WO2017068919A1 - Exhaust gas sensor control device and exhaust gas sensor system - Google Patents

Exhaust gas sensor control device and exhaust gas sensor system Download PDF

Info

Publication number
WO2017068919A1
WO2017068919A1 PCT/JP2016/078605 JP2016078605W WO2017068919A1 WO 2017068919 A1 WO2017068919 A1 WO 2017068919A1 JP 2016078605 W JP2016078605 W JP 2016078605W WO 2017068919 A1 WO2017068919 A1 WO 2017068919A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
exhaust gas
amount
nox
gas sensor
Prior art date
Application number
PCT/JP2016/078605
Other languages
French (fr)
Japanese (ja)
Inventor
攻 田中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017068919A1 publication Critical patent/WO2017068919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to a control device and an exhaust gas sensor system connected to an exhaust gas sensor that detects a concentration of a specific gas component in exhaust gas of an internal combustion engine.
  • a NOx sensor that detects NOx (nitrogen oxide) concentration As an exhaust gas sensor that detects the concentration of a specific gas component in the exhaust gas of an internal combustion engine, for example, as described in Patent Document 1, a NOx sensor that detects NOx (nitrogen oxide) concentration is known.
  • the NOx sensor described in Patent Document 1 includes a gas sensor element including one or a plurality of cells formed by forming a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte layer such as zirconia.
  • the NOx sensor measures the oxygen concentration in the first measurement chamber communicating with the gas space to be measured by an oxygen concentration detection cell, and the oxygen in the first measurement chamber is first measured so that the first measurement chamber has a predetermined oxygen concentration. Control (pump in and out) by pumping cell.
  • the NOx sensor is configured such that the gas to be measured whose oxygen concentration is controlled flows from the first measurement chamber into the second measurement chamber, and applies a constant voltage to the second pumping cell to thereby change the gas to be measured in the second measurement chamber.
  • the contained NOx is decomposed into N 2 and O 2 .
  • the NOx concentration in the measurement gas is detected by measuring the second pumping current flowing between the pair of electrodes of the second pumping cell.
  • exhaust gas sensors for example, an O2 (oxygen concentration) sensor or an A / F (air-fuel ratio) sensor, such as a sensor whose sensor output has a relatively large current value
  • the above-described deviation has a small ratio to the sensor output. small.
  • the sensor output is a small current value such as a NOx sensor
  • the above-described deviation has a large influence on the sensor output because the ratio increases with respect to the sensor output. For this reason, it is desirable that the above-described deviation amount can be corrected appropriately and the detection accuracy of the sensor output can be improved.
  • This disclosure is intended to provide an exhaust gas sensor control device and an exhaust gas sensor system that can improve the detection accuracy of sensor output.
  • An exhaust gas sensor control device is a control device that controls an exhaust gas sensor that detects a concentration of a specific gas component in exhaust gas of an internal combustion engine, and that controls the amount of electron conduction generated in the exhaust gas sensor.
  • the sensor output of the exhaust gas sensor is corrected according to the amount of change.
  • an exhaust gas sensor system includes an exhaust gas sensor that detects the concentration of a specific gas component in the exhaust gas of an internal combustion engine, and the above-described control device.
  • the sensor output offset amount of the exhaust gas sensor fluctuates due to various influences such as element temperature and aging, and the cause is considered to be mainly the influence of the amount of electron conduction generated in the exhaust gas sensor.
  • the sensor output of the exhaust gas sensor can be appropriately corrected according to the amount of change in the electron conduction amount. It can suppress suitably and can improve the detection accuracy of a sensor output.
  • an exhaust gas sensor control device and an exhaust gas sensor system that can improve detection accuracy of sensor output.
  • FIG. 1 is a diagram showing a schematic configuration of a NOx sensor system as an example of an exhaust gas sensor system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of element temperature-sensor output characteristics of the NOx sensor.
  • FIG. 3 is a flowchart showing a sensor output correction amount update process according to the first embodiment.
  • FIG. 4 is a flowchart showing a sensor output correction amount update process according to the second embodiment.
  • the first embodiment will be described with reference to FIGS.
  • a NOx sensor that measures the NOx concentration in the exhaust gas.
  • the NOx sensor system 1 includes a NOx sensor control device (hereinafter also referred to as “NOx detection device 10”) and a NOx sensor 100.
  • the NOx sensor system 1 measures the NOx concentration and the oxygen concentration in the exhaust gas based on the sensor output of the NOx sensor 100 by controlling the operation of the NOx sensor 100 by the NOx detection device 10. That is, the NOx detection device 10 corresponds to a control device for an exhaust gas sensor (NOx sensor) in the present embodiment. Further, the NOx sensor system 1 corrects the sensor output of the NOx sensor 100 by the NOx detection device 10.
  • the NOx detection device 10 is mounted on a vehicle including an engine (not shown), and is electrically connected to the NOx sensor 100 via a connector or the like.
  • the NOx detection device 10 is electrically connected to a vehicle-side control device (ECU) (not shown).
  • the ECU receives the oxygen concentration and NOx concentration data corrected by the NOx detection device 10 and executes processing such as control of the operating state of the engine and purification of NOx accumulated in the catalyst based on the received data. .
  • the NOx detection device 10 includes a microcomputer 51 and a control circuit 52 on a circuit board.
  • the microcomputer 51 controls the entire NOx detection device 10.
  • the microcomputer 51 performs output correction of the sensor output of the NOx sensor 100 measured by the control circuit 52. Details of the output correction will be described later with reference to FIGS.
  • the microcomputer 51 physically includes a CPU, a RAM, a ROM, a signal input / output unit, an A / D converter, a clock, and the like, and a program stored in advance in the ROM or the like is executed by the CPU, which will be described later. Various functions can be exhibited.
  • the control circuit 52 controls the NOx sensor 100, detects the first pumping current Ip1 and the second pumping current Ip2 flowing through the NOx sensor 100, and outputs them to the microcomputer 51.
  • the NOx sensor 100 includes a NOx sensor element 101, a housing that houses the NOx sensor element 101, a connector for connecting the NOx sensor element 101 and the NOx detection device 10, and a lead wire connected to the NOx sensor element 101.
  • the NOx sensor element 101 has a structure in which a first solid electrolyte layer 111, an insulating layer 140, a second solid electrolyte layer 121, an insulating layer 145, a third solid electrolyte layer 131, and insulating layers 162 and 163 are stacked in this order.
  • a first measurement chamber 150 is defined between the first solid electrolyte layer 111 and the second solid electrolyte layer 121, and a first diffusion resistor 151 disposed at the entrance (left end in FIG. 1) of the first measurement chamber 150.
  • the measurement gas GM is introduced from the outside via
  • a second diffusion resistor 152 is disposed at the end of the first measurement chamber 150 opposite to the inlet, and communicates with the first measurement chamber 150 on the right side of the first measurement chamber 150 via the second diffusion resistor 152.
  • a second measurement chamber 160 is defined. The second measurement chamber 160 is formed between the first solid electrolyte layer 111 and the third solid electrolyte layer 131 through the second solid electrolyte layer 121.
  • a long plate-like heater 164 extending along the longitudinal direction of the NOx sensor element 101 is embedded between the insulating layers 162 and 163.
  • the heater 164 is used to raise the temperature of the gas sensor to the activation temperature, increase the conductivity of oxygen ions in the solid electrolyte layer, and stabilize the operation of the gas sensor.
  • the insulating layers 140 and 145 are mainly made of alumina, and the first diffusion resistor 151 and the second diffusion resistor 152 are made of a porous material such as alumina.
  • the heater 164 is made of platinum or the like.
  • the first pumping cell 110 includes a first solid electrolyte layer 111 mainly composed of zirconia having oxygen ion conductivity, an inner first pumping electrode 113 disposed so as to sandwich the first solid electrolyte layer 111, and an outer first pumping electrode serving as a counter electrode. 112.
  • the inner first pumping electrode 113 faces the first measurement chamber 150.
  • Both the inner first pumping electrode 113 and the outer first pumping electrode 112 are mainly made of platinum, and the surface of each electrode is covered with a protective layer 114 made of a porous material.
  • the oxygen concentration detection cell 120 includes a second solid electrolyte layer 121 mainly composed of zirconia, and a detection electrode 122 and a reference electrode 123 arranged so as to sandwich the second solid electrolyte layer 121.
  • the detection electrode 122 faces the first measurement chamber 150 on the downstream side of the inner first pumping electrode 113.
  • Both the detection electrode 122 and the reference electrode 123 are mainly made of platinum.
  • the insulating layer 145 is cut out so that the reference electrode 123 in contact with the second solid electrolyte layer 121 is disposed inside, and the cut-out portion is filled with a porous body to form the reference oxygen chamber 170. . Then, a weak constant value of current is supplied to the oxygen concentration detection cell 120 in advance by using the control circuit 52, so that oxygen is sent from the first measurement chamber 150 into the reference oxygen chamber 170 to be an oxygen reference.
  • the second pumping cell 130 includes a third solid electrolyte layer 131 mainly composed of zirconia, an inner second pumping electrode 133 disposed on the surface of the third solid electrolyte layer 131 facing the second measurement chamber 160, and a counter electrode. And a second pumping counter electrode 132. Both the inner second pumping electrode 133 and the second pumping counter electrode 132 are mainly composed of platinum.
  • the second pumping counter electrode 132 is disposed in the cutout portion of the insulating layer 145 on the third solid electrolyte layer 131 and faces the reference oxygen chamber 170 so as to face the reference electrode 123.
  • the inner first pumping electrode 113, the detection electrode 122, and the inner second pumping electrode 133 are each connected to a reference potential.
  • the outer first pumping electrode 112, the reference electrode 123, and the second pumping counter electrode 132 are connected to the control circuit 52.
  • the heater 164 is connected to the control circuit 52.
  • the control circuit 52 has the following functions.
  • the control circuit 52 supplies the first pumping current Ip1 between the inner first pumping electrode 113 and the outer first pumping electrode 112, and detects the first pumping current Ip1 at that time. At this time, a voltage Vp1 is generated between the inner first pumping electrode 113 and the outer first pumping electrode 112.
  • the control circuit 52 detects the interelectrode voltage Vs between the detection electrode 122 and the reference electrode 123.
  • the control circuit 52 compares the reference voltage (for example, 425 mV) with the above-described interelectrode voltage Vs. Then, the Ip1 current is controlled so that the interelectrode voltage Vs becomes equal to the reference voltage, and the oxygen concentration in the first measurement chamber 150 is adjusted so that NOx is not decomposed.
  • the reference voltage for example, 425 mV
  • the control circuit 52 causes a weak current Icp to flow between the detection electrode 122 and the reference electrode 123, sends oxygen from the first measurement chamber 150 into the reference oxygen chamber 170, and the reference electrode 123 has a predetermined oxygen concentration as a reference. To expose.
  • the control circuit 52 has a constant voltage Vp2 between the inner second pumping electrode 133 and the second pumping counter electrode 132 such that the NOx gas in the measurement gas GM is decomposed into oxygen (O 2 ) and nitrogen (N 2 ). (Eg, 450 mV) is applied to decompose NOx into nitrogen and oxygen.
  • the control circuit 52 detects the second pumping current Ip2 flowing through the second pumping cell 130 so that oxygen generated by the decomposition of NOx is pumped out of the second measurement chamber 160.
  • the control circuit 52 outputs the detected values of the first pumping current Ip1 and the second pumping current Ip2 to the microcomputer 51.
  • the control circuit 52 causes a weak current Icp to flow between the detection electrode 122 and the reference electrode 123, and sends oxygen from the first measurement chamber 150 into the reference oxygen chamber 170 to obtain an oxygen reference.
  • the first pumping cell 110 converts the oxygen in the measurement gas (exhaust gas) GM that has flowed into the first measurement chamber 150 into the first inner pumping. Pumping from the electrode 113 toward the outer first pumping electrode 112.
  • the oxygen concentration in the first measurement chamber 150 corresponds to the interelectrode voltage Vs (interterminal voltage Vs) of the oxygen concentration detection cell 120.
  • the control circuit 52 controls the first pumping current Ip1 flowing through the first pumping cell 110 so that the interelectrode voltage Vs becomes the reference voltage, so that the oxygen concentration in the first measurement chamber 150 can be NOx. Adjust so as not to disassemble as much as possible.
  • the gas GM to be measured whose oxygen concentration is adjusted further flows toward the second measurement chamber 160.
  • the control circuit 52 uses a constant voltage Vp2 (the oxygen concentration detection cell 120) as an inter-electrode voltage (inter-terminal voltage) of the second pumping cell 130 such that the NOx gas in the measurement gas GM is decomposed into oxygen and N 2 gas.
  • Vp2 the oxygen concentration detection cell 120
  • inter-terminal voltage inter-terminal voltage
  • a voltage higher than the control voltage value for example, 450 mV
  • the second pumping current Ip2 flows through the second pumping cell 130 so that oxygen generated by the decomposition of NOx is pumped out of the second measurement chamber 160.
  • the control circuit 52 detects the second pumping current Ip2
  • the microcomputer 51 can detect the NOx concentration in the gas to be measured based on the detected second pumping current Ip2.
  • the microcomputer 51 of the NOx detection device 10 is configured to correct the second pumping current Ip2 (sensor output) detected by the control circuit 52 and improve the detection accuracy of the sensor output and the NOx concentration.
  • the second pumping current Ip2 is also expressed as “sensor electrode current”.
  • FIG. 2 shows an example of the element temperature and sensor electrode current characteristics of the NOx sensor 100.
  • the horizontal axis in FIG. 2 represents the element temperature [° C.], and more specifically, the operating temperature of the NOx sensor element 101.
  • the vertical axis in FIG. 2 indicates the sensor electrode current [ ⁇ A], that is, the second pumping current Ip2.
  • a graph I1 connecting the rhombus plots shows an example of the characteristics of the NOx sensor 100 in use under an arbitrary condition
  • a graph I2 connecting the square plots shows an example of the characteristics in the initial state when the sensor is manufactured.
  • a graph connecting the circle plots shows a difference (I1-I2) between these characteristics.
  • the NOx concentration as the specific gas component is 0 ppm. That is, each characteristic shown in FIG. 2 corresponds to the offset value output without depending on the NOx concentration in the exhaust gas.
  • the sensor electrode current increases as the element temperature increases, and conversely, the sensor electrode current tends to decrease as the element temperature decreases. Further, at any element temperature (for example, A ° C.), the sensor electrode current at the same element temperature tends to increase as the usage time elapses from the initial state. That is, the characteristic between the element temperature and the sensor electrode current is, as indicated by a graph I2-I1 in FIG. 2, for example, a transition from the graph I2 to the graph I1, and the entire characteristic as the sensor usage time elapses. Tends to base up in the direction of increasing current value.
  • the characteristic between the element temperature of the NOx sensor 100 and the sensor electrode current shown in FIG. 2, that is, the offset amount of the sensor output of the NOx sensor 100 varies due to various influences such as the element temperature and aging. This causes a shift in the sensor output.
  • the reason why such characteristics occur in the sensor output of the NOx sensor 100 is mainly due to the influence of the amount of electron conduction.
  • the amount of electron conduction is the amount of electrons flowing through the device electrode regardless of the gas atmosphere when a voltage is applied to the sensor. It is known that the amount of electron conduction varies due to various effects such as variations in sensor solids, aging, and temperature. Therefore, in this embodiment, attention is paid to the characteristics of the electron conduction amount.
  • the NOx concentration is accurately derived.
  • the correction amount d according to the increase or decrease in the difference c between the sensor electrode currents a and b at two predetermined element temperatures A and B. Update.
  • step S101 it is confirmed whether or not a predetermined operation condition for performing the correction amount update process is satisfied.
  • This operating condition can be set under the operating environment where the output amount and temperature of the exhaust gas in the engine exhaust pipe are relatively stable. For example, when the engine is turned off, during fuel cut control, idling operation Time can be included.
  • the predetermined operating condition if the predetermined operating condition is satisfied, the process proceeds to step S102, and if not, the control flow ends.
  • step S102 the heater 164 is controlled through the control circuit 52 so that the element temperature becomes a predetermined A ° C.
  • the process of step S102 proceeds to step S103.
  • step S103 the sensor electrode current a at the element temperature A ° C. is measured via the control circuit 52, and this current value is recorded.
  • the sensor electrode current a is output information of the NOx sensor 100 used by the microcomputer 51 to calculate the NOx concentration in the measurement gas GM, and corresponds to the second pumping current Ip2 described above.
  • step S104 the heater 164 is controlled via the control circuit 52 so that the element temperature becomes a predetermined B ° C.
  • the process of step S104 proceeds to step S105.
  • step S105 the sensor electrode current b at the element temperature B ° C. is measured via the control circuit 52, and this current value is recorded.
  • step S106 the process proceeds to step S106.
  • the element temperature A used in steps S102 to S105 is preferably the activation temperature of each cell 110, 120, 130 in the NOx sensor element 101. Since the activation temperature in the case of the NOx sensor 100 is in the range of 750 to 850 ° C., for example, the element temperature A can be set to 800 ° C. Further, it is preferable that the element temperature B is higher than the element temperature A and does not overlap with a steady deviation (for example, ⁇ 50 ° C.) of temperature control of the element temperature A. Therefore, the element temperature B can be set to 900 ° C. which is 100 ° C. higher than the element temperature A, for example. By setting the element temperatures A and B in this way, it is possible to easily produce a difference in the change amount c of the electron conduction amount between the two temperatures.
  • step S106 the change amount c of the electron conductivity is calculated based on the sensor electrode currents a and b recorded in steps S103 and S105.
  • the amount of change in electronic conductivity c may be a relative difference between the sensor electrode currents at two predetermined temperatures.
  • the ratio, or the difference or ratio multiplied by a coefficient, a , B can also be used for calculation.
  • a correction amount d corresponding to the electron conduction amount change amount c calculated in step S106 is set.
  • the microcomputer 51 stores in advance a map including a plurality of sets of the change amount c and the correction amount d corresponding to the change amount c, and refers to the map based on the change amount c calculated in step S106.
  • the correction amount d can be selected.
  • the correspondence between the change amount c and the correction amount d can set the correction amount d in a direction in which the corrected sensor output value approaches the reference value in the initial state according to the change amount c.
  • the correction amount d0 when the amount of change in electron conduction c0 in the initial state at the time of sensor fabrication is used as a reference, the correction amount is decreased when the change amount c is larger than the initial value c0, and the change amount c is the initial value. When it decreases from c0, the correction amount d can be increased.
  • step S108 the sensor output value is corrected using the correction amount d set in step S107.
  • the microcomputer 51 multiplies the second pumping current Ip2 (sensor electrode current) measured via the control circuit 52 by the correction amount d, or adds or subtracts the sensor output value to the NOx concentration. Convert to.
  • this control flow ends.
  • the microcomputer 51 of the NOx detection device 10 sets the change amount c of the amount of electron conduction generated in the NOx sensor 100. Accordingly, the second pumping current Ip2 measured by the control circuit 52, which is the sensor output of the exhaust gas sensor 100, is corrected.
  • the offset amount of the sensor output of the NOx sensor 100 fluctuates due to various influences such as element temperature and aging, and the cause is mainly the electrons generated in the NOx sensor 100.
  • the effect of conductivity is considered.
  • the sensor output of the NOx sensor 100 can be appropriately corrected in accordance with the change amount c of the electron conduction amount. It can suppress suitably and can improve the detection accuracy of a sensor output. Further, by improving the detection accuracy of the sensor output, it is possible to improve the measurement accuracy of the NOx concentration that is output from the sensor output.
  • the microcomputer 51 of the NOx detection device 10 calculates the change amount c of the electron conduction amount based on the sensor output at a predetermined element temperature. Then, the correction amount d is changed in accordance with the change amount c, and the sensor output is corrected using the changed correction amount d to be output as the NOx concentration. More specifically, the sensor outputs (sensor electrode currents a and b) at the two element temperatures A and B are measured, and the change amount c of the electron conduction amount is calculated based on these two sensor output values.
  • both the current sensor electrode currents a and b are used to calculate the amount of change in electronic conductivity c. Therefore, the element temperature-sensor output characteristics described with reference to FIG. The amount of change in electron conduction c can be calculated, and the correction amount d can be changed.
  • the element temperature-sensor output characteristics shown in FIG. 2 are mainly due to the amount of electron conduction as described above, but as other factors, the cell 110, 120, 130 of the NOx sensor element 101 has the other factors. The influence of oxygen remaining inside (residual O 2 ) is also conceivable.
  • the microcomputer 51 of the NOx detection device 10 is in a predetermined operating environment in which the exhaust gas in the exhaust pipe is stable when the engine is operating.
  • the correction amount d is changed.
  • the sensor outputs (sensor electrode currents a and b) of the element temperatures A and B are measured in a predetermined operating environment where the exhaust gas is stable and the fluctuation of the NOx concentration in the exhaust gas is extremely small. Therefore, it is possible to improve the detection accuracy of the change amount c of the electron conductivity calculated based on these. Therefore, the correction amount d can be changed with high accuracy, and the measurement accuracy of the NOx concentration can be further improved.
  • the configuration in which the change amount c of the electron conduction amount is calculated using the sensor electrode currents a and b at the two element temperatures A and B is not limited to this.
  • the change amount may be calculated using the sensor electrode current at the element temperature described above. Thereby, the amount of change can be calculated with higher accuracy.
  • the change amount c of the electron conduction amount can be calculated using a function having three current values as arguments.
  • the microcomputer 51 of the NOx detection device 10 measures sensor outputs (sensor electrode currents a and b) at two element temperatures A and B, and outputs these two sensor output values.
  • the sensor output (sensor electrode current a) at a single element temperature A is measured as shown in FIG.
  • a change amount f of the electron conduction amount is calculated.
  • the reference current value for example, an initial value (sensor electrode current initial value e) of the sensor output at the same element temperature A as previously described, which is measured and stored in advance when the NOx sensor 100 is manufactured, can be used. .
  • step S204 the sensor electrode current initial value e at the time of sensor fabrication is read.
  • the sensor electrode current initial value e for example, when the sensor fabrication operation is completed, the sensor electrode current at the same element temperature A ° C. as in step S203 is measured, and this current value is recorded in the microcomputer 51 in advance. ing.
  • the process of step S204 proceeds to step S205.
  • a correction amount g corresponding to the electron conduction amount change amount f calculated in step S205 is set.
  • the microcomputer 51 stores in advance a map including a plurality of sets of the change amount f and the correction amount g corresponding to the change amount f, and refers to the map based on the change amount f calculated in step S205.
  • the correction amount g can be selected.
  • the correspondence between the change amount f and the correction amount g can be set such that the corrected sensor output value approaches the reference value in the initial state according to the change amount f.
  • the correction amount g when the change amount f increases in the positive direction with reference to the correction amount g0 when the change amount f is 0 (when the sensor electrode current a is the same as the sensor electrode current initial value e), the correction amount is decreased.
  • the correction amount g can be increased.
  • the sensor output of the exhaust gas sensor 100 can be appropriately corrected in accordance with the change amount f of the electron conduction amount generated in the NOx sensor 100. Therefore, the same effect as the first embodiment can be obtained.
  • the sensor electrode current initial value e is used as the reference current value for calculating the difference from the sensor output at the single element temperature A.
  • the reference current value is caused by secular change. It is only necessary that the output deviation of the sensor output at the same element temperature A can be clearly grasped. In this case, for example, when the correction amount update process of FIG. 4 has been performed a plurality of times in the past, the sensor electrode current a measured a predetermined number of times can be used as the reference current value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A NOx detection device (10) as an exhaust gas sensor control device is a device that controls a NOx sensor (100) that detects the NOx concentration in an exhaust gas of internal combustion engines. Corresponding to an electron conduction change quantity (c) generated in the NOx sensor (100), the device corrects a second pumping current (Ip2), i.e., a sensor output of the NOx sensor (100).

Description

排出ガスセンサの制御装置及び排出ガスセンサシステムExhaust gas sensor control device and exhaust gas sensor system 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年10月19日に出願された日本国特許出願2015-205393号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2015-205393 filed on October 19, 2015, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、内燃機関の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサに接続される制御装置及び排出ガスセンサシステムに関する。 The present disclosure relates to a control device and an exhaust gas sensor system connected to an exhaust gas sensor that detects a concentration of a specific gas component in exhaust gas of an internal combustion engine.
 内燃機関の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサとして、例えば特許文献1に記載されるように、NOx(窒素酸化物)濃度を検出するNOxセンサが知られている。特許文献1に記載のNOxセンサは、ジルコニア等の酸素イオン伝導性の固体電解質層の表面に一対の電極を形成してなるセルを1つないし複数備えたガスセンサ素子を有する。このNOxセンサは、被測定ガス空間に連通する第1測定室内の酸素濃度を酸素濃度検出セルによって測定し、第1測定室内が所定の酸素濃度になるように第1測定室内の酸素を第1ポンピングセルによって制御(汲み入れ、汲み出し)する。さらにこのNOxセンサは、酸素濃度が制御された被測定ガスが第1測定室から第2測定室へ流入し、第2ポンピングセルに一定電圧を印加することによって第2測定室内の被測定ガスに含まれるNOxをN2とO2に分解する。この際、第2ポンピングセルの一対の電極間に流れる第2ポンピング電流を測定することにより被測定ガス中のNOx濃度が検出される。 As an exhaust gas sensor that detects the concentration of a specific gas component in the exhaust gas of an internal combustion engine, for example, as described in Patent Document 1, a NOx sensor that detects NOx (nitrogen oxide) concentration is known. The NOx sensor described in Patent Document 1 includes a gas sensor element including one or a plurality of cells formed by forming a pair of electrodes on the surface of an oxygen ion conductive solid electrolyte layer such as zirconia. The NOx sensor measures the oxygen concentration in the first measurement chamber communicating with the gas space to be measured by an oxygen concentration detection cell, and the oxygen in the first measurement chamber is first measured so that the first measurement chamber has a predetermined oxygen concentration. Control (pump in and out) by pumping cell. Further, the NOx sensor is configured such that the gas to be measured whose oxygen concentration is controlled flows from the first measurement chamber into the second measurement chamber, and applies a constant voltage to the second pumping cell to thereby change the gas to be measured in the second measurement chamber. The contained NOx is decomposed into N 2 and O 2 . At this time, the NOx concentration in the measurement gas is detected by measuring the second pumping current flowing between the pair of electrodes of the second pumping cell.
特開2009-265085号公報JP 2009-265085 A
 ところで、特許文献1に記載されるような排出ガスセンサでは、測定対象の特定ガス成分(NOx)が排出ガス中に全く含まれていなくても、この特定ガス成分に対応する第2ポンピング電流が所定の電流値(いわゆるオフセット値)を生じる。このため、第2ポンピング電流からオフセット値を減じるなどの補正を行って特定ガス成分の濃度を算出するのが一般的である。しかしながら、このオフセット値は温度変化、経年変化、製造バラツキなどの影響によって変化し、センサ出力(第2ポンピング電流)のずれを引き起こしている。 By the way, in the exhaust gas sensor described in Patent Document 1, even if the specific gas component (NOx) to be measured is not included in the exhaust gas, the second pumping current corresponding to the specific gas component is predetermined. Current value (so-called offset value). For this reason, it is common to calculate the concentration of the specific gas component by performing correction such as subtracting the offset value from the second pumping current. However, this offset value changes due to the influence of temperature change, aging change, manufacturing variation, and the like, causing a shift in sensor output (second pumping current).
 排出ガスセンサの中で例えばO2(酸素濃度)センサやA/F(空燃比)センサなど、センサ出力が比較的大きい電流値であるセンサでは、上記のずれはセンサ出力に対する割合が小さいのでその影響は小さい。一方、NOxセンサなどセンサ出力が微小な電流値であるセンサである場合、上記のずれはセンサ出力に対する割合が大きくなるのでその影響は大きい。このため、上記のずれ量を適切に補正でき、センサ出力の検出精度を向上できることが望ましい。 Among exhaust gas sensors, for example, an O2 (oxygen concentration) sensor or an A / F (air-fuel ratio) sensor, such as a sensor whose sensor output has a relatively large current value, the above-described deviation has a small ratio to the sensor output. small. On the other hand, when the sensor output is a small current value such as a NOx sensor, the above-described deviation has a large influence on the sensor output because the ratio increases with respect to the sensor output. For this reason, it is desirable that the above-described deviation amount can be corrected appropriately and the detection accuracy of the sensor output can be improved.
 本開示は、センサ出力の検出精度を向上できる排出ガスセンサの制御装置及び排出ガスセンサシステムを提供することを目的とする。 This disclosure is intended to provide an exhaust gas sensor control device and an exhaust gas sensor system that can improve the detection accuracy of sensor output.
 本開示の一態様に係る排出ガスセンサの制御装置は、内燃機関の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサを制御する制御装置であって、前記排出ガスセンサに発生する電子伝導量の変化量に応じて、前記排出ガスセンサのセンサ出力を補正する。 An exhaust gas sensor control device according to an aspect of the present disclosure is a control device that controls an exhaust gas sensor that detects a concentration of a specific gas component in exhaust gas of an internal combustion engine, and that controls the amount of electron conduction generated in the exhaust gas sensor. The sensor output of the exhaust gas sensor is corrected according to the amount of change.
 同様に、本開示の一態様に係る排出ガスセンサシステムは、内燃機関の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサと、上記の制御装置と、を備える。 Similarly, an exhaust gas sensor system according to an aspect of the present disclosure includes an exhaust gas sensor that detects the concentration of a specific gas component in the exhaust gas of an internal combustion engine, and the above-described control device.
 排出ガスセンサのセンサ出力のオフセット量は、素子温度や経年変化等の各種影響により変動するものであり、その原因としては主に排出ガスセンサに発生する電子伝導量の影響が考えられる。本開示の一態様の上記構成によれば、この電子伝導量の変化量に応じて排出ガスセンサのセンサ出力を適切に補正することができるので、電子伝導量に起因するセンサ出力のずれの発生を好適に抑制でき、センサ出力の検出精度を向上できる。 The sensor output offset amount of the exhaust gas sensor fluctuates due to various influences such as element temperature and aging, and the cause is considered to be mainly the influence of the amount of electron conduction generated in the exhaust gas sensor. According to the above configuration of one aspect of the present disclosure, the sensor output of the exhaust gas sensor can be appropriately corrected according to the amount of change in the electron conduction amount. It can suppress suitably and can improve the detection accuracy of a sensor output.
 本開示によれば、センサ出力の検出精度を向上できる排出ガスセンサの制御装置及び排出ガスセンサシステムを提供することができる。 According to the present disclosure, it is possible to provide an exhaust gas sensor control device and an exhaust gas sensor system that can improve detection accuracy of sensor output.
図1は、第1実施形態に係る排出ガスセンサシステムの一例としてのNOxセンサシステムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a NOx sensor system as an example of an exhaust gas sensor system according to the first embodiment. 図2は、NOxセンサの素子温度―センサ出力特性の一例を示す図である。FIG. 2 is a diagram illustrating an example of element temperature-sensor output characteristics of the NOx sensor. 図3は、第1実施形態に係るセンサ出力補正量の更新処理を示すフローチャートである。FIG. 3 is a flowchart showing a sensor output correction amount update process according to the first embodiment. 図4は、第2実施形態に係るセンサ出力補正量の更新処理を示すフローチャートである。FIG. 4 is a flowchart showing a sensor output correction amount update process according to the second embodiment.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
[第1実施形態]
 図1~3を参照して第1実施形態について説明する。第1実施形態では、内燃機関(エンジン)の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサの一例として、排出ガス中のNOx濃度を計測するNOxセンサを挙げて説明する。
[First Embodiment]
The first embodiment will be described with reference to FIGS. In the first embodiment, as an example of an exhaust gas sensor that detects the concentration of a specific gas component in the exhaust gas of an internal combustion engine (engine), a NOx sensor that measures the NOx concentration in the exhaust gas will be described.
 図1に示されるように、NOxセンサシステム1は、NOxセンサ制御装置(以下、「NOx検出装置10」ともいう)と、NOxセンサ100と、を備えている。NOxセンサシステム1は、NOx検出装置10によってNOxセンサ100の動作を制御することで、NOxセンサ100のセンサ出力に基づき排出ガス中のNOx濃度及び酸素濃度の計測を行う。つまり、NOx検出装置10が、本実施形態における排出ガスセンサ(NOxセンサ)の制御装置に相当する。また、NOxセンサシステム1は、NOx検出装置10によってNOxセンサ100のセンサ出力の補正を行う。 As shown in FIG. 1, the NOx sensor system 1 includes a NOx sensor control device (hereinafter also referred to as “NOx detection device 10”) and a NOx sensor 100. The NOx sensor system 1 measures the NOx concentration and the oxygen concentration in the exhaust gas based on the sensor output of the NOx sensor 100 by controlling the operation of the NOx sensor 100 by the NOx detection device 10. That is, the NOx detection device 10 corresponds to a control device for an exhaust gas sensor (NOx sensor) in the present embodiment. Further, the NOx sensor system 1 corrects the sensor output of the NOx sensor 100 by the NOx detection device 10.
 NOx検出装置10は、図示しないエンジンを備える車両に搭載され、コネクタ等を介してNOxセンサ100に電気的に接続されている。 The NOx detection device 10 is mounted on a vehicle including an engine (not shown), and is electrically connected to the NOx sensor 100 via a connector or the like.
 また、NOx検出装置10は、図示しない車両側の制御装置(ECU)に電気的に接続されている。ECUは、NOx検出装置10で補正された排出ガス中の酸素濃度およびNOx濃度のデータを受信し、それに基づいてエンジンの運転状態の制御や触媒に蓄積されたNOxの浄化などの処理を実行する。 Further, the NOx detection device 10 is electrically connected to a vehicle-side control device (ECU) (not shown). The ECU receives the oxygen concentration and NOx concentration data corrected by the NOx detection device 10 and executes processing such as control of the operating state of the engine and purification of NOx accumulated in the catalyst based on the received data. .
 NOx検出装置10は、回路基板上にマイクロコンピュータ51と制御回路52とを備えている。マイクロコンピュータ51はNOx検出装置10の全体を制御する。また、特に本実施形態では、マイクロコンピュータ51は、制御回路52により計測されたNOxセンサ100のセンサ出力の出力補正を行う。出力補正の詳細については図2,3を参照して後述する。 The NOx detection device 10 includes a microcomputer 51 and a control circuit 52 on a circuit board. The microcomputer 51 controls the entire NOx detection device 10. In particular, in the present embodiment, the microcomputer 51 performs output correction of the sensor output of the NOx sensor 100 measured by the control circuit 52. Details of the output correction will be described later with reference to FIGS.
 マイクロコンピュータ51は、物理的には、CPU、RAM、ROM、信号入出力部、A/Dコンバータ、およびクロック等を備え、ROM等に予め格納されたプログラムがCPUにより実行されることで後述する種々の機能を発揮することができる。 The microcomputer 51 physically includes a CPU, a RAM, a ROM, a signal input / output unit, an A / D converter, a clock, and the like, and a program stored in advance in the ROM or the like is executed by the CPU, which will be described later. Various functions can be exhibited.
 制御回路52は、NOxセンサ100を制御すると共に、NOxセンサ100に流れる第1ポンピング電流Ip1及び第2ポンピング電流Ip2を検出してマイクロコンピュータ51に出力する。 The control circuit 52 controls the NOx sensor 100, detects the first pumping current Ip1 and the second pumping current Ip2 flowing through the NOx sensor 100, and outputs them to the microcomputer 51.
 次に、NOxセンサ100の構成について説明する。NOxセンサ100は、NOxセンサ素子101、NOxセンサ素子101を収容するハウジング、NOxセンサ素子101とNOx検出装置10とを接続するためのコネクタ、およびNOxセンサ素子101と接続されるリード線を含むものであるが、センサ自体の構成は公知である。そのため、以下では、NOxセンサ100のうち図1に示すNOxセンサ素子101の断面図を参照して説明する。 Next, the configuration of the NOx sensor 100 will be described. The NOx sensor 100 includes a NOx sensor element 101, a housing that houses the NOx sensor element 101, a connector for connecting the NOx sensor element 101 and the NOx detection device 10, and a lead wire connected to the NOx sensor element 101. However, the configuration of the sensor itself is known. Therefore, the following description will be made with reference to a cross-sectional view of the NOx sensor element 101 shown in FIG.
 NOxセンサ素子101は、第1固体電解質層111、絶縁層140、第2固体電解質層121、絶縁層145、第3固体電解質層131、および絶縁層162,163をこの順に積層した構造を有する。第1固体電解質層111と第2固体電解質層121との層間に第1測定室150が画成され、第1測定室150の入口(図1の左端)に配置された第1拡散抵抗体151を介して外部から被測定ガスGMが導入される。 The NOx sensor element 101 has a structure in which a first solid electrolyte layer 111, an insulating layer 140, a second solid electrolyte layer 121, an insulating layer 145, a third solid electrolyte layer 131, and insulating layers 162 and 163 are stacked in this order. A first measurement chamber 150 is defined between the first solid electrolyte layer 111 and the second solid electrolyte layer 121, and a first diffusion resistor 151 disposed at the entrance (left end in FIG. 1) of the first measurement chamber 150. The measurement gas GM is introduced from the outside via
 第1測定室150のうち入口と反対端には第2拡散抵抗体152が配置され、第2拡散抵抗体152を介して第1測定室150の右側には、第1測定室150と連通する第2測定室160が画成されている。第2測定室160は、第2固体電解質層121を貫通して第1固体電解質層111と第3固体電解質層131との層間に形成されている。 A second diffusion resistor 152 is disposed at the end of the first measurement chamber 150 opposite to the inlet, and communicates with the first measurement chamber 150 on the right side of the first measurement chamber 150 via the second diffusion resistor 152. A second measurement chamber 160 is defined. The second measurement chamber 160 is formed between the first solid electrolyte layer 111 and the third solid electrolyte layer 131 through the second solid electrolyte layer 121.
 絶縁層162,163の間にはNOxセンサ素子101の長手方向に沿って延びる長尺板状のヒータ164が埋設されている。ヒータ164はガスセンサを活性温度に昇温し、固体電解質層の酸素イオンの伝導性を高めて、ガスセンサの動作を安定化させるために用いられる。 A long plate-like heater 164 extending along the longitudinal direction of the NOx sensor element 101 is embedded between the insulating layers 162 and 163. The heater 164 is used to raise the temperature of the gas sensor to the activation temperature, increase the conductivity of oxygen ions in the solid electrolyte layer, and stabilize the operation of the gas sensor.
 絶縁層140,145はアルミナを主体とし、第1拡散抵抗体151および第2拡散抵抗体152はアルミナ等の多孔質物質からなる。又、ヒータ164は白金等からなる。 The insulating layers 140 and 145 are mainly made of alumina, and the first diffusion resistor 151 and the second diffusion resistor 152 are made of a porous material such as alumina. The heater 164 is made of platinum or the like.
 第1ポンピングセル110は、酸素イオン伝導性を有するジルコニアを主体とする第1固体電解質層111と、これを挟持するように配置された内側第1ポンピング電極113および対極となる外側第1ポンピング電極112とを備える。内側第1ポンピング電極113は第1測定室150に面している。内側第1ポンピング電極113および外側第1ポンピング電極112はいずれも白金を主体とし、各電極の表面は多孔質体からなる保護層114でそれぞれ覆われている。 The first pumping cell 110 includes a first solid electrolyte layer 111 mainly composed of zirconia having oxygen ion conductivity, an inner first pumping electrode 113 disposed so as to sandwich the first solid electrolyte layer 111, and an outer first pumping electrode serving as a counter electrode. 112. The inner first pumping electrode 113 faces the first measurement chamber 150. Both the inner first pumping electrode 113 and the outer first pumping electrode 112 are mainly made of platinum, and the surface of each electrode is covered with a protective layer 114 made of a porous material.
 酸素濃度検出セル120は、ジルコニアを主体とする第2固体電解質層121と、これを挟持するように配置された検知電極122および基準電極123とを備える。検知電極122は、内側第1ポンピング電極113より下流側で第1測定室150に面している。検知電極122および基準電極123は、いずれも白金を主体としている。 The oxygen concentration detection cell 120 includes a second solid electrolyte layer 121 mainly composed of zirconia, and a detection electrode 122 and a reference electrode 123 arranged so as to sandwich the second solid electrolyte layer 121. The detection electrode 122 faces the first measurement chamber 150 on the downstream side of the inner first pumping electrode 113. Both the detection electrode 122 and the reference electrode 123 are mainly made of platinum.
 なお、絶縁層145は、第2固体電解質層121に接する基準電極123が内部に配置されるように切り抜かれ、その切り抜き部には多孔質体が充填されて基準酸素室170を形成している。そして、酸素濃度検出セル120に制御回路52を用いて予め微弱な一定値の電流を流すことにより、酸素を第1測定室150から基準酸素室170内に送り込み、酸素基準とする。 The insulating layer 145 is cut out so that the reference electrode 123 in contact with the second solid electrolyte layer 121 is disposed inside, and the cut-out portion is filled with a porous body to form the reference oxygen chamber 170. . Then, a weak constant value of current is supplied to the oxygen concentration detection cell 120 in advance by using the control circuit 52, so that oxygen is sent from the first measurement chamber 150 into the reference oxygen chamber 170 to be an oxygen reference.
 第2ポンピングセル130は、ジルコニアを主体とする第3固体電解質層131と、第3固体電解質層131のうち第2測定室160に面した表面に配置された内側第2ポンピング電極133および対極となる第2ポンピング対電極132とを備えている。内側第2ポンピング電極133および第2ポンピング対電極132はいずれも白金を主体としている。 The second pumping cell 130 includes a third solid electrolyte layer 131 mainly composed of zirconia, an inner second pumping electrode 133 disposed on the surface of the third solid electrolyte layer 131 facing the second measurement chamber 160, and a counter electrode. And a second pumping counter electrode 132. Both the inner second pumping electrode 133 and the second pumping counter electrode 132 are mainly composed of platinum.
 なお、第2ポンピング対電極132は、第3固体電解質層131上における絶縁層145の切り抜き部に配置され、基準電極123に対向して基準酸素室170に面している。 The second pumping counter electrode 132 is disposed in the cutout portion of the insulating layer 145 on the third solid electrolyte layer 131 and faces the reference oxygen chamber 170 so as to face the reference electrode 123.
 そして、内側第1ポンピング電極113、検知電極122、内側第2ポンピング電極133はそれぞれ基準電位に接続されている。外側第1ポンピング電極112、基準電極123、第2ポンピング対電極132は、制御回路52に接続されている。ヒータ164は、制御回路52に接続されている。 The inner first pumping electrode 113, the detection electrode 122, and the inner second pumping electrode 133 are each connected to a reference potential. The outer first pumping electrode 112, the reference electrode 123, and the second pumping counter electrode 132 are connected to the control circuit 52. The heater 164 is connected to the control circuit 52.
 制御回路52は、以下のような機能を有する。 The control circuit 52 has the following functions.
 制御回路52は、内側第1ポンピング電極113および外側第1ポンピング電極112の間に第1ポンピング電流Ip1を供給しつつ、その際の第1ポンピング電流Ip1を検出する。このとき、内側第1ポンピング電極113および外側第1ポンピング電極112の間に電圧Vp1が生じる。 The control circuit 52 supplies the first pumping current Ip1 between the inner first pumping electrode 113 and the outer first pumping electrode 112, and detects the first pumping current Ip1 at that time. At this time, a voltage Vp1 is generated between the inner first pumping electrode 113 and the outer first pumping electrode 112.
 制御回路52は、検知電極122および基準電極123の間の電極間電圧Vsを検出する。 The control circuit 52 detects the interelectrode voltage Vs between the detection electrode 122 and the reference electrode 123.
 制御回路52は、基準電圧(例えば、425mV)と上記の電極間電圧Vsとを比較する。そして、電極間電圧Vsが上記基準電圧に等しくなるようにIp1電流を制御し、NOxが分解しない程度に、第1測定室150内の酸素濃度を調整する。 The control circuit 52 compares the reference voltage (for example, 425 mV) with the above-described interelectrode voltage Vs. Then, the Ip1 current is controlled so that the interelectrode voltage Vs becomes equal to the reference voltage, and the oxygen concentration in the first measurement chamber 150 is adjusted so that NOx is not decomposed.
 制御回路52は、検知電極122および基準電極123の間に微弱な電流Icpを流し、酸素を第1測定室150から基準酸素室170の内部に送り込み、基準電極123を基準となる所定の酸素濃度に晒させる。 The control circuit 52 causes a weak current Icp to flow between the detection electrode 122 and the reference electrode 123, sends oxygen from the first measurement chamber 150 into the reference oxygen chamber 170, and the reference electrode 123 has a predetermined oxygen concentration as a reference. To expose.
 制御回路52は、内側第2ポンピング電極133および第2ポンピング対電極132の間に、被測定ガスGM中のNOxガスが酸素(O2)と窒素(N2)に分解する程度の一定電圧Vp2(例えば、450mV)を印加し、NOxを窒素と酸素に分解する。 The control circuit 52 has a constant voltage Vp2 between the inner second pumping electrode 133 and the second pumping counter electrode 132 such that the NOx gas in the measurement gas GM is decomposed into oxygen (O 2 ) and nitrogen (N 2 ). (Eg, 450 mV) is applied to decompose NOx into nitrogen and oxygen.
 制御回路52は、NOxの分解により生じた酸素が第2測定室160から汲み出されるように第2ポンピングセル130に流れる第2ポンピング電流Ip2を検出する。 The control circuit 52 detects the second pumping current Ip2 flowing through the second pumping cell 130 so that oxygen generated by the decomposition of NOx is pumped out of the second measurement chamber 160.
 制御回路52は、検出した第1ポンピング電流Ip1及び第2ポンピング電流Ip2の値をマイクロコンピュータ51に出力する。 The control circuit 52 outputs the detected values of the first pumping current Ip1 and the second pumping current Ip2 to the microcomputer 51.
 次に、制御回路52を用いたNOxセンサ100の制御の一例について説明する。まず、エンジンが始動されて外部電源から電力の供給を受けると、制御回路52を介してヒータ電圧Vhが印加されたヒータ164が作動し、第1ポンピングセル110、酸素濃度検出セル120、第2ポンピングセル130を活性化温度まで加熱する。又、制御回路52は、検知電極122および基準電極123の間に微弱な電流Icpを流し、酸素を第1測定室150から基準酸素室170内に送り込み、酸素基準とする。 Next, an example of control of the NOx sensor 100 using the control circuit 52 will be described. First, when the engine is started and supplied with electric power from an external power source, the heater 164 to which the heater voltage Vh is applied is activated via the control circuit 52, and the first pumping cell 110, the oxygen concentration detection cell 120, the second The pumping cell 130 is heated to the activation temperature. In addition, the control circuit 52 causes a weak current Icp to flow between the detection electrode 122 and the reference electrode 123, and sends oxygen from the first measurement chamber 150 into the reference oxygen chamber 170 to obtain an oxygen reference.
 そして、各セル110,120,130が活性化温度まで加熱されると、第1ポンピングセル110は、第1測定室150に流入した被測定ガス(排出ガス)GM中の酸素を内側第1ポンピング電極113から外側第1ポンピング電極112へ向かって汲み出す。 When each of the cells 110, 120, and 130 is heated to the activation temperature, the first pumping cell 110 converts the oxygen in the measurement gas (exhaust gas) GM that has flowed into the first measurement chamber 150 into the first inner pumping. Pumping from the electrode 113 toward the outer first pumping electrode 112.
 このとき、第1測定室150の内部の酸素濃度は、酸素濃度検出セル120の電極間電圧Vs(端子間電圧Vs)に対応したものとなる。このため、この電極間電圧Vsが上記基準電圧になるように、制御回路52が第1ポンピングセル110に流れる第1ポンピング電流Ip1を制御し、第1測定室150内の酸素濃度をNOxができる限り分解しないように調整する。 At this time, the oxygen concentration in the first measurement chamber 150 corresponds to the interelectrode voltage Vs (interterminal voltage Vs) of the oxygen concentration detection cell 120. For this reason, the control circuit 52 controls the first pumping current Ip1 flowing through the first pumping cell 110 so that the interelectrode voltage Vs becomes the reference voltage, so that the oxygen concentration in the first measurement chamber 150 can be NOx. Adjust so as not to disassemble as much as possible.
 酸素濃度が調整された被測定ガスGMは第2測定室160に向かってさらに流れる。そして、制御回路52は、第2ポンピングセル130の電極間電圧(端子間電圧)として、被測定ガスGM中のNOxガスが酸素とN2ガスに分解する程度の一定電圧Vp2(酸素濃度検出セル120の制御電圧の値より高い電圧、例えば450mV)を印加し、NOxを窒素と酸素に分解する。そして、NOxの分解により生じた酸素が第2測定室160から汲み出されるよう、第2ポンピングセル130に第2ポンピング電流Ip2が流れる。この際、第2ポンピング電流Ip2とNOx濃度の間には直線関係がある。したがって、制御回路52が第2ポンピング電流Ip2を検出することにより、マイクロコンピュータ51は、この検出された第2ポンピング電流Ip2に基づき被測定ガス中のNOx濃度を検出することができる。 The gas GM to be measured whose oxygen concentration is adjusted further flows toward the second measurement chamber 160. Then, the control circuit 52 uses a constant voltage Vp2 (the oxygen concentration detection cell 120) as an inter-electrode voltage (inter-terminal voltage) of the second pumping cell 130 such that the NOx gas in the measurement gas GM is decomposed into oxygen and N 2 gas. A voltage higher than the control voltage value (for example, 450 mV) is applied to decompose NOx into nitrogen and oxygen. Then, the second pumping current Ip2 flows through the second pumping cell 130 so that oxygen generated by the decomposition of NOx is pumped out of the second measurement chamber 160. At this time, there is a linear relationship between the second pumping current Ip2 and the NOx concentration. Therefore, when the control circuit 52 detects the second pumping current Ip2, the microcomputer 51 can detect the NOx concentration in the gas to be measured based on the detected second pumping current Ip2.
 ただし、排出ガス中のNOx濃度が0の場合であっても、このNOx濃度に対応する第2ポンピング電流Ip2が所定の電流値(いわゆるオフセット値)を生じる。また、このオフセット値は、温度変化、経年変化、製造バラツキなどの影響によって変化する傾向がある。このため、NOx検出装置10のマイクロコンピュータ51は、制御回路52により検出された第2ポンピング電流Ip2(センサ出力)を補正し、センサ出力及びNOx濃度の検出精度を向上できるよう構成されている。 However, even if the NOx concentration in the exhaust gas is 0, the second pumping current Ip2 corresponding to this NOx concentration generates a predetermined current value (so-called offset value). Further, this offset value tends to change due to the influence of temperature change, aging change, manufacturing variation, and the like. For this reason, the microcomputer 51 of the NOx detection device 10 is configured to correct the second pumping current Ip2 (sensor output) detected by the control circuit 52 and improve the detection accuracy of the sensor output and the NOx concentration.
 図2,3を参照して、NOx検出装置10により実施されるNOxセンサ100のセンサ出力の補正方法について説明する。なお、以下の説明では、第2ポンピング電流Ip2を「センサ電極電流」とも表記する。 Referring to FIGS. 2 and 3, a method for correcting the sensor output of the NOx sensor 100 implemented by the NOx detection device 10 will be described. In the following description, the second pumping current Ip2 is also expressed as “sensor electrode current”.
 図2に、NOxセンサ100の素子温度とセンサ電極電流の特性の一例を示す。図2の横軸は素子温度[℃]を表し、より詳細には、NOxセンサ素子101の作動温度である。図2の縦軸はセンサ電極電流[μA]、すなわち上記の第2ポンピング電流Ip2を示す。菱形のプロットを結ぶグラフI1は、任意の条件下で使用中のNOxセンサ100の特性の一例を示し、四角のプロットを結ぶグラフI2は、当該センサ作製時の初期状態における特性の一例を示す。また、丸のプロットを結ぶグラフは、これらの特性の差分(I1-I2)を示す。また、図2に示す例では、特定ガス成分としてのNOx濃度は0ppmとしている。つまり、図2に示す各特性は、排出ガス中のNOx濃度に依存せずに出力される上記のオフセット値に相当する。 FIG. 2 shows an example of the element temperature and sensor electrode current characteristics of the NOx sensor 100. The horizontal axis in FIG. 2 represents the element temperature [° C.], and more specifically, the operating temperature of the NOx sensor element 101. The vertical axis in FIG. 2 indicates the sensor electrode current [μA], that is, the second pumping current Ip2. A graph I1 connecting the rhombus plots shows an example of the characteristics of the NOx sensor 100 in use under an arbitrary condition, and a graph I2 connecting the square plots shows an example of the characteristics in the initial state when the sensor is manufactured. A graph connecting the circle plots shows a difference (I1-I2) between these characteristics. In the example shown in FIG. 2, the NOx concentration as the specific gas component is 0 ppm. That is, each characteristic shown in FIG. 2 corresponds to the offset value output without depending on the NOx concentration in the exhaust gas.
 図2のグラフI1,I2に示すように、素子温度が上昇するほど、センサ電極電流が増大し、反対に、素子温度が下降するほど、センサ電極電流が減少する傾向がある。また、任意の素子温度(例えばA℃)においては、初期状態から使用時間を経るにつれて、同一の素子温度におけるセンサ電極電流が増加する傾向がある。つまり、素子温度とセンサ電極電流との間の特性は、図2中のグラフI2-I1に示すように、例えばグラフI2からグラフI1に遷移するように、センサの使用時間の経過とともに特性の全体が電流値の増える方向にベースアップする傾向にある。 As shown in graphs I1 and I2 in FIG. 2, the sensor electrode current increases as the element temperature increases, and conversely, the sensor electrode current tends to decrease as the element temperature decreases. Further, at any element temperature (for example, A ° C.), the sensor electrode current at the same element temperature tends to increase as the usage time elapses from the initial state. That is, the characteristic between the element temperature and the sensor electrode current is, as indicated by a graph I2-I1 in FIG. 2, for example, a transition from the graph I2 to the graph I1, and the entire characteristic as the sensor usage time elapses. Tends to base up in the direction of increasing current value.
 このように、図2に示すNOxセンサ100の素子温度とセンサ電極電流との間の特性、すなわち、NOxセンサ100のセンサ出力のオフセット量は、素子温度や経年変化等の各種影響により変動するものであり、これによりセンサ出力にずれが引き起こされる。 Thus, the characteristic between the element temperature of the NOx sensor 100 and the sensor electrode current shown in FIG. 2, that is, the offset amount of the sensor output of the NOx sensor 100 varies due to various influences such as the element temperature and aging. This causes a shift in the sensor output.
 NOxセンサ100のセンサ出力にこのような特性が生じる理由としては、主に電子伝導量の影響が考えられる。電子伝導量とは、センサへの電圧印加時にガス雰囲気に関係なく素子電極に流れる電子量である。電子伝導量は、センサ固体のバラツキや経年変化、温度変化等の各種影響により変動することが知られている。そこで本実施形態では、この電子伝導量の特性に着目する。電子伝導量を逐次計測して、所定の範囲における電子伝導量の変化量の変動に応じてセンサ出力の補正量を更新することで、精度良くNOx濃度の導出を行うものである。具体的には、第1実施形態のNOxセンサシステム1では、図2に示すように、所定の2つの素子温度A,Bにおけるセンサ電極電流a,bの差分cの増減に応じて補正量dを更新する。 The reason why such characteristics occur in the sensor output of the NOx sensor 100 is mainly due to the influence of the amount of electron conduction. The amount of electron conduction is the amount of electrons flowing through the device electrode regardless of the gas atmosphere when a voltage is applied to the sensor. It is known that the amount of electron conduction varies due to various effects such as variations in sensor solids, aging, and temperature. Therefore, in this embodiment, attention is paid to the characteristics of the electron conduction amount. By sequentially measuring the amount of electron conduction and updating the correction amount of the sensor output in accordance with the change in the amount of change in the amount of electron conduction within a predetermined range, the NOx concentration is accurately derived. Specifically, in the NOx sensor system 1 of the first embodiment, as shown in FIG. 2, the correction amount d according to the increase or decrease in the difference c between the sensor electrode currents a and b at two predetermined element temperatures A and B. Update.
 以下、図3のフローチャートの手順に沿ってこのセンサ出力補正量の更新処理について説明する。図3に示すフローチャートの一連の処理は、NOx検出装置10のマイクロコンピュータ51によって、例えば所定周期ごとに実施される。 Hereinafter, the sensor output correction amount update process will be described along the procedure of the flowchart of FIG. A series of processing of the flowchart shown in FIG. 3 is performed by the microcomputer 51 of the NOx detection apparatus 10 at predetermined intervals, for example.
 ステップS101では、補正量更新処理を実施するための所定の運転条件が成立しているか否かが確認される。この運転条件とは、エンジンの排気管内の排出ガスの出力量や温度が比較的安定している運転環境下を設定することができ、例えば、エンジンのイグニッションオフ時、フューエルカット制御時、アイドリング運転時などを含めることができる。ステップS101の判定の結果、所定の運転条件が成立している場合にはステップS102に進み、そうでない場合には本制御フローを終了する。 In step S101, it is confirmed whether or not a predetermined operation condition for performing the correction amount update process is satisfied. This operating condition can be set under the operating environment where the output amount and temperature of the exhaust gas in the engine exhaust pipe are relatively stable. For example, when the engine is turned off, during fuel cut control, idling operation Time can be included. As a result of the determination in step S101, if the predetermined operating condition is satisfied, the process proceeds to step S102, and if not, the control flow ends.
 ステップS102では、制御回路52を介して、素子温度が所定のA℃となるようにヒータ164が制御される。ステップS102の処理が完了するとステップS103に進む。 In step S102, the heater 164 is controlled through the control circuit 52 so that the element temperature becomes a predetermined A ° C. When the process of step S102 is completed, the process proceeds to step S103.
 ステップS103では、制御回路52を介して、素子温度A℃の時のセンサ電極電流aが計測されて、この電流値が記録される。このセンサ電極電流aとは、マイクロコンピュータ51が被測定ガスGM中のNOx濃度を算出するために用いるNOxセンサ100の出力情報であり、上述の第2ポンピング電流Ip2が該当する。ステップS103の処理が完了するとステップS104に進む。 In step S103, the sensor electrode current a at the element temperature A ° C. is measured via the control circuit 52, and this current value is recorded. The sensor electrode current a is output information of the NOx sensor 100 used by the microcomputer 51 to calculate the NOx concentration in the measurement gas GM, and corresponds to the second pumping current Ip2 described above. When the process of step S103 is completed, the process proceeds to step S104.
 ステップS104では、制御回路52を介して、素子温度が所定のB℃となるようにヒータ164が制御される。ステップS104の処理が完了するとステップS105に進む。 In step S104, the heater 164 is controlled via the control circuit 52 so that the element temperature becomes a predetermined B ° C. When the process of step S104 is completed, the process proceeds to step S105.
 ステップS105では、制御回路52を介して、素子温度B℃の時のセンサ電極電流bが計測され、この電流値が記録される。ステップS105の処理が完了するとステップS106に進む。 In step S105, the sensor electrode current b at the element temperature B ° C. is measured via the control circuit 52, and this current value is recorded. When the process of step S105 is completed, the process proceeds to step S106.
 ここで、ステップS102~S105で用いる素子温度Aは、NOxセンサ素子101内の各セル110,120,130の活性化温度であることが好ましい。NOxセンサ100の場合の活性化温度は例えば750~850℃の範囲であるので、素子温度Aを800℃と設定することができる。また、素子温度Bは、この素子温度Aよりも高温側であり、かつ、素子温度Aの温度制御の定常偏差(例えば±50℃)と重複しないであることが好ましい。したがって、素子温度Bを、例えば素子温度Aより100℃高い900℃と設定することができる。このように素子温度A,Bを設定することにより、両温度間における電子伝導量の変化量cの差異を出しやすくできる。 Here, the element temperature A used in steps S102 to S105 is preferably the activation temperature of each cell 110, 120, 130 in the NOx sensor element 101. Since the activation temperature in the case of the NOx sensor 100 is in the range of 750 to 850 ° C., for example, the element temperature A can be set to 800 ° C. Further, it is preferable that the element temperature B is higher than the element temperature A and does not overlap with a steady deviation (for example, ± 50 ° C.) of temperature control of the element temperature A. Therefore, the element temperature B can be set to 900 ° C. which is 100 ° C. higher than the element temperature A, for example. By setting the element temperatures A and B in this way, it is possible to easily produce a difference in the change amount c of the electron conduction amount between the two temperatures.
 ステップS106では、ステップS103,S105にて記録されたセンサ電極電流a,bに基づいて、電子伝導量の変化量cが算出される。マイクロコンピュータ51は、例えばセンサ電極電流a,bの差分(c=b-a)を電子伝導量変化量cとして算出する。なお、電子伝導量変化量cは、所定の2つの温度におけるセンサ電極電流の相対的な差異であればよく、差分以外にも、比率や、これらの差分や比率に係数を乗じたもの、a,bを変数とする関数、などを用いて算出することもできる。ステップS106の処理が完了するとステップS107に進む。 In step S106, the change amount c of the electron conductivity is calculated based on the sensor electrode currents a and b recorded in steps S103 and S105. The microcomputer 51 calculates, for example, the difference (c = b−a) between the sensor electrode currents a and b as the amount of change in electron conduction c. The amount of change in electronic conductivity c may be a relative difference between the sensor electrode currents at two predetermined temperatures. In addition to the difference, the ratio, or the difference or ratio multiplied by a coefficient, a , B can also be used for calculation. When the process of step S106 is completed, the process proceeds to step S107.
 ステップS107では、ステップS106にて算出された電子伝導量変化量cに対応する補正量dが設定される。マイクロコンピュータ51は、例えば変化量cと、この変化量cに対応する補正量dとの複数のセットを含むマップを予めもっておき、ステップS106にて算出された変化量cに基づき、マップを参照して補正量dを選択することができる。また、変化量cと補正量dとの対応関係は、変化量cに応じて補正後のセンサ出力値が初期状態の基準値に近づく方向に補正量dを設定することができる。例えば、センサ作製時の初期状態における電子伝導量変化量c0のときの補正量d0を基準として、変化量cがこの初期値c0より増大した場合には補正量を減らし、変化量cが初期値c0より減少した場合には補正量dを増やすことができる。 In step S107, a correction amount d corresponding to the electron conduction amount change amount c calculated in step S106 is set. For example, the microcomputer 51 stores in advance a map including a plurality of sets of the change amount c and the correction amount d corresponding to the change amount c, and refers to the map based on the change amount c calculated in step S106. Thus, the correction amount d can be selected. The correspondence between the change amount c and the correction amount d can set the correction amount d in a direction in which the corrected sensor output value approaches the reference value in the initial state according to the change amount c. For example, on the basis of the correction amount d0 when the amount of change in electron conduction c0 in the initial state at the time of sensor fabrication is used as a reference, the correction amount is decreased when the change amount c is larger than the initial value c0, and the change amount c is the initial value. When it decreases from c0, the correction amount d can be increased.
 ステップS108では、ステップS107にて設定された補正量dを用いてセンサ出力値の補正が実施される。マイクロコンピュータ51は、例えば、制御回路52を介して計測された第2ポンピング電流Ip2(センサ電極電流)に補正量dを乗算したり、または加減算するなどの補正演算によって、センサ出力値をNOx濃度に換算する。ステップS108の処理が完了すると本制御フローを終了する。 In step S108, the sensor output value is corrected using the correction amount d set in step S107. For example, the microcomputer 51 multiplies the second pumping current Ip2 (sensor electrode current) measured via the control circuit 52 by the correction amount d, or adds or subtracts the sensor output value to the NOx concentration. Convert to. When the process of step S108 is completed, this control flow ends.
 次に、第1実施形態の効果について説明する。第1実施形態のNOx検出装置10(NOxセンサ100の制御装置)及びNOxセンサシステム1によれば、NOx検出装置10のマイクロコンピュータ51が、NOxセンサ100に発生する電子伝導量の変化量cに応じて、排出ガスセンサ100のセンサ出力である、制御回路52により計測された第2ポンピング電流Ip2を補正する。 Next, the effect of the first embodiment will be described. According to the NOx detection device 10 (control device of the NOx sensor 100) and the NOx sensor system 1 of the first embodiment, the microcomputer 51 of the NOx detection device 10 sets the change amount c of the amount of electron conduction generated in the NOx sensor 100. Accordingly, the second pumping current Ip2 measured by the control circuit 52, which is the sensor output of the exhaust gas sensor 100, is corrected.
 図2を参照して説明したとおり、NOxセンサ100のセンサ出力のオフセット量は、素子温度や経年変化等の各種影響により変動するものであり、その原因としては主にNOxセンサ100に発生する電子伝導量の影響が考えられる。第1実施形態の構成によれば、この電子伝導量の変化量cに応じてNOxセンサ100のセンサ出力を適切に補正することができるので、電子伝導量に起因するセンサ出力のずれの発生を好適に抑制でき、センサ出力の検出精度を向上できる。また、センサ出力の検出精度向上により、センサ出力から換算して出力されるNOx濃度の測定精度も向上できる。 As described with reference to FIG. 2, the offset amount of the sensor output of the NOx sensor 100 fluctuates due to various influences such as element temperature and aging, and the cause is mainly the electrons generated in the NOx sensor 100. The effect of conductivity is considered. According to the configuration of the first embodiment, the sensor output of the NOx sensor 100 can be appropriately corrected in accordance with the change amount c of the electron conduction amount. It can suppress suitably and can improve the detection accuracy of a sensor output. Further, by improving the detection accuracy of the sensor output, it is possible to improve the measurement accuracy of the NOx concentration that is output from the sensor output.
 また、第1実施形態のNOx検出装置10及びNOxセンサシステム1によれば、NOx検出装置10のマイクロコンピュータ51は、所定の素子温度におけるセンサ出力に基づいて電子伝導量の変化量cを算出し、この変化量cに応じて補正量dを変更し、変更した補正量dを用いてセンサ出力を補正してNOx濃度として出力する。より詳細には、2つの素子温度A,Bにおけるセンサ出力(センサ電極電流a,b)を計測し、これらの2つのセンサ出力値に基づいて電子伝導量の変化量cを算出する。 Further, according to the NOx detection device 10 and the NOx sensor system 1 of the first embodiment, the microcomputer 51 of the NOx detection device 10 calculates the change amount c of the electron conduction amount based on the sensor output at a predetermined element temperature. Then, the correction amount d is changed in accordance with the change amount c, and the sensor output is corrected using the changed correction amount d to be output as the NOx concentration. More specifically, the sensor outputs (sensor electrode currents a and b) at the two element temperatures A and B are measured, and the change amount c of the electron conduction amount is calculated based on these two sensor output values.
 この構成により、共に現時点の2つのセンサ電極電流a,bを用いて電子伝導量変化量cが算出されるので、図2に示して説明した素子温度-センサ出力特性について、現時点の特性に即した電子伝導量変化量cを算出することができ、また、補正量dの変更を行うことができる。また、図2に示して説明した素子温度-センサ出力特性は、上述のように電子伝導量が主要な要因であるが、その他の要因として、NOxセンサ素子101の各セル110,120,130の内部に残留する酸素(残留O2)の影響も考えられる。共に現時点の2つのセンサ電極電流a,bを用いて電子伝導量変化量cを算出することにより、残留O2に起因するセンサ出力のずれの発生も好適に抑制でき、センサ出力の検出精度をさらに向上できる。 With this configuration, both the current sensor electrode currents a and b are used to calculate the amount of change in electronic conductivity c. Therefore, the element temperature-sensor output characteristics described with reference to FIG. The amount of change in electron conduction c can be calculated, and the correction amount d can be changed. In addition, the element temperature-sensor output characteristics shown in FIG. 2 are mainly due to the amount of electron conduction as described above, but as other factors, the cell 110, 120, 130 of the NOx sensor element 101 has the other factors. The influence of oxygen remaining inside (residual O 2 ) is also conceivable. In both cases, by calculating the amount of change in electronic conductivity c using the two current sensor electrode currents a and b, the occurrence of sensor output deviation due to residual O 2 can be suitably suppressed, and the detection accuracy of the sensor output can be improved. It can be further improved.
 また、第1実施形態のNOx検出装置10及びNOxセンサシステム1によれば、NOx検出装置10のマイクロコンピュータ51は、エンジンの運転状態が排気管内の排出ガスが安定している所定の運転環境下(例えばエンジンのイグニッションオフ時、フューエルカット制御時、アイドリング運転時など)にあるときに、上記の補正量dの変更処理を行う。 Further, according to the NOx detection device 10 and the NOx sensor system 1 of the first embodiment, the microcomputer 51 of the NOx detection device 10 is in a predetermined operating environment in which the exhaust gas in the exhaust pipe is stable when the engine is operating. When the engine is off (for example, when the engine is off, during fuel cut control, during idling, etc.), the correction amount d is changed.
 この構成により、排出ガスが安定している所定の運転環境下において、排出ガス中のNOx濃度の変動が極めて少ない状態で各素子温度A,Bのセンサ出力(センサ電極電流a,b)を計測できるので、これらに基づき算出される電子伝導量変化量cの検出精度を向上できる。したがって、補正量dの変更を精度良く行うことができ、NOx濃度の測定精度もさらに向上できる。 With this configuration, the sensor outputs (sensor electrode currents a and b) of the element temperatures A and B are measured in a predetermined operating environment where the exhaust gas is stable and the fluctuation of the NOx concentration in the exhaust gas is extremely small. Therefore, it is possible to improve the detection accuracy of the change amount c of the electron conductivity calculated based on these. Therefore, the correction amount d can be changed with high accuracy, and the measurement accuracy of the NOx concentration can be further improved.
 なお、第1実施形態では、2つの素子温度A,Bのときのセンサ電極電流a,bを用いて電子伝導量の変化量cを算出する構成を例示したが、これに限られず、3つ以上の素子温度のセンサ電極電流を用いて変化量を算出する構成でもよい。これにより、より高精度に変化量を算出することができる。この場合、3つの電流値を引数とする関数などを用いて電子伝導量の変化量cを算出することができる。 In the first embodiment, the configuration in which the change amount c of the electron conduction amount is calculated using the sensor electrode currents a and b at the two element temperatures A and B is not limited to this. The change amount may be calculated using the sensor electrode current at the element temperature described above. Thereby, the amount of change can be calculated with higher accuracy. In this case, the change amount c of the electron conduction amount can be calculated using a function having three current values as arguments.
[第2実施形態]
 図2,4を参照して第2実施形態について説明する。第2実施形態は、その構成は第1実施形態と同様であるが、センサ出力補正量の更新処理の手法が異なる。具体的には、第1実施形態において、NOx検出装置10のマイクロコンピュータ51が、2つの素子温度A,Bにおけるセンサ出力(センサ電極電流a,b)を計測し、これらの2つのセンサ出力値に基づいて電子伝導量の変化量cを算出していたのに対して、第2実施形態では、図2に示すように、単一の素子温度Aにおけるセンサ出力(センサ電極電流a)を計測し、計測したセンサ電極電流aと、基準電流値とに基づいて電子伝導量の変化量fを算出する。この基準電流値としては、例えば、NOxセンサ100の作製時に予め計測されて記憶されている、上記と同一の素子温度Aにおけるセンサ出力の初期値(センサ電極電流初期値e)を用いることができる。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. The configuration of the second embodiment is the same as that of the first embodiment, but the method for updating the sensor output correction amount is different. Specifically, in the first embodiment, the microcomputer 51 of the NOx detection device 10 measures sensor outputs (sensor electrode currents a and b) at two element temperatures A and B, and outputs these two sensor output values. In the second embodiment, as shown in FIG. 2, the sensor output (sensor electrode current a) at a single element temperature A is measured as shown in FIG. Then, based on the measured sensor electrode current a and the reference current value, a change amount f of the electron conduction amount is calculated. As the reference current value, for example, an initial value (sensor electrode current initial value e) of the sensor output at the same element temperature A as previously described, which is measured and stored in advance when the NOx sensor 100 is manufactured, can be used. .
 図4のフローチャートの手順に沿って第2実施形態におけるセンサ出力補正量の更新処理について説明する。図4に示すフローチャートの一連の処理は、NOx検出装置10のマイクロコンピュータ51によって、例えば所定周期ごとに実施される。なお、ステップS201~S203,S207の各処理は、図3のステップS101~S103,S108と同一であるので説明を省略する。 The update process of the sensor output correction amount in the second embodiment will be described along the procedure of the flowchart of FIG. A series of processing of the flowchart shown in FIG. 4 is performed by the microcomputer 51 of the NOx detection device 10 at predetermined intervals, for example. Note that steps S201 to S203 and S207 are the same as steps S101 to S103 and S108 in FIG.
 ステップS204では、センサ作製時のセンサ電極電流初期値eが読み出される。センサ電極電流初期値eは、例えばセンサの作製作業が完了した際に、ステップS203と同一の素子温度A℃の時のセンサ電極電流が計測されて、この電流値がマイクロコンピュータ51に予め記録されている。ステップS204の処理が完了するとステップS205に進む。 In step S204, the sensor electrode current initial value e at the time of sensor fabrication is read. As the sensor electrode current initial value e, for example, when the sensor fabrication operation is completed, the sensor electrode current at the same element temperature A ° C. as in step S203 is measured, and this current value is recorded in the microcomputer 51 in advance. ing. When the process of step S204 is completed, the process proceeds to step S205.
 ステップS205では、ステップS203,S204にて記録、読出されたセンサ電極電流aとセンサ電極電流初期値eに基づいて、電子伝導量の変化量fが算出される。マイクロコンピュータ51は、例えば図3のステップS106で説明したのと同様に、両者の差分(f=a-e)や各種演算により電子伝導量変化量fを算出する。ステップS205の処理が完了するとステップS206に進む。 In step S205, based on the sensor electrode current a and the sensor electrode current initial value e recorded and read in steps S203 and S204, a change amount f of the electron conduction amount is calculated. For example, as described in step S106 of FIG. 3, the microcomputer 51 calculates the amount of change in electron conduction f by the difference between the two (f = ae) and various calculations. When the process of step S205 is completed, the process proceeds to step S206.
 ステップS206では、ステップS205にて算出された電子伝導量変化量fに対応する補正量gが設定される。マイクロコンピュータ51は、例えば変化量fと、この変化量fに対応する補正量gとの複数のセットを含むマップを予めもっておき、ステップS205にて算出された変化量fに基づき、マップを参照して補正量gを選択することができる。また、変化量fと補正量gとの対応関係は、変化量fに応じて補正後のセンサ出力値が初期状態の基準値に近づく方向に補正量gを設定することができる。例えば、変化量fが0のとき(センサ電極電流aがセンサ電極電流初期値eと同一のとき)の補正量g0を基準として、変化量fが正方向に増大した場合には補正量を減らし、変化量fが負方向に減少した場合には補正量gを増やすことができる。 In step S206, a correction amount g corresponding to the electron conduction amount change amount f calculated in step S205 is set. For example, the microcomputer 51 stores in advance a map including a plurality of sets of the change amount f and the correction amount g corresponding to the change amount f, and refers to the map based on the change amount f calculated in step S205. Thus, the correction amount g can be selected. In addition, the correspondence between the change amount f and the correction amount g can be set such that the corrected sensor output value approaches the reference value in the initial state according to the change amount f. For example, when the change amount f increases in the positive direction with reference to the correction amount g0 when the change amount f is 0 (when the sensor electrode current a is the same as the sensor electrode current initial value e), the correction amount is decreased. When the change amount f decreases in the negative direction, the correction amount g can be increased.
 このように、第2実施形態においても、第1実施形態と同様に、NOxセンサ100に発生する電子伝導量の変化量fに応じて、排出ガスセンサ100のセンサ出力を適切に補正することができるので、第1実施形態と同様の効果を奏することができる。 As described above, also in the second embodiment, similarly to the first embodiment, the sensor output of the exhaust gas sensor 100 can be appropriately corrected in accordance with the change amount f of the electron conduction amount generated in the NOx sensor 100. Therefore, the same effect as the first embodiment can be obtained.
 なお、第2実施形態では、単一の素子温度Aにおけるセンサ出力との差分を算出するための基準電流値としてセンサ電極電流初期値eを用いたが、基準電流値は、経年変化に起因する同一の素子温度Aにおけるセンサ出力の出力ズレが明確に把握できればよい。この場合、例えば図4の補正量更新処理を過去に複数回実施しているとき、所定回数前に計測したセンサ電極電流aを基準電流値として用いることもできる。 In the second embodiment, the sensor electrode current initial value e is used as the reference current value for calculating the difference from the sensor output at the single element temperature A. However, the reference current value is caused by secular change. It is only necessary that the output deviation of the sensor output at the same element temperature A can be clearly grasped. In this case, for example, when the correction amount update process of FIG. 4 has been performed a plurality of times in the past, the sensor electrode current a measured a predetermined number of times can be used as the reference current value.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の特徴を含む限り本開示の範囲に包含される。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. That is, those specific examples modified by appropriate design by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, and can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present disclosure as long as it includes the features of the present disclosure.

Claims (7)

  1.  内燃機関の排出ガスの中の特定ガス成分の濃度を検出する排出ガスセンサ(100)を制御する制御装置(10)であって、
     前記排出ガスセンサに発生する電子伝導量の変化量(c)に応じて、前記排出ガスセンサのセンサ出力(Ip2)を補正する、
    排出ガスセンサの制御装置。
    A control device (10) for controlling an exhaust gas sensor (100) for detecting a concentration of a specific gas component in exhaust gas of an internal combustion engine,
    The sensor output (Ip2) of the exhaust gas sensor is corrected according to the amount of change (c) in the amount of electron conduction generated in the exhaust gas sensor.
    Control device for exhaust gas sensor.
  2.  所定の素子温度(A,B)における前記センサ出力(a,b)に基づいて前記電子伝導量の変化量(c,f)を算出し、前記変化量に応じて補正量(d,g)を変更し、前記変更した補正量を用いて前記センサ出力を補正して前記特定ガス成分の濃度として出力する、
    請求項1に記載の排出ガスセンサの制御装置。
    A change amount (c, f) of the electron conduction amount is calculated based on the sensor output (a, b) at a predetermined element temperature (A, B), and a correction amount (d, g) according to the change amount. The sensor output is corrected using the changed correction amount and output as the concentration of the specific gas component.
    The exhaust gas sensor control device according to claim 1.
  3.  少なくとも2つの素子温度(A,B)における前記センサ出力(a,b)を計測し、前記少なくとも2つのセンサ出力値に基づいて前記電子伝導量の変化量(c)を算出し、前記変化量に応じて補正量(d)を変更する、
    請求項2に記載の排出ガスセンサの制御装置。
    The sensor outputs (a, b) at at least two element temperatures (A, B) are measured, and the change amount (c) of the electron conduction amount is calculated based on the at least two sensor output values. The correction amount (d) is changed according to
    The exhaust gas sensor control device according to claim 2.
  4.  所定の素子温度(A)における前記センサ出力(a)を計測し、前記計測したセンサ出力と、基準電流値(e)とに基づいて前記電子伝導量の変化量(f)を算出し、前記変化量に応じて補正量(g)を変更する、
    請求項2に記載の排出ガスセンサの制御装置。
    The sensor output (a) at a predetermined element temperature (A) is measured, the change amount (f) of the electron conduction amount is calculated based on the measured sensor output and a reference current value (e), Change the correction amount (g) according to the amount of change,
    The exhaust gas sensor control device according to claim 2.
  5.  前記基準電流値は当該排出ガスセンサの作製時の前記素子温度におけるセンサ出力の初期値(e)である、
    請求項4に記載の排出ガスセンサの制御装置。
    The reference current value is an initial value (e) of a sensor output at the element temperature when the exhaust gas sensor is manufactured.
    The exhaust gas sensor control device according to claim 4.
  6.  前記内燃機関の運転状態が排気管内の前記排出ガスが安定している所定の運転環境下にあるときに前記補正量の変更を行う、
    請求項2~5のいずれか1項に記載の排出ガスセンサの制御装置。
    The correction amount is changed when the operating state of the internal combustion engine is in a predetermined operating environment in which the exhaust gas in the exhaust pipe is stable.
    The exhaust gas sensor control device according to any one of claims 2 to 5.
  7.  内燃機関の排出ガス中の特定ガス成分の濃度を検出する排出ガスセンサ(100)と、
     請求項1~6のいずれか1項に記載の制御装置(10)と、
    を備える排出ガスセンサシステム(1)。
    An exhaust gas sensor (100) for detecting the concentration of a specific gas component in the exhaust gas of the internal combustion engine;
    A control device (10) according to any one of claims 1 to 6;
    An exhaust gas sensor system (1) comprising:
PCT/JP2016/078605 2015-10-19 2016-09-28 Exhaust gas sensor control device and exhaust gas sensor system WO2017068919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-205393 2015-10-19
JP2015205393A JP2017078579A (en) 2015-10-19 2015-10-19 Control device of exhaust gas sensor, and exhaust gas sensor system

Publications (1)

Publication Number Publication Date
WO2017068919A1 true WO2017068919A1 (en) 2017-04-27

Family

ID=58557175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078605 WO2017068919A1 (en) 2015-10-19 2016-09-28 Exhaust gas sensor control device and exhaust gas sensor system

Country Status (2)

Country Link
JP (1) JP2017078579A (en)
WO (1) WO2017068919A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023020037A (en) * 2021-07-30 2023-02-09 日本特殊陶業株式会社 Gas sensor control device, gas sensor control method, and gas sensor control system
JP2023145122A (en) * 2022-03-28 2023-10-11 株式会社デンソー NOx sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242066A (en) * 1993-02-16 1994-09-02 Harman Co Ltd Method and equipment for detecting deterioration of oxygen sensor
JP2004108373A (en) * 1997-09-11 2004-04-08 Ngk Spark Plug Co Ltd Emission gas concentration detecting device
JP2006162325A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Exhaust gas component-concentration detection method
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP2015135262A (en) * 2014-01-17 2015-07-27 株式会社日本自動車部品総合研究所 gas sensor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242066A (en) * 1993-02-16 1994-09-02 Harman Co Ltd Method and equipment for detecting deterioration of oxygen sensor
JP2004108373A (en) * 1997-09-11 2004-04-08 Ngk Spark Plug Co Ltd Emission gas concentration detecting device
JP2006162325A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Exhaust gas component-concentration detection method
JP2009265085A (en) * 2008-04-02 2009-11-12 Ngk Spark Plug Co Ltd Gas sensor
JP2015135262A (en) * 2014-01-17 2015-07-27 株式会社日本自動車部品総合研究所 gas sensor element

Also Published As

Publication number Publication date
JP2017078579A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US8603310B2 (en) Gas-concentration/humidity detection apparatus
JP4980974B2 (en) GAS SENSOR, ITS CONTROL DEVICE, AND NOx CONCENTRATION MEASURING METHOD
JP5074358B2 (en) Gas sensor control device and nitrogen oxide concentration detection method
JP4974304B2 (en) Sensor control device
US9518954B2 (en) Gas sensor control device
JP5465263B2 (en) NOx sensor control device
CN110672698B (en) Gas sensor and sensor element
US20150025778A1 (en) Gas-sensor-control device and control device of internal combustion engine
JP5587919B2 (en) Correction coefficient setting method for gas concentration detection device, gas concentration detection device, and gas sensor
JP5817581B2 (en) Exhaust gas purification device for internal combustion engine
WO2020004356A1 (en) Gas sensor
CN116569032A (en) Gas sensor
US20200003724A1 (en) Gas sensor
JP2020008559A (en) Gas sensor and sensor element
WO2017068919A1 (en) Exhaust gas sensor control device and exhaust gas sensor system
JP2007532927A (en) Method and apparatus for operating an exhaust gas analysis sensor cell
JP6684169B2 (en) Gas sensor control device
JP6594741B2 (en) Air-fuel ratio sensor abnormality detection device, air-fuel ratio sensor control device, and abnormality detection method
CN110455864B (en) Air-fuel ratio detection device and air-fuel ratio detection method
JP4616754B2 (en) Sensor control device
US20240044835A1 (en) Gas sensor and method of identifying deviation of reference potential of the same
US11391194B2 (en) Gas sensor control apparatus, gas sensor apparatus, and internal combustion engine control apparatus
WO2024202763A1 (en) Gas sensor
WO2024202731A1 (en) Gas sensor
JP2023145123A (en) NOx sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857237

Country of ref document: EP

Kind code of ref document: A1