WO2017068863A1 - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device Download PDF

Info

Publication number
WO2017068863A1
WO2017068863A1 PCT/JP2016/075269 JP2016075269W WO2017068863A1 WO 2017068863 A1 WO2017068863 A1 WO 2017068863A1 JP 2016075269 W JP2016075269 W JP 2016075269W WO 2017068863 A1 WO2017068863 A1 WO 2017068863A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
signal
received
combined
ultrasonic diagnostic
Prior art date
Application number
PCT/JP2016/075269
Other languages
French (fr)
Japanese (ja)
Inventor
健一 足立
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680054954.8A priority Critical patent/CN108024797B/en
Publication of WO2017068863A1 publication Critical patent/WO2017068863A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to ultrasonic reception signal processing.
  • a general ultrasonic diagnostic apparatus is provided with a phasing addition unit that functions as a beam former.
  • the phasing addition unit electronically forms an ultrasonic beam (reception beam) by performing phase adjustment (phasing) on a plurality of reception signals obtained from a plurality of vibration elements and performing addition processing.
  • An ultrasonic image or the like is formed by performing predetermined processing on the received signal after the phasing addition.
  • reception signal processing of ultrasonic waves are reception parallel beam processing and pulse inversion (phase inversion).
  • reception parallel beam processing a plurality of reception beams are formed in parallel by one transmission (one transmission beam).
  • pulse inversion an ultrasonic wave is transmitted by two transmission signals whose phases are inverted from each other, and a reception signal obtained from one transmission signal and a reception signal obtained from the other transmission signal are added or differentially processed. Is done.
  • the present invention has been made in view of the above-described background art, and an object thereof is to realize a new circuit configuration relating to ultrasonic reception signal processing. Another object of the present invention is to realize a suitable circuit configuration in received signal processing involving synthesis processing such as pulse inversion. Another object of the present invention is to realize a circuit configuration suitable for reception signal processing involving synthesis processing such as pulse inversion and reception parallel beam processing.
  • An ultrasonic diagnostic apparatus suitable for the above-described object is configured to combine a plurality of vibration elements that transmit and receive ultrasonic waves and a reception signal set obtained for each vibration element to generate a composite reception signal for each vibration element. It has a signal synthesizing part to generate, and a phasing addition part which generates a reception beam signal by delay processing and addition processing to a plurality of synthetic reception signals corresponding to the plurality of vibration elements.
  • the signal synthesis unit generates a synthesized reception signal corresponding to the beam number by synthesizing a reception signal set corresponding to each beam number obtained for each vibration element, and the phasing
  • the addition unit generates a reception beam signal corresponding to each beam number by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements generated for each beam number.
  • the ultrasonic diagnostic apparatus includes a reception signal storage unit having a capacity capable of storing a reception signal set corresponding to at least one beam number for each vibration element, and at least 2 for each vibration element. And a combined signal storage unit having a storage area in which a combined reception signal corresponding to one beam number can be individually written and read for each beam.
  • the phasing addition unit reads a plurality of combined reception signals corresponding to each beam number from the combined signal storage unit according to a delay pattern corresponding to the beam number, and reads the plurality of combined reception signals read out.
  • a reception beam signal corresponding to the beam number is generated by performing the addition process.
  • the phasing addition unit is configured to read a plurality of combined reception signals written and stored in the combined signal storage unit at a reading speed faster than a writing speed, and to correspond to a plurality of reception parallel beams.
  • a plurality of received beam signals corresponding to a plurality of received parallel beams are generated by reading out according to a delay pattern and adding a plurality of combined received signals read for each delay pattern.
  • a new circuit configuration related to ultrasonic reception signal processing is realized.
  • a suitable circuit configuration can be realized in received signal processing involving synthesis processing such as pulse inversion.
  • a suitable circuit configuration is realized in a reception signal process involving a combination process such as pulse inversion and a reception parallel beam process.
  • FIG. 1 is a diagram illustrating an overall configuration of an ultrasonic diagnostic apparatus that is preferable in the practice of the present invention. It is a figure for demonstrating the specific example of a reception parallel beam process. It is a figure for demonstrating the specific example of the received signal process accompanied by a synthetic
  • FIG. 1 is a diagram showing a specific example of an ultrasonic diagnostic apparatus suitable for implementing the present invention.
  • the array transducer 10 is provided in an ultrasonic probe (probe).
  • the array transducer 10 is composed of a plurality of vibration elements 12 each transmitting and receiving ultrasonic waves.
  • an ultrasonic beam is formed, and the ultrasonic beam is electronically scanned.
  • Examples of the electronic scanning method include electronic linear scanning and electronic sector scanning.
  • the ultrasonic probe is used in contact with the surface of a living body or inserted into a body cavity of a living body.
  • the transmission of the plurality of vibration elements 12 constituting the array transducer 10 is controlled by a transmission unit (not shown) that functions as a transmission beamformer. And the received signal obtained when each vibration element 12 received the ultrasonic wave from a biological body is signal-processed by each part of the back
  • Each preamplifier 14 amplifies the reception signal output from each vibration element 12, and the amplified reception signal is input to each A / D converter (ADC) 16.
  • ADC A / D converter
  • Each A / D converter 16 converts an analog reception signal into a digital reception signal.
  • Each reception processing unit 18 performs a reception process required for a digital reception signal.
  • a specific example of the reception process includes decimation (decimation process) and the like. By the decimation, the sampling number of the digital reception signal is thinned out to, for example, n / m (n and m are natural numbers).
  • the reception signal (digital) processed by each reception processing unit 18 is stored in the reception signal storage unit 20.
  • the reception signal storage unit 20 includes a plurality of reception signal memories 22 corresponding to the plurality of vibration elements 12. Each reception signal memory 22 stores a reception signal obtained from each corresponding vibration element 12 and processed by each reception processing unit 18. Each received signal memory 22 stores a received signal set for one beam (a set of received signals corresponding to one beam number) related to each vibration element 12.
  • a specific example of the reception signal set is a set of a reception signal obtained from one transmission signal and a reception signal obtained from the other transmission signal in pulse inversion.
  • Each reception signal memory 22 is a memory having a relatively large storage capacity (large capacity) capable of storing a reception signal set for one beam, and can be realized by, for example, a DRAM.
  • the reception signal storage unit 20 including a plurality of reception signal memories 22 may be realized by, for example, one storage device (for example, one package DRAM) or a plurality of storage devices (for example, a plurality of package DRAMs). ) May be combined.
  • the signal synthesis unit 30 includes a plurality of synthesis processing units 32 corresponding to the plurality of vibration elements 12. Each synthesis processing unit 32 reads out the received signal set obtained from each corresponding vibration element 12 and stored in each received signal memory 22 and performs synthesis processing. Each reception signal memory 22 stores a reception signal set for one beam corresponding to one beam number among a plurality of beam numbers. Each combining processing unit 32 reads a received signal set corresponding to each beam number stored in each received signal memory 22 and performs a combining process to generate a combined received signal corresponding to the beam number.
  • the specific example of the received signal set is a set of two received signals obtained by pulse inversion
  • the two received signals are added in each synthesis processing unit 32, for example, second harmonic (even order) Harmonic) composite received signal is formed.
  • second harmonic (even order) Harmonic) composite received signal is formed from the difference between two received signals obtained by pulse inversion.
  • a combined received signal in which even-order harmonics are reduced (or removed) may be formed.
  • the combined signal storage unit 40 includes a plurality of combined signal memories 42 corresponding to the plurality of vibration elements 12.
  • Each composite signal memory 42 stores a composite reception signal of each corresponding vibration element 12.
  • Each composite signal memory 42 includes two storage areas A and B corresponding to two beams (two beam numbers). Then, among the combined reception signals for two beams, the combined reception signal corresponding to one beam number can be written to one storage area, and the combined reception signal corresponding to the other beam number can be read from the other storage area. it can. That is, each composite signal memory 42 has a function as a ping-pong buffer.
  • each composite signal memory 42 is a dual port memory composed of SRAM.
  • the synthesized signal storage unit 40 including the plurality of synthesized signal memories 42 may be realized by, for example, one device (for example, one package storage device) or a plurality of devices (for example, a plurality of package storage devices). ) May be combined.
  • the phasing addition unit 50 generates a reception beam signal by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements 12.
  • the phasing adder 50 reads out a plurality of combined reception signals corresponding to the plurality of vibration elements 12 generated for each beam number and stored in the plurality of combined signal memories 42, and receives the received beam corresponding to each beam number.
  • a signal (received beam data) is generated.
  • the phasing addition unit 50 reads out a plurality of combined reception signals corresponding to the plurality of vibration elements 12 from each storage area (A or B) corresponding to the beam number according to the delay pattern corresponding to each beam number. For example, the data at the address corresponding to the delay pattern (delay data) is read out from the combined reception signal (data) for one beam stored in each storage area. Delay processing (phasing processing) is realized by this reading processing (reading address control), and data obtained from a plurality of combined reception signals according to the delay pattern is added to form a reception beam signal (reception beam data).
  • the phasing / adding unit 50 has a function of executing reception parallel beam processing for forming a plurality of reception beam signals for each beam number.
  • a specific example of the reception parallel beam processing by the ultrasonic diagnostic apparatus of FIG. 1 will be described in detail later (see FIGS. 2 to 4).
  • the number of received parallel beams may be increased to M times by providing M (M is a natural number) phasing adders 50 and executing the received parallel beam processing in each phasing adder 50.
  • the phases of the received signals of the plurality of vibration elements 12 are aligned with respect to the focus point, and electronic focusing and electron beam steering are achieved.
  • the received beam signal (received beam data) after the phasing addition is further processed in a subsequent processing unit (not shown).
  • processing such as detection and logarithmic compression is performed on the received beam signal.
  • processing such as autocorrelation calculation for a complex signal is executed.
  • processing necessary for extraction of Doppler information and frequency analysis such as orthogonal detection processing is executed.
  • the detection processing may be executed for each vibration element 12 before the phasing addition processing by the phasing addition unit 50. Also, by making the received signal a baseband signal by detection processing, in general, the number of samplings when digitized can be reduced, so that, for example, the decimation rate in decimation is further increased (compared to the case without detection). The number of data to be thinned out may be increased).
  • image data of an ultrasonic image is formed through interpolation processing or coordinate conversion processing by a digital scan converter, and the ultrasonic image corresponding to the image data is displayed on a display device such as a liquid crystal monitor.
  • the overall configuration of the ultrasonic diagnostic apparatus in FIG. 1 is as described above. Next, a specific example of the received signal processing realized by the ultrasonic diagnostic apparatus in FIG. 1 will be described in detail. In addition, about the structure (each part to which the code
  • FIG. 2 is a diagram for explaining a specific example of reception parallel beam processing.
  • FIG. 2 shows a time chart (timing chart) of reception signal processing realized by the ultrasonic diagnostic apparatus of FIG.
  • FIG. 2 ⁇ A> shows that transmission for each beam number (BN #) is performed only once (transmission once), the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing), This shows a process of forming 8 reception parallel beams (8 parallel) for each beam number (BN #) without performing decimation in the reception processing unit 18.
  • each reception signal memory 22 (CH memory) corresponding to each vibration element 12 stores the beam number (BN # 0).
  • the received signal is stored.
  • each received signal memory 22 since the combining process is off (no combining process), each received signal memory 22 has only received signals obtained by one transmission for each beam number (BN #). Is memorized. That is, a reception signal set is configured only by reception signals obtained by one transmission.
  • the transmission / reception of the beam number (BN # 1) When the transmission / reception of the beam number (BN # 1) is completed, the transmission / reception of the beam number (BN # 2) is immediately executed, and the beam number (BN #) is stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. The received signal of 2) is stored.
  • the reception signal of the beam number (BN # 1) stored in each reception signal memory 22 (CH memory) is read out, and the synthesis processing unit 32 Is stored in the other storage area (for example, storage area B) of each synthesized signal memory 42 (line memory).
  • the received signal of the beam number (BN # 0) is read from each synthesized signal memory 42 by the phasing addition unit 50, and the phasing addition processing is performed. Executed. In this phasing addition process, eight received beam signals corresponding to the eight received parallel beams are formed.
  • the phasing / adding unit 50 starts from one storage area (for example, storage area A) of each combined signal memory 42 for each delay pattern according to eight (0 to 7) delay patterns related to the beam number (BN # 0).
  • eight received beam signals corresponding to the eight received parallel beams are formed. That is, eight readings (reading speed eight times the writing speed) are executed in accordance with eight delay patterns within a period during which transmission / reception of one beam number (BN # 2) is performed, and eight received parallel beams.
  • a process of forming (8 parallel) is realized.
  • the phasing addition unit 50 In the period in which the phasing addition unit 50 reads out the received signal of the beam number (BN # 0) from one storage area (for example, the storage area A) of each composite signal memory 42 and executes the phasing addition process, that is, the beam During the transmission / reception period of the number (BN # 2), the reception signal of the beam number (BN # 1) is written to the other storage area (for example, the storage area B) of each composite signal memory 42. Further, during the period in which the phasing addition unit 50 reads out the received signal of the beam number (BN # 1) from the other storage area (for example, the storage area B) of each synthetic signal memory 42 and executes the phasing addition process.
  • the reception signal of the beam number (BN # 2) is written in one storage area (for example, storage area A) of the signal memory 42. As described above, the reception signals corresponding to the plurality of beam numbers are alternately read and written alternately in the two storage areas A and B of each composite signal memory 42.
  • FIG. 2 ⁇ B> shows that transmission for each beam number (BN #) is performed only once (transmission once), and the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing).
  • This is the same as the specific example of FIG. 2 ⁇ A>.
  • the difference from FIG. 2 ⁇ A> is that thinning (decimation) is performed in FIG. 2 ⁇ B>. That is, in each reception processing unit 18, thinning (decimation) is performed to halve the number of received signal data.
  • 16 reception parallel beams (16 parallel) can be formed for each beam number (BN #).
  • each reception signal memory 22 (CH memory) corresponding to each vibration element 12 is transmitted.
  • each reception processing unit 18 performs decimation that halves the number of received signal data (1/2).
  • each reception signal memory 22 receives the reception obtained by one transmission for each beam number (BN #). Only the signal is stored.
  • transmission / reception of the beam number (BN # 0) When transmission / reception of the beam number (BN # 0) is completed, transmission / reception of the beam number (BN # 1) is immediately executed, and the beam number (BN #) is stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12.
  • the received signal of 1) (the thinned received signal) is stored.
  • the reception signal of the beam number (BN # 0) stored in each reception signal memory 22 (CH memory) is read out, and the synthesis processing unit 32 is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory).
  • transmission / reception of the beam number (BN # 1) is executed immediately after the reception signal of the beam number (BN # 0) is written in each composite signal memory 42. From the middle of the period, the phasing addition processing of the beam number (BN # 0) can be executed.
  • FIG. 3 is a diagram for explaining a specific example of the received signal processing accompanied with the synthesis processing.
  • FIG. 3 shows a time chart (timing chart) of received signal processing accompanied with synthesis processing realized by the ultrasonic diagnostic apparatus of FIG.
  • FIG. 3 ⁇ A> shows the same time chart as FIG. 2 ⁇ A>. That is, in FIG. 3 ⁇ A>, transmission for each beam number (BN #) is only once (one transmission), and the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing). This shows a process of forming eight reception parallel beams (8 parallel) for each beam number (BN #) without performing decimation in each reception processing unit 18.
  • FIG. 3 ⁇ B> transmission is performed twice for each beam number (BN #), and the synthesis processing unit 32 performs synthesis processing on the received signal set obtained by the two transmissions. Is executed.
  • a pulse inversion which is a specific example of the synthesis process, is executed.
  • decimation is not performed in each reception processing unit 18, and 16 reception parallel beams (16 parallel) are formed for each beam number (BN #).
  • transmission / reception of the beam number (BN # 0) is performed twice. That is, transmission / reception of ultrasonic waves related to the first transmission / reception number (BN # 0p) is executed, and the reception signal of the transmission / reception number (BN # 0p) is stored in each reception signal memory 22 (CH memory). For example, transmission / reception by the transmission signal p is executed, and a reception signal corresponding to the transmission signal p is stored. Further, the transmission / reception of the ultrasonic wave related to the second transmission / reception number (BN # 0n) is executed, and the reception signal of the transmission / reception number (BN # 0n) is stored in each reception signal memory 22.
  • transmission / reception is performed using a transmission signal n obtained by inverting the phase of the transmission signal p, and a reception signal corresponding to the transmission signal n is stored.
  • a set of reception signals corresponding to the transmission signal p of the beam number (BN # 0) and reception signals corresponding to the transmission signal n (reception signal set) is stored in each reception signal memory 22.
  • each combining processing unit is read out. 32 is combined. For example, a reception signal corresponding to the transmission signal p of the beam number (BN # 0) and a reception signal corresponding to the transmission signal n are added to form a combined reception signal BN # 0 (p + n).
  • the combined received signal BN # 0 (p + n) formed in each combining processing unit 32 is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory).
  • the reception signal set of the beam number (BN # 1) stored in each reception signal memory 22 is read and each combining processing unit is read out. 32 is combined.
  • the reception signal corresponding to the transmission signal p of the beam number (BN # 1) and the reception signal corresponding to the transmission signal n are added to form a combined reception signal BN # 1 (p + n).
  • the combined received signal BN # 1 (p + n) formed in each combining processing unit 32 is stored in the other storage area (for example, storage area B) of each combined signal memory 42.
  • the combined reception signal BN # 0 (p + n) of the beam number (BN # 0) is sent from the combined signal memory 42 to the phasing addition unit 50. And the phasing addition processing is executed. In this phasing addition process, 16 received beam signals corresponding to 16 received parallel beams are formed.
  • the phasing / adding unit 50 performs combined reception signal BN for each delay pattern from one storage area (for example, storage area A) of each combined signal memory 42 according to 16 delay patterns corresponding to 16 received parallel beams.
  • # 0 (p + n) By reading out # 0 (p + n) and performing addition processing, 16 (0 to 15) received beam signals corresponding to 16 received parallel beams are formed. That is, 16 readings are executed in accordance with 16 delay patterns within a period in which two transmissions / receptions for one beam number (BN # 2) are performed, and 16 reception parallel beams (16 parallel) are formed. Is done.
  • FIG. 3 ⁇ B> it is only necessary to execute 16 readings within a period in which two transmissions / receptions are performed. Therefore, the same reading speed (writing speed) as in FIG. 16 parallel phasing addition processing can be realized.
  • FIG. 4 is a diagram for explaining a specific example of reception signal processing in the B / PW mode.
  • FIG. 4 shows a time chart (timing chart) of received signal processing in the B / PW mode realized by the ultrasonic diagnostic apparatus of FIG.
  • the B / PW mode is a mode in which formation of an ultrasonic tomographic image (B mode image) and Doppler measurement by pulse Doppler (PW) are executed in parallel.
  • FIG. 4 shows a specific example of processing in which transmission / reception of pulse Doppler and B mode is alternately repeated by using 128 transmissions / receptions in pulse Doppler as a unit of transmission / reception period.
  • the synthesis process is off (no synthesis process).
  • the first transmission / reception (DOP0 to DOP127) of pulse Doppler is executed, and the reception signals DOP0 to DOP127 (0) obtained thereby are stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. .
  • the first transmission / reception (BWB # 0 to BWB # 15) of the B mode is executed, and the reception signals BW # 0 to 15 obtained thereby are received for the respective vibration elements 12. It is stored in the signal memory 22 (CH memory).
  • the signal memory 22 CH memory
  • 16 transmissions (16 times) for the B mode are executed within the same period as the 128 transmission times (128 times) of pulse Doppler.
  • pulse Doppler reception signals DOP0 to DOP127 (0) stored in each reception signal memory 22 are read out and combined.
  • the data is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory) via the unit 32.
  • the second transmission / reception of pulse Doppler (DOP0 to DOP127) is executed, and the reception signals DOP0 to DOP127 (1) obtained thereby are received signal memories corresponding to the respective vibration elements 12. 22 is stored.
  • the B-mode reception signals BW # 0 to 15 stored in the reception signal memories 22 are read out, and the synthesis signals are sent through the synthesis processing unit 32. It is stored in the other storage area (for example, storage area B) of the memory 42.
  • the pulse Doppler reception signals DOP0 to DOP127 (0) are read from the synthesized signal memory 42 by the phasing adder 50, and the phasing addition processing is executed.
  • reception parallel beam processing is not performed, and a reception beam signal corresponding to one reception beam is formed by reception signals obtained by one (one) transmission / reception.
  • the second transmission / reception (BWB # 16 to BWB # 31) of the B mode is executed. That is, the continuation of scanning by the first transmission / reception (BWB # 0 to BWB # 15) in the B mode is executed.
  • Received signals BW # 16 to 31 obtained by the second transmission / reception in the B mode are stored in each received signal memory 22 corresponding to each vibration element 12.
  • the pulse Doppler reception signals DOP0 to DOP127 (1) stored in each reception signal memory 22 are read out, and each synthesis is performed via the synthesis processing unit 32. It is stored in one storage area (for example, storage area A) of the signal memory 42.
  • reception signals BW # 0 to BW # 15 to 15 in the B mode are read out from the combined signal memories 42 by the phasing addition unit 50, and the phasing addition processing is executed. Is done.
  • a reception beam signal corresponding to one reception beam may be formed by reception signals obtained by one (one) transmission / reception, or one (one) reception beam signal may be formed.
  • Reception parallel beam processing for forming a plurality of reception beam signals corresponding to a plurality of reception parallel beams from reception signals obtained by transmission and reception may be executed.
  • the idle time generated by the short pulse Doppler phasing addition processing For example, after the period in which the second transmission / reception (BWB # 16 to BWB # 31) in the B mode is executed, the empty space obtained by delaying the start of the phasing addition processing for the received signals DOP0 to DOP127 (1) of pulse Doppler
  • the empty space obtained by delaying the start of the phasing addition processing for the received signals DOP0 to DOP127 (1) of pulse Doppler
  • a plurality of reception beam signals corresponding to a plurality of reception parallel beams are formed for each reception signal of B-mode reception signals BW # 0 to 15 using the extended phasing addition processing time. It may be.

Abstract

Reception signal sets for a one-beam portion processed by reception processing units 18 are stored in respective reception signal memories 22. Synthesis processing units 32 read and perform synthesis processing of the reception signal sets corresponding to each beam number, and thereby generate synthesized reception signals each corresponding to the beam number thereof. Synthesized reception signals of oscillation elements 12 are stored in respective synthesized-signal memories 42. Each synthesized-signal memory 42 is provided with two storage regions A, B corresponding to a two-beam portion. A phasing addition unit 50 reads a plurality of synthesized reception signals corresponding to the plurality of oscillation elements 12 from the storage region A or storage region B corresponding to the beam number in accordance with a delay pattern corresponding to each beam number. The phasing addition unit 50 generates a reception beam signal by addition processing and delay processing of the plurality of synthesized reception signals.

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、超音波診断装置に関し、特に、超音波の受信信号処理に関する。 The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to ultrasonic reception signal processing.
 一般的な超音波診断装置にはビームフォーマとして機能する整相加算部が設けられる。整相加算部は、複数の振動素子から得られる複数の受信信号に対して位相調整(整相)を行って加算処理することにより、電子的に超音波ビーム(受信ビーム)を形成する。そして、整相加算後の受信信号に所定の処理が施されることにより超音波画像などが形成される。 A general ultrasonic diagnostic apparatus is provided with a phasing addition unit that functions as a beam former. The phasing addition unit electronically forms an ultrasonic beam (reception beam) by performing phase adjustment (phasing) on a plurality of reception signals obtained from a plurality of vibration elements and performing addition processing. An ultrasonic image or the like is formed by performing predetermined processing on the received signal after the phasing addition.
 例えば、特許文献1,2には、各振動素子に対応した遅延補間部により受信信号(受信データ列)に対して遅延処理を行い、これにより、各振動素子(各チャンネル)の受信信号の位相がフォーカス点に対して揃えられ、複数の振動素子から得られる遅延処理後の受信信号が加算器によって加算される構成が記載されている。つまり、複数の振動素子(複数チャンネル)の受信信号が整相加算され、これによって超音波ビームが形成され、例えば、電子フォーカス及び電子ビームステアリングが達成される。 For example, in Patent Documents 1 and 2, delay processing is performed on a reception signal (reception data string) by a delay interpolation unit corresponding to each vibration element, and thereby the phase of the reception signal of each vibration element (each channel). Are arranged with respect to the focus point, and a configuration is described in which received signals after delay processing obtained from a plurality of vibration elements are added by an adder. That is, the received signals of a plurality of vibration elements (multiple channels) are phased and added, thereby forming an ultrasonic beam, and for example, electronic focusing and electron beam steering are achieved.
 また、超音波の受信信号処理として、受信パラレルビーム処理やパルスインバージョン(フェイズインバージョン)などが知られている。受信パラレルビーム処理では、一度の送信(1本の送信ビーム)により複数の受信ビームが並列的に形成される。パルスインバージョンでは、互いに位相を反転させた2つの送信信号により超音波が送波され、一方の送信信号で得られた受信信号と他方の送信信号で得られた受信信号が加算処理または差分処理される。 Also known as reception signal processing of ultrasonic waves are reception parallel beam processing and pulse inversion (phase inversion). In the reception parallel beam processing, a plurality of reception beams are formed in parallel by one transmission (one transmission beam). In pulse inversion, an ultrasonic wave is transmitted by two transmission signals whose phases are inverted from each other, and a reception signal obtained from one transmission signal and a reception signal obtained from the other transmission signal are added or differentially processed. Is done.
 このように、超音波の受信信号処理には様々な処理態様があり、ハードウェア構成の増大や制御の複雑化をできるだけ抑えつつ、これらの処理態様に柔軟に対応できる技術の登場が望まれている。 As described above, there are various processing modes for ultrasonic reception signal processing, and there is a demand for the emergence of a technology that can flexibly cope with these processing modes while minimizing an increase in hardware configuration and control complexity. Yes.
特許第3884370号公報Japanese Patent No. 3884370 特許第4796379号公報Japanese Patent No. 4796379
 本発明は、上述した背景技術に鑑みて成されたものであり、その目的は、超音波の受信信号処理に係る新たな回路構成を実現することにある。また、本発明の他の目的は、パルスインバージョンなどの合成処理を伴う受信信号処理において好適な回路構成を実現することにある。また、本発明の他の目的は、パルスインバージョンなどの合成処理と受信パラレルビーム処理を伴う受信信号処理において好適な回路構成を実現することにある。 The present invention has been made in view of the above-described background art, and an object thereof is to realize a new circuit configuration relating to ultrasonic reception signal processing. Another object of the present invention is to realize a suitable circuit configuration in received signal processing involving synthesis processing such as pulse inversion. Another object of the present invention is to realize a circuit configuration suitable for reception signal processing involving synthesis processing such as pulse inversion and reception parallel beam processing.
 上記目的にかなう好適な超音波診断装置は、超音波を送受する複数の振動素子と、前記各振動素子ごとに得られる受信信号セットを合成処理することにより前記各振動素子ごとに合成受信信号を生成する信号合成部と、前記複数の振動素子に対応した複数の合成受信信号に対する遅延処理と加算処理により受信ビーム信号を生成する整相加算部と、を有することを特徴とする。 An ultrasonic diagnostic apparatus suitable for the above-described object is configured to combine a plurality of vibration elements that transmit and receive ultrasonic waves and a reception signal set obtained for each vibration element to generate a composite reception signal for each vibration element. It has a signal synthesizing part to generate, and a phasing addition part which generates a reception beam signal by delay processing and addition processing to a plurality of synthetic reception signals corresponding to the plurality of vibration elements.
 望ましい具体例において、前記信号合成部は、前記各振動素子ごとに得られる各ビーム番号に対応した受信信号セットを合成処理することにより当該ビーム番号に対応した合成受信信号を生成し、前記整相加算部は、各ビーム番号ごとに生成される前記複数の振動素子に対応した複数の合成受信信号に対する遅延処理と加算処理により前記各ビーム番号に対応した受信ビーム信号を生成する、ことを特徴とする。 In a preferred embodiment, the signal synthesis unit generates a synthesized reception signal corresponding to the beam number by synthesizing a reception signal set corresponding to each beam number obtained for each vibration element, and the phasing The addition unit generates a reception beam signal corresponding to each beam number by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements generated for each beam number. To do.
 望ましい具体例において、前記超音波診断装置は、前記各振動素子ごとに少なくとも1つのビーム番号に対応した受信信号セットを記憶できる容量を備えた受信信号記憶部と、前記各振動素子ごとに少なくとも2つのビーム番号に対応した合成受信信号を各ビームごとに個別に書き込みと読み出しができる記憶領域を備えた合成信号記憶部と、をさらに有することを特徴とする。 In a preferred embodiment, the ultrasonic diagnostic apparatus includes a reception signal storage unit having a capacity capable of storing a reception signal set corresponding to at least one beam number for each vibration element, and at least 2 for each vibration element. And a combined signal storage unit having a storage area in which a combined reception signal corresponding to one beam number can be individually written and read for each beam.
 望ましい具体例において、前記整相加算部は、前記合成信号記憶部から、各ビーム番号に対応した複数の合成受信信号を当該ビーム番号に対応した遅延パターンに従って読み出し、読み出した複数の合成受信信号を加算処理することにより、当該ビーム番号に対応した受信ビーム信号を生成する、ことを特徴とする。 In a desirable specific example, the phasing addition unit reads a plurality of combined reception signals corresponding to each beam number from the combined signal storage unit according to a delay pattern corresponding to the beam number, and reads the plurality of combined reception signals read out. A reception beam signal corresponding to the beam number is generated by performing the addition process.
 望ましい具体例において、前記整相加算部は、前記合成信号記憶部に書き込まれて記憶された複数の合成受信信号を、書き込み速度よりも早い読み出し速度で、複数の受信パラレルビームに対応した複数の遅延パターンに従って読み出し、各遅延パターンごとに読み出した複数の合成受信信号を加算処理することにより、複数の受信パラレルビームに対応した複数の受信ビーム信号を生成する、ことを特徴とする。 In a desirable specific example, the phasing addition unit is configured to read a plurality of combined reception signals written and stored in the combined signal storage unit at a reading speed faster than a writing speed, and to correspond to a plurality of reception parallel beams. A plurality of received beam signals corresponding to a plurality of received parallel beams are generated by reading out according to a delay pattern and adding a plurality of combined received signals read for each delay pattern.
 本発明により、超音波の受信信号処理に係る新たな回路構成が実現される。例えば、本発明の好適な態様によれば、パルスインバージョンなどの合成処理を伴う受信信号処理において好適な回路構成が実現される。また、本発明の他の好適な態様によれば、パルスインバージョンなどの合成処理と受信パラレルビーム処理を伴う受信信号処理において好適な回路構成が実現される。 According to the present invention, a new circuit configuration related to ultrasonic reception signal processing is realized. For example, according to a preferred aspect of the present invention, a suitable circuit configuration can be realized in received signal processing involving synthesis processing such as pulse inversion. In addition, according to another preferred aspect of the present invention, a suitable circuit configuration is realized in a reception signal process involving a combination process such as pulse inversion and a reception parallel beam process.
本発明の実施において好適な超音波診断装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of an ultrasonic diagnostic apparatus that is preferable in the practice of the present invention. 受信パラレルビーム処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a reception parallel beam process. 合成処理を伴う受信信号処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of the received signal process accompanied by a synthetic | combination process. B/PWモードにおける受信信号処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of the received signal process in B / PW mode.
 図1は、本発明の実施において好適な超音波診断装置の具体例を示す図である。アレイ振動子10は超音波探触子(プローブ)内に設けられる。アレイ振動子10は、各々が超音波を送受する複数の振動素子12によって構成される。このアレイ振動子10による超音波の送受が制御されることにより超音波ビームが形成され、その超音波ビームが電子走査される。その電子走査方式としては電子リニア走査、電子セクタ走査などを挙げることができる。ちなみに、超音波探触子は生体の表面上に当接して用いられるものであり、あるいは生体の体腔内に挿入して用いられるものである。 FIG. 1 is a diagram showing a specific example of an ultrasonic diagnostic apparatus suitable for implementing the present invention. The array transducer 10 is provided in an ultrasonic probe (probe). The array transducer 10 is composed of a plurality of vibration elements 12 each transmitting and receiving ultrasonic waves. By controlling the transmission and reception of ultrasonic waves by the array transducer 10, an ultrasonic beam is formed, and the ultrasonic beam is electronically scanned. Examples of the electronic scanning method include electronic linear scanning and electronic sector scanning. Incidentally, the ultrasonic probe is used in contact with the surface of a living body or inserted into a body cavity of a living body.
 アレイ振動子10を構成する複数の振動素子12は、送信ビームフォーマとして機能する図示省略した送信部により送信制御される。そして、各振動素子12が生体からの超音波を受波することにより得られた受信信号が図1に示す後段の各部で信号処理される。複数の振動素子12の後段には、各振動素子12ごとに(各チャンネルごとに)受信信号を処理するいくつかの構成が設けられている。 The transmission of the plurality of vibration elements 12 constituting the array transducer 10 is controlled by a transmission unit (not shown) that functions as a transmission beamformer. And the received signal obtained when each vibration element 12 received the ultrasonic wave from a biological body is signal-processed by each part of the back | latter stage shown in FIG. In the subsequent stage of the plurality of vibration elements 12, several configurations for processing the reception signal for each vibration element 12 (for each channel) are provided.
 各プリアンプ14は、各振動素子12から出力される受信信号を増幅し、その増幅された受信信号が各A/D変換器(ADC)16に入力される。各A/D変換器16は、アナログの受信信号をデジタルの受信信号に変換する。 Each preamplifier 14 amplifies the reception signal output from each vibration element 12, and the amplified reception signal is input to each A / D converter (ADC) 16. Each A / D converter 16 converts an analog reception signal into a digital reception signal.
 各受信処理部18は、デジタルの受信信号に対して必要とされる受信処理を実行する。その受信処理の具体例にはデシメーション(間引き処理)などが含まれる。デシメーションにより、デジタルの受信信号のサンプリング数が例えばn/m(n,mは自然数)に間引かれる。各受信処理部18により処理された受信信号(デジタル)は、受信信号記憶部20に記憶される。 Each reception processing unit 18 performs a reception process required for a digital reception signal. A specific example of the reception process includes decimation (decimation process) and the like. By the decimation, the sampling number of the digital reception signal is thinned out to, for example, n / m (n and m are natural numbers). The reception signal (digital) processed by each reception processing unit 18 is stored in the reception signal storage unit 20.
 受信信号記憶部20は、複数の振動素子12に対応した複数の受信信号メモリ22で構成される。各受信信号メモリ22には、対応する各振動素子12から得られて各受信処理部18により処理された受信信号が記憶される。各受信信号メモリ22には、各振動素子12に関する1ビーム分の受信信号セット(1つのビーム番号に対応した受信信号の組)が記憶される。受信信号セットの具体例は、パルスインバージョンにおいて一方の送信信号で得られた受信信号と他方の送信信号で得られた受信信号の組みである。 The reception signal storage unit 20 includes a plurality of reception signal memories 22 corresponding to the plurality of vibration elements 12. Each reception signal memory 22 stores a reception signal obtained from each corresponding vibration element 12 and processed by each reception processing unit 18. Each received signal memory 22 stores a received signal set for one beam (a set of received signals corresponding to one beam number) related to each vibration element 12. A specific example of the reception signal set is a set of a reception signal obtained from one transmission signal and a reception signal obtained from the other transmission signal in pulse inversion.
 各受信信号メモリ22は、1ビーム分の受信信号セットを記憶できる比較的大きな記憶容量の(大容量の)メモリであり、例えばDRAMなどにより実現できる。なお、複数の受信信号メモリ22で構成される受信信号記憶部20は、例えば、1つの記憶デバイス(例えば1パッケージのDRAM)で実現されてもよいし、複数の記憶デバイス(例えば複数パッケージのDRAM)を組み合わせて実現されてもよい。 Each reception signal memory 22 is a memory having a relatively large storage capacity (large capacity) capable of storing a reception signal set for one beam, and can be realized by, for example, a DRAM. The reception signal storage unit 20 including a plurality of reception signal memories 22 may be realized by, for example, one storage device (for example, one package DRAM) or a plurality of storage devices (for example, a plurality of package DRAMs). ) May be combined.
 信号合成部30は複数の振動素子12に対応した複数の合成処理部32で構成される。各合成処理部32は、対応する各振動素子12から得られて各受信信号メモリ22に記憶された受信信号セットを読み出して合成処理する。各受信信号メモリ22には、複数のビーム番号のうちの1つのビーム番号に対応した1ビーム分の受信信号セットが記憶されている。各合成処理部32は、各受信信号メモリ22に記憶された各ビーム番号に対応した受信信号セットを読み出して合成処理することにより、そのビーム番号に対応した合成受信信号を生成する。 The signal synthesis unit 30 includes a plurality of synthesis processing units 32 corresponding to the plurality of vibration elements 12. Each synthesis processing unit 32 reads out the received signal set obtained from each corresponding vibration element 12 and stored in each received signal memory 22 and performs synthesis processing. Each reception signal memory 22 stores a reception signal set for one beam corresponding to one beam number among a plurality of beam numbers. Each combining processing unit 32 reads a received signal set corresponding to each beam number stored in each received signal memory 22 and performs a combining process to generate a combined received signal corresponding to the beam number.
 例えば、受信信号セットの具体例が、パルスインバージョンにより得られた2つの受信信号の組みであれば、各合成処理部32において2つの受信信号が加算処理され、例えば2次高調波(偶数次高調波)の合成受信信号が形成される。なお、パルスインバージョンにより得られた2つの受信信号の差分から、例えば偶数次高調波が低減(または除去)された合成受信信号が形成されてもよい。 For example, if the specific example of the received signal set is a set of two received signals obtained by pulse inversion, the two received signals are added in each synthesis processing unit 32, for example, second harmonic (even order) Harmonic) composite received signal is formed. Note that, from the difference between two received signals obtained by pulse inversion, for example, a combined received signal in which even-order harmonics are reduced (or removed) may be formed.
 合成信号記憶部40は、複数の振動素子12に対応した複数の合成信号メモリ42で構成される。各合成信号メモリ42には、対応する各振動素子12の合成受信信号が記憶される。各合成信号メモリ42は、2ビーム分(2つのビーム番号)に対応した2つの記憶領域A,Bを備えている。そして、2ビーム分の合成受信信号のうち、一方のビーム番号に対応した合成受信信号を一方の記憶領域に書き込みながら、他方のビーム番号に対応した合成受信信号を他方の記憶領域から読み出すことができる。つまり、各合成信号メモリ42は、ピンポンバッファとしての機能を備えている。 The combined signal storage unit 40 includes a plurality of combined signal memories 42 corresponding to the plurality of vibration elements 12. Each composite signal memory 42 stores a composite reception signal of each corresponding vibration element 12. Each composite signal memory 42 includes two storage areas A and B corresponding to two beams (two beam numbers). Then, among the combined reception signals for two beams, the combined reception signal corresponding to one beam number can be written to one storage area, and the combined reception signal corresponding to the other beam number can be read from the other storage area. it can. That is, each composite signal memory 42 has a function as a ping-pong buffer.
 各合成信号メモリ42の好適な具体例はSRAMで構成されるデュアルポートメモリである。なお、複数の合成信号メモリ42で構成される合成信号記憶部40は、例えば、1つのデバイス(例えば1パッケージの記憶デバイス)で実現されてもよいし、複数のデバイス(例えば複数パッケージの記憶デバイス)を組み合わせて実現されてもよい。 A preferred specific example of each composite signal memory 42 is a dual port memory composed of SRAM. Note that the synthesized signal storage unit 40 including the plurality of synthesized signal memories 42 may be realized by, for example, one device (for example, one package storage device) or a plurality of devices (for example, a plurality of package storage devices). ) May be combined.
 整相加算部50は、複数の振動素子12に対応した複数の合成受信信号に対する遅延処理と加算処理により受信ビーム信号を生成する。整相加算部50は、各ビーム番号ごとに生成されて複数の合成信号メモリ42に記憶された複数の振動素子12に対応した複数の合成受信信号を読み出して、各ビーム番号に応じた受信ビーム信号(受信ビームデータ)を生成する。 The phasing addition unit 50 generates a reception beam signal by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements 12. The phasing adder 50 reads out a plurality of combined reception signals corresponding to the plurality of vibration elements 12 generated for each beam number and stored in the plurality of combined signal memories 42, and receives the received beam corresponding to each beam number. A signal (received beam data) is generated.
 整相加算部50は、各ビーム番号に対応した遅延パターンに従って、そのビーム番号に対応した各記憶領域(AまたはB)から、複数の振動素子12に対応した複数の合成受信信号を読み出す。例えば、各記憶領域に記憶された1ビーム分の合成受信信号(データ)の中から遅延パターン(遅延データ)に対応したアドレスのデータが読み出される。この読み出し処理(読み出しアドレス制御)により遅延処理(整相処理)が実現され、複数の合成受信信号から遅延パターンに従って得られたデータが加算されて受信ビーム信号(受信ビームデータ)が形成される。 The phasing addition unit 50 reads out a plurality of combined reception signals corresponding to the plurality of vibration elements 12 from each storage area (A or B) corresponding to the beam number according to the delay pattern corresponding to each beam number. For example, the data at the address corresponding to the delay pattern (delay data) is read out from the combined reception signal (data) for one beam stored in each storage area. Delay processing (phasing processing) is realized by this reading processing (reading address control), and data obtained from a plurality of combined reception signals according to the delay pattern is added to form a reception beam signal (reception beam data).
 また、整相加算部50は、各ビーム番号ごとに複数の受信ビーム信号を形成する受信パラレルビーム処理を実行する機能を備えている。図1の超音波診断装置による受信パラレルビーム処理の具体例については後に詳述する(図2~図4参照)。なお、例えば、M個(Mは自然数)の整相加算部50を設けて各整相加算部50で受信パラレルビーム処理を実行することにより、受信パラレルビームの本数をM倍としてもよい。 Further, the phasing / adding unit 50 has a function of executing reception parallel beam processing for forming a plurality of reception beam signals for each beam number. A specific example of the reception parallel beam processing by the ultrasonic diagnostic apparatus of FIG. 1 will be described in detail later (see FIGS. 2 to 4). For example, the number of received parallel beams may be increased to M times by providing M (M is a natural number) phasing adders 50 and executing the received parallel beam processing in each phasing adder 50.
 こうして、複数の振動素子12(複数チャンネル)の受信信号の位相がフォーカス点に対して揃えられ、電子フォーカス及び電子ビームステアリングが達成される。なお、整相加算後の受信ビーム信号(受信ビームデータ)は、図示省略した後段の処理部においてさらに処理される。例えば、Bモードにおいては、受信ビーム信号に対して検波、対数圧縮などの処理がなされる。カラーフローマッピングモード(カラードプラモード)では、例えば複素信号に対する自己相関演算などの処理が実行される。更にドプラモードなどが選択された場合には、直交検波処理などのドプラ情報の抽出及び周波数解析に必要な処理が実行される。 Thus, the phases of the received signals of the plurality of vibration elements 12 (multiple channels) are aligned with respect to the focus point, and electronic focusing and electron beam steering are achieved. Note that the received beam signal (received beam data) after the phasing addition is further processed in a subsequent processing unit (not shown). For example, in the B mode, processing such as detection and logarithmic compression is performed on the received beam signal. In the color flow mapping mode (color Doppler mode), for example, processing such as autocorrelation calculation for a complex signal is executed. Further, when the Doppler mode or the like is selected, processing necessary for extraction of Doppler information and frequency analysis such as orthogonal detection processing is executed.
 なお、検波処理(直交検波処理を含む)は、整相加算部50による整相加算処理の前に各振動素子12ごとに実行されてもよい。また、検波処理により受信信号をベースバンド信号とすることで、一般には、デジタル化した場合のサンプリング数を少なくすることができるため、例えば、デシメーションにおける間引き率をさらに大きくする(検波しない場合よりも間引くデータ数を増やす)ようにしてもよい。 Note that the detection processing (including quadrature detection processing) may be executed for each vibration element 12 before the phasing addition processing by the phasing addition unit 50. Also, by making the received signal a baseband signal by detection processing, in general, the number of samplings when digitized can be reduced, so that, for example, the decimation rate in decimation is further increased (compared to the case without detection). The number of data to be thinned out may be increased).
 そして、例えば、デジタルスキャンコンバータによる補間処理や座標変換処理などを経て超音波画像の画像データが形成され、その画像データに対応した超音波画像が液晶モニタなどの表示デバイスに表示される。 Then, for example, image data of an ultrasonic image is formed through interpolation processing or coordinate conversion processing by a digital scan converter, and the ultrasonic image corresponding to the image data is displayed on a display device such as a liquid crystal monitor.
 図1の超音波診断装置の全体構成は以上のとおりである。次に、図1の超音波診断装置により実現される受信信号処理の具体例について詳述する。なお、図1に示した構成(符号を付された各部)については、以下の説明において図1の符号を利用する。 The overall configuration of the ultrasonic diagnostic apparatus in FIG. 1 is as described above. Next, a specific example of the received signal processing realized by the ultrasonic diagnostic apparatus in FIG. 1 will be described in detail. In addition, about the structure (each part to which the code | symbol was attached | subjected) shown in FIG. 1, the code | symbol of FIG. 1 is utilized in the following description.
 図2は、受信パラレルビーム処理の具体例を説明するための図である。図2には、図1の超音波診断装置により実現される受信信号処理のタイムチャート(タイミングチャート)が示されている。 FIG. 2 is a diagram for explaining a specific example of reception parallel beam processing. FIG. 2 shows a time chart (timing chart) of reception signal processing realized by the ultrasonic diagnostic apparatus of FIG.
 図2<A>は、各ビーム番号(BN♯)ごとの送信が1回のみ(1回送信)であり、各合成処理部32による合成処理がオフ(合成処理なし)とされ、また、各受信処理部18において間引き(デシメーション)を行わずに、各ビーム番号(BN♯)ごとに8本の受信パラレルビーム(8パラレル)を形成する処理を示している。 FIG. 2 <A> shows that transmission for each beam number (BN #) is performed only once (transmission once), the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing), This shows a process of forming 8 reception parallel beams (8 parallel) for each beam number (BN #) without performing decimation in the reception processing unit 18.
 まず、複数の振動素子12によりビーム番号(BN♯0)に関する超音波の送受信が実行され、各振動素子12に対応した各受信信号メモリ22(CHメモリ)に、ビーム番号(BN♯0)の受信信号が記憶される。図2<A>の例では、合成処理がオフ(合成処理なし)であるため、各受信信号メモリ22には、各ビーム番号(BN♯)ごとに1回の送信で得られた受信信号のみが記憶される。つまり、1回の送信で得られた受信信号のみで受信信号セットが構成される。 First, ultrasonic waves related to the beam number (BN # 0) are transmitted / received by the plurality of vibration elements 12, and each reception signal memory 22 (CH memory) corresponding to each vibration element 12 stores the beam number (BN # 0). The received signal is stored. In the example of FIG. 2 <A>, since the combining process is off (no combining process), each received signal memory 22 has only received signals obtained by one transmission for each beam number (BN #). Is memorized. That is, a reception signal set is configured only by reception signals obtained by one transmission.
 ビーム番号(BN♯0)の送受信が終了すると、直ちにビーム番号(BN♯1)の送受信が実行され、各振動素子12に対応した各受信信号メモリ22(CHメモリ)に、ビーム番号(BN♯1)の受信信号が記憶される。また、ビーム番号(BN♯1)の送受信が実行される期間に、各受信信号メモリ22(CHメモリ)に記憶されたビーム番号(BN♯0)の受信信号が読み出され、合成処理部32を介して各合成信号メモリ42(ラインメモリ)の一方の記憶領域(例えば記憶領域A)に記憶される。 When transmission / reception of the beam number (BN # 0) is completed, transmission / reception of the beam number (BN # 1) is immediately executed, and the beam number (BN #) is stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. The received signal of 1) is stored. In addition, during the period in which the transmission / reception of the beam number (BN # 1) is executed, the reception signal of the beam number (BN # 0) stored in each reception signal memory 22 (CH memory) is read out, and the synthesis processing unit 32 Are stored in one storage area (for example, storage area A) of each synthesized signal memory 42 (line memory).
 ビーム番号(BN♯1)の送受信が終了すると、直ちにビーム番号(BN♯2)の送受信が実行され、各振動素子12に対応した各受信信号メモリ22(CHメモリ)に、ビーム番号(BN♯2)の受信信号が記憶される。また、ビーム番号(BN♯2)の送受信が実行される期間に、各受信信号メモリ22(CHメモリ)に記憶されたビーム番号(BN♯1)の受信信号が読み出され、合成処理部32を介して各合成信号メモリ42(ラインメモリ)の他方の記憶領域(例えば記憶領域B)に記憶される。 When the transmission / reception of the beam number (BN # 1) is completed, the transmission / reception of the beam number (BN # 2) is immediately executed, and the beam number (BN #) is stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. The received signal of 2) is stored. In addition, during the period in which transmission / reception of the beam number (BN # 2) is executed, the reception signal of the beam number (BN # 1) stored in each reception signal memory 22 (CH memory) is read out, and the synthesis processing unit 32 Is stored in the other storage area (for example, storage area B) of each synthesized signal memory 42 (line memory).
 さらに、ビーム番号(BN♯2)の送受信が実行される期間に、各合成信号メモリ42からビーム番号(BN♯0)の受信信号が整相加算部50により読み出されて整相加算処理が実行される。この整相加算処理では、8つの受信パラレルビームに対応した8つの受信ビーム信号が形成される。 Further, during the period in which the transmission / reception of the beam number (BN # 2) is executed, the received signal of the beam number (BN # 0) is read from each synthesized signal memory 42 by the phasing addition unit 50, and the phasing addition processing is performed. Executed. In this phasing addition process, eight received beam signals corresponding to the eight received parallel beams are formed.
 整相加算部50は、ビーム番号(BN♯0)に関する8つ(0~7)の遅延パターンに従って、各合成信号メモリ42の一方の記憶領域(例えば記憶領域A)から、各遅延パターンごとにビーム番号(BN♯0)の受信信号を読み出して加算処理することにより、8つの受信パラレルビームに対応した8つの受信ビーム信号を形成する。つまり、1つのビーム番号(BN♯2)の送受信が行われている期間内に8つの遅延パターンに従って8回の読み出し(書き込み速度の8倍の読み出し速度)が実行され、8本の受信パラレルビーム(8パラレル)を形成する処理が実現される。 The phasing / adding unit 50 starts from one storage area (for example, storage area A) of each combined signal memory 42 for each delay pattern according to eight (0 to 7) delay patterns related to the beam number (BN # 0). By reading out and adding the received signal of the beam number (BN # 0), eight received beam signals corresponding to the eight received parallel beams are formed. That is, eight readings (reading speed eight times the writing speed) are executed in accordance with eight delay patterns within a period during which transmission / reception of one beam number (BN # 2) is performed, and eight received parallel beams. A process of forming (8 parallel) is realized.
 なお、整相加算部50が各合成信号メモリ42の一方の記憶領域(例えば記憶領域A)からビーム番号(BN♯0)の受信信号を読み出して整相加算処理を実行する期間に、つまりビーム番号(BN♯2)の送受信期間に、各合成信号メモリ42の他方の記憶領域(例えば記憶領域B)にビーム番号(BN♯1)の受信信号が書き込まれる。また、整相加算部50が各合成信号メモリ42の他方の記憶領域(例えば記憶領域B)からビーム番号(BN♯1)の受信信号を読み出して整相加算処理を実行する期間に、各合成信号メモリ42の一方の記憶領域(例えば記憶領域A)にビーム番号(BN♯2)の受信信号が書き込まれる。このように、各合成信号メモリ42の2つの記憶領域A,Bに、複数のビーム番号に対応した受信信号が、次々に交互に書き込まれつつ交互に読み出される。 In the period in which the phasing addition unit 50 reads out the received signal of the beam number (BN # 0) from one storage area (for example, the storage area A) of each composite signal memory 42 and executes the phasing addition process, that is, the beam During the transmission / reception period of the number (BN # 2), the reception signal of the beam number (BN # 1) is written to the other storage area (for example, the storage area B) of each composite signal memory 42. Further, during the period in which the phasing addition unit 50 reads out the received signal of the beam number (BN # 1) from the other storage area (for example, the storage area B) of each synthetic signal memory 42 and executes the phasing addition process. The reception signal of the beam number (BN # 2) is written in one storage area (for example, storage area A) of the signal memory 42. As described above, the reception signals corresponding to the plurality of beam numbers are alternately read and written alternately in the two storage areas A and B of each composite signal memory 42.
 図2<B>は、各ビーム番号(BN♯)ごとの送信が1回のみ(1回送信)であり、各合成処理部32による合成処理がオフ(合成処理なし)とされている点で、図2<A>の具体例と同じである。図2<A>との相違は、図2<B>において間引き(デシメーション)が行われている点である。つまり、各受信処理部18において、受信信号のデータ数を半分(1/2)とする間引き(デシメーション)が実行される。その結果、図2<B>の具体例では、各ビーム番号(BN♯)ごとに16本の受信パラレルビーム(16パラレル)を形成することができる。 FIG. 2 <B> shows that transmission for each beam number (BN #) is performed only once (transmission once), and the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing). This is the same as the specific example of FIG. 2 <A>. The difference from FIG. 2 <A> is that thinning (decimation) is performed in FIG. 2 <B>. That is, in each reception processing unit 18, thinning (decimation) is performed to halve the number of received signal data. As a result, in the specific example of FIG. 2 <B>, 16 reception parallel beams (16 parallel) can be formed for each beam number (BN #).
 図2<B>の具体例においても、まず、複数の振動素子12によりビーム番号(BN♯0)に関する超音波の送受信が実行され、各振動素子12に対応した各受信信号メモリ22(CHメモリ)に、ビーム番号(BN♯0)の受信信号が記憶される。なお、各受信信号メモリ22(CHメモリ)に記憶される前に、各受信処理部18により受信信号のデータ数を半分(1/2)とする間引き(デシメーション)が実行される。また、図2<B>の例では、合成処理がオフ(合成処理なし)であるため、各受信信号メモリ22には、各ビーム番号(BN♯)ごとに1回の送信で得られた受信信号のみが記憶される。 Also in the specific example of FIG. 2 <B>, first, transmission and reception of ultrasonic waves related to the beam number (BN # 0) are executed by the plurality of vibration elements 12, and each reception signal memory 22 (CH memory) corresponding to each vibration element 12 is transmitted. ) Stores the received signal of the beam number (BN # 0). Note that before being stored in each reception signal memory 22 (CH memory), each reception processing unit 18 performs decimation that halves the number of received signal data (1/2). In the example of FIG. 2 <B>, since the combining process is off (no combining process), each reception signal memory 22 receives the reception obtained by one transmission for each beam number (BN #). Only the signal is stored.
 ビーム番号(BN♯0)の送受信が終了すると、直ちにビーム番号(BN♯1)の送受信が実行され、各振動素子12に対応した各受信信号メモリ22(CHメモリ)に、ビーム番号(BN♯1)の受信信号(間引きされた受信信号)が記憶される。また、ビーム番号(BN♯1)の送受信が実行される期間に、各受信信号メモリ22(CHメモリ)に記憶されたビーム番号(BN♯0)の受信信号が読み出されて、合成処理部32を介して各合成信号メモリ42(ラインメモリ)の一方の記憶領域(例えば記憶領域A)に記憶される。 When transmission / reception of the beam number (BN # 0) is completed, transmission / reception of the beam number (BN # 1) is immediately executed, and the beam number (BN #) is stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. The received signal of 1) (the thinned received signal) is stored. In addition, during the period in which transmission / reception of the beam number (BN # 1) is executed, the reception signal of the beam number (BN # 0) stored in each reception signal memory 22 (CH memory) is read out, and the synthesis processing unit 32 is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory).
 但し、図2<B>の具体例では、各受信信号メモリ22(CHメモリ)に記憶されたビーム番号(BN♯0)の受信信号が半分に間引きされてデータ数が半分であるため、各合成信号メモリ42(ラインメモリ)への書き込み時間が、図2<A>の場合と比較して少なくなる(例えば半分になる)。 However, in the specific example of FIG. 2 <B>, since the received signal of the beam number (BN # 0) stored in each received signal memory 22 (CH memory) is thinned in half, the number of data is half. The writing time to the combined signal memory 42 (line memory) is reduced (for example, halved) compared with the case of FIG. 2 <A>.
 そのため、図2<B>の具体例では、各合成信号メモリ42にビーム番号(BN♯0)の受信信号が書き込まれた直後から、つまり、ビーム番号(BN♯1)の送受信が実行される期間の途中から、ビーム番号(BN♯0)の整相加算処理を実行することができる。 Therefore, in the specific example of FIG. 2 <B>, transmission / reception of the beam number (BN # 1) is executed immediately after the reception signal of the beam number (BN # 0) is written in each composite signal memory 42. From the middle of the period, the phasing addition processing of the beam number (BN # 0) can be executed.
 さらに、図2<A>の場合と比較して、受信信号のデータ数が半分であるため、1本の受信ビームに要する整相加算処理の時間が半分で済む。その結果、図2<B>の具体例では、図2<A>の場合の2倍となる16本の受信パラレルビーム(16パラレル)を形成することができる。 Furthermore, since the number of received signal data is halved as compared with the case of FIG. 2 <A>, the time required for the phasing addition processing for one received beam can be halved. As a result, in the specific example of FIG. 2 <B>, 16 reception parallel beams (16 parallel), which is twice that of FIG. 2 <A>, can be formed.
 図3は、合成処理を伴う受信信号処理の具体例を説明するための図である。図3には、図1の超音波診断装置により実現される合成処理を伴う受信信号処理のタイムチャート(タイミングチャート)が示されている。 FIG. 3 is a diagram for explaining a specific example of the received signal processing accompanied with the synthesis processing. FIG. 3 shows a time chart (timing chart) of received signal processing accompanied with synthesis processing realized by the ultrasonic diagnostic apparatus of FIG.
 図3<A>には、図2<A>と同じタイムチャートが示されている。つまり、図3<A>は、各ビーム番号(BN♯)ごとの送信が1回のみ(1回送信)であり、各合成処理部32による合成処理がオフ(合成処理なし)とされ、また、各受信処理部18において間引き(デシメーション)を行わずに、各ビーム番号(BN♯)ごとに8本の受信パラレルビーム(8パラレル)を形成する処理を示している。 FIG. 3 <A> shows the same time chart as FIG. 2 <A>. That is, in FIG. 3 <A>, transmission for each beam number (BN #) is only once (one transmission), and the synthesis processing by each synthesis processing unit 32 is turned off (no synthesis processing). This shows a process of forming eight reception parallel beams (8 parallel) for each beam number (BN #) without performing decimation in each reception processing unit 18.
 これに対し、図3<B>では、各ビーム番号(BN♯)ごとに2回の送信が行われ、2回の送信で得られた受信信号セットに対して各合成処理部32により合成処理が実行される。図3<B>では、合成処理の具体例であるパルスインバージョン(フェイズインバージョン)が実行される。なお、図3<B>では、各受信処理部18において間引き(デシメーション)が行われず、各ビーム番号(BN♯)ごとに16本の受信パラレルビーム(16パラレル)が形成される。 On the other hand, in FIG. 3 <B>, transmission is performed twice for each beam number (BN #), and the synthesis processing unit 32 performs synthesis processing on the received signal set obtained by the two transmissions. Is executed. In FIG. 3 <B>, a pulse inversion (phase inversion), which is a specific example of the synthesis process, is executed. In FIG. 3 <B>, decimation is not performed in each reception processing unit 18, and 16 reception parallel beams (16 parallel) are formed for each beam number (BN #).
 図3<B>の具体例では、まず、ビーム番号(BN♯0)に関する2回の送受信が実行される。つまり、1回目の送受信番号(BN♯0p)に関する超音波の送受信が実行されて、各受信信号メモリ22(CHメモリ)に送受信番号(BN♯0p)の受信信号が記憶される。例えば送信信号pによる送受が実行されて送信信号pに対応した受信信号が記憶される。さらに、2回目の送受信番号(BN♯0n)に関する超音波の送受信が実行されて、各受信信号メモリ22に、送受信番号(BN♯0n)の受信信号が記憶される。例えば、送信信号pの位相を反転させた送信信号nによる送受が実行されて送信信号nに対応した受信信号が記憶される。これにより、ビーム番号(BN♯0)の送信信号pに対応した受信信号と送信信号nに対応した受信信号の組(受信信号セット)が各受信信号メモリ22に記憶される。 In the specific example of FIG. 3 <B>, first, transmission / reception of the beam number (BN # 0) is performed twice. That is, transmission / reception of ultrasonic waves related to the first transmission / reception number (BN # 0p) is executed, and the reception signal of the transmission / reception number (BN # 0p) is stored in each reception signal memory 22 (CH memory). For example, transmission / reception by the transmission signal p is executed, and a reception signal corresponding to the transmission signal p is stored. Further, the transmission / reception of the ultrasonic wave related to the second transmission / reception number (BN # 0n) is executed, and the reception signal of the transmission / reception number (BN # 0n) is stored in each reception signal memory 22. For example, transmission / reception is performed using a transmission signal n obtained by inverting the phase of the transmission signal p, and a reception signal corresponding to the transmission signal n is stored. Thereby, a set of reception signals corresponding to the transmission signal p of the beam number (BN # 0) and reception signals corresponding to the transmission signal n (reception signal set) is stored in each reception signal memory 22.
 ビーム番号(BN♯0)に関する2回の送受信が終了すると、直ちにビーム番号(BN♯1)に関する2回の送受信が実行される。つまり、1回目の送受信番号(BN♯1p)に関する超音波の送受信と、2回目の送受信番号(BN♯1n)に関する超音波の送受信が実行される。これにより、ビーム番号(BN♯1)の送信信号pに対応した受信信号と送信信号nに対応した受信信号の組(受信信号セット)が各受信信号メモリ22に記憶される。 When two transmissions / receptions regarding the beam number (BN # 0) are completed, two transmissions / receptions regarding the beam number (BN # 1) are immediately executed. That is, transmission / reception of ultrasonic waves related to the first transmission / reception number (BN # 1p) and transmission / reception of ultrasonic waves related to the second transmission / reception number (BN # 1n) are executed. As a result, a set of reception signals corresponding to the transmission signal p of the beam number (BN # 1) and reception signals corresponding to the transmission signal n (reception signal set) is stored in each reception signal memory 22.
 また、ビーム番号(BN♯1)に関する2回の送受信が実行される期間に、各受信信号メモリ22に記憶されたビーム番号(BN♯0)の受信信号セットが読み出されて各合成処理部32により合成処理される。例えばビーム番号(BN♯0)の送信信号pに対応した受信信号と送信信号nに対応した受信信号が加算されて合成受信信号BN♯0(p+n)が形成される。各合成処理部32において形成された合成受信信号BN♯0(p+n)は、各合成信号メモリ42(ラインメモリ)の一方の記憶領域(例えば記憶領域A)に記憶される。 In addition, during a period in which two transmissions / receptions relating to the beam number (BN # 1) are executed, the reception signal set of the beam number (BN # 0) stored in each reception signal memory 22 is read and each combining processing unit is read out. 32 is combined. For example, a reception signal corresponding to the transmission signal p of the beam number (BN # 0) and a reception signal corresponding to the transmission signal n are added to form a combined reception signal BN # 0 (p + n). The combined received signal BN # 0 (p + n) formed in each combining processing unit 32 is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory).
 ビーム番号(BN♯1)に関する2回の送受信が終了すると、直ちにビーム番号(BN♯2)に関する2回の送受信が実行される。つまり、1回目の送受信番号(BN♯2p)に関する超音波の送受信と、2回目の送受信番号(BN♯2n)に関する超音波の送受信が実行される。これにより、ビーム番号(BN♯2)の送信信号pに対応した受信信号と送信信号nに対応した受信信号の組(受信信号セット)が各受信信号メモリ22に記憶される。 When two transmissions / receptions regarding the beam number (BN # 1) are completed, two transmissions / receptions regarding the beam number (BN # 2) are immediately executed. That is, transmission / reception of ultrasonic waves related to the first transmission / reception number (BN # 2p) and transmission / reception of ultrasonic waves related to the second transmission / reception number (BN # 2n) are executed. Thus, a set of reception signals corresponding to the transmission signal p of the beam number (BN # 2) and reception signals corresponding to the transmission signal n (reception signal set) is stored in each reception signal memory 22.
 また、ビーム番号(BN♯2)に関する2回の送受信が実行される期間に、各受信信号メモリ22に記憶されたビーム番号(BN♯1)の受信信号セットが読み出されて各合成処理部32により合成処理される。例えばビーム番号(BN♯1)の送信信号pに対応した受信信号と送信信号nに対応した受信信号が加算されて合成受信信号BN♯1(p+n)が形成される。各合成処理部32において形成された合成受信信号BN♯1(p+n)は、各合成信号メモリ42の他方の記憶領域(例えば記憶領域B)に記憶される。 In addition, during the period in which two transmissions / receptions relating to the beam number (BN # 2) are executed, the reception signal set of the beam number (BN # 1) stored in each reception signal memory 22 is read and each combining processing unit is read out. 32 is combined. For example, the reception signal corresponding to the transmission signal p of the beam number (BN # 1) and the reception signal corresponding to the transmission signal n are added to form a combined reception signal BN # 1 (p + n). The combined received signal BN # 1 (p + n) formed in each combining processing unit 32 is stored in the other storage area (for example, storage area B) of each combined signal memory 42.
 さらに、ビーム番号(BN♯2)に関する2回の送受信が実行される期間に、各合成信号メモリ42からビーム番号(BN♯0)の合成受信信号BN♯0(p+n)が整相加算部50により読み出されて整相加算処理が実行される。この整相加算処理では、16本の受信パラレルビームに対応した16の受信ビーム信号が形成される。 Further, during the period in which two transmissions / receptions regarding the beam number (BN # 2) are executed, the combined reception signal BN # 0 (p + n) of the beam number (BN # 0) is sent from the combined signal memory 42 to the phasing addition unit 50. And the phasing addition processing is executed. In this phasing addition process, 16 received beam signals corresponding to 16 received parallel beams are formed.
 整相加算部50は、16本の受信パラレルビームに対応した16個の遅延パターンに従って、各合成信号メモリ42の一方の記憶領域(例えば記憶領域A)から、各遅延パターンごとに合成受信信号BN♯0(p+n)を読み出して加算処理することにより、16本の受信パラレルビームに対応した16(0~15)の受信ビーム信号を形成する。つまり1つのビーム番号(BN♯2)に関する2回の送受信が行われている期間内に、16個の遅延パターンに従って16回の読み出しが実行され、16本の受信パラレルビーム(16パラレル)が形成される。なお、図3<B>の具体例では、2回の送受信が行われている期間内に16回の読み出しを実行すればよいため、図3<A>の場合と同じ読み出し速度(書き込み速度の8倍)で16パラレルの整相加算処理を実現することができる。 The phasing / adding unit 50 performs combined reception signal BN for each delay pattern from one storage area (for example, storage area A) of each combined signal memory 42 according to 16 delay patterns corresponding to 16 received parallel beams. By reading out # 0 (p + n) and performing addition processing, 16 (0 to 15) received beam signals corresponding to 16 received parallel beams are formed. That is, 16 readings are executed in accordance with 16 delay patterns within a period in which two transmissions / receptions for one beam number (BN # 2) are performed, and 16 reception parallel beams (16 parallel) are formed. Is done. In the specific example of FIG. 3 <B>, it is only necessary to execute 16 readings within a period in which two transmissions / receptions are performed. Therefore, the same reading speed (writing speed) as in FIG. 16 parallel phasing addition processing can be realized.
 図4は、B/PWモードにおける受信信号処理の具体例を説明するための図である。図4には、図1の超音波診断装置により実現されるB/PWモードにおける受信信号処理のタイムチャート(タイミングチャート)が示されている。 FIG. 4 is a diagram for explaining a specific example of reception signal processing in the B / PW mode. FIG. 4 shows a time chart (timing chart) of received signal processing in the B / PW mode realized by the ultrasonic diagnostic apparatus of FIG.
 B/PWモードは、超音波の断層画像(Bモード画像)の形成とパルスドプラ(PW)によるドプラ計測を並行して実行するモードである。図4には、パルスドプラにおける128本(128回)の送受を送受信期間の単位として、パルスドプラとBモードの送受を交互に繰り返す処理の具体例が図示されている。なお、図4の例では、合成処理がオフ(合成処理なし)である。 The B / PW mode is a mode in which formation of an ultrasonic tomographic image (B mode image) and Doppler measurement by pulse Doppler (PW) are executed in parallel. FIG. 4 shows a specific example of processing in which transmission / reception of pulse Doppler and B mode is alternately repeated by using 128 transmissions / receptions in pulse Doppler as a unit of transmission / reception period. In the example of FIG. 4, the synthesis process is off (no synthesis process).
 まず、パルスドプラの最初の送受信(DOP0~DOP127)が実行され、これにより得られた受信信号DOP0~DOP127(0)が各振動素子12に対応した各受信信号メモリ22(CHメモリ)に記憶される。 First, the first transmission / reception (DOP0 to DOP127) of pulse Doppler is executed, and the reception signals DOP0 to DOP127 (0) obtained thereby are stored in each reception signal memory 22 (CH memory) corresponding to each vibration element 12. .
 パルスドプラの最初の送受信が終了すると、Bモードの最初の送受信(BWB♯0~BWB♯15)が実行され、これにより得られた受信信号BW♯0~15が各振動素子12に対応した各受信信号メモリ22(CHメモリ)に記憶される。図4の具体例では、パルスドプラの128本(128回)の送受信期間と同じ期間内に、Bモード用の16本(16回)の送受信が実行される。 When the first transmission / reception of the pulse Doppler is completed, the first transmission / reception (BWB # 0 to BWB # 15) of the B mode is executed, and the reception signals BW # 0 to 15 obtained thereby are received for the respective vibration elements 12. It is stored in the signal memory 22 (CH memory). In the specific example of FIG. 4, 16 transmissions (16 times) for the B mode are executed within the same period as the 128 transmission times (128 times) of pulse Doppler.
 また、Bモードの最初の送受信(BWB♯0~BWB♯15)が実行される期間に、各受信信号メモリ22に記憶されたパルスドプラの受信信号DOP0~DOP127(0)が読み出され、合成処理部32を介して各合成信号メモリ42(ラインメモリ)の一方の記憶領域(例えば記憶領域A)に記憶される。 In addition, during the period in which the first transmission / reception (BWB # 0 to BWB # 15) in the B mode is executed, pulse Doppler reception signals DOP0 to DOP127 (0) stored in each reception signal memory 22 are read out and combined. The data is stored in one storage area (for example, storage area A) of each combined signal memory 42 (line memory) via the unit 32.
 Bモードの最初の送受信が終了すると、パルスドプラの2度目の送受信(DOP0~DOP127)が実行され、これにより得られた受信信号DOP0~DOP127(1)が各振動素子12に対応した各受信信号メモリ22に記憶される。また、パルスドプラの2度目の送受信が実行されている期間に、各受信信号メモリ22に記憶されたBモードの受信信号BW♯0~15が読み出され、合成処理部32を介して各合成信号メモリ42の他方の記憶領域(例えば記憶領域B)に記憶される。 When the first transmission / reception in the B mode is completed, the second transmission / reception of pulse Doppler (DOP0 to DOP127) is executed, and the reception signals DOP0 to DOP127 (1) obtained thereby are received signal memories corresponding to the respective vibration elements 12. 22 is stored. In addition, during the period in which the second transmission / reception of pulse Doppler is performed, the B-mode reception signals BW # 0 to 15 stored in the reception signal memories 22 are read out, and the synthesis signals are sent through the synthesis processing unit 32. It is stored in the other storage area (for example, storage area B) of the memory 42.
 さらに、パルスドプラの2度目の送受信が実行されている期間に、各合成信号メモリ42からパルスドプラの受信信号DOP0~DOP127(0)が整相加算部50により読み出されて整相加算処理が実行される。パルスドプラの整相加算処理では、受信パラレルビーム処理が行われず、1本(1回)の送受信で得られた受信信号により1本の受信ビームに対応した受信ビーム信号が形成される。 Further, during the period in which the second transmission / reception of pulse Doppler is being executed, the pulse Doppler reception signals DOP0 to DOP127 (0) are read from the synthesized signal memory 42 by the phasing adder 50, and the phasing addition processing is executed. The In the pulsed Doppler phasing addition processing, reception parallel beam processing is not performed, and a reception beam signal corresponding to one reception beam is formed by reception signals obtained by one (one) transmission / reception.
 パルスドプラの2度目の送受信が終了すると、Bモードの2度目の送受信(BWB♯16~BWB♯31)が実行される。つまり、Bモードの最初の送受信(BWB♯0~BWB♯15)による走査の続きが実行される。そして、Bモードの2度目の送受信により得られた受信信号BW♯16~31が各振動素子12に対応した各受信信号メモリ22に記憶される。また、Bモードの2度目の送受信が実行されている期間に、各受信信号メモリ22に記憶されたパルスドプラの受信信号DOP0~DOP127(1)が読み出され、合成処理部32を介して各合成信号メモリ42の一方の記憶領域(例えば記憶領域A)に記憶される。 When the second transmission / reception of pulse Doppler is completed, the second transmission / reception (BWB # 16 to BWB # 31) of the B mode is executed. That is, the continuation of scanning by the first transmission / reception (BWB # 0 to BWB # 15) in the B mode is executed. Received signals BW # 16 to 31 obtained by the second transmission / reception in the B mode are stored in each received signal memory 22 corresponding to each vibration element 12. In addition, during the period when the second transmission / reception in the B mode is performed, the pulse Doppler reception signals DOP0 to DOP127 (1) stored in each reception signal memory 22 are read out, and each synthesis is performed via the synthesis processing unit 32. It is stored in one storage area (for example, storage area A) of the signal memory 42.
 さらに、Bモードの2度目の送受信が実行されている期間に、各合成信号メモリ42からBモードの受信信号BW♯0~15が整相加算部50により読み出されて整相加算処理が実行される。Bモードの整相加算処理では、1本(1回)の送受信で得られた受信信号により1本の受信ビームに対応した受信ビーム信号が形成されてもよいし、1本(1回)の送受信で得られた受信信号により複数本の受信パラレルビームに対応した複数の受信ビーム信号を形成する受信パラレルビーム処理が実行されてもよい。 Further, during the period when the second transmission / reception in the B mode is being executed, the reception signals BW # 0 to BW # 15 to 15 in the B mode are read out from the combined signal memories 42 by the phasing addition unit 50, and the phasing addition processing is executed. Is done. In the B-mode phasing addition process, a reception beam signal corresponding to one reception beam may be formed by reception signals obtained by one (one) transmission / reception, or one (one) reception beam signal may be formed. Reception parallel beam processing for forming a plurality of reception beam signals corresponding to a plurality of reception parallel beams from reception signals obtained by transmission and reception may be executed.
 受信パラレルビーム処理を実行する場合には、パルスドプラの整相加算処理が短いことにより生じる空き時間を利用することが望ましい。例えば、Bモードの2度目の送受信(BWB♯16~BWB♯31)が実行されている期間の後に、パルスドプラの受信信号DOP0~DOP127(1)に対する整相加算処理の開始を遅らせて得られる空き時間を加えることにより、Bモードの受信信号BW♯0~15に対する整相加算処理に利用できる時間を延長することができる。そして、その延長された整相加算処理の時間を利用し、Bモードの受信信号BW♯0~15の各受信信号ごとに、複数の受信パラレルビームに対応した複数の受信ビーム信号を形成するようにしてもよい。 When executing the reception parallel beam processing, it is desirable to use the idle time generated by the short pulse Doppler phasing addition processing. For example, after the period in which the second transmission / reception (BWB # 16 to BWB # 31) in the B mode is executed, the empty space obtained by delaying the start of the phasing addition processing for the received signals DOP0 to DOP127 (1) of pulse Doppler By adding time, it is possible to extend the time available for the phasing addition processing for the B-mode received signals BW # 0 to BW # 15. A plurality of reception beam signals corresponding to a plurality of reception parallel beams are formed for each reception signal of B-mode reception signals BW # 0 to 15 using the extended phasing addition processing time. It may be.
 以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。 The preferred embodiments of the present invention have been described above, but the above-described embodiments are merely examples in all respects and do not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.
 10 アレイ振動子、12 振動素子、14 プリアンプ、16 A/D変換器、18 受信処理部、20 受信信号記憶部、22 受信信号メモリ、30 信号合成部、32 合成処理部、40 合成信号記憶部、42 合成信号メモリ、50 整相加算部。 10 array transducers, 12 transducer elements, 14 preamplifiers, 16 A / D converters, 18 reception processing units, 20 reception signal storage units, 22 reception signal memories, 30 signal synthesis units, 32 synthesis processing units, 40 synthesis signal storage units 42, synthetic signal memory, 50 phasing adder.

Claims (10)

  1.  超音波を送受する複数の振動素子と、
     前記各振動素子ごとに得られる受信信号セットを合成処理することにより前記各振動素子ごとに合成受信信号を生成する信号合成部と、
     前記複数の振動素子に対応した複数の合成受信信号に対する遅延処理と加算処理により受信ビーム信号を生成する整相加算部と、
     を有する、
     ことを特徴とする超音波診断装置。
    A plurality of vibration elements for transmitting and receiving ultrasonic waves;
    A signal combining unit that generates a combined reception signal for each vibration element by combining a reception signal set obtained for each vibration element;
    A phasing addition unit that generates a reception beam signal by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements;
    Having
    An ultrasonic diagnostic apparatus.
  2.  請求項1に記載の超音波診断装置において、
     前記信号合成部は、前記各振動素子ごとに得られる各ビーム番号に対応した受信信号セットを合成処理することにより当該ビーム番号に対応した合成受信信号を生成し、
     前記整相加算部は、各ビーム番号ごとに生成される前記複数の振動素子に対応した複数の合成受信信号に対する遅延処理と加算処理により前記各ビーム番号に対応した受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    The signal combining unit generates a combined reception signal corresponding to the beam number by combining the reception signal set corresponding to each beam number obtained for each vibration element,
    The phasing addition unit generates a reception beam signal corresponding to each beam number by delay processing and addition processing for a plurality of combined reception signals corresponding to the plurality of vibration elements generated for each beam number,
    An ultrasonic diagnostic apparatus.
  3.  請求項1に記載の超音波診断装置において、
     前記各振動素子ごとに少なくとも1つのビーム番号に対応した受信信号セットを記憶できる容量を備えた受信信号記憶部と、
     前記各振動素子ごとに少なくとも2つのビーム番号に対応した合成受信信号を各ビームごとに個別に書き込みと読み出しができる記憶領域を備えた合成信号記憶部と、
     をさらに有する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 1,
    A reception signal storage unit having a capacity capable of storing a reception signal set corresponding to at least one beam number for each vibration element;
    A combined signal storage unit including a storage area in which a combined reception signal corresponding to at least two beam numbers for each vibration element can be individually written and read for each beam;
    Further having
    An ultrasonic diagnostic apparatus.
  4.  請求項2に記載の超音波診断装置において、
     前記各振動素子ごとに少なくとも1つのビーム番号に対応した受信信号セットを記憶できる容量を備えた受信信号記憶部と、
     前記各振動素子ごとに少なくとも2つのビーム番号に対応した合成受信信号を各ビームごとに個別に書き込みと読み出しができる記憶領域を備えた合成信号記憶部と、
     をさらに有する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 2,
    A reception signal storage unit having a capacity capable of storing a reception signal set corresponding to at least one beam number for each vibration element;
    A combined signal storage unit including a storage area in which a combined reception signal corresponding to at least two beam numbers for each vibration element can be individually written and read for each beam;
    Further having
    An ultrasonic diagnostic apparatus.
  5.  請求項3に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部から、各ビーム番号に対応した複数の合成受信信号を当該ビーム番号に対応した遅延パターンに従って読み出し、読み出した複数の合成受信信号を加算処理することにより、当該ビーム番号に対応した受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 3.
    The phasing addition unit reads out a plurality of combined reception signals corresponding to each beam number from the combined signal storage unit according to a delay pattern corresponding to the beam number, and adds the read out plurality of combined reception signals. , Generate a received beam signal corresponding to the beam number,
    An ultrasonic diagnostic apparatus.
  6.  請求項4に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部から、各ビーム番号に対応した複数の合成受信信号を当該ビーム番号に対応した遅延パターンに従って読み出し、読み出した複数の合成受信信号を加算処理することにより、当該ビーム番号に対応した受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 4,
    The phasing addition unit reads out a plurality of combined reception signals corresponding to each beam number from the combined signal storage unit according to a delay pattern corresponding to the beam number, and adds the read out plurality of combined reception signals. , Generate a received beam signal corresponding to the beam number,
    An ultrasonic diagnostic apparatus.
  7.  請求項3に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部に書き込まれて記憶された複数の合成受信信号を、書き込み速度よりも早い読み出し速度で、複数の受信パラレルビームに対応した複数の遅延パターンに従って読み出し、各遅延パターンごとに読み出した複数の合成受信信号を加算処理することにより、複数の受信パラレルビームに対応した複数の受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 3.
    The phasing and adding unit reads a plurality of synthesized reception signals written and stored in the synthesized signal storage unit at a reading speed faster than a writing speed according to a plurality of delay patterns corresponding to a plurality of received parallel beams, A plurality of received beam signals corresponding to a plurality of received parallel beams are generated by adding a plurality of combined received signals read for each delay pattern,
    An ultrasonic diagnostic apparatus.
  8.  請求項4に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部に書き込まれて記憶された複数の合成受信信号を、書き込み速度よりも早い読み出し速度で、複数の受信パラレルビームに対応した複数の遅延パターンに従って読み出し、各遅延パターンごとに読み出した複数の合成受信信号を加算処理することにより、複数の受信パラレルビームに対応した複数の受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 4,
    The phasing and adding unit reads a plurality of synthesized reception signals written and stored in the synthesized signal storage unit at a reading speed faster than a writing speed according to a plurality of delay patterns corresponding to a plurality of received parallel beams, A plurality of received beam signals corresponding to a plurality of received parallel beams are generated by adding a plurality of combined received signals read for each delay pattern,
    An ultrasonic diagnostic apparatus.
  9.  請求項5に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部に書き込まれて記憶された複数の合成受信信号を、書き込み速度よりも早い読み出し速度で、複数の受信パラレルビームに対応した複数の遅延パターンに従って読み出し、各遅延パターンごとに読み出した複数の合成受信信号を加算処理することにより、複数の受信パラレルビームに対応した複数の受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 5,
    The phasing and adding unit reads a plurality of synthesized reception signals written and stored in the synthesized signal storage unit at a reading speed faster than a writing speed according to a plurality of delay patterns corresponding to a plurality of received parallel beams, A plurality of received beam signals corresponding to a plurality of received parallel beams are generated by adding a plurality of combined received signals read for each delay pattern,
    An ultrasonic diagnostic apparatus.
  10.  請求項6に記載の超音波診断装置において、
     前記整相加算部は、前記合成信号記憶部に書き込まれて記憶された複数の合成受信信号を、書き込み速度よりも早い読み出し速度で、複数の受信パラレルビームに対応した複数の遅延パターンに従って読み出し、各遅延パターンごとに読み出した複数の合成受信信号を加算処理することにより、複数の受信パラレルビームに対応した複数の受信ビーム信号を生成する、
     ことを特徴とする超音波診断装置。
    The ultrasonic diagnostic apparatus according to claim 6,
    The phasing and adding unit reads a plurality of synthesized reception signals written and stored in the synthesized signal storage unit at a reading speed faster than a writing speed according to a plurality of delay patterns corresponding to a plurality of received parallel beams, A plurality of received beam signals corresponding to a plurality of received parallel beams are generated by adding a plurality of combined received signals read for each delay pattern,
    An ultrasonic diagnostic apparatus.
PCT/JP2016/075269 2015-10-20 2016-08-30 Ultrasonic diagnostic device WO2017068863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680054954.8A CN108024797B (en) 2015-10-20 2016-08-30 Ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015206016A JP6038259B1 (en) 2015-10-20 2015-10-20 Ultrasonic diagnostic equipment
JP2015-206016 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017068863A1 true WO2017068863A1 (en) 2017-04-27

Family

ID=57483196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075269 WO2017068863A1 (en) 2015-10-20 2016-08-30 Ultrasonic diagnostic device

Country Status (3)

Country Link
JP (1) JP6038259B1 (en)
CN (1) CN108024797B (en)
WO (1) WO2017068863A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884370B2 (en) * 2002-11-15 2007-02-21 アロカ株式会社 Ultrasonic diagnostic equipment
JP2010063875A (en) * 2008-08-11 2010-03-25 Canon Inc Delay adjustment module and ultrasonic receiving beam forming apparatus
JP2012105959A (en) * 2010-10-20 2012-06-07 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307427C (en) * 2002-08-28 2007-03-28 深圳迈瑞生物医疗电子股份有限公司 Beam synthesizer and synthetic method based on linear interpolation
DE602004002523T2 (en) * 2003-06-25 2007-05-10 Aloka Co. Ltd., Mitaka Diagnostic ultrasound imaging device with a 2D transducer with variable subarrays
JP4395558B2 (en) * 2003-12-01 2010-01-13 株式会社エクストリリオン Ultrasonic diagnostic equipment
CN101354437B (en) * 2003-12-02 2011-02-09 株式会社日立医药 Ultrasonic diagnostic apparatus
CN100337595C (en) * 2004-06-18 2007-09-19 深圳迈瑞生物医疗电子股份有限公司 Beam composition method and device based on null aim interpolation
WO2006006460A1 (en) * 2004-07-08 2006-01-19 Hitachi Medical Corporation Ultrasonic imaging device
JP4984519B2 (en) * 2005-12-19 2012-07-25 Jfeスチール株式会社 Method and apparatus for inspecting cross section of metal material by ultrasonic wave
CN101209211B (en) * 2006-12-30 2011-03-09 深圳迈瑞生物医疗电子股份有限公司 Synthesis method and device for digitalization ultrasonic beam with adjustable receiver aperture
CN101077305B (en) * 2007-06-29 2010-04-21 哈尔滨工业大学 Beamforming columnate parameter compressing method in medical ultrasound image-forming
JP5355924B2 (en) * 2008-03-31 2013-11-27 株式会社東芝 Ultrasonic diagnostic equipment
JP4627556B2 (en) * 2008-08-08 2011-02-09 アロカ株式会社 Ultrasonic diagnostic equipment
CN201361043Y (en) * 2008-12-31 2009-12-16 深圳市蓝韵实业有限公司 Beam synthesizing device for ultrasonic imaging system
JP5683860B2 (en) * 2009-07-28 2015-03-11 株式会社東芝 Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, ultrasonic diagnostic apparatus control program, and ultrasonic image processing program
JP6109498B2 (en) * 2011-07-05 2017-04-05 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control program
JP6049371B2 (en) * 2011-11-09 2016-12-21 東芝メディカルシステムズ株式会社 Ultrasound diagnostic system
JP6218400B2 (en) * 2012-03-15 2017-10-25 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
CN103142253B (en) * 2013-03-19 2014-11-12 飞依诺科技(苏州)有限公司 Ultrasonic imaging system and wave beam superposition method thereof
JP6251015B2 (en) * 2013-11-19 2017-12-20 東芝メディカルシステムズ株式会社 Ultrasonic diagnostic equipment
KR20150068846A (en) * 2013-12-12 2015-06-22 삼성전자주식회사 Ultrasonic diagnostic apparatus and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884370B2 (en) * 2002-11-15 2007-02-21 アロカ株式会社 Ultrasonic diagnostic equipment
JP2010063875A (en) * 2008-08-11 2010-03-25 Canon Inc Delay adjustment module and ultrasonic receiving beam forming apparatus
JP2012105959A (en) * 2010-10-20 2012-06-07 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic transmission/reception method

Also Published As

Publication number Publication date
JP6038259B1 (en) 2016-12-07
JP2017077311A (en) 2017-04-27
CN108024797A (en) 2018-05-11
CN108024797B (en) 2020-12-04

Similar Documents

Publication Publication Date Title
JP5373308B2 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
JP4504004B2 (en) Ultrasonic diagnostic equipment
JP4430997B2 (en) Ultrasonic transceiver
JP5416499B2 (en) Ultrasonic diagnostic equipment
JP5357815B2 (en) Ultrasonic diagnostic equipment
US8282556B2 (en) Ultrasonic diagnostic apparatus and reception focusing processing method
JP5388416B2 (en) Ultrasonic diagnostic apparatus and control program for ultrasonic diagnostic apparatus
JP4717484B2 (en) Ultrasonic diagnostic equipment
EP2186470B1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH0298344A (en) Ultrasonic diagnosing device
JP6038259B1 (en) Ultrasonic diagnostic equipment
JP2010269131A (en) Ultrasonic diagnostic apparatus
JPH02206445A (en) Ultrasonic diagnostic apparatus
JPH11276477A (en) Ultrasonic device
JP5580524B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US8303504B2 (en) Ultrasonic diagnostic apparatus
JPH08289891A (en) Ultrasonic diagnostic device
JP5325617B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH08173431A (en) Ultrasonic diagnostic device
JP2006000287A (en) Ultrasonic transmitting and receiving apparatus
CN117084717A (en) Blood flow imaging method and ultrasonic imaging device
JPH02264644A (en) Ultrasonic wave diagnostic device
JP5534665B2 (en) Ultrasonic diagnostic equipment
JP6014355B2 (en) Ultrasonic diagnostic equipment
JPH10211202A (en) Ultrasonic diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857181

Country of ref document: EP

Kind code of ref document: A1