WO2017068674A1 - Electric motor, outdoor unit for air conditioning device, and air conditioning device - Google Patents

Electric motor, outdoor unit for air conditioning device, and air conditioning device Download PDF

Info

Publication number
WO2017068674A1
WO2017068674A1 PCT/JP2015/079756 JP2015079756W WO2017068674A1 WO 2017068674 A1 WO2017068674 A1 WO 2017068674A1 JP 2015079756 W JP2015079756 W JP 2015079756W WO 2017068674 A1 WO2017068674 A1 WO 2017068674A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
winding
detector
phase
information
Prior art date
Application number
PCT/JP2015/079756
Other languages
French (fr)
Japanese (ja)
Inventor
隼一郎 尾屋
及川 智明
山本 峰雄
石井 博幸
洋樹 麻生
優人 浦辺
貴也 下川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017546332A priority Critical patent/JP6506406B2/en
Priority to PCT/JP2015/079756 priority patent/WO2017068674A1/en
Publication of WO2017068674A1 publication Critical patent/WO2017068674A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a brushless electric motor, an outdoor unit of an air conditioner, and an air conditioner.
  • Brushless electric motors are widely used in devices such as air conditioners, ventilation fans or machine tools.
  • a storage medium in which position error information of a rotation sensor is stored is integrally provided in a readable state when a control device that controls the rotating electrical machine is assembled, and the position error information includes back electromotive force. It is described that this is information on the zero point error between the voltage waveform as the information of the above and the pulse signal as the output information from the rotation sensor.
  • Patent Document 1 uses information on a zero-point error between a voltage waveform as back electromotive force information and a pulse signal as output information from the rotation sensor, so that The phase difference between them can be easily adjusted.
  • the electric motor may be subjected to advance angle control in which the phase of the current flowing through the stator coil is advanced with respect to the induced voltage for the purpose of improving efficiency or reducing noise.
  • the technology of Patent Document 1 does not take into consideration other than information on the zero point error, and there is room for improvement in order to realize advance angle control that suppresses variations in the characteristics of the motor.
  • the object of the present invention is to realize advance angle control that suppresses variations in the characteristics of an electric motor.
  • the electric motor according to the present invention includes a rotor, a stator, a detector, and a housing.
  • the rotor rotates around the rotation axis.
  • the stator has a plurality of windings and is disposed outside the rotor in a direction orthogonal to the rotation axis.
  • the detector detects the position of the rotor.
  • the housing houses a rotor, a stator, and a detector.
  • the stator has an information holding portion for holding information including an inductance value of the winding and a phase shift between the induced voltage of the winding and the detection value of the detector.
  • FIG. AA sectional view of FIG. The figure which shows the coil
  • FIG. 1 The figure which shows an example of the apparatus which test
  • FIG. The figure which shows the air conditioning apparatus which concerns on Embodiment 2.
  • FIG. The figure which shows the air blower of the outdoor unit which the air conditioning apparatus which concerns on Embodiment 2 has.
  • FIG. 1 is a diagram illustrating an electric motor according to a first embodiment.
  • the electric motor 1 is a brushless DC (Direct Current) electric motor.
  • the electric motor 1 includes a housing 2, a shaft 3, a barcode 4, and device information 5.
  • the shaft 3 protrudes from the housing 2.
  • the power of the electric motor 1 is taken out from the portion of the shaft 3 protruding from the housing 2.
  • the bar code 4 includes information on the electric motor 1.
  • the barcode 4 is a two-dimensional code, but is not limited to this.
  • the bar code 4 may be a one-dimensional code.
  • the information on the electric motor 1 includes information on the characteristics of the electric motor 1.
  • the device information 5 is information for identifying the electric motor 1.
  • the device information 5 includes at least one of a model name, a model name, and a serial number of the electric motor 1.
  • the device information 5 may further include at least one of the manufacturer and the date of manufacture.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the electric motor 1 includes a rotor 10 that rotates about an axis Zr, a plurality of windings 22, a stator 20 that is disposed outside the rotor 10 in a direction DR orthogonal to the axis Zr, and the rotor 10. And the rotor 10, the stator 20, and the detector 8, and the inductance value of the winding 22 and the phase between the induced voltage of the winding 22 and the detection value of the detector 8. And a housing 2 having a barcode 4 which is an information holding portion for holding information including a shift.
  • the housing 2 has a barcode 4 as an information holding portion on the outer surface 2S. That is, in Embodiment 1, the barcode 4 is provided on the outer surface 2S of the housing 2.
  • the rotor 10 includes an insulator 11 and a permanent magnet 12 disposed on the outer periphery of the insulator 11.
  • the rotor 10 further includes a position detection magnet 13.
  • the rotor 10 is disposed on the radially outer side of the shaft 3 and is fixed to the shaft 3.
  • the rotor 10 is a cylindrical structure, and the rotation axis Zr passes through the center of both end faces.
  • the shaft 3 extends along the rotation axis Zr.
  • the shaft 3 protrudes from both ends of the rotor 10.
  • the rotor 10 obtains a rotational force by the rotating magnetic field from the stator 20 and transmits torque to the shaft 3 to drive a load connected directly or indirectly to the shaft 3.
  • the length by which the shaft 3 protrudes from the rotor 10 is longer when the load is connected to the shaft 3 than when the load is not connected.
  • the position detection magnet 13 is attached to one end of the rotor 10 in the direction in which the rotation axis Zr extends, that is, in the rotation axis direction. More specifically, the position detection magnet 13 is attached to the end of the rotor 10 on the side where the load is not connected to the shaft 3. In the position detection magnet 13, the N pole and the S pole are alternately repeated along the circumferential direction of the rotor 10 around the rotation axis Zr.
  • the detector 8 is disposed at a portion facing the position detection magnet 13. The detector 8 detects between the poles of the position detection magnet 13, that is, between the N pole and the S pole or between the S pole and the N pole. In the first embodiment, the number of poles of the position detection magnet 13 is the same as the number of poles of the rotor 10.
  • the permanent magnet 12, the position detecting magnet 13, and the shaft 3 are integrally formed of resin injected by a vertical molding machine. At this time, the resin is interposed between the permanent magnet 12 and the shaft 3 and between the position detection magnet 13 and the shaft 3 to couple them.
  • the insulator 11 of the rotor 10 is a cured resin that is interposed between the permanent magnet 12 and the shaft 3 and between the position detection magnet 13 and the shaft 3.
  • the resin used for the insulator 11 is a thermoplastic resin such as PBT (Polybutylene terephthalate) or PPS (Polyphenylenesulfide), and is a resin in which a glass filler is blended with these resins. There may be.
  • the permanent magnet 12 is a resin magnet, a rare earth magnet (neodymium magnet or samarium iron magnet) formed by mixing a thermoplastic material with a magnetic material, or a sintered ferrite magnet, but is not limited thereto. Not.
  • the shaft 3 has a first bearing 6T attached to the load side and a second bearing 6B attached to the side opposite to the load side.
  • the first bearing 6T is supported by the housing 2 via a bracket 7 attached to the housing 2.
  • the bracket 7 is manufactured by pressing a conductive metal.
  • the bracket 7 is fitted into the inner peripheral portion of the stator 20, and the outer ring of the first bearing 6T is fitted inside.
  • the second bearing 6B is attached to the housing 2. With such a structure, the shaft 3 is supported by the housing 2 via the first bearing 6T and the second bearing 6B.
  • the first bearing 6T and the second bearing 6B are ball bearings, but the first bearing 6T and the second bearing 6B are not limited to ball bearings.
  • a structure in which the first bearing 6T and the second bearing 6B are attached to the shaft 3 assembled to the rotor 10 is appropriately referred to as a rotor assembly.
  • the stator 20 includes an annular stator core 21, a winding 22, and an insulator 23 interposed between the stator core 21 and the winding 22.
  • the stator 20, more specifically, the stator core 21 is disposed outside the rotor 10 in the direction DR orthogonal to the rotation axis Zr, that is, in the radial direction DR.
  • the stator 20 has a plurality of windings 22 along the circumferential direction of the stator core 21.
  • the stator core 21 is a structure in which a plurality of annular electromagnetic steel plates are laminated and joined by caulking, welding, or adhesion.
  • the insulator 23 insulates the stator core 21 and the winding 22 from each other.
  • the insulator 23 is molded integrally with the stator core 21 using a thermoplastic resin.
  • the thermoplastic resin used for the insulator 23 is exemplified by PBT.
  • the plurality of windings 22 are arranged in each slot of the stator core 21 molded integrally with the insulator 23.
  • the winding 22 may be concentrated winding or distributed winding.
  • the stator 20, the substrate 9, and the connector 31 are mechanically combined with resin and molded integrally.
  • the resin that combines the stator 20, the substrate 9, and the connector 31 is the housing 2.
  • the substrate 9 has a circuit including the detector 8.
  • the detector 8 includes a Hall element and a Hall IC (Integral Circuit) for detecting the position of the magnetic pole of the rotor 10.
  • the detector 8 detects the position of the magnetic pole of the rotor 10 by detecting the distance between the magnetic poles of the position detection magnet 13 included in the insulator 11 of the rotor 10.
  • the detector 8 includes a Hall element and a Hall IC, but the detector 8 is not limited to this.
  • the substrate 9 is disposed between the second bearing 6B and the stator 20.
  • the board 9 is disposed so that the board surface is perpendicular to the rotation axis Zr.
  • the substrate 9 is fixed to the insulator 23 via a substrate holding component.
  • the substrate 9 may be directly fixed to the insulator 23.
  • the substrate 9 is connected to a signal line 30 connected to a control device outside the electric motor 1.
  • the signal line 30 is connected to the control device 100 outside the electric motor 1 via the connector 31.
  • FIG. 3 is a diagram illustrating a winding, a control device for controlling the motor, and a driver included in the electric motor according to the first embodiment.
  • the stator 20 of the electric motor 1 includes a U-phase winding 22u, a V-phase winding 22v, and a W-phase winding 22w. Each winding 22u, 22v, 22w is connected to the driver 103.
  • the driver 103 is an inverter provided with a plurality of switching elements. The driver 103 is controlled by the control device 100.
  • the electric motor 1 has three detectors 8u, 8v, and 8w.
  • the three detectors 8u, 8v, 8w are arranged at equal intervals along the circumferential direction of the stator 20.
  • the detector 8u detects the position of the rotor 10 at the position of the U-phase winding 22u
  • the detector 8v detects the position of the rotor 10 at the position of the V-phase winding 22v.
  • the detector 8w detects the position of the rotor 10 at the position of the W-phase winding 22w.
  • the control device 100 acquires the detection values SCu, SCv, SCw of the detectors 8 u, 8 v, 8 w and controls the electric motor 1 via the driver 103.
  • the control device 100 includes a processing unit 101 and a storage unit 102.
  • the storage unit 102 is a processor such as a CPU (Central Processing Unit), and the storage unit 102 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a combination of these.
  • the storage unit 102 stores a computer program for controlling the electric motor 1 and information on the electric motor 1. Information on the electric motor 1 is converted into the barcode 4 shown in FIG. 1 and provided on the outer surface 2S of the housing 2.
  • the processing unit 101 controls the electric motor 1, the computer program and various information of the electric motor 1 described above are read from the storage unit 102.
  • the electric motor 1 executes the read computer program, generates a drive signal that is a signal for driving the electric motor 1 using the information of the electric motor 1, and outputs the drive signal to the driver 103.
  • the driver 103 generates drive voltages Edu, Edv, Edw corresponding to the drive signals and applies them to the windings 22u, 22v, 22w.
  • the windings 22u, 22v, and 22w are not distinguished from each other, they are appropriately referred to as windings 22.
  • the detectors 8u, 8v, and 8w are not distinguished from each other, they are appropriately referred to as detectors 8.
  • the detection values SCu, SCv, and SCw are not distinguished from each other.
  • the detection value SC is appropriately referred to, and when the drive voltages Edu, Edv, and Edw are not distinguished, they are appropriately referred to as the drive voltage Ed.
  • FIG. 4 is a diagram for explaining information of the electric motor included in the barcode according to the first embodiment.
  • the information IFm of the electric motor 1 is converted into the barcode 4 and provided on the outer surface 2S of the casing 2 of the electric motor 1.
  • the information IFm of the electric motor 1 is information regarding the characteristics of the electric motor 1.
  • the information IFf of the electric motor 1 includes the inductance values Lu, Lv, Lw of the winding 22, phase shifts ⁇ eu, ⁇ ev, ⁇ ew, induced voltages Eiu, Eiv, Eiw, induced voltage constants Ciu, Civ, Ciw, And winding resistances Ru, Rv, and Rw, but are not limited thereto.
  • the alphabet u added to the signs of the inductance value, phase shift, induced voltage, induced voltage constant, and winding resistance indicates the value of the U-phase winding 22u
  • the alphabet v represents the V-phase winding
  • the value of the line 22v indicates the value
  • the alphabet w indicates the value of the W-phase winding 22w.
  • each of the above-described symbols is represented without the alphabets u, v, and w.
  • the inductance value L, the phase shift ⁇ e, the induced voltage Ei, the induced voltage constant Ci, and the winding resistance R of the winding 22 are among the measured values measured in the inspection after the motor 1 is completed. 1 measured value and a value obtained from the measured value.
  • the inductance values Lu, Lv, Lw of the windings 22 of the motor 1 that have passed the inspection after the completion of the motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the motor 1.
  • the barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
  • the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, and Lw of the winding 22 from the storage unit 102 and uses them for the advance angle control, thereby improving the efficiency of the electric motor 1. , Noise and vibration can be reduced.
  • FIG. 5 is a diagram showing the relationship between the induced voltage and the detection value of the detector.
  • FIG. 6 is a diagram for explaining the phase shift. 5 and 6, the horizontal axis represents the electrical angle ⁇ e of the rotor 10, and the vertical axis represents the voltage.
  • the detection values SCu, SCv, SCw and the induced voltages Eiu, Eiv, Eiw are different in magnitude, but in FIGS. 5 and 6, they are shown as the same magnitude for convenience.
  • the induced voltage Ei is a voltage generated in the winding 22 by the movement of the permanent magnet 12 of the rotor 10. As for the induced voltage Ei, a positive voltage and a negative voltage are switched at an electrical angle of 180 degrees around 0 volts (Volt).
  • the detection value SC indicates 0 volt between the poles of the position detection magnet 13 shown in FIG. 2 by the detector 8 shown in FIGS. 2 and 3, and shows a positive voltage or a negative voltage depending on the polarity.
  • the position of the rotor 10 is detected by detecting the position of the position detection magnet 13. Is also detected.
  • a position where the detection value SC and the induced voltage Ei change from plus to minus or minus to plus is referred to as a zero cross point.
  • the zero-cross point differs between the U-phase induced voltage Eiu and the detected value SCu of the detector 8u. That is, both are out of phase.
  • the V-phase induced voltage Eiv and the detection value SCv of the detector 8v are out of phase.
  • Both the W-phase induced voltage Eiw and the detection value SCw of the detector 8w are out of phase as in the U-phase and the W-phase.
  • the difference ⁇ e between the electrical angle of the induced voltage Ei at the zero cross point and the electrical angle of the detection value SC of the detector 8 at the zero cross point is a phase shift.
  • the magnitude ⁇ e of the phase shift is ⁇ e2 ⁇ e1.
  • the zero cross point of the detection value SCu of the detector 8u is ⁇ e2
  • the zero cross point of the detection value SCv of the detector 8v is ⁇ e3
  • the zero cross point of the detection value SCw of the detector 8w is ⁇ e4
  • the electric motor 1 has. It is assumed that the zero cross point of the design values of the detectors 8u, 8v, 8w is ⁇ e5.
  • the measured values of the induced voltages Eiu, Eiv, Eiw of each phase of the electric motor 1 that have passed the inspection after the completion of the electric motor 1, and the detected values SCu, SCv, SCw of the detectors 8u, 8v, 8w are used to determine the phase shifts ⁇ eu, ⁇ ev, ⁇ ew.
  • the phase shift ⁇ e is recorded as the barcode 4 on the outer surface 2S of the housing 2 of the electric motor 1.
  • the barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
  • the processing unit 101 of the control device 100 reads the phase shifts ⁇ eu, ⁇ ev, ⁇ ew from the storage unit 102 and corrects the phase shifts ⁇ eu, ⁇ ev, ⁇ ew to be design values. 1 can be suppressed, and further noise and vibration can be suppressed.
  • FIG. 7 is a diagram showing an example of the measured value of the induced voltage. Due to the manufacturing variation of the electric motor 1 including manufacturing variations of the rotor 10 and the stator 20, as shown in FIG. 7, variations occur in the induced voltages Eiu, Eiv, Eiw. In the example shown in FIG. 7, the maximum values Eium, Eivm, and Eiwm of induced voltages of the U phase, the V phase, and the W phase are different. Due to this variation, the noise and vibration of the electric motor 1 may increase or the efficiency may decrease.
  • the induced voltages Eiu, Eiv, and Eiw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1.
  • the induced voltages Eiu, Eiv, Eiw, which are information to be converted into the barcode 4 are values measured by the inspection after the completion of the electric motor 1, that is, measured values.
  • the barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
  • the difference in the ease of transmission of magnetic force from the U-phase, V-phase, and W-phase slots of the electric motor 1 to the rotor of the electric motor 1 is the difference in the measured values of the induced voltages Eiu, Eiv, Eiw in the U-phase, V-phase, and W-phase. It becomes. Therefore, by changing the phase current or the phase voltage according to the measured values of the induced voltages Eiu, Eiv, Eiw, the torque and magnetic force generated from the U-phase, V-phase, and W-phase slots are made uniform. As a result, the reduction in efficiency and the noise reduction of the electric motor 1 are realized.
  • the processing unit 101 of the control device 100 reads the induced voltages Eiu, Eiv, Eiw from the storage unit 102 and corrects the variations of the induced voltages Eiu, Eiv, Eiw to be zero. Specifically, the processing unit 101 determines the duty of the U phase, the V phase, and the W phase according to the measured values of the induced voltages Eiu, Eiv, and Eiw of the U phase, V phase, and W phase read from the storage unit 102. Correct at least one of the advance angles. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
  • FIG. 8 is a diagram for explaining the induced voltage constant.
  • the induced voltages Eiu, Eiv, and Eiw of the U phase, V phase, and W phase vary, and the induced voltage constants Ciu, CIv, and Ciw vary, thereby increasing the noise and vibration of the motor 1 and increasing the efficiency. It may decrease.
  • the induced voltage constants Ciu, Civ, and Ciw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1.
  • the barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
  • the processing unit 101 of the control device 100 reads the induced voltage constants Ciu, Civ, and Ciw from the storage unit 102 and corrects the variations of the induced voltage constants Ciu, Civ, and Ciw to be zero.
  • the processing unit 101 determines the duty of the U phase, V phase, and W phase according to the measured values of the induced voltage constants Ciu, Civ, and Ciw of the U phase, V phase, and W phase read from the storage unit 102. And correct the advance angle. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
  • the winding resistances Ru, Rv, Rw of the windings 22u, 22v, 22w may vary. Due to variations in the winding resistances Ru, Rv, and Rw, there is a possibility that noise and vibration of the motor 1 may increase or efficiency may decrease.
  • the winding resistances Ru, Rv, Rw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1.
  • the barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
  • the processing unit 101 of the control device 100 reads the winding resistances Ru, Rv, Rw from the storage unit 102 and corrects the variations of the winding resistances Ru, Rv, Rw to be zero.
  • the processing unit 101 determines the duty of the U phase, V phase, and W phase according to the measured values of the winding resistances Ru, Rv, and Rw of the U phase, V phase, and W phase read from the storage unit 102. And correct the advance angle. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
  • the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, Lw of the winding 22 from the storage unit 102 and uses them for the advance angle control.
  • the control apparatus 100 can implement
  • the advance angle control performed by the processing unit 101 of the control device 100 using the information IFm of the electric motor 1 will be described.
  • FIG. 9 to 11 are diagrams for explaining the advance angle control.
  • a current Id flows through the winding 22. This current is referred to as winding current Id.
  • the rotor 10 is rotated by the magnetic flux generated by the winding current Id and the magnetic flux generated by the permanent magnet 12 included in the rotor 10.
  • the advance angle control is a control for improving the efficiency of the electric motor 1 or reducing noise and vibration by advancing the phase of the winding current Id of the stator 20.
  • the drive voltage Ed and the induced voltage Ei are in phase.
  • the winding current Id is delayed in phase from the induced voltage Ei.
  • the torque of the electric motor 1 can be maximized by advancing the winding current Id so that the phase of the winding current Id matches the phase of the induced voltage Ei.
  • the phase of the drive voltage Ed may be advanced.
  • the phase of the drive voltage Ed is advanced by ⁇ in electrical angle with respect to the phase of the winding current Id.
  • is appropriately referred to as a phase difference ⁇ .
  • the phase difference ⁇ is a phase difference between the drive voltage Ed and the winding current Id, and can be obtained by Expression (1).
  • L is the inductance of the winding 22
  • R is the resistance of the path of the current flowing from the driver 103 to the winding 22.
  • R may be a resistance of the winding 22.
  • FIG. 10 shows an example in which the phase of the induced voltage Ei matches the phase of the winding current Id.
  • the minus to plus zero cross point of the induced voltage Ei is matched with the minus to plus zero cross point of the winding current Id.
  • the electrical angle ⁇ ei0 of the rotor 10 at a timing earlier by the phase shift ⁇ e than the electrical angle ⁇ es0 of the rotor 10 which is the zero cross point when the detection value SC of the detector 8 changes from minus to plus is the minus of the induced voltage Ei. It becomes the zero crossing point when it becomes plus.
  • the processing unit 101 of the control device 100 applies the drive voltage Ed to the winding 22 at a timing earlier than the timing at which the detection value SC of the detector 8 becomes the electrical angle ⁇ es0 by a value obtained by adding the phase shift ⁇ e and the phase difference ⁇ . May be applied.
  • the processing unit 101 may generate the drive voltage Ed according to the equation (2).
  • Edm is 1 ⁇ 2 of the difference between the maximum value and the minimum value of the amplitude of the drive voltage Ed.
  • t is time.
  • Ed Edm ⁇ sin ( ⁇ ⁇ t ⁇ ( ⁇ + ⁇ e)) (2)
  • FIG. 11 shows an example in which the phase of the induced voltage Ei is further advanced by the electrical angle ⁇ df than the phase of the winding current Id.
  • the processing unit 101 of the control device 100 has a timing that is earlier by a value obtained by adding the phase shift ⁇ e, the phase difference ⁇ , and the electrical angle ⁇ df than the timing at which the detection value SC of the detector 8 becomes the electrical angle ⁇ es0.
  • the drive voltage Ed may be applied to the winding 22. That is, the processing unit 101 of the control device 100 may generate the drive voltage Ed according to the equation (3).
  • Edm is 1 ⁇ 2 of the difference between the maximum value and the minimum value of the amplitude of the drive voltage Ed.
  • t is time.
  • the electrical angle ⁇ df is referred to as an adjustment amount as appropriate.
  • the sign of the adjustment amount ⁇ df is positive, the winding current Id advances in phase with respect to the induced voltage Ei, and when the sign of the adjustment amount ⁇ df is negative, the winding current Id is delayed in phase with respect to the induced voltage Ei.
  • Expression (3) is the same as Expression (2).
  • Ed Edm ⁇ sin ( ⁇ ⁇ t ⁇ ( ⁇ + ⁇ df + ⁇ e)) (3)
  • the phase difference ⁇ includes the inductance value L of the winding 22.
  • the inductance values Lu, Lv, and Lw of the windings 22u, 22v, and 22w are read from the barcode 4 and stored in the storage unit 102 of the control device 100. Therefore, when executing the advance angle control, the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, and Lw from the storage unit 102, and uses the read values and Expression (3) to calculate the drive current Ed. Applied to the windings 22u, 22v, 22w.
  • the processing unit 101 of the control device 100 uses the values of the winding resistances Ru, Rv, and Rw read from the barcode 4 and stored in the storage unit 102. Further improvement in the efficiency of the electric motor 1 and further reduction in noise and vibration can be realized.
  • the phase shifts ⁇ eu, ⁇ ev, ⁇ ew are read from the barcode 4 into the storage unit 102 of the control device 100 and stored. Therefore, when executing the advance angle control, the processing unit 101 of the control device 100 reads out the phase shifts ⁇ eu, ⁇ ev, ⁇ ew from the storage unit 102, and uses the read values and Expression (3) to calculate the drive current Ed. Applied to the windings 22u, 22v, 22w.
  • the processing unit 101 of the control device 100 can calculate the advance angle at which the efficiency is highest at the maximum output of the electric motor 1, and can control the advance angle. By such processing, the processing unit 101 can cause the electric motor 1 to generate a high torque with less current, and thus can improve the maximum output of the electric motor 1. Further, the advance angle at which the efficiency of the electric motor 1 is highest is different from the advance angle at which the noise of the electric motor 1 is lowest. For this reason, in the advance angle control of the first embodiment, the processing unit 101 of the control device 100 calculates an advance angle that can achieve both efficiency and noise of the electric motor 1 in rated operation, and controls by the advance angle. The electric motor 1 can be operated with high efficiency and low noise.
  • the processing unit 101 of the control device 100 corrects the phase shift ⁇ e by control other than the advance angle control when controlling the electric motor 1.
  • the detected value SC of the detector 8 whose electrical angle at the zero cross point is ⁇ e2 that is, the position of the rotor 10 detected by the detector 8 is delayed in phase from the designed electrical angle ⁇ e5. Yes. Therefore, the processing unit 101 handles the detection value SC of the detector 8 whose zero cross point electrical angle is ⁇ e2 by advancing the detection value SC by ⁇ e2 ⁇ e5.
  • the processing unit 101 handles the detection value SC of the detector 8 whose electrical angle at the zero-crossing point is advanced by ⁇ e3- ⁇ e5, and handles the detection value SC of the detector 8 whose electrical angle at the zero-crossing point is ⁇ e4. Is advanced by ⁇ e4- ⁇ e5 minutes.
  • the processing unit 101 can correct the phase shift ⁇ e of each detector 8 to a design value, so that it is possible to suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration.
  • the control device 100 can artificially make the variation in the phase shift ⁇ e difference zero, the electric motor 1 can reduce at least one variation in the maximum output, the efficiency, and the noise due to the phase shift ⁇ e difference.
  • the device designed with the lower limit of variation has the advantage that at least one of the maximum output, efficiency and noise of the motor 1 appears to have improved.
  • the processing unit 101 of the control device 100 may correct the detection value SC of the detector 8 having the phase shift ⁇ e to the electrical value ⁇ e1 of the zero cross point of the induced voltage Ei in addition to correcting the detection value SC to the design value.
  • the processing unit 101 handles the detection value SC of the detector 8 in which the phase shift ⁇ e has occurred by advancing the detection value SC by the phase shift ⁇ e.
  • the processing unit 101 can adjust the phase shift ⁇ e of each detector 8 to the electrical angle ⁇ e1 of the zero cross point of the induced voltage Ei, thereby suppressing reduction in efficiency of the electric motor 1 and further noise. And vibration can be suppressed.
  • the processing unit 101 of the control device 100 has the phase shift ⁇ e of the detector 8 of the phase closest to the design value of the shift between the induced voltage Ei of the winding 22 and the detection value SC of the detector 8.
  • the electric motor may be controlled using the detected value.
  • the electrical angle of the design value is ⁇ e5
  • the design value of the deviation between the induced voltage Ei of the winding 22 and the detection value SC of the detector 8 is ⁇ e5- ⁇ e1.
  • the phase with the phase shift ⁇ e closest to the design value is the phase with the electrical angle at the zero cross point ⁇ e3.
  • the processing unit 101 controls the electric motor 1 using the detection value SCv of the V-phase detector 8v.
  • the processing unit 101 can control the electric motor 1 using the detection value SC of the detector 8 in which the phase shift ⁇ e of the detector 8 is closest to the design value, thereby suppressing a decrease in efficiency of the electric motor 1. Furthermore, noise and vibration can be suppressed. Further, since the processing unit 101 can control the electric motor 1 only with the detection value SC of one detector 8, it is possible to avoid erroneously recognizing the variation in the phase shift ⁇ e of each phase as the rotation unevenness of the electric motor 1. Furthermore, when the processing unit 101 controls the electric motor 1, it is not necessary to correct the detection values SCu, SCv, SCw of the plurality of detectors 8u, 8v, 8w, so that the processing load can be reduced.
  • the processing unit 101 of the control device 100 uses an optimum advance angle, that is, an advance angle with the highest efficiency, an advance angle with the least noise, or a high efficiency and low in advance angle control. Control is made so that the lead angle is compatible with noise.
  • the processing unit 101 can control the electric motor 1 with a more advanced advance angle by controlling the electric motor 1 using the detected value SC of the phase whose phase shift ⁇ e is closest to the design value.
  • the processing unit 101 can realize at least one of high efficiency of the electric motor 1 and low noise of the electric motor 1.
  • the processing unit 101 of the control device 100 may correct the drive voltage Ed so that the variation of the induced voltage Ei of each phase becomes zero. Specifically, the processing unit 101 decreases the drive voltage Ed applied to the phase with the high induced voltage Ei, and increases the drive voltage Ed applied to the phase with the low induced voltage Ei. As a result, since the processing unit 101 can suppress variations in the induced voltage Ei, it is possible to suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration.
  • the processing unit 101 of the control device 100 may correct the drive voltage Ed so that the variation of the induced voltage constant Ci of each phase becomes zero. Specifically, the processing unit 101 decreases the drive voltage Ed applied to the phase with the large induced voltage constant Ci, and increases the drive voltage Ed applied to the phase with the small induced voltage constant Ci. As a result, since the processing unit 101 can suppress variations in the induced voltage constant Ci, it can suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration.
  • the barcode 4 converted from the information IFm of the electric motor 1 is provided on the outer surface 2S of the housing 2.
  • data is directly written on the outer surface 2S of the housing 2 by the laser marker. Since the device information 5 is also written on the outer surface 2S of the housing 2 by the laser marker, the investment in the manufacturing facility for the electric motor 1 can be suppressed by writing the barcode 4 and the device information 5 using the laser marker.
  • the barcode 4 may be printed on a sticker and attached to the outer surface 2S of the housing 2 in addition to being directly written on the outer surface 2S of the housing 2. Next, a method for manufacturing the electric motor 1 will be described.
  • FIG. 12 is a flowchart showing an example of the method for manufacturing the electric motor according to the first embodiment.
  • FIG. 13 is a diagram illustrating an example of an apparatus for inspecting an electric motor.
  • the method for manufacturing the electric motor according to the first embodiment includes a manufacturing process of the stator 20, a manufacturing process of the rotor assembly, and a manufacturing process of the electric motor 1.
  • Steps S101 to S105 are steps for manufacturing the stator 20
  • steps S106 to S108 are steps for manufacturing the rotor assembly
  • steps S109 to S115 are steps for manufacturing the electric motor 1.
  • the former may be the first, the latter may be the first, or both may proceed in parallel.
  • step S101 electromagnetic steel plates are laminated to produce the stator core 21.
  • step S102 the stator core 21 and the insulator 23 are integrally molded.
  • step S103 the winding 22 is wound around each slot of the stator core 21 to manufacture the stator 20.
  • step S ⁇ b> 104 the board holding component is attached to the stator 20.
  • a substrate 9 is attached to the substrate holding component.
  • step S105 the stator 20, the substrate holding component, and the substrate 9 are integrally molded with resin, so that the stator 20 integrally molded with resin is manufactured.
  • step S106 the permanent magnet 12 is produced.
  • step S107 the permanent magnet 12, the position detecting magnet 13, and the shaft 3 are integrally formed of resin, and the rotor 10 is manufactured.
  • step S108 the first bearing 6T and the second bearing 6B are press-fitted into the shaft 3 to produce a rotor assembly.
  • step S ⁇ b> 109 the rotor assembly is inserted into the concave portion of the stator 20 integrally molded with resin, that is, inside the radial direction DR of the stator core 21. Thereafter, the opening of the recess is closed by the bracket 7, whereby the electric motor 1 is manufactured.
  • step S110 the finished product of the electric motor 1 is inspected.
  • step S111 when the produced electric motor 1 has passed the inspection of the finished product (step S111, Yes), the process proceeds to step S112.
  • step S112 the information IFm of the motor 1, that is, the inductance value L of each phase of UVW, the phase shift ⁇ e, the induced voltage Ei, the induced voltage constant Ci, and the barcode 4 including the winding resistance R are laser markers, and the casing of the motor 1 2 is written on the outer surface 2S.
  • the device information 5, that is, the model name, model name, date of manufacture, serial number, and manufacturer of the electric motor 1 is written on the outer surface 2S of the casing 2 of the electric motor 1 with a laser marker.
  • the bar code 4 and the device information 5 are written on the outer surface 2S of the housing 2 to complete the electric motor 1 (step S113).
  • the process with a long tact time is a process of winding the winding 22 around the stator core 21 and a process of molding the stator 20 or the rotor 10 with resin. Therefore, even if the operation of providing the barcode 4 on the electric motor 1 in the process of writing the device information 5 to the electric motor 1 is added, the tact time is hardly increased. For this reason, in the method for manufacturing the electric motor according to the first embodiment, even if the barcode 4 is provided in the electric motor 1, the manufacturing cost of the electric motor 1 hardly increases. In addition, since the electric motor 1 does not need to have a memory for storing the information IFm, the time for writing the information IFm in the memory and the memory become unnecessary, so that the manufacturing cost and the manufacturing time can be reduced.
  • step S111 When the produced electric motor 1 does not pass the inspection of the finished product (No at Step S111), it is determined whether or not it can be reworked at Step S114. If it can be corrected (step S114, Yes), step S110 and step S111 are repeated. When the produced electric motor 1 cannot be reworked (No at Step S114), the electric motor 1 is discarded at Step S115.
  • the electric motor 1 When the electric motor 1 is completed, the following items are mainly inspected or measured. 13 measures the characteristics of the electric motor 1 to be inspected. (1) Inspection of withstand voltage and insulation resistance. (2) Capacitance between terminals of the connector 31. (3) Measurement of winding resistance R and inductance value L between each phase. (4) Measurement of input current during no-load rotation. (5) Measurement of frequency and duty (duty) of the input current and the detection value SC of the detector 8 when a load close to actual operation is applied to the motor 1. (6) Measurement of the induced voltage Ei, the phase shift ⁇ e, the duty (Duty) of the detection value SC, and the frequency of the detection value SC when the electric motor 1 is rotated by an external force. (7) Noise inspection.
  • the external force driving electric motor 110 shown in FIG. 13 When rotating the electric motor 1 with external force, the external force driving electric motor 110 shown in FIG. 13 is used. At this time, if the rotation unevenness is large, the accuracy of each measurement value is lowered, and therefore a servo motor is used as the external force driving motor 110.
  • the external force drive motor 110 and the motor 1 need to be connected or disconnected in a short time. Therefore, the chuck 114 is used to connect the shaft 113 of the external force driving motor 110 and the shaft 3 of the motor 1.
  • the first embodiment is a process of writing the device information 5 of the motor 1 to the outer surface 2S of the housing 2 in the manufacturing process of the motor 1, and the information IFm of the motor 1 is provided on the outer surface 2S of the housing 2. Little increase in time occurs. As a result, the increase in manufacturing cost of the electric motor 1 is suppressed.
  • the control device 100 that controls the electric motor 1 can suppress variations in characteristics of the electric motor 1 by using the information IFm of the electric motor 1 by writing the information IFm of the electric motor 1 in the storage unit 102. As a result, the electric motor 1 can realize at least one of reduction in energy consumption, reduction in noise, and increase in output due to higher efficiency.
  • the electric motor 1 has information IFm such as an inductance value L and a phase shift ⁇ e on the outer surface 2S of the housing 2.
  • the control device 100 of the electric motor 1 stores information IFm provided on the outer surface 2S of the casing 2 of the electric motor 1 in the storage unit 102 and uses it for control. For this reason, even if it is difficult to take correspondence between the motor 1 and the information IFm of the motor 1 as a result of the difference in the manufacturing location or the manufacturing line between the motor 1 and the apparatus using the motor 1, the control device 100 Can control the electric motor 1 using information IFm about the characteristics of the electric motor 1 provided on the outer surface 2S of the casing 2 of the electric motor 1, thereby reducing the influence of variations in characteristics of the electric motor 1.
  • the information holding portion that holds information including the phase difference between the inductance value of the winding 22 and the induced voltage of the winding 22 and the detection value of the detector 8 is a one-dimensional code including the above-described information. Alternatively, it may be a two-dimensional code and is not limited to the barcode 4.
  • the information holding portion is a portion in which information including the inductance value of the winding 22 and the phase shift between the induced voltage of the winding 22 and the detection value of the detector 8 is magnetically written on the outer surface 2S of the housing 2. It may be.
  • the configuration disclosed in Embodiment 1 can be applied as appropriate in the following embodiments.
  • Embodiment 2 the electric motor 1 according to the first embodiment is applied to an air conditioner, more specifically, a blower of an outdoor unit.
  • FIG.14 and FIG.15 is a figure which shows the air conditioning apparatus which concerns on Embodiment 2.
  • FIG. 16 is a diagram illustrating an air blower of an outdoor unit included in the air-conditioning apparatus according to Embodiment 2.
  • FIG. 17 is a diagram illustrating an outdoor unit of the air-conditioning apparatus according to Embodiment 2.
  • the air conditioning apparatus 50 includes an outdoor unit 51 and an indoor unit 52.
  • the outdoor unit 51 has a blower 58.
  • the outdoor unit 51 is installed on the outdoor ground plane FL.
  • the grounding surface FL side of the outdoor unit 51 is downward B, and the side opposite to the grounding surface FL of the outdoor unit 51 is upward A.
  • a lower part B is a direction in which gravity acts.
  • a lid 51UC is provided above the outdoor unit 51.
  • the outdoor unit 51 houses a compressor 53 that is driven by the electric motor Mc and compresses the refrigerant, and a condenser 54 that condenses the refrigerant compressed by the compressor 53.
  • the outdoor unit 51 further includes a blower 58 that blows air to the condenser 54.
  • the blower 58 includes the electric motor 1 and an impeller 58 ⁇ / b> B driven by the electric motor 1.
  • the compressor 53 and the condenser 54 are connected by a pipe 57A through which the refrigerant passes.
  • the indoor unit 52 includes an evaporator 55 that evaporates the refrigerant condensed by the condenser 54.
  • the indoor unit 52 further includes a blower 59 that blows air to the evaporator 55 and an expansion valve 56 that expands the liquid-phase refrigerant condensed by the condenser 54 and flows into the evaporator 55.
  • the blower 59 includes an electric motor Mf and an impeller 59B driven by the electric motor Mf.
  • the condenser 54 and the evaporator 55 are connected by a pipe 57B through which the refrigerant passes.
  • the expansion valve 56 is attached in the middle of the pipe 57B.
  • the evaporator 55 and the compressor 53 are connected by a pipe 57C through which the refrigerant passes.
  • the electric motor 1 that drives the blower 58 of the outdoor unit 51 is controlled by a control unit 60 shown in FIG.
  • the control unit 60 includes a substrate 60C and a driver 64.
  • the substrate 60C includes a processor 61 such as a CPU, a memory 62 for storing information, and a writing terminal 63 for receiving information written in the memory 62.
  • the driver 64 acquires the drive signal generated by the processor 61 and generates a drive voltage Ed corresponding to the drive signal.
  • the processor 61 of the control unit 60 corresponds to the processing unit 101 included in the control device 100 according to the first embodiment
  • the memory 62 corresponds to the storage unit 102 included in the control device 100 according to the first embodiment.
  • the memory 62 is a flash memory, but is not limited to this.
  • the driver 64 of the control unit 60 corresponds to the driver 103 of the first embodiment.
  • the processor 61 of the control unit 60 reads the information IFm of the electric motor 1 from the memory 62 in which the information IFm of the electric motor 1 is written, as in the processing unit 101 of the control device 100 according to the first embodiment, and controls the electric motor 1. Use.
  • the electric motor 1 that drives the impeller 58 ⁇ / b> B of the blower 58 supplies power to the signal line 30 and the winding 22 for extracting the detection value SC of the detector 8 shown in FIG. 3.
  • the bar code 4 that is the information IFm of the electric motor 1 is provided on the opposite side of the drawn portion from which the electric wire 32 is drawn.
  • the signal line 30 and the winding 22 are drawn out from the side surface of the housing 2, that is, the surface surrounding the periphery of the shaft 3 of the electric motor 1. Further, the electric motor 1 is provided with a barcode 4 on the side surface of the housing 2.
  • the electric motor 1 of the blower 58 included in the outdoor unit 51 is housed inside the outdoor unit 51 with the lead-out portion facing downward B in order to suppress flooding from the lead-out portion from which the winding 22 and the electric wire 32 are drawn. Since the electric motor 1 has the barcode 4 on the opposite side of the drawer portion, when the electric motor 1 is accommodated in the outdoor unit 51, the barcode 4 is disposed in the upper part A. With such a structure, even after the electric motor 1 is assembled to the outdoor unit 51, the operator can access the barcode 4 by removing the lid 51UC of the outdoor unit 51 as shown in FIG. .
  • the operator reads the barcode 4 of the electric motor 1 with the barcode reader 65 in a state where the lid 51UC of the outdoor unit 51 is removed, and stores the memory via the terminal 66 of the barcode reader 65 and the writing terminal 63 of the control unit 60.
  • the information IFm of the electric motor 1 can be written in 62.
  • the barcode 4 and the control unit 60 of the electric motor 1 are arranged at positions facing the lid 51UC of the outdoor unit 51. With such a structure, the barcode 4 and the control unit 60 of the electric motor 1 appear only by removing the lid 51UC, so that the operator can easily read the barcode 4 and write it in the memory 62 of the control unit 60. be able to.
  • the memory 62 There is a possibility that the information IFm of the electric motor 1 to be written to the information IFm of the other electric motors 1 is confused.
  • the operator after assembling the electric motor 1 to the outdoor unit 51, the operator reads the barcode 4 and writes it in the memory 62 of the control unit 60. For this reason, since the electric motor 1 and the information IFm of the electric motor 1 measured in the inspection process are associated one-to-one, the possibility that the information IFm written in the memory 62 is confused when an unexpected situation occurs is reduced. Is done.
  • the electric motor 1 is applied to the blower 58 of the outdoor unit 51 of the air conditioner 50.
  • the application target of the electric motor 1 is not limited to this, and at least the blower 59 and the compressor 53 of the indoor unit 52 are used. One may be sufficient.
  • the electric motor 1 may be used by being mounted on a ventilation fan, a home appliance, or a machine tool.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Brushless Motors (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

This electric motor includes: a rotor that rotates about a rotation axis; a stator that has a plurality of winding wires and that is arranged on the outside, in a direction orthogonal to the rotation axis, of the rotor; a detector that detects the position of the rotor; and a housing that contains the rotor, the stator, and the detector therein and that has an information holding part for holding information including an inductance value of the winding wires and the phase deviation between an induced voltage by the winding wires and a detected value by the detector.

Description

電動機、空気調和装置の室外機及び空気調和装置Electric motor, air conditioner outdoor unit, and air conditioner
 本発明は、ブラシレス電動機、空気調和装置の室外機及び空気調和装置に関する。 The present invention relates to a brushless electric motor, an outdoor unit of an air conditioner, and an air conditioner.
 ブラシレス電動機は、空気調和装置、換気扇又は工作機械といった装置に広く使用されている。特許文献1には、回転センサの位置誤差情報を記憶させた記憶媒体を、回転電機を制御する制御装置の組み付け時に読み取り可能な状態で一体的に設けること、及び位置誤差情報は、逆起電力の情報としての電圧波形と、回転センサからの出力情報としてのパルス信号とのゼロ点誤差の情報であることが記載されている。 Brushless electric motors are widely used in devices such as air conditioners, ventilation fans or machine tools. In Patent Document 1, a storage medium in which position error information of a rotation sensor is stored is integrally provided in a readable state when a control device that controls the rotating electrical machine is assembled, and the position error information includes back electromotive force. It is described that this is information on the zero point error between the voltage waveform as the information of the above and the pulse signal as the output information from the rotation sensor.
特開2009-232551号公報JP 2009-232551 A
 特許文献1に記載された技術は、逆起電力の情報としての電圧波形と、回転センサからの出力情報としてのパルス信号とのゼロ点誤差の情報を用いることにより、回転電機と回転センサとの間の位相差を簡易に調整することができる。 The technique described in Patent Document 1 uses information on a zero-point error between a voltage waveform as back electromotive force information and a pulse signal as output information from the rotation sensor, so that The phase difference between them can be easily adjusted.
 電動機は、効率の向上又は騒音の低下を目的として、固定子のコイルを流れる電流の位相を誘起電圧に対して早める、進角制御が行われることがある。特許文献1の技術は、ゼロ点誤差の情報以外については考慮されておらず、電動機の特性のばらつきを抑制した進角制御を実現するためには改善の余地がある。 The electric motor may be subjected to advance angle control in which the phase of the current flowing through the stator coil is advanced with respect to the induced voltage for the purpose of improving efficiency or reducing noise. The technology of Patent Document 1 does not take into consideration other than information on the zero point error, and there is room for improvement in order to realize advance angle control that suppresses variations in the characteristics of the motor.
 本発明は、電動機の特性のばらつきを抑制した進角制御を実現することを目的とする。 The object of the present invention is to realize advance angle control that suppresses variations in the characteristics of an electric motor.
 本発明に係る電動機は、回転子と、固定子と、検出器と、筐体とを含む。回転子は、回転軸を中心として回転する。固定子は、複数の巻線を有し、回転軸と直交する方向において回転子の外側に配置される。検出器は、回転子の位置を検出する。筐体は、回転子、固定子及び検出器を収納する。固定子は、巻線のインダクタンス値、及び巻線の誘起電圧と検出器の検出値との位相ずれを含む情報を保持するための情報保持部分を有する。 The electric motor according to the present invention includes a rotor, a stator, a detector, and a housing. The rotor rotates around the rotation axis. The stator has a plurality of windings and is disposed outside the rotor in a direction orthogonal to the rotation axis. The detector detects the position of the rotor. The housing houses a rotor, a stator, and a detector. The stator has an information holding portion for holding information including an inductance value of the winding and a phase shift between the induced voltage of the winding and the detection value of the detector.
 本発明によれば、電動機の特性のばらつきを抑制した進角制御を実現できる、という効果を奏する。 According to the present invention, it is possible to realize an advance angle control that suppresses variations in the characteristics of the electric motor.
実施の形態1に係る電動機を示す図The figure which shows the electric motor which concerns on Embodiment 1. FIG. 図1のA-A断面図AA sectional view of FIG. 実施の形態1に係る電動機が備える巻線、電動機を制御するための制御装置、及びドライバを示す図The figure which shows the coil | winding with which the electric motor which concerns on Embodiment 1 is equipped, the control apparatus for controlling an electric motor, and a driver 実施の形態1に係るバーコードに含まれる電動機の情報を説明するための図The figure for demonstrating the information of the electric motor contained in the barcode concerning Embodiment 1 誘起電圧と検出器の検出値との関係を示す図Diagram showing the relationship between the induced voltage and the detection value of the detector 位相ずれを説明するための図Diagram for explaining phase shift 誘起電圧の測定値の一例を示す図Diagram showing an example of measured values of induced voltage 誘起電圧定数を説明するための図Diagram for explaining the induced voltage constant 進角制御を説明するための図Diagram for explaining advance angle control 進角制御を説明するための図Diagram for explaining advance angle control 進角制御を説明するための図Diagram for explaining advance angle control 実施の形態1に係る電動機の製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the electric motor which concerns on Embodiment 1. 電動機を検査する装置の一例を示す図The figure which shows an example of the apparatus which test | inspects an electric motor 実施の形態2に係る空気調和装置を示す図The figure which shows the air conditioning apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和装置を示す図The figure which shows the air conditioning apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和装置が有する室外機の送風機を示す図The figure which shows the air blower of the outdoor unit which the air conditioning apparatus which concerns on Embodiment 2 has. 実施の形態2に係る空気調和装置の室外機を示す図The figure which shows the outdoor unit of the air conditioning apparatus which concerns on Embodiment 2. FIG.
 以下に、本発明の実施の形態に係る電動機、空気調和装置の室外機及び空気調和装置を図面に基づいて詳細に説明する。なお、以下の実施の形態によりこの発明が限定されるものではない。 Hereinafter, an electric motor, an outdoor unit of an air conditioner, and an air conditioner according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
実施の形態1.
 図1は、実施の形態1に係る電動機を示す図である。実施の形態1において、電動機1は、ブラシレスDC(Direct Current)電動機である。電動機1は、図1に示されるように、筐体2と、シャフト3と、バーコード4と、機器情報5とを有する。シャフト3は、筐体2から突出している。電動機1の動力は、シャフト3の筐体2から突出した部分から取り出される。バーコード4は、電動機1の情報を含んでいる。実施の形態1において、バーコード4は二次元コードであるが、これに限定されない。バーコード4は、一次元コードであってもよい。電動機1の情報は、電動機1の特性の情報を含む。機器情報5は、電動機1を識別するための情報である。機器情報5は、電動機1の機種名、形式名及びシリアルナンバーの少なくとも1つを含む。機器情報5は、さらに製造元及び製造日の少なくとも一方を含んでいてもよい。
Embodiment 1 FIG.
1 is a diagram illustrating an electric motor according to a first embodiment. In the first embodiment, the electric motor 1 is a brushless DC (Direct Current) electric motor. As shown in FIG. 1, the electric motor 1 includes a housing 2, a shaft 3, a barcode 4, and device information 5. The shaft 3 protrudes from the housing 2. The power of the electric motor 1 is taken out from the portion of the shaft 3 protruding from the housing 2. The bar code 4 includes information on the electric motor 1. In Embodiment 1, the barcode 4 is a two-dimensional code, but is not limited to this. The bar code 4 may be a one-dimensional code. The information on the electric motor 1 includes information on the characteristics of the electric motor 1. The device information 5 is information for identifying the electric motor 1. The device information 5 includes at least one of a model name, a model name, and a serial number of the electric motor 1. The device information 5 may further include at least one of the manufacturer and the date of manufacture.
 図2は、図1のA-A断面図である。電動機1は、軸Zrを中心として回転する回転子10と、複数の巻線22を有し、軸Zrと直交する方向DRにおいて回転子10の外側に配置される固定子20と、回転子10の位置を検出する検出器8と、回転子10、固定子20、及び検出器8を収納し、巻線22のインダクタンス値、及び巻線22の誘起電圧と検出器8の検出値との位相ずれを含む情報を保持するための情報保持部分であるバーコード4を有する筐体2と、を含む。以下において、軸Zrは、適宜回転軸Zrと称され、回転軸Zrと直交する方向DRは、適宜径方向DRと称される。実施の形態1において、筐体2は、情報保持部分であるバーコード4を、外面2Sに有する。つまり、実施の形態1において、バーコード4は、筐体2の外面2Sに設けられる。 FIG. 2 is a cross-sectional view taken along the line AA in FIG. The electric motor 1 includes a rotor 10 that rotates about an axis Zr, a plurality of windings 22, a stator 20 that is disposed outside the rotor 10 in a direction DR orthogonal to the axis Zr, and the rotor 10. And the rotor 10, the stator 20, and the detector 8, and the inductance value of the winding 22 and the phase between the induced voltage of the winding 22 and the detection value of the detector 8. And a housing 2 having a barcode 4 which is an information holding portion for holding information including a shift. Hereinafter, the axis Zr is appropriately referred to as a rotation axis Zr, and the direction DR orthogonal to the rotation axis Zr is appropriately referred to as a radial direction DR. In the first embodiment, the housing 2 has a barcode 4 as an information holding portion on the outer surface 2S. That is, in Embodiment 1, the barcode 4 is provided on the outer surface 2S of the housing 2.
 回転子10は、絶縁体11と、絶縁体11の外周部に配置された永久磁石12とを含む。実施の形態1において、回転子10は、さらに位置検出用磁石13を含む。回転子10は、シャフト3の径方向外側に配置され、かつシャフト3に固定される。回転子10は、円柱形状の構造体であり、両端面の中心を回転軸Zrが貫通する。シャフト3は、回転軸Zrに沿って延在する。シャフト3は、回転子10の両方の端部から突出している。回転子10は、固定子20からの回転磁界によって回転力を得てシャフト3にトルクを伝達して、シャフト3に直接又は間接的に接続された負荷を駆動する。シャフト3が回転子10から突出する長さは、シャフト3に負荷が接続される方が、負荷が接続されない方よりも長い。 The rotor 10 includes an insulator 11 and a permanent magnet 12 disposed on the outer periphery of the insulator 11. In the first embodiment, the rotor 10 further includes a position detection magnet 13. The rotor 10 is disposed on the radially outer side of the shaft 3 and is fixed to the shaft 3. The rotor 10 is a cylindrical structure, and the rotation axis Zr passes through the center of both end faces. The shaft 3 extends along the rotation axis Zr. The shaft 3 protrudes from both ends of the rotor 10. The rotor 10 obtains a rotational force by the rotating magnetic field from the stator 20 and transmits torque to the shaft 3 to drive a load connected directly or indirectly to the shaft 3. The length by which the shaft 3 protrudes from the rotor 10 is longer when the load is connected to the shaft 3 than when the load is not connected.
 位置検出用磁石13は、回転軸Zrが延びる方向、すなわち回転軸方向において、回転子10の一方の端部に取り付けられる。より具体的には、位置検出用磁石13は、シャフト3に負荷が接続されない方における回転子10の端部に取り付けられる。位置検出用磁石13は、回転軸Zrを中心として、回転子10の周方向に沿ってN極とS極とが交互に繰り返される。検出器8は、位置検出用磁石13と対向する部分に配置されている。検出器8は、位置検出用磁石13の極間、すなわちN極とS極との間又はS極とN極との間を検出する。実施の形態1において、位置検出用磁石13の極数は、回転子10の極数と同一である。 The position detection magnet 13 is attached to one end of the rotor 10 in the direction in which the rotation axis Zr extends, that is, in the rotation axis direction. More specifically, the position detection magnet 13 is attached to the end of the rotor 10 on the side where the load is not connected to the shaft 3. In the position detection magnet 13, the N pole and the S pole are alternately repeated along the circumferential direction of the rotor 10 around the rotation axis Zr. The detector 8 is disposed at a portion facing the position detection magnet 13. The detector 8 detects between the poles of the position detection magnet 13, that is, between the N pole and the S pole or between the S pole and the N pole. In the first embodiment, the number of poles of the position detection magnet 13 is the same as the number of poles of the rotor 10.
 永久磁石12、位置検出用磁石13、及びシャフト3は、縦型成形機により射出された樹脂によって一体で形成される。このとき、樹脂は、永久磁石12とシャフト3との間、及び位置検出用磁石13とシャフト3との間に介在してこれらを結合する。回転子10の絶縁体11は、永久磁石12とシャフト3との間、及び位置検出用磁石13とシャフト3との間に介在して硬化した樹脂である。絶縁体11に用いられる樹脂は、PBT(Polybutylene terephthalate:ポリブチレンテレフタレート)、又はPPS(Polyphenylenesulfide:ポリフェニレンサルファイド)のような熱可塑性樹脂が用いられるが、これらの樹脂にガラス充填剤を配合した樹脂であってもよい。実施の形態1において、永久磁石12は、熱可塑性樹脂に磁性材を混合して成形された樹脂磁石、希土類磁石(ネオジム磁石又はサマリウム鉄磁石)、又はフェライト焼結磁石であるが、これらに限定されない。 The permanent magnet 12, the position detecting magnet 13, and the shaft 3 are integrally formed of resin injected by a vertical molding machine. At this time, the resin is interposed between the permanent magnet 12 and the shaft 3 and between the position detection magnet 13 and the shaft 3 to couple them. The insulator 11 of the rotor 10 is a cured resin that is interposed between the permanent magnet 12 and the shaft 3 and between the position detection magnet 13 and the shaft 3. The resin used for the insulator 11 is a thermoplastic resin such as PBT (Polybutylene terephthalate) or PPS (Polyphenylenesulfide), and is a resin in which a glass filler is blended with these resins. There may be. In the first embodiment, the permanent magnet 12 is a resin magnet, a rare earth magnet (neodymium magnet or samarium iron magnet) formed by mixing a thermoplastic material with a magnetic material, or a sintered ferrite magnet, but is not limited thereto. Not.
 回転軸方向において、シャフト3は、負荷側に第1軸受6Tが取り付けられ、負荷側と反対側に第2軸受6Bが取り付けられる。第1軸受6Tは、筐体2に取り付けられたブラケット7を介して筐体2に支持される。ブラケット7は、導電性の金属がプレス加工されることにより製造される。ブラケット7は、固定子20の内周部に嵌め込まれ、かつ第1軸受6Tの外輪が内側に嵌め込まれる。 In the rotation axis direction, the shaft 3 has a first bearing 6T attached to the load side and a second bearing 6B attached to the side opposite to the load side. The first bearing 6T is supported by the housing 2 via a bracket 7 attached to the housing 2. The bracket 7 is manufactured by pressing a conductive metal. The bracket 7 is fitted into the inner peripheral portion of the stator 20, and the outer ring of the first bearing 6T is fitted inside.
 第2軸受6Bは、筐体2に取り付けられる。このような構造により、シャフト3は、第1軸受6T及び第2軸受6Bを介して筐体2に支持される。実施の形態1において、第1軸受6T及び第2軸受6Bは、玉軸受であるが、第1軸受6T及び第2軸受6Bは玉軸受に限定されない。以下において、回転子10に組み付けられたシャフト3に第1軸受6T及び第2軸受6Bが取り付けられた構造体を、適宜回転子組立体と称する。 The second bearing 6B is attached to the housing 2. With such a structure, the shaft 3 is supported by the housing 2 via the first bearing 6T and the second bearing 6B. In the first embodiment, the first bearing 6T and the second bearing 6B are ball bearings, but the first bearing 6T and the second bearing 6B are not limited to ball bearings. Hereinafter, a structure in which the first bearing 6T and the second bearing 6B are attached to the shaft 3 assembled to the rotor 10 is appropriately referred to as a rotor assembly.
 固定子20は、環状の固定子コア21と、巻線22と、固定子コア21と巻線22との間に介在するインシュレータ23とを有する。固定子20、より具体的には固定子コア21は、回転軸Zrと直交する方向DR、すなわち径方向DRにおいて回転子10の外側に配置される。固定子20は、固定子コア21の周方向に沿って複数の巻線22を有する。 The stator 20 includes an annular stator core 21, a winding 22, and an insulator 23 interposed between the stator core 21 and the winding 22. The stator 20, more specifically, the stator core 21 is disposed outside the rotor 10 in the direction DR orthogonal to the rotation axis Zr, that is, in the radial direction DR. The stator 20 has a plurality of windings 22 along the circumferential direction of the stator core 21.
 固定子コア21は、複数の環状の電磁鋼板が積層され、かしめ、溶接又は接着により接合された構造体である。インシュレータ23は、固定子コア21と巻線22とを絶縁する。実施の形態1において、インシュレータ23は、熱可塑性樹脂を用いて、固定子コア21と一体で成型されている。インシュレータ23に用いられる熱可塑性樹脂は、PBTが例示される。複数の巻線22は、インシュレータ23と一体で成型された固定子コア21の各スロットに配置される。巻線22は集中巻であってもよいし、分布巻であってもよい。 The stator core 21 is a structure in which a plurality of annular electromagnetic steel plates are laminated and joined by caulking, welding, or adhesion. The insulator 23 insulates the stator core 21 and the winding 22 from each other. In the first embodiment, the insulator 23 is molded integrally with the stator core 21 using a thermoplastic resin. The thermoplastic resin used for the insulator 23 is exemplified by PBT. The plurality of windings 22 are arranged in each slot of the stator core 21 molded integrally with the insulator 23. The winding 22 may be concentrated winding or distributed winding.
 実施の形態1において、固定子20、基板9、及びコネクタ31は、樹脂により機械的に結合されて一体に成型される。固定子20、基板9、及びコネクタ31を結合した樹脂は、筐体2である。基板9は、検出器8を含む回路を有する。検出器8は、回転子10の磁極の位置を検出するためのホール素子及びホールIC(Integral Circuit)を含む。検出器8は、回転子10の絶縁体11が有する位置検出用磁石13の磁極の間である極間を検出することにより、回転子10の磁極の位置を検出する。実施の形態1において、検出器8はホール素子及びホールICを含むが、検出器8はこれに限定されない。 In the first embodiment, the stator 20, the substrate 9, and the connector 31 are mechanically combined with resin and molded integrally. The resin that combines the stator 20, the substrate 9, and the connector 31 is the housing 2. The substrate 9 has a circuit including the detector 8. The detector 8 includes a Hall element and a Hall IC (Integral Circuit) for detecting the position of the magnetic pole of the rotor 10. The detector 8 detects the position of the magnetic pole of the rotor 10 by detecting the distance between the magnetic poles of the position detection magnet 13 included in the insulator 11 of the rotor 10. In the first embodiment, the detector 8 includes a Hall element and a Hall IC, but the detector 8 is not limited to this.
 基板9は、第2軸受6Bと固定子20との間に配置される。基板9は、回転軸Zrに対して盤面が垂直に配置される。基板9は、基板保持部品を介してインシュレータ23に固定される。基板9は、直接インシュレータ23に固定されてもよい。基板9は、電動機1の外部の制御装置と接続する信号線30が接続される。信号線30は、コネクタ31を介して電動機1の外部の制御装置100と接続される。 The substrate 9 is disposed between the second bearing 6B and the stator 20. The board 9 is disposed so that the board surface is perpendicular to the rotation axis Zr. The substrate 9 is fixed to the insulator 23 via a substrate holding component. The substrate 9 may be directly fixed to the insulator 23. The substrate 9 is connected to a signal line 30 connected to a control device outside the electric motor 1. The signal line 30 is connected to the control device 100 outside the electric motor 1 via the connector 31.
 図3は、実施の形態1に係る電動機が備える巻線、電動機を制御するための制御装置、及びドライバを示す図である。電動機1の固定子20は、U相の巻線22uと、V相の巻線22vと、W相の巻線22wとを有する。それぞれの巻線22u,22v,22wは、ドライバ103に接続されている。ドライバ103は、複数のスイッチング素子を備えたインバータである。ドライバ103は、制御装置100によって制御される。 FIG. 3 is a diagram illustrating a winding, a control device for controlling the motor, and a driver included in the electric motor according to the first embodiment. The stator 20 of the electric motor 1 includes a U-phase winding 22u, a V-phase winding 22v, and a W-phase winding 22w. Each winding 22u, 22v, 22w is connected to the driver 103. The driver 103 is an inverter provided with a plurality of switching elements. The driver 103 is controlled by the control device 100.
 電動機1は、3個の検出器8u,8v,8wを有する。3個の検出器8u,8v,8wは、固定子20の周方向に沿って等間隔で配置される。実施の形態1において、検出器8uは、U相の巻線22uの位置で回転子10の位置を検出し、検出器8vは、V相の巻線22vの位置で回転子10の位置を検出し、検出器8wは、W相の巻線22wの位置で回転子10の位置を検出する。制御装置100は、検出器8u,8v,8wの検出値SCu,SCv,SCwを取得し、ドライバ103を介して電動機1を制御する。 The electric motor 1 has three detectors 8u, 8v, and 8w. The three detectors 8u, 8v, 8w are arranged at equal intervals along the circumferential direction of the stator 20. In the first embodiment, the detector 8u detects the position of the rotor 10 at the position of the U-phase winding 22u, and the detector 8v detects the position of the rotor 10 at the position of the V-phase winding 22v. The detector 8w detects the position of the rotor 10 at the position of the W-phase winding 22w. The control device 100 acquires the detection values SCu, SCv, SCw of the detectors 8 u, 8 v, 8 w and controls the electric motor 1 via the driver 103.
 制御装置100は、処理部101及び記憶部102を備えている。記憶部102は、CPU(Central Processing Unit)のようなプロセッサであり、記憶部102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、又はこれらを組み合わせた装置である。記憶部102は、電動機1を制御するためのコンピュータプログラム及び電動機1の情報を記憶している。電動機1の情報は、図1が示すバーコード4に変換されて、筐体2の外面2Sに設けられる。 The control device 100 includes a processing unit 101 and a storage unit 102. The storage unit 102 is a processor such as a CPU (Central Processing Unit), and the storage unit 102 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, or a combination of these. The storage unit 102 stores a computer program for controlling the electric motor 1 and information on the electric motor 1. Information on the electric motor 1 is converted into the barcode 4 shown in FIG. 1 and provided on the outer surface 2S of the housing 2.
 処理部101は、電動機1を制御するにあたり、記憶部102から前述したコンピュータプログラム及び電動機1の各種の情報を読み出す。そして、電動機1は、読み出したコンピュータプログラムを実行するとともに、電動機1の情報を用いて電動機1を駆動するための信号である駆動信号を生成し、ドライバ103に出力する。ドライバ103は、駆動信号に対応した駆動電圧Edu,Edv,Edwを生成して、各巻線22u,22v,22wに印加する。以下において、各巻線22u,22v,22wを区別しないときには適宜巻線22と称し、検出器8u,8v,8wを区別しないときには適宜検出器8と称し、検出値SCu,SCv,SCwを区別しないときには適宜検出値SCと称し、駆動電圧Edu,Edv,Edwを区別しないときには適宜駆動電圧Edと称する。 When the processing unit 101 controls the electric motor 1, the computer program and various information of the electric motor 1 described above are read from the storage unit 102. The electric motor 1 executes the read computer program, generates a drive signal that is a signal for driving the electric motor 1 using the information of the electric motor 1, and outputs the drive signal to the driver 103. The driver 103 generates drive voltages Edu, Edv, Edw corresponding to the drive signals and applies them to the windings 22u, 22v, 22w. Hereinafter, when the windings 22u, 22v, and 22w are not distinguished from each other, they are appropriately referred to as windings 22. When the detectors 8u, 8v, and 8w are not distinguished from each other, they are appropriately referred to as detectors 8. When the detection values SCu, SCv, and SCw are not distinguished from each other. The detection value SC is appropriately referred to, and when the drive voltages Edu, Edv, and Edw are not distinguished, they are appropriately referred to as the drive voltage Ed.
 図4は、実施の形態1に係るバーコードに含まれる電動機の情報を説明するための図である。実施の形態1において、電動機1の情報IFmは、バーコード4に変換されて、電動機1の筐体2の外面2Sに設けられる。電動機1の情報IFmは、電動機1の特性に関する情報である。実施の形態1において、電動機1の情報IFfは、巻線22のインダクタンス値Lu,Lv,Lw、位相ずれΔθeu,Δθev,Δθew、誘起電圧Eiu,Eiv,Eiw、誘起電圧定数Ciu,Civ,Ciw、及び巻線抵抗Ru,Rv,Rwであるが、これらに限定されない。 FIG. 4 is a diagram for explaining information of the electric motor included in the barcode according to the first embodiment. In the first embodiment, the information IFm of the electric motor 1 is converted into the barcode 4 and provided on the outer surface 2S of the casing 2 of the electric motor 1. The information IFm of the electric motor 1 is information regarding the characteristics of the electric motor 1. In the first embodiment, the information IFf of the electric motor 1 includes the inductance values Lu, Lv, Lw of the winding 22, phase shifts Δθeu, Δθev, Δθew, induced voltages Eiu, Eiv, Eiw, induced voltage constants Ciu, Civ, Ciw, And winding resistances Ru, Rv, and Rw, but are not limited thereto.
 インダクタンス値、位相ずれ、誘起電圧、誘起電圧定数、及び巻線抵抗の各符号に付されるアルファベットuは、U相の巻線22uの値であることを示し、アルファベットvは、V相の巻線22vの値であることを示し、アルファベットwは、W相の巻線22wの値であることを示す。以下において、U相、V相及びW相を区別しない場合、前述の各符号は、アルファベットu,v,wが付されないで表記される。巻線22のインダクタンス値L、位相ずれΔθe、誘起電圧Ei、誘起電圧定数Ci、及び巻線抵抗Rは、電動機1が完成した後の検査において測定された測定値のうち、合格となった電動機1の測定値及びその測定値から求められた値である。 The alphabet u added to the signs of the inductance value, phase shift, induced voltage, induced voltage constant, and winding resistance indicates the value of the U-phase winding 22u, and the alphabet v represents the V-phase winding. The value of the line 22v indicates the value, and the alphabet w indicates the value of the W-phase winding 22w. In the following, when the U phase, the V phase, and the W phase are not distinguished, each of the above-described symbols is represented without the alphabets u, v, and w. The inductance value L, the phase shift Δθe, the induced voltage Ei, the induced voltage constant Ci, and the winding resistance R of the winding 22 are among the measured values measured in the inspection after the motor 1 is completed. 1 measured value and a value obtained from the measured value.
 実施の形態1において、電動機1の完成後における検査で合格した電動機1の巻線22のインダクタンス値Lu,Lv,Lwは、バーコード4として電動機1の筐体2の外面2Sに記録される。バーコード4はバーコードリーダーによって読み取られ、図3が示す制御装置100の記憶部102に記憶される。制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から巻線22のインダクタンス値Lu,Lv,Lwを読み取り、進角制御に用いることで、電動機1の効率を向上させたり、騒音及び振動を低下させたりすることができる。 In the first embodiment, the inductance values Lu, Lv, Lw of the windings 22 of the motor 1 that have passed the inspection after the completion of the motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the motor 1. The barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG. When controlling the electric motor 1, the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, and Lw of the winding 22 from the storage unit 102 and uses them for the advance angle control, thereby improving the efficiency of the electric motor 1. , Noise and vibration can be reduced.
 図5は、誘起電圧と検出器の検出値との関係を示す図である。図6は、位相ずれを説明するための図である。図5及び図6の横軸は、回転子10の電気角θeであり、縦軸は電圧である。検出値SCu,SCv,SCwと誘起電圧Eiu,Eiv,Eiwとでは大きさが異なるが、図5及び図6では、便宜上両者を同程度の大きさとして表している。誘起電圧Eiは、回転子10の永久磁石12の移動によって巻線22に発生する電圧である。誘起電圧Eiは、0ボルト(Volt)を中心としてプラスの電圧とマイナスの電圧とが、電気角で180度ごとに切り替わる。 FIG. 5 is a diagram showing the relationship between the induced voltage and the detection value of the detector. FIG. 6 is a diagram for explaining the phase shift. 5 and 6, the horizontal axis represents the electrical angle θe of the rotor 10, and the vertical axis represents the voltage. The detection values SCu, SCv, SCw and the induced voltages Eiu, Eiv, Eiw are different in magnitude, but in FIGS. 5 and 6, they are shown as the same magnitude for convenience. The induced voltage Ei is a voltage generated in the winding 22 by the movement of the permanent magnet 12 of the rotor 10. As for the induced voltage Ei, a positive voltage and a negative voltage are switched at an electrical angle of 180 degrees around 0 volts (Volt).
 検出値SCは、図2及び図3に示される検出器8が図2に示される位置検出用磁石13の極間で0ボルトを示し、極性に応じてプラスの電圧又はマイナスの電圧を示す。実施の形態1において、前述したように、位置検出用磁石13の極数と回転子10の極数とは等しいので、位置検出用磁石13の位置が検出されることで、回転子10の位置も検出される。以下において、検出値SC及び誘起電圧Eiがプラスからマイナス又はマイナスからプラスに変化する位置を、ゼロクロス点と称する。 The detection value SC indicates 0 volt between the poles of the position detection magnet 13 shown in FIG. 2 by the detector 8 shown in FIGS. 2 and 3, and shows a positive voltage or a negative voltage depending on the polarity. In the first embodiment, as described above, since the number of poles of the position detection magnet 13 and the number of poles of the rotor 10 are equal, the position of the rotor 10 is detected by detecting the position of the position detection magnet 13. Is also detected. Hereinafter, a position where the detection value SC and the induced voltage Ei change from plus to minus or minus to plus is referred to as a zero cross point.
 U相の誘起電圧Eiuと検出器8uの検出値SCuとは、ゼロクロス点が異なる。すなわち、両者は位相がずれている。V相の誘起電圧Eivと検出器8vの検出値SCvとも位相がずれている。W相の誘起電圧Eiwと、検出器8wの検出値SCwとも、U相及びW相と同様に位相がずれている。 The zero-cross point differs between the U-phase induced voltage Eiu and the detected value SCu of the detector 8u. That is, both are out of phase. The V-phase induced voltage Eiv and the detection value SCv of the detector 8v are out of phase. Both the W-phase induced voltage Eiw and the detection value SCw of the detector 8w are out of phase as in the U-phase and the W-phase.
 図6が示すように、ゼロクロス点における誘起電圧Eiの電気角と、ゼロクロス点における検出器8の検出値SCの電気角との差分Δθeが、位相ずれである。図6が示す例では、誘起電圧Eiのゼロクロス点の電気角がθe1、検出値SCのゼロクロス点の電気角がθe2なので、位相ずれの大きさΔθeはθe2-θe1である。図6が示す例において、検出器8uの検出値SCuのゼロクロス点がθe2、検出器8vの検出値SCvのゼロクロス点がθe3、検出器8wの検出値SCwのゼロクロス点がθe4、電動機1が有する検出器8u,8v,8wの設計値のゼロクロス点がθe5であるとする。 As shown in FIG. 6, the difference Δθe between the electrical angle of the induced voltage Ei at the zero cross point and the electrical angle of the detection value SC of the detector 8 at the zero cross point is a phase shift. In the example shown in FIG. 6, since the electrical angle at the zero cross point of the induced voltage Ei is θe1 and the electrical angle at the zero cross point of the detection value SC is θe2, the magnitude Δθe of the phase shift is θe2−θe1. In the example shown in FIG. 6, the zero cross point of the detection value SCu of the detector 8u is θe2, the zero cross point of the detection value SCv of the detector 8v is θe3, the zero cross point of the detection value SCw of the detector 8w is θe4, and the electric motor 1 has. It is assumed that the zero cross point of the design values of the detectors 8u, 8v, 8w is θe5.
 回転子10及び固定子20の製造ばらつきを含む電動機1の製造ばらつきに起因して、各検出値SCu,SCv,SCw同士のばらつき、及び検出器8u,8v,8wの設計値と各検出値SCu,SCv,SCwとのばらつきが発生する。このばらつきにより、電動機1の騒音及び振動が増加したり、効率が低下したりする可能性がある。 Due to manufacturing variations of the electric motor 1 including manufacturing variations of the rotor 10 and the stator 20, variations among the detected values SCu, SCv, SCw, and design values of the detectors 8u, 8v, 8w and detected values SCu. , SCv, and SCw occur. Due to this variation, the noise and vibration of the electric motor 1 may increase or the efficiency may decrease.
 実施の形態1において、電動機1の完成後における検査で合格した電動機1の各相の誘起電圧Eiu,Eiv,Eiwの測定値、及び各検出器8u,8v,8wの検出値SCu,SCv,SCwを用いて、位相ずれΔθeu,Δθev,Δθewが求められる。位相ずれΔθeは、バーコード4として電動機1の筐体2の外面2Sに記録される。バーコード4はバーコードリーダーによって読み取られ、図3が示す制御装置100の記憶部102に記憶される。制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から位相ずれΔθeu,Δθev,Δθewを読み取り、位相ずれΔθeu,Δθev,Δθewが設計値となるように補正することで、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。 In Embodiment 1, the measured values of the induced voltages Eiu, Eiv, Eiw of each phase of the electric motor 1 that have passed the inspection after the completion of the electric motor 1, and the detected values SCu, SCv, SCw of the detectors 8u, 8v, 8w Are used to determine the phase shifts Δθeu, Δθev, Δθew. The phase shift Δθe is recorded as the barcode 4 on the outer surface 2S of the housing 2 of the electric motor 1. The barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG. When controlling the electric motor 1, the processing unit 101 of the control device 100 reads the phase shifts Δθeu, Δθev, Δθew from the storage unit 102 and corrects the phase shifts Δθeu, Δθev, Δθew to be design values. 1 can be suppressed, and further noise and vibration can be suppressed.
 図7は、誘起電圧の測定値の一例を示す図である。回転子10及び固定子20の製造ばらつきを含む電動機1の製造バラつきに起因して、図7が示すように、誘起電圧Eiu,Eiv,Eiwにばらつきが発生する。図7に示される例では、U相、V相、W相の誘起電圧の最大値Eium,Eivm,Eiwmが異なっている。このばらつきにより、電動機1の騒音及び振動が増加したり、効率が低下したりする可能性がある。 FIG. 7 is a diagram showing an example of the measured value of the induced voltage. Due to the manufacturing variation of the electric motor 1 including manufacturing variations of the rotor 10 and the stator 20, as shown in FIG. 7, variations occur in the induced voltages Eiu, Eiv, Eiw. In the example shown in FIG. 7, the maximum values Eium, Eivm, and Eiwm of induced voltages of the U phase, the V phase, and the W phase are different. Due to this variation, the noise and vibration of the electric motor 1 may increase or the efficiency may decrease.
 実施の形態1において、電動機1の完成後における検査で合格した電動機1の誘起電圧Eiu,Eiv,Eiwは、バーコード4として電動機1の筐体2の外面2Sに記録される。バーコード4に変換される情報である誘起電圧Eiu,Eiv,Eiwは、電動機1の完成後における検査で測定された値、すなわち測定値である。バーコード4はバーコードリーダーによって読み取られ、図3が示す制御装置100の記憶部102に記憶される。 In Embodiment 1, the induced voltages Eiu, Eiv, and Eiw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1. The induced voltages Eiu, Eiv, Eiw, which are information to be converted into the barcode 4, are values measured by the inspection after the completion of the electric motor 1, that is, measured values. The barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG.
 電動機1のU相、V相、W相のスロットから電動機1のロータへの磁力の伝わりやすさの違いが、U相、V相、W相の誘起電圧Eiu,Eiv,Eiwの測定値の違いとなる。このため、誘起電圧Eiu,Eiv,Eiwの測定値に応じて相電流又は相電圧を変更することにより、U相、V相、W相のスロットから発生するトルク及び磁力が均一になる。その結果、電動機1の効率低下の抑制及び低騒音化が実現される。制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から誘起電圧Eiu,Eiv,Eiwを読み取り、誘起電圧Eiu,Eiv,Eiwのばらつきが0になるように補正する。具体的には、処理部101は、記憶部102から読み取ったU相、V相、W相の誘起電圧Eiu,Eiv,Eiwの測定値に応じて、U相、V相、W相のデューティ及び進角の少なくとも一方を補正する。このような処理により、電動機1は、効率の低下が抑制され、さらに騒音及び振動が抑制される。 The difference in the ease of transmission of magnetic force from the U-phase, V-phase, and W-phase slots of the electric motor 1 to the rotor of the electric motor 1 is the difference in the measured values of the induced voltages Eiu, Eiv, Eiw in the U-phase, V-phase, and W-phase. It becomes. Therefore, by changing the phase current or the phase voltage according to the measured values of the induced voltages Eiu, Eiv, Eiw, the torque and magnetic force generated from the U-phase, V-phase, and W-phase slots are made uniform. As a result, the reduction in efficiency and the noise reduction of the electric motor 1 are realized. When controlling the electric motor 1, the processing unit 101 of the control device 100 reads the induced voltages Eiu, Eiv, Eiw from the storage unit 102 and corrects the variations of the induced voltages Eiu, Eiv, Eiw to be zero. Specifically, the processing unit 101 determines the duty of the U phase, the V phase, and the W phase according to the measured values of the induced voltages Eiu, Eiv, and Eiw of the U phase, V phase, and W phase read from the storage unit 102. Correct at least one of the advance angles. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
 図8は、誘起電圧定数を説明するための図である。誘起電圧定数Ciは、図8が示すように、電動機1の回転速度Nの変化αに対する誘起電圧Eiの変化βの比である。すなわち、誘起電圧定数Ci=β/αとなる。前述したように、U相、V相、W相の誘起電圧Eiu,Eiv,Eiwがばらつき、誘起電圧定数Ciu,CIv,Ciwがばらつくことにより、電動機1の騒音及び振動が増加したり、効率が低下したりする可能性がある。 FIG. 8 is a diagram for explaining the induced voltage constant. As shown in FIG. 8, the induced voltage constant Ci is a ratio of the change β of the induced voltage Ei to the change α of the rotational speed N of the electric motor 1. That is, the induced voltage constant Ci = β / α. As described above, the induced voltages Eiu, Eiv, and Eiw of the U phase, V phase, and W phase vary, and the induced voltage constants Ciu, CIv, and Ciw vary, thereby increasing the noise and vibration of the motor 1 and increasing the efficiency. It may decrease.
 実施の形態1において、電動機1の完成後における検査で合格した電動機1の誘起電圧定数Ciu,Civ,Ciwは、バーコード4として電動機1の筐体2の外面2Sに記録される。バーコード4はバーコードリーダーによって読み取られ、図3が示す制御装置100の記憶部102に記憶される。制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から誘起電圧定数Ciu,Civ,Ciwを読み取り、誘起電圧定数Ciu,Civ,Ciwのばらつきが0になるように補正する。具体的には、処理部101は、記憶部102から読み取ったU相、V相、W相の誘起電圧定数Ciu,Civ,Ciwの測定値に応じて、U相、V相、W相のデューティ及び進角を補正する。このような処理により、電動機1は、効率の低下が抑制され、さらに騒音及び振動が抑制される。 In Embodiment 1, the induced voltage constants Ciu, Civ, and Ciw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1. The barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG. When controlling the electric motor 1, the processing unit 101 of the control device 100 reads the induced voltage constants Ciu, Civ, and Ciw from the storage unit 102 and corrects the variations of the induced voltage constants Ciu, Civ, and Ciw to be zero. Specifically, the processing unit 101 determines the duty of the U phase, V phase, and W phase according to the measured values of the induced voltage constants Ciu, Civ, and Ciw of the U phase, V phase, and W phase read from the storage unit 102. And correct the advance angle. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
 回転子10及び固定子20の製造ばらつきを含む電動機1の製造ばらつきに起因して、巻線22u,22v,22wの巻線抵抗Ru,Rv,Rwがばらつく可能性がある。巻線抵抗Ru,Rv,Rwのばらつきにより、電動機1の騒音及び振動が増加したり、効率が低下したりする可能性がある。 Due to manufacturing variations of the electric motor 1 including manufacturing variations of the rotor 10 and the stator 20, the winding resistances Ru, Rv, Rw of the windings 22u, 22v, 22w may vary. Due to variations in the winding resistances Ru, Rv, and Rw, there is a possibility that noise and vibration of the motor 1 may increase or efficiency may decrease.
 実施の形態1において、電動機1の完成後における検査で合格した電動機1の巻線抵抗Ru,Rv,Rwは、バーコード4として電動機1の筐体2の外面2Sに記録される。バーコード4はバーコードリーダーによって読み取られ、図3が示す制御装置100の記憶部102に記憶される。制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から巻線抵抗Ru,Rv,Rwを読み取り、巻線抵抗Ru,Rv,Rwのばらつきが0になるように補正する。具体的には、処理部101は、記憶部102から読み取ったU相、V相、W相の巻線抵抗Ru,Rv,Rwの測定値に応じて、U相、V相、W相のデューティ及び進角を補正する。このような処理により、電動機1は、効率の低下が抑制され、さらに騒音及び振動が抑制される。 In Embodiment 1, the winding resistances Ru, Rv, Rw of the electric motor 1 that have passed the inspection after the completion of the electric motor 1 are recorded as the barcode 4 on the outer surface 2S of the casing 2 of the electric motor 1. The barcode 4 is read by a barcode reader and stored in the storage unit 102 of the control device 100 shown in FIG. When controlling the electric motor 1, the processing unit 101 of the control device 100 reads the winding resistances Ru, Rv, Rw from the storage unit 102 and corrects the variations of the winding resistances Ru, Rv, Rw to be zero. Specifically, the processing unit 101 determines the duty of the U phase, V phase, and W phase according to the measured values of the winding resistances Ru, Rv, and Rw of the U phase, V phase, and W phase read from the storage unit 102. And correct the advance angle. By such a process, the electric motor 1 is suppressed from decreasing in efficiency, and further, noise and vibration are suppressed.
 また、制御装置100の処理部101は、電動機1を制御するにあたって、記憶部102から巻線22のインダクタンス値Lu,Lv,Lwを読み取り、進角制御に用いる。このようにすることで、制御装置100は、電動機1の特性のばらつきを抑制した進角制御を実現できるので、電動機1の効率を向上させたり、騒音及び振動を低下させたりすることができる。次に、制御装置100の処理部101が電動機1の情報IFmを用いて行う進角制御を説明する。 Further, when controlling the electric motor 1, the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, Lw of the winding 22 from the storage unit 102 and uses them for the advance angle control. By doing in this way, since the control apparatus 100 can implement | achieve the advance angle control which suppressed the dispersion | variation in the characteristic of the electric motor 1, it can improve the efficiency of the electric motor 1 or can reduce a noise and a vibration. Next, the advance angle control performed by the processing unit 101 of the control device 100 using the information IFm of the electric motor 1 will be described.
 図9から図11は、進角制御を説明するための図である。図3が示すドライバ103が巻線22に駆動電圧Edを印加すると、巻線22には電流Idが流れる。この電流を巻線電流Idと称する。巻線電流Idが生成する磁束と、回転子10が有する永久磁石12が生成する磁束とによって、回転子10が回転する。進角制御は、固定子20の巻線電流Idの位相を進めることにより、電動機1の効率を向上させたり、騒音及び振動を低減させたりする制御である。 9 to 11 are diagrams for explaining the advance angle control. When the driver 103 shown in FIG. 3 applies the drive voltage Ed to the winding 22, a current Id flows through the winding 22. This current is referred to as winding current Id. The rotor 10 is rotated by the magnetic flux generated by the winding current Id and the magnetic flux generated by the permanent magnet 12 included in the rotor 10. The advance angle control is a control for improving the efficiency of the electric motor 1 or reducing noise and vibration by advancing the phase of the winding current Id of the stator 20.
 図9が示す例において、駆動電圧Edと誘起電圧Eiとは位相が一致している。巻線電流Idは、誘起電圧Eiよりも位相が遅れている。巻線電流Idを進角させて、巻線電流Idの位相と誘起電圧Eiの位相とを一致させることにより、電動機1のトルクを最大にすることができる。巻線電流Idの位相を進めるためには、駆動電圧Edの位相を進めればよい。駆動電圧Edの位相は、巻線電流Idの位相よりも電気角でφだけ進んでいる。以下において、φを適宜位相差φと称する。位相差φは、駆動電圧Edと巻線電流Idとの位相差であり、式(1)で求めることができる。Lは巻線22のインダクタンスであり、Rはドライバ103から巻線22に流れる電流の経路の抵抗である。Rは、巻線22の抵抗としてもよい。ωは回転子10の角速度である。
 φ=tan-1(ω×L/R)・・(1)
In the example shown in FIG. 9, the drive voltage Ed and the induced voltage Ei are in phase. The winding current Id is delayed in phase from the induced voltage Ei. The torque of the electric motor 1 can be maximized by advancing the winding current Id so that the phase of the winding current Id matches the phase of the induced voltage Ei. In order to advance the phase of the winding current Id, the phase of the drive voltage Ed may be advanced. The phase of the drive voltage Ed is advanced by φ in electrical angle with respect to the phase of the winding current Id. Hereinafter, φ is appropriately referred to as a phase difference φ. The phase difference φ is a phase difference between the drive voltage Ed and the winding current Id, and can be obtained by Expression (1). L is the inductance of the winding 22, and R is the resistance of the path of the current flowing from the driver 103 to the winding 22. R may be a resistance of the winding 22. ω is the angular velocity of the rotor 10.
φ = tan −1 (ω × L / R) (1)
 図10は、誘起電圧Eiの位相と巻線電流Idの位相とを一致させた例を示す。この場合、誘起電圧Eiのマイナスからプラスのゼロクロス点と、巻線電流Idのマイナスからプラスのゼロクロス点とを一致させる。検出器8の検出値SCがマイナスからプラスになるときのゼロクロス点である回転子10の電気角θes0よりも、位相ずれΔθeだけ早いタイミングにおける回転子10の電気角θei0が、誘起電圧Eiのマイナスからプラスになるときのゼロクロス点となる。制御装置100の処理部101は、検出器8の検出値SCが電気角θes0となるタイミングよりも、位相ずれΔθeと位相差φとを加算した値だけ早いタイミングで、巻線22に駆動電圧Edを印加すればよい。制御装置100が進角制御を行って誘起電圧Eiの位相と巻線電流Idの位相とを一致させる場合、処理部101は、式(2)にしたがって駆動電圧Edを生成すればよい。式(2)中、Edmは、駆動電圧Edの振幅の最大値と最小値との差の1/2である。tは時間である。
 Ed=Edm×sin(ω×t-(φ+Δθe))・・(2)
FIG. 10 shows an example in which the phase of the induced voltage Ei matches the phase of the winding current Id. In this case, the minus to plus zero cross point of the induced voltage Ei is matched with the minus to plus zero cross point of the winding current Id. The electrical angle θei0 of the rotor 10 at a timing earlier by the phase shift Δθe than the electrical angle θes0 of the rotor 10 which is the zero cross point when the detection value SC of the detector 8 changes from minus to plus is the minus of the induced voltage Ei. It becomes the zero crossing point when it becomes plus. The processing unit 101 of the control device 100 applies the drive voltage Ed to the winding 22 at a timing earlier than the timing at which the detection value SC of the detector 8 becomes the electrical angle θes0 by a value obtained by adding the phase shift Δθe and the phase difference φ. May be applied. When the control device 100 performs advance angle control to make the phase of the induced voltage Ei coincide with the phase of the winding current Id, the processing unit 101 may generate the drive voltage Ed according to the equation (2). In equation (2), Edm is ½ of the difference between the maximum value and the minimum value of the amplitude of the drive voltage Ed. t is time.
Ed = Edm × sin (ω × t− (φ + Δθe)) (2)
 図11は、誘起電圧Eiの位相を、巻線電流Idの位相よりも電気角θdf分、さらに進めた例を示す。この場合、制御装置100の処理部101は、検出器8の検出値SCが電気角θes0となるタイミングよりも、位相ずれΔθeと位相差φと電気角θdfとを加算した値だけ早いタイミングで、巻線22に駆動電圧Edを印加すればよい。すなわち、制御装置100の処理部101は、式(3)にしたがって駆動電圧Edを生成すればよい。式(3)中、Edmは、駆動電圧Edの振幅の最大値と最小値との差の1/2である。tは時間である。以下において、電気角θdfを、適宜調整量と称する。調整量θdfの符号が正のとき、巻線電流Idは誘起電圧Eiよりも位相が進み、調整量θdfの符号が負のとき、巻線電流Idは誘起電圧Eiよりも位相が遅れる。調整量θdfが0のとき、式(3)は式(2)と同一になる。
 Ed=Edm×sin(ω×t-(φ+θdf+Δθe))・・(3)
FIG. 11 shows an example in which the phase of the induced voltage Ei is further advanced by the electrical angle θdf than the phase of the winding current Id. In this case, the processing unit 101 of the control device 100 has a timing that is earlier by a value obtained by adding the phase shift Δθe, the phase difference φ, and the electrical angle θdf than the timing at which the detection value SC of the detector 8 becomes the electrical angle θes0. The drive voltage Ed may be applied to the winding 22. That is, the processing unit 101 of the control device 100 may generate the drive voltage Ed according to the equation (3). In Expression (3), Edm is ½ of the difference between the maximum value and the minimum value of the amplitude of the drive voltage Ed. t is time. Hereinafter, the electrical angle θdf is referred to as an adjustment amount as appropriate. When the sign of the adjustment amount θdf is positive, the winding current Id advances in phase with respect to the induced voltage Ei, and when the sign of the adjustment amount θdf is negative, the winding current Id is delayed in phase with respect to the induced voltage Ei. When the adjustment amount θdf is 0, Expression (3) is the same as Expression (2).
Ed = Edm × sin (ω × t− (φ + θdf + Δθe)) (3)
 式(1)から分かるように、位相差φに巻線22のインダクタンス値Lが含まれる。前述したように、巻線22u,22v,22wのインダクタンス値Lu,Lv,Lwは、バーコード4から制御装置100の記憶部102に読み込まれて記憶される。このため、制御装置100の処理部101は、進角制御を実行するにあたって、インダクタンス値Lu,Lv,Lwを記憶部102から読み出し、読み出した値と式(3)とを用いて駆動電流Edを巻線22u,22v,22wに印加する。このようにすることで、巻線22u,22v,22wのインダクタンス値Lu,Lv,Lwのばらつきの影響を低減して、電動機1の効率の向上、及び騒音及び振動の低減を実現することができる。また、制御装置100の処理部101は、インダクタンス値Lu,Lv,Lwに加え、バーコード4から記憶部102に読み込まれて記憶された巻線抵抗Ru,Rv,Rwの値を用いることにより、電動機1の効率のさらなる向上、及び騒音及び振動のさらなる低減を実現することができる。 As can be seen from Equation (1), the phase difference φ includes the inductance value L of the winding 22. As described above, the inductance values Lu, Lv, and Lw of the windings 22u, 22v, and 22w are read from the barcode 4 and stored in the storage unit 102 of the control device 100. Therefore, when executing the advance angle control, the processing unit 101 of the control device 100 reads the inductance values Lu, Lv, and Lw from the storage unit 102, and uses the read values and Expression (3) to calculate the drive current Ed. Applied to the windings 22u, 22v, 22w. By doing in this way, the influence of the dispersion | variation in the inductance values Lu, Lv, and Lw of winding 22u, 22v, and 22w can be reduced, and the improvement of the efficiency of the electric motor 1 and reduction of a noise and a vibration can be implement | achieved. . In addition to the inductance values Lu, Lv, and Lw, the processing unit 101 of the control device 100 uses the values of the winding resistances Ru, Rv, and Rw read from the barcode 4 and stored in the storage unit 102. Further improvement in the efficiency of the electric motor 1 and further reduction in noise and vibration can be realized.
 前述したように、位相ずれΔθeu,Δθev,Δθewは、バーコード4から制御装置100の記憶部102に読み込まれて記憶される。このため、制御装置100の処理部101は、進角制御を実行するにあたって、位相ずれΔθeu,Δθev,Δθewを記憶部102から読み出し、読み出した値と式(3)とを用いて駆動電流Edを巻線22u,22v,22wに印加する。このようにすることで、位相ずれΔθeu,Δθev,Δθewのばらつきの影響を低減して、電動機1の効率のさらなる向上、及び騒音及び振動のさらなる低減を実現することができる。 As described above, the phase shifts Δθeu, Δθev, Δθew are read from the barcode 4 into the storage unit 102 of the control device 100 and stored. Therefore, when executing the advance angle control, the processing unit 101 of the control device 100 reads out the phase shifts Δθeu, Δθev, Δθew from the storage unit 102, and uses the read values and Expression (3) to calculate the drive current Ed. Applied to the windings 22u, 22v, 22w. By doing in this way, the influence of the dispersion | variation in phase shift (DELTA) (theta) eu, (DELTA) (theta) ev, (DELTA) (theta) ew can be reduced, and the further improvement of the efficiency of the electric motor 1 and the further reduction of a noise and a vibration can be implement | achieved.
 進角制御において、制御装置100の処理部101は、電動機1の最大出力で最も効率が高くなる進角を算出し、その進角で制御することができる。このような処理により、処理部101は、電動機1に、より少ない電流で高いトルクを発生させることができるので、電動機1の最大出力を向上させることができる。また、最も電動機1の効率が高くなる進角と、電動機1の騒音が最も低くなる進角とは異なる。このため、実施の形態1の進角制御において、制御装置100の処理部101は、定格運転において電動機1の効率と騒音とを両立できる進角を算出し、その進角で制御することにより、電動機1を高い効率、かつ低い騒音で運転できる。 In the advance angle control, the processing unit 101 of the control device 100 can calculate the advance angle at which the efficiency is highest at the maximum output of the electric motor 1, and can control the advance angle. By such processing, the processing unit 101 can cause the electric motor 1 to generate a high torque with less current, and thus can improve the maximum output of the electric motor 1. Further, the advance angle at which the efficiency of the electric motor 1 is highest is different from the advance angle at which the noise of the electric motor 1 is lowest. For this reason, in the advance angle control of the first embodiment, the processing unit 101 of the control device 100 calculates an advance angle that can achieve both efficiency and noise of the electric motor 1 in rated operation, and controls by the advance angle. The electric motor 1 can be operated with high efficiency and low noise.
 前述したように、制御装置100の処理部101は、電動機1を制御するにあたって、進角制御以外の制御でも位相ずれΔθeを補正する。図6に示す例において、ゼロクロス点の電気角がθe2の検出器8の検出値SC、すなわち検出器8によって検出される回転子10の位置は、設計値の電気角θe5よりも位相が遅れている。このため、処理部101は、ゼロクロス点の電気角がθe2の検出器8の検出値SCを、θe2-θe5分、進角させて取り扱う。また、処理部101は、ゼロクロス点の電気角がθe3の検出器8の検出値SCを、θe3-θe5分、進角させて取り扱い、ゼロクロス点の電気角がθe4の検出器8の検出値SCを、θe4-θe5分、進角させて取り扱う。このような処理により、処理部101は、それぞれの検出器8の位相ずれΔθeを設計値に補正できるので、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。また、制御装置100は、位相ずれΔθe差のばらつきを擬似的に0にすることができるので、電動機1は、位相ずれΔθe差による最大出力、効率及び騒音の少なくとも1つのばらつきが低減される。その結果、ばらつきの下限で設計されている装置は、電動機1の最大出力、効率及び騒音の少なくとも1つが向上したように見える、という利点がある。 As described above, the processing unit 101 of the control device 100 corrects the phase shift Δθe by control other than the advance angle control when controlling the electric motor 1. In the example shown in FIG. 6, the detected value SC of the detector 8 whose electrical angle at the zero cross point is θe2, that is, the position of the rotor 10 detected by the detector 8 is delayed in phase from the designed electrical angle θe5. Yes. Therefore, the processing unit 101 handles the detection value SC of the detector 8 whose zero cross point electrical angle is θe2 by advancing the detection value SC by θe2−θe5. Further, the processing unit 101 handles the detection value SC of the detector 8 whose electrical angle at the zero-crossing point is advanced by θe3-θe5, and handles the detection value SC of the detector 8 whose electrical angle at the zero-crossing point is θe4. Is advanced by θe4-θe5 minutes. By such processing, the processing unit 101 can correct the phase shift Δθe of each detector 8 to a design value, so that it is possible to suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration. In addition, since the control device 100 can artificially make the variation in the phase shift Δθe difference zero, the electric motor 1 can reduce at least one variation in the maximum output, the efficiency, and the noise due to the phase shift Δθe difference. As a result, the device designed with the lower limit of variation has the advantage that at least one of the maximum output, efficiency and noise of the motor 1 appears to have improved.
 制御装置100の処理部101は、位相ずれΔθeを有する検出器8の検出値SCを、設計値に補正する以外にも、誘起電圧Eiのゼロクロス点の電気角θe1に補正してもよい。この場合、処理部101は、位相ずれΔθeが発生している検出器8の検出値SCを、位相ずれΔθe分、進角させて取り扱う。このような処理により、処理部101は、それぞれの検出器8の位相ずれΔθeを誘起電圧Eiのゼロクロス点の電気角θe1に合わせることができるので、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。 The processing unit 101 of the control device 100 may correct the detection value SC of the detector 8 having the phase shift Δθe to the electrical value θe1 of the zero cross point of the induced voltage Ei in addition to correcting the detection value SC to the design value. In this case, the processing unit 101 handles the detection value SC of the detector 8 in which the phase shift Δθe has occurred by advancing the detection value SC by the phase shift Δθe. By such processing, the processing unit 101 can adjust the phase shift Δθe of each detector 8 to the electrical angle θe1 of the zero cross point of the induced voltage Ei, thereby suppressing reduction in efficiency of the electric motor 1 and further noise. And vibration can be suppressed.
 実施の形態1において、制御装置100の処理部101は、位相ずれΔθeが、巻線22の誘起電圧Eiと検出器8の検出値SCとのずれの設計値に最も近い相の検出器8の検出値を用いて、電動機を制御してもよい。図6が示す例において、設計値の電気角はθe5なので、巻線22の誘起電圧Eiと検出器8の検出値SCとのずれの設計値は、θe5-θe1となる。位相ずれΔθeが設計値に最も近い相は、ゼロクロス点の電気角がθe3の相である。前述したように、この相はV相なので、処理部101は、V相の検出器8vの検出値SCvを用いて電動機1を制御する。このような処理により、処理部101は、検出器8の位相ずれΔθeが設計値に最も近い検出器8の検出値SCを用いて電動機1を制御できるので、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。また、処理部101は、1つの検出器8の検出値SCのみで電動機1を制御できるので、各相の位相ずれΔθeのばらつきを電動機1の回転ムラと誤認識することを回避できる。さらに、処理部101は、電動機1を制御する場合、複数の検出器8u,8v,8wの検出値SCu,SCv,SCwを補正する必要がなくなるので、処理の負荷を低減できる。 In the first embodiment, the processing unit 101 of the control device 100 has the phase shift Δθe of the detector 8 of the phase closest to the design value of the shift between the induced voltage Ei of the winding 22 and the detection value SC of the detector 8. The electric motor may be controlled using the detected value. In the example shown in FIG. 6, since the electrical angle of the design value is θe5, the design value of the deviation between the induced voltage Ei of the winding 22 and the detection value SC of the detector 8 is θe5-θe1. The phase with the phase shift Δθe closest to the design value is the phase with the electrical angle at the zero cross point θe3. As described above, since this phase is the V phase, the processing unit 101 controls the electric motor 1 using the detection value SCv of the V-phase detector 8v. By such processing, the processing unit 101 can control the electric motor 1 using the detection value SC of the detector 8 in which the phase shift Δθe of the detector 8 is closest to the design value, thereby suppressing a decrease in efficiency of the electric motor 1. Furthermore, noise and vibration can be suppressed. Further, since the processing unit 101 can control the electric motor 1 only with the detection value SC of one detector 8, it is possible to avoid erroneously recognizing the variation in the phase shift Δθe of each phase as the rotation unevenness of the electric motor 1. Furthermore, when the processing unit 101 controls the electric motor 1, it is not necessary to correct the detection values SCu, SCv, SCw of the plurality of detectors 8u, 8v, 8w, so that the processing load can be reduced.
 制御装置100の処理部101は、位相ずれΔθeが設計値である場合には、進角制御において、最適進角、すなわち最も効率が高い進角、最も騒音が小さい進角、又は高効率と低騒音とを両立できる進角となるように制御する。この場合、処理部101は、位相ずれΔθeが設計値に最も近い相の検出値SCを用いて電動機1を制御することにより、より最適に近い進角で電動機1を制御することができる。処理部101は、電動機1の高効率化及び電動機1の低騒音化の少なくとも一方を実現できる。 When the phase shift Δθe is a design value, the processing unit 101 of the control device 100 uses an optimum advance angle, that is, an advance angle with the highest efficiency, an advance angle with the least noise, or a high efficiency and low in advance angle control. Control is made so that the lead angle is compatible with noise. In this case, the processing unit 101 can control the electric motor 1 with a more advanced advance angle by controlling the electric motor 1 using the detected value SC of the phase whose phase shift Δθe is closest to the design value. The processing unit 101 can realize at least one of high efficiency of the electric motor 1 and low noise of the electric motor 1.
 実施の形態1において、制御装置100の処理部101は、各相の誘起電圧Eiのばらつきが0になるように駆動電圧Edを補正してもよい。具体的には、処理部101は、誘起電圧Eiが高い相に印加する駆動電圧Edを小さくし、誘起電圧Eiが低い相に印加する駆動電圧Edを大きくする。その結果、処理部101は、誘起電圧Eiのばらつきを抑制できるので、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。 In the first embodiment, the processing unit 101 of the control device 100 may correct the drive voltage Ed so that the variation of the induced voltage Ei of each phase becomes zero. Specifically, the processing unit 101 decreases the drive voltage Ed applied to the phase with the high induced voltage Ei, and increases the drive voltage Ed applied to the phase with the low induced voltage Ei. As a result, since the processing unit 101 can suppress variations in the induced voltage Ei, it is possible to suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration.
 制御装置100の処理部101は、各相の誘起電圧定数Ciのばらつきが0になるように駆動電圧Edを補正してもよい。具体的には、処理部101は、誘起電圧定数Ciが大きい相に印加する駆動電圧Edを小さくし、誘起電圧定数Ciが小さい相に印加する駆動電圧Edを大きくする。その結果、処理部101は、誘起電圧定数Ciのばらつきを抑制できるので、電動機1の効率の低下を抑制し、さらに騒音及び振動を抑制できる。 The processing unit 101 of the control device 100 may correct the drive voltage Ed so that the variation of the induced voltage constant Ci of each phase becomes zero. Specifically, the processing unit 101 decreases the drive voltage Ed applied to the phase with the large induced voltage constant Ci, and increases the drive voltage Ed applied to the phase with the small induced voltage constant Ci. As a result, since the processing unit 101 can suppress variations in the induced voltage constant Ci, it can suppress a decrease in efficiency of the electric motor 1 and further suppress noise and vibration.
 電動機1の情報IFmが変換されたバーコード4は、筐体2の外面2Sに設けられる。実施の形態1において、レーザマーカによって筐体2の外面2Sに直接書き込まれる。機器情報5も、レーザマーカによって筐体2の外面2Sに書き込まれるので、レーザマーカを用いてバーコード4及び機器情報5を書き込むことにより、電動機1の製造設備の投資を抑制することができる。バーコード4は、筐体2の外面2Sに直接書き込まれる以外にも、シールに印刷されて筐体2の外面2Sに張り付けられてもよい。次に、電動機1の製造方法を説明する。 The barcode 4 converted from the information IFm of the electric motor 1 is provided on the outer surface 2S of the housing 2. In the first embodiment, data is directly written on the outer surface 2S of the housing 2 by the laser marker. Since the device information 5 is also written on the outer surface 2S of the housing 2 by the laser marker, the investment in the manufacturing facility for the electric motor 1 can be suppressed by writing the barcode 4 and the device information 5 using the laser marker. The barcode 4 may be printed on a sticker and attached to the outer surface 2S of the housing 2 in addition to being directly written on the outer surface 2S of the housing 2. Next, a method for manufacturing the electric motor 1 will be described.
 図12は、実施の形態1に係る電動機の製造方法の一例を示すフローチャートである。図13は、電動機を検査する装置の一例を示す図である。実施の形態1に係る電動機の製造方法は、固定子20の作製工程と、回転子組立体の作製工程と、電動機1の作製工程とを含む。ステップS101からステップS105が固定子20の作製工程であり、ステップS106からステップS108が回転子組立体の作製工程であり、ステップS109からステップS115が電動機1の作製工程である。固定子20の作製工程及び回転子組立体の作製工程は、前者が先であってもよいし、後者が先であってもよいし、両者が並行して進行してもよい。 FIG. 12 is a flowchart showing an example of the method for manufacturing the electric motor according to the first embodiment. FIG. 13 is a diagram illustrating an example of an apparatus for inspecting an electric motor. The method for manufacturing the electric motor according to the first embodiment includes a manufacturing process of the stator 20, a manufacturing process of the rotor assembly, and a manufacturing process of the electric motor 1. Steps S101 to S105 are steps for manufacturing the stator 20, steps S106 to S108 are steps for manufacturing the rotor assembly, and steps S109 to S115 are steps for manufacturing the electric motor 1. In the manufacturing process of the stator 20 and the manufacturing process of the rotor assembly, the former may be the first, the latter may be the first, or both may proceed in parallel.
 まず、固定子20の作製工程を説明する。ステップS101において、電磁鋼板が積層されて、固定子コア21が作製される。ステップS102において、固定子コア21とインシュレータ23とが一体に成型される。ステップS103において、固定子コア21の各スロットに巻線22が巻き付けられて、固定子20が作製される。ステップS104において、基板保持部品が固定子20に取り付けられる。基板保持部品には、基板9が取り付けられる。ステップS105において、固定子20、基板保持部品及び基板9が樹脂で一体成型されることにより、樹脂で一体成型された固定子20が作製される。 First, the manufacturing process of the stator 20 will be described. In step S101, electromagnetic steel plates are laminated to produce the stator core 21. In step S102, the stator core 21 and the insulator 23 are integrally molded. In step S103, the winding 22 is wound around each slot of the stator core 21 to manufacture the stator 20. In step S <b> 104, the board holding component is attached to the stator 20. A substrate 9 is attached to the substrate holding component. In step S105, the stator 20, the substrate holding component, and the substrate 9 are integrally molded with resin, so that the stator 20 integrally molded with resin is manufactured.
 次に、回転子組立体の作製工程を説明する。ステップS106において、永久磁石12が作製される。ステップS107において、永久磁石12、位置検出用磁石13及びシャフト3を樹脂で一体成型し、回転子10が作製される。ステップS108において、第1軸受6T及び第2軸受6Bがシャフト3に圧入されて、回転子組立体が作製される。 Next, the manufacturing process of the rotor assembly will be described. In step S106, the permanent magnet 12 is produced. In step S107, the permanent magnet 12, the position detecting magnet 13, and the shaft 3 are integrally formed of resin, and the rotor 10 is manufactured. In step S108, the first bearing 6T and the second bearing 6B are press-fitted into the shaft 3 to produce a rotor assembly.
 次に、電動機1の作製工程を説明する。ステップS109において、樹脂で一体成型された固定子20の凹部、すなわち固定子コア21の径方向DRの内側に回転子組立体が挿入される。その後、ブラケット7で凹部の開口部が塞がれることにより、電動機1が作製される。ステップS110において、電動機1の完成品が検査される。ステップS111において、作製された電動機1が完成品の検査に合格した場合(ステップS111,Yes)、ステップS112進む。ステップS112において、電動機1の情報IFm、すなわちUVW各相のインダクタンス値L、位相ずれΔθe、誘起電圧Ei、誘起電圧定数Ci、及び巻線抵抗Rを含むバーコード4がレーザマーカで電動機1の筐体2の外面2Sに書き込まれる。同時に、機器情報5、すなわち電動機1の機種名、型名、製造日、シリアルナンバー、及び製造元がレーザマーカで電動機1の筐体2の外面2Sに書き込まれる。バーコード4及び機器情報5が筐体2の外面2Sに書き込まれることにより、電動機1が完成する(ステップS113)。 Next, the manufacturing process of the electric motor 1 will be described. In step S <b> 109, the rotor assembly is inserted into the concave portion of the stator 20 integrally molded with resin, that is, inside the radial direction DR of the stator core 21. Thereafter, the opening of the recess is closed by the bracket 7, whereby the electric motor 1 is manufactured. In step S110, the finished product of the electric motor 1 is inspected. In step S111, when the produced electric motor 1 has passed the inspection of the finished product (step S111, Yes), the process proceeds to step S112. In step S112, the information IFm of the motor 1, that is, the inductance value L of each phase of UVW, the phase shift Δθe, the induced voltage Ei, the induced voltage constant Ci, and the barcode 4 including the winding resistance R are laser markers, and the casing of the motor 1 2 is written on the outer surface 2S. At the same time, the device information 5, that is, the model name, model name, date of manufacture, serial number, and manufacturer of the electric motor 1 is written on the outer surface 2S of the casing 2 of the electric motor 1 with a laser marker. The bar code 4 and the device information 5 are written on the outer surface 2S of the housing 2 to complete the electric motor 1 (step S113).
 電動機1の製造においてタクトタイムが長い工程は、固定子コア21に巻線22を巻き付ける工程及び樹脂で固定子20又は回転子10を成型する工程である。したがって、機器情報5を電動機1に書き込む工程でバーコード4を電動機1に設ける作業を追加しても、タクトタイムはほとんど増加しない。このため、実施の形態1に係る電動機の製造方法において、バーコード4を電動機1に設けても、電動機1の製造コストはほとんど増加しない。また、電動機1は、情報IFmを記憶するメモリを有する必要はないので、メモリに情報IFmを書き込む時間及びメモリが不要になる結果、製造コストの低減及び製造時間の短縮が実現できる。 In the manufacture of the electric motor 1, the process with a long tact time is a process of winding the winding 22 around the stator core 21 and a process of molding the stator 20 or the rotor 10 with resin. Therefore, even if the operation of providing the barcode 4 on the electric motor 1 in the process of writing the device information 5 to the electric motor 1 is added, the tact time is hardly increased. For this reason, in the method for manufacturing the electric motor according to the first embodiment, even if the barcode 4 is provided in the electric motor 1, the manufacturing cost of the electric motor 1 hardly increases. In addition, since the electric motor 1 does not need to have a memory for storing the information IFm, the time for writing the information IFm in the memory and the memory become unnecessary, so that the manufacturing cost and the manufacturing time can be reduced.
 作製された電動機1が完成品の検査に合格しなかった場合(ステップS111,No)、ステップS114において手直し可能であるか否かが判定される。手直し可能である場合(ステップS114,Yes)、ステップS110及びステップS111が繰り返される。作製された電動機1が手直し可能でない場合(ステップS114,No)、その電動機1はステップS115で廃却される。 When the produced electric motor 1 does not pass the inspection of the finished product (No at Step S111), it is determined whether or not it can be reworked at Step S114. If it can be corrected (step S114, Yes), step S110 and step S111 are repeated. When the produced electric motor 1 cannot be reworked (No at Step S114), the electric motor 1 is discarded at Step S115.
 次に、完成品の検査について説明する。電動機1が完成すると、主に次の項目が検査又は測定される。図13が示す計測装置115は、検査対象の電動機1の特性を測定する。
(1)耐電圧及び絶縁抵抗の検査。
(2)コネクタ31の各端子間容量。
(3)各相間の巻線抵抗R及びインダクタンス値Lの測定。
(4)無負荷回転時における入力電流の測定。
(5)実運転に近い負荷を電動機1に与えた場合における入力電流及び検出器8の検出値SCそれぞれの周波数及びデューティー(Duty)の測定。
(6)外力で電動機1を回転させた場合の誘起電圧Ei、位相ずれΔθe、検出値SCのデューティ(Duty)、及び検出値SCの周波数の測定。
(7)騒音検査。
Next, inspection of the finished product will be described. When the electric motor 1 is completed, the following items are mainly inspected or measured. 13 measures the characteristics of the electric motor 1 to be inspected.
(1) Inspection of withstand voltage and insulation resistance.
(2) Capacitance between terminals of the connector 31.
(3) Measurement of winding resistance R and inductance value L between each phase.
(4) Measurement of input current during no-load rotation.
(5) Measurement of frequency and duty (duty) of the input current and the detection value SC of the detector 8 when a load close to actual operation is applied to the motor 1.
(6) Measurement of the induced voltage Ei, the phase shift Δθe, the duty (Duty) of the detection value SC, and the frequency of the detection value SC when the electric motor 1 is rotated by an external force.
(7) Noise inspection.
 外力で電動機1を回転させる場合は、図13が示す外力駆動用電動機110が用いられる。このとき、回転ムラが大きいと、各測定値の精度が低下するので、外力駆動用電動機110にはサーボモータが用いられる。外力駆動用電動機110と電動機1とは、短時間で連結又は分離する必要がある。このため、外力駆動用電動機110のシャフト113と電動機1のシャフト3との連結には、チャック114が用いられる。 When rotating the electric motor 1 with external force, the external force driving electric motor 110 shown in FIG. 13 is used. At this time, if the rotation unevenness is large, the accuracy of each measurement value is lowered, and therefore a servo motor is used as the external force driving motor 110. The external force drive motor 110 and the motor 1 need to be connected or disconnected in a short time. Therefore, the chuck 114 is used to connect the shaft 113 of the external force driving motor 110 and the shaft 3 of the motor 1.
 以上、実施の形態1は、電動機1の製造工程において、電動機1の機器情報5を筐体2の外面2Sに書き込む工程で、電動機1の情報IFmを筐体2の外面2Sに設けるので、タクトタイムの増加はほとんど発生しない。その結果、電動機1は、製造コストの増加が抑制される。また、電動機1を制御する制御装置100は、電動機1の情報IFmが記憶部102に書き込まれることにより、電動機1の情報IFmを用いて電動機1の特性のばらつきを抑制することができる。その結果、電動機1は、高効率化による消費エネルギーの低減、低騒音化、及び高出力化の少なくとも1つを実現できる。 As described above, the first embodiment is a process of writing the device information 5 of the motor 1 to the outer surface 2S of the housing 2 in the manufacturing process of the motor 1, and the information IFm of the motor 1 is provided on the outer surface 2S of the housing 2. Little increase in time occurs. As a result, the increase in manufacturing cost of the electric motor 1 is suppressed. In addition, the control device 100 that controls the electric motor 1 can suppress variations in characteristics of the electric motor 1 by using the information IFm of the electric motor 1 by writing the information IFm of the electric motor 1 in the storage unit 102. As a result, the electric motor 1 can realize at least one of reduction in energy consumption, reduction in noise, and increase in output due to higher efficiency.
 電動機1は、インダクタンス値L及び位相ずれΔθeといった情報IFmを筐体2の外面2Sに有している。電動機1の制御装置100は、電動機1の筐体2の外面2Sに設けられた情報IFmを記憶部102に記憶させて制御に用いる。このため、電動機1を用いる装置と電動機1との間で製造場所又は製造ラインとが異なる結果、電動機1と電動機1の情報IFmとの対応を取ることが難しい場合であっても、制御装置100は、電動機1の筐体2の外面2Sに設けられた電動機1の特性についての情報IFmを用いて電動機1を制御することにより、電動機1の特性のばらつきの影響を低減できる。実施の形態1において、巻線22のインダクタンス値、及び巻線22の誘起電圧と検出器8の検出値との位相ずれを含む情報を保持する情報保持部分は、前述した情報を含む一次元コード又は二次元コードであればよく、バーコード4に限定されない。また、情報保持部分は、筐体2の外面2Sに、巻線22のインダクタンス値、及び巻線22の誘起電圧と検出器8の検出値との位相ずれを含む情報が磁気によって書き込まれた部分であってもよい。実施の形態1で開示した構成は、以下の実施の形態においても適宜適用することができる。 The electric motor 1 has information IFm such as an inductance value L and a phase shift Δθe on the outer surface 2S of the housing 2. The control device 100 of the electric motor 1 stores information IFm provided on the outer surface 2S of the casing 2 of the electric motor 1 in the storage unit 102 and uses it for control. For this reason, even if it is difficult to take correspondence between the motor 1 and the information IFm of the motor 1 as a result of the difference in the manufacturing location or the manufacturing line between the motor 1 and the apparatus using the motor 1, the control device 100 Can control the electric motor 1 using information IFm about the characteristics of the electric motor 1 provided on the outer surface 2S of the casing 2 of the electric motor 1, thereby reducing the influence of variations in characteristics of the electric motor 1. In the first embodiment, the information holding portion that holds information including the phase difference between the inductance value of the winding 22 and the induced voltage of the winding 22 and the detection value of the detector 8 is a one-dimensional code including the above-described information. Alternatively, it may be a two-dimensional code and is not limited to the barcode 4. The information holding portion is a portion in which information including the inductance value of the winding 22 and the phase shift between the induced voltage of the winding 22 and the detection value of the detector 8 is magnetically written on the outer surface 2S of the housing 2. It may be. The configuration disclosed in Embodiment 1 can be applied as appropriate in the following embodiments.
実施の形態2.
 実施の形態2は、実施の形態1に係る電動機1を空気調和装置、より具体的には室外機の送風機に適用したものである。
Embodiment 2. FIG.
In the second embodiment, the electric motor 1 according to the first embodiment is applied to an air conditioner, more specifically, a blower of an outdoor unit.
 図14及び図15は、実施の形態2に係る空気調和装置を示す図である。図16は、実施の形態2に係る空気調和装置が有する室外機の送風機を示す図である。図17は、実施の形態2に係る空気調和装置の室外機を示す図である。図14が示すように、空気調和装置50は、室外機51と、室内機52とを有する。室外機51は、送風機58を有する。室外機51は、屋外の接地面FLに設置される。室外機51の接地面FL側は下方Bであり、室外機51の接地面FLとは反対側は上方Aである。下方Bは、重力が作用する方向である。室外機51の上方には、蓋51UCが設けられている。 FIG.14 and FIG.15 is a figure which shows the air conditioning apparatus which concerns on Embodiment 2. FIG. FIG. 16 is a diagram illustrating an air blower of an outdoor unit included in the air-conditioning apparatus according to Embodiment 2. FIG. 17 is a diagram illustrating an outdoor unit of the air-conditioning apparatus according to Embodiment 2. As shown in FIG. 14, the air conditioning apparatus 50 includes an outdoor unit 51 and an indoor unit 52. The outdoor unit 51 has a blower 58. The outdoor unit 51 is installed on the outdoor ground plane FL. The grounding surface FL side of the outdoor unit 51 is downward B, and the side opposite to the grounding surface FL of the outdoor unit 51 is upward A. A lower part B is a direction in which gravity acts. A lid 51UC is provided above the outdoor unit 51.
 図15が示すように、室外機51は、電動機Mcによって駆動されて冷媒を圧縮する圧縮機53と、圧縮機53によって圧縮された冷媒を凝縮させる凝縮器54とを収納する。室外機51は、凝縮器54に送風する送風機58をさらに含む。送風機58は、電動機1と、電動機1によって駆動される羽根車58Bとを含む。圧縮機53と凝縮器54とは冷媒を通過させる配管57Aで接続されている。 As shown in FIG. 15, the outdoor unit 51 houses a compressor 53 that is driven by the electric motor Mc and compresses the refrigerant, and a condenser 54 that condenses the refrigerant compressed by the compressor 53. The outdoor unit 51 further includes a blower 58 that blows air to the condenser 54. The blower 58 includes the electric motor 1 and an impeller 58 </ b> B driven by the electric motor 1. The compressor 53 and the condenser 54 are connected by a pipe 57A through which the refrigerant passes.
 室内機52は、凝縮器54によって凝縮された冷媒を蒸発させる蒸発器55を含む。室内機52は、蒸発器55に送風する送風機59と、凝縮器54によって凝縮された液相の冷媒を膨張させて蒸発器55に流入させる膨張弁56とをさらに含む。送風機59は、電動機Mfと、電動機Mfによって駆動される羽根車59Bとを含む。凝縮器54と蒸発器55とは、冷媒を通過させる配管57Bで接続されている。膨張弁56は、配管57Bの途中に取り付けられる。蒸発器55と圧縮機53とは、冷媒を通過させる配管57Cで接続されている。 The indoor unit 52 includes an evaporator 55 that evaporates the refrigerant condensed by the condenser 54. The indoor unit 52 further includes a blower 59 that blows air to the evaporator 55 and an expansion valve 56 that expands the liquid-phase refrigerant condensed by the condenser 54 and flows into the evaporator 55. The blower 59 includes an electric motor Mf and an impeller 59B driven by the electric motor Mf. The condenser 54 and the evaporator 55 are connected by a pipe 57B through which the refrigerant passes. The expansion valve 56 is attached in the middle of the pipe 57B. The evaporator 55 and the compressor 53 are connected by a pipe 57C through which the refrigerant passes.
 室外機51の送風機58を駆動する電動機1は、図17が示す制御ユニット60によって制御される。制御ユニット60は、基板60Cとドライバ64とを有する。基板60Cは、CPUのようなプロセッサ61、情報を記憶するメモリ62及びメモリ62に書き込まれる情報を受け取る書込み用端子63を有する。ドライバ64は、プロセッサ61が生成した駆動信号を取得し、駆動信号に対応した駆動電圧Edを生成する。 The electric motor 1 that drives the blower 58 of the outdoor unit 51 is controlled by a control unit 60 shown in FIG. The control unit 60 includes a substrate 60C and a driver 64. The substrate 60C includes a processor 61 such as a CPU, a memory 62 for storing information, and a writing terminal 63 for receiving information written in the memory 62. The driver 64 acquires the drive signal generated by the processor 61 and generates a drive voltage Ed corresponding to the drive signal.
 制御ユニット60のプロセッサ61は実施の形態1の制御装置100が有する処理部101に相当し、メモリ62は実施の形態1の制御装置100が有する記憶部102に相当する。実施の形態2において、メモリ62はフラッシュメモリであるが、これに限定されない。制御ユニット60のドライバ64は、実施の形態1のドライバ103に相当する。制御ユニット60のプロセッサ61は、実施の形態1に係る制御装置100の処理部101と同様に、電動機1の情報IFmが書き込まれたメモリ62から電動機1の情報IFmを読み取って電動機1の制御に用いる。 The processor 61 of the control unit 60 corresponds to the processing unit 101 included in the control device 100 according to the first embodiment, and the memory 62 corresponds to the storage unit 102 included in the control device 100 according to the first embodiment. In the second embodiment, the memory 62 is a flash memory, but is not limited to this. The driver 64 of the control unit 60 corresponds to the driver 103 of the first embodiment. The processor 61 of the control unit 60 reads the information IFm of the electric motor 1 from the memory 62 in which the information IFm of the electric motor 1 is written, as in the processing unit 101 of the control device 100 according to the first embodiment, and controls the electric motor 1. Use.
 図16に示されるように、送風機58の羽根車58Bを駆動する電動機1は、図3が示す検出器8の検出値SCを取り出すための信号線30及び巻線22に電力を供給するための電線32が引き出される引出部分の反対側に、電動機1の情報IFmであるバーコード4を有する。電動機1は、筐体2の側面、すなわち電動機1のシャフト3の周囲を取り囲む面から信号線30及び巻線22が引き出される。また、電動機1は、筐体2の側面にバーコード4が設けられる。 As shown in FIG. 16, the electric motor 1 that drives the impeller 58 </ b> B of the blower 58 supplies power to the signal line 30 and the winding 22 for extracting the detection value SC of the detector 8 shown in FIG. 3. The bar code 4 that is the information IFm of the electric motor 1 is provided on the opposite side of the drawn portion from which the electric wire 32 is drawn. In the electric motor 1, the signal line 30 and the winding 22 are drawn out from the side surface of the housing 2, that is, the surface surrounding the periphery of the shaft 3 of the electric motor 1. Further, the electric motor 1 is provided with a barcode 4 on the side surface of the housing 2.
 室外機51が有する送風機58の電動機1は、巻線22及び電線32が引き出される引出部分からの浸水を抑制するために、引出部分を下方Bに向けて室外機51の内部に収納される。電動機1は、引出部分の反対側にバーコード4を有しているので、電動機1が室外機51に収納されると、バーコード4は上方Aに配置される。このような構造により、電動機1を室外機51に組み付けた後でも、作業者は、図17に示されるように、室外機51の蓋51UCを取り外すことにより、バーコード4にアクセスすることができる。作業者は、室外機51の蓋51UCを取り外した状態で、バーコードリーダー65によって電動機1のバーコード4を読み取り、バーコードリーダー65の端子66及び制御ユニット60の書込み用端子63を介してメモリ62に電動機1の情報IFmを書き込むことができる。 The electric motor 1 of the blower 58 included in the outdoor unit 51 is housed inside the outdoor unit 51 with the lead-out portion facing downward B in order to suppress flooding from the lead-out portion from which the winding 22 and the electric wire 32 are drawn. Since the electric motor 1 has the barcode 4 on the opposite side of the drawer portion, when the electric motor 1 is accommodated in the outdoor unit 51, the barcode 4 is disposed in the upper part A. With such a structure, even after the electric motor 1 is assembled to the outdoor unit 51, the operator can access the barcode 4 by removing the lid 51UC of the outdoor unit 51 as shown in FIG. . The operator reads the barcode 4 of the electric motor 1 with the barcode reader 65 in a state where the lid 51UC of the outdoor unit 51 is removed, and stores the memory via the terminal 66 of the barcode reader 65 and the writing terminal 63 of the control unit 60. The information IFm of the electric motor 1 can be written in 62.
 実施の形態2において、電動機1のバーコード4及び制御ユニット60は、室外機51の蓋51UCと対向する位置に配置されることが好ましい。このような構造により、蓋51UCを取り外すだけで、電動機1のバーコード4及び制御ユニット60が現れるので、作業者は、バーコード4を読み取り、制御ユニット60のメモリ62に書き込む作業を容易に行うことができる。 In Embodiment 2, it is preferable that the barcode 4 and the control unit 60 of the electric motor 1 are arranged at positions facing the lid 51UC of the outdoor unit 51. With such a structure, the barcode 4 and the control unit 60 of the electric motor 1 appear only by removing the lid 51UC, so that the operator can easily read the barcode 4 and write it in the memory 62 of the control unit 60. be able to.
 電動機1が室外機51に組み付けられる前にバーコード4が読み出されて制御ユニット60のメモリ62に書き込まれると、電動機1を製造するラインの停止のような不測の事態が発生すると、メモリ62に書き込まれるべき電動機1の情報IFmが、他の電動機1の情報IFmと混同する可能性がある。実施の形態2において、電動機1を室外機51に組み付けた後、作業者はバーコード4を読み出して制御ユニット60のメモリ62に書き込む。このため、電動機1と、検査工程で測定された電動機1の情報IFmとが一対一で対応付けられるので、不測の事態が発生した場合においてメモリ62に書き込まれる情報IFmが混同する可能性が低減される。 If the barcode 4 is read and written to the memory 62 of the control unit 60 before the electric motor 1 is assembled to the outdoor unit 51, if an unexpected situation such as a stop of a line for manufacturing the electric motor 1 occurs, the memory 62 There is a possibility that the information IFm of the electric motor 1 to be written to the information IFm of the other electric motors 1 is confused. In the second embodiment, after assembling the electric motor 1 to the outdoor unit 51, the operator reads the barcode 4 and writes it in the memory 62 of the control unit 60. For this reason, since the electric motor 1 and the information IFm of the electric motor 1 measured in the inspection process are associated one-to-one, the possibility that the information IFm written in the memory 62 is confused when an unexpected situation occurs is reduced. Is done.
 実施の形態2において、電動機1は空気調和装置50の室外機51の送風機58に適用されたが、電動機1の適用対象はこれに限定されず、室内機52の送風機59及び圧縮機53の少なくとも一方であってもよい。また、電動機1は、空気調和装置50の他にも、換気扇、家電機器又は工作機に搭載されて使用されてもよい。 In the second embodiment, the electric motor 1 is applied to the blower 58 of the outdoor unit 51 of the air conditioner 50. However, the application target of the electric motor 1 is not limited to this, and at least the blower 59 and the compressor 53 of the indoor unit 52 are used. One may be sufficient. In addition to the air conditioner 50, the electric motor 1 may be used by being mounted on a ventilation fan, a home appliance, or a machine tool.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 電動機、2 筐体、2S 外面、3 シャフト、4 バーコード、5 機器情報、6B,6T 軸受、7 ブラケット、8,8u,8v,8w 検出器、9 基板、10 回転子、11 絶縁体、12 永久磁石、13 位置検出用磁石、20 固定子、21 固定子コア、22,22u,22v,22w 巻線、23 インシュレータ、30 信号線、31 コネクタ、32 電線、50 空気調和装置、51 室外機、51UC 蓋、52 室内機、58 送風機、58B 羽根車、60 制御ユニット、60C 基板、61 プロセッサ、62 メモリ、63 書込み用端子、64 ドライバ、65 バーコードリーダー、66 端子、100 制御装置、101 処理部、102 記憶部、103 ドライバ、110 外力駆動用電動機、115 計測装置、A 上方、B 下方、Ci,Ciu,Civ,Ciw 誘起電圧定数、DR 径方向、Ed,Edu,Edv,Edw 駆動電圧、Ei,Eiu,Eiv,Eiw 誘起電圧、Id 巻線電流、IFm 情報、L,Lu,Lv,Lw インダクタンス値、R,Ru,Rv,Rw 巻線抵抗、SC,SCu,SCv,SCw 検出値、Δθe 位相ずれ。 1 motor, 2 housing, 2S outer surface, 3 shaft, 4 barcode, 5 device information, 6B, 6T bearing, 7 bracket, 8, 8u, 8v, 8w detector, 9 substrate, 10 rotor, 11 insulator, 12 permanent magnets, 13 position detection magnets, 20 stators, 21 stator cores, 22, 22u, 22v, 22w windings, 23 insulators, 30 signal lines, 31 connectors, 32 electric wires, 50 air conditioners, 51 outdoor units , 51UC lid, 52 indoor unit, 58 blower, 58B impeller, 60 control unit, 60C board, 61 processor, 62 memory, 63 writing terminal, 64 driver, 65 barcode reader, 66 terminal, 100 control device, 101 processing Part, 102 storage part, 103 driver, 110 external force drive Motor, 115 measuring device, A upper, B lower, Ci, Ciu, Civ, Ciw induced voltage constant, DR radial direction, Ed, Edu, Edv, Edw drive voltage, Ei, Eiu, Eiv, Eiw induced voltage, Id winding Line current, IFm information, L, Lu, Lv, Lw inductance value, R, Ru, Rv, Rw winding resistance, SC, SCu, SCv, SCw detected value, Δθe phase shift.

Claims (8)

  1.  回転軸を中心として回転する回転子と、
     複数の巻線を有し、前記回転軸と直交する方向において前記回転子の外側に配置される固定子と、
     前記回転子の位置を検出する検出器と、
     前記回転子、前記固定子及び前記検出器を収納し、前記巻線のインダクタンス値、及び前記巻線の誘起電圧と前記検出器の検出値との位相ずれを含む情報を保持するための情報保持部分を有する筐体と、
     を含む、電動機。
    A rotor that rotates about a rotation axis;
    A stator having a plurality of windings and disposed outside the rotor in a direction perpendicular to the rotation axis;
    A detector for detecting the position of the rotor;
    Information holding for storing the rotor, the stator, and the detector, and holding information including an inductance value of the winding and a phase shift between an induced voltage of the winding and a detection value of the detector A housing having a portion;
    Including an electric motor.
  2.  前記情報は、
     前記巻線の誘起電圧の測定値及び前記巻線の誘起電圧定数をさらに含む、請求項1に記載の電動機。
    The information is
    The electric motor according to claim 1, further comprising a measured value of an induced voltage of the winding and an induced voltage constant of the winding.
  3.  前記情報は、
     前記筐体の前記外面に直接書き込まれる、請求項1又は請求項2に記載の電動機。
    The information is
    The electric motor according to claim 1, wherein the electric motor is directly written on the outer surface of the housing.
  4.  前記筐体は、
     前記検出器の検出値を取り出すための信号線及び前記巻線に電力を供給するための電線が引き出される部分の反対側に、前記情報保持部分を有する、請求項1から請求項3のいずれか1項に記載の電動機。
    The housing is
    4. The information holding portion according to claim 1, wherein the information holding portion is provided on a side opposite to a portion from which a signal line for taking out a detection value of the detector and a wire for supplying electric power to the winding are drawn. The electric motor according to item 1.
  5.  請求項1から請求項4のいずれか1項に記載の電動機と、
     冷媒を凝縮させる凝縮器と、
     前記電動機によって駆動されて、前記凝縮器に送風する羽根車と、
     前記情報を記憶する記憶装置を有し、前記記憶装置に記憶された前記情報を用いて前記電動機を制御する制御装置と、
     を含む、空気調和装置の室外機。
    The electric motor according to any one of claims 1 to 4,
    A condenser that condenses the refrigerant,
    An impeller driven by the electric motor to blow air to the condenser;
    A control device for controlling the electric motor using the information stored in the storage device, the storage device storing the information;
    An air conditioner outdoor unit.
  6.  前記制御装置は、
     前記情報に含まれる前記位相ずれが、前記巻線の誘起電圧と前記検出器の検出値とのずれの設計値に最も近い相の前記検出器の検出値を用いて、前記電動機を制御する、請求項5に記載の空気調和装置の室外機。
    The control device includes:
    The phase shift included in the information controls the electric motor using the detection value of the detector in the phase closest to the design value of the shift between the induced voltage of the winding and the detection value of the detector. The outdoor unit of the air conditioning apparatus of Claim 5.
  7.  回転子、固定子及び前記回転子の位置を検出する検出器を収納する筐体に、前記固定子の巻線のインダクタンス値及び前記巻線の誘起電圧と前記検出器の検出値との位相ずれを含む情報を保持するための情報保持部分を有する電動機と、
     冷媒を凝縮させる凝縮器と、
     前記電動機によって駆動されて、前記凝縮器に送風する羽根車と、を含み、
     前記電動機は、
     前記検出器の検出値を取り出すための信号線及び前記巻線に電力を供給するための電線が前記筐体から引き出される部分を下方に向けて、前記情報保持部分を上方に向けて配置される、
     空気調和装置の室外機。
    In a housing that houses a rotor, a stator, and a detector that detects the position of the rotor, an inductance value of the winding of the stator and a phase shift between an induced voltage of the winding and a detection value of the detector An electric motor having an information holding portion for holding information including:
    A condenser that condenses the refrigerant,
    An impeller that is driven by the electric motor and blows air to the condenser;
    The motor is
    A signal line for taking out a detection value of the detector and an electric wire for supplying electric power to the winding are arranged with the part drawn out from the housing facing downward and the information holding part facing upward ,
    Air conditioner outdoor unit.
  8.  冷媒を圧縮する圧縮機と、
     請求項5から請求項7のいずれか1項に記載の空気調和装置の室外機と、
     前記凝縮器によって凝縮された冷媒を蒸発させる蒸発器を有する室内機と、を含み、
     前記室内機の前記凝縮器は、前記圧縮機によって圧縮された前記冷媒を凝縮させる、
     空気調和装置。
    A compressor for compressing the refrigerant;
    The outdoor unit of the air conditioning apparatus according to any one of claims 5 to 7,
    An indoor unit having an evaporator for evaporating the refrigerant condensed by the condenser,
    The condenser of the indoor unit condenses the refrigerant compressed by the compressor;
    Air conditioner.
PCT/JP2015/079756 2015-10-21 2015-10-21 Electric motor, outdoor unit for air conditioning device, and air conditioning device WO2017068674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017546332A JP6506406B2 (en) 2015-10-21 2015-10-21 Outdoor unit of air conditioner and air conditioner
PCT/JP2015/079756 WO2017068674A1 (en) 2015-10-21 2015-10-21 Electric motor, outdoor unit for air conditioning device, and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079756 WO2017068674A1 (en) 2015-10-21 2015-10-21 Electric motor, outdoor unit for air conditioning device, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2017068674A1 true WO2017068674A1 (en) 2017-04-27

Family

ID=58556777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079756 WO2017068674A1 (en) 2015-10-21 2015-10-21 Electric motor, outdoor unit for air conditioning device, and air conditioning device

Country Status (2)

Country Link
JP (1) JP6506406B2 (en)
WO (1) WO2017068674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040457A (en) * 2019-09-05 2021-03-11 日立オートモティブシステムズ株式会社 Stator of rotary electric machine, method for manufacturing stator of rotary electric machine, and method for managing segment coil used for rotary electric machine
CN114080746A (en) * 2019-07-02 2022-02-22 本田技研工业株式会社 Rotary motor casing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199297A (en) * 2001-12-24 2003-07-11 Pwb Ruhlatec Industrieprodukte Gmbh Motor sensor system
JP2009232551A (en) * 2008-03-21 2009-10-08 Aisin Aw Co Ltd Drive and its manufacturing method
JP2010148307A (en) * 2008-12-22 2010-07-01 Daikin Ind Ltd Motor and motor controller
JP2014192905A (en) * 2013-03-26 2014-10-06 Hitachi Appliances Inc Motor drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703677B2 (en) * 2008-03-25 2011-06-15 三菱電機株式会社 In-vehicle power conversion device and vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199297A (en) * 2001-12-24 2003-07-11 Pwb Ruhlatec Industrieprodukte Gmbh Motor sensor system
JP2009232551A (en) * 2008-03-21 2009-10-08 Aisin Aw Co Ltd Drive and its manufacturing method
JP2010148307A (en) * 2008-12-22 2010-07-01 Daikin Ind Ltd Motor and motor controller
JP2014192905A (en) * 2013-03-26 2014-10-06 Hitachi Appliances Inc Motor drive device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080746A (en) * 2019-07-02 2022-02-22 本田技研工业株式会社 Rotary motor casing
JP2021040457A (en) * 2019-09-05 2021-03-11 日立オートモティブシステムズ株式会社 Stator of rotary electric machine, method for manufacturing stator of rotary electric machine, and method for managing segment coil used for rotary electric machine
JP7377032B2 (en) 2019-09-05 2023-11-09 日立Astemo株式会社 Method for manufacturing stators for rotating electrical machines, and methods for managing segment coils used in rotating electrical machines

Also Published As

Publication number Publication date
JP6506406B2 (en) 2019-04-24
JPWO2017068674A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US11342802B2 (en) Consequent-pole type rotor, electric motor, compressor, blower, and air conditioner
US9653960B2 (en) Motor and blower
US11451119B2 (en) Motor with a board having microcomputer and drive circuit, and air conditioning apparatus having the motor
JP5589506B2 (en) Permanent magnet motor
JP7038819B2 (en) Motors, blowers and air conditioners
US11005350B2 (en) Permanent-magnet synchronous motor, method for manufacturing permanent-magnet synchronous motor, and air conditioner
WO2019003372A1 (en) Sensor magnet, motor, and air conditioner
WO2017068674A1 (en) Electric motor, outdoor unit for air conditioning device, and air conditioning device
JP5959477B2 (en) Electric motor and air conditioner
JP7058740B2 (en) How to manufacture motors, fans, air conditioners, and motors
US11909259B2 (en) Stator, motor, fan, air conditioner, and method for manufacturing stator
US20220140672A1 (en) Electric motor, fan, and air conditioner
US20240097533A1 (en) Rotor, motor, fan, air conditioning apparatus, and method for manufacturing rotor
US11984770B2 (en) Rotor, motor, fan, air conditioning apparatus, and method for manufacturing rotor
KR102568303B1 (en) Stator structure for small size motor module
KR20220063562A (en) Stator structure for small size motor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906680

Country of ref document: EP

Kind code of ref document: A1