WO2017068857A1 - Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet - Google Patents

Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet Download PDF

Info

Publication number
WO2017068857A1
WO2017068857A1 PCT/JP2016/074735 JP2016074735W WO2017068857A1 WO 2017068857 A1 WO2017068857 A1 WO 2017068857A1 JP 2016074735 W JP2016074735 W JP 2016074735W WO 2017068857 A1 WO2017068857 A1 WO 2017068857A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
temperature
mass
glass sheet
Prior art date
Application number
PCT/JP2016/074735
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 三田村
洋貴 中村
都築 達也
松田 裕
直也 平田
村本 正
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015243778A external-priority patent/JP2017078011A/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017068857A1 publication Critical patent/WO2017068857A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to a glass plate that is easy to produce by a float process and that makes it easy to obtain a high-strength glass plate for chemical strengthening.
  • the glass of the glass plate used as the base plate is composed of soda-lime silicate glass that is widely distributed as a float glass plate (the composition of the glass is in. herein defined in ISO16293-1 (2008 years), since the glass referred to as "universal float glass”.) as compared to, it needs to contain a large amount of Al 2 O 3 is there.
  • glass containing a large amount of Al 2 O 3 tends to have a higher melting temperature when melting glass raw materials and glass, it has recently had a melting temperature similar to that of general-purpose float glass, but has a high strength chemical.
  • Patent Documents 1 to 3 propose glass plates for chemical strengthening that are easy to obtain tempered glass.
  • the present invention is a glass plate that is easier to obtain a high-strength chemically tempered glass (hereinafter referred to as “easily tempered”) than when a general-purpose float glass is chemically strengthened.
  • An object of the present invention is to provide a glass plate that can be produced at the same melting temperature as that of glass, and that has a good burn resistance of the glass plate.
  • the present invention is made by solving these conflicting tendencies. That is, the chemically strengthened glass plate of the present invention has a glass composition in mass% of SiO 2 67 to 72, Al 2 O 3 3 to 4.5, Na 2 O 13 to 17, K 2 O 0 to 3, CaO 2-9, MgO 2-8, Na 2 O + K 2 O 13-18, CaO + MgO 4-14, the total of Na 2 O and K 2 O, and the mass of Al 2 O 3 In this ratio, (Na 2 O + K 2 O) / (Al 2 O 3 ) is 3.05 to 4.7, and the temperature at which the viscosity is 10 2 dPa ⁇ s is 1520 ° C. or less. .
  • the chemically tempered glass plate of the present invention is easily tempered but can be produced at the same melting temperature as general-purpose float glass and has good burn resistance. Therefore, the chemically tempered glass using the easily tempered glass plate of the present invention. Even if this manufacturing method has a process below, the fall of a yield decreases. That is, the method for producing a chemically strengthened glass plate of the present invention includes: A first step of producing the chemical strengthening glass plate; A second step of placing and storing the glass for chemical strengthening; The chemical strengthening glass plate is brought into contact with a salt containing potassium ions to have a third step of exchanging sodium ions and the potassium ions in the glass plate.
  • the numerical value range and the numerical value range defining the mass ratio are regarded as effective digits unless otherwise specified, and the maximum value is used for digits other than those shown (smaller side digits). Are rounded off to determine whether they are within the numerical range of the present invention.
  • the minimum side can be defined as 66.5
  • the maximum side can be defined as 72.4 within the range.
  • the glass plate having good burn resistance in the present invention is the haze value (Haze) of the glass after the pressure cooker test (the glass plate is kept for 24 hours in an environment where the temperature is 121 ° C. and the humidity is 99.8% RH). Is less than 1.0, preferably less than 0.8%. This value may be set to less than 0.7%, more preferably less than 0.4%.
  • a low haze value after the test means that the glass surface is hardly deteriorated by water vapor, which is preferable as an indicator of the burning resistance of the glass plate.
  • the temperature at which the viscosity is 10 2 dPa ⁇ s is referred to as a melting temperature, and indicates a temperature at which a glass raw material or glass can be melted to enable glass melting. A glass raw material or glass can be easily melted by an energy amount equivalent to that of float glass, and defoaming and clarification are promoted.
  • the temperature at which the viscosity is 10 2 dPa ⁇ s is preferably 1510 ° C. or lower, more preferably 1500 ° C. or lower. There is no particular lower limit for this temperature, but if it is less than 1400 ° C., the physical strength and chemical durability of the resulting glass plate tend to decrease, so this lower limit may be 1400 ° C.
  • the chemical strengthening glass plate is immersed in a molten salt containing potassium ions having an ion radius larger than the ion radius of Na ions, whereby Na ions and potassium ions contained in the glass plate are obtained.
  • a chemically tempered glass plate obtained by ion exchange Is a chemically tempered glass plate obtained by ion exchange.
  • the surface compressive stress (CS) is 500 to 1300 MPa
  • the compressed layer depth (DOL) is 5 to 50 ⁇ m, which can be relatively high strength.
  • the chemical strengthening glass plate of the present invention can be manufactured at a melting temperature comparable to that of general-purpose float glass while being easily strengthened, and also has good burn resistance. Therefore, it is possible to easily produce the chemically strengthened glass plate with little decrease in yield.
  • the glass plate of the present invention is planar and has a thickness of 0.1 mm to 4 mm, preferably 0.2 to 3.5 mm, more preferably 0.3 to 3.0 mm, and is manufactured by the float process. It is preferable.
  • each component of the glass composition which forms the glass plate of this invention, and the range of the preferable content are demonstrated. 1. About each component of glass composition
  • SiO 2 is a main component of glass and is an indispensable component for forming a glass network structure, and its content is 67 to 72 mass%. If it is less than 67% by mass, the glass structure tends to be unstable, and if it exceeds 72% by mass, the melting temperature becomes high and it becomes difficult to melt. Preferably, it is 68 to 71% by mass, more preferably 68 to 70% by mass.
  • Al 2 O 3 is a component for making the glass plate easy to strengthen, and its content is 3 to 4.5 mass%. If the content is less than 3% by mass, the effect of improving the easy strengthening is small, and if it exceeds 4.5% by mass, the scorch resistance of the glass plate tends to decrease. Considering these, the content of Al 2 O 3 is preferably 3.5 to 4.5% by mass, more preferably 3.8 to 4.4% by mass.
  • Na 2 O is a component that improves the solubility of the glass and has an effect on reducing the melting temperature of the glass. Moreover, when a glass plate is immersed in molten salt, it is also a component which improves the surface compressive stress of a glass plate by being ion-exchanged with K ion etc. in molten salt.
  • the content of Na 2 O is 13 to 17% by mass. If the content is less than 13% by mass, the surface compressive stress obtained by chemical strengthening tends to be low, and if it exceeds 17% by mass, the burning resistance tends to decrease. Considering these, the content of Na 2 O is preferably 13 to 16% by mass, more preferably 13.5 to 15% by mass.
  • K 2 O like Na 2 O, is a component that improves the solubility of glass and has an effect on reducing the melting temperature of glass. Moreover, it is also a component which makes the compression layer depth of a glass plate deep.
  • K 2 O is not necessarily essential, but can be contained in the glass plate within a range of 0 to 3% by mass. When the content of K 2 O exceeds 3% by mass, there is a tendency that it becomes difficult to exchange ions by suppressing the movement of Na ions due to the mixed alkali effect with Na 2 O. Moreover, there is a tendency that the burning resistance is lowered. Considering this, the content of K 2 O is preferably 2% by mass or less.
  • the Na 2 O in the glass plate by a mixed alkali effect with coexisting with K 2 O, improves the water resistance of the glass plate, so that the good resistance to scorching of the glass plates, the content of K 2 O
  • the lower limit may be set to 0.3% by mass, and further 0.5% by mass.
  • the total of the Na 2 O content and the K 2 O content is 13 to 18% by mass.
  • the total amount of these components greatly affects the meltability of the glass and the burn resistance of the glass plate. If the content is less than 13% by mass, the glass melting temperature tends to be high, and the productivity of the glass plate tends to deteriorate. On the other hand, if it exceeds 18% by mass, the burning resistance tends to deteriorate.
  • the total of the Na 2 O content and the K 2 O content is preferably 13.5 to 17% by mass, and more preferably 14 to 16% by mass.
  • the mass ratio (Na 2 O + K 2 O) / (Al 2 O 3 ) is set to 3.05 to 4.7. If this ratio is out of this numerical range, the burning resistance of the glass plate tends to decrease. Considering this, the ratio is preferably 3.1 or more, more preferably 3.2 or more on the lower limit side, and preferably 4.6 or less, more preferably 4. or less on the upper limit side. It is good also as 0 or less.
  • CaO is a component having an action of lowering the viscosity of the molten glass when the glass is melted, and has an effect of improving productivity. It can be contained in the glass plate within a range of 2 to 9% by mass. If the content of CaO is more than 9% by mass, ion exchange may be suppressed and desired chemical strengthening performance may not be obtained. Considering this, the content of CaO is preferably 8% by mass or less, more preferably 7% by mass or less.
  • MgO has the advantage that ion exchange in chemical strengthening is not hindered compared to CaO, but the effect of lowering the viscosity of molten glass at the time of glass melting is small compared to CaO. Therefore, it is adjusted in the range of 2 to 8% by mass. If it exceeds 8% by mass, crystals tend to be precipitated, and the temperature at which these crystals precipitate (herein referred to as devitrification temperature) is higher than the working temperature (temperature at which 10 4 dPa ⁇ s is reached). There is. In particular, when the devitrification temperature is higher than 1100 ° C., the production of the glass plate, particularly the production efficiency by the float method may be lowered. Considering these, the content of MgO is preferably 2.5 to 5.6% by mass, more preferably 3 to 5.5% by mass.
  • the total of MgO content and CaO content is 4 to 14% by mass.
  • the total amount of these components greatly affects the meltability of the glass and the chemical durability of the glass plate. If the content is less than 4% by mass, the glass viscosity may increase. If the content exceeds 14% by mass, the chemical durability may be deteriorated.
  • the total of the MgO content and the CaO content is preferably 6 to 13% by mass, and more preferably 8 to 12.5% by mass.
  • the mass ratio of CaO to MgO is preferably 0.4 to 0.8.
  • this ratio is preferably 0.45 to 0.7, more preferably 0.5 to 0.6.
  • the glass composition includes, in addition to the above components, for example, SO 3 derived from Na 2 SO 4 as a glass refining agent for the purpose of defoaming at the time of dissolution, Sb 2 O 3 , Various components such as SnO 2 , transition metal compounds such as Fe 2 O 3 , TiO 2 , CoO, and NiO for the purpose of coloring the glass and impurities derived from industrial glass raw materials are used to change the essence of the characteristics of the glass plate of the present invention. To the extent that, for example, their total amount is 0. It may be contained to the extent that it does not exceed 5% by mass.
  • the glass plate of this invention is manufactured suitably by the float glass process.
  • various molding methods such as a fusion method (including an overflow downdraw method), a downdraw method, a redraw method, a rollout method, and a press method can be employed.
  • the surface of the glass plate may be left as formed by the above forming method, chemically roughened with hydrofluoric acid or the like, or physically roughened by polishing or blasting or the like.
  • the surface may be roughened by combining them to provide functionality such as antiglare properties.
  • the shape of the glass is not particularly limited, but is preferably a plate-like body.
  • the shape of glass is plate shape, what was drilled by the glass surface etc., or the bending plate in a flat plate may be sufficient, and various shapes are included. Further, in the flat plate shape, a short shape or a disk shape is also within the scope of the present invention.
  • the glass plate prepared by the 1st process is mounted in a pallet, a box, etc., and is stored for a fixed period.
  • the storage period includes a period in which the glass plate circulates in both places when the place where the first process is performed is different from the place where the third process is performed. This storage period is, for example, 3 months to 1 year.
  • the surface of the glass plate may be burned due to moisture in the atmosphere. Since the glass plate of the present invention has good burn resistance, even a chemically tempered glass plate production method having the second step can be efficiently produced.
  • a plurality of chemically strengthened glass plates may be buffered with a slip sheet. Even if the gap between the glass plates is buffered with interleaving paper, moisture may be adsorbed on the interleaving paper, and therefore, the scorch resistance of the chemically strengthening glass plate is preferably good.
  • slip sheets used in the present invention include waste paper and virgin paper.
  • 3rd process chemical strengthening process of a glass plate
  • Conventional technology can be applied to a 3rd process, and it is performed by the ion exchange which substitutes the sodium in a glass plate for potassium ion in the surface layer of the glass plate for chemical strengthening.
  • ion exchange one or more of nitrates, sulfates, carbonates, hydroxides and phosphates containing potassium ions can be used. Among these, it is preferable to use a nitrate containing potassium ions.
  • Chemically strengthened glass is produced by the step of bringing a chemically strengthened glass plate into contact with a salt containing potassium ions.
  • Contacting a chemically strengthened glass plate with salt means contacting or immersing the chemically strengthened glass plate in a salt bath.
  • contact is a concept including “immersion”.
  • the contact form of the salt a form in which the paste-like salt is brought into direct contact or a form in which the salt is immersed in a molten salt heated to a melting point or higher is also possible. It is desirable to immerse in
  • the temperature of the glass sheet for chemical strengthening brought into contact with the salt is not particularly limited. It may be at room temperature and may be preheated, but preferably it is in a heated state. However, it is preferable that preheating temperature is below the glass transition point of a glass plate. When the glass transition point is exceeded, the shape of the glass plate is deformed, and a desired shape or size after chemical strengthening cannot be obtained. Note that the preheating temperature may be equal to or higher than the temperature of the salt to be contacted, which will be described later, or the same temperature or lower.
  • the preheating time is not particularly limited.
  • the temperature of the salt to be contacted is not particularly limited, but when the chemically strengthened glass plate is immersed in the molten salt, it is preferably not lower than the melting point temperature of the salt to be brought into contact with the molten salt. If it is above the strain point, the compressive stress caused by ion exchange is easily relaxed, and a desired surface compressive stress cannot be obtained.
  • potassium nitrate is used as the salt raw material to be contacted, since the melting point of potassium nitrate is 333 ° C., it is immersed at a temperature from 333 ° C. to the strain point temperature of the glass plate or less. In this case, it is preferably 350 ° C. to (strain point temperature ⁇ 10 ° C.), more preferably 370 ° C. to (strain point temperature ⁇ 20 ° C.).
  • the time for bringing the chemically strengthening glass plate into contact with the salt is not particularly limited, but when the glass plate is immersed in the molten salt, it is preferably 0.5 to 8 hours. If it is less than 0.5 hours, the ion exchange between sodium ions and potassium ions does not proceed sufficiently, and the desired surface compressive stress and compressed layer depth cannot be obtained. On the other hand, when it is 8 hours or more, the surface compressive stress caused by ion exchange is easily relaxed. Preferably, it is 0.5 to 6 hours, more preferably 1 to 5 hours.
  • the glass plate brought into contact with the salt for a predetermined time is cooled to room temperature through a cooling step.
  • the cooling process is a case where either a glass plate brought into contact with salt is placed in a furnace previously maintained at a temperature and the cooling rate is controlled (slow cooling) or rapid cooling (cooling) is performed directly at room temperature. including.
  • the cooling rate is appropriately adjusted depending on the glass plate dimensions.
  • the state which salt adhered to the glass plate at the time of a cooling process may be sufficient, and the atmosphere of a slow cooling process is not specifically limited, either.
  • the glass plate after cooling removes the salt adhering with warm water, cold water, etc., and a chemically strengthened glass is obtained.
  • the chemically tempered glass is manufactured by the preheating process, the ion exchange process, and the cooling process, but it does not have to be a single process. That is, the process of manufacturing the chemically strengthened glass may be performed once or more, and the temperature and time of the preheating process, the ion exchange process, and the cooling process are not necessarily equal. Moreover, the structure of the salt in the ion exchange process is not necessarily the same. Furthermore, when using a manufacturing process twice or more, you may abbreviate
  • the chemically strengthened glass manufactured through the manufacturing process can measure surface compressive stress (CS) and compressed layer depth (DOL) using a surface stress meter based on the optical waveguide effect as an observation principle. Can be adjusted within a range of 500 to 1300 MPa and a compressed layer depth (DOL) within a range of 5 to 50 ⁇ m. If the surface compressive stress is less than 500 MPa, there is a concern that the surface compressive stress may break due to a contact impact with a high-hardness member or due to a drop impact or the like. On the other hand, if the surface compressive stress is 1300 MPa or more, the internal tensile stress (CT) necessary for maintaining a balance with the integrated value of the compressive stress in the compressive stress layer becomes high.
  • CT internal tensile stress
  • the surface compressive stress is more preferably 550 to 1200 MPa, and further preferably 600 to 1000 MPa. If the compressed layer depth is less than 5 ⁇ m, scratches exceeding the compressive stress layer are caused by contact with the high hardness member, and there is a concern that the strength may be reduced. On the other hand, if it is 50 ⁇ m or more, the internal tensile stress becomes high, and the processing becomes difficult for cutting or the like. Therefore, the compressed layer depth is preferably 7 to 40 ⁇ m, more preferably 10 to 30 ⁇ m.
  • Devitrification temperature is the lowest temperature at which devitrification disappears by leaving the sample in a furnace with a temperature gradient in the temperature range of 980-1200 ° C for 2 hours and visually checking for the presence of devitrification. It was obtained by taking the average of the temperature below it.
  • thermal expansion coefficient (30-300 ° C), glass transition point, annealing point, and strain point
  • the thermal expansion coefficient and glass transition point were measured using a thermomechanical analyzer TMA8310 (manufactured by Rigaku), respectively.
  • the thermal expansion coefficient is an average linear expansion coefficient at 30 to 300 ° C.
  • the annealing point and strain point were measured by a beam bending method based on the provisions of JIS R3103-2: 2001 using a beam bending viscometer (manufactured by Opto Enterprise).
  • the chemically tempered glass obtained by performing the same process as the process of 6) on a general-purpose float glass having a thickness of 0.7 mm has a refractive index of 1.52 and a photoelastic constant of 26.0 ((nm / cm)).
  • the CS at 430 ° C. for 2 hours was 603 MPa
  • the DOL was 11.3 ⁇ m
  • the CS at 430 ° C. for 6 hours was 637 MPa
  • the DOL was 13.7 ⁇ m.
  • Tables 3 and 4 show the evaluations obtained in 1) to 7) above.
  • the glass plates obtained in Examples 1 to 11 were easily melted and excellent in chemical durability, and became high-strength glass plates by chemical strengthening treatment.
  • the chemically strengthened glass obtained in the examples had a compressive layer depth of 10 to 20 ⁇ m and a surface compressive stress of 670 to 900 MPa, which was higher in strength than the chemically strengthened glass obtained from general-purpose float glass. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is a glass sheet for chemical reinforcement, which has a glass composition that contains, in terms of mass%, 67-72% of SiO2, 3-4.5% of Al2O3, 13-17% of Na2O, 0-3% of K2O, 2-9% of CaO, 2-8% of MgO, a total of 13-18% of Na2O+K2O and a total of 4-14% of CaO+MgO, in which the mass ratio of the total of Na2O+K2O to Al2O3 is such that (Na2O+K2O)/(Al2O3) = 3.05-4.7, and in which the temperature at which the viscosity is 102 dPa·s is 1520ºC or lower. The present invention relates to a glass sheet from which a high strength chemically reinforced glass can be obtained more easily than in cases where an ordinary float glass is subjected to chemical reinforcement, and which can be produced at the same melting temperature as that of an ordinary float glass, and the present invention provides a glass sheet having good tarnishing resistance.

Description

化学強化用ガラス板及び化学強化ガラス板の製造方法Chemically strengthened glass plate and method for producing chemically strengthened glass plate
 本発明は、フロート法で製造しやすくて、高強度な化学強化用ガラス板を得やすいガラス板に関する。 The present invention relates to a glass plate that is easy to produce by a float process and that makes it easy to obtain a high-strength glass plate for chemical strengthening.
発明の背景Background of the Invention
 高強度の化学強化ガラス板を得るためには、素板となるガラス板のガラスは、組成的に、フロートガラス板として汎用的に流通しているソーダ石灰ケイ酸塩ガラス(当該ガラスの組成は、ISO16293-1(2008年)で規定されている。本明細書では、当該ガラスを以降「汎用フロートガラス」と表記する。)と比較して、Al23を多く含有している必要がある。Al23を多く含有するガラスは、ガラス原料やガラスを溶融する際の溶解温度が高くなる傾向があるものの、最近、汎用フロートガラスと同程度の溶解温度を有しながら、高強度の化学強化ガラスを得やすい化学強化用ガラス板が特許文献1~3で提案されている。 In order to obtain a high-strength chemically tempered glass plate, the glass of the glass plate used as the base plate is composed of soda-lime silicate glass that is widely distributed as a float glass plate (the composition of the glass is in. herein defined in ISO16293-1 (2008 years), since the glass referred to as "universal float glass".) as compared to, it needs to contain a large amount of Al 2 O 3 is there. Although glass containing a large amount of Al 2 O 3 tends to have a higher melting temperature when melting glass raw materials and glass, it has recently had a melting temperature similar to that of general-purpose float glass, but has a high strength chemical. Patent Documents 1 to 3 propose glass plates for chemical strengthening that are easy to obtain tempered glass.
国際公開2014/148020号International Publication No. 2014/148020 国際公開2014/196407号International Publication No. 2014/196407 国際公開2015/088010号International Publication No. 2015/088010
 汎用フロートガラスと同程度の溶解温度とし、且つ高強度な化学強化ガラスとするためには、汎用フロートガラスと比べてAl23の含有量を高めとしつつも、Na2Oの含有量を高める等の組成設計を行う必要がある。この組成設計を採用すると、ガラス板がヤケやすくなる。ガラス板のヤケとはガラス板が保管されている間、ガラス板表面が大気中の湿分等により劣化する現象をいう。化学強化用のガラス板を、フロート法で製造後、一定期間保管した後、化学強化処理をするような場合、ガラス板の耐ヤケ性が悪いと、ガラス板のヘイズ率の上昇や、化学強化処理時の強化不良の発生率が高くなる等の問題が生じやすくなる。 In order to obtain a melting temperature comparable to that of general-purpose float glass and a high-strength chemically strengthened glass, while increasing the content of Al 2 O 3 compared to general-purpose float glass, the content of Na 2 O is reduced. It is necessary to carry out a composition design such as an increase. When this composition design is adopted, the glass plate is easily burnt. Discoloration of the glass plate refers to a phenomenon in which the surface of the glass plate deteriorates due to moisture in the atmosphere while the glass plate is stored. When a glass plate for chemical strengthening is manufactured by the float method and stored for a certain period of time and then subjected to a chemical strengthening treatment, if the glass plate has poor burn resistance, the haze rate of the glass plate increases or the chemical strengthening Problems such as an increased incidence of strengthening defects during processing are likely to occur.
 本発明は、汎用フロートガラスを化学強化処理したときよりも、高強度な化学強化ガラスを得やすい(以降、この特性のことを「易強化性」と表記する。)ガラス板であり、汎用フロートガラスと同程度の溶解温度で製造できるガラス板に関し、ガラス板の耐ヤケ性が良好なガラス板を提供することを課題とする。 The present invention is a glass plate that is easier to obtain a high-strength chemically tempered glass (hereinafter referred to as “easily tempered”) than when a general-purpose float glass is chemically strengthened. An object of the present invention is to provide a glass plate that can be produced at the same melting temperature as that of glass, and that has a good burn resistance of the glass plate.
 特許文献1乃至3で提案されているガラス系を検討する中で、本発明者は、Al23含有量が高いガラス板では、ガラス板の耐ヤケ性が低下する傾向にあることを見出した。他方で、易強化性ガラス板とするためには、Al23含有量が高いガラス板とすることが好ましい。そのため、耐ヤケ性が良好な易強化性ガラス板とするためには、Al23の含有量については、この相反する傾向を解決する必要がある。 In examining the glass systems proposed in Patent Documents 1 to 3, the present inventor has found that the glass plate having a high Al 2 O 3 content tends to reduce the burning resistance of the glass plate. It was. On the other hand, in order to make an easily tempered glass plate, it is preferable to use a glass plate having a high Al 2 O 3 content. Therefore, in order to obtain an easily tempered glass plate having good burn resistance, it is necessary to solve the conflicting tendency with respect to the content of Al 2 O 3 .
 本発明は、上記課題を解決するために、この相反する傾向を解決して成したものである。すなわち、本発明の化学強化用ガラス板は、ガラス組成が、質量%で、SiO2 67~72、Al23 3~4.5、Na2O 13~17、K2O 0~3、CaO 2~9、MgO 2~8で、且つ、Na2O+K2Oが13~18、CaO+MgOが4~14であり、Na2OとK2Oとの合計と、Al23との質量比において、(Na2O+K2O)/(Al23)が3.05~4.7、粘度が102dPa・sとなる温度が1520℃以下であることを特徴とするものである。 In order to solve the above-mentioned problems, the present invention is made by solving these conflicting tendencies. That is, the chemically strengthened glass plate of the present invention has a glass composition in mass% of SiO 2 67 to 72, Al 2 O 3 3 to 4.5, Na 2 O 13 to 17, K 2 O 0 to 3, CaO 2-9, MgO 2-8, Na 2 O + K 2 O 13-18, CaO + MgO 4-14, the total of Na 2 O and K 2 O, and the mass of Al 2 O 3 In this ratio, (Na 2 O + K 2 O) / (Al 2 O 3 ) is 3.05 to 4.7, and the temperature at which the viscosity is 10 2 dPa · s is 1520 ° C. or less. .
 本発明の化学強化用ガラス板は、易強化性でありながら、汎用フロートガラスと同程度の溶解温度で製造でき、耐ヤケ性も良好なので、本発明の易強化性ガラス板を用いる化学強化ガラスの製造方法は、以下、工程を有するものであっても、歩留まりの低下が少なくなる。すなわち、本発明の化学強化ガラス板の製造方法は、
 前記化学強化用ガラス板を製造する第1工程、
 前記化学強化用ガラス板を載置し保管する第2工程、
 前記化学強化用ガラス板を、カリウムイオンを含む塩と接触させ、前記ガラス板中のナトリウムイオンと、前記カリウムイオンとを交換する第3工程
を有するものである。
The chemically tempered glass plate of the present invention is easily tempered but can be produced at the same melting temperature as general-purpose float glass and has good burn resistance. Therefore, the chemically tempered glass using the easily tempered glass plate of the present invention. Even if this manufacturing method has a process below, the fall of a yield decreases. That is, the method for producing a chemically strengthened glass plate of the present invention includes:
A first step of producing the chemical strengthening glass plate;
A second step of placing and storing the glass for chemical strengthening;
The chemical strengthening glass plate is brought into contact with a salt containing potassium ions to have a third step of exchanging sodium ions and the potassium ions in the glass plate.
 尚、本発明では、数値範囲や、質量比を規定する数値範囲は、特別に記載がない限り、表記されている数値を有効桁として考え、表記外の桁(小さい側桁)においては、最大の桁を四捨五入して本発明の数値範囲内かどうかを決める。例えば、SiO2 67~72にあっては、最小側は、66.5、最大側は、72.4がその射程内と定義できる。 In the present invention, the numerical value range and the numerical value range defining the mass ratio are regarded as effective digits unless otherwise specified, and the maximum value is used for digits other than those shown (smaller side digits). Are rounded off to determine whether they are within the numerical range of the present invention. For example, in SiO 2 67-72, the minimum side can be defined as 66.5, and the maximum side can be defined as 72.4 within the range.
 本発明で耐ヤケ性が良好なガラス板とは、プレッシャークッカー試験(温度が121℃、湿度が99.8%RHの環境にてガラス板を24時間保持)後のガラスのヘイズ値(Haze)が1.0未満、好ましくは0.8%未満にあることを意味する。この値は、0.7%未満、より好ましくは、0.4%未満に設定してもよい。試験後もヘイズ値が低いということは、ガラス表面が水蒸気により劣化しにくいことを意味しており、ガラス板の耐ヤケ性を示すものとして好ましいものである。 The glass plate having good burn resistance in the present invention is the haze value (Haze) of the glass after the pressure cooker test (the glass plate is kept for 24 hours in an environment where the temperature is 121 ° C. and the humidity is 99.8% RH). Is less than 1.0, preferably less than 0.8%. This value may be set to less than 0.7%, more preferably less than 0.4%. A low haze value after the test means that the glass surface is hardly deteriorated by water vapor, which is preferable as an indicator of the burning resistance of the glass plate.
 粘度が102dPa・sとなる温度は、溶融温度と称されており、ガラス原料やガラスを溶融してガラス融液化を可能とする温度を示し、この値が1520℃以下であれば、汎用フロートガラスと同等のエネルギー量によりガラス原料やガラスを容易に溶かすことができ、脱泡や清澄が促進される。粘度が102dPa・sとなる温度は、好ましくは、1510℃以下、より好ましくは、1500℃以下である。この温度については、下限は特にはないが、1400℃未満とだと得られるガラス板の物理的強度や化学的耐久性が低下するという傾向があるので、この下限は1400℃としてもよい。 The temperature at which the viscosity is 10 2 dPa · s is referred to as a melting temperature, and indicates a temperature at which a glass raw material or glass can be melted to enable glass melting. A glass raw material or glass can be easily melted by an energy amount equivalent to that of float glass, and defoaming and clarification are promoted. The temperature at which the viscosity is 10 2 dPa · s is preferably 1510 ° C. or lower, more preferably 1500 ° C. or lower. There is no particular lower limit for this temperature, but if it is less than 1400 ° C., the physical strength and chemical durability of the resulting glass plate tend to decrease, so this lower limit may be 1400 ° C.
 また、本発明は、上記化学強化用ガラス板を、Naイオンのイオン半径よりも大きいイオン半径を有するカリウムイオンを含む溶融塩に浸漬することにより、前記ガラス板に含まれるNaイオンと前記カリウムイオンとをイオン交換して得られた化学強化ガラス板である。本発明の化学強化ガラスでは、表面圧縮応力(CS)が500~1300MPa、圧縮層深さ(DOL)が5~50μmと比較的、高強度なものとすることができる。 In the present invention, the chemical strengthening glass plate is immersed in a molten salt containing potassium ions having an ion radius larger than the ion radius of Na ions, whereby Na ions and potassium ions contained in the glass plate are obtained. Is a chemically tempered glass plate obtained by ion exchange. In the chemically strengthened glass of the present invention, the surface compressive stress (CS) is 500 to 1300 MPa, and the compressed layer depth (DOL) is 5 to 50 μm, which can be relatively high strength.
 本発明の化学強化用ガラス板は、易強化性でありながら、汎用フロートガラスと同程度の溶解温度で製造でき、耐ヤケ性も良好となる。そのため、化学強化用ガラス板を歩留りの低下を少なく、効率的に生産しやすくできる。 The chemical strengthening glass plate of the present invention can be manufactured at a melting temperature comparable to that of general-purpose float glass while being easily strengthened, and also has good burn resistance. Therefore, it is possible to easily produce the chemically strengthened glass plate with little decrease in yield.
詳細な説明Detailed description
 本発明のガラス板は、平面状で厚さ0.1mm~4mm、好ましくは0.2~3.5mm、より好ましくは0.3~3.0mmであり、フロート法で製造されたものとすることが好ましい。以下、本発明のガラス板を形成するガラス組成の各成分と、その好ましい含有量の範囲について説明する。
1.ガラス組成の各成分について
The glass plate of the present invention is planar and has a thickness of 0.1 mm to 4 mm, preferably 0.2 to 3.5 mm, more preferably 0.3 to 3.0 mm, and is manufactured by the float process. It is preferable. Hereafter, each component of the glass composition which forms the glass plate of this invention, and the range of the preferable content are demonstrated.
1. About each component of glass composition
<SiO2
 SiO2はガラスの主成分となるもので、ガラスの網目構造の形成上必須不可欠の成分であり、その含有量は、67~72質量%とされる。67質量%未満だと、ガラス構造が不安定となりやすく、72%質量%超だと溶融温度が高くなり溶融し難くなる。好ましくは、68~71質量%、より好ましくは、68~70質量%である。
<SiO 2 >
SiO 2 is a main component of glass and is an indispensable component for forming a glass network structure, and its content is 67 to 72 mass%. If it is less than 67% by mass, the glass structure tends to be unstable, and if it exceeds 72% by mass, the melting temperature becomes high and it becomes difficult to melt. Preferably, it is 68 to 71% by mass, more preferably 68 to 70% by mass.
<Al23
 Al23はガラス板を易強化性にするための成分で、その含有量は3~4.5質量%とされる。その含有量において、3質量%未満だと、易強化性の向上に効果が少なく、4.5質量%超だと、ガラス板の耐ヤケ性が低下する傾向がある。これらを考慮すると、Al23の含有量は、好ましくは、3.5~4.5質量%、さらには、3.8~4.4質量%とすることが好ましい。
<Al 2 O 3 >
Al 2 O 3 is a component for making the glass plate easy to strengthen, and its content is 3 to 4.5 mass%. If the content is less than 3% by mass, the effect of improving the easy strengthening is small, and if it exceeds 4.5% by mass, the scorch resistance of the glass plate tends to decrease. Considering these, the content of Al 2 O 3 is preferably 3.5 to 4.5% by mass, more preferably 3.8 to 4.4% by mass.
<Na2O、K2O>
 Na2Oは、ガラスの溶解性を向上させる成分でガラスの溶融温度の低減に効果を有する。また、ガラス板を溶融塩に浸漬した際に、溶融塩中のKイオン等とイオン交換されることにより、ガラス板の表面圧縮応力を向上させる成分でもある。本発明において、Na2Oの含有量は、13~17質量%とされる。その含有量において、13質量%未満だと、化学強化で得られる表面圧縮応力が低くなる傾向があり、17質量%超だと、耐ヤケ性が低下する傾向がある。これらを考慮すると、Na2Oの含有量は、好ましくは、13~16質量%、さらには、13.5~15質量%とすることが好ましい。
<Na 2 O, K 2 O>
Na 2 O is a component that improves the solubility of the glass and has an effect on reducing the melting temperature of the glass. Moreover, when a glass plate is immersed in molten salt, it is also a component which improves the surface compressive stress of a glass plate by being ion-exchanged with K ion etc. in molten salt. In the present invention, the content of Na 2 O is 13 to 17% by mass. If the content is less than 13% by mass, the surface compressive stress obtained by chemical strengthening tends to be low, and if it exceeds 17% by mass, the burning resistance tends to decrease. Considering these, the content of Na 2 O is preferably 13 to 16% by mass, more preferably 13.5 to 15% by mass.
 K2Oは、Na2Oと同じくガラスの溶解性を向上させる成分であり、ガラスの溶融温度の低減に効果を有する。また、ガラス板の圧縮層深さを深くさせる成分でもある。K2Oは必ずしも必須となるわけではないが、0~3質量%の範囲内でガラス板に含有させることができる。K2Oの含有量が3質量%超だと、Na2Oとの混合アルカリ効果によりNaイオンの移動を抑制してイオン交換し難くなる傾向がある。また、耐ヤケ性が低下する傾向がある。これを考慮すると、K2Oの含有量は、2質量%以下とすることが好ましい。一方、ガラス板中にNa2Oと、K2Oと共存すると混合アルカリ効果により、ガラス板の耐水性などが向上し、ガラス板の耐ヤケ性を良好とするので、K2Oの含有量の下限は0.3質量%、さらには0.5質量%と設定してもよい。 K 2 O, like Na 2 O, is a component that improves the solubility of glass and has an effect on reducing the melting temperature of glass. Moreover, it is also a component which makes the compression layer depth of a glass plate deep. K 2 O is not necessarily essential, but can be contained in the glass plate within a range of 0 to 3% by mass. When the content of K 2 O exceeds 3% by mass, there is a tendency that it becomes difficult to exchange ions by suppressing the movement of Na ions due to the mixed alkali effect with Na 2 O. Moreover, there is a tendency that the burning resistance is lowered. Considering this, the content of K 2 O is preferably 2% by mass or less. On the other hand, the Na 2 O in the glass plate, by a mixed alkali effect with coexisting with K 2 O, improves the water resistance of the glass plate, so that the good resistance to scorching of the glass plates, the content of K 2 O The lower limit may be set to 0.3% by mass, and further 0.5% by mass.
 また、Na2O含有量とK2O含有量の合計は13~18質量%とされる。これら成分の合計量は、ガラスの溶融性と、ガラス板の耐ヤケ性に影響が大きいものである。その含有量において、13質量%未満だと、ガラス溶融温度が高くなり、ガラス板の生産性が悪くなる傾向がある。他方、18質量%超となると、耐ヤケ性が悪くなる傾向がある。これらを考慮すると、Na2O含有量とK2O含有量の合計は、好ましくは、13.5~17質量%、さらには、14~16質量%とすることが好ましい。 The total of the Na 2 O content and the K 2 O content is 13 to 18% by mass. The total amount of these components greatly affects the meltability of the glass and the burn resistance of the glass plate. If the content is less than 13% by mass, the glass melting temperature tends to be high, and the productivity of the glass plate tends to deteriorate. On the other hand, if it exceeds 18% by mass, the burning resistance tends to deteriorate. Considering these, the total of the Na 2 O content and the K 2 O content is preferably 13.5 to 17% by mass, and more preferably 14 to 16% by mass.
<Na2OとK2Oとの合計と、Al23との質量比>
 当該質量比である(Na2O+K2O)/(Al23)は、3.05~4.7とされる。この比がこの数値範囲外だと、ガラス板の耐ヤケ性が低下する傾向にある。これを考慮すると、この比は、下限側にあっては、好ましくは3.1以上、より好ましくは3.2以上、上限側にあっては、好ましくは4.6以下、より好ましくは4.0以下としてもよい。
<The total of Na 2 O and K 2 O, the mass ratio of Al 2 O 3>
The mass ratio (Na 2 O + K 2 O) / (Al 2 O 3 ) is set to 3.05 to 4.7. If this ratio is out of this numerical range, the burning resistance of the glass plate tends to decrease. Considering this, the ratio is preferably 3.1 or more, more preferably 3.2 or more on the lower limit side, and preferably 4.6 or less, more preferably 4. or less on the upper limit side. It is good also as 0 or less.
<CaO、MgO>
 CaOは、ガラス溶融時の溶融ガラスの粘性を下げる作用を有する成分であり、生産性を向上させる効果を有する。2~9質量%の範囲内でガラス板に含有させることができる。CaOの含有量が9質量%超だと、イオン交換を抑制し、所望の化学強化性能が得られなくなることがある。これを考慮すると、CaOの含有量は、8質量%以下、さらには7質量%以下とすることが好ましい。
<CaO, MgO>
CaO is a component having an action of lowering the viscosity of the molten glass when the glass is melted, and has an effect of improving productivity. It can be contained in the glass plate within a range of 2 to 9% by mass. If the content of CaO is more than 9% by mass, ion exchange may be suppressed and desired chemical strengthening performance may not be obtained. Considering this, the content of CaO is preferably 8% by mass or less, more preferably 7% by mass or less.
 MgOは、CaOと比較して、化学強化におけるイオン交換を妨げないという利点を有するが、ガラス溶融時の溶融ガラスの粘性を下げる作用はCaOと比較して小さい。そのため、2~8質量%の範囲で調整される。8質量%超だと、結晶が析出し易くなる傾向があり、この結晶が析出する温度(ここでは失透温度と呼ぶ)が、作業温度(104dPa・sとなる温度)より高くなることがある。特に失透温度が1100℃より高いとガラス板の生産、特にはフロート法での生産効率が低下することがある。これらを考慮すると、MgOの含有量は、好ましくは、2.5~5.6質量%、さらに好ましくは、3~5.5質量%としてもよい。 MgO has the advantage that ion exchange in chemical strengthening is not hindered compared to CaO, but the effect of lowering the viscosity of molten glass at the time of glass melting is small compared to CaO. Therefore, it is adjusted in the range of 2 to 8% by mass. If it exceeds 8% by mass, crystals tend to be precipitated, and the temperature at which these crystals precipitate (herein referred to as devitrification temperature) is higher than the working temperature (temperature at which 10 4 dPa · s is reached). There is. In particular, when the devitrification temperature is higher than 1100 ° C., the production of the glass plate, particularly the production efficiency by the float method may be lowered. Considering these, the content of MgO is preferably 2.5 to 5.6% by mass, more preferably 3 to 5.5% by mass.
 また、MgO含有量とCaO含有量の合計は、4~14質量%とされる。これら成分の合計量は、ガラスの溶融性と、ガラス板の化学的耐久性に影響が大きいものである。その含有量において、4質量%未満だと、ガラス粘性が高くなることがあり、14質量%超となると、化学的耐久性が悪化することがある。これらを考慮すると、MgO含有量とCaO含有量の合計は、好ましくは、6~13質量%、さらには、8~12.5質量%とすることが好ましい。 Also, the total of MgO content and CaO content is 4 to 14% by mass. The total amount of these components greatly affects the meltability of the glass and the chemical durability of the glass plate. If the content is less than 4% by mass, the glass viscosity may increase. If the content exceeds 14% by mass, the chemical durability may be deteriorated. Considering these, the total of the MgO content and the CaO content is preferably 6 to 13% by mass, and more preferably 8 to 12.5% by mass.
 CaOとMgOとの質量比、すなわち、CaO/(CaO+MgO)は、0.4~0.8とすることが好ましい。この比が高いと、MgOの原料として、比較的コストの低いドロマイトの使用比率を高めることができる。他方で、この比が高すぎると、ガラス板の易強化性が低下することがあるので、この比を高くしすぎないことが好ましい。これらを考慮すると、この比は、好ましくは0.45~0.7、より好ましくは0.5~0.6としてもよい。
<その他の成分>
 なお、本発明のガラス板において、ガラス組成には、上記の成分以外に、例えば、溶解時の脱泡を目的としたガラス清澄剤としてのNa2SO4由来のSO3、Sb23、SnO2、ガラスの着色を目的としたFe23、TiO2、CoO、NiOなどの遷移金属化合物、工業ガラス原料起源の不純物などの各種成分を、本発明のガラス板の特性の本質を変えない程度に、例えば、それらの合計量が、0 .5質量%を超えない程度に含んでいてもよい。また、フッ素、ZnO、B23、Li2O、SrO、BaO、ZrO2、P25等については、ガラス原料からの不可避的に混入される不純物量として、0.1量%を超えない程度に含有してもよい。
The mass ratio of CaO to MgO, that is, CaO / (CaO + MgO) is preferably 0.4 to 0.8. When this ratio is high, the use ratio of dolomite having a relatively low cost as a raw material for MgO can be increased. On the other hand, if this ratio is too high, the easy strengthenability of the glass plate may be reduced, so it is preferable not to make this ratio too high. Considering these, this ratio is preferably 0.45 to 0.7, more preferably 0.5 to 0.6.
<Other ingredients>
In the glass plate of the present invention, the glass composition includes, in addition to the above components, for example, SO 3 derived from Na 2 SO 4 as a glass refining agent for the purpose of defoaming at the time of dissolution, Sb 2 O 3 , Various components such as SnO 2 , transition metal compounds such as Fe 2 O 3 , TiO 2 , CoO, and NiO for the purpose of coloring the glass and impurities derived from industrial glass raw materials are used to change the essence of the characteristics of the glass plate of the present invention. To the extent that, for example, their total amount is 0. It may be contained to the extent that it does not exceed 5% by mass. Further, for fluorine, ZnO, B 2 O 3 , Li 2 O, SrO, BaO, ZrO 2 , P 2 O 5, etc., 0.1% by weight is added as the amount of impurities inevitably mixed from the glass raw material. You may contain to the extent which does not exceed.
2.化学強化ガラス板の製造について
 本発明の化学強化ガラス板の製造方法は、
前述で説明した化学強化用ガラス板を製造する第1工程、
前記ガラス板を載置し保管する第2工程、
前記ガラス板を、カリウムイオンを含む塩と接触させ、前記ガラス板中のナトリウムイオンと、前記カリウムイオンとを交換する第3工程、
を有するもので、各工程を、以下に詳述する。
2. About production of chemically strengthened glass plate
A first step of manufacturing the glass sheet for chemical strengthening described above,
A second step of placing and storing the glass plate;
A third step of bringing the glass plate into contact with a salt containing potassium ions and exchanging sodium ions and the potassium ions in the glass plate;
Each process will be described in detail below.
2.1.第1工程(化学強化用ガラス板を製造する工程)について
 本発明のガラス板は、好適には、フロート法で製造される。また、フロート法以外にも、フュージョン法(オーバーフローダウンドロー法を含む)、ダウンドロー法、リドロー法、ロールアウト法、プレス法等の様々な成形方法を採用することができる。なお、ガラス板の表面は、上記の成形方法により成形されたままの状態でもよいし、弗酸などにより化学的に粗す、もしくは、研磨やブラストなどにより物理的に粗す、もしくは、その掛け合わせにより表面を粗し、防眩性等の機能性を付与しても良い。また、ガラスの形状は特に限定されないが、板状体であることが好ましい。また、ガラスの形状が板状である場合、ガラス面に穴あけ加工等されたもの、又は、平板での曲げ板でもよく、種々の形状を包含する。また、平板状において、短形や円盤状なども本発明の範疇である。
2.1. About 1st process (process which manufactures the glass plate for chemical strengthening) The glass plate of this invention is manufactured suitably by the float glass process. In addition to the float method, various molding methods such as a fusion method (including an overflow downdraw method), a downdraw method, a redraw method, a rollout method, and a press method can be employed. The surface of the glass plate may be left as formed by the above forming method, chemically roughened with hydrofluoric acid or the like, or physically roughened by polishing or blasting or the like. The surface may be roughened by combining them to provide functionality such as antiglare properties. The shape of the glass is not particularly limited, but is preferably a plate-like body. Moreover, when the shape of glass is plate shape, what was drilled by the glass surface etc., or the bending plate in a flat plate may be sufficient, and various shapes are included. Further, in the flat plate shape, a short shape or a disk shape is also within the scope of the present invention.
2.2.第2工程(ガラス板を載置し保管する工程)について
 第1工程で準備されたガラス板は、パレット、箱等に載置され、一定期間保管される。また、この保管期間として、第1工程を実施する場所と、第3工程を実施する場所が異なる場合の、両場所をガラス板が流通する期間も含まれる。この保管期間は、例えば、3ヶ月~1年である。
2.2. About 2nd process (process which mounts and stores a glass plate) The glass plate prepared by the 1st process is mounted in a pallet, a box, etc., and is stored for a fixed period. In addition, the storage period includes a period in which the glass plate circulates in both places when the place where the first process is performed is different from the place where the third process is performed. This storage period is, for example, 3 months to 1 year.
 ガラス板が保管されている間、ガラス板表面が大気中の湿分等により、ヤケが進行することがある。本発明のガラス板は、耐ヤケ性が良好なので、第2工程を有するような化学強化ガラス板の製造方法であっても、効率良く生産することができる。 While the glass plate is being stored, the surface of the glass plate may be burned due to moisture in the atmosphere. Since the glass plate of the present invention has good burn resistance, even a chemically tempered glass plate production method having the second step can be efficiently produced.
 また、第2工程では、複数枚の化学強化用ガラス板間を合紙で緩衝させておいてもよい。ガラス板間を合紙で緩衝させたとしても、合紙に湿分が吸着されていることがあるので、化学強化用ガラス板の耐ヤケ性は良好であることが好ましい。本発明で使用される合紙の例として、古紙やバージン紙等が挙げられる。 In the second step, a plurality of chemically strengthened glass plates may be buffered with a slip sheet. Even if the gap between the glass plates is buffered with interleaving paper, moisture may be adsorbed on the interleaving paper, and therefore, the scorch resistance of the chemically strengthening glass plate is preferably good. Examples of slip sheets used in the present invention include waste paper and virgin paper.
3.第3工程(ガラス板の化学強化処理)について
 第3工程には、従来技術を適用でき、化学強化用ガラス板の表面層で、ガラス板中のナトリウムをカリウムイオンに置換するイオン交換によって行われる。イオン交換には、カリウムイオンを含む硝酸塩、硫酸塩、炭酸塩、水酸化物塩及びリン酸塩のうち1種又は2種以上を用いることができる。中でも、カリウムイオンを含む硝酸塩を用いることが好ましい。
3. About 3rd process (chemical strengthening process of a glass plate) Conventional technology can be applied to a 3rd process, and it is performed by the ion exchange which substitutes the sodium in a glass plate for potassium ion in the surface layer of the glass plate for chemical strengthening. . For ion exchange, one or more of nitrates, sulfates, carbonates, hydroxides and phosphates containing potassium ions can be used. Among these, it is preferable to use a nitrate containing potassium ions.
 カリウムイオンを含む塩に化学強化用ガラス板を接触させる工程により、化学強化ガラスが製造される。「塩に化学強化用ガラス板を接触させる」とは、化学強化ガラス板を塩浴に接触又は浸漬させることをいう。このように、本明細書において、「接触」とは「浸漬」も含む概念とする。また、塩の接触形態としては、ペースト状の塩を直接接触させるような形態、又は、融点以上に加熱した溶融塩に浸漬させるような形態なども可能であるが、これらの中では、溶融塩に浸漬させるのが望ましい。 Chemically strengthened glass is produced by the step of bringing a chemically strengthened glass plate into contact with a salt containing potassium ions. “Contacting a chemically strengthened glass plate with salt” means contacting or immersing the chemically strengthened glass plate in a salt bath. Thus, in this specification, “contact” is a concept including “immersion”. In addition, as the contact form of the salt, a form in which the paste-like salt is brought into direct contact or a form in which the salt is immersed in a molten salt heated to a melting point or higher is also possible. It is desirable to immerse in
(予熱工程)
 塩に接触させる化学強化用ガラス板の温度は、特に限定されない。室温でも良く、予め加熱しても良いが、好ましくは加熱された状態が良い。ただし、予熱温度は、ガラス板のガラス転移点以下であることが好ましい。ガラス転移点以上であると、該ガラス板の形状が変形し、化学強化後の所望の形状、又は、寸法が得られない。なお、予熱温度は、後述する接触させる塩の温度以上、もしくは、同じ温度、もしくは、それ以下でも構わない。予熱時間は特に限定されない。
(Preheating process)
The temperature of the glass sheet for chemical strengthening brought into contact with the salt is not particularly limited. It may be at room temperature and may be preheated, but preferably it is in a heated state. However, it is preferable that preheating temperature is below the glass transition point of a glass plate. When the glass transition point is exceeded, the shape of the glass plate is deformed, and a desired shape or size after chemical strengthening cannot be obtained. Note that the preheating temperature may be equal to or higher than the temperature of the salt to be contacted, which will be described later, or the same temperature or lower. The preheating time is not particularly limited.
(イオン交換工程)
 接触させる塩の温度は特に限定されないが、化学強化用ガラス板を溶融塩に浸漬させる場合は、該ガラス板の歪点温度以下から接触させる塩の融点以上であることが好ましい。歪点以上だと、イオン交換により生じる圧縮応力が緩和されやすく、所望の表面圧縮応力が得られない。接触させる塩の原料に硝酸カリウムを用いる場合、硝酸カリウムの融点が333℃であるため、333℃から該ガラス板の歪点温度以下の温度で浸漬する。この場合、好ましくは、350℃~(歪点温度-10℃)、より好ましくは、370℃~(歪点温度-20℃)である。
(Ion exchange process)
The temperature of the salt to be contacted is not particularly limited, but when the chemically strengthened glass plate is immersed in the molten salt, it is preferably not lower than the melting point temperature of the salt to be brought into contact with the molten salt. If it is above the strain point, the compressive stress caused by ion exchange is easily relaxed, and a desired surface compressive stress cannot be obtained. When potassium nitrate is used as the salt raw material to be contacted, since the melting point of potassium nitrate is 333 ° C., it is immersed at a temperature from 333 ° C. to the strain point temperature of the glass plate or less. In this case, it is preferably 350 ° C. to (strain point temperature −10 ° C.), more preferably 370 ° C. to (strain point temperature −20 ° C.).
 化学強化用ガラス板を塩に接触させる時間は特に限定されないが、該ガラス板を溶融塩に浸漬させる場合は、0.5~8時間であることが好ましい。0.5時間未満だとナトリウムイオンとカリウムイオンのイオン交換が充分に進まず、所望の表面圧縮応力、及び、圧縮層深さが得られない。一方、8時間以上だと、イオン交換により生じる表面圧縮応力が緩和されやすくなる。好ましくは、0.5~6時間、より好ましくは、1~5時間である。 The time for bringing the chemically strengthening glass plate into contact with the salt is not particularly limited, but when the glass plate is immersed in the molten salt, it is preferably 0.5 to 8 hours. If it is less than 0.5 hours, the ion exchange between sodium ions and potassium ions does not proceed sufficiently, and the desired surface compressive stress and compressed layer depth cannot be obtained. On the other hand, when it is 8 hours or more, the surface compressive stress caused by ion exchange is easily relaxed. Preferably, it is 0.5 to 6 hours, more preferably 1 to 5 hours.
(冷却工程)
 所定時間塩に接触させたガラス板は、冷却工程を介して、室温まで冷却される。冷却工程とは、予め温度で保持された炉に塩に接触させたガラス板を入れて、冷却速度を制御する(徐冷)場合と、室温下に直接曝す急冷(放冷)のいずれの場合を含む。但し、急冷によりガラス板が割れることもあるため、徐冷工程を用いることが好ましい。冷却速度は、ガラス板寸法により、適宜調整する。なお、冷却工程時にガラス板に塩が付着した状態でも構わず、徐冷工程の雰囲気も特に限定しない。冷却後のガラス板は、温水、冷水などにより付着した塩を除去することにより、化学強化ガラスが得られる。
(Cooling process)
The glass plate brought into contact with the salt for a predetermined time is cooled to room temperature through a cooling step. The cooling process is a case where either a glass plate brought into contact with salt is placed in a furnace previously maintained at a temperature and the cooling rate is controlled (slow cooling) or rapid cooling (cooling) is performed directly at room temperature. including. However, since the glass plate may be broken by rapid cooling, it is preferable to use a slow cooling step. The cooling rate is appropriately adjusted depending on the glass plate dimensions. In addition, the state which salt adhered to the glass plate at the time of a cooling process may be sufficient, and the atmosphere of a slow cooling process is not specifically limited, either. The glass plate after cooling removes the salt adhering with warm water, cold water, etc., and a chemically strengthened glass is obtained.
 予熱工程、イオン交換工程、冷却工程により、化学強化ガラスが製造されるが、1工程である必要もない。即ち、前記化学強化ガラスの製造工程を1回以上行ってもよく、その際の予熱工程、イオン交換工程、冷却工程の温度や時間は必ずしも等しくする必要もない。また、イオン交換工程における塩の構成も必ずしも同じとする必要も無い。更に、2回以上製造工程を用いる際には、イオン交換工程間の予熱工程、及び、冷却工程のいずれか、もしくは、両方を省略しても良い。 The chemically tempered glass is manufactured by the preheating process, the ion exchange process, and the cooling process, but it does not have to be a single process. That is, the process of manufacturing the chemically strengthened glass may be performed once or more, and the temperature and time of the preheating process, the ion exchange process, and the cooling process are not necessarily equal. Moreover, the structure of the salt in the ion exchange process is not necessarily the same. Furthermore, when using a manufacturing process twice or more, you may abbreviate | omit either the preheating process between ion exchange processes, a cooling process, or both.
 前記製造工程を介して製造された化学強化ガラスは、光導波路効果を観測原理とする表面応力計を用いて、表面圧縮応力(CS)と圧縮層深さ(DOL)を計測でき、表面圧縮応力は500~1300MPa、圧縮層深さ(DOL)は5~50μmの範囲内で調整することが可能である。表面圧縮応力が500MPa未満であると、高硬度部材との接触衝撃により、あるいは落下による衝撃などにより割れてしまうという懸念が生じる。一方、表面圧縮応力が1300MPa以上であると、圧縮応力層における圧縮応力の積算値との均衡を保つために必要な内部引っ張り応力(CT)が高くなり、例えば、該化学強化ガラスを切断する際に、チッピングと呼ばれるカケが生じやすくなり、歩留まりが低下する懸念が考えられる。従って、表面圧縮応力は550~1200MPaがより好ましく、600~1000MPaであるのがさらに好ましい。圧縮層深さは5μm未満であると、高硬度部材との接触により圧縮応力層を超える傷が付き、強度低下の懸念が考えられる。一方、50μm以上であると、内部引っ張り応力が高くなり、また、切断等に加工が難しくなる。従って、圧縮層深さは7~40μmが好ましく、10~30μmであるのはさらに好ましい。 The chemically strengthened glass manufactured through the manufacturing process can measure surface compressive stress (CS) and compressed layer depth (DOL) using a surface stress meter based on the optical waveguide effect as an observation principle. Can be adjusted within a range of 500 to 1300 MPa and a compressed layer depth (DOL) within a range of 5 to 50 μm. If the surface compressive stress is less than 500 MPa, there is a concern that the surface compressive stress may break due to a contact impact with a high-hardness member or due to a drop impact or the like. On the other hand, if the surface compressive stress is 1300 MPa or more, the internal tensile stress (CT) necessary for maintaining a balance with the integrated value of the compressive stress in the compressive stress layer becomes high. For example, when cutting the chemically strengthened glass In addition, chipping is likely to occur, and there is a concern that the yield may decrease. Accordingly, the surface compressive stress is more preferably 550 to 1200 MPa, and further preferably 600 to 1000 MPa. If the compressed layer depth is less than 5 μm, scratches exceeding the compressive stress layer are caused by contact with the high hardness member, and there is a concern that the strength may be reduced. On the other hand, if it is 50 μm or more, the internal tensile stress becomes high, and the processing becomes difficult for cutting or the like. Therefore, the compressed layer depth is preferably 7 to 40 μm, more preferably 10 to 30 μm.
<化学強化用ガラス板の製造>
 原料として、珪砂、酸化アルミニウム、ソーダ灰、硫酸ナトリウム、炭酸カリウム、炭酸カルシウム、酸化マグネシウムなどの原料を用いて表1の実施例1~11、表2の比較例1~8に示すガラス成分の割合となるように調合された750gのガラスに相当するバッチを白金坩堝に充填し、1450~1550℃で約8時間溶融し、清澄なガラス融液とした。その後、ガラス融液を耐熱、不活性なカーボン板上に流出、流延させて板ガラス状とし、次いで電気炉内でガラス転移点を越える温度に保持後徐冷し、冷却後にガラスブロックを得た。ガラスブロックを切断・研磨加工し、特性を評価した。
<Manufacture of glass plate for chemical strengthening>
The raw materials such as silica sand, aluminum oxide, soda ash, sodium sulfate, potassium carbonate, calcium carbonate, magnesium oxide, etc., were used for the glass components shown in Examples 1 to 11 in Table 1 and Comparative Examples 1 to 8 in Table 2. A batch corresponding to 750 g of glass prepared to have a ratio was filled in a platinum crucible and melted at 1450 to 1550 ° C. for about 8 hours to obtain a clear glass melt. Thereafter, the glass melt was flown out and cast onto a heat-resistant and inert carbon plate to form a plate glass, and then kept at a temperature exceeding the glass transition point in an electric furnace and then slowly cooled, and a glass block was obtained after cooling. . The glass block was cut and polished to evaluate the characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<得られたガラスの評価>
1)溶融温度、作業温度の評価
 溶融温度として、粘度が102dPa・sとなる温度、及び、作業温度として、粘度が104dPa・sとなる温度を測定した。当該温度は、球引き上げ式粘度計(オプト企業製)を用いて球引き上げ法により測定した。尚、比較例4、5は、失透温度が高いため、本評価をしていない。
<Evaluation of the obtained glass>
1) Evaluation of melting temperature and working temperature A temperature at which the viscosity was 10 2 dPa · s as the melting temperature and a temperature at which the viscosity was 10 4 dPa · s were measured as the working temperature. The temperature was measured by a ball pulling method using a ball pulling viscometer (manufactured by Opto Corporation). Note that Comparative Examples 4 and 5 were not evaluated because the devitrification temperature was high.
2)失透温度
 失透温度は、980~1200℃の温度範囲で温度傾斜の付いた炉内に試料を2時間放置し、失透の有無を目視して、失透がなくなる最低の温度とその一つ下の温度の平均を取ることで求めた。
2) Devitrification temperature The devitrification temperature is the lowest temperature at which devitrification disappears by leaving the sample in a furnace with a temperature gradient in the temperature range of 980-1200 ° C for 2 hours and visually checking for the presence of devitrification. It was obtained by taking the average of the temperature below it.
3)熱膨張係数(30-300℃)、ガラス転移点、徐冷点、歪点の評価
 熱膨張係数、及び、ガラス転移点は、熱機械分析装置TMA8310(リガク製)を用い、それぞれ、JIS R 3102:1995、JIS R3103-3:2001の規定に基づき測定した。なお、熱膨張係数は、30~300℃における平均線膨張係数である。徐冷点、及び、歪点は、ビームベンディング式粘度計(オプト企業製)を用いて、JIS R3103-2:2001の規定に基づくビーム曲げ法により測定した。
3) Evaluation of thermal expansion coefficient (30-300 ° C), glass transition point, annealing point, and strain point The thermal expansion coefficient and glass transition point were measured using a thermomechanical analyzer TMA8310 (manufactured by Rigaku), respectively. R 3102: 1995, measured according to JIS R3103-3: 2001. The thermal expansion coefficient is an average linear expansion coefficient at 30 to 300 ° C. The annealing point and strain point were measured by a beam bending method based on the provisions of JIS R3103-2: 2001 using a beam bending viscometer (manufactured by Opto Enterprise).
4)密度の評価
 密度は、JIS Z 8807:1976の規定に基づき、アルキメデス法により測定した。
4) Evaluation of density The density was measured by the Archimedes method based on the provisions of JIS Z 8807: 1976.
5)耐ヤケ性の評価
 2~3mm厚さの光学研磨したガラス板をPC-422R2(平山製作所社製)を用いて温度121℃、湿度99.8%、24時間でプレッシャークッカーテスト(PCT)を実施した。その後、テーブルヘーズメーターHZ-T(スガ試験機製)を用い、JIS K 7136:2000に規定に基づき、D65光源にて、ヘイズ(Haze)値を測定した。本結果は、表3、4中では、「PCT後のHaze」と表記している。
5) Evaluation of burn resistance Pressure cooker test (PCT) at a temperature of 121 ° C. and a humidity of 99.8% using a PC-422R2 (manufactured by Hirayama Manufacturing Co., Ltd.) for an optically polished glass plate having a thickness of 2 to 3 mm. Carried out. Thereafter, a haze value was measured using a table haze meter HZ-T (manufactured by Suga Test Instruments Co., Ltd.) with a D65 light source in accordance with JIS K 7136: 2000. This result is described as “Haze after PCT” in Tables 3 and 4.
6)化学強化処理
 2~3mm厚さの光学研磨したガラス板を、450℃、430℃の温度に保持された硝酸カリウム溶融塩浴中にそれぞれ2時間、6時間浸漬することにより、化学強化処理を行った。化学強化処理されたガラス板について、表面応力計(折原製作所製、FSM-6000LE)を用いて、表面圧縮応力(CS)、及び、ガラス表面に形成された圧縮応力層の深さ(DOL)をそれぞれ測定した。なお、表面応力計による測定において、屈折率は1.52、光弾性定数は27.0((nm/cm)/MPa)をそれぞれ用いた。尚、前記6)の処理と同様の処理を0.7mm厚さの汎用フロートガラスに行って得られた化学強化ガラスを屈折率1.52、光弾性定数は26.0((nm/cm)/MPa)をそれぞれ用いて測定した結果、450℃、2時間におけるCSは603MPa、DOLは11.3μm、430℃、6時間におけるCSは637MPa、DOLは13.7μmあった。
6) Chemical strengthening treatment A 2 to 3 mm thick optically polished glass plate is immersed in a potassium nitrate molten salt bath maintained at a temperature of 450 ° C. and 430 ° C. for 2 hours and 6 hours, respectively. went. Using a surface stress meter (FSM-6000LE manufactured by Orihara Seisakusho) for the chemically strengthened glass plate, the surface compressive stress (CS) and the depth (DOL) of the compressive stress layer formed on the glass surface were determined. Each was measured. In the measurement with a surface stress meter, a refractive index of 1.52 and a photoelastic constant of 27.0 ((nm / cm) / MPa) were used. The chemically tempered glass obtained by performing the same process as the process of 6) on a general-purpose float glass having a thickness of 0.7 mm has a refractive index of 1.52 and a photoelastic constant of 26.0 ((nm / cm)). As a result, the CS at 430 ° C. for 2 hours was 603 MPa, the DOL was 11.3 μm, the CS at 430 ° C. for 6 hours was 637 MPa, and the DOL was 13.7 μm.
7)ビッカース硬度の評価
 ビッカース硬度は微小硬さ試験機HM-124(Akashi製)を用いてJIS R 1610:2003及びJIS Z 2244:2009の規定に基づき測定した。
7) Evaluation of Vickers hardness Vickers hardness was measured using a microhardness tester HM-124 (manufactured by Akashi) based on the regulations of JIS R 1610: 2003 and JIS Z 2244: 2009.
 以上の1)~7)で得られた評価を表3、4に示す。実施例1~11で得られたガラス板は溶融しやすく、化学的耐久性に優れたもので、化学強化処理によって、高強度なガラス板となるものであった。実施例で得られた化学強化ガラスは、圧縮層深さ10~20μmにて、表面圧縮応力が、670~900MPaとなり、汎用フロートガラスから得られた化学強化ガラスよりも高強度なものであった。 Tables 3 and 4 show the evaluations obtained in 1) to 7) above. The glass plates obtained in Examples 1 to 11 were easily melted and excellent in chemical durability, and became high-strength glass plates by chemical strengthening treatment. The chemically strengthened glass obtained in the examples had a compressive layer depth of 10 to 20 μm and a surface compressive stress of 670 to 900 MPa, which was higher in strength than the chemically strengthened glass obtained from general-purpose float glass. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1. ガラス組成が、質量%で、SiO2 67~72、Al23 3~4.5、Na2O 13~17、K2O 0~3、CaO 2~9、MgO 2~8で、且つ、Na2O+K2Oが13~18、CaO+MgOが4~14であり、
    Na2OとK2Oとの合計と、Al23との合計との質量比において、(Na2O+K2O)/(Al23)が3.05~4.7であり、
    粘度が102dPa・sとなる温度が1520℃以下であることを特徴とする化学強化用ガラス板。
    The glass composition is SiO 2 67 to 72, Al 2 O 3 3 to 4.5, Na 2 O 13 to 17, K 2 O 0 to 3, CaO 2 to 9, MgO 2 to 8, Na 2 O + K 2 O is 13-18, CaO + MgO is 4-14,
    In a mass ratio of the total of Na 2 O and K 2 O and the total of Al 2 O 3 , (Na 2 O + K 2 O) / (Al 2 O 3 ) is 3.05 to 4.7,
    A glass sheet for chemical strengthening, wherein the temperature at which the viscosity is 10 2 dPa · s is 1520 ° C. or lower.
  2. 2Oの含有量が0.3~2質量%であることを特徴とする請求項1又は2に記載の化学強化用ガラス板。 The glass sheet for chemical strengthening according to claim 1 or 2, wherein the content of K 2 O is 0.3 to 2% by mass.
  3. CaOとMgOとの質量比において、CaO/(CaO+MgO)が、0.4~0.8であることを特徴とする請求項1又は2に記載の化学強化用ガラス板。 The glass sheet for chemical strengthening according to claim 1 or 2, wherein CaO / (CaO + MgO) in the mass ratio of CaO to MgO is 0.4 to 0.8.
  4. プレッシャークッカー試験(温度が121℃、湿度が99.8%RHの環境にてガラス板を24時間保持)後のガラスのヘイズ値(Haze)が1.5%未満であることを特徴とする請求項1乃至3のいずれかに記載の化学強化用ガラス板。 The haze value (Haze) of the glass after the pressure cooker test (the glass plate is kept for 24 hours in an environment where the temperature is 121 ° C. and the humidity is 99.8% RH) is less than 1.5%. Item 4. A glass sheet for chemical strengthening according to any one of Items 1 to 3.
  5. 以下工程を有する化学強化ガラス板の製造方法。
     請求項1乃至4のいずれかに記載の化学強化用ガラス板を製造する第1工程、
     前記ガラス板を載置し保管する第2工程、
     前記ガラス板を、カリウムイオンを含む塩と接触させ、前記ガラス板中のナトリウムイオンと、前記カリウムイオンとを交換する第3工程。
    The manufacturing method of the chemically strengthened glass plate which has the following processes.
    The 1st process which manufactures the glass plate for chemical strengthening in any one of Claims 1 thru | or 4,
    A second step of placing and storing the glass plate;
    A third step of bringing the glass plate into contact with a salt containing potassium ions and exchanging sodium ions and potassium ions in the glass plate.
  6. 前記第2工程において、ガラス板間を合紙で緩衝することを特徴とする請求項5に記載の化学強化ガラス板の製造方法。 6. The method for producing a chemically strengthened glass sheet according to claim 5, wherein, in the second step, the gap between the glass sheets is buffered with a slip sheet.
PCT/JP2016/074735 2015-10-21 2016-08-25 Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet WO2017068857A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015207101 2015-10-21
JP2015-207101 2015-10-21
JP2015243778A JP2017078011A (en) 2015-10-21 2015-12-15 Glass plate for chemical strengthening and manufacturing method of glass plate for chemical strengthening
JP2015-243778 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017068857A1 true WO2017068857A1 (en) 2017-04-27

Family

ID=58557189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074735 WO2017068857A1 (en) 2015-10-21 2016-08-25 Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet

Country Status (1)

Country Link
WO (1) WO2017068857A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340743A (en) * 1986-08-04 1988-02-22 Central Glass Co Ltd Easy-to-temper glass composition
JP2007031211A (en) * 2005-07-27 2007-02-08 Ishizuka Glass Co Ltd Glass for cover sheet
US20150037586A1 (en) * 2013-08-02 2015-02-05 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
WO2015150207A1 (en) * 2014-03-31 2015-10-08 Agc Glass Europe Chemically temperable glass sheet
JP2015180596A (en) * 2013-06-06 2015-10-15 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
WO2016091672A1 (en) * 2014-12-09 2016-06-16 Agc Glass Europe Chemically temperable glass sheet
WO2016136539A1 (en) * 2015-02-24 2016-09-01 旭硝子株式会社 Glass, chemically strengthened glass, and method for producing chemically strengthened glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340743A (en) * 1986-08-04 1988-02-22 Central Glass Co Ltd Easy-to-temper glass composition
JP2007031211A (en) * 2005-07-27 2007-02-08 Ishizuka Glass Co Ltd Glass for cover sheet
JP2015180596A (en) * 2013-06-06 2015-10-15 旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
US20150037586A1 (en) * 2013-08-02 2015-02-05 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
WO2015150207A1 (en) * 2014-03-31 2015-10-08 Agc Glass Europe Chemically temperable glass sheet
WO2016091672A1 (en) * 2014-12-09 2016-06-16 Agc Glass Europe Chemically temperable glass sheet
WO2016136539A1 (en) * 2015-02-24 2016-09-01 旭硝子株式会社 Glass, chemically strengthened glass, and method for producing chemically strengthened glass

Similar Documents

Publication Publication Date Title
JP7327533B2 (en) Chemically strengthened glass, chemically strengthened glass, and method for producing chemically strengthened glass
JP6491688B2 (en) Ion exchangeable Li-containing glass composition for 3D shaping
JP7435706B2 (en) Chemically strengthened glass
JP5957097B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
JP5977841B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
JP2022159558A (en) Chemically strengthened glass and method for manufacturing the same
WO2018199046A1 (en) Chemically strengthened glass, and glass for chemical strengthening purposes
JP2018065744A (en) Chemically strengthened glass and glass for chemical strengthening
TWI692460B (en) Fast ion-exchangeable boron-free glasses with low softening point
JP2019519463A (en) Chemically tempered glass plate
TW201904902A (en) Ion exchangeable glass containing boron and phosphorous
TW201742841A (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
JP7248020B2 (en) glass for chemical strengthening
JP2017078011A (en) Glass plate for chemical strengthening and manufacturing method of glass plate for chemical strengthening
JP2017114718A (en) Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement
WO2012066989A1 (en) Glass composition for chemical strengthening
WO2020246274A1 (en) Glass, chemically tempered glass, and method for producing same
JP6435937B2 (en) Chemically strengthened glass plate and chemically strengthened glass
WO2017068857A1 (en) Glass sheet for chemical reinforcement and method for producing chemically reinforced glass sheet
TWI838347B (en) Chemically strengthened glass
WO2023243574A1 (en) Glass for chemical strengthening, and glass
JP2024052865A (en) Plate glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857175

Country of ref document: EP

Kind code of ref document: A1