WO2017068951A1 - Core-molding device and core-molding method - Google Patents

Core-molding device and core-molding method Download PDF

Info

Publication number
WO2017068951A1
WO2017068951A1 PCT/JP2016/079318 JP2016079318W WO2017068951A1 WO 2017068951 A1 WO2017068951 A1 WO 2017068951A1 JP 2016079318 W JP2016079318 W JP 2016079318W WO 2017068951 A1 WO2017068951 A1 WO 2017068951A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
foundry sand
vibration
sand
blown
Prior art date
Application number
PCT/JP2016/079318
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 福田
大塚 真
昇一 西
直洋 三浦
大剛 岩永
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201680055425.XA priority Critical patent/CN108136488B/en
Priority to MX2018003448A priority patent/MX2018003448A/en
Publication of WO2017068951A1 publication Critical patent/WO2017068951A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/28Compacting by different means acting simultaneously or successively, e.g. preliminary blowing and finally pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article

Definitions

  • the present invention relates to a core molding apparatus and a core molding method.
  • Patent Document 1 in a mold making apparatus for making a mold including a core, a blow head having a blow nozzle that houses cast sand and blows the foundry sand into a cavity at a lower portion, and when the foundry sand is blown A pressurized gas supply device for supplying the pressurized gas into the blow head, a sand temperature detecting device for detecting the temperature of the foundry sand in the blow head, and detecting the amount of the foundry sand in the blow head A sand amount detecting device, a solvent spraying device for spraying a solvent onto the foundry sand in the blow head, a temperature of the foundry sand in the blow head detected by the sand temperature detecting device, and a sand amount detecting device.
  • a spray amount control device that controls the amount of solvent sprayed from the solvent spray device
  • the cavity for molding the thinned core becomes narrower in the area where the foundry sand is filled, so that the foundry sand is less likely to be filled in the cavity.
  • the filling density of the foundry sand in the cavity is lowered, and the strength of the molded core may not satisfy a desired strength.
  • a pressurized gas is usually blown together with the foundry sand from a blowing nozzle.
  • the present invention has been made in view of such a point, and an object of the present invention is to improve the core strength, thereby realizing mass production of a thinned core and forming a molded core. It is to improve the dimensional accuracy of the child.
  • the present invention is directed to a core molding apparatus, a blow head that accommodates foundry sand, a blow nozzle that is disposed so as to communicate with the blow head, and an interior of the blow head.
  • a pressurized gas to the pressurized gas supply device for blowing and filling the foundry sand into the mold cavity through the blow nozzle.
  • vibration is applied to the foundry sand blown into the cavity.
  • the vibration device, the suction device that sucks the foundry sand blown into the cavity so as to be drawn toward the upper surface side of the cavity, and the operations of the pressurized gas supply device, the vibration device, and the suction device are as follows.
  • a control device that can be controlled, wherein the control device includes a period of blowing the foundry sand by the pressurized gas supply device, and an upper portion of the foundry sand blown into the cavity.
  • Each operation is performed so that there is a period in which the period during which vibration is applied by the vibration exciter and the period during which casting sand blown into the cavity is sucked by the suction unit overlap each other. I was supposed to.
  • foundry sand When the foundry sand is filled on the bottom side of the cavity, a void is formed on the upper surface side of the cavity. Further, foundry sand is blown into the gap from the blow nozzle. Thereby, the said clearance gap can be filled up with foundry sand.
  • the foundry sand blown from the blow nozzle can be sucked by the suction device so as to be drawn toward the upper surface side of the cavity.
  • casting sand can be filled up to the upper part of a cavity which is a part which is hard to be filled with casting sand.
  • the control device allows the molding gas to be blown by the pressurized gas supply device, the period for applying vibration to the casting sand blown into the cavity by the vibration device, and the casting sand blown into the cavity by the suction device.
  • the foundry sand blown into the cavity is rolled by the vibration device while blowing sand into the cavity from the blow nozzle. Then, the casting sand that has been filled into the bottom of the cavity and blown into the cavity can be drawn toward the upper surface of the cavity by a suction device to fill the upper surface of the cavity.
  • the cavity can be filled with the foundry sand while filling the gap between the foundry sand, so that the filling density of the foundry sand in the cavity is increased and the strength of the core is improved. As a result, mass production of the thinned core can be realized.
  • the density of the molded core becomes uniform.
  • deformation (expansion etc.) of the core when casting is performed using the molded core becomes uniform throughout the core.
  • the dimensional variation in each part of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
  • the foundry sand is preferably foundry sand using an inorganic binder.
  • the strength of the core can be further improved as compared with the case of using an organic binder.
  • Another aspect of the present invention is an invention of a core molding method, which is arranged so as to communicate with the blow head by supplying a pressurized gas into the blow head containing the foundry sand.
  • Blowing step of blowing and filling the foundry sand into the cavity of the mold through the blow nozzle provided, an exciting step of applying vibration to the foundry sand blown into the cavity, and into the cavity
  • a suction step of sucking the blown foundry sand so as to draw it toward the upper surface of the cavity, a period during which the blow step is performed, a period during which the vibration step is performed, and the suction
  • the period in which the process is executed has a period that overlaps with each other.
  • the blowing process is executed, pressurized gas is supplied into the blow head, and foundry sand is blown into the cavity via the blow nozzle.
  • a gap is formed between the foundry sands by the pressurized gas supplied together with the foundry sands.
  • Vibration is applied to the foundry sand blown into the cavity in the vibration step.
  • the foundry sand rolls due to vibration, fills the gap, and fills the bottom of the cavity with the foundry sand, creating a void on the upper surface side of the cavity.
  • the foundry sand blown into the cavity is sucked so as to be drawn toward the upper surface side in the cavity.
  • the period in which the blowing process is performed, the period in which the vibration process is performed, and the period in which the suction process is performed have a period that overlaps each other, so that the casting sand is blown from the blow nozzle and the cavity is blown.
  • the foundry sand blown into the cavity is rolled by vibration to fill the bottom side of the cavity, and the foundry sand blown into the cavity is sucked so as to be drawn toward the upper surface side of the cavity, and the upper surface side of the cavity Can be filled.
  • the cavity can be filled with the foundry sand while filling the gap between the foundry sand, so that the filling density of the foundry sand in the cavity is increased and the strength of the core is improved. As a result, mass production of the thinned core can be realized.
  • the density of the molded core becomes uniform.
  • deformation (expansion etc.) of the core when casting is performed using the molded core becomes uniform throughout the core.
  • the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
  • the vibration step is started, and after the second predetermined time has elapsed since the start of the vibration step, it is desirable that the blowing process and the vibration process are also completed.
  • a blowing process is performed, pressurized gas is supplied into the blow head by a pressurized gas supply device, and foundry sand is blown into the cavity through the blow nozzle.
  • the vibration process is executed, and vibration is applied to the casting sand blown into the cavity.
  • the foundry sand rolls due to vibrations, filling the gaps between the foundry sands, filling the foundry sand on the bottom side of the cavity, and creating voids on the upper surface side of the cavity.
  • the suction process is executed so that the foundry sand blown into the cavity is drawn toward the upper surface side in the cavity. Sucked. Thereby, the foundry sand is filled up to the upper part of the cavity, which is a portion that is difficult to be filled with foundry sand.
  • the inside of the cavity is filled with the casting sand on the bottom side of the cavity and then the casting sand is filled on the upper surface side of the cavity.
  • the vibration process is started, and after the second predetermined time has elapsed from the start of the vibration process, the suction process is started and the suction process is completed.
  • the blowing process is temporarily stopped from the start of the vibration process until the second predetermined time elapses. Then, it is desirable that the blowing process be resumed after the second predetermined time has elapsed.
  • the foundry sand blown into the cavity is oscillated by the vibration at the bottom of the cavity. Since the foundry sand is not blown into the cavity while the side is filled, both the foundry sand and the pressurized gas are not supplied into the cavity. Thereby, the casting sand blown in the blowing step can be reliably filled in the bottom side of the cavity. Then, after the second predetermined time has elapsed from the start of the vibration process, the casting sand is blown again, and the suction of the blown casting sand is started to fill the upper surface side of the cavity with the casting sand. Can be made. Thereby, the casting sand can be more efficiently filled into the bottom side and the upper surface side of the cavity.
  • the running cost can be saved.
  • the foundry sand is desirably foundry sand using an inorganic binder.
  • the core strength can be further improved by using a molding sand made of an inorganic binder to form the core, rather than using an organic binder.
  • the casting sand blown into the cavity is vibrated and rolled, so that It is possible to fill the upper surface side of the cavity by filling the bottom side and further sucking the foundry sand blown into the cavity so as to be drawn toward the upper surface side of the cavity.
  • the cavity can be filled with the foundry sand while filling the gap between the foundry sands, so that the filling density of the foundry sand in the cavity is increased and the core strength is improved.
  • mass production of the thinned core can be realized.
  • the density of the molded core becomes uniform.
  • the deformation of the core when casting using the molded core is made uniform throughout the core.
  • the dimensional variation in each part of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
  • FIG. 1 shows a schematic configuration diagram of a core molding apparatus 50 according to an embodiment of the present invention.
  • the core molding apparatus 50 includes a blow head 1 having a sealed housing portion 2 that houses the foundry sand 41.
  • the foundry sand 41 is foundry sand using an inorganic binder mainly composed of water glass (sodium silicate), and the sand surface is covered with the inorganic binder.
  • a part of the upper end of the housing part 2 is opened, but in reality, the upper end of the housing part 2 is closed by a shutter 5 described later.
  • the foundry sand 41 is generated in the kneading unit 3 disposed on the upper side of the storage unit 2 and supplied to the storage unit 2. Specifically, sand such as silica sand and the above inorganic binder are put into the kneading unit 3, and these are uniformly kneaded by a kneader (not shown) provided in the kneading unit 3, so that the surface of the sand is an inorganic binder. As a result, the foundry sand 41 is generated.
  • a shutter 5 that is opened and closed by a shutter drive mechanism 6 is disposed between the storage unit 2 and the kneading unit 3. When the shutter 5 is opened by the shutter drive mechanism 6, the foundry sand 41 is mixed with the kneading unit 3. It is dropped by its own weight and supplied to the housing part 2.
  • a blow plate 7 is attached to the lower end of the blow head 1, and a plurality of (three in FIG. 1) blow nozzles arranged so as to communicate with the inside of the accommodating portion 2.
  • the upper end side of 8 is mounted.
  • the lower end side of the blow nozzle 8 extends downward from the blow plate 7 and is then attached to an upper mold 35 a of the molding die 35 disposed below the blow plate 7 in the core molding apparatus 50.
  • a cavity 36 is formed in the molding die 35, and the lower end side of the blow nozzle 8 attached to the upper die 35 a faces the cavity 36. That is, the blow head 1 and the cavity 36 are communicated with each other by the blow nozzle 8.
  • the foundry sand 41 accommodated in the accommodating portion 2 of the blow head 1 is blown and filled into the cavity 36 via the blow nozzle 8, and has a core shape formed by the core molding apparatus 50.
  • Examples of the core molded by the core molding apparatus 50 include a core for forming a water jacket of a cylinder head.
  • the blow nozzle 8 may be a normally open type or an open / close type, and a part of the plurality of blow nozzles 8 may be a normally open type and the rest may be an open / close type.
  • an air supply port 2 a for supplying pressurized air (pressurized gas) into the accommodating portion 2 is provided at the upper portion of the side wall surface constituting the accommodating portion 2 of the blow head 1.
  • the air supply port 2 a is connected to the air tank 12 via the electromagnetic valve 11.
  • Factory air is stored in the air tank 12 at a constant pressure (about 0.2 MPa to 1 MPa) by a regulator (not shown).
  • the electromagnetic valve 11 is operated, and the pressurized air in the air tank 12 is supplied into the accommodating portion 2 of the blow head 1.
  • the foundry sand 41 in the accommodating portion 2 is blown and filled into the cavity 36 through the blow nozzle 8.
  • the solenoid valve 11 and the air tank 12 supply pressurized air into the blow head 1, thereby blowing and filling the foundry sand 41 into the cavity 36 of the mold 35 through the blow nozzle 8. Configure the supply device.
  • the pressurized air supplied into the cavity 36 together with the foundry sand 41 goes out of the cavity 36 through the lower air vents 37 formed in the lower mold 35b of the molding die 35 (four in FIG. 1). It comes out.
  • the core molding apparatus 50 includes two vibrators 20 as vibration generators that apply vibration to the foundry sand 41 blown into the cavity 36 from the outside of the cavity 36.
  • the two vibrators 20 are disposed so as to be in contact with the outer peripheral portion of the lower mold 35b and sandwich the lower mold 35b.
  • the vibrator 20 applies vibration to the foundry sand 41 in the cavity 36 by transmitting vibration of a predetermined frequency into the cavity 36 through the lower mold 35b of the mold 35. At this time, vibrations in all directions including the horizontal direction, the vertical direction, and the oblique direction between the horizontal direction and the vertical direction are applied to the foundry sand 41 in the cavity 36.
  • the foundry sand 41 is filled into the bottom side of the cavity 36 by applying vibration to the foundry sand 41 blown into the cavity 36 by the vibrator 20.
  • the vibrator 20 may be brought into contact with the upper die 35a instead of the lower die 35b.
  • the bottom side of the cavity 36 is used. It is desirable to make it contact with the lower mold
  • an annular upper vibration isolator 52 is provided on the upper surface of the upper mold 35a, and on the lower surface of the lower mold 35b, An annular lower vibration isolator 53 is provided. Further, an upper plate 54 is provided on the upper side of the upper vibration isolator 52 in the core molding apparatus 50 so as to correspond to the shape of the upper vibration isolator 52, and the lower vibration isolator 52 in the core molding apparatus 50 is provided. A lower plate 55 is provided on the lower side so as to correspond to the shape of the lower vibration isolator 53. That is, the molding die 35 is disposed so as to be sandwiched between the upper and lower plates 54 and 55 via the upper and lower vibration isolating materials 52 and 53.
  • a ring-shaped seal member 56 is provided between the upper plate 54 and the blow plate 7 in the core molding apparatus 50.
  • the sealing member 56 By arranging the sealing member 56, as shown in FIG. 1, a part of the lower surface of the blow plate 7, the inner surface of the sealing member 56, a part of the upper surface of the upper plate 54, the inner peripheral surface of the upper plate 54, and A suction space 21 is formed by the upper surface of the upper mold 35a.
  • the suction space 21 is a space for sucking the foundry sand 41 filled in the cavity 36 through the vacuum pump 24 described later.
  • the suction space 21 communicates with the inside of the cavity 36 via an upper air vent 38 formed at the uppermost portion, which is the uppermost portion of the upper mold 35a.
  • the suction nozzle 22 extends through the seal member 56 to the outside of the suction space 21.
  • One end side of the suction nozzle 22 is attached to the seal member 56 so as to face the suction space 21, while the other end side of the suction nozzle 22 is attached to the vacuum tank 23.
  • a vacuum pump 24 is attached to the vacuum tank 23.
  • the vacuum pump 24 sucks the air in the suction space 21 into the vacuum tank 23 through the suction nozzle 22. As a result, the pressure in the suction space 21 decreases, so that the foundry sand 41 blown into the cavity 36 is drawn toward the upper surface side of the cavity 36 through the upper air vent 38. Therefore, the suction space 21, the suction nozzle 22, the vacuum tank 23, and the vacuum pump 24 constitute a suction device that sucks the foundry sand 41 blown into the cavity 36 so as to draw it toward the upper surface side of the cavity 36. Note that the suction strength by the vacuum pump 24 is strong enough to attract the foundry sand 41 located near the upper surface of the cavity 36 out of the foundry sand 41 blown into the cavity 36.
  • the upper mold 35a and the lower mold 35b in the core molding apparatus 50 have a built-in heater 39 for increasing the temperature in the cavity 36.
  • a built-in heater 39 for increasing the temperature in the cavity 36.
  • a stirring member 25 for stirring the foundry sand 41 supplied into the housing part 2 is provided.
  • the stirring member 25 loosens the foundry sand 41, extends in the vertical direction and is rotatably supported, and a substrate 25b fixed to the lower end of the rotary shaft 25a and extending in the horizontal direction.
  • a plurality of (four in FIG. 1) stirring rods 25c provided on the substrate 25b.
  • the upper end portion of the rotating shaft 25 a is connected to the stirring member driving mechanism 26.
  • the agitating member drive mechanism 26 connects the drive motor 26a, the rotating shaft of the drive motor 26a and the rotating shaft 25a, a connecting member 26b made of, for example, a bendable wire, and the drive for driving the drive motor 26a. Circuit (not shown).
  • the core molding device 50 includes a controller 100 as a control device that controls the operation of the entire core molding device 50 including the operations of the solenoid valve 11, the vibrator 20, and the vacuum pump 24.
  • the controller 100 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that is configured by, for example, RAM and ROM, and stores programs and data, and an electrical signal. And an input / output (I / O) bus for inputting and outputting.
  • CPU central processing unit
  • I / O input / output
  • the cavity 36 for forming the core is filled with foundry sand 41. Therefore, it becomes difficult for the foundry sand 41 to be filled in the cavity 36. As a result, the filling density of the foundry sand 41 in the cavity 36 decreases, and the strength of the molded core may not satisfy the desired strength.
  • the molding sand 41 is put into the cavity 36 by pressurized air as described above.
  • pressurized air is blown together with the foundry sand 41 from the blow nozzle 8.
  • the pressurized air is difficult to escape from the cavity 36.
  • the pressurized air remains between the foundry sands 41 in the cavity 36, and a gap is easily formed.
  • the cavity 36 is not sufficiently filled with the foundry sand 41.
  • a period in which the foundry sand 41 is blown by the electromagnetic valve 11 and the air tank 12 a period in which vibration is applied to the foundry sand 41 blown into the cavity 36 by the vibrator 20, and a casting that is blown into the cavity 36.
  • the filling density of the foundry sand 41 in the cavity 36 is improved so that there is a period in which the period of suction of the sand 41 by the vacuum pump 24 and the like overlaps all.
  • the controller 100 starts the blowing process of blowing and filling the foundry sand 41 into the cavity 36, and then after the first predetermined time has elapsed, the controller 20 adds the vibrator 20 to the foundry sand 41 blown into the cavity 36.
  • the vibration process for applying vibrations is started.
  • the controller 100 temporarily stops the blowing process.
  • the controller 100 sucks the foundry sand 41 blown into the cavity 36 so as to draw it to the top of the cavity 36 by the vacuum pump 24 or the like.
  • the suction process is started.
  • the controller 100 restarts the blowing process and continues the vibration process.
  • the first and second predetermined times are, for example, about 1 second.
  • FIG. 2 shows the movement of the foundry sand 41 in the cavity 36 when vibration is applied to the foundry sand 41 in the cavity 36 by the vibrator 20.
  • the foundry sand 41 rolls in contact with the surface of the other foundry sand 41 due to the vibration.
  • the foundry sand 41 rolls toward a low density portion, that is, a gap portion formed by the pressurized air, and the pressurized air remaining in the gap is released from the gap.
  • the foundry sand 41 fills the gap and fills the bottom side of the cavity 36 by its own weight.
  • FIG. 3 shows the movement of the foundry sand 41 in the cavity 36 when the foundry sand 41 in the cavity 36 is sucked by the vacuum pump 24 or the like.
  • the foundry sand 41 in the cavity 36 is drawn toward the upper air vent 38 communicating with the suction space 21. Since the upper air vent 38 is provided at the top of the cavity 36, the foundry sand 41 blown into the cavity 36 is drawn toward the top of the cavity 36. As a result, the foundry sand 41 is filled up to the uppermost part of the cavity 36, which is a portion that is difficult to fill with the foundry sand 41.
  • the controller 100 performs a period during which the blowing process is performed, a period during which the vibration process is performed, and suction.
  • the casting sand 41 blown into the cavity 36 is rolled by the vibrator 20 so as to fill the bottom side of the cavity 36 by controlling so that the period in which the process is executed and the period in which all the processes overlap is present.
  • a gap is formed on the upper surface side of 36, and molding sand 41 is blown into the gap from the blow nozzle 8, and the foundry sand 41 blown into the gap is drawn toward the top of the cavity 36 by the vacuum pump 24 or the like.
  • the upper surface side of the cavity 36 can be filled. Accordingly, the casting sand 41 can be filled into the cavity 36 while filling the gap formed between the foundry sands 41, so that the filling density of the foundry sand 41 in the cavity 36 can be improved.
  • the suction process is started.
  • the foundry sand 41 is blown into the cavity 36, and the blown foundry sand 41 is filled into the bottom side of the cavity 36 by the vibration process, and then the upper surface side of the cavity 36 by the suction process.
  • the casting sand 41 is filled in the cavity 36 stepwise.
  • the foundry sand 41 can be reliably filled in the bottom side and the top side of the cavity 36.
  • the casting sand 41 in the cavity 36 is filled to the bottom side of the cavity 36 by stopping the blowing sand 41 from the start of the vibration process until the second predetermined time elapses. During this time, both the foundry sand 41 and the pressurized air are not supplied into the cavity 36, so that the foundry sand 41 blown in the first blowing process can be reliably filled into the bottom side of the cavity 36. Then, after the second predetermined time has elapsed from the start of the vibration process, the casting sand 41 is blown into the gap formed on the upper surface side of the cavity 36 by restarting the blowing of the foundry sand 41. be able to.
  • the suction process is also started, so that the foundry sand 41 blown into the upper surface side of the cavity 36 is the uppermost part on the upper surface side of the cavity 36. Filled up to Thereby, the foundry sand 41 can be efficiently filled in the bottom side and the top side of the cavity 36. Further, since the supply of pressurized air is not executed during the second predetermined time, the running cost can be saved.
  • a method for molding a core by the core molding apparatus 50 will be described with reference to a flowchart showing a processing operation at the time of core molding by the controller 100 shown in FIG.
  • a core for forming a water jacket of a cylinder head is formed.
  • step S101 the controller 100 drives the kneader to knead sand such as silica sand supplied to the kneading unit 3 and an inorganic binder mainly composed of water glass. Thereby, the sand surface is covered with the inorganic binder, and the foundry sand 41 is generated.
  • knead sand such as silica sand supplied to the kneading unit 3 and an inorganic binder mainly composed of water glass.
  • the controller 100 drives the shutter drive mechanism 6 to open the shutter 5 provided at the bottom of the kneading unit 3.
  • the foundry sand 41 is supplied from the kneading part 3 to the accommodating part 2 of the blow head 1.
  • the foundry sand 41 supplied to the housing part 2 is loosened by the stirring member 25.
  • step S103 the controller 100 sends a command to the electromagnetic valve 11, starts a blowing process, and blows and fills the casting sand 41 into the cavity.
  • the electromagnetic valve 11 is opened, and the pressurized air in the air tank 12 is supplied into the housing part 2.
  • the foundry sand 41 in the accommodating portion 2 is blown and filled into the cavity 36 of the mold 35 via the blow nozzle 8.
  • step S104 the controller 100 determines whether or not a first predetermined time has elapsed since the start of the blowing process. As a result of the determination, if the first predetermined time has elapsed YES, the process proceeds to step S105, and if the first predetermined time has not elapsed, the process returns to step S103 to continue the blowing process.
  • step S105 the controller 100 temporarily stops the blowing process and starts the vibration process to apply vibration to the foundry sand 41 blown into the cavity 36. That is, in this step S105, only the vibration process is executed.
  • the vibrator 20 is driven, and vibration is applied to the foundry sand 41 blown into the cavity 36 from the outside of the cavity 36.
  • the foundry sand 41 in the cavity 36 fills the gap formed by the pressurized air supplied together with the foundry sand 41 and fills the bottom side of the cavity 36 by its own weight in the blowing step.
  • a void is formed on the upper surface side of the cavity 36.
  • step S106 the controller 100 determines whether or not a second predetermined time has elapsed since the start of the vibration process. As a result of the determination, when the second predetermined time has elapsed, the process proceeds to step S107, and when the second predetermined time has not elapsed, the process returns to step S105 to stop the blowing process. The vibration process is continued.
  • step S107 the controller 100 restarts the blowing process and starts the suction process in a state where the vibration process is continued.
  • the foundry sand 41 is further blown into the gap formed on the upper surface side of the cavity 36 by the vibration process.
  • the controller 100 drives the vacuum pump 24 to suck the air in the suction space 21 into the vacuum tank 23 through the suction nozzle 22, thereby casting sand 41 blown into the cavity 36.
  • the foundry sand 41 is filled up to the uppermost part on the upper surface side of the cavity 36.
  • the controller 100 ends the suction process and the blowing process and the vibration process after the third predetermined time has elapsed since the suction process was started. That is, while the suction process is being performed, the controller 100 is configured such that the period in which the blowing process is performed, the period in which the vibration process is performed, and the period in which the suction process is performed all overlap. Control.
  • the third predetermined time is a time sufficient for the foundry sand 41 to be filled from the bottom side to the top side of the cavity 36.
  • the temperature in the cavity 36 is raised by the heater 39 provided in the upper die 35a and the lower die 35b, and the foundry sand 41 is dried at a high temperature. As a result, excess water in the water glass evaporates, the water glass is cured, and the core is molded.
  • step S109 the molding die 35 is removed and the core formed in step S108 is taken out. This completes the core molding.
  • FIG. 5 is a graph showing a change in the filling density of the foundry sand 41 in the cavity 36 when the blowing step, the vibration step, and the suction step are executed using the core molding device 50 according to the present embodiment. is there.
  • the vertical axis represents the filling density of the foundry sand 41
  • the horizontal axis represents the filling time of the foundry sand 41.
  • the arrow shown on the lower side of the horizontal axis represents whether or not the blowing process, the vibration process, and the suction process are executed by the controller 100, and corresponds to the arrow in the portion where the arrow is described.
  • the lower broken line represents the filling density when the casting sand 41 is filled into the cavity 36 only by the blowing process
  • the upper broken line represents the blowing process.
  • the blowing process is started, and the casting sand 41 is blown into the cavity 36, thereby increasing the filling density in the cavity 36.
  • the filling density rises to the filling density when the foundry sand 41 is filled into the cavity 36 only by the blowing step.
  • the graph shows the change in the packing density on the bottom side of the cavity 36 and the change in the packing density on the upper surface side of the cavity 36. While only the blowing process is performed, the bottom of the cavity 36 is shown. Since the packing density rises at the same rate on both the side and the upper surface side, the two graphs appear to overlap.
  • the blowing step is temporarily stopped and the vibration step is executed.
  • the vibration process is executed, the foundry sand 41 in the cavity 36 is filled on the bottom side of the cavity 36, so that the filling density on the bottom side of the cavity 36 increases as shown in FIG.
  • the packing density on the upper surface side of the cavity 36 is lowered as shown in FIG.
  • the blowing process is resumed while the vibration process is being performed, and suction is performed.
  • the process is started.
  • the foundry sand 41 further blown into the cavity 36 is filled in the bottom side of the cavity 36, and the filling density on the bottom side of the cavity 36 is increased.
  • the foundry sand 41 is filled in the entire bottom side of the cavity 36, there is no region filled with the foundry sand 41 on the bottom side of the cavity 36, so the filling density on the bottom side of the cavity 36 is saturated.
  • the casting sand 41 is newly filled in the upper surface side of the cavity 36 by the blowing process and the suction process, so that the filling density on the upper surface side of the cavity 36 is increased.
  • a third predetermined time t3 in FIG. 5
  • the foundry sand 41 is filled up to the entire upper surface side of the cavity 36, and the filling density on the upper surface side of the cavity 36 is saturated.
  • the filling density on the bottom side and the filling density on the upper surface side of the cavity 36 are saturated to substantially the same value.
  • the filling density of the foundry sand 41 in the cavity 36 is increased by the core molding apparatus 50 according to the present embodiment.
  • the core density is improved by improving the packing density, mass production of cores that are required to be thinned, such as cores for forming the water jacket of the cylinder head, is realized. be able to.
  • the density of the molded core becomes uniform, so that when the casting is performed using the molded core.
  • the deformation of the core is uniform throughout the core. As a result, the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
  • the blow head 1 that accommodates the foundry sand 41, the blow nozzle 8 disposed so as to communicate with the blow head 1, and the pressurized air is supplied into the blow head 1.
  • the electromagnetic valve 11 and the air tank 12 for blowing and filling the foundry sand 41 into the cavity 36 of the mold 35 through the blow nozzle 8, the vibrator 20 for applying vibration to the foundry sand 41 blown into the cavity 36, and the cavity 36
  • a vacuum pump 24 for sucking the foundry sand 41 blown into the cavity 36 toward the upper surface side of the cavity 36, and a controller 100 capable of controlling the operations of the electromagnetic valve 11, the vibrator 20, the vacuum pump 24, and the like.
  • the controller 100 includes a period in which the foundry sand 41 is blown by the electromagnetic valve 11 and the air tank 12, and the cavity 3.
  • the period in which vibration is applied to the foundry sand 41 blown in by the vibrator 20 and the period in which the foundry sand 41 blown into the cavity 36 is sucked by the vacuum pump 24 and the like overlap each other. It is configured to perform an operation.
  • the foundry sand 41 blown into the cavity 36 from the blow nozzle 8 is rolled by the vibrator 20 to fill the foundry sand 41 on the bottom side of the cavity 36, and further, the foundry sand blown into the cavity 36.
  • the sand 41 can be drawn to the top of the cavity 36 by the vacuum pump 24 or the like, and the foundry sand 41 can be filled on the upper surface side of the cavity 36. Accordingly, the casting sand 41 can be filled into the cavity 36 while filling the gap between the casting sands 41, so that the filling density of the casting sand 41 in the cavity 36 is increased, and the core strength is improved. As a result, mass production of the thinned core can be realized.
  • the density of the molded core becomes uniform because the filling density of the foundry sand 41 into the cavity 36 is improved. Thereby, the deformation of the core when casting using the molded core is made uniform throughout the core. As a result, the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
  • the foundry sand 41 is generated by kneading sand and an inorganic binder mainly composed of water glass.
  • the present invention is not limited thereto, and the casting is obtained by kneading sand and an organic binder. Sand 41 may be generated.
  • the organic binder for example, an organic binder mainly composed of a phenol resin and a polyisocyanate compound can be used.
  • the blowing process is stopped until the second predetermined time elapses after the vibration process is started.
  • the present invention is not limited to this, and the blowing process is also performed for the second predetermined time. The process may be continued.
  • the present invention is useful for a core molding apparatus and a core molding method for molding a core by blowing and filling casting sand into a cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Abstract

A core-molding device (50) provided with a controller (100) configured so as to control actuation so that all intervals overlap, the intervals being an interval in which cast sand (41) is blown into a cavity (36) by the solenoid valve (11), an interval in which vibrations are applied by a vibrator (20) to the casting sand (41) thus blown into the cavity (36), and an interval in which the casting sand (41) thus blown into the cavity (36) is suctioned by a vacuum pump (24) so as to be drawn to the upper surface side of the cavity (36).

Description

中子造型装置及び中子造型方法Core molding apparatus and core molding method
 本発明は、中子造型装置及び中子造型方法に関する。 The present invention relates to a core molding apparatus and a core molding method.
 従来より、成形型のキャビティ内に鋳物砂を吹き込み充填して中子を造型する中子造型装置が知られている。特許文献1には、中子を含む鋳型を造型するための鋳型造型装置において、鋳物砂を収容し、下部に該鋳物砂をキャビティに吹き込むブローノズルを有するブローヘッドと、上記鋳物砂の吹き込み時の加圧気体を上記ブローヘッド内に供給する加圧気体供給装置と、上記ブローヘッド内の上記鋳物砂の温度を検出する砂温検出装置と、上記ブローヘッド内の上記鋳物砂の量を検出する砂量検出装置と、上記ブローヘッド内の上記鋳物砂に溶剤を噴霧する溶剤噴霧装置と、上記砂温検出装置で検出した上記ブローヘッド内の上記鋳物砂の温度と上記砂量検出装置で検出した上記鋳物砂の量とに基づき、上記溶剤噴霧装置から噴霧する溶剤の量を制御する噴霧量制御装置と、を備えたものが開示されている。 2. Description of the Related Art Conventionally, a core molding apparatus that molds a core by blowing casting sand into a cavity of a mold is known. In Patent Document 1, in a mold making apparatus for making a mold including a core, a blow head having a blow nozzle that houses cast sand and blows the foundry sand into a cavity at a lower portion, and when the foundry sand is blown A pressurized gas supply device for supplying the pressurized gas into the blow head, a sand temperature detecting device for detecting the temperature of the foundry sand in the blow head, and detecting the amount of the foundry sand in the blow head A sand amount detecting device, a solvent spraying device for spraying a solvent onto the foundry sand in the blow head, a temperature of the foundry sand in the blow head detected by the sand temperature detecting device, and a sand amount detecting device. A spray amount control device that controls the amount of solvent sprayed from the solvent spray device based on the detected amount of foundry sand is disclosed.
特許第2008-149352号公報Japanese Patent No. 2008-149352
 ところで、近年では、エンジンにおける燃焼室付近の冷却性能を向上させるために、冷却水の高流速化や冷却面積の確保の要請があったり、ヒータ熱量の確保と排気温度の維持との両立の要請があったりして、ウォータジャケットの幅を小さくかつ表面積を広くすることが求められている。このような要請を満たすためには、ウォータジャケットを形成するための中子を薄肉化する必要がある。 By the way, in recent years, in order to improve the cooling performance in the vicinity of the combustion chamber in the engine, there has been a request to increase the flow rate of cooling water and to secure a cooling area, and to ensure both the heat quantity of the heater and the maintenance of the exhaust temperature. Therefore, it is required to reduce the width of the water jacket and increase the surface area. In order to satisfy such a requirement, it is necessary to thin the core for forming the water jacket.
 一般に、中子を薄肉化させるとき、薄肉化された中子を造型するためのキャビティは、鋳物砂が充填される領域が狭くなるため、キャビティ内に鋳物砂が充填されにくくなる。この結果、キャビティ内の鋳物砂の充填密度が低下し、造型された中子の強度が所望の強度を満たさなくなるおそれがある。特に、キャビティに鋳物砂を吹き込み充填して鋳型を造型する鋳型造型装置では、通常、吹き込みノズルから、鋳物砂と共に加圧気体が吹き込まれる。上記キャビティにおける鋳物砂の充填領域が狭くなっていると、上記キャビティからは、上記加圧気体が抜けにくくなる。これにより、上記キャビティ内に吹き込まれた鋳物砂間には、上記加圧気体が残留して、隙間が形成されやすい。この結果、キャビティに鋳物砂が十分に充填されなくなる。 Generally, when the core is thinned, the cavity for molding the thinned core becomes narrower in the area where the foundry sand is filled, so that the foundry sand is less likely to be filled in the cavity. As a result, the filling density of the foundry sand in the cavity is lowered, and the strength of the molded core may not satisfy a desired strength. In particular, in a mold making apparatus that forms a mold by blowing and filling casting sand into a cavity, a pressurized gas is usually blown together with the foundry sand from a blowing nozzle. When the filling area | region of the foundry sand in the said cavity is narrow, the said pressurized gas will become difficult to escape from the said cavity. Thereby, the said pressurized gas remains between the foundry sands blown in the said cavity, and it is easy to form a clearance gap. As a result, the cavity is not sufficiently filled with foundry sand.
 特許文献1に記載の鋳型造型装置では、砂温検出装置で検出したブローヘッド内の鋳物砂の温度と砂量検出装置で検出した鋳物砂の量とに基づき、溶剤噴霧装置から噴霧する溶剤の量を制御することで、粘着剤と混練された鋳物砂を成形型に吹き込む前に、該粘着剤が硬化するのを防止して、粘着剤の硬化による鋳物砂の充填密度の低下を防止している。 In the mold making apparatus described in Patent Document 1, based on the temperature of the foundry sand in the blow head detected by the sand temperature detecting device and the amount of foundry sand detected by the sand amount detecting device, By controlling the amount, before blowing the foundry sand kneaded with the pressure-sensitive adhesive into the mold, the pressure-sensitive adhesive is prevented from curing and the filling density of the foundry sand due to the curing of the pressure-sensitive adhesive is prevented. ing.
 しかしながら、上記特許文献1に記載の鋳型造型装置では、鋳物砂間に形成された隙間を埋める装置がなく、薄肉化の要請のある中子の強度を十分に満足できないおそれがある。 However, in the mold making apparatus described in Patent Document 1, there is no apparatus for filling the gap formed between the foundry sands, and there is a possibility that the strength of the core that is required to be thinned cannot be sufficiently satisfied.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、中子強度を向上させることで、薄肉化された中子の量産化を実現するとともに、造型された中子の寸法精度を向上させることにある。 The present invention has been made in view of such a point, and an object of the present invention is to improve the core strength, thereby realizing mass production of a thinned core and forming a molded core. It is to improve the dimensional accuracy of the child.
課題を解決するための装置Device for solving the problem
 上記課題を解決するために、本発明は、中子造型装置を対象として、鋳物砂を収容するブローヘッドと、上記ブローヘッド内に連通するように配設されたブローノズルと、上記ブローヘッド内に加圧気体を供給することで、上記ブローノズルを介して成形型のキャビティ内に上記鋳物砂を吹き込み充填させる加圧気体供給装置と、上記キャビティ内に吹き込まれた上記鋳物砂に振動を加える加振装置と、上記キャビティ内に吹き込まれた上記鋳物砂を、上記キャビティの上面側に引き寄せるように吸引する吸引装置と、上記加圧気体供給装置、上記加振装置及び上記吸引装置の動作を制御可能な制御装置と、を備え、上記制御装置は、上記加圧気体供給装置により上記鋳物砂を吹き込む期間と、上記キャビティ内に吹き込まれた鋳物砂に上記加振装置により振動を加える期間と、上記キャビティ内に吹き込まれた鋳物砂を上記吸引装置により吸引する期間と、が全て重複する期間が存在するように各動作を実行するように構成されている、ものとした。 In order to solve the above-mentioned problems, the present invention is directed to a core molding apparatus, a blow head that accommodates foundry sand, a blow nozzle that is disposed so as to communicate with the blow head, and an interior of the blow head. By supplying pressurized gas to the pressurized gas supply device for blowing and filling the foundry sand into the mold cavity through the blow nozzle, vibration is applied to the foundry sand blown into the cavity. The vibration device, the suction device that sucks the foundry sand blown into the cavity so as to be drawn toward the upper surface side of the cavity, and the operations of the pressurized gas supply device, the vibration device, and the suction device are as follows. A control device that can be controlled, wherein the control device includes a period of blowing the foundry sand by the pressurized gas supply device, and an upper portion of the foundry sand blown into the cavity. Each operation is performed so that there is a period in which the period during which vibration is applied by the vibration exciter and the period during which casting sand blown into the cavity is sucked by the suction unit overlap each other. I was supposed to.
 この構成によると、キャビティへの鋳物砂の充填密度を上げて、中子の強度を向上させることができる。 According to this configuration, it is possible to increase the filling density of the foundry sand into the cavity and improve the strength of the core.
 すなわち、加圧気体供給装置によってブローヘッド内に加圧気体を供給し、ブローノズルを介してキャビティ内に鋳物砂を吹き込むと、鋳物砂と共に供給された加圧気体によって、キャビティ内の鋳物砂間に隙間が生じる。この状態で、加振装置によって、このキャビティ内の鋳物砂に振動を加えると、該振動によって鋳物砂が転がる。このとき、鋳物砂は、密度の低い部分である上記隙間の部分へ向かって転がり、隙間に残留していた加圧気体は、上記隙間から解放される。これにより、上記隙間が埋められて、鋳物砂は、自重によってキャビティの底側へ充填される。鋳物砂がキャビティの底側に充填されたことにより、キャビティの上面側には空隙が生じる。そして、該空隙には、ブローノズルから、さらに鋳物砂が吹き込まれる。これにより、上記隙間を鋳物砂によって埋めることができる。 That is, when pressurized gas is supplied into the blow head by a pressurized gas supply device, and casting sand is blown into the cavity via the blow nozzle, the pressurized gas supplied together with the casting sand causes a gap between the casting sand in the cavity. There is a gap in In this state, when vibration is applied to the foundry sand in the cavity by the vibration device, the foundry sand rolls due to the vibration. At this time, the foundry sand rolls toward the gap portion, which is a low density portion, and the pressurized gas remaining in the gap is released from the gap. Thereby, the said clearance gap is filled and casting sand is filled to the bottom side of a cavity with dead weight. When the foundry sand is filled on the bottom side of the cavity, a void is formed on the upper surface side of the cavity. Further, foundry sand is blown into the gap from the blow nozzle. Thereby, the said clearance gap can be filled up with foundry sand.
 また、吸引装置によって、ブローノズルから吹き込まれた鋳物砂を、キャビティの上面側に引き寄せるように吸引させることができる。これにより、鋳物砂が充填されにくい部分である、キャビティの上部にまで鋳物砂を充填させることができる。 Further, the foundry sand blown from the blow nozzle can be sucked by the suction device so as to be drawn toward the upper surface side of the cavity. Thereby, casting sand can be filled up to the upper part of a cavity which is a part which is hard to be filled with casting sand.
 したがって、制御装置によって、加圧気体供給装置により鋳物砂を吹き込む期間と、キャビティ内に吹き込まれた鋳物砂に加振装置により振動を加える期間と、キャビティ内に吹き込まれた鋳物砂を吸引装置により吸引する期間と、が全て重複する期間が存在するように各動作を実行することで、ブローノズルからキャビティ内に鋳物砂を吹き込みながら、キャビティ内に吹き込まれた鋳物砂を、加振装置によって転がしてキャビティの底側に充填させ、さらに、キャビティ内に吹き込まれた鋳物砂を、吸引装置によってキャビティの上面側に引き寄せて、キャビティの上面側に充填させることができる。これにより、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることができるため、キャビティ内の鋳物砂の充填密度が高くなり、中子の強度が向上される。この結果、薄肉化された中子の量産化を実現することができる。 Therefore, the control device allows the molding gas to be blown by the pressurized gas supply device, the period for applying vibration to the casting sand blown into the cavity by the vibration device, and the casting sand blown into the cavity by the suction device. By performing each operation so that there is a period that overlaps with the suction period, the foundry sand blown into the cavity is rolled by the vibration device while blowing sand into the cavity from the blow nozzle. Then, the casting sand that has been filled into the bottom of the cavity and blown into the cavity can be drawn toward the upper surface of the cavity by a suction device to fill the upper surface of the cavity. Thus, the cavity can be filled with the foundry sand while filling the gap between the foundry sand, so that the filling density of the foundry sand in the cavity is increased and the strength of the core is improved. As a result, mass production of the thinned core can be realized.
 また、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることで、造型された中子の密度が均一になる。これにより、造型された中子を用いて鋳造を行った際の中子の変形(膨張など)が、中子全体で均一になる。この結果、造型された中子の各部分における寸法ばらつきが減少するため、中子の寸法精度を向上させることができる。 Also, by filling the cavity with the foundry sand while filling the gap between the foundry sand, the density of the molded core becomes uniform. Thereby, deformation (expansion etc.) of the core when casting is performed using the molded core becomes uniform throughout the core. As a result, the dimensional variation in each part of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
 上記中子造型装置において、鋳物砂は、無機バインダを用いた鋳物砂である、ことが望ましい。 In the above core molding apparatus, the foundry sand is preferably foundry sand using an inorganic binder.
 すなわち、無機バインダを用いた鋳物砂で中子を造型することにより、有機バインダを用いるよりも中子の強度をさらに向上させることができる。 That is, by forming the core with casting sand using an inorganic binder, the strength of the core can be further improved as compared with the case of using an organic binder.
 また、本発明の別の態様は中子造型方法の発明であり、この発明は、鋳物砂を収容するブローヘッド内に加圧気体を供給することで、上記ブローヘッド内に連通するように配設されたブローノズルを介して、上記鋳物砂を、成形型のキャビティ内に吹き込み充填する吹き込み工程と、上記キャビティ内に吹き込まれた上記鋳物砂に振動を加える加振工程と、上記キャビティ内に吹き込まれた鋳物砂を、上記キャビティの上面側に引き寄せるように吸引する吸引する吸引工程と、を含み、上記吹き込み工程が実行される期間と、上記加振工程が実行される期間と、上記吸引工程が実行される期間と、が全て重複する期間を有する、構成とする。 Another aspect of the present invention is an invention of a core molding method, which is arranged so as to communicate with the blow head by supplying a pressurized gas into the blow head containing the foundry sand. Blowing step of blowing and filling the foundry sand into the cavity of the mold through the blow nozzle provided, an exciting step of applying vibration to the foundry sand blown into the cavity, and into the cavity A suction step of sucking the blown foundry sand so as to draw it toward the upper surface of the cavity, a period during which the blow step is performed, a period during which the vibration step is performed, and the suction The period in which the process is executed has a period that overlaps with each other.
 この構成によると、吹き込み工程が実行されて、ブローヘッド内に加圧気体が供給され、ブローノズルを介してキャビティ内に鋳物砂が吹き込まれる。このとき、鋳物砂と共に供給された加圧気体により鋳物砂間には隙間が生じる。キャビティ内に吹き込まれた鋳物砂には、加振工程で、振動が加えられる。これにより、振動によって鋳物砂が転がり、上記隙間が埋められるとともに、キャビティの底側に鋳物砂が充填されて、キャビティの上面側に空隙が生じる。また、吸引工程では、キャビティ内に吹き込まれた鋳物砂が、キャビティ内の上面側へ引き寄せられるように吸引される。 According to this configuration, the blowing process is executed, pressurized gas is supplied into the blow head, and foundry sand is blown into the cavity via the blow nozzle. At this time, a gap is formed between the foundry sands by the pressurized gas supplied together with the foundry sands. Vibration is applied to the foundry sand blown into the cavity in the vibration step. As a result, the foundry sand rolls due to vibration, fills the gap, and fills the bottom of the cavity with the foundry sand, creating a void on the upper surface side of the cavity. In the suction process, the foundry sand blown into the cavity is sucked so as to be drawn toward the upper surface side in the cavity.
 したがって、吹き込み工程が実行される期間と、加振工程が実行される期間と、吸引工程が実行される期間と、が全て重複する期間を有することによって、ブローノズルから鋳物砂を吹き込みながら、キャビティ内に吹き込まれた鋳物砂を、加振によって転がしてキャビティの底側に充填させ、さらに、キャビティ内に吹き込まれた鋳物砂を、キャビティの上面側に引き寄せるように吸引して、キャビティの上面側に充填させるができる。これにより、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることができるため、キャビティ内の鋳物砂の充填密度が高くなり、中子の強度が向上される。この結果、薄肉化された中子の量産化を実現することができる。 Accordingly, the period in which the blowing process is performed, the period in which the vibration process is performed, and the period in which the suction process is performed have a period that overlaps each other, so that the casting sand is blown from the blow nozzle and the cavity is blown. The foundry sand blown into the cavity is rolled by vibration to fill the bottom side of the cavity, and the foundry sand blown into the cavity is sucked so as to be drawn toward the upper surface side of the cavity, and the upper surface side of the cavity Can be filled. Thus, the cavity can be filled with the foundry sand while filling the gap between the foundry sand, so that the filling density of the foundry sand in the cavity is increased and the strength of the core is improved. As a result, mass production of the thinned core can be realized.
 さらに、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることで、造型された中子の密度が均一になる。これにより、造型された中子を用いて鋳造を行った際の中子の変形(膨張など)が、中子全体で均一になる。この結果、造型された中子の寸法のばらつきが減少するため、中子の寸法精度を向上させることができる。 Furthermore, by filling the cavity with the foundry sand while filling the gap between the foundry sand, the density of the molded core becomes uniform. Thereby, deformation (expansion etc.) of the core when casting is performed using the molded core becomes uniform throughout the core. As a result, the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
 上記中子造型方法において、上記吹き込み工程を開始してから第1所定時間が経過した後に、上記加振工程を開始し、上記加振工程を開始してから第2所定時間が経過した後に、上記吸引工程を開始し、上記吸引工程が終了する時に、上記吹き込み工程及び上記加振工程も終了することが望ましい。 In the core molding method, after the first predetermined time has elapsed since the start of the blowing step, the vibration step is started, and after the second predetermined time has elapsed since the start of the vibration step, When the suction process is started and the suction process is completed, it is desirable that the blowing process and the vibration process are also completed.
 すなわち、先ず、吹き込み工程が実行されて、加圧気体供給装置によってブローヘッド内に加圧気体が供給され、ブローノズルを介してキャビティ内に鋳物砂が吹き込まれる。次に、鋳物砂の吹き込みを開始してから第1所定時間経過が経過した後、加振工程が実行されて、キャビティ内に吹き込まれた鋳物砂に振動が加えられる。これにより、振動によって鋳物砂が転がり、鋳物砂間の隙間が埋められるとともに、キャビティの底側に鋳物砂が充填されて、キャビティの上面側に空隙が生じる。そして、鋳物砂への加振を開始してから、第2所定時間経過が経過した後、吸引工程が実行されて、キャビティ内に吹き込まれた鋳物砂がキャビティ内の上面側へ引き寄せられるように吸引される。これにより、鋳物砂が充填されにくい部分である、キャビティの上部にまで鋳物砂が充填される。 That is, first, a blowing process is performed, pressurized gas is supplied into the blow head by a pressurized gas supply device, and foundry sand is blown into the cavity through the blow nozzle. Next, after a lapse of the first predetermined time from the start of the casting sand blowing, the vibration process is executed, and vibration is applied to the casting sand blown into the cavity. As a result, the foundry sand rolls due to vibrations, filling the gaps between the foundry sands, filling the foundry sand on the bottom side of the cavity, and creating voids on the upper surface side of the cavity. Then, after the elapse of the second predetermined time from the start of the vibration to the foundry sand, the suction process is executed so that the foundry sand blown into the cavity is drawn toward the upper surface side in the cavity. Sucked. Thereby, the foundry sand is filled up to the upper part of the cavity, which is a portion that is difficult to be filled with foundry sand.
 このように、吹き込み工程、加振工程及び吸引工程を段階的に開始することにより、キャビティの底側に鋳物砂を充填させてから、キャビティの上面側に鋳物砂を充填させるように、キャビティ内に鋳物砂を段階的に充填させることができる。これにより、キャビティの底側及び上面側に鋳物砂をより効率的に充填させることができる。 In this way, by starting the blowing process, the vibration process, and the suction process in stages, the inside of the cavity is filled with the casting sand on the bottom side of the cavity and then the casting sand is filled on the upper surface side of the cavity. Can be gradually filled with foundry sand. Thereby, casting sand can be more efficiently filled into the bottom side and the upper surface side of the cavity.
 吹き込み工程を開始してから第1所定時間が経過した後に、加振工程を開始し、加振工程を開始してから第2所定時間が経過した後に、吸引工程を開始し、吸引工程が終了する時に、吹き込み工程及び加振工程も終了する場合の中子造型方法において、上記加振工程を開始してから上記第2所定時間が経過するまでの間は、上記吹き込み工程を一時的に停止し、上記第2所定時間が経過した後に、上記吹き込み工程を再開する、ようにすることが望ましい。 After the first predetermined time has elapsed from the start of the blowing process, the vibration process is started, and after the second predetermined time has elapsed from the start of the vibration process, the suction process is started and the suction process is completed. In the core molding method when the blowing process and the vibration process are also finished, the blowing process is temporarily stopped from the start of the vibration process until the second predetermined time elapses. Then, it is desirable that the blowing process be resumed after the second predetermined time has elapsed.
 この構成によると、加振工程を開始してから第2所定時間が経過までの間、吹き込み工程を一時的に停止することで、キャビティ内に吹き込まれた鋳物砂を、加振によってキャビティの底側に充填させている間は、キャビティ内への鋳物砂の吹き込みが行われないため、鋳物砂及び加圧気体の両方がキャビティ内に供給されない。これにより、吹き込み工程で吹き込まれた鋳物砂を、キャビティの底側に確実に充填させることができる。そして、加振工程を開始してから第2所定時間が経過した後、鋳物砂の吹き込みを再開させるとともに、吹き込まれた鋳物砂の吸引を開始させることで、キャビティの上面側に鋳物砂を充填させることができる。これにより、キャビティの底側及び上面側に鋳物砂をさらに効率的に充填させることができる。 According to this configuration, by temporarily suspending the blowing process until the second predetermined time has elapsed after the start of the vibration process, the foundry sand blown into the cavity is oscillated by the vibration at the bottom of the cavity. Since the foundry sand is not blown into the cavity while the side is filled, both the foundry sand and the pressurized gas are not supplied into the cavity. Thereby, the casting sand blown in the blowing step can be reliably filled in the bottom side of the cavity. Then, after the second predetermined time has elapsed from the start of the vibration process, the casting sand is blown again, and the suction of the blown casting sand is started to fill the upper surface side of the cavity with the casting sand. Can be made. Thereby, the casting sand can be more efficiently filled into the bottom side and the upper surface side of the cavity.
 また、第2所定時間の間は、キャビティ内への鋳物砂の吹き込みを実行しないため、ランニングコストを節約することができる。 Also, since the casting sand is not blown into the cavity during the second predetermined time, the running cost can be saved.
 上記中子造型方法において、上記鋳物砂は、無機バインダを用いた鋳物砂である、ことが望ましい。 In the core molding method, the foundry sand is desirably foundry sand using an inorganic binder.
 上述したように、無機バインダを用いた鋳物砂で中子を造型することにより、有機バインダを用いるよりも中子の強度をさらに向上させることができる。 As described above, the core strength can be further improved by using a molding sand made of an inorganic binder to form the core, rather than using an organic binder.
 以上、説明したように、本発明の中子造型装置及び中子造型方法によると、キャビティ内に鋳物砂を吹き込みながら、キャビティ内に吹き込まれた鋳物砂に振動を加えて転がすことで、キャビティの底側に充填させ、さらに、キャビティ内に吹き込まれた鋳物砂を、キャビティの上面側に引き寄せるように吸引して、キャビティの上面側に充填させることができる。これにより、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることができるため、キャビティ内の鋳物砂の充填密度が高くなり、中子強度が向上される。その結果、薄肉化された中子の量産化を実現することができる。 As described above, according to the core molding apparatus and the core molding method of the present invention, while casting sand is blown into the cavity, the casting sand blown into the cavity is vibrated and rolled, so that It is possible to fill the upper surface side of the cavity by filling the bottom side and further sucking the foundry sand blown into the cavity so as to be drawn toward the upper surface side of the cavity. Thus, the cavity can be filled with the foundry sand while filling the gap between the foundry sands, so that the filling density of the foundry sand in the cavity is increased and the core strength is improved. As a result, mass production of the thinned core can be realized.
 また、鋳物砂間の隙間を埋めながら、キャビティ内に鋳物砂を充填させることで、造型された中子の密度が均一になる。これにより、造型された中子を用いて鋳造を行った際の中子の変形が、中子全体で均一になる。この結果、造型された中子の各部分における寸法ばらつきが減少するため、中子の寸法精度を向上させることができる。 Also, by filling the cavity with the foundry sand while filling the gap between the foundry sand, the density of the molded core becomes uniform. Thereby, the deformation of the core when casting using the molded core is made uniform throughout the core. As a result, the dimensional variation in each part of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
本発明の実施形態に係る中子造型装置を示す概略構成図である。It is a schematic block diagram which shows the core molding apparatus which concerns on embodiment of this invention. バイブレータによってキャビティ内の鋳物砂に振動を加えている際の、キャビティ内の鋳物砂の動きを示す模式図である。It is a mimetic diagram showing movement of foundry sand in a cavity when applying vibration to foundry sand in a cavity by a vibrator. 真空ポンプによってキャビティ内の鋳物砂を吸引している際の、キャビティ内の鋳物砂の動きを示す模式図である。It is a schematic diagram which shows the movement of the foundry sand in the cavity when the foundry sand in the cavity is sucked by the vacuum pump. コントローラによる中子造型時の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation at the time of core molding by a controller. 吹き込み工程、加振工程及び吸引工程を実行した際の、キャビティ内における鋳物砂の充填密度の変化を示すグラフである。It is a graph which shows the change of the filling density of the foundry sand in a cavity at the time of performing a blowing process, a vibration process, and a suction process.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施形態に係る中子造型装置50の概略構成図を示す。この中子造型装置50は、鋳物砂41を収容する密閉状の収容部2を有するブローヘッド1を備えている。鋳物砂41は、水ガラス(珪酸ナトリウム)を主体とする無機バインダを用いた鋳物砂であって、砂表面が該無機バインダにより覆われている。尚、図1では、収容部2の上端の一部が開放されたような状態になっているが、実際には、収容部2の上端は後述のシャッター5によって閉じた状態になっている。 FIG. 1 shows a schematic configuration diagram of a core molding apparatus 50 according to an embodiment of the present invention. The core molding apparatus 50 includes a blow head 1 having a sealed housing portion 2 that houses the foundry sand 41. The foundry sand 41 is foundry sand using an inorganic binder mainly composed of water glass (sodium silicate), and the sand surface is covered with the inorganic binder. In FIG. 1, a part of the upper end of the housing part 2 is opened, but in reality, the upper end of the housing part 2 is closed by a shutter 5 described later.
 鋳物砂41は、収容部2の上側に配設された混練部3で生成されて、収容部2へと供給される。詳しくは、混練部3に、珪砂などの砂と上記無機バインダが投入され、これらが混練部3内に設けられた混練機(図示せず)によって均一に混練されて、砂の表面が無機バインダによって覆われることで、鋳物砂41が生成される。収容部2と混練部3との間には、シャッター駆動機構6によって開閉されるシャッター5が配設されており、シャッター5がシャッター駆動機構6により開かれることで、鋳物砂41が混練部3から自重によって落下して、収容部2に供給される。 The foundry sand 41 is generated in the kneading unit 3 disposed on the upper side of the storage unit 2 and supplied to the storage unit 2. Specifically, sand such as silica sand and the above inorganic binder are put into the kneading unit 3, and these are uniformly kneaded by a kneader (not shown) provided in the kneading unit 3, so that the surface of the sand is an inorganic binder. As a result, the foundry sand 41 is generated. A shutter 5 that is opened and closed by a shutter drive mechanism 6 is disposed between the storage unit 2 and the kneading unit 3. When the shutter 5 is opened by the shutter drive mechanism 6, the foundry sand 41 is mixed with the kneading unit 3. It is dropped by its own weight and supplied to the housing part 2.
 上記ブローヘッド1の下端には、ブロープレート7が取り付けられており、該ブロープレート7には、収容部2内に連通するように配設された複数本(図1では3本)のブローノズル8の上端側が装着されている。ブローノズル8の下端側は、ブロープレート7から下方に延びた後、中子造型装置50におけるブロープレート7の下方に配置された成形型35の上型35aに装着される。成形型35内には、キャビティ36が形成されており、上型35aに装着されたブローノズル8の下端側は、キャビティ36内に臨んでいる。すなわち、ブローヘッド1とキャビティ36とは、ブローノズル8によって連通されている。ブローヘッド1の収容部2内に収容された鋳物砂41は、ブローノズル8を介して、キャビティ36内に吹き込み充填され、中子造型装置50により造型される中子の形状となる。中子造型装置50により造型される中子としては、例えば、シリンダヘッドのウォータジャケットを形成するための中子が挙げられる。尚、ブローノズル8は、常開式であっても開閉式であってもよく、複数本のブローノズル8のうち、一部を常開式、残りを開閉式としてもよい。 A blow plate 7 is attached to the lower end of the blow head 1, and a plurality of (three in FIG. 1) blow nozzles arranged so as to communicate with the inside of the accommodating portion 2. The upper end side of 8 is mounted. The lower end side of the blow nozzle 8 extends downward from the blow plate 7 and is then attached to an upper mold 35 a of the molding die 35 disposed below the blow plate 7 in the core molding apparatus 50. A cavity 36 is formed in the molding die 35, and the lower end side of the blow nozzle 8 attached to the upper die 35 a faces the cavity 36. That is, the blow head 1 and the cavity 36 are communicated with each other by the blow nozzle 8. The foundry sand 41 accommodated in the accommodating portion 2 of the blow head 1 is blown and filled into the cavity 36 via the blow nozzle 8, and has a core shape formed by the core molding apparatus 50. Examples of the core molded by the core molding apparatus 50 include a core for forming a water jacket of a cylinder head. The blow nozzle 8 may be a normally open type or an open / close type, and a part of the plurality of blow nozzles 8 may be a normally open type and the rest may be an open / close type.
 一方、ブローヘッド1の収容部2を構成する側壁面における上部には、収容部2内に加圧エア(加圧気体)を供給するためのエア供給口2aが設けられている。このエア供給口2aは、電磁弁11を介してエアタンク12と接続されている。エアタンク12内には、工場エアがレギュレータ(図示せず)によって一定圧力(0.2MPa~1MPa程度)とされた状態で貯蔵されている。鋳物砂41をキャビティ36内に吹き込むときには、電磁弁11が作動して、エアタンク12内の加圧エアがブローヘッド1の収容部2内に供給される。これにより、収容部2内の鋳物砂41が、上記ブローノズル8を介して、キャビティ36内に吹き込み充填される。このことから、電磁弁11及びエアタンク12は、ブローヘッド1内に加圧エアを供給することで、ブローノズル8を介して成形型35のキャビティ36内に鋳物砂41を吹き込み充填させる加圧気体供給装置を構成する。尚、鋳物砂41と共にキャビティ36内に供給された加圧エアは、成形型35の下型35bに複数(図1では4つ)形成された下側エアベント37を介して、キャビティ36外へと抜け出るようになっている。 On the other hand, an air supply port 2 a for supplying pressurized air (pressurized gas) into the accommodating portion 2 is provided at the upper portion of the side wall surface constituting the accommodating portion 2 of the blow head 1. The air supply port 2 a is connected to the air tank 12 via the electromagnetic valve 11. Factory air is stored in the air tank 12 at a constant pressure (about 0.2 MPa to 1 MPa) by a regulator (not shown). When the foundry sand 41 is blown into the cavity 36, the electromagnetic valve 11 is operated, and the pressurized air in the air tank 12 is supplied into the accommodating portion 2 of the blow head 1. Thereby, the foundry sand 41 in the accommodating portion 2 is blown and filled into the cavity 36 through the blow nozzle 8. From this, the solenoid valve 11 and the air tank 12 supply pressurized air into the blow head 1, thereby blowing and filling the foundry sand 41 into the cavity 36 of the mold 35 through the blow nozzle 8. Configure the supply device. The pressurized air supplied into the cavity 36 together with the foundry sand 41 goes out of the cavity 36 through the lower air vents 37 formed in the lower mold 35b of the molding die 35 (four in FIG. 1). It comes out.
 中子造型装置50は、キャビティ36の外側から、キャビティ36内に吹き込まれた鋳物砂41に振動を加える加振装置としての2つのバイブレータ20を備えている。2つバイブレータ20は、下型35bの外周部と接触するようにかつ下型35bを挟むように配置されている。バイブレータ20は、所定の振動数の振動を、成形型35の下型35bを介してキャビティ36内に伝達させることで、キャビティ36内の鋳物砂41に振動を加えるものである。このとき、キャビティ36内の鋳物砂41には、水平方向、鉛直方向及び水平方向と鉛直方向との間の斜め方向を含むあらゆる方向の振動が加えられる。詳しくは後述するが、バイブレータ20によって、キャビティ36内に吹き込まれた鋳物砂41に振動を加えることで、該鋳物砂41がキャビティ36の底側に充填される。尚、バイブレータ20は、下型35bではなく上型35aと接触させるようにしてもよいが、振動を加えることで、鋳物砂41をキャビティ36の底側に充填させるには、キャビティ36の底側を形成する下型35bと接触させるようにする方が望ましい。 The core molding apparatus 50 includes two vibrators 20 as vibration generators that apply vibration to the foundry sand 41 blown into the cavity 36 from the outside of the cavity 36. The two vibrators 20 are disposed so as to be in contact with the outer peripheral portion of the lower mold 35b and sandwich the lower mold 35b. The vibrator 20 applies vibration to the foundry sand 41 in the cavity 36 by transmitting vibration of a predetermined frequency into the cavity 36 through the lower mold 35b of the mold 35. At this time, vibrations in all directions including the horizontal direction, the vertical direction, and the oblique direction between the horizontal direction and the vertical direction are applied to the foundry sand 41 in the cavity 36. As will be described in detail later, the foundry sand 41 is filled into the bottom side of the cavity 36 by applying vibration to the foundry sand 41 blown into the cavity 36 by the vibrator 20. The vibrator 20 may be brought into contact with the upper die 35a instead of the lower die 35b. However, in order to fill the casting sand 41 to the bottom side of the cavity 36 by applying vibration, the bottom side of the cavity 36 is used. It is desirable to make it contact with the lower mold | type 35b which forms.
 上記バイブレータ20からの振動が中子造型装置50全体に伝達されないようにするために、上型35aの上面には、環状の上側防振材52が設けられるとともに、下型35bの下面には、環状の下側防振材53が設けられている。さらに、中子造型装置50における上側防振材52の上側には、上側防振材52の形状に対応するように上側プレート54が設けられ、中子造型装置50における下側防振材52の下側には、下側防振材53の形状に対応するように下側プレート55が設けられている。すなわち、成形型35は、上側及び下側防振材52,53を介して、上側及び下側プレート54,55に挟まれるように配置されている。 In order to prevent the vibration from the vibrator 20 from being transmitted to the entire core molding apparatus 50, an annular upper vibration isolator 52 is provided on the upper surface of the upper mold 35a, and on the lower surface of the lower mold 35b, An annular lower vibration isolator 53 is provided. Further, an upper plate 54 is provided on the upper side of the upper vibration isolator 52 in the core molding apparatus 50 so as to correspond to the shape of the upper vibration isolator 52, and the lower vibration isolator 52 in the core molding apparatus 50 is provided. A lower plate 55 is provided on the lower side so as to correspond to the shape of the lower vibration isolator 53. That is, the molding die 35 is disposed so as to be sandwiched between the upper and lower plates 54 and 55 via the upper and lower vibration isolating materials 52 and 53.
 中子造型装置50における上側プレート54とブロープレート7との間には、リング状のシール部材56が設けられている。シール部材56が配置されることにより、図1に示すように、ブロープレート7の下面の一部、シール部材56の内側面、上側プレート54の上面の一部、上側プレート54の内周面及び上型35aの上面によって、吸引空間21が形成されている。 A ring-shaped seal member 56 is provided between the upper plate 54 and the blow plate 7 in the core molding apparatus 50. By arranging the sealing member 56, as shown in FIG. 1, a part of the lower surface of the blow plate 7, the inner surface of the sealing member 56, a part of the upper surface of the upper plate 54, the inner peripheral surface of the upper plate 54, and A suction space 21 is formed by the upper surface of the upper mold 35a.
 吸引空間21は、後述する真空ポンプ24を介してキャビティ36内に充填された鋳物砂41を吸引するため空間である。吸引空間21は、上型35aにおける最も上側に位置する部分である最上部に形成された上側エアベント38を介して、キャビティ36内と連通している。 The suction space 21 is a space for sucking the foundry sand 41 filled in the cavity 36 through the vacuum pump 24 described later. The suction space 21 communicates with the inside of the cavity 36 via an upper air vent 38 formed at the uppermost portion, which is the uppermost portion of the upper mold 35a.
 吸引空間21からは、吸引ノズル22が、シール部材56を貫通して吸引空間21の外に延びている。該吸引ノズル22の一端側は、吸引空間21に臨んだ状態でシール部材56に装着されている一方、吸引ノズル22の他端側は、真空タンク23に装着されている。該真空タンク23には、真空ポンプ24が取り付けられている。 From the suction space 21, the suction nozzle 22 extends through the seal member 56 to the outside of the suction space 21. One end side of the suction nozzle 22 is attached to the seal member 56 so as to face the suction space 21, while the other end side of the suction nozzle 22 is attached to the vacuum tank 23. A vacuum pump 24 is attached to the vacuum tank 23.
 上記真空ポンプ24は、吸引ノズル22を介して吸引空間21内の空気を真空タンク23内へと吸引する。これにより、吸引空間21内の圧力が低下するため、上側エアベント38を介して、キャビティ36内に吹き込まれた鋳物砂41が、キャビティ36の上面側に引き寄せられる。このことから、吸引空間21、吸引ノズル22、真空タンク23及び真空ポンプ24は、キャビティ36内に吹き込まれた鋳物砂41を、キャビティ36の上面側に引き寄せるように吸引する吸引装置を構成する。尚、真空ポンプ24による吸引の強さは、キャビティ36内に吹き込まれた鋳物砂41のうちキャビティ36の上面側近傍に位置する鋳物砂41を引き寄せる程度の強さである。 The vacuum pump 24 sucks the air in the suction space 21 into the vacuum tank 23 through the suction nozzle 22. As a result, the pressure in the suction space 21 decreases, so that the foundry sand 41 blown into the cavity 36 is drawn toward the upper surface side of the cavity 36 through the upper air vent 38. Therefore, the suction space 21, the suction nozzle 22, the vacuum tank 23, and the vacuum pump 24 constitute a suction device that sucks the foundry sand 41 blown into the cavity 36 so as to draw it toward the upper surface side of the cavity 36. Note that the suction strength by the vacuum pump 24 is strong enough to attract the foundry sand 41 located near the upper surface of the cavity 36 out of the foundry sand 41 blown into the cavity 36.
 また、中子造型装置50における上型35a及び下型35bには、キャビティ36内の温度を上昇させるためのヒータ39が内蔵されている。詳しくは後述するが、無機バインダを硬化させて、鋳物砂41同士を結合させる際には、キャビティ36内の温度を上昇させて、高温乾燥を行う必要がある。その際に上記ヒータ39が用いられる。 Further, the upper mold 35a and the lower mold 35b in the core molding apparatus 50 have a built-in heater 39 for increasing the temperature in the cavity 36. As will be described in detail later, when the inorganic binder is cured and the foundry sands 41 are bonded to each other, it is necessary to increase the temperature in the cavity 36 and perform high-temperature drying. At that time, the heater 39 is used.
 さらに、中子造型装置50におけるブローヘッド1の収容部2内には、収容部2内に供給された鋳物砂41を撹拌する撹拌部材25が設けられている。この撹拌部材25は、鋳物砂41をほぐすものであって、上下方向に延びかつ回転可能に支持された回転軸25aと、この回転軸25aの下端部に固定されかつ水平方向に延びる基板25bと、この基板25b上に設けられた複数本(図1では4本)の撹拌棒25cとから構成されている。上記回転軸25aの上端部は、撹拌部材駆動機構26と連結されている。撹拌部材駆動機構26は、駆動モータ26aと、駆動モータ26aの回転軸と上記回転軸25aとを連結する、例えば曲げ自在なワイヤ等からなる連結部材26bと、駆動モータ26aを駆動するための駆動回路(図示せず)とを有している。 Furthermore, in the housing part 2 of the blow head 1 in the core molding apparatus 50, a stirring member 25 for stirring the foundry sand 41 supplied into the housing part 2 is provided. The stirring member 25 loosens the foundry sand 41, extends in the vertical direction and is rotatably supported, and a substrate 25b fixed to the lower end of the rotary shaft 25a and extending in the horizontal direction. , And a plurality of (four in FIG. 1) stirring rods 25c provided on the substrate 25b. The upper end portion of the rotating shaft 25 a is connected to the stirring member driving mechanism 26. The agitating member drive mechanism 26 connects the drive motor 26a, the rotating shaft of the drive motor 26a and the rotating shaft 25a, a connecting member 26b made of, for example, a bendable wire, and the drive for driving the drive motor 26a. Circuit (not shown).
 また、中子造型装置50は、電磁弁11、バイブレータ20及び真空ポンプ24の動作を含めて、中子造型装置50全体の作動制御を行う制御装置としてのコントローラ100を備えている。コントローラ100は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号を入出力する入出力(I/O)バスとを備えている。 The core molding device 50 includes a controller 100 as a control device that controls the operation of the entire core molding device 50 including the operations of the solenoid valve 11, the vibrator 20, and the vacuum pump 24. The controller 100 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that is configured by, for example, RAM and ROM, and stores programs and data, and an electrical signal. And an input / output (I / O) bus for inputting and outputting.
 ここで、特に、シリンダヘッドのウォータジャケットを形成するための中子等、薄肉化の要請がある中子を造型するとき、該中子を造型するためのキャビティ36は、鋳物砂41が充填される領域が狭くなるため、キャビティ36内に鋳物砂41が充填されにくくなる。この結果、キャビティ36内の鋳物砂41の充填密度が低下し、造型された中子の強度が所望の強度を満たさなくなることがある。特に、本実施形態のように、キャビティ36内に鋳物砂41を吹き込み充填して中子を造型する中子造型装置50では、上述したように、加圧エアによって鋳物砂41をキャビティ36内に吹き込むため、ブローノズル8からは、鋳物砂41と共に加圧エアが吹き込まれる。このとき、上記キャビティ36は、鋳物砂41が充填される領域が狭くなっているため、上記キャビティ36からは、上記加圧エアが抜けにくくなっている。これにより、上記キャビティ36内における鋳物砂41間には、上記加圧エアが残留して、隙間が形成されやすい。この結果、キャビティ36に鋳物砂41が十分に充填されなくなる。 Here, in particular, when forming a core that is required to be thin, such as a core for forming a water jacket of a cylinder head, the cavity 36 for forming the core is filled with foundry sand 41. Therefore, it becomes difficult for the foundry sand 41 to be filled in the cavity 36. As a result, the filling density of the foundry sand 41 in the cavity 36 decreases, and the strength of the molded core may not satisfy the desired strength. In particular, in the core molding apparatus 50 that molds the core by blowing and filling the molding sand 41 into the cavity 36 as in the present embodiment, the molding sand 41 is put into the cavity 36 by pressurized air as described above. In order to blow, pressurized air is blown together with the foundry sand 41 from the blow nozzle 8. At this time, since the cavity 36 has a narrow area where the foundry sand 41 is filled, the pressurized air is difficult to escape from the cavity 36. As a result, the pressurized air remains between the foundry sands 41 in the cavity 36, and a gap is easily formed. As a result, the cavity 36 is not sufficiently filled with the foundry sand 41.
 そこで、本実施形態では、電磁弁11及びエアタンク12により鋳物砂41を吹き込む期間と、キャビティ36内に吹き込まれた鋳物砂41にバイブレータ20により振動を加える期間と、キャビティ36内に吹き込まれた鋳物砂41を真空ポンプ24等により吸引する期間と、が全て重複する期間が存在するようにして、キャビティ36内の鋳物砂41の充填密度を向上させるようにしている。 Therefore, in the present embodiment, a period in which the foundry sand 41 is blown by the electromagnetic valve 11 and the air tank 12, a period in which vibration is applied to the foundry sand 41 blown into the cavity 36 by the vibrator 20, and a casting that is blown into the cavity 36. The filling density of the foundry sand 41 in the cavity 36 is improved so that there is a period in which the period of suction of the sand 41 by the vacuum pump 24 and the like overlaps all.
 具体的には、コントローラ100は、キャビティ36内に鋳物砂41を吹き込み充填する吹き込み工程を開始させてから、第1所定時間が経過した後、キャビティ36に吹き込まれた鋳物砂41に、バイブレータ20によって振動を加える加振工程を開始させる。加振工程を開始させるとき、コントローラ100は、上記吹き込み工程を一時的に停止させる。そして、加振工程を開始してから、第2所定時間が経過した後、コントローラ100は、キャビティ36に吹き込まれた鋳物砂41を、真空ポンプ24等によってキャビティ36の最上部に引き寄せるように吸引する吸引工程を開始させる。吸引工程を開始させるとき、コントローラ100は、上記吹き込み工程を再開させるとともに、上記加振工程を継続させる。そして、上記吸引工程を終了させるときに、上記吹き込み工程及び上記加振工程を終了させる。これにより、吸引工程が実行されている間は、吹き込み工程が実行される期間と、加振工程が実行される期間と、吸引工程が実行される期間と、が全て重複するようになる。尚、第1及び第2所定時間は、例えば1秒程度である。 Specifically, the controller 100 starts the blowing process of blowing and filling the foundry sand 41 into the cavity 36, and then after the first predetermined time has elapsed, the controller 20 adds the vibrator 20 to the foundry sand 41 blown into the cavity 36. The vibration process for applying vibrations is started. When starting the vibration process, the controller 100 temporarily stops the blowing process. Then, after the second predetermined time has elapsed from the start of the vibration process, the controller 100 sucks the foundry sand 41 blown into the cavity 36 so as to draw it to the top of the cavity 36 by the vacuum pump 24 or the like. The suction process is started. When starting the suction process, the controller 100 restarts the blowing process and continues the vibration process. And when the said suction process is complete | finished, the said blowing process and the said vibration process are complete | finished. Thereby, while the suction process is being performed, the period in which the blowing process is performed, the period in which the vibration process is performed, and the period in which the suction process is performed all overlap. The first and second predetermined times are, for example, about 1 second.
 以下に、図2及び図3を参照しながら、上記加振工程におけるキャビティ36内の鋳物砂41の動き及び上記吸引工程におけるキャビティ36内の鋳物砂41の動きについて詳細に説明する。 Hereinafter, the movement of the foundry sand 41 in the cavity 36 in the vibration step and the movement of the foundry sand 41 in the cavity 36 in the suction step will be described in detail with reference to FIGS. 2 and 3.
 図2は、バイブレータ20によってキャビティ36内の鋳物砂41に振動を加えている際の、キャビティ36内の鋳物砂41の動きを示す。バイブレータ20によって、キャビティ36内の鋳物砂41に振動が加えられると、該振動によって、鋳物砂41は、他の鋳物砂41の表面と接触して転がる。このとき、鋳物砂41は、密度の低い部分、すなわち、加圧エアによって形成された隙間の部分へ向かって転がり、該隙間に残留していた加圧エアは、上記隙間から解放される。これにより、鋳物砂41は、上記隙間を埋めるとともに、自重によってキャビティ36の底側に充填されていく。尚、図2では、振動の方向の例として左右方向のみを矢印で示しているが、実際には、紙面に垂直な方向、鉛直方向及びそれらの間の斜め方向を含むあらゆる方向の振動が鋳物砂41に加えられている。 FIG. 2 shows the movement of the foundry sand 41 in the cavity 36 when vibration is applied to the foundry sand 41 in the cavity 36 by the vibrator 20. When vibration is applied to the foundry sand 41 in the cavity 36 by the vibrator 20, the foundry sand 41 rolls in contact with the surface of the other foundry sand 41 due to the vibration. At this time, the foundry sand 41 rolls toward a low density portion, that is, a gap portion formed by the pressurized air, and the pressurized air remaining in the gap is released from the gap. As a result, the foundry sand 41 fills the gap and fills the bottom side of the cavity 36 by its own weight. In FIG. 2, only the left and right directions are indicated by arrows as examples of vibration directions, but in reality, vibrations in all directions including a direction perpendicular to the paper surface, a vertical direction, and an oblique direction therebetween are cast. Added to the sand 41.
 そして、鋳物砂41がキャビティ36の底側に充填されたことにより、キャビティ36の上面側に空隙が生じる。該空隙には、ブローノズル8から鋳物砂41が吹き込み充填される。これにより、鋳物砂41間に形成された隙間が鋳物砂41によって埋められる。 Then, when the foundry sand 41 is filled on the bottom side of the cavity 36, a gap is generated on the upper surface side of the cavity 36. Casting sand 41 is blown and filled into the gap from the blow nozzle 8. Thereby, the gap formed between the foundry sands 41 is filled with the foundry sands 41.
 図3は、真空ポンプ24等によってキャビティ36内の鋳物砂41を吸引している際の、キャビティ36内の鋳物砂41の動きを示す。上述したように、真空ポンプ24によって吸引空間21内の圧力が下げられることで、キャビティ36内の鋳物砂41は、吸引空間21と連通する上側エアベント38に向かって引き寄せられる。上側エアベント38は、キャビティ36の最上部に設けられているため、キャビティ36内に吹き込まれた鋳物砂41は、キャビティ36の最上部に向かって引き寄せられる。これにより、鋳物砂41が充填されにくい部分であるキャビティ36の最上部にまで鋳物砂41が充填される。 FIG. 3 shows the movement of the foundry sand 41 in the cavity 36 when the foundry sand 41 in the cavity 36 is sucked by the vacuum pump 24 or the like. As described above, when the pressure in the suction space 21 is lowered by the vacuum pump 24, the foundry sand 41 in the cavity 36 is drawn toward the upper air vent 38 communicating with the suction space 21. Since the upper air vent 38 is provided at the top of the cavity 36, the foundry sand 41 blown into the cavity 36 is drawn toward the top of the cavity 36. As a result, the foundry sand 41 is filled up to the uppermost part of the cavity 36, which is a portion that is difficult to fill with the foundry sand 41.
 加振工程及び吸引工程において、キャビティ36内の鋳物砂41は、上述のような動きをするため、コントローラ100によって、吹き込み工程が実行される期間と、加振工程が実行される期間と、吸引工程が実行される期間と、が全て重複する期間が存在するように制御することで、キャビティ36に吹き込まれた鋳物砂41を、バイブレータ20によって転がして、キャビティ36の底側に充填させ、キャビティ36の上面側に空隙を形成させて、該空隙にブローノズル8から鋳物砂41を吹き込み、上記空隙に吹き込まれた鋳物砂41を、真空ポンプ24等によってキャビティ36の最上部に向かって引き寄せて、キャビティ36の上面側に充填させることができる。これにより、鋳物砂41間に形成された隙間を埋めながら、キャビティ36内に鋳物砂41を充填させることができるため、キャビティ36内の鋳物砂41の充填密度を向上させることができる。 In the vibration process and the suction process, the foundry sand 41 in the cavity 36 moves as described above. Therefore, the controller 100 performs a period during which the blowing process is performed, a period during which the vibration process is performed, and suction. The casting sand 41 blown into the cavity 36 is rolled by the vibrator 20 so as to fill the bottom side of the cavity 36 by controlling so that the period in which the process is executed and the period in which all the processes overlap is present. A gap is formed on the upper surface side of 36, and molding sand 41 is blown into the gap from the blow nozzle 8, and the foundry sand 41 blown into the gap is drawn toward the top of the cavity 36 by the vacuum pump 24 or the like. The upper surface side of the cavity 36 can be filled. Accordingly, the casting sand 41 can be filled into the cavity 36 while filling the gap formed between the foundry sands 41, so that the filling density of the foundry sand 41 in the cavity 36 can be improved.
 また、上記吹き込み工程を開始させてから、第1所定時間が経過した後、上記加振工程を開始し、上記加振工程を開始してから、第2所定時間が経過した後、上記吸引工程を開始させることで、先ず、キャビティ36に鋳物砂41を吹き込み、吹き込まれた鋳物砂41を、上記加振工程によってキャビティ36の底側に充填させてから、上記吸引工程によってキャビティ36の上面側に鋳物砂41を充填させることができる。これにより、鋳物砂41がキャビティ36内に段階的に充填される。この結果、キャビティ36の底側及び上面側に、鋳物砂41を確実に充填させることができる。 In addition, after the first predetermined time has elapsed since the start of the blowing process, the vibration process is started, and after the second predetermined time has elapsed after the vibration process is started, the suction process is started. First, the foundry sand 41 is blown into the cavity 36, and the blown foundry sand 41 is filled into the bottom side of the cavity 36 by the vibration process, and then the upper surface side of the cavity 36 by the suction process. Can be filled with foundry sand 41. Thereby, the casting sand 41 is filled in the cavity 36 stepwise. As a result, the foundry sand 41 can be reliably filled in the bottom side and the top side of the cavity 36.
 さらに、加振工程を開始してから、第2所定時間が経過するまでの間、鋳物砂41の吹き込みを停止させることによって、キャビティ36内の鋳物砂41をキャビティ36の底側に充填させている間は、鋳物砂41及び加圧エアの両方がキャビティ36内に供給されないため、最初の吹き込み工程で吹き込まれた鋳物砂41を、キャビティ36の底側に確実に充填させることができる。そして、加振工程を開始してから第2所定時間が経過した後、鋳物砂41の吹き込みを再開することによって、キャビティ36の上面側に形成された空隙に、該空隙に鋳物砂41を吹き込むことができる。また、加振工程を開始してから第2所定時間が経過した後には、吸引工程も開始されるため、キャビティ36の上面側に吹き込まれた鋳物砂41が、キャビティ36の上面側における最上部にまで充填される。これにより、キャビティ36の底側及び上面側に、鋳物砂41を効率的に充填させることができる。また、第2所定時間の間は、加圧エアの供給を実行させないため、ランニングコストを節約することができる。 Further, the casting sand 41 in the cavity 36 is filled to the bottom side of the cavity 36 by stopping the blowing sand 41 from the start of the vibration process until the second predetermined time elapses. During this time, both the foundry sand 41 and the pressurized air are not supplied into the cavity 36, so that the foundry sand 41 blown in the first blowing process can be reliably filled into the bottom side of the cavity 36. Then, after the second predetermined time has elapsed from the start of the vibration process, the casting sand 41 is blown into the gap formed on the upper surface side of the cavity 36 by restarting the blowing of the foundry sand 41. be able to. In addition, after the second predetermined time has elapsed since the vibration process was started, the suction process is also started, so that the foundry sand 41 blown into the upper surface side of the cavity 36 is the uppermost part on the upper surface side of the cavity 36. Filled up to Thereby, the foundry sand 41 can be efficiently filled in the bottom side and the top side of the cavity 36. Further, since the supply of pressurized air is not executed during the second predetermined time, the running cost can be saved.
 次に、図4に示す、コントローラ100による中子造型時の処理動作を示すフローチャートを参照しながら、中子造型装置50により中子を造型する方法を説明する。以下に説明する方法では、例えば、シリンダヘッドのウォータジャケットを形成するための中子が造型される。 Next, a method for molding a core by the core molding apparatus 50 will be described with reference to a flowchart showing a processing operation at the time of core molding by the controller 100 shown in FIG. In the method described below, for example, a core for forming a water jacket of a cylinder head is formed.
 先ず、ステップS101において、コントローラ100は、混練機を駆動させて、混練部3に供給された珪砂などの砂と水ガラスを主体とする無機バインダとを混練させる。これにより、砂の表面が無機バインダによって覆われて鋳物砂41が生成される。 First, in step S101, the controller 100 drives the kneader to knead sand such as silica sand supplied to the kneading unit 3 and an inorganic binder mainly composed of water glass. Thereby, the sand surface is covered with the inorganic binder, and the foundry sand 41 is generated.
 次のステップS102では、コントローラ100は、シャッター駆動機構6を駆動して、混練部3の底部に設けられたシャッター5を開ける。これにより、鋳物砂41が、混練部3からブローヘッド1の収容部2に供給される。収容部2に供給された鋳物砂41は、撹拌部材25によってほぐされる。 In the next step S102, the controller 100 drives the shutter drive mechanism 6 to open the shutter 5 provided at the bottom of the kneading unit 3. Thereby, the foundry sand 41 is supplied from the kneading part 3 to the accommodating part 2 of the blow head 1. The foundry sand 41 supplied to the housing part 2 is loosened by the stirring member 25.
 続いて、ステップS103では、コントローラ100は、電磁弁11に指令を送り、吹き込み工程を開始して、キャビティ36内に鋳物砂41を吹き込み充填させる。吹き込み工程では、電磁弁11が開放されて、エアタンク12内の加圧エアが収容部2内に供給される。これにより、収容部2内の鋳物砂41が、ブローノズル8を介して、成形型35のキャビティ36内に吹き込み充填される。 Subsequently, in step S103, the controller 100 sends a command to the electromagnetic valve 11, starts a blowing process, and blows and fills the casting sand 41 into the cavity. In the blowing process, the electromagnetic valve 11 is opened, and the pressurized air in the air tank 12 is supplied into the housing part 2. As a result, the foundry sand 41 in the accommodating portion 2 is blown and filled into the cavity 36 of the mold 35 via the blow nozzle 8.
 次に、ステップS104では、コントローラ100は、上記吹き込み工程が開始されてから、第1所定時間が経過したか否かを判定する。判定の結果、第1所定時間が経過しているYESのときは、ステップS105に進み、第1所定時間が経過していないNOのときには、ステップS103に戻って吹き込み工程を継続させる。 Next, in step S104, the controller 100 determines whether or not a first predetermined time has elapsed since the start of the blowing process. As a result of the determination, if the first predetermined time has elapsed YES, the process proceeds to step S105, and if the first predetermined time has not elapsed, the process returns to step S103 to continue the blowing process.
 上記ステップS105では、コントローラ100は、上記吹き込み工程を一時的に停止させるとともに、加振工程を開始させて、キャビティ36内に吹き込まれた鋳物砂41に振動を加える。つまり、このステップS105では、加振工程のみが実行される。加振工程では、バイブレータ20が駆動されて、キャビティ36内に吹き込まれた鋳物砂41に、キャビティ36の外側から振動が加えられる。これにより、キャビティ36内の鋳物砂41は、上記吹き込み工程において、鋳物砂41と共に供給された加圧エアによって形成された隙間を埋めるとともに、自重によって、キャビティ36の底側に充填される。鋳物砂41がキャビティ36の底側に充填されると、キャビティ36の上面側には空隙が形成される。 In step S105, the controller 100 temporarily stops the blowing process and starts the vibration process to apply vibration to the foundry sand 41 blown into the cavity 36. That is, in this step S105, only the vibration process is executed. In the vibration process, the vibrator 20 is driven, and vibration is applied to the foundry sand 41 blown into the cavity 36 from the outside of the cavity 36. As a result, the foundry sand 41 in the cavity 36 fills the gap formed by the pressurized air supplied together with the foundry sand 41 and fills the bottom side of the cavity 36 by its own weight in the blowing step. When the foundry sand 41 is filled on the bottom side of the cavity 36, a void is formed on the upper surface side of the cavity 36.
 次のステップS106では、コントローラ100は、上記加振工程を開始してから、第2所定時間が経過したか否かについて判定する。判定の結果、第2所定時間が経過しているYESのときは、ステップS107に進み、第2所定時間が経過していないNOのときには、ステップS105に戻って、上記吹き込み工程を停止させた状態で、加振工程を継続させる。 In the next step S106, the controller 100 determines whether or not a second predetermined time has elapsed since the start of the vibration process. As a result of the determination, when the second predetermined time has elapsed, the process proceeds to step S107, and when the second predetermined time has not elapsed, the process returns to step S105 to stop the blowing process. The vibration process is continued.
 上記ステップS107では、コントローラ100は、上記加振工程を継続させた状態で、上記吹き込み工程を再開させるとともに、吸引工程を開始させる。吹き込み工程が再開されることで、加振工程によって、キャビティ36の上面側に形成された空隙に、さらに鋳物砂41が吹き込まれる。また、吸引工程では、コントローラ100は、真空ポンプ24を駆動させ、吸引空間21内の空気を、吸引ノズル22を介して真空タンク23に吸引させることで、キャビティ36内に吹き込まれた鋳物砂41を、キャビティ36の最上部に形成された上側エアベント38に向かって引き寄せる。これにより、鋳物砂41は、キャビティ36の上面側における最上部にまで充填される。そして、フローチャートには示していないが、コントローラ100は、吸引工程を開始してから第3所定時間が経過した後、吸引工程を終了させ、吹き込み工程及び加振工程も終了させる。すなわち、コントローラ100は、吸引工程を実行している間は、吹き込み工程が実行される期間と、加振工程が実行される期間と、吸引工程が実行される期間と、が全て重複するように制御する。尚、第3所定時間は、鋳物砂41がキャビティ36の底側から上面側まで充填されるのに十分な時間である。 In step S107, the controller 100 restarts the blowing process and starts the suction process in a state where the vibration process is continued. By restarting the blowing process, the foundry sand 41 is further blown into the gap formed on the upper surface side of the cavity 36 by the vibration process. In the suction process, the controller 100 drives the vacuum pump 24 to suck the air in the suction space 21 into the vacuum tank 23 through the suction nozzle 22, thereby casting sand 41 blown into the cavity 36. Are drawn toward the upper air vent 38 formed at the top of the cavity 36. Thereby, the foundry sand 41 is filled up to the uppermost part on the upper surface side of the cavity 36. Although not shown in the flowchart, the controller 100 ends the suction process and the blowing process and the vibration process after the third predetermined time has elapsed since the suction process was started. That is, while the suction process is being performed, the controller 100 is configured such that the period in which the blowing process is performed, the period in which the vibration process is performed, and the period in which the suction process is performed all overlap. Control. The third predetermined time is a time sufficient for the foundry sand 41 to be filled from the bottom side to the top side of the cavity 36.
 次のステップS108では、上型35a及び下型35bに設けられたヒータ39によって、キャビティ36内の温度を上昇させ、鋳物砂41を高温乾燥させる。これにより、水ガラス内の余分な水分が蒸発して水ガラスが硬化し、中子が造型される。 In the next step S108, the temperature in the cavity 36 is raised by the heater 39 provided in the upper die 35a and the lower die 35b, and the foundry sand 41 is dried at a high temperature. As a result, excess water in the water glass evaporates, the water glass is cured, and the core is molded.
 次のステップS109では、成形型35を外して、上記ステップS108で造型された中子を取り出す。以上により、中子の造型が終了する。 In the next step S109, the molding die 35 is removed and the core formed in step S108 is taken out. This completes the core molding.
 図5は、本実施形態に係る中子造型装置50を用いて、上記吹き込み工程、加振工程及び吸引工程を実行した際の、キャビティ36内における鋳物砂41の充填密度の変化を示すグラフである。図5において、縦軸は、鋳物砂41の充填密度を表し、横軸は、鋳物砂41の充填時間を表している。横軸の下側に示す矢印は、コントローラ100によって、吹き込み工程、加振工程及び吸引工程が実行されているか否かを表すものであり、矢印が記載されている部分では、該矢印に対応する工程が実行されていることを表し、矢印が記載されていない部分では、該矢印に対応する工程は実行されていないことを表している。また、図5のグラフ中に示す2本の破線のうち、下側の破線は、吹き込み工程のみでキャビティ36内に鋳物砂41を充填したときの充填密度を表し、上側の破線は、吹き込み工程が実行される期間と、加振工程が実行される期間と、吸引工程が実行される期間と、が全て重複する期間を設けて、キャビティ36内に鋳物砂41を充填したときの充填密度を表す。 FIG. 5 is a graph showing a change in the filling density of the foundry sand 41 in the cavity 36 when the blowing step, the vibration step, and the suction step are executed using the core molding device 50 according to the present embodiment. is there. In FIG. 5, the vertical axis represents the filling density of the foundry sand 41, and the horizontal axis represents the filling time of the foundry sand 41. The arrow shown on the lower side of the horizontal axis represents whether or not the blowing process, the vibration process, and the suction process are executed by the controller 100, and corresponds to the arrow in the portion where the arrow is described. This means that the process is being executed, and the part where the arrow is not described indicates that the process corresponding to the arrow has not been executed. Further, of the two broken lines shown in the graph of FIG. 5, the lower broken line represents the filling density when the casting sand 41 is filled into the cavity 36 only by the blowing process, and the upper broken line represents the blowing process. , The period during which the vibration process is performed, and the period during which the suction process is performed are all overlapped, and the filling density when the foundry sand 41 is filled in the cavity 36 is determined. To express.
 図5を参照すると、先ず、吹き込み工程が開始され、鋳物砂41がキャビティ36内に吹き込まれることで、キャビティ36内の充填密度が上昇する。この吹き込み工程によって、充填密度は、吹き込み工程のみでキャビティ36内に鋳物砂41を充填したときの充填密度まで上昇する。尚、グラフには、キャビティ36の底側の充填密度の変化と、キャビティ36の上面側の充填密度の変化とを示しているが、吹き込み工程のみを実行している間は、キャビティ36の底側及び上面側ともに、同程度の割合で充填密度が上昇するため、2つのグラフが重なって見えている。 Referring to FIG. 5, first, the blowing process is started, and the casting sand 41 is blown into the cavity 36, thereby increasing the filling density in the cavity 36. By this blowing step, the filling density rises to the filling density when the foundry sand 41 is filled into the cavity 36 only by the blowing step. The graph shows the change in the packing density on the bottom side of the cavity 36 and the change in the packing density on the upper surface side of the cavity 36. While only the blowing process is performed, the bottom of the cavity 36 is shown. Since the packing density rises at the same rate on both the side and the upper surface side, the two graphs appear to overlap.
 上述したように、吹き込み工程を開始してから第1所定時間(図5ではt1)が経過した後は、吹き込み工程が一時的に停止されるとともに、加振工程が実行される。加振工程が実行されると、キャビティ36内の鋳物砂41は、キャビティ36の底側に充填されるため、図5に示すように、キャビティ36の底側の充填密度は上昇する。一方、キャビティ36の上面側には、空隙が形成されるため、図5に示すように、キャビティ36の上面側の充填密度は低下する。 As described above, after the first predetermined time (t1 in FIG. 5) has elapsed since the start of the blowing step, the blowing step is temporarily stopped and the vibration step is executed. When the vibration process is executed, the foundry sand 41 in the cavity 36 is filled on the bottom side of the cavity 36, so that the filling density on the bottom side of the cavity 36 increases as shown in FIG. On the other hand, since a gap is formed on the upper surface side of the cavity 36, the packing density on the upper surface side of the cavity 36 is lowered as shown in FIG.
 そして、上述したように、加振工程が開始されてから、第2所定時間(図5ではt2)が経過した後は、加振工程が実行されたまま、吹き込み工程が再開されるとともに、吸引工程が開始される。これにより、キャビティ36内にさらに吹き込まれた鋳物砂41は、キャビティ36の底側に充填され、キャビティ36の底側の充填密度は上昇する。その後、キャビティ36の底側全体に鋳物砂41が充填されると、キャビティ36の底側には鋳物砂41が充填される領域がなくなるため、キャビティ36の底側の充填密度は飽和する。一方、吹き込み工程及び吸引工程によって、キャビティ36の上面側には、新たに鋳物砂41が充填されるため、キャビティ36の上面側の充填密度は上昇する。吸引工程を開始してから第3所定時間(図5ではt3)が経過すると、キャビティ36の上面側全体にまで鋳物砂41が充填され、キャビティ36の上面側の充填密度は飽和する。このとき、吸引工程によって、キャビティ36の最上部にまで鋳物砂41が充填されるため、キャビティ36の底側の充填密度と上面側の充填密度とは、略同じ値に飽和する。 Then, as described above, after the second predetermined time (t2 in FIG. 5) has elapsed after the start of the vibration process, the blowing process is resumed while the vibration process is being performed, and suction is performed. The process is started. Thus, the foundry sand 41 further blown into the cavity 36 is filled in the bottom side of the cavity 36, and the filling density on the bottom side of the cavity 36 is increased. After that, when the foundry sand 41 is filled in the entire bottom side of the cavity 36, there is no region filled with the foundry sand 41 on the bottom side of the cavity 36, so the filling density on the bottom side of the cavity 36 is saturated. On the other hand, the casting sand 41 is newly filled in the upper surface side of the cavity 36 by the blowing process and the suction process, so that the filling density on the upper surface side of the cavity 36 is increased. When a third predetermined time (t3 in FIG. 5) elapses after the suction process is started, the foundry sand 41 is filled up to the entire upper surface side of the cavity 36, and the filling density on the upper surface side of the cavity 36 is saturated. At this time, since the foundry sand 41 is filled up to the top of the cavity 36 by the suction process, the filling density on the bottom side and the filling density on the upper surface side of the cavity 36 are saturated to substantially the same value.
 すなわち、図5に示すように、本実施形態に係る中子造型装置50によって、キャビティ36内の鋳物砂41の充填密度が上昇することがわかる。このように、充填密度が向上されることにより、中子強度が向上されるため、シリンダヘッドのウォータジャケットを形成するための中子等、薄肉化の要請がある中子の量産化を実現することができる。また、キャビティ36内の充填密度が飽和傾向を示すまで鋳物砂41を充填させることにより、造型された中子の密度が均一になるため、造型された中子を用いて鋳造を行った際の中子の変形が、中子全体で均一になる。この結果、造型された中子の寸法のばらつきが減少するため、中子の寸法精度を向上させることができる。 That is, as shown in FIG. 5, it can be seen that the filling density of the foundry sand 41 in the cavity 36 is increased by the core molding apparatus 50 according to the present embodiment. As described above, since the core density is improved by improving the packing density, mass production of cores that are required to be thinned, such as cores for forming the water jacket of the cylinder head, is realized. be able to. Further, by filling the foundry sand 41 until the filling density in the cavity 36 shows a saturation tendency, the density of the molded core becomes uniform, so that when the casting is performed using the molded core. The deformation of the core is uniform throughout the core. As a result, the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
 したがって、本実施形態では、鋳物砂41を収容するブローヘッド1と、該ブローヘッド1内に連通するように配設されたブローノズル8と、ブローヘッド1内に加圧エアを供給することで、ブローノズル8を介して成形型35のキャビティ36内に鋳物砂41を吹き込み充填させる電磁弁11及びエアタンク12と、キャビティ36内に吹き込まれた鋳物砂41に振動を加えるバイブレータ20と、キャビティ36内に吹き込まれた鋳物砂41を、キャビティ36の上面側に引き寄せるように吸引する真空ポンプ24等と、電磁弁11、バイブレータ20及び真空ポンプ24等の動作を制御可能なコントローラ100と、を備え、コントローラ100は、電磁弁11及びエアタンク12により鋳物砂41を吹き込む期間と、キャビティ36内に吹き込まれた鋳物砂41にバイブレータ20により振動を加える期間と、キャビティ36内に吹き込まれた鋳物砂41を真空ポンプ24等により吸引する期間と、が全て重複する期間が存在するように各動作を実行するように構成されている。 Therefore, in the present embodiment, the blow head 1 that accommodates the foundry sand 41, the blow nozzle 8 disposed so as to communicate with the blow head 1, and the pressurized air is supplied into the blow head 1. The electromagnetic valve 11 and the air tank 12 for blowing and filling the foundry sand 41 into the cavity 36 of the mold 35 through the blow nozzle 8, the vibrator 20 for applying vibration to the foundry sand 41 blown into the cavity 36, and the cavity 36 A vacuum pump 24 for sucking the foundry sand 41 blown into the cavity 36 toward the upper surface side of the cavity 36, and a controller 100 capable of controlling the operations of the electromagnetic valve 11, the vibrator 20, the vacuum pump 24, and the like. The controller 100 includes a period in which the foundry sand 41 is blown by the electromagnetic valve 11 and the air tank 12, and the cavity 3. The period in which vibration is applied to the foundry sand 41 blown in by the vibrator 20 and the period in which the foundry sand 41 blown into the cavity 36 is sucked by the vacuum pump 24 and the like overlap each other. It is configured to perform an operation.
 この構成により、ブローノズル8からキャビティ36内に吹き込まれた鋳物砂41を、バイブレータ20によって転がして、上記鋳物砂41をキャビティ36の底側に充填させ、さらに、キャビティ36内に吹き込まれた鋳物砂41を、真空ポンプ24等によってキャビティ36の最上部に引き寄せて、上記鋳物砂41をキャビティ36の上面側に充填させることができる。これにより、鋳物砂41間の隙間を埋めながら、キャビティ36内に鋳物砂41を充填させることができるため、キャビティ36内の鋳物砂41の充填密度が高くなり、中子強度が向上される。この結果、薄肉化された中子の量産化を実現することができる。 With this configuration, the foundry sand 41 blown into the cavity 36 from the blow nozzle 8 is rolled by the vibrator 20 to fill the foundry sand 41 on the bottom side of the cavity 36, and further, the foundry sand blown into the cavity 36. The sand 41 can be drawn to the top of the cavity 36 by the vacuum pump 24 or the like, and the foundry sand 41 can be filled on the upper surface side of the cavity 36. Accordingly, the casting sand 41 can be filled into the cavity 36 while filling the gap between the casting sands 41, so that the filling density of the casting sand 41 in the cavity 36 is increased, and the core strength is improved. As a result, mass production of the thinned core can be realized.
 また、キャビティ36内への鋳物砂41の充填密度が向上することで、造型された中子の密度が均一になる。これにより、造型された中子を用いて鋳造を行った際の中子の変形が、中子全体で均一になる。この結果、造型された中子の寸法のばらつきが減少するため、中子の寸法精度を向上させることができる。 Also, the density of the molded core becomes uniform because the filling density of the foundry sand 41 into the cavity 36 is improved. Thereby, the deformation of the core when casting using the molded core is made uniform throughout the core. As a result, the variation in the dimensions of the molded core is reduced, so that the dimensional accuracy of the core can be improved.
 本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。 The present invention is not limited to the above embodiment, and can be substituted without departing from the spirit of the claims.
 例えば、本実施形態では、砂と水ガラスを主体とする無機バインダとを混練させることで、鋳物砂41を生成しているが、これに限らず、砂と有機バインダとを混練させることで鋳物砂41を生成してもよい。このとき、有機バインダとしては、例えば、フェノール樹脂及びポリイソシアネート化合物を主体とする有機バインダを用いることができる。 For example, in the present embodiment, the foundry sand 41 is generated by kneading sand and an inorganic binder mainly composed of water glass. However, the present invention is not limited thereto, and the casting is obtained by kneading sand and an organic binder. Sand 41 may be generated. At this time, as the organic binder, for example, an organic binder mainly composed of a phenol resin and a polyisocyanate compound can be used.
 また、本実施形態では、加振工程を開始してから第2所定時間が経過するまでの間、吹き込み工程を停止させるようにしているが、これに限らず、第2所定時間の間も吹き込み工程を継続させてもよい。 Further, in the present embodiment, the blowing process is stopped until the second predetermined time elapses after the vibration process is started. However, the present invention is not limited to this, and the blowing process is also performed for the second predetermined time. The process may be continued.
 上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The above-described embodiment is merely an example, and the scope of the present invention should not be interpreted in a limited manner. The scope of the present invention is defined by the scope of the claims, and all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明は、キャビティ内に鋳物砂を吹き込み充填して中子を造型する中子造型装置及び中子造型方法に有用である。 The present invention is useful for a core molding apparatus and a core molding method for molding a core by blowing and filling casting sand into a cavity.
 1 ブローヘッド
 8 ブローノズル
 11 電磁弁(加圧気体供給装置)
 12 エアタンク(加圧気体供給装置)
 20 バイブレータ(加振装置)
 21 吸引空間(吸引装置)
 22 吸引ノズル(吸引装置)
 23 真空タンク(吸引装置)
 24 真空ポンプ(吸引装置) 
 35 成形型
 36 キャビティ
 41 鋳物砂
 50 中子造型装置
 100 コントローラ(制御装置)
1 Blow Head 8 Blow Nozzle 11 Solenoid Valve (Pressurized Gas Supply Device)
12 Air tank (Pressurized gas supply device)
20 Vibrator (vibrator)
21 Suction space (suction device)
22 Suction nozzle (suction device)
23 Vacuum tank (suction device)
24 Vacuum pump (suction device)
35 Mold 36 Cavity 41 Foundry sand 50 Core molding device 100 Controller (control device)

Claims (8)

  1.  中子造型装置であって、
     鋳物砂を収容するブローヘッドと、
     上記ブローヘッド内に連通するように配設されたブローノズルと、
     上記ブローヘッド内に加圧気体を供給することで、上記ブローノズルを介して成形型のキャビティ内に上記鋳物砂を吹き込み充填させる加圧気体供給装置と、
     上記キャビティ内に吹き込まれた鋳物砂に振動を加える加振装置と、
     上記キャビティ内に吹き込まれた鋳物砂を、上記キャビティの上面側に引き寄せるように吸引する吸引装置と、
     上記加圧気体供給装置、上記加振装置及び上記吸引装置の動作を制御する制御装置と、を備え、
     上記制御装置は、上記加圧気体供給装置により上記鋳物砂を吹き込む期間と、上記キャビティ内に吹き込まれた鋳物砂に上記加振装置により振動を加える期間と、上記キャビティ内に吹き込まれた鋳物砂を上記吸引装置により吸引する期間と、が全て重複する期間が存在するように各動作を実行するように構成されていることを特徴とする中子造型装置。
    A core molding device,
    A blow head for receiving foundry sand;
    A blow nozzle arranged to communicate with the blow head;
    A pressurized gas supply device that blows and fills the foundry sand into the cavity of the mold through the blow nozzle by supplying pressurized gas into the blow head;
    An excitation device for applying vibration to the foundry sand blown into the cavity;
    A suction device for sucking the casting sand blown into the cavity so as to draw it toward the upper surface side of the cavity;
    A control device for controlling the operation of the pressurized gas supply device, the vibration exciting device and the suction device,
    The control device includes a period for blowing the foundry sand by the pressurized gas supply device, a period for applying vibration to the foundry sand blown into the cavity by the vibrating device, and a foundry sand blown into the cavity. The core molding apparatus is configured to execute each operation so that there is a period in which the period during which the suction apparatus sucks the air is overlapped.
  2.  請求項1に記載の中子造型装置において、
     上記制御装置は、上記加圧気体供給装置による上記鋳物砂の吹き込みを開始してから第1所定時間が経過した後に、上記加振装置による上記鋳物砂への加振を開始し、
     上記加振装置による上記鋳物砂への加振を開始してから、第2所定時間が経過した後に、上記吸引装置による上記鋳物砂の吸引を開始し、
     上記吸引装置による上記鋳物砂の吸引を終了させる時に、上記加圧気体供給装置による上記鋳物砂の吹き込み及び上記加振装置による上記鋳物砂への加振も終了させるように構成されていることを特徴とする中子造型装置。
    The core molding apparatus according to claim 1,
    The control device starts excitation of the foundry sand by the exciting device after the first predetermined time has elapsed since the start of blowing of the foundry sand by the pressurized gas supply device,
    After the second predetermined time has elapsed since the start of the vibration to the foundry sand by the vibration device, the suction of the foundry sand by the suction device is started,
    When the suction of the foundry sand by the suction device is terminated, the molding sand is blown by the pressurized gas supply device and the vibration to the foundry sand by the vibration device is also terminated. A core molding device.
  3.  請求項2に記載の中子造型装置において、
     上記制御装置は、上記加振装置による上記鋳物砂への加振を開始してから上記第2所定時間が経過するまでの間は、上記加圧気体供給装置による上記鋳物砂の吹き込みを一時的に停止させ、上記第2所定時間が経過した後に、上記加圧気体供給装置による上記鋳物砂の吹き込みを再開させるように構成されていることを特徴とする中子造型装置。
    In the core molding apparatus according to claim 2,
    The controller temporarily blows the foundry sand by the pressurized gas supply device until the second predetermined time elapses after the exciting device starts exciting the foundry sand. The core molding apparatus is configured to resume the casting sand blowing by the pressurized gas supply device after the second predetermined time has elapsed.
  4.  請求項1~3のいずれか1つに記載の中子造型装置において、
     上記鋳物砂は、無機バインダを用いた鋳物砂であることを特徴とする中子造型装置。
    The core molding apparatus according to any one of claims 1 to 3,
    The core molding apparatus, wherein the foundry sand is foundry sand using an inorganic binder.
  5.  中子造型方法であって、
     鋳物砂を収容するブローヘッド内に加圧気体を供給することで、上記ブローヘッド内に連通するように配設されたブローノズルを介して、上記鋳物砂を、成形型のキャビティ内に吹き込み充填する吹き込み工程と
     上記キャビティ内に吹き込まれた上記鋳物砂に振動を加える加振工程と、
     上記キャビティ内に吹き込まれた鋳物砂を、上記キャビティの上面側に引き寄せるように吸引する吸引工程と、を含み、
     上記吹き込み工程が実行される期間と、上記加振工程が実行される期間と、上記吸引工程が実行される期間とが全て重複する期間を有することを特徴とする中子造型方法。
    A core molding method,
    By supplying pressurized gas into the blow head containing the foundry sand, the foundry sand is blown and filled into the mold cavity through the blow nozzle arranged to communicate with the blow head. A vibration process for applying vibration to the foundry sand blown into the cavity,
    A suction step of sucking the foundry sand blown into the cavity so as to draw it toward the upper surface side of the cavity, and
    A core molding method characterized by having a period in which a period in which the blowing step is executed, a period in which the vibration step is executed, and a period in which the suction step is executed all overlap.
  6.  請求項5に記載の中子造型方法において、
     上記吹き込み工程を開始してから第1所定時間が経過した後に、上記加振工程を開始し、
     上記加振工程を開始してから第2所定時間が経過した後に、上記吸引工程を開始し、
     上記吸引工程が終了する時に、上記吹き込み工程及び上記加振工程も終了することを特徴とする中子造型方法。
    In the core molding method according to claim 5,
    After the first predetermined time has elapsed since the start of the blowing step, the vibration step is started,
    After the second predetermined time has elapsed since the start of the vibration process, the suction process is started,
    The core molding method, wherein when the suction step is finished, the blowing step and the vibration step are also finished.
  7.  請求項6に記載の中子造型方法において、
     上記加振工程が開始されてから上記第2所定時間が経過するまでの間は、上記吹き込み工程を一時的に停止し、上記第2所定時間が経過した後に、上記吹き込み工程を再開することを特徴とする中子造型方法。
    The core molding method according to claim 6,
    Until the second predetermined time has elapsed since the start of the vibration process, the blowing process is temporarily stopped, and after the second predetermined time has elapsed, the blowing process is resumed. Characteristic core molding method.
  8.  請求項5~7のいずれか1つに記載の中子造型方法において、
     上記鋳物砂は、無機バインダを用いた鋳物砂であることを特徴とする中子造型方法。
    In the core molding method according to any one of claims 5 to 7,
    The core molding method, wherein the foundry sand is foundry sand using an inorganic binder.
PCT/JP2016/079318 2015-10-20 2016-10-03 Core-molding device and core-molding method WO2017068951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680055425.XA CN108136488B (en) 2015-10-20 2016-10-03 Core making device and core making method
MX2018003448A MX2018003448A (en) 2015-10-20 2016-10-03 Core-molding device and core-molding method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206665 2015-10-20
JP2015206665A JP6380329B2 (en) 2015-10-20 2015-10-20 Core molding apparatus and core molding method

Publications (1)

Publication Number Publication Date
WO2017068951A1 true WO2017068951A1 (en) 2017-04-27

Family

ID=58557242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079318 WO2017068951A1 (en) 2015-10-20 2016-10-03 Core-molding device and core-molding method

Country Status (4)

Country Link
JP (1) JP6380329B2 (en)
CN (1) CN108136488B (en)
MX (1) MX2018003448A (en)
WO (1) WO2017068951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272082A (en) * 2019-01-09 2021-08-17 新东工业株式会社 Core molding method and core molding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146043U (en) * 1984-08-24 1986-03-27 新東工業株式会社 Self-hardening mold manufacturing equipment
JPH07290189A (en) * 1994-04-28 1995-11-07 Aisin Takaoka Ltd Device and method for molding core
JP2001079648A (en) * 1999-09-17 2001-03-27 Sintokogio Ltd Mold shaping method for horizontally splitting self- curing mold and device therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049377C (en) * 1997-01-15 2000-02-16 沈阳市铸造材料研究所 Non-toxic air-blowing hardening core-making method
DK2712690T3 (en) * 2011-06-03 2016-08-22 Sintokogio Ltd Core Sand Filling Accommodation and core sand filling method in core making machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146043U (en) * 1984-08-24 1986-03-27 新東工業株式会社 Self-hardening mold manufacturing equipment
JPH07290189A (en) * 1994-04-28 1995-11-07 Aisin Takaoka Ltd Device and method for molding core
JP2001079648A (en) * 1999-09-17 2001-03-27 Sintokogio Ltd Mold shaping method for horizontally splitting self- curing mold and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272082A (en) * 2019-01-09 2021-08-17 新东工业株式会社 Core molding method and core molding device
US11945023B2 (en) 2019-01-09 2024-04-02 Sintokogio, Ltd. Core molding method and core molding device

Also Published As

Publication number Publication date
CN108136488A (en) 2018-06-08
CN108136488B (en) 2020-08-25
JP2017077572A (en) 2017-04-27
JP6380329B2 (en) 2018-08-29
MX2018003448A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6380329B2 (en) Core molding apparatus and core molding method
CN110091414A (en) A kind of prefabricated assembled fair-faced concrete wallboard and manufacture craft
EP1832360B1 (en) Casting mold making system
CN207373404U (en) Autoclave aerated concrete building block exhaust apparatus
JP2007261264A (en) Injection machine and its control method
KR101582803B1 (en) Apparatus for forming precast concrete
JPH0648578A (en) Coreshooter
JP2014104481A (en) Method and apparatus for molding casting mold
JP2000317575A (en) Lost foam model casting method
KR20090109721A (en) Lost styrene form casting apparatus
JP3852026B2 (en) Resin injection device for vacuum casting
CN216152652U (en) Mould of concrete prefabricated part
JPH10137135A (en) Method and device for automatically producing spherical baked food
JP4560799B2 (en) Mold making method and apparatus
JP3170973B2 (en) Molding method of gas curing mold
JPH01313130A (en) Casting method using lost foam pattern
KR20040092908A (en) Concrete forming system
JP2680992B2 (en) Method for making or repairing a refractory lining of a ladle and template suitable for application of said method
JP2659870B2 (en) Core production method
JPH08197190A (en) Casting mold forming machine
JP2001191149A (en) Vibration casting method, vibration casting machine, and core box for casting
CN104550776A (en) Sand coated iron mold casting technology
JPH11277511A (en) Method for finishing placing face of concrete product
JP2001259798A (en) Method for filling granular filling material in mold for casting and its device
SU893532A2 (en) Apparatus for producing concrete articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003448

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857267

Country of ref document: EP

Kind code of ref document: A1