WO2017068873A1 - Vehicle-use transformer - Google Patents
Vehicle-use transformer Download PDFInfo
- Publication number
- WO2017068873A1 WO2017068873A1 PCT/JP2016/075884 JP2016075884W WO2017068873A1 WO 2017068873 A1 WO2017068873 A1 WO 2017068873A1 JP 2016075884 W JP2016075884 W JP 2016075884W WO 2017068873 A1 WO2017068873 A1 WO 2017068873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transformer
- vehicle
- duct
- air
- cooler
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/12—Oil cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C17/00—Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/085—Cooling by ambient air
Definitions
- the present invention relates to a vehicular transformer, and more particularly to a vehicular transformer that cools refrigerant oil using traveling wind generated by traveling of the vehicle.
- Equipment such as air conditioners, power converters, controllers, and transformers mounted on vehicles generate a lot of heat during operation.
- a cooling method for these devices there are a forced air cooling method using an electric blower and a traveling wind self-cooling method using traveling wind generated by traveling of the vehicle.
- the running wind self-cooling method has been spreading in recent years from the viewpoint of energy saving and low noise compared to the forced air cooling method.
- the traveling wind self-cooling method has been adopted as a cooling method for equipment such as a vehicle transformer installed under the floor (see, for example, Patent Document 1).
- the traveling wind self-cooling system is applied to, for example, a vehicle transformer installed under the floor, the vehicle transformer can be efficiently cooled for the reasons described below.
- the traveling wind reflected by the track surface is directed to the vehicle transformer installed on the floor lower surface between the vehicle floor underside and the track surface. It becomes.
- traveling wind having a high flow velocity flows into the periphery of the vehicular transformer cooler, and effective cooling can be achieved.
- the peripheral device is installed in front of the vehicle in the traveling direction of the vehicle transformer.
- the stagnation region in which the wind with a low flow velocity flows behind the peripheral device in the traveling direction of the vehicle is generated.
- the traveling wind having a sufficient flow velocity is transmitted around the cooler of the vehicle transformer.
- sufficient cooling performance cannot be obtained with the traveling wind.
- the present invention has been made in order to solve the above-described problems.
- the purpose of the present invention is to determine that the position where the traveling wind is taken in the vehicular transformer is in the stagnation area at the rear in the traveling direction of the vehicle of the peripheral device. It is to obtain a transformer for a vehicle that is reduced and effectively cooled by traveling wind.
- the vehicle transformer according to the present invention has a winding body and a transformer body connected to a pipe through which refrigerant oil circulates, an oil pump that circulates refrigerant oil through the pipe, and a pipe connected to cool the refrigerant oil.
- a first air intake port that takes in the traveling wind generated by the traveling of the vehicle, a first air supply port that sends the traveling wind toward the cooler as cooling air, a first intake port, and a first air inlet
- the first connection is configured to guide the traveling wind so that the air blowing direction is opposite to the traveling direction of the vehicle and to discharge the guided traveling wind as cooling air from the first air feeding opening.
- a first duct provided behind the transformer main body and the cooler in the traveling direction of the vehicle.
- the vehicular transformer according to the present invention it is possible to reduce the position where the driving wind of the vehicular transformer takes in the stagnation area in the rearward direction of the vehicle of the peripheral device, and to effectively cool by the driving wind. it can.
- FIG. 5 is a schematic cross-sectional view taken along line AA of FIG. 4 for illustrating an installation state on the roof of the vehicle transformer according to the first embodiment of the present invention. It is a perspective view which shows the external appearance of the cooler of the transformer for vehicles which concerns on Embodiment 1 of this invention.
- FIG. 1 is a top view showing an example of a railway vehicle in which a vehicular transformer 10a according to Embodiment 1 of the present invention is installed on a roof.
- FIG. 2 is a side view of the railway vehicle shown in FIG.
- the vehicle length direction which is the direction in which the vehicle moves
- the vehicle width direction is defined as the Y direction
- the vehicle height direction is defined as the Z direction.
- a vehicle transformer 10 a and a plurality of peripheral devices 3 are provided on the roof 2 of the vehicle 1.
- Two peripheral devices 3 are installed in front of the vehicle transformer in the traveling direction, and one peripheral device 3 is installed in the traveling direction rear of the vehicle transformer 10a.
- forward in the traveling direction means a position in the ⁇ X direction
- backward in the traveling direction means a position in the + X direction.
- the peripheral device 3 is, for example, a power converter, a controller, an air conditioner or the like.
- the roof top 2 is defined and described as showing the entire upper surface or a part of the upper surface of the vehicle 1. Needless to say, the configuration, number, and arrangement of the peripheral devices installed on the roof 2 are not limited to those described above.
- FIG. 3 is a top view showing the configuration of the vehicular transformer 10a according to the first embodiment.
- the vehicle transformer 10 a includes a transformer body 12 having a housing. Inside the transformer body 12, a winding 9 is provided as a main heat source. A pipe 11 is connected to the transformer main body 12 to form a refrigerant oil circulation path. An oil pump 13 for forcibly circulating the refrigerant oil is installed at a position in the ⁇ X direction with respect to the transformer body 12 in the middle of the pipe 11.
- a conservator 15 that absorbs the thermal expansion amount of the refrigerant oil is installed at a position in the + X direction with respect to the transformer body 12.
- coolers 14a for cooling the refrigerant oil by heat exchange with the traveling wind are installed on both side surfaces of the transformer body 12 in the Y direction.
- a duct 16a is provided at a position in the ⁇ X direction of the transformer main body 12 and the cooler 14a.
- a duct 16b is provided at a position in the + X direction of the transformer main body 12 and the cooler 14a.
- the duct 16a suppresses the traveling wind from flowing into the transformer body 12 from the position of the duct 16a in the -X direction.
- the duct 16b takes in the traveling wind generated by the traveling of the vehicle, and blows the traveling wind captured by changing the blowing direction inside the cooler 14a.
- Insulating oil is used as refrigerant oil, and particularly flame retardant silicone oil or ester oil that has a low environmental impact during disposal is used.
- the casing of the transformer body 12 is made of a metal such as steel or aluminum. In addition, the surface of the casing is coated with metal to prevent corrosion.
- An insulating member such as an insulating bush is installed at a portion of the transformer body 12 connected to the electric wire.
- the conservator 15 is for absorbing thermal expansion when the temperature of the refrigerant oil changes, and the capacity of the conservator 15 is set so as to sufficiently absorb this thermal expansion.
- FIG. 4 is a side view showing the configuration of the vehicle transformer 10a according to Embodiment 1 of the present invention.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- the duct 16 a as the second duct is provided at a position in the ⁇ X direction with respect to the transformer body 12.
- the duct 16b as the first duct is installed at a position in the + X direction with respect to the transformer main body 12.
- the duct 16a and the duct 16b are disposed so as to face each other with the transformer body 12 sandwiched in the X direction.
- FIG. 5 is a schematic cross-sectional view taken along the line AA of FIG. 4 for illustrating an installation state on the roof 2 of the vehicle transformer 10a according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing the vehicular transformer 10a. In order to make the cross-sectional position easy to understand, the cross-sectional position is shown using FIG. That is, FIG. 5 is a sectional view taken along the line AA including the vehicle 1 in addition to the vehicle transformer 10a.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- the duct 16b is provided with an intake port 30 for taking in the traveling wind.
- a dotted line indicates the vehicle limit 17.
- the vehicle limit 17 is a limit range of the size of the cross section of the vehicle body of the railway vehicle, and is a limit value in the Y direction and the Z direction of the vehicle determined so that the railway vehicle can safely travel on the track.
- the upper space on the roof 2 of the vehicle limit 17 is formed so that the width in the Y direction on the upper side thereof becomes narrower toward the + Z direction because of the relationship with the track structure such as a tunnel.
- the height of the transformer body 12 in the + Z direction is lower than that of the duct 16b. For this reason, the air inlet 30 is opened from the transformer main body 12 in the + Z direction.
- FIG. 6 is a perspective view showing the external appearance of the cooler 14a of the vehicle transformer 10a according to Embodiment 1 of the present invention.
- the cooler 14a includes a plurality of inverted U-shaped cooling pipes 19a and 19b having different sizes.
- a plurality of cooling pipes 19a and cooling pipes 19b having different sizes are arranged on the same plane.
- the cooling pipe 19a is provided in the outermost part of the cooler 14a.
- the cooler 14a is configured by arranging a plurality of cooling pipes 19a and cooling pipes 19b arranged on the same plane in the X direction.
- Each cooling pipe 19a and cooling pipe 19b are connected to the inlet header 18a and the outlet header 18b at both ends, respectively.
- a pipe 11 is connected from the outlet of the transformer body 12 to the suction port of the oil pump 13, exits from the discharge port of the oil pump 13, and branches in the + Y direction and the ⁇ Y direction.
- Each of the branched pipes 11 extends in the + X direction and is connected to the inlet header 18a of the cooler 14a, exits from the outlet header 18b of each cooler 14a, extends in the + X direction, and then extends in the ⁇ Y direction and the + Y direction. It is connected to the inlet of the transformer body 12 via a branch with the beta 15.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- the cooling pipe 19 a provided on the outermost side of the cooler 14 a is formed with an inclined side in accordance with the shape of the vehicle limit 17. Moreover, the outermost surface 20 of the cooler 14a shown in FIG. 6 is a surface of the outer portion of the plurality of cooling pipes 19a. The outermost surface 20 of the cooler 14 a is provided along the vehicle limit 17.
- the cooling pipes 19a and 19b are illustrated as a plurality of cylindrical pipes in the figure, the cooling pipes 19a and 19b are not limited to this, and may be flat tubes or rectangular tubes, for example.
- FIG. 7 is a perspective view for explaining a detailed shape of the duct 16b of the vehicle transformer 10a according to the first embodiment of the present invention.
- the duct 16b has an intake port 30 for taking in the traveling wind 33 and an air supply port 31 for discharging the taken traveling wind 33 to the cooler 14a as cooling air 34.
- a recess 32 is formed in the lower portion of the duct 16b. Since the vehicle 1 is traveling in the ⁇ X direction, the traveling wind 33 flows in the + X direction.
- the intake port 30 and the air supply port 31 are provided so that the opening faces in the ⁇ X direction.
- the air inlet 30 and the air inlet 31 are smoothly connected by a connecting portion 35a formed inside the duct 16b.
- the air flow direction of the traveling wind 33 is changed by the connecting portion 35a. That is, the traveling wind 33 directed in the + X direction is taken in at the intake port 30 and passes through the connecting portion 35a so that it travels in the outward direction of the vehicle and is guided in the ⁇ Z direction, and then in the blowing direction in the opposite direction. As a result, the air is sent from the air inlet 31 as the cooling air 34 directed in the ⁇ X direction.
- the concave part 32 is formed in the center lower part of the Y direction of the duct 16b.
- the piping 11 can be communicated between the concave portion 32 formed in the duct 16b and the roof top 2 of the vehicle. Therefore, when the pipe 11 is arranged between the transformer main body 12 and the oil pump 13 and between the conservator 15 and the transformer main body 12, there is no need to arrange around the duct 16b.
- the overall length can be shortened.
- the air supply port 31 is disposed at a position away from the intake port 30 in the + Y direction or the ⁇ Y direction, and is disposed at a position separated from the ⁇ Z direction. That is, the air inlet 30 and the air inlet 31 are arranged at positions separated in the Y direction and the Z direction. As a result, it is possible to prevent the cooling air 34 and the traveling air 33 warmed by the cooler 14 a from being mixed at the intake port 30.
- the two air supply ports 31 provided in the duct 16b are provided to face the cooler 14a. These air supply ports 31 are arranged at a position in the + X direction with respect to the cooler 14a, and each face the cooler 14a.
- the traveling wind 33 taken in from the intake port 30 is guided by the connecting portion 35a so that the blowing direction of the traveling wind 33 is reversed. As a result, the air is blown from the air supply port 31 toward the cooler 14a facing the air supply port 31.
- the air flow directions of the traveling air 33 and the cooling air 34 are opposite.
- the traveling wind 33 taken from the position of the duct 16b in the + X direction can be blown as the cooling wind 34 to the cooler 14a provided at the position of the duct 16b in the -X direction.
- the duct 16a is also the same structure and only arrangement
- the duct 16a and the duct 16b may have different structures.
- the shape of the duct can be changed according to the configuration of the peripheral device 3 of the vehicle, and the cooling performance can be further improved.
- FIG. 8 is an explanatory diagram showing the flow of the traveling wind 33 at the position of the peripheral device 3 in the + X direction.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- the height h of the peripheral device 3 arranged on the roof 2 of the vehicle varies depending on the structure of the vehicle 1, but is 1 m at maximum due to the limitation of the vehicle limit 17. In this case, a running distance x of about 7 m at the maximum is required behind the peripheral device 3.
- a large number of peripheral devices 3 are often arranged on the roof 2, and the vehicle transformer 10 a is arranged while securing a distance in the + X direction with respect to the peripheral devices 3. It is difficult.
- FIG. 9 is a side view showing a state in which the vehicle transformer 10a according to the first embodiment of the present invention is arranged on the roof 2 of the vehicle.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- the traveling wind 33 flowing above the peripheral device 3 positioned in the ⁇ X direction of the vehicle transformer 10a passes over the duct 16a disposed in the ⁇ X direction position of the transformer body 12 and then peels off. Wake up.
- the length of the transformer main body 12 in the X direction is 2.5 m, and the difference in height between the upper surface of the duct 16a and the upper surface of the transformer main body 12 shown in FIG. Suppose that it is about 30m.
- the separated traveling wind 33 reattaches to the duct 16b about 2 m behind. Therefore, the transformer main body 12 can take in the traveling air 33 having a sufficient flow velocity from the intake port 30 in the rearward direction of 2 m.
- FIG. 10 is a top view of the vehicle 1 for showing a flow field during vehicle travel.
- the cooling air 36 is warmed by heat exchange with the refrigerant oil by blowing the cooling air 34 onto the cooler.
- a peripheral device 3 is arranged on the roof 2 of the vehicle 1 so as to sandwich the vehicle transformer 10a in the X direction.
- the traveling wind 33 peeled off by the peripheral device 3 approaches the vehicle 1 as it goes in the + X direction.
- the duct 16a provided at the position of the transformer body 12 in the -X direction causes the cooler 14a to move in the -X direction.
- the traveling wind 33 does not flow into the area.
- the traveling wind 33 that has passed through the upper surface of the duct 16a gradually approaches the transformer main body 12 toward the + X direction and reattaches to the upper surface of the transformer main body 12. Since the high-speed traveling wind 33 flows on the upper surface of the transformer main body 12, the heat dissipation efficiency from the surface of the transformer main body 12 is improved.
- the traveling wind 33 flowing on the surface of the transformer body 12 is taken into the duct 16b provided with an opening at a position in the + X direction of the transformer body 12.
- the intake port 30 and the air supply port 31 are communicated with each other by a connecting portion 35a.
- the traveling wind taken in by the air inlet 30 is sent out as cooling air 34 through the air inlets 31 disposed on both side surfaces of the transformer body 12 in the Y direction.
- the cooling air 34 discharged from the duct 16b is heat-exchanged with the refrigerant oil in the cooler 14a.
- the cooler 14a has a shape in which a plurality of cylindrical cooling pipes 19a and 19b are arranged along the X direction, so that the cooling air 34 that has entered the cooler 14a is + X from the cooler 14a. As it goes in the direction, it gradually diffuses from the gap between the cooling pipes 19a and 19b to the outside of the cooler 14a.
- the cooling air 36 that has completed heat exchange with the refrigerant oil and diffused to the outside of the cooler 14a merges with the traveling wind 33 that flows in the + X direction around the cooler 14a, and in the + X direction. And flow.
- the intake port 30 of the duct 16b is not provided at a position in the + X direction of the cooler 14a. Therefore, the cooling air 36 diffused and exhausted from the cooler 14a is not taken into the duct 16b again, and the cooling air 34 having a low temperature is always sent to the cooler 14a.
- the air inlet 30 of the duct 16a and the air inlet 30 of the duct 16b are opposed to each other in the X direction.
- the air supply port 31 of the duct 16a and the air supply port 31 of the duct 16b face each other in the X direction.
- the duct 16a and the duct 16b are arranged opposite to each other in the X direction with the transformer body 12 interposed therebetween, even if the traveling direction of the vehicle is changed, the cooling air is supplied to the cooler 14a in the same manner as before the traveling direction is changed. 34 can be supplied.
- the cooler is arranged on both sides of the transformer body in the Y direction.
- the present invention is not limited to this.
- the cooler may be disposed only on one side surface of the transformer body in the vehicle width direction.
- Embodiment 1 two ducts are provided, but it goes without saying that only one duct 16b may be provided at a position in the + X direction of the transformer body 12.
- the air inlet 30 of the duct 16b is provided behind the traveling direction of the vehicle 1 with respect to the position where the traveling wind peeled off by the peripheral device 3 ahead of the traveling direction of the vehicle 1 reattaches to the surface of the transformer body 12.
- the duct 16b may be provided behind the transformer body 12 and the cooler 14a in the traveling direction of the vehicle 1.
- the traveling wind 33 can be taken in at the intake port 30 outside the stagnation region, and the transformer body 12 can be effectively cooled.
- FIG. FIG. 11 is a top view showing a configuration of a vehicle transformer 10b according to the second embodiment of the present invention.
- auxiliary devices such as the oil pump 13 and the conservator 15 are provided between the duct 16a and the transformer body 12, and the duct 16b and the transformer. It is a point arranged between the main body 12.
- the cooler 14b has a configuration that is longer in the X direction than the cooler 14a according to the first embodiment. This is because the cover 37 a for covering the oil pump 13 and the cover 37 b for covering the conservator 15 are provided between the duct 16 a and the duct 16 b and the transformer main body 12.
- the same or corresponding components as those of the vehicle transformer 10a of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 12 is a side view showing a state where the vehicular transformer 10b according to the second embodiment of the present invention is arranged on the roof 2 of the vehicle 1.
- FIG. The cover 37 a and the cover 37 b are provided so that the upper surfaces thereof are the same height as the upper surface of the transformer body 12. Moreover, it is desirable that the transformer main body 12, the cover 37a, and the cover 37b are provided close to each other in the X direction. In this case, the traveling wind 33 suppresses the flow into the area between the cover 37a and the cover 37b and the transformer body 12. As a result, a sufficient amount of traveling wind 33 can be taken in at the intake port 30.
- An auxiliary device is disposed between the duct 16a and the duct 16b.
- One of the factors that increase the reattachment distance of the separated traveling wind 33 is a vertical vortex generated between the traveling wind 33 and the equipment.
- the oil pump 13 and the conservator 15 having different heights are arranged in the middle, unnecessary vortices are generated on the surface, and the traveling wind 33 cannot be efficiently taken in at the intake port 30. Since the cover 37a and the cover 37b are provided such that their upper surfaces are at the same height as the upper surface of the transformer body 12, the generation of such vortices can be suppressed.
- FIG. 13 is a top view showing a configuration in the case of a modification of the vehicle transformer according to the second embodiment of the present invention.
- FIG. 14 is a perspective view showing duct 16d of vehicular transformer 10c according to Embodiment 2 of the present invention.
- the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
- a connecting portion 35 b that connects between the air inlet 30 and the air inlet 31 of the duct 16 d is provided.
- the duct 16d is longer in the ⁇ X direction than the duct 16b according to the first embodiment.
- a portion of the connecting portion 35b connected to the air supply port 31 of the duct 16d extends in the ⁇ X direction.
- the duct 16c has the same configuration as that of the duct 16d, and only the arrangement is different, so that the description thereof is omitted. Needless to say, the duct 16c and the duct 16d may have different structures. In this case, the shape of the duct can be changed according to the configuration of the peripheral device 3 of the vehicle 1, and the cooling performance can be further improved.
- the vehicle transformer is different from the vehicle transformer 10b having the cooler 14b extended in the X direction by the amount of the auxiliary device.
- 10c makes the part which continues to the air supply port 31 of the connection part 35b long. Instead of extending the cooler 14a, the portions of the duct 16c and the duct 16d that are connected to the air supply port 31 of the connecting portion 35b are extended. Therefore, the weight of the vehicle transformer 10c can be reduced.
- FIG. 15 is a side view showing a state in which a modification of the vehicle transformer according to Embodiment 2 of the present invention is arranged on the roof 2 of the vehicle 1.
- a cover 37c and a cover 37d having different shapes are provided instead of the cover 37a and the cover 37b.
- the cover 37c is formed so that the upper surface gradually becomes lower from the transformer main body 12 side toward the duct 16c side.
- the cover 37d is formed so that the upper surface gradually becomes lower from the transformer body 12 side toward the duct 16d side. Therefore, in the vehicular transformer 10c, the intake port 30 of the duct 16c and the duct 16d can be formed larger, and more traveling wind 33 can be taken in.
- the cover may be made of a plate material having a small aperture ratio such as punching metal.
- the punching metal having a small opening ratio can suppress the influence of the traveling wind 33 on the duct 16 from being guided, and the air warmed in the cover can be released to the outside of the cover, thereby improving the heat dissipation of the cover. be able to.
- Embodiment 2 two ducts are provided, but it goes without saying that only one duct may be provided at a position in the + X direction of the transformer body.
- a duct 16d may be provided on the rear side in the traveling direction of the vehicle with respect to the position where the traveling wind peeled off by the peripheral device 3 in the forward direction of the vehicle reattaches to the surface of the transformer body 12. In this case, it is possible to take in the traveling wind outside the stagnation region at the intake port, and it is possible to effectively cool the transformer body.
- the duct having the same structure is provided with respect to the transformer main body so that the respective intake ports 30 and air supply ports 31 face each other in the X direction. Thereby, even when the traveling direction of the vehicle is changed, the same cooling performance of the vehicular transformer as that before the traveling direction is changed can be obtained.
- the second embodiment of the present invention has been described above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Transformer Cooling (AREA)
Abstract
Provided is a vehicle-use transformer, wherein the transformer is effectively cooled by a traveling wind due to the reduction in an overlap of a traveling wind intake position of the transformer with respect to a stagnation area behind a peripheral apparatus in the rear of the vehicle advancement direction. This vehicle-use transformer 10a is provided with the following: a transformer body 12 that has a winding 9 and is connected to a tubing 11 in which a refrigerant circulates; an oil pump 13 for circulating the refrigerant to the tubing 11; coolers 14a that connect to the tubing 11 and cool the refrigerant; and a first duct that has a first air intake port for taking in a traveling wind generated by the travel of the vehicle, a first air supply port for supplying the traveling wind toward the coolers as a cooling wind, and a first coupling section that couples the first air intake port and the first air supply port together, guides the traveling wind so that an air supply direction is opposite to a vehicle advancement direction, and causes the guided traveling wind to be discharged from the first air supply port as the cooling wind, the first duct being provided to the rear in the vehicle advancement direction relative to the transformer body 12 and the coolers 14a.
Description
本発明は、車両用変圧器に関し、特に、車両の走行によって生じる走行風を利用して冷媒油を冷却する車両用変圧器に関するものである。
The present invention relates to a vehicular transformer, and more particularly to a vehicular transformer that cools refrigerant oil using traveling wind generated by traveling of the vehicle.
車両に搭載される空調機、電力変換器、制御器、変圧器などの機器は、動作時に多くの発熱がある。これらの機器の冷却方式としては、電動送風機を用いた強制空冷方式と、車両の走行によって生じる走行風を利用した走行風自冷方式とがある。
Equipment such as air conditioners, power converters, controllers, and transformers mounted on vehicles generate a lot of heat during operation. As a cooling method for these devices, there are a forced air cooling method using an electric blower and a traveling wind self-cooling method using traveling wind generated by traveling of the vehicle.
走行風自冷方式は、強制空冷方式と比較して省エネルギーであり、低騒音であることなどの観点から近年普及が進んでいる。一般的に走行風自冷方式は、床下に設置された車両用変圧器などの機器の冷却方法として採用されていた(例えば、特許文献1参照)。この理由としては、走行風自冷方式を床下に設置された例えば車両用変圧器に適用すると、以下に述べる理由で効率良くこの車両用変圧器を冷却することができるためである。すなわち、車両の床下面と線路面との間において、車両の側面からの走行風の流入に加えて、線路面にて反射された走行風が床下面に設置された車両用変圧器に向かうこととなる。この結果、車両用変圧器の周囲に多数の周辺機器を配置しても流速の速い走行風が車両用変圧器の冷却器周辺に流入し、効果的な冷却を図ることができる。
The running wind self-cooling method has been spreading in recent years from the viewpoint of energy saving and low noise compared to the forced air cooling method. Generally, the traveling wind self-cooling method has been adopted as a cooling method for equipment such as a vehicle transformer installed under the floor (see, for example, Patent Document 1). This is because, when the traveling wind self-cooling system is applied to, for example, a vehicle transformer installed under the floor, the vehicle transformer can be efficiently cooled for the reasons described below. In other words, in addition to the inflow of traveling wind from the side surface of the vehicle, the traveling wind reflected by the track surface is directed to the vehicle transformer installed on the floor lower surface between the vehicle floor underside and the track surface. It becomes. As a result, even if a large number of peripheral devices are arranged around the vehicular transformer, traveling wind having a high flow velocity flows into the periphery of the vehicular transformer cooler, and effective cooling can be achieved.
一方で、例えば欧州で普及している低床の車両では、床下の設置スペースが狭いため、車両用変圧器と共に、空調機、電力変換器、制御器などの大型の周辺機器を車両の屋根上に設置している。このような車両の屋根上に設置された車両用変圧器を冷却するために、これまでは電動送風機を用いた強制空冷方式が用いられていた。
On the other hand, for example, in low-floor vehicles that are popular in Europe, the installation space under the floor is small, so large-sized peripheral devices such as air conditioners, power converters, and controllers are installed on the roof of the vehicle along with the vehicle transformer. It is installed in. In order to cool the transformer for vehicles installed on the roof of such a vehicle, the forced air cooling system using the electric blower was used until now.
しかしながら、車両用変圧器の冷却に走行風自冷方式を採用するとなると、周辺機器が車両用変圧器の車両の進行方向前方に設置されている場合に、この周辺機器により車両の走行中に上方に走行風が剥離することで、周辺機器の車両の進行方向後方にて流速の小さな風が流れるよどみ域が生成する。このため、周辺機器と車両用変圧器との配置によっては車両用変圧器が走行風を取り込む位置がよどみ域に設けられた場合、十分な流速を有する走行風を車両用変圧器の冷却器周辺に十分に取り込むことができず、走行風では十分な冷却性能を得ることができないという問題があった。
However, when the traveling wind self-cooling system is adopted for cooling the vehicle transformer, the peripheral device is installed in front of the vehicle in the traveling direction of the vehicle transformer. As a result, the stagnation region in which the wind with a low flow velocity flows behind the peripheral device in the traveling direction of the vehicle is generated. For this reason, depending on the arrangement of the peripheral device and the vehicle transformer, when the position where the vehicle transformer takes in the traveling wind is provided in the stagnation region, the traveling wind having a sufficient flow velocity is transmitted around the cooler of the vehicle transformer. There is a problem that sufficient cooling performance cannot be obtained with the traveling wind.
本発明は、上述のような課題を解決するためになされたもので、その目的は、車両用変圧器において、走行風を取り込む位置が周辺機器の車両の進行方向後方のよどみ域にかかることを低減して、走行風によって効果的に冷却される車両用変圧器を得ることである。
The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to determine that the position where the traveling wind is taken in the vehicular transformer is in the stagnation area at the rear in the traveling direction of the vehicle of the peripheral device. It is to obtain a transformer for a vehicle that is reduced and effectively cooled by traveling wind.
本発明に係る車両用変圧器は、巻線を有し、冷媒油が循環する配管に接続する変圧器本体と、冷媒油を配管に循環させる油ポンプと、配管に接続し、冷媒油を冷却する冷却器と、車両の走行によって生じる走行風を取り込む第1の吸気口と、走行風を冷却器に向かい冷却風として送気する第1の送気口と、第1の吸気口と第1の送気口とを連結すると共に送風方向が車両の進行方向と反対となるように走行風を案内し、案内された走行風を第1の送気口から冷却風として吐出させる第1の連結部と、を有し、変圧器本体及び冷却器に対して車両の進行方向後方に設けられた第1のダクトとを備える。
The vehicle transformer according to the present invention has a winding body and a transformer body connected to a pipe through which refrigerant oil circulates, an oil pump that circulates refrigerant oil through the pipe, and a pipe connected to cool the refrigerant oil. A first air intake port that takes in the traveling wind generated by the traveling of the vehicle, a first air supply port that sends the traveling wind toward the cooler as cooling air, a first intake port, and a first air inlet The first connection is configured to guide the traveling wind so that the air blowing direction is opposite to the traveling direction of the vehicle and to discharge the guided traveling wind as cooling air from the first air feeding opening. And a first duct provided behind the transformer main body and the cooler in the traveling direction of the vehicle.
本発明に係る車両用変圧器においては、車両用変圧器の走行風を取り込む位置が周辺機器の車両の進行方向後方のよどみ域にかかることが低減され、走行風によって効果的に冷却することができる。
In the vehicular transformer according to the present invention, it is possible to reduce the position where the driving wind of the vehicular transformer takes in the stagnation area in the rearward direction of the vehicle of the peripheral device, and to effectively cool by the driving wind. it can.
本発明の実施の形態では、車両として鉄道車両を例に挙げて説明を行うが、鉄道車両以外にも路面電車、バスなどの車両に本発明を適用可能であることは言うまでもない。
In the embodiment of the present invention, a description will be given by taking a railway vehicle as an example of the vehicle, but it goes without saying that the present invention can be applied to a vehicle such as a streetcar and a bus in addition to the railway vehicle.
実施の形態1.
図1は、本発明の実施の形態1に係る車両用変圧器10aを屋根上に設置した鉄道車両の1例を示す上面図である。図2は、図1に示した鉄道車両の側面図である。Embodiment 1 FIG.
FIG. 1 is a top view showing an example of a railway vehicle in which avehicular transformer 10a according to Embodiment 1 of the present invention is installed on a roof. FIG. 2 is a side view of the railway vehicle shown in FIG.
図1は、本発明の実施の形態1に係る車両用変圧器10aを屋根上に設置した鉄道車両の1例を示す上面図である。図2は、図1に示した鉄道車両の側面図である。
FIG. 1 is a top view showing an example of a railway vehicle in which a
なお、以下の説明では車両の移動する方向である車両長さ方向をX方向とし、車両幅方向をY方向とし、車両高さ方向をZ方向として定義して説明を行う。車両進行方向が-X方向であり、車両進行方向を向いた際に左から右に向うの方向が+Y方向であり、床から屋根に向う方向が+Z方向であるとして説明を行う。
In the following description, the vehicle length direction, which is the direction in which the vehicle moves, is defined as the X direction, the vehicle width direction is defined as the Y direction, and the vehicle height direction is defined as the Z direction. The description will be made assuming that the vehicle traveling direction is the −X direction, the direction from left to right when facing the vehicle traveling direction is the + Y direction, and the direction from the floor to the roof is the + Z direction.
図1及び図2に示す通り、車両1の屋根上2には、車両用変圧器10a及び複数の周辺機器3が設けられている。周辺機器3は、車両用変圧器の進行方向前方に2個設置されると共に、車両用変圧器10aの進行方向後方に1個設置されている。なお、ここで、進行方向前方は-X方向の位置を意味し、進行方向後方は+X方向の位置を意味するものとする。周辺機器3は、例えば、電力変換器、制御器、空調機などである。屋根上2は車両1の上面の全面あるいは一部の面を示すものと定義して説明する。なお、屋根上2に設置されている周辺機器の構成、数、及び配置は、上述のものに限定されないことは言うまでもない。
As shown in FIGS. 1 and 2, a vehicle transformer 10 a and a plurality of peripheral devices 3 are provided on the roof 2 of the vehicle 1. Two peripheral devices 3 are installed in front of the vehicle transformer in the traveling direction, and one peripheral device 3 is installed in the traveling direction rear of the vehicle transformer 10a. Here, forward in the traveling direction means a position in the −X direction, and backward in the traveling direction means a position in the + X direction. The peripheral device 3 is, for example, a power converter, a controller, an air conditioner or the like. The roof top 2 is defined and described as showing the entire upper surface or a part of the upper surface of the vehicle 1. Needless to say, the configuration, number, and arrangement of the peripheral devices installed on the roof 2 are not limited to those described above.
図3は、実施の形態1に係る車両用変圧器10aの構成を示す上面図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。図3に示すように、車両用変圧器10aは、筐体を有する変圧器本体12を備える。変圧器本体12の内部には、主要な発熱源である巻線9が設けられている。変圧器本体12には、配管11が接続され冷媒油の循環路が形成されている。配管11の管路途中には、冷媒油を強制循環させるための油ポンプ13が変圧器本体12に対して-X方向の位置に設置される。また、冷媒油の熱膨張量を吸収するコンサベータ15が変圧器本体12に対して+X方向の位置に設置されている。変圧器本体12のY方向の両側面には、走行風との熱交換により冷媒油を冷却する冷却器14aが設置されている。変圧器本体12及び冷却器14aの-X方向の位置には、ダクト16aが設けられている。また、変圧器本体12及び冷却器14aの+X方向の位置には、ダクト16bが設けられている。ダクト16aは、ダクト16aの-X方向の位置から変圧器本体12に走行風が流入することを抑制している。ダクト16bは、車両の走行によって生じる走行風を取り込み、送風方向を内部にて変更することで取り込んだ走行風を冷却器14aに吹きつける。
FIG. 3 is a top view showing the configuration of the vehicular transformer 10a according to the first embodiment. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. As shown in FIG. 3, the vehicle transformer 10 a includes a transformer body 12 having a housing. Inside the transformer body 12, a winding 9 is provided as a main heat source. A pipe 11 is connected to the transformer main body 12 to form a refrigerant oil circulation path. An oil pump 13 for forcibly circulating the refrigerant oil is installed at a position in the −X direction with respect to the transformer body 12 in the middle of the pipe 11. Further, a conservator 15 that absorbs the thermal expansion amount of the refrigerant oil is installed at a position in the + X direction with respect to the transformer body 12. On both side surfaces of the transformer body 12 in the Y direction, coolers 14a for cooling the refrigerant oil by heat exchange with the traveling wind are installed. A duct 16a is provided at a position in the −X direction of the transformer main body 12 and the cooler 14a. A duct 16b is provided at a position in the + X direction of the transformer main body 12 and the cooler 14a. The duct 16a suppresses the traveling wind from flowing into the transformer body 12 from the position of the duct 16a in the -X direction. The duct 16b takes in the traveling wind generated by the traveling of the vehicle, and blows the traveling wind captured by changing the blowing direction inside the cooler 14a.
冷媒油として、絶縁油が利用され、特に車両用として、難燃性の高いシリコーン油あるいは廃棄時の環境に対する負荷の少ないエステル油などが利用される。変圧器本体12の筐体は、鋼鉄、アルミニウムなどの金属で作製される。また、この筐体の表面には、金属で腐食防止のための塗装がなされている。変圧器本体12の電線と接続される部分には、絶縁ブッシュなどの絶縁用部材が設置されている。コンサベータ15は、冷媒油の温度変化時の熱膨張を吸収するためのもので、このコンサベータ15の容量は、この熱膨張を十分吸収できるように設定されている。
Insulating oil is used as refrigerant oil, and particularly flame retardant silicone oil or ester oil that has a low environmental impact during disposal is used. The casing of the transformer body 12 is made of a metal such as steel or aluminum. In addition, the surface of the casing is coated with metal to prevent corrosion. An insulating member such as an insulating bush is installed at a portion of the transformer body 12 connected to the electric wire. The conservator 15 is for absorbing thermal expansion when the temperature of the refrigerant oil changes, and the capacity of the conservator 15 is set so as to sufficiently absorb this thermal expansion.
図4は、本発明の実施の形態1に係る車両用変圧器10aの構成を示す側面図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。図4に示す通り、第2のダクトとしてのダクト16aは、変圧器本体12に対して-X方向の位置に設けられる。また、第1のダクトとしてのダクト16bは、変圧器本体12に対して+X方向の位置に設置される。さらに、ダクト16a及びダクト16bは、変圧器本体12をX方向にて挟み込んで相対するように配置されている。
FIG. 4 is a side view showing the configuration of the vehicle transformer 10a according to Embodiment 1 of the present invention. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. As shown in FIG. 4, the duct 16 a as the second duct is provided at a position in the −X direction with respect to the transformer body 12. The duct 16b as the first duct is installed at a position in the + X direction with respect to the transformer main body 12. Furthermore, the duct 16a and the duct 16b are disposed so as to face each other with the transformer body 12 sandwiched in the X direction.
図5は、本発明の実施の形態1に係る車両用変圧器10aの屋根上2における設置状態を示すための図4のA-A断面の断面模式図である。なお、図4は車両用変圧器10aを示す図であるが、断面位置を分かり易くするために図4を用いて断面位置を示している。つまり、図5は、車両用変圧器10aに加えて車両1を含むA-A断面における断面図を示すものとする。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。ダクト16bには、走行風を取り込むための吸気口30が設けられている。また、点線は車両限界17を示している。車両限界17とは、鉄道車両の車体断面の大きさの限界範囲であり、鉄道車両が線路上を安全に走行できるように定められた車両のY方向及びZ方向の制限値である。車両限界17の屋根上2の上部空間は、トンネルなどの軌道構造物との関係上、その上部側のY方向の幅が+Z方向に向うにつれて狭くなるように形成されている。変圧器本体12の+Z方向の高さは、ダクト16bよりも低くなるようになっている。このため、吸気口30は、変圧器本体12から+Z方向に向かい開口している。
FIG. 5 is a schematic cross-sectional view taken along the line AA of FIG. 4 for illustrating an installation state on the roof 2 of the vehicle transformer 10a according to the first embodiment of the present invention. FIG. 4 is a diagram showing the vehicular transformer 10a. In order to make the cross-sectional position easy to understand, the cross-sectional position is shown using FIG. That is, FIG. 5 is a sectional view taken along the line AA including the vehicle 1 in addition to the vehicle transformer 10a. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The duct 16b is provided with an intake port 30 for taking in the traveling wind. A dotted line indicates the vehicle limit 17. The vehicle limit 17 is a limit range of the size of the cross section of the vehicle body of the railway vehicle, and is a limit value in the Y direction and the Z direction of the vehicle determined so that the railway vehicle can safely travel on the track. The upper space on the roof 2 of the vehicle limit 17 is formed so that the width in the Y direction on the upper side thereof becomes narrower toward the + Z direction because of the relationship with the track structure such as a tunnel. The height of the transformer body 12 in the + Z direction is lower than that of the duct 16b. For this reason, the air inlet 30 is opened from the transformer main body 12 in the + Z direction.
図6は、本発明の実施の形態1に係る車両用変圧器10aの冷却器14aの外観を示す斜視図である。冷却器14aは、大きさの異なる複数の逆U字状に形成された冷却管19a及び冷却管19bを有する。ここでは、大きさが異なる複数の冷却管19a及び冷却管19bが同一平面上に配置されている。冷却管19aは、冷却器14aの最外部に設けられているものである。冷却器14aは、同一平面上に配置された複数の冷却管19a及び冷却管19bがX方向に配列されて構成されている。各々の冷却管19a及び冷却管19bは、各々の両端がそれぞれ入口ヘッダー18a及び出口ヘッダー18bに接続されている。
FIG. 6 is a perspective view showing the external appearance of the cooler 14a of the vehicle transformer 10a according to Embodiment 1 of the present invention. The cooler 14a includes a plurality of inverted U-shaped cooling pipes 19a and 19b having different sizes. Here, a plurality of cooling pipes 19a and cooling pipes 19b having different sizes are arranged on the same plane. The cooling pipe 19a is provided in the outermost part of the cooler 14a. The cooler 14a is configured by arranging a plurality of cooling pipes 19a and cooling pipes 19b arranged on the same plane in the X direction. Each cooling pipe 19a and cooling pipe 19b are connected to the inlet header 18a and the outlet header 18b at both ends, respectively.
図3、図4及び図6を用いて配管11と車両用変圧器10aとの接続について説明を行う。配管11が、変圧器本体12の出口から油ポンプ13の吸入口に接続され、油ポンプ13の吐出口から出て+Y方向及び-Y方向に分岐している。分岐した配管11は、それぞれ+X方向に延びて冷却器14aの入口ヘッダー18aに接続され、各冷却器14aの出口ヘッダー18bから出て+X方向に延び、その後-Y方向および+Y方向に延びてコンサベータ15との分岐を経て、変圧器本体12の入口に接続される。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。
The connection between the pipe 11 and the vehicle transformer 10a will be described with reference to FIG. 3, FIG. 4 and FIG. A pipe 11 is connected from the outlet of the transformer body 12 to the suction port of the oil pump 13, exits from the discharge port of the oil pump 13, and branches in the + Y direction and the −Y direction. Each of the branched pipes 11 extends in the + X direction and is connected to the inlet header 18a of the cooler 14a, exits from the outlet header 18b of each cooler 14a, extends in the + X direction, and then extends in the −Y direction and the + Y direction. It is connected to the inlet of the transformer body 12 via a branch with the beta 15. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted.
冷却器14aの最も外側に設けられた冷却管19aは、車両限界17の形状に合わせて辺が傾斜して形成されている。また、図6に示す冷却器14aの最外面20は、複数の冷却管19aの外側部分の面である。冷却器14aの最外面20は、車両限界17に沿って設けられている。なお、冷却管19a,19bは複数の円筒管として図には記載されているが、これに限定するものではなく、例えば偏平管あるいは矩形管でもよい。
The cooling pipe 19 a provided on the outermost side of the cooler 14 a is formed with an inclined side in accordance with the shape of the vehicle limit 17. Moreover, the outermost surface 20 of the cooler 14a shown in FIG. 6 is a surface of the outer portion of the plurality of cooling pipes 19a. The outermost surface 20 of the cooler 14 a is provided along the vehicle limit 17. Although the cooling pipes 19a and 19b are illustrated as a plurality of cylindrical pipes in the figure, the cooling pipes 19a and 19b are not limited to this, and may be flat tubes or rectangular tubes, for example.
変圧器本体のY方向の両側面に冷却管を配置することで、重量バランスの良好な車両用変圧器を構成することができる。さらに、車両の停車時にY方向の側面から冷却器内に外気を効率的に取込むことができるため、変圧器本体において自然対流が促進され、車両の停車時における熱交換性能が向上する。
By arranging the cooling pipes on both sides in the Y direction of the transformer body, it is possible to configure a vehicle transformer with a good weight balance. Furthermore, since outside air can be efficiently taken into the cooler from the side surface in the Y direction when the vehicle is stopped, natural convection is promoted in the transformer body, and heat exchange performance when the vehicle is stopped is improved.
図7は、本発明の実施の形態1に係る車両用変圧器10aのダクト16bの詳細な形状を説明するための斜視図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。ダクト16bは、走行風33を取り込むための吸気口30と、取り込まれた走行風33を冷却風34として冷却器14aに吐出する送気口31を有する。また、ダクト16bの下部には、凹部32が形成されている。なお、車両1が-X方向に向かって走行しているため、走行風33は+X方向に流れる。
FIG. 7 is a perspective view for explaining a detailed shape of the duct 16b of the vehicle transformer 10a according to the first embodiment of the present invention. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The duct 16b has an intake port 30 for taking in the traveling wind 33 and an air supply port 31 for discharging the taken traveling wind 33 to the cooler 14a as cooling air 34. A recess 32 is formed in the lower portion of the duct 16b. Since the vehicle 1 is traveling in the −X direction, the traveling wind 33 flows in the + X direction.
吸気口30と送気口31とは、-X方向に開口が向くように設けられる。吸気口30と送気口31との間は、ダクト16bの内部に形成された連結部35aにより滑らかに繋がっている。走行風33はこの連結部35aにより送風方向が変更される。すなわち、+X方向に向かう走行風33は、吸気口30にて取り込まれ、連結部35aを通過することで、車両の外側方向に向うと共に-Z方向に導風された後、反対方向に送風方向が変更され、結果的に、-X方向に向かう冷却風34として送気口31から送出される。
The intake port 30 and the air supply port 31 are provided so that the opening faces in the −X direction. The air inlet 30 and the air inlet 31 are smoothly connected by a connecting portion 35a formed inside the duct 16b. The air flow direction of the traveling wind 33 is changed by the connecting portion 35a. That is, the traveling wind 33 directed in the + X direction is taken in at the intake port 30 and passes through the connecting portion 35a so that it travels in the outward direction of the vehicle and is guided in the −Z direction, and then in the blowing direction in the opposite direction. As a result, the air is sent from the air inlet 31 as the cooling air 34 directed in the −X direction.
ダクト16bのY方向の中央下部に凹部32が形成されている。ダクト16bに形成された凹部32と車両の屋根上2との間に配管11を連通させることができる。したがって、変圧器本体12と油ポンプ13との間及びコンサベータ15と変圧器本体12との間に配管11を配置する場合に、ダクト16bを迂回して配置する必要がないため、配管11の全長を短くすることができる。
The concave part 32 is formed in the center lower part of the Y direction of the duct 16b. The piping 11 can be communicated between the concave portion 32 formed in the duct 16b and the roof top 2 of the vehicle. Therefore, when the pipe 11 is arranged between the transformer main body 12 and the oil pump 13 and between the conservator 15 and the transformer main body 12, there is no need to arrange around the duct 16b. The overall length can be shortened.
また、吸気口30に対して送気口31は、それぞれ+Y方向あるいは-Y方向に離れた位置に配置されており、また、-Z方向に離れた位置に配置されている。すなわち、Y方向及びZ方向に離れた位置に吸気口30と送気口31とが配置されている。その結果、冷却器14aで温められた冷却風34と走行風33とが吸気口30にて混合することを抑制できる。
Further, the air supply port 31 is disposed at a position away from the intake port 30 in the + Y direction or the −Y direction, and is disposed at a position separated from the −Z direction. That is, the air inlet 30 and the air inlet 31 are arranged at positions separated in the Y direction and the Z direction. As a result, it is possible to prevent the cooling air 34 and the traveling air 33 warmed by the cooler 14 a from being mixed at the intake port 30.
ダクト16bに設けられた2つの送気口31は、冷却器14aに対向して設けられている。これらの送気口31は、冷却器14aに対して+X方向の位置に配置されており、それぞれが冷却器14aと対向している。吸気口30から取り込まれた走行風33は、連結部35aにより走行風33の送風方向が反対になるように案内される。その結果、送気口31からこの送気口31と対向する冷却器14aに向かって吹き付けられる。図7では、走行風33と冷却風34の送風方向が反対となっている。ダクト16bの+X方向の位置から取り込まれる走行風33を、ダクト16bの-X方向の位置に設けられた冷却器14aに冷却風34として吹き付けることができる。
The two air supply ports 31 provided in the duct 16b are provided to face the cooler 14a. These air supply ports 31 are arranged at a position in the + X direction with respect to the cooler 14a, and each face the cooler 14a. The traveling wind 33 taken in from the intake port 30 is guided by the connecting portion 35a so that the blowing direction of the traveling wind 33 is reversed. As a result, the air is blown from the air supply port 31 toward the cooler 14a facing the air supply port 31. In FIG. 7, the air flow directions of the traveling air 33 and the cooling air 34 are opposite. The traveling wind 33 taken from the position of the duct 16b in the + X direction can be blown as the cooling wind 34 to the cooler 14a provided at the position of the duct 16b in the -X direction.
なお、ダクト16bについてその構成を説明したが、ダクト16aについても同一の構成であり、配置が異なるのみであるのでその説明は省略する。なお、ダクト16a及びダクト16bは、お互いが異なる構造を有していてもよいことは言うまでもない。この場合、車両の周辺機器3の構成に応じてダクトの形状を変更でき、更なる冷却性能の向上を図ることが可能である。
In addition, although the structure was demonstrated about the duct 16b, since the duct 16a is also the same structure and only arrangement | positioning differs, the description is abbreviate | omitted. Needless to say, the duct 16a and the duct 16b may have different structures. In this case, the shape of the duct can be changed according to the configuration of the peripheral device 3 of the vehicle, and the cooling performance can be further improved.
図8は、周辺機器3の+X方向の位置の走行風33の流れを示す説明図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。車両1が-X方向に進む際、周辺機器3の上表面を流れた後、剥離した走行風33は、徐々に屋根上2に接近し、最終的に屋根上2に付着する。
FIG. 8 is an explanatory diagram showing the flow of the traveling wind 33 at the position of the peripheral device 3 in the + X direction. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. When the vehicle 1 travels in the −X direction, after the air flows on the upper surface of the peripheral device 3, the separated traveling wind 33 gradually approaches the roof 2 and finally adheres to the roof 2.
一般的に、周辺機器3の高さに応じて、周辺機器3の+X方向の位置によどみ域が形成される。このよどみ域では、流速の速い風の流れがない。そこで、車両用変圧器10aがよどみ域に配置された場合、走行風を十分に取り込むことができず冷却性能が大幅に低下する。一般的な乱流では、周辺機器3の高さをhとすると、一旦周辺機器3により剥離された風が再付着する再付着点までに要する助走距離xは、周辺機器3の進行方向後方約7hとされている。
Generally, depending on the height of the peripheral device 3, a stagnation area is formed in the position of the peripheral device 3 in the + X direction. In this stagnation area, there is no fast wind flow. Therefore, when the vehicular transformer 10a is arranged in the stagnation region, the traveling wind cannot be sufficiently taken in, and the cooling performance is greatly reduced. In a general turbulent flow, assuming that the height of the peripheral device 3 is h, the run-up distance x required until the reattachment point at which the wind once peeled off by the peripheral device 3 reattaches is about the rearward direction of the peripheral device 3 in the traveling direction. 7h.
車両の屋根上2に配置された周辺機器3の高さhは、車両1の構造により変化するが、車両限界17の制約により最大1mである。この場合、周辺機器3の後方に最大約7mの助走距離xが必要となる。しかし、限られた面積の有効活用するために周辺機器3を屋根上2に多数配置する場合が多く、周辺機器3に対しての+X方向の距離を確保して車両用変圧器10aを配置するのは困難である。
The height h of the peripheral device 3 arranged on the roof 2 of the vehicle varies depending on the structure of the vehicle 1, but is 1 m at maximum due to the limitation of the vehicle limit 17. In this case, a running distance x of about 7 m at the maximum is required behind the peripheral device 3. However, in order to effectively use a limited area, a large number of peripheral devices 3 are often arranged on the roof 2, and the vehicle transformer 10 a is arranged while securing a distance in the + X direction with respect to the peripheral devices 3. It is difficult.
図9は、本発明の実施の形態1に係る車両用変圧器10aを車両の屋根上2に配置した様子を側面から示した側面図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。車両用変圧器10aの-X方向に位置する周辺機器3の上方を流れる走行風33は、変圧器本体12の-X方向の位置に配置されているダクト16aの上方を通過した後、剥離を起こす。
FIG. 9 is a side view showing a state in which the vehicle transformer 10a according to the first embodiment of the present invention is arranged on the roof 2 of the vehicle. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The traveling wind 33 flowing above the peripheral device 3 positioned in the −X direction of the vehicle transformer 10a passes over the duct 16a disposed in the −X direction position of the transformer body 12 and then peels off. Wake up.
例えば、変圧器本体12のX方向の長さは、2.5mであり、車両限界17で制約される図5に示すダクト16aの上面と変圧器本体12の上面との高さの差は0.30m程度であるとする。この場合、剥離した走行風33がダクト16bに再付着するのは、約2m進行方向後方である。従って、変圧器本体12は、2m進行方向後方では十分な流速を有する走行風33を吸気口30から取り込むことが可能である。
For example, the length of the transformer main body 12 in the X direction is 2.5 m, and the difference in height between the upper surface of the duct 16a and the upper surface of the transformer main body 12 shown in FIG. Suppose that it is about 30m. In this case, the separated traveling wind 33 reattaches to the duct 16b about 2 m behind. Therefore, the transformer main body 12 can take in the traveling air 33 having a sufficient flow velocity from the intake port 30 in the rearward direction of 2 m.
図10は、車両走行時の流れ場を示すための車両1の上面図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。冷却風36は、冷却風34が冷却器に吹き付けられて冷媒油との熱交換により暖められたものである。車両1の屋根上2には、車両用変圧器10aをX方向で挟むように周辺機器3が配置されている。
FIG. 10 is a top view of the vehicle 1 for showing a flow field during vehicle travel. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. The cooling air 36 is warmed by heat exchange with the refrigerant oil by blowing the cooling air 34 onto the cooler. A peripheral device 3 is arranged on the roof 2 of the vehicle 1 so as to sandwich the vehicle transformer 10a in the X direction.
周辺機器3によって剥離された走行風33は、+X方向に向かうにつれて、車両1に接近するが、変圧器本体12の-X方向の位置に設けられたダクト16aにより冷却器14aの-X方向の領域に走行風33が流れ込むことはない。
The traveling wind 33 peeled off by the peripheral device 3 approaches the vehicle 1 as it goes in the + X direction. However, the duct 16a provided at the position of the transformer body 12 in the -X direction causes the cooler 14a to move in the -X direction. The traveling wind 33 does not flow into the area.
ダクト16aの上面を通過した走行風33は、+X方向に向かうにつれて変圧器本体12に漸近し、変圧器本体12の上面に再付着する。変圧器本体12の上面には、高速な走行風33が流れることになるため、変圧器本体12表面からの放熱効率が向上する。
The traveling wind 33 that has passed through the upper surface of the duct 16a gradually approaches the transformer main body 12 toward the + X direction and reattaches to the upper surface of the transformer main body 12. Since the high-speed traveling wind 33 flows on the upper surface of the transformer main body 12, the heat dissipation efficiency from the surface of the transformer main body 12 is improved.
また、変圧器本体12の表面を流れる走行風33は、変圧器本体12の+X方向の位置に開口が設けられているダクト16bに取り込まれる。ダクト16bの内部では、吸気口30と送気口31との間が連結部35aにより連通されている。吸気口30により取り込まれた走行風は、変圧器本体12のY方向の両側面に配置された送気口31により冷却風34として送出される。
Further, the traveling wind 33 flowing on the surface of the transformer body 12 is taken into the duct 16b provided with an opening at a position in the + X direction of the transformer body 12. Inside the duct 16b, the intake port 30 and the air supply port 31 are communicated with each other by a connecting portion 35a. The traveling wind taken in by the air inlet 30 is sent out as cooling air 34 through the air inlets 31 disposed on both side surfaces of the transformer body 12 in the Y direction.
ダクト16bから吐出された冷却風34は、冷却器14aにおいて冷媒油と熱交換が行われる。図6に示す通り冷却器14aは、円筒の冷却管19a、19bがX方向に沿って複数列配置されている形状であるため、冷却器14aに侵入した冷却風34は、冷却器14aから+X方向に向うにつれて、徐々に冷却管19a、19bの間隙から冷却器14aの外部に拡散していく。
The cooling air 34 discharged from the duct 16b is heat-exchanged with the refrigerant oil in the cooler 14a. As shown in FIG. 6, the cooler 14a has a shape in which a plurality of cylindrical cooling pipes 19a and 19b are arranged along the X direction, so that the cooling air 34 that has entered the cooler 14a is + X from the cooler 14a. As it goes in the direction, it gradually diffuses from the gap between the cooling pipes 19a and 19b to the outside of the cooler 14a.
図10にて示す通り、冷媒油と熱交換が完了して冷却器14aの外部に拡散した冷却風36は、冷却器14aの周辺を+X方向に向かい流れる走行風33と合流し、+X方向へと流れていく。ダクト16bの吸気口30は、冷却器14aの+X方向の位置に設けられていない。そのため、冷却器14aから拡散して排気された冷却風36がダクト16bに再び取り込まれることはなく、常に温度の低い冷却風34が冷却器14aに送り込まれる。
As shown in FIG. 10, the cooling air 36 that has completed heat exchange with the refrigerant oil and diffused to the outside of the cooler 14a merges with the traveling wind 33 that flows in the + X direction around the cooler 14a, and in the + X direction. And flow. The intake port 30 of the duct 16b is not provided at a position in the + X direction of the cooler 14a. Therefore, the cooling air 36 diffused and exhausted from the cooler 14a is not taken into the duct 16b again, and the cooling air 34 having a low temperature is always sent to the cooler 14a.
ダクト16aの吸気口30とダクト16bの吸気口30とは、開口方向がX方向で対向している。同様に、ダクト16aの送気口31とダクト16bの送気口31とは、開口方向がX方向で対向している。
The air inlet 30 of the duct 16a and the air inlet 30 of the duct 16b are opposed to each other in the X direction. Similarly, the air supply port 31 of the duct 16a and the air supply port 31 of the duct 16b face each other in the X direction.
ダクト16a及びダクト16bは、変圧器本体12を挟みX方向で対向して配置されているため、車両の進行方向が変更されても、進行方向を変更する前と同様に冷却器14aに冷却風34を供給することが可能になる。
Since the duct 16a and the duct 16b are arranged opposite to each other in the X direction with the transformer body 12 interposed therebetween, even if the traveling direction of the vehicle is changed, the cooling air is supplied to the cooler 14a in the same manner as before the traveling direction is changed. 34 can be supplied.
また、変圧器本体12及び冷却器14aの+Z方向の位置には遮蔽物が存在しないため車両が停車している場合にも、自然対流が発生することで十分に放熱性を確保することが可能である。
In addition, since there is no shielding object in the + Z direction position of the transformer main body 12 and the cooler 14a, it is possible to ensure sufficient heat dissipation by generating natural convection even when the vehicle is stopped. It is.
なお、本発明では冷却器がY方向の変圧器本体の両側面に配置された場合を例に挙げて説明を行ったが、これに限ったものではなく、例えば巻線の発熱量の少ない車両用変圧器である場合には、冷却器を変圧器本体の車両幅方向の片側側面にのみに配置してもよいことは言うまでもない。
In the present invention, the case where the cooler is arranged on both sides of the transformer body in the Y direction has been described as an example. However, the present invention is not limited to this. In the case of a transformer for use, it goes without saying that the cooler may be disposed only on one side surface of the transformer body in the vehicle width direction.
実施の形態1ではダクトを2つ設けた構成にしているが、ダクト16bを変圧器本体12の+X方向の位置に1つだけ設けた構成としてもよいことは言うまでもない。この場合、車両1の進行方向前方の周辺機器3により剥離した走行風が変圧器本体12の表面に再付着する位置に対して車両1の進行方向後方にダクト16bの吸気口30が設けられればよい。すなわち、ダクト16bは、変圧器本体12及び冷却器14aに対して車両1の進行方向後方に設けられればよい。この場合、よどみ域の外側で走行風33を吸気口30にて取り込むことが可能であり、効果的な変圧器本体12の冷却が可能となる。
In Embodiment 1, two ducts are provided, but it goes without saying that only one duct 16b may be provided at a position in the + X direction of the transformer body 12. In this case, if the air inlet 30 of the duct 16b is provided behind the traveling direction of the vehicle 1 with respect to the position where the traveling wind peeled off by the peripheral device 3 ahead of the traveling direction of the vehicle 1 reattaches to the surface of the transformer body 12. Good. That is, the duct 16b may be provided behind the transformer body 12 and the cooler 14a in the traveling direction of the vehicle 1. In this case, the traveling wind 33 can be taken in at the intake port 30 outside the stagnation region, and the transformer body 12 can be effectively cooled.
実施の形態2.
図11は、本発明の実施の形態2に係る車両用変圧器10bの構成を示す上面図である。図3に示す実施の形態1に係る車両用変圧器10aの構成と異なる点は、油ポンプ13及びコンサベータ15などの補器がダクト16aと変圧器本体12との間及びダクト16bと変圧器本体12との間に配置されている点である。冷却器14bは、実施の形態1に係る冷却器14aと比較してX方向に長い構成を有する。これは、油ポンプ13を覆うためのカバー37a及びコンサベータ15を覆うためのカバー37bが、ダクト16a及びダクト16bと変圧器本体12との間に設けられているためである。なお、以下では、実施の形態1の車両用変圧器10aと同一または対応する構成には同一の符号を付し、それらの構成の詳細な説明を省略する。Embodiment 2. FIG.
FIG. 11 is a top view showing a configuration of avehicle transformer 10b according to the second embodiment of the present invention. The difference from the configuration of the vehicle transformer 10a according to the first embodiment shown in FIG. 3 is that auxiliary devices such as the oil pump 13 and the conservator 15 are provided between the duct 16a and the transformer body 12, and the duct 16b and the transformer. It is a point arranged between the main body 12. The cooler 14b has a configuration that is longer in the X direction than the cooler 14a according to the first embodiment. This is because the cover 37 a for covering the oil pump 13 and the cover 37 b for covering the conservator 15 are provided between the duct 16 a and the duct 16 b and the transformer main body 12. In the following description, the same or corresponding components as those of the vehicle transformer 10a of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
図11は、本発明の実施の形態2に係る車両用変圧器10bの構成を示す上面図である。図3に示す実施の形態1に係る車両用変圧器10aの構成と異なる点は、油ポンプ13及びコンサベータ15などの補器がダクト16aと変圧器本体12との間及びダクト16bと変圧器本体12との間に配置されている点である。冷却器14bは、実施の形態1に係る冷却器14aと比較してX方向に長い構成を有する。これは、油ポンプ13を覆うためのカバー37a及びコンサベータ15を覆うためのカバー37bが、ダクト16a及びダクト16bと変圧器本体12との間に設けられているためである。なお、以下では、実施の形態1の車両用変圧器10aと同一または対応する構成には同一の符号を付し、それらの構成の詳細な説明を省略する。
FIG. 11 is a top view showing a configuration of a
図12は、本発明の実施の形態2に係る車両用変圧器10bを車両1の屋根上2に配置した様子を示す側面図である。カバー37a及びカバー37bは、それぞれの上面が変圧器本体12の上面と同じ高さとなるように設けられている。また、変圧器本体12と、カバー37a及びカバー37bとがX方向に近接して設けられていることが望ましい。この場合、走行風33が、カバー37a及びカバー37bと変圧器本体12との間の領域への流れ込みを抑制する。結果的に、十分な量の走行風33を吸気口30にて取り込むことができる。ダクト16aとダクト16bとの間に補器を配置している。このため、補器のX方向の長さ分だけ、変圧器本体12の表面及び補器を覆うカバー37a及びカバー37bの表面にて形成される平坦部を長くすることが可能である。すなわち、走行風33の再付着のための助走距離を延長することができるため、限られた領域でより多くの走行風33を取り込むことが可能となる。
FIG. 12 is a side view showing a state where the vehicular transformer 10b according to the second embodiment of the present invention is arranged on the roof 2 of the vehicle 1. FIG. The cover 37 a and the cover 37 b are provided so that the upper surfaces thereof are the same height as the upper surface of the transformer body 12. Moreover, it is desirable that the transformer main body 12, the cover 37a, and the cover 37b are provided close to each other in the X direction. In this case, the traveling wind 33 suppresses the flow into the area between the cover 37a and the cover 37b and the transformer body 12. As a result, a sufficient amount of traveling wind 33 can be taken in at the intake port 30. An auxiliary device is disposed between the duct 16a and the duct 16b. For this reason, it is possible to lengthen the flat part formed in the surface of the transformer main body 12 and the cover 37a which covers an auxiliary device, and the surface of the cover 37b by the length of an auxiliary device in the X direction. That is, since the run-up distance for reattachment of the traveling wind 33 can be extended, more traveling wind 33 can be taken in a limited area.
剥離した走行風33の再付着距離が延びる要因の1つが走行風33と機器間との間に生じる縦渦である。変圧器本体12を挟み、X方向に相対して配置されているダクト16aとダクト16bとの間の距離が長い程、剥離した走行風33の再付着が促される。しかし、途中に高さの異なる油ポンプ13及びコンサベータ15を配置すると、その表面において不要な渦が生じ、吸気口30にて走行風33を効率的に取り込めなくなる。カバー37a及びカバー37bは、それぞれの上面が変圧器本体12の上面と同じ高さとなるように設けられているため、このような渦の発生を抑制できる。
One of the factors that increase the reattachment distance of the separated traveling wind 33 is a vertical vortex generated between the traveling wind 33 and the equipment. The longer the distance between the duct 16a and the duct 16b arranged relative to each other in the X direction with the transformer main body 12 in between, the reattachment of the separated traveling wind 33 is promoted. However, if the oil pump 13 and the conservator 15 having different heights are arranged in the middle, unnecessary vortices are generated on the surface, and the traveling wind 33 cannot be efficiently taken in at the intake port 30. Since the cover 37a and the cover 37b are provided such that their upper surfaces are at the same height as the upper surface of the transformer body 12, the generation of such vortices can be suppressed.
図13は、本発明の実施の形態2に係る車両用変圧器の変形例の場合の構成を示す上面図である。また、図14は、本発明の実施の形態2に係る車両用変圧器10cのダクト16dを示す斜視図である。図中、同一符号は、同一または相当部分を示し、それらについての詳細な説明は省略する。図14には、ダクト16dの吸気口30と送気口31との間を連結する連結部35bが設けられている。図13及び図14で示す通り、ダクト16dは、-X方向の長さが実施の形態1に係るダクト16bに比べて長い。ここで、ダクト16dについて連結部35bの送気口31に連なる部分が-X方向に伸長されている。なお、ダクト16cは、ダクト16dと同一の構成であり、配置が異なるのみであるので、その説明を省略する。なお、ダクト16c及びダクト16dは、お互いが異なる構造を有していてもよいことは言うまでもない。この場合、車両1の周辺機器3の構成に応じてダクトの形状を変更でき、更なる冷却性能の向上を図ることが可能である。
FIG. 13 is a top view showing a configuration in the case of a modification of the vehicle transformer according to the second embodiment of the present invention. FIG. 14 is a perspective view showing duct 16d of vehicular transformer 10c according to Embodiment 2 of the present invention. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed descriptions thereof are omitted. In FIG. 14, a connecting portion 35 b that connects between the air inlet 30 and the air inlet 31 of the duct 16 d is provided. As shown in FIGS. 13 and 14, the duct 16d is longer in the −X direction than the duct 16b according to the first embodiment. Here, a portion of the connecting portion 35b connected to the air supply port 31 of the duct 16d extends in the −X direction. The duct 16c has the same configuration as that of the duct 16d, and only the arrangement is different, so that the description thereof is omitted. Needless to say, the duct 16c and the duct 16d may have different structures. In this case, the shape of the duct can be changed according to the configuration of the peripheral device 3 of the vehicle 1, and the cooling performance can be further improved.
補器を変圧器本体12とダクト16c及びダクト16dとの間に配置する場合、補器の分だけX方向に伸長された冷却器14bを有する車両用変圧器10bに対して、車両用変圧器10cは、連結部35bの送気口31に連なる部分を長くしている。冷却器14aを伸長する代わりに、ダクト16c及びダクト16dにおいて連結部35bの送気口31に連なる部分を伸長しているため、車両用変圧器10cの軽量化を図ることができる。
When the auxiliary device is disposed between the transformer main body 12 and the duct 16c and the duct 16d, the vehicle transformer is different from the vehicle transformer 10b having the cooler 14b extended in the X direction by the amount of the auxiliary device. 10c makes the part which continues to the air supply port 31 of the connection part 35b long. Instead of extending the cooler 14a, the portions of the duct 16c and the duct 16d that are connected to the air supply port 31 of the connecting portion 35b are extended. Therefore, the weight of the vehicle transformer 10c can be reduced.
図15は、本発明の実施の形態2に係る車両用変圧器の変形例を車両1の屋根上2に配置した様子を示す側面図である。図15に示すように、カバー37a及びカバー37bの代わりにその形状が異なるカバー37c及びカバー37dが設けられている。カバー37cは、上面が変圧器本体12側からダクト16c側に向けて次第に低くなるように形成されている。同様にカバー37dは、上面が変圧器本体12側からダクト16d側に向けて次第に低くなるように形成されている。したがって、車両用変圧器10cにおいては、ダクト16c及びダクト16dの吸気口30を大きく形成することが可能になり、より多くの走行風33を取り込むことが可能になる。
FIG. 15 is a side view showing a state in which a modification of the vehicle transformer according to Embodiment 2 of the present invention is arranged on the roof 2 of the vehicle 1. As shown in FIG. 15, a cover 37c and a cover 37d having different shapes are provided instead of the cover 37a and the cover 37b. The cover 37c is formed so that the upper surface gradually becomes lower from the transformer main body 12 side toward the duct 16c side. Similarly, the cover 37d is formed so that the upper surface gradually becomes lower from the transformer body 12 side toward the duct 16d side. Therefore, in the vehicular transformer 10c, the intake port 30 of the duct 16c and the duct 16d can be formed larger, and more traveling wind 33 can be taken in.
また、カバーはパンチングメタルのような開口率の小さな板材で構成されていてもよい。この場合、開口率の小さなパンチングメタルによりダクト16に対する走行風33の導風への影響を抑制すると共に、カバー内で暖められた空気をカバー外に放出させることができ、カバーの放熱性を高めることができる。
Also, the cover may be made of a plate material having a small aperture ratio such as punching metal. In this case, the punching metal having a small opening ratio can suppress the influence of the traveling wind 33 on the duct 16 from being guided, and the air warmed in the cover can be released to the outside of the cover, thereby improving the heat dissipation of the cover. be able to.
実施の形態2ではダクトを2つ設けた構成にしているが、ダクトを変圧器本体の+X方向の位置に1つだけ設けた構成としてもよいことは言うまでもない。この場合、車両の進行方向前方の周辺機器3により剥離した走行風が変圧器本体12の表面に再付着する位置に対して車両の進行方向後方にダクト16dを設ければよい。この場合、よどみ域の外側で走行風を吸気口にて取り込むことが可能であり、効果的な変圧器本体の冷却が可能となる。
In Embodiment 2, two ducts are provided, but it goes without saying that only one duct may be provided at a position in the + X direction of the transformer body. In this case, a duct 16d may be provided on the rear side in the traveling direction of the vehicle with respect to the position where the traveling wind peeled off by the peripheral device 3 in the forward direction of the vehicle reattaches to the surface of the transformer body 12. In this case, it is possible to take in the traveling wind outside the stagnation region at the intake port, and it is possible to effectively cool the transformer body.
実施の形態2では、同じ構造を有するダクトを変圧器本体に対して、それぞれの吸気口30及び送気口31がX方向で対向するように設けられている。これによって、車両の進行方向が変更された場合であっても、進行方向が変更される前と同様な車両用変圧器の冷却性能を得ることができる。以上、本発明の実施の形態2について説明を行った。
In Embodiment 2, the duct having the same structure is provided with respect to the transformer main body so that the respective intake ports 30 and air supply ports 31 face each other in the X direction. Thereby, even when the traveling direction of the vehicle is changed, the same cooling performance of the vehicular transformer as that before the traveling direction is changed can be obtained. The second embodiment of the present invention has been described above.
1 車両、2 屋根上、9 巻線、10a,10b,10c 車両用変圧器、11 配管、12 変圧器本体、13 油ポンプ、14a,14b 冷却器、15 コンサベータ、16a,16b,16c,16d ダクト、19a 冷却管、20 最外面、30 吸気口、31 送気口、32 凹部、35a,35b 連結部、37a,37b,37c,37d カバー。
1 vehicle, 2 on roof, 9 winding, 10a, 10b, 10c, transformer for vehicle, 11 piping, 12 transformer body, 13 oil pump, 14a, 14b cooler, 15 conservator, 16a, 16b, 16c, 16d Duct, 19a cooling pipe, 20 outermost surface, 30 intake port, 31 air supply port, 32 recess, 35a, 35b connecting portion, 37a, 37b, 37c, 37d cover.
Claims (12)
- 巻線を有し、冷媒油が循環する配管に接続する変圧器本体と、
前記冷媒油を前記配管に循環させる油ポンプと、
前記配管に接続し、前記冷媒油を冷却する冷却器と、
車両の走行によって生じる走行風を取り込む第1の吸気口と、前記走行風を前記冷却器に向かい冷却風として送気する第1の送気口と、前記第1の吸気口と前記第1の送気口とを連結すると共に送風方向が前記車両の進行方向に対して反対となるように前記走行風を案内し、前記案内された走行風を前記第1の送気口から前記冷却風として吐出させる第1の連結部と、を有し、前記変圧器本体及び前記冷却器に対して前記車両の進行方向後方に設けられた第1のダクトと
を備えた車両用変圧器。 A transformer body having windings and connected to piping through which refrigerant oil circulates;
An oil pump for circulating the refrigerant oil through the pipe;
A cooler connected to the pipe for cooling the refrigerant oil;
A first air intake port that takes in a traveling wind generated by traveling of the vehicle, a first air feeding port that feeds the traveling wind as cooling air toward the cooler, the first air intake port, and the first air inlet. The traveling air is guided so that the air blowing direction is opposite to the traveling direction of the vehicle, and the guided traveling air is used as the cooling air from the first air feeding port. A vehicular transformer comprising: a first connecting portion to be discharged; and a first duct provided behind the transformer main body and the cooler in a traveling direction of the vehicle. - 前記変圧器本体、前記油ポンプ及び前記冷却器は、前記車両の屋根上に設けられる
ことを特徴とする請求項1に記載の車両用変圧器。 The vehicle transformer according to claim 1, wherein the transformer body, the oil pump, and the cooler are provided on a roof of the vehicle. - 前記第1の吸気口と前記第1の送気口とは、車両幅方向または車両高さ方向の少なくとも一方の方向にお互いに離れた位置に設けられる
ことを特徴とする請求項1または請求項2に記載の車両用変圧器。 The first air inlet and the first air inlet are provided at positions separated from each other in at least one of a vehicle width direction and a vehicle height direction. 2. The vehicle transformer according to 2. - 前記第1のダクトは、前記変圧器本体の上面と前記第1の吸気口の下面とが同じ高さになるように配置されると共に前記配管を貫通させることが可能な凹部が下面に設けられる
ことを特徴とする請求項1から請求項3のいずれか1項に記載の車両用変圧器。 The first duct is disposed such that the upper surface of the transformer main body and the lower surface of the first air intake port are at the same height, and a recess capable of penetrating the pipe is provided on the lower surface. The vehicular transformer according to any one of claims 1 to 3. - 前記第1の吸気口に対向して設けられた第2の吸気口と、前記第1の送気口に対向して設けられた第2の送気口と、前記第2の吸気口と前記第2の送気口とを連結する第2の連結部と、を有し、前記変圧器本体及び前記冷却器に対して前記車両の進行方向前方に設けられた第2のダクトを備え、
前記第2の連結部は、前記第2の吸気口で取り込まれた風の送風方向が反対となるように前記取り込まれた風を案内して前記第2の送気口を介して前記冷却器に吐出させる
ことを特徴とする請求項1から請求項4のいずれか1項に記載の車両用変圧器。 A second air inlet provided opposite to the first air inlet; a second air inlet provided opposite to the first air inlet; the second air inlet; A second connecting portion that connects the second air supply port, and includes a second duct provided forward in the traveling direction of the vehicle with respect to the transformer body and the cooler,
The second connecting portion guides the taken-in wind so that the blowing direction of the wind taken in at the second intake port is opposite to the cooler via the second air-feeding port. The vehicular transformer according to any one of claims 1 to 4, wherein the vehicular transformer is discharged. - 前記第2の吸気口と前記第2の送気口とは、車両幅方向または車両高さ方向の少なくとも一方の方向にお互いに離れた位置に設けられる
ことを特徴とする請求項5に記載の車両用変圧器。 The second air inlet and the second air inlet are provided at positions separated from each other in at least one of a vehicle width direction and a vehicle height direction. Transformer for vehicles. - 前記第2のダクトは、前記変圧器本体の上面と前記第2の吸気口の下面とが同じ高さとなるように配置されると共に前記配管を貫通させることが可能な凹部が下面に設けられる
ことを特徴とする請求項5または請求項6に記載の車両用変圧器。 The second duct is disposed so that the upper surface of the transformer main body and the lower surface of the second air inlet are at the same height, and a recess capable of penetrating the pipe is provided on the lower surface. The vehicular transformer according to claim 5 or 6. - 前記冷却器は、複数であって、前記変圧器本体の車両幅方向の両側面に設けられている
ことを特徴とする請求項1から請求項7のいずれか1項に記載の車両用変圧器。 The vehicular transformer according to any one of claims 1 to 7, wherein a plurality of the coolers are provided on both side surfaces of the transformer main body in a vehicle width direction. . - 前記冷却器は、逆U字状に形成された複数の冷却管を有し、
前記複数の冷却管の外側部分の面である最外面は、車両限界に沿って形成されている
ことを特徴とする請求項1から請求項8のいずれか1項に記載の車両用変圧器。 The cooler has a plurality of cooling pipes formed in an inverted U shape,
The vehicular transformer according to any one of claims 1 to 8, wherein an outermost surface, which is a surface of an outer portion of the plurality of cooling pipes, is formed along a vehicle limit. - 前記配管を循環する前記冷媒油の熱膨張量を吸収するコンサベータと、
前記油ポンプと前記コンサベータとをそれぞれ覆うカバーと
を備え、
前記カバーと前記変圧器本体とは、お互いの上面が車両高さ方向に同じ位置に配置され、
前記コンサベータと前記油ポンプとは、前記第1のダクト及び前記第2のダクトよりも前記変圧器本体に近い側に設けられる
ことを特徴とする請求項5から請求項7のいずれか1項に記載の車両用変圧器。 A conservator for absorbing the amount of thermal expansion of the refrigerant oil circulating in the pipe;
A cover covering each of the oil pump and the conservator;
The cover and the transformer main body are arranged in the same position in the vehicle height direction with respect to each other,
The said conservator and the said oil pump are provided in the side near the said transformer main body rather than the said 1st duct and the said 2nd duct. The any one of Claims 5-7 characterized by the above-mentioned. The transformer for vehicles as described in. - 前記変圧器本体に近い側の前記カバーの上面よりも前記第1のダクト及び前記第2のダクトに近い側の前記カバーの上面が低く形成されている
ことを特徴とする請求項10に記載の車両用変圧器。 The upper surface of the cover on the side close to the first duct and the second duct is formed lower than the upper surface of the cover on the side close to the transformer main body. Transformer for vehicles. - 前記カバーは、パンチングメタルで構成されている
ことを特徴とする請求項10または請求項11に記載の車両用変圧器。 The vehicle transformer according to claim 10 or 11, wherein the cover is made of a punching metal.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680061477.8A CN108140469B (en) | 2015-10-21 | 2016-09-02 | Vehicle transformer |
JP2017546446A JP6359202B2 (en) | 2015-10-21 | 2016-09-02 | Transformer for vehicle |
EP16857191.7A EP3367398B1 (en) | 2015-10-21 | 2016-09-02 | Traction tansformer for installation on a vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015207271 | 2015-10-21 | ||
JP2015-207271 | 2015-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017068873A1 true WO2017068873A1 (en) | 2017-04-27 |
Family
ID=58557443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075884 WO2017068873A1 (en) | 2015-10-21 | 2016-09-02 | Vehicle-use transformer |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3367398B1 (en) |
JP (1) | JP6359202B2 (en) |
CN (1) | CN108140469B (en) |
WO (1) | WO2017068873A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115179983B (en) * | 2022-05-25 | 2024-09-17 | 株洲中车时代电气股份有限公司 | Heat energy recycling system of rail train traction equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53147005U (en) * | 1977-04-25 | 1978-11-18 | ||
JPS6281012A (en) * | 1985-10-04 | 1987-04-14 | Hitachi Ltd | Natural cooling type reactor for vehicle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127219U (en) * | 1988-02-24 | 1989-08-31 | ||
JP4007256B2 (en) * | 2003-06-03 | 2007-11-14 | 株式会社日本Aeパワーシステムズ | Transformer for vehicle |
JP5074005B2 (en) * | 2006-10-26 | 2012-11-14 | 臼井国際産業株式会社 | Control method of externally controlled fan coupling device |
CN103710758B (en) * | 2013-12-31 | 2016-06-29 | 北京七星华创电子股份有限公司 | A kind of negative pressure diffusion furnace reaction chamber pressure controls system and control method |
CN204229989U (en) * | 2014-12-09 | 2015-03-25 | 张玮琦 | The insulating oil cooling back installation of locomotive transformer |
-
2016
- 2016-09-02 WO PCT/JP2016/075884 patent/WO2017068873A1/en active Application Filing
- 2016-09-02 EP EP16857191.7A patent/EP3367398B1/en active Active
- 2016-09-02 CN CN201680061477.8A patent/CN108140469B/en active Active
- 2016-09-02 JP JP2017546446A patent/JP6359202B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53147005U (en) * | 1977-04-25 | 1978-11-18 | ||
JPS6281012A (en) * | 1985-10-04 | 1987-04-14 | Hitachi Ltd | Natural cooling type reactor for vehicle |
Non-Patent Citations (1)
Title |
---|
See also references of EP3367398A4 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017068873A1 (en) | 2018-02-15 |
JP6359202B2 (en) | 2018-07-18 |
CN108140469A (en) | 2018-06-08 |
EP3367398A4 (en) | 2019-04-24 |
EP3367398A1 (en) | 2018-08-29 |
EP3367398B1 (en) | 2021-01-20 |
CN108140469B (en) | 2019-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010531408A (en) | Aircraft turbojet engine | |
JP2010012961A (en) | Cooling device for fuel cell vehicle | |
WO2014059773A1 (en) | Heat exchanger plate, heat exchanger, and enclosure of communication base station | |
JP5351263B2 (en) | Transformer | |
WO2018051403A1 (en) | Transformer for vehicle | |
JP5946651B2 (en) | Heat exchanger | |
JP6494384B2 (en) | Transformer for vehicle | |
JP6359202B2 (en) | Transformer for vehicle | |
CN102497040B (en) | Vent segment, ventilating duct using vent segment and motor using ventilating duct | |
JP2000158938A (en) | On-vehicle cooling device | |
JP2006290063A (en) | Vehicle having plural heat exchangers | |
JP6494408B2 (en) | Cooling device for vehicle equipment | |
JP6051641B2 (en) | Intercooler for vehicle | |
CN109050237A (en) | Electric automobile cooling system and electric car | |
JP2019189110A (en) | Power converter and railway vehicle | |
JP2013130332A (en) | Bubble-driven cooling device | |
CN113497522A (en) | Plate-assembled air-air cooling system for direct-drive generator | |
JP4739802B2 (en) | Electric vehicle control device and electric vehicle using the same | |
JP7509336B1 (en) | Vehicle Transformer | |
WO2023007587A1 (en) | On-board device | |
JP7446970B2 (en) | Power converter installation structure and railway vehicle | |
CN211880255U (en) | Plate-assembled air-air cooling system for direct-drive generator | |
JP2019031122A (en) | Electric power conversion device and railway vehicle | |
WO2024201889A1 (en) | Vehicle cooling system structure | |
JPH11189153A (en) | On-vehicle cooler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16857191 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017546446 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016857191 Country of ref document: EP |