optical Kerr measuring device
JP6906206B2 (en) Magnetic susceptibility measuring device and magnetic susceptibility measuring method
JP2010078468A (en) Instrument for measuring physical property of particle
Samsonov et al. High speed laser tomography system
JP5018194B2 (en) Observation device
JP2010101877A (en) Instrument for measuring physical properties of particles
JP6842060B2 (en) Analytical method and analyzer
Feruglio et al. Extended dynamic range imaging for noise mitigation in fluorescence anisotropy imaging
Wang et al. Pose estimation of hidden object behind a thin scattering layer based on speckle correlation
RU2751462C1 (en) Method for studying structure of magnetic fields using laser radiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857563

Country of ref document: EP

Kind code of ref document: A1