WO2017068663A1 - Communication device, communication method, and communication program - Google Patents

Communication device, communication method, and communication program Download PDF

Info

Publication number
WO2017068663A1
WO2017068663A1 PCT/JP2015/079696 JP2015079696W WO2017068663A1 WO 2017068663 A1 WO2017068663 A1 WO 2017068663A1 JP 2015079696 W JP2015079696 W JP 2015079696W WO 2017068663 A1 WO2017068663 A1 WO 2017068663A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
transmission
data
communication data
Prior art date
Application number
PCT/JP2015/079696
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 富澤
隆 淺原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/079696 priority Critical patent/WO2017068663A1/en
Publication of WO2017068663A1 publication Critical patent/WO2017068663A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present invention relates to a technique for limiting the timing of transmitting communication data to a control device that transmits time information for time synchronization.
  • the time master device transmits a radio frame such as a beacon that notifies the time held by the time master device to the surroundings, and the time slave device in a range in which communication with the time master device is possible The wireless frame transmitted from the time master device is received. Then, the time slave device performs time synchronization by comparing the time notified by the radio frame with the time when the radio frame is received.
  • a radio frame such as a beacon that notifies the time held by the time master device to the surroundings
  • the time slave device in a range in which communication with the time master device is possible
  • the wireless frame transmitted from the time master device is received.
  • the time slave device performs time synchronization by comparing the time notified by the radio frame with the time when the radio frame is received.
  • a time difference is generated due to a difference between the frequency oscillator of the transmitter / receiver of the time master device and the frequency oscillator of the transmitter / receiver of the time slave device. Furthermore, depending on the surrounding communication conditions, the time master device may have to wait for the transmission of the radio frame. When such a radio frame transmission wait occurs, a delay time is added. There is a problem in that it is impossible to accurately estimate a time lag caused by different oscillators. As a technique for solving such a problem, there is a technique disclosed in Patent Document 2.
  • a time master device transmits a data packet to which time information is attached, and a time slave device removes fluctuation errors caused by CSMA / CA (Carrier Sense Multiple Access / Collection Avidance), and the influence of the frequency oscillator. Estimated time lag due to.
  • a time slave device calculates a time lag amount in time information. The calculated deviation amount is used for determination of a filter time constant and filter processing.
  • the time slave device firstly transmits the time interval tTD (k + 1) [0 ⁇ k ⁇ M ⁇ 2] of the transmission source time information and the time interval tRD (k + 1) [0 ⁇ 0 of the reception time information. k ⁇ M ⁇ 2] is calculated.
  • tTD (k + 1) tT (k + 1) ⁇ tT (k), 0 ⁇ k ⁇ M ⁇ 2
  • tRD (k + 1) tR (k + 1) ⁇ tR (k), 0 ⁇ k ⁇ M ⁇ 2
  • the shift amount of the time interval of the reception time information with respect to the time interval of the transmission source time information is calculated as a time shift amount d (k + 1) [0 ⁇ k ⁇ M ⁇ 2].
  • the time slave device obtains a time lag amount (initial time lag amount) tR (0) -tT (0) of the reception time information with respect to the transmission source time information at the start of the filter processing, and finally A time lag amount (estimated time lag value) s (M ⁇ 1) is obtained. Then, the time slave device corrects the initial time lag amount tR (0) -tT (0) and the time lag estimated value s (M-1) as a time correction amount by subtracting from the reception time information of the current time slave device.
  • the initial time lag amount tR (0) -tT (0) reflects the result calculated when the time information is received only when the next time information is received, and thereafter, the time lag estimated value s (M ⁇ Only 1) is used.
  • Patent Literature 2 by correcting such time lag, processing for synchronizing time information of the time slave device with time information of the time master device is realized.
  • Time information (without traffic) 15 indicates ideal transmission timing of time information
  • time information (with traffic) 16 is time information delayed by CSMA / CA caused by transmission of communication data from the time slave device.
  • the transmission timing is shown.
  • the transmission of the time information is delayed by CSMA / CA, and an error occurs in the estimation of the time slave device. is there.
  • the main purpose of the present invention is to solve such a problem, and to make it possible to transmit time information without delay.
  • the communication device is A communication unit that transmits communication data to a control device that transmits time information; A transmission control unit that prohibits transmission of the communication data to the control device by the communication unit at a timing at which the control device transmits the time information.
  • the control device since the transmission of communication data to the control device at the timing when the control device transmits time information is prohibited, the control device can transmit time information without delay.
  • FIG. 3 is a diagram illustrating an example of a system configuration according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of an operation according to the first embodiment.
  • FIG. 3 is a diagram illustrating a functional configuration example of a time slave device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of an operation sequence according to the first embodiment.
  • FIG. 9 shows an example of an operation sequence according to the second embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of a time slave device according to a third embodiment.
  • FIG. 10 shows an example of an operation sequence according to the third embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of a time slave device according to a fourth embodiment.
  • FIG. 10 is a diagram showing an outline of an operation according to the fifth embodiment.
  • FIG. 3 is a diagram illustrating a hardware configuration example of a time slave device according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of a communication unit according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of a communication data receiving unit according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of a timing prediction unit according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of a transmission control unit according to the first embodiment.
  • FIG. 9 is a flowchart showing an operation example of a communication unit according to the second embodiment.
  • FIG. 9 is a flowchart showing an operation example of a timing prediction unit according to the second embodiment.
  • FIG. 9 is a flowchart showing an operation example of a timing prediction unit according to the second embodiment.
  • FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the second embodiment.
  • FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the third embodiment.
  • FIG. 9 is a flowchart showing an operation example of a time synchronization filter unit according to the fourth embodiment.
  • FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the fourth embodiment.
  • FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the fourth embodiment.
  • FIG. *** Explanation of configuration *** FIG. 1 shows a system configuration example according to the present embodiment.
  • the system according to the present embodiment includes a time master device 1 and a plurality of time slave devices 2.
  • the time master device 1 is a control device that transmits time information.
  • the time master device 1 transmits a radio frame including time information for notifying the time held by the time master device 1.
  • the time slave device 2 receives the radio frame transmitted from the time master device 1. Then, the time slave device 2 performs time synchronization by comparing the time notified by the radio frame and the time when the radio frame is received.
  • the time synchronization method in the time slave device 2 may be the same as the method disclosed in Patent Document 2, for example.
  • FIG. 3 shows a functional configuration example of the time slave device 2 according to the present embodiment.
  • Each time slave device 2 shown in FIG. 1 has the functional configuration shown in FIG. 3 in common.
  • the time slave device 2 according to the present embodiment includes a communication unit 8, a timing prediction unit 18, a transmission control unit 19, a communication data reception unit 20, a storage unit 21, a timer 22, and a slave time synchronization unit. 25.
  • the time slave device 2 includes hardware such as a processor 901, a storage device 902, a wireless communication I / F (Interface) 903, and a wired communication I / F 904.
  • the storage unit 21 is realized by the storage device 902.
  • the storage device 902 stores programs that realize the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, and the slave time synchronization unit 25.
  • the processor 901 executes these programs, and performs operations of a communication unit 8, a timing prediction unit 18, a transmission control unit 19, a communication data reception unit 20, a timer 22, and a slave time synchronization unit 25, which will be described later.
  • the wireless communication I / F 903 is an interface for wireless communication with the time master device 1.
  • the wireless communication I / F 903 receives a wireless frame by wireless communication, and performs a demodulation process on the wireless frame.
  • the communication unit 8 performs error correction processing on the radio frame after demodulation processing. If necessary, the communication unit 8 performs decapsulation processing of the radio frame. Further, the communication unit 8 generates a radio frame by adding address information and an error correction code to the communication data in accordance with the communication protocol.
  • the wireless communication I / F 903 performs modulation processing on the wireless frame generated by the communication unit 8 and transmits the wireless frame by wireless communication.
  • expressions such as “the communication unit 8 receives a radio frame” and “the communication unit 8 transmits a radio frame” are used. However, the reception of the radio frame and the transmission of the radio frame are used.
  • the wired communication I / F 904 is an interface for wired communication.
  • the wired communication I / F 904 receives communication data by wired communication.
  • the communication data receiving unit 20 performs error correction processing for communication data. Further, if necessary, the communication data receiving unit 20 performs communication data decapsulation processing.
  • communication data receiving unit 20 receives communication data
  • wired communication I / F 904 performs the above-described operation.
  • FIG. 10 shows an example in which the timer 22 is realized by software, the timer 22 may be realized by hardware.
  • the time slave device 2 predicts the time information transmission cycle 13 of the time master device 1 shown in FIG.
  • the time information transmission cycle 13 is an interval of time information transmission timing.
  • the time slave device 2 has a data transmission prohibition period 17 before and after the timing at which the time master device 1 transmits time information.
  • the time slave device 2 transmits communication data from the time slave device 2. Do not do it. That is, the time slave device 2 according to the present embodiment suspends transmission of communication data to the time master device 1 at the timing when the time master device 1 transmits time information, and the time master device 1 transmits time information.
  • the communication data is transmitted to the time master device 1 at a timing other than the timing to be performed. Thereby, the time master device 1 can transmit time information without delay.
  • the operation of the time slave device 2 corresponds to an example of a communication method and a communication program.
  • the communication unit 8 receives a radio frame including time information from the time master device 1 via the radio communication I / F 903 and transmits a radio frame including communication data to the time master device 1.
  • the operation of the communication unit 8 corresponds to an example of communication processing.
  • the timing prediction unit 18 uses the timer 22 to predict the timing at which the time master device 1 transmits time information (hereinafter referred to as predicted transmission timing).
  • predicted transmission timing time information
  • the transmission control unit 19 sets the data transmission prohibition period 17 based on the predicted transmission timing predicted by the timing prediction unit 18, and the communication data to the time master device 1 by the communication unit 8 during the data transmission prohibition period 17. Prohibit sending.
  • the transmission control unit 19 sets a period including a period from the predicted transmission timing until the time information is received by the communication unit 8 as the data transmission prohibition period 17.
  • the time master device 1 periodically transmits a radio frame including time information, and the transmission control unit 19 performs the time by the communication unit 8 at each timing at which the time master device 1 transmits a radio frame including time information. Transmission of radio frames to the master device 1 is prohibited.
  • the operation of the transmission control unit 19 corresponds to an example of a transmission control process.
  • the communication data receiving unit 20 receives communication data by wired communication via the wired communication I / F 904.
  • the accumulating unit 21 accumulates (buffers) the communication data received by the communication data receiving unit 20.
  • the transmission control unit 19 stores the communication data received by the communication data receiving unit 20 in the storage unit 21 during the data transmission prohibition period 17. Then, the transmission control unit 19 causes the communication unit 8 to transmit the communication data stored in the storage unit 21 to the time master device 1 after the data transmission prohibition period 17 has elapsed.
  • the time synchronization information extraction unit 9 extracts time information from the radio frame received by the communication unit 8.
  • the time synchronization filter unit 10 compares the time information extracted by the time synchronization information extraction unit 9 with the internal time of the time slave device 2, and estimates the deviation of the internal time of the time slave device 2 with respect to the reference time of the time master device 1.
  • the time correction amount is calculated.
  • the slave time setting unit 11 sets the time of the time slave device 2 using the time correction amount estimated by the time synchronization filter unit 10.
  • the slave internal time generation unit 12 generates the internal time of the time slave device 2 using the setting information from the slave time setting unit 11.
  • FIG. 4 shows a specific operation sequence example of the communication unit 8, the timing prediction unit 18, and the transmission control unit 19.
  • the timing prediction unit 18 sets a timer according to the time information transmission cycle 13, and regards the timing when the timer expires as the predicted transmission timing.
  • the timing prediction unit 18 outputs a communication data buffering start instruction to the transmission control unit 19 (S2).
  • the transmission control unit 19 starts buffering communication data in response to a buffering start instruction (S3). That is, the transmission control unit 19 acquires the communication data received by the communication data receiving unit 20 from the communication data receiving unit 20 and buffers the communication data in the storage unit 21.
  • the communication unit 8 receives a radio frame including time information from the time master device 1, the communication unit 8 notifies the timing prediction unit 18 that the time information has been received (S4).
  • the timing prediction unit 18 outputs a data transmission start instruction to the transmission control unit 19 (S5). Further, the timing prediction unit 18 performs timer setting for predicting the transmission timing of the next time information (S6). In response to the data transmission start instruction from the timing prediction unit 18, the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). .
  • the communication unit 8 starts transmission of buffering data (communication data) to the time master device 1. From the predicted transmission timing (S1) to the reception of time information (S4) corresponds to the data transmission prohibition period 17 in FIG.
  • the communication unit 8 When receiving the radio frame (YES in S11), the communication unit 8 extracts time information from the radio frame and notifies the timing prediction unit 18 that the time information has been received (S12). The extracted time information is output to the slave time synchronization unit 25. Next, when data is output from the transmission control unit 19 (YES in S13), the communication unit 8 adds a radio frame by adding address information and an error correction code to the data output from the transmission control unit 19. Generate and transmit the generated radio frame (S14).
  • the communication data receiving unit 20 When the communication data is received (YES in S21), the communication data receiving unit 20 outputs the communication data to the transmission control unit 19 after error correction processing (S22).
  • the timing prediction unit 18 sets the timer 22 (S31). Next, when the timer 22 has expired (YES in S32), that is, when notified from the timer 22, the timing prediction unit 18 outputs a buffering start instruction to the transmission control unit 19 (S33). Next, when reception of time information is notified from the communication unit 8 (YES in S34), the timing control unit 18 outputs a data transmission start instruction to the transmission control unit 19 (S35).
  • the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
  • the transmission control unit 19 performs buffering of communication data (S44).
  • the transmission control unit 19 outputs the communication data to the communication unit 8.
  • the transmission control unit 19 reads buffering data from the storage unit 21 (S46). Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
  • the communication unit 8 notifies the timing prediction unit 18 that the time information has been received after the data transmission prohibition period, and the timing prediction unit 18 outputs a data transmission start instruction to the transmission control unit 19 for transmission.
  • the controller 19 has stopped buffering. Instead, when the communication unit 8 receives the time information, it notifies the timing prediction unit 18 that the time information has been received even during the data transmission prohibition period, and the transmission control unit 19 buffers the data transmission prohibition period.
  • the ring may be stopped and the communication unit 8 may transmit buffering data. That is, when the time information is received by the communication unit 8 during the data transmission prohibition period, the transmission control unit 19 transmits the communication data to the time master device 1 by the communication unit 8 even during the data transmission prohibition period. Transmission may be permitted.
  • the time slave device 2 prohibits transmission of communication data to the time master device 1 at the timing when the time master device 1 transmits time information. Time information can be transmitted. Since no fluctuation error occurs in the transmission of time information, the time synchronization filter can be operated normally.
  • Embodiment 2 FIG.
  • the transmission control unit 19 stops buffering and outputs buffering data to the communication unit 8.
  • the transmission control unit 19 stops buffering and outputs buffering data to the communication unit 8 asynchronously with reception of time information by the communication unit 8.
  • the functional configuration of the time master device 1 and the functional configuration of the time slave device 2 according to the present embodiment are the same as those described in the first embodiment.
  • the data size of each communication data is the same, and the communication data receiving unit 20 receives the communication data at a reception rate within a certain range.
  • differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • FIG. 5 shows an example of an operation sequence of the time slave device 2 according to the present embodiment.
  • the timing prediction unit 18 sets a timer and sets the timing when the timer expires as the predicted transmission timing.
  • the timing prediction unit 18 outputs a communication data buffering start instruction to the transmission control unit 19 (S2) and sets the timer (S8).
  • the transmission control unit 19 starts buffering communication data in response to a buffering start instruction (S3).
  • the transmission control unit 19 stores a transmission threshold that is a predetermined value, and determines whether or not the data amount of the buffering data is equal to or larger than the transmission threshold (S9).
  • the transmission control unit 19 continues buffering until the amount of buffered data reaches the transmission threshold.
  • the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). ).
  • the period from the predicted transmission timing (S8) until the data amount of the buffering data reaches the transmission threshold (YES in S9) corresponds to the data transmission prohibition period 17 in FIG.
  • the communication unit 8 When data is output from the transmission control unit 19 (YES in S13), the communication unit 8 generates a radio frame by adding address information and an error correction code to the data output from the transmission control unit 19, The generated radio frame is transmitted (S14).
  • the timing prediction unit 18 sets the timer 22 (S31). Next, when the timer 22 has expired (YES in S32), that is, when notified from the timer 22, the timing prediction unit 18 outputs a buffering start instruction to the transmission control unit 19 (S33).
  • the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
  • the transmission control unit 19 performs buffering of communication data (S44).
  • the transmission control unit 19 outputs the communication data to the communication unit 8.
  • the transmission control unit 19 reads the buffering data from the storage unit 21 (S46). Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
  • the transmission timing of the buffering data is the transmission timing of the time information of the time master device 1. It is necessary not to overlap. For this reason, the following (1), (2-1), and (2-2) are conceivable as transmission threshold values in the present embodiment.
  • a transmission threshold may be considered such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold slightly exceeds the time information transmission cycle 13.
  • a transmission threshold that slightly exceeds the information transmission period 13 can be considered.
  • a transmission threshold may be considered such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold is an integral multiple of the time information transmission period 13.
  • Transmission threshold value such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold value is equivalent to the remainder obtained by dividing the time information transmission period 13 by the number of time slave devices 2 Can be considered. It is also possible to set a different transmission threshold value for each time slave device 2.
  • the transmission control unit 19 sets a period from the predicted transmission timing until the accumulated amount of communication data in the accumulating unit 21 reaches the transmission threshold value which is a predetermined value as the data transmission prohibition period. Then, the transmission control unit 19 causes the storage unit 21 to store the communication data received by the communication data receiving unit 20 during the data transmission prohibition period. After the data transmission prohibition period has elapsed, the transmission control unit 19 causes the communication unit 8 to transmit the communication data stored in the storage unit 21 to the time master device 1.
  • Embodiment 3 FIG. In the present embodiment, a time slave device 2 in which the timing prediction unit 18 shown in FIG. 3 is omitted will be described.
  • FIG. 6 shows a functional configuration example of the time slave device 2 according to the present embodiment.
  • the timing prediction unit 18 shown in FIG. 3 is omitted.
  • Each component shown in FIG. 6 is the same as the component given the same reference numeral shown in FIG.
  • the data size of each communication data is the same, and the communication data receiving unit 20 receives the communication data at a reception rate within a certain range.
  • the functional configuration of the time master device 1 according to the present embodiment is the same as that described in the first embodiment. In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • FIG. 7 shows an example of an operation sequence of the time slave device 2 according to the present embodiment.
  • the communication data receiving unit 20 receives the communication data (S11) and transfers the received communication data to the transmission control unit 19.
  • the transmission control unit 19 buffers the communication data in the storage unit 21 (S3).
  • the transmission control unit 19 stores a transmission threshold that is a predetermined value, and determines whether or not the data amount of the buffering data is equal to or larger than the transmission threshold (S9).
  • the transmission control unit 19 continues buffering until the amount of buffered data reaches the transmission threshold.
  • the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). ).
  • the transmission threshold values (2-1) and (2-2) described in the second embodiment it is conceivable to use the transmission threshold values (2-1) and (2-2) described in the second embodiment. That is, even in the present embodiment, even when the buffering data is transmitted to the time master device 1 when the data amount of the buffering data reaches the transmission threshold, the transmission timing of the buffering data is the time information of the time master device 1. Does not overlap with transmission timing.
  • the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
  • the transmission control unit 19 performs buffering of communication data (S44).
  • the transmission control unit 19 reads the buffering data from the storage unit 21 (S46). Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
  • the transmission control unit 19 uses the accumulated amount of communication data in the accumulating unit 21 when the communication data received by the communication data receiving unit 20 is accumulated in the accumulating unit 21 as the transmission threshold.
  • the transmission threshold value that does not overlap with the timing at which the time master device 1 transmits time information is stored. Then, the transmission control unit 19 causes the storage unit 21 to store the communication data received by the communication data receiving unit 20, and when the storage amount of the communication data in the storage unit 21 reaches the transmission threshold value, the communication unit 8, the communication data stored in the storage unit 21 is transmitted to the time master device 1.
  • FIG. 8 shows a functional configuration example of the time slave device 2 according to the present embodiment.
  • the time synchronization filter unit 10 corresponds to an example of a time analysis unit, and uses the reception time of the time information by the communication unit 8 and the time notified by the time information received by the communication unit 8. Perform analysis. Then, the time synchronization filter unit 10 outputs to the transmission control unit 19 a value that is an analysis result and is used for calculation of variance of the time lag amount.
  • differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • the transmission control unit 19 in the initial state, does not limit the transmission timing of communication data, and the time synchronization filter unit 10 performs the above-described equations (1) to (3) as in Patent Document 2. Calculation based on Then, the time synchronization filter unit 10 transmits the value of tTD (k + 1) shown in Equation (1), the value of tRD (k + 1) shown in Equation (2), and the value of d (k + 1) shown in Equation (3). Output to the control unit 19. When the value output from the time synchronization filter unit 10 matches a predetermined condition, the transmission control unit 19 communicates with the time master device 1 by the communication unit 8 at a timing when the time master device 1 transmits time information. Prohibit data transmission.
  • the transmission control unit 19 calculates the variance of the value output from the time synchronization filter unit 10 (dispersion of the time shift amount due to the influence of the frequency oscillator), and when the calculated variance exceeds a certain value, FIG.
  • the timing at which the time master device 1 transmits time information is determined to be delayed by CSMA / CA, and the transmission timing of communication data is limited by the method shown in the first embodiment, for example.
  • the time synchronization filter unit 10 calculates the value of tTD (k + 1) (S61). Next, the time synchronization filter unit 10 calculates the value of tRD (k + 1) (S62). Next, the time synchronization filter unit 10 calculates the value of d (k + 1) (S63). Then, the time synchronization filter unit 10 outputs the value of tTD (k + 1), the value of tRD (k + 1), and the value of d (k + 1) to the transmission control unit 19 (S64).
  • the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
  • the transmission control unit 19 determines whether or not the value of tTD (k + 1), the value of tRD (k + 1), and the value of d (k + 1) are acquired from the time synchronization filter unit 10 (S51). If these values have not been acquired (NO in S51), the transmission control unit 19 performs the process of step S43. On the other hand, when these values are acquired (YES in S51), the transmission control unit 19 uses these values to determine whether or not to prohibit transmission of communication data as described above ( S52).
  • step S44 the transmission control unit 19 performs the process of step S44, and when the transmission of communication data is not prohibited, the transmission control unit 19 performs the process of step S43.
  • step S ⁇ b> 43 the transmission control unit 19 outputs communication data to the communication unit 8.
  • step S44 the transmission control unit 19 buffers communication data.
  • the transmission control unit 19 reads the buffering data from the storage unit 21 (S46). Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
  • the data amount of the buffering data is less than the transmission threshold (NO in S48)
  • the operation after step S44 is repeated every time communication data is received (YES in S41).
  • Embodiment 5 When the data transmission prohibition period 17 is provided in the plurality of time slave devices 2 by the method shown in the first embodiment, communication data can be transmitted simultaneously from the plurality of time slave devices 2 after the data transmission prohibition period 17 has elapsed. There is sex. In the present embodiment, an example will be described in which a different data transmission prohibition period 17 is set for each time slave device 2 in order to avoid simultaneous transmission of communication data from the plurality of time slave devices 2. In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • FIG. 9 shows an operation example of the time slave device 2 according to the fifth embodiment.
  • the timing at which communication data is transmitted from a plurality of time slave devices 2 is dispersed by changing the length of the data transmission prohibition period 17 for each time slave device 2.
  • the transmission control part 19 of each time slave apparatus 2 determines the length of a data transmission prohibition period using a random number. For example, the transmission control unit 19 of each time slave device 2 sets the length of the data transmission prohibited period with a random number using time information as a seed. Further, the transmission control unit 19 of each time slave device 2 may use a random number with the number of time slave devices 2 as an upper limit. In this case, the time master device 1 notifies the time slave devices 2 of the number of time slave devices 2.
  • the time slave device 2 is a computer.
  • a processor 901 illustrated in FIG. 10 has an IC (Integrated) that performs processing. Circuit).
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the storage device 902 illustrated in FIG. 10 has an IC (Integrated) that performs processing. Circuit).
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the wireless communication I / F 903 and the wired communication I / F 904 illustrated in FIG. 10 include a receiver that receives data and a transmitter that transmits data.
  • the wireless communication I / F 903 and the wired communication I / F 904 are, for example, a communication chip or a NIC (Network Interface Card).
  • the storage device 902 also stores an OS (Operating System). Then, at least a part of the OS is executed by the processor 901.
  • the processor 901 executes a program that realizes the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 while executing at least a part of the OS. .
  • the time slave device 2 may include a plurality of processors.
  • information, data, signal values, and variable values indicating processing results of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 are stored in the storage device 902. Or stored in a register or cache memory in the processor 901.
  • the programs for realizing the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 are a magnetic disk, a flexible disk, an optical disk, a compact disk, and a Blu-ray. (Registered trademark) It may be stored in a portable storage medium such as a disk or DVD.
  • the means for realizing the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 may be a “processing circuitry” or a “circuit”. It may be read as “process” or “procedure” or “processing”.
  • the “processing circuit” or “circuit” is not only the processor 901 but also other types of processing circuits such as a logic IC or GA (Gate Array) or ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). Is a concept that also includes
  • “to part” of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, and the slave time synchronization unit 25 may be read as “process”, “procedure”, or “processing”.
  • time master device 1 time master device, 2 time slave device, 3 reference time information signal, 4 reference time receiving unit, 5 master time setting unit, 6 master internal time generation unit, 7 time information insertion unit, 8 communication unit, 9 time synchronization information extraction Unit, 10 time synchronization filter unit, 11 slave time setting unit, 12 slave internal time generation unit, 13 time information transmission cycle, 14 data transmission cycle, 15 time information (without traffic), 16 time information (with traffic), 17 data Transmission prohibition period, 18 timing prediction unit, 19 transmission control unit, 20 communication data reception unit, 21 storage unit, 22 timer, 24 master time synchronization unit, 25 slave time synchronization unit, 200 time slave device.

Abstract

A communication unit (3) transmits communication data to a time master device that transmits time information. A transmission control unit (19) prohibits communication data transmission from a communication unit (8) to the time master device at timing when the time master device transmits the time information.

Description

通信装置及び通信方法及び通信プログラムCOMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION PROGRAM
 本発明は、時刻同期のための時刻情報を送信する制御装置に通信データを送信するタイミングを制限する技術に関する。 The present invention relates to a technique for limiting the timing of transmitting communication data to a control device that transmits time information for time synchronization.
 時刻同期の手法として、NTP(Network Time Protocol)などで用いられるフィードバック有りの手法と特許文献1に開示されるフィードバックなしの簡易な手法が考えられる。
 後者の簡易な時刻同期手法では、時刻マスタ装置が、時刻マスタ装置が保持する時刻を通知するビーコン等の無線フレームを周囲に送信し、時刻マスタ装置と通信が可能な範囲にある時刻スレーブ装置が、時刻マスタ装置から送信された無線フレームを受信する。
 そして、時刻スレーブ装置は、無線フレームで通知される時刻と無線フレームを受信した時刻とを比較して時刻同期を行う。
 このような手法では、時刻マスタ装置の送受信機の周波数発振器と時刻スレーブ装置の送受信機の周波数発振器が異なることによる時刻差が発生する。
 更には、周囲の通信状況により、時刻マスタ装置が無線フレームの送信を待たなければならない場合があり、このような無線フレームの送信待ちが発生すると、遅延時間が付加されるため、送受信機の周波数発振器が異なることにより発生する時刻ずれを正確に推定できないという課題がある。
 このような課題を解決する技術として、特許文献2に開示の技術がある。
As a method of time synchronization, a method with feedback used in NTP (Network Time Protocol) or the like and a simple method without feedback disclosed in Patent Document 1 can be considered.
In the latter simple time synchronization method, the time master device transmits a radio frame such as a beacon that notifies the time held by the time master device to the surroundings, and the time slave device in a range in which communication with the time master device is possible The wireless frame transmitted from the time master device is received.
Then, the time slave device performs time synchronization by comparing the time notified by the radio frame with the time when the radio frame is received.
In such a method, a time difference is generated due to a difference between the frequency oscillator of the transmitter / receiver of the time master device and the frequency oscillator of the transmitter / receiver of the time slave device.
Furthermore, depending on the surrounding communication conditions, the time master device may have to wait for the transmission of the radio frame. When such a radio frame transmission wait occurs, a delay time is added. There is a problem in that it is impossible to accurately estimate a time lag caused by different oscillators.
As a technique for solving such a problem, there is a technique disclosed in Patent Document 2.
 特許文献2では、時刻マスタ装置が、時刻情報が付与されているデータパケットを送信し、時刻スレーブ装置がCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)による揺らぎ誤差を除去し、周波数発振器の影響による時刻ずれを推定している。
 特許文献2では、時刻スレーブ装置が時刻情報における時刻ずれ量を算出する。
 この算出したずれ量は、フィルタの時定数の判定及びフィルタ処理に使用される。
 時刻ずれ量の算出では、時刻スレーブ装置は、まず送信元時刻情報の時刻間隔tTD(k+1)[0≦k≦M-2]、及び、受信時時刻情報の時間間隔tRD(k+1)[0≦k≦M-2]を算出する。
   tTD(k+1)=tT(k+1)-tT(k)、0≦k≦M-2  (1)
   tRD(k+1)=tR(k+1)-tR(k)、0≦k≦M-2  (2)
 次に、時刻スレーブ装置は、送信元時刻情報の時刻間隔tTD(k+1)[0≦k≦M-2]、及び、受信時時刻情報の時間間隔tRD(k+1)[0≦k≦M-2]から送信元時刻情報の時間間隔に対する受信時時刻情報の時間間隔のずれ量を時刻ずれ量d(k+1)[0≦k≦M-2]として算出する。
   d(k+1)= tRD(k+1)-tTD(k+1)、0≦k≦M-2 (3)
 そして、時刻スレーブ装置は、最終的な処理結果として、フィルタ処理開始時における送信元時刻情報に対する受信時時刻情報の時刻ずれ量(初期時刻ずれ量)tR(0)-tT(0)、最終的な時刻ずれ量(時刻ずれ推定値)s(M-1)を得る。
 そして、時刻スレーブ装置は、初期時刻ずれ量tR(0)-tT(0)、時刻ずれ推定値s(M-1)を時刻補正量として現在の時刻スレーブ装置の受信時時刻情報から差し引いて補正することにより、時刻マスタ装置の送信元時刻情報に同期した時刻を生成する。
 なお、初期時刻ずれ量tR(0)-tT(0)は時刻情報の受信時に算出した結果を次回の時刻情報の受信時のみに反映させるものとし、それ以降は時刻ずれ推定値s(M-1)のみを用いる。
 特許文献2では、このような時刻ずれの補正を行うことにより、時刻スレーブ装置の時刻情報を時刻マスタ装置の時刻情報に同期させる処理を実現している。
In Patent Document 2, a time master device transmits a data packet to which time information is attached, and a time slave device removes fluctuation errors caused by CSMA / CA (Carrier Sense Multiple Access / Collection Avidance), and the influence of the frequency oscillator. Estimated time lag due to.
In Patent Document 2, a time slave device calculates a time lag amount in time information.
The calculated deviation amount is used for determination of a filter time constant and filter processing.
In calculating the time lag, the time slave device firstly transmits the time interval tTD (k + 1) [0 ≦ k ≦ M−2] of the transmission source time information and the time interval tRD (k + 1) [0 ≦ 0 of the reception time information. k ≦ M−2] is calculated.
tTD (k + 1) = tT (k + 1) −tT (k), 0 ≦ k ≦ M−2 (1)
tRD (k + 1) = tR (k + 1) −tR (k), 0 ≦ k ≦ M−2 (2)
Next, the time slave device transmits the time interval tTD (k + 1) [0 ≦ k ≦ M−2] of the transmission source time information and the time interval tRD (k + 1) [0 ≦ k ≦ M−2] of the reception time information. ], The shift amount of the time interval of the reception time information with respect to the time interval of the transmission source time information is calculated as a time shift amount d (k + 1) [0 ≦ k ≦ M−2].
d (k + 1) = tRD (k + 1) −tTD (k + 1), 0 ≦ k ≦ M−2 (3)
Then, as a final processing result, the time slave device obtains a time lag amount (initial time lag amount) tR (0) -tT (0) of the reception time information with respect to the transmission source time information at the start of the filter processing, and finally A time lag amount (estimated time lag value) s (M−1) is obtained.
Then, the time slave device corrects the initial time lag amount tR (0) -tT (0) and the time lag estimated value s (M-1) as a time correction amount by subtracting from the reception time information of the current time slave device. By doing so, a time synchronized with the transmission source time information of the time master device is generated.
The initial time lag amount tR (0) -tT (0) reflects the result calculated when the time information is received only when the next time information is received, and thereafter, the time lag estimated value s (M− Only 1) is used.
In Patent Literature 2, by correcting such time lag, processing for synchronizing time information of the time slave device with time information of the time master device is realized.
特開2009-111654号公報JP 2009-111654 A 特開2014-96853号公報JP 2014-96853 A
 特許文献2に開示の技術において、時刻情報が搭載されているビーコンに定常的に影響を及ぼすトラヒックパターンが挿入されるとCSMA/CAによるゆらぎ誤差がフィルタに挿入されてしまい、時刻同期フィルタで推定している周波数発振器の時刻ずれが大きくなってしまうという課題がある。
 例えば、図22に示すように、時刻マスタ装置から送信される時刻情報送信周期13が長く(例えば100ms)、時刻スレーブ装置から送信される通信データのデータ送信周期14が短い(例えば1ms)場合を想定する。
 この場合に、時刻情報送信周期13に時刻スレーブ装置#1~#nから通信データが送信されると、時刻マスタ装置からの時刻情報の送信タイミングが遅延する。
 時刻情報(トラヒックなし)15は、時刻情報の理想的な送信タイミングを示し、時刻情報(トラヒック有り)16は、時刻スレーブ装置からの通信データの送信を原因とするCSMA/CAにより遅延した時刻情報の送信タイミングを示す。
 このように、時刻情報の送信タイミングにおいて時刻スレーブ装置から通信データが送信されると、CSMA/CAにより時刻情報の送信が遅延してしまい、時刻スレーブ装置の推定に誤差が生じてしまうという課題がある。
In the technique disclosed in Patent Document 2, when a traffic pattern that steadily affects a beacon on which time information is mounted is inserted, a fluctuation error due to CSMA / CA is inserted into the filter and is estimated by the time synchronization filter. There is a problem that the time lag of the frequency oscillator is increased.
For example, as shown in FIG. 22, the time information transmission cycle 13 transmitted from the time master device is long (for example, 100 ms) and the data transmission cycle 14 of communication data transmitted from the time slave device is short (for example, 1 ms). Suppose.
In this case, when communication data is transmitted from the time slave devices # 1 to #n in the time information transmission cycle 13, the transmission timing of the time information from the time master device is delayed.
Time information (without traffic) 15 indicates ideal transmission timing of time information, and time information (with traffic) 16 is time information delayed by CSMA / CA caused by transmission of communication data from the time slave device. The transmission timing is shown.
As described above, when communication data is transmitted from the time slave device at the transmission timing of the time information, the transmission of the time information is delayed by CSMA / CA, and an error occurs in the estimation of the time slave device. is there.
 本発明は、このような課題を解決することを主な目的としており、時刻情報が遅延なく送信されるようにすることを主な目的とする。 The main purpose of the present invention is to solve such a problem, and to make it possible to transmit time information without delay.
 本発明に係る通信装置は、
 時刻情報を送信する制御装置に通信データを送信する通信部と、
 前記制御装置が前記時刻情報を送信するタイミングでの前記通信部による前記制御装置への前記通信データの送信を禁止する送信制御部とを有する。
The communication device according to the present invention is
A communication unit that transmits communication data to a control device that transmits time information;
A transmission control unit that prohibits transmission of the communication data to the control device by the communication unit at a timing at which the control device transmits the time information.
 本発明によれば、制御装置が時刻情報を送信するタイミングでの制御装置への通信データの送信を禁止するため、制御装置は遅延なく時刻情報を送信することができる。 According to the present invention, since the transmission of communication data to the control device at the timing when the control device transmits time information is prohibited, the control device can transmit time information without delay.
実施の形態1に係るシステム構成例を示す図。FIG. 3 is a diagram illustrating an example of a system configuration according to the first embodiment. 実施の形態1に係る動作の概要を示す図。FIG. 3 is a diagram showing an outline of an operation according to the first embodiment. 実施の形態1に係る時刻スレーブ装置の機能構成例を示す図。FIG. 3 is a diagram illustrating a functional configuration example of a time slave device according to the first embodiment. 実施の形態1に係る動作シーケンスの例を示す図。FIG. 4 is a diagram showing an example of an operation sequence according to the first embodiment. 実施の形態2に係る動作シーケンスの例を示す図。FIG. 9 shows an example of an operation sequence according to the second embodiment. 実施の形態3に係る時刻スレーブ装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a time slave device according to a third embodiment. 実施の形態3に係る動作シーケンスの例を示す図。FIG. 10 shows an example of an operation sequence according to the third embodiment. 実施の形態4に係る時刻スレーブ装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a time slave device according to a fourth embodiment. 実施の形態5に係る動作の概要を示す図。FIG. 10 is a diagram showing an outline of an operation according to the fifth embodiment. 実施の形態1に係る時刻スレーブ装置のハードウェア構成例を示す図。FIG. 3 is a diagram illustrating a hardware configuration example of a time slave device according to the first embodiment. 実施の形態1に係る通信部の動作例を示すフローチャート図。FIG. 3 is a flowchart showing an operation example of a communication unit according to the first embodiment. 実施の形態1に係る通信データ受信部の動作例を示すフローチャート図。FIG. 3 is a flowchart showing an operation example of a communication data receiving unit according to the first embodiment. 実施の形態1に係るタイミング予測部の動作例を示すフローチャート図。FIG. 3 is a flowchart showing an operation example of a timing prediction unit according to the first embodiment. 実施の形態1に係る送信制御部の動作例を示すフローチャート図。FIG. 3 is a flowchart showing an operation example of a transmission control unit according to the first embodiment. 実施の形態2に係る通信部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a communication unit according to the second embodiment. 実施の形態2に係るタイミング予測部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a timing prediction unit according to the second embodiment. 実施の形態2に係る送信制御部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the second embodiment. 実施の形態3に係る送信制御部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the third embodiment. 実施の形態4に係る時刻同期フィルタ部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a time synchronization filter unit according to the fourth embodiment. 実施の形態4に係る送信制御部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the fourth embodiment. 実施の形態4に係る送信制御部の動作例を示すフローチャート図。FIG. 9 is a flowchart showing an operation example of a transmission control unit according to the fourth embodiment. 従来技術の課題を示す図。The figure which shows the subject of a prior art.
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係るシステム構成例を示す。
 図1に示すように、本実施の形態に係るシステムは、時刻マスタ装置1と複数の時刻スレーブ装置2で構成される。
 時刻マスタ装置1は、時刻情報を送信する制御装置である。
 時刻マスタ装置1は、時刻マスタ装置1が保持する時刻を通知する時刻情報が含まれる無線フレームを送信する。
 時刻スレーブ装置2は、時刻マスタ装置1から送信された無線フレームを受信する。
 そして、時刻スレーブ装置2は、無線フレームで通知される時刻と無線フレームを受信した時刻とを比較して時刻同期を行う。
 時刻スレーブ装置2における時刻同期の方法は、例えば、特許文献2に開示の方法と同様でよい。
Embodiment 1 FIG.
*** Explanation of configuration ***
FIG. 1 shows a system configuration example according to the present embodiment.
As shown in FIG. 1, the system according to the present embodiment includes a time master device 1 and a plurality of time slave devices 2.
The time master device 1 is a control device that transmits time information.
The time master device 1 transmits a radio frame including time information for notifying the time held by the time master device 1.
The time slave device 2 receives the radio frame transmitted from the time master device 1.
Then, the time slave device 2 performs time synchronization by comparing the time notified by the radio frame and the time when the radio frame is received.
The time synchronization method in the time slave device 2 may be the same as the method disclosed in Patent Document 2, for example.
 図3は、本実施の形態に係る時刻スレーブ装置2の機能構成例を示す。
 図1に示す各時刻スレーブ装置2は、共通に図3に示す機能構成を備えるものとする。
 図3に示すように、本実施の形態に係る時刻スレーブ装置2は、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、蓄積部21、タイマー22、スレーブ時刻同期部25で構成される。
FIG. 3 shows a functional configuration example of the time slave device 2 according to the present embodiment.
Each time slave device 2 shown in FIG. 1 has the functional configuration shown in FIG. 3 in common.
As shown in FIG. 3, the time slave device 2 according to the present embodiment includes a communication unit 8, a timing prediction unit 18, a transmission control unit 19, a communication data reception unit 20, a storage unit 21, a timer 22, and a slave time synchronization unit. 25.
 また、時刻スレーブ装置2には、図10に示すように、プロセッサ901、記憶装置902及び無線通信I/F(Interface)903及び有線通信I/F904というハードウェアが含まれる。
 蓄積部21は記憶装置902により実現される。
 記憶装置902には、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、スレーブ時刻同期部25の機能を実現するプログラムが記憶されている。
 そして、プロセッサ901がこれらプログラムを実行して、後述する通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の動作を行う。
 図10では、プロセッサ901が通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の機能を実現するプログラムを実行している状態を模式的に表している。
 無線通信I/F903は、時刻マスタ装置1との無線通信のためのインタフェースである。
 無線通信I/F903は、無線フレームを無線通信により受信し、無線フレームの復調処理を行う。通信部8は、復調処理後の無線フレームの誤り訂正処理を行う。また、必要であれば、通信部8は無線フレームのデカプセル処理を行う。
 更に、通信部8は、通信プロトコルに沿って通信データにアドレス情報及び誤り訂正符号等を付加して無線フレームを生成する。無線通信I/F903は、通信部8により生成された無線フレームの変調処理を行い、無線フレームを無線通信により送信する。
 なお、以下では、説明の簡明化のため、「通信部8が無線フレームを受信する」及び「通信部8が無線フレームを送信する」といった表現を用いるが、無線フレームの受信及び無線フレームの送信において、無線通信I/F903が上述の動作を行っているものとする。
 有線通信I/F904は、有線通信のためのインタフェースである。
 有線通信I/F904は、有線通信により通信データを受信する。通信データ受信部20は、通信データの誤り訂正処理を行う。また、必要であれば、通信データ受信部20は通信データのデカプセル処理を行う。
 なお、以下では、説明の簡明化のため、「通信データ受信部20が通信データを受信する」といった表現を用いるが、通信データの受信において、有線通信I/F904が上述の動作を行っているものとする。
 なお、図10では、タイマー22をソフトウェアにて実現する例を示しているが、タイマー22はハードウェアで実現されていてもよい。
Further, as shown in FIG. 10, the time slave device 2 includes hardware such as a processor 901, a storage device 902, a wireless communication I / F (Interface) 903, and a wired communication I / F 904.
The storage unit 21 is realized by the storage device 902.
The storage device 902 stores programs that realize the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, and the slave time synchronization unit 25.
Then, the processor 901 executes these programs, and performs operations of a communication unit 8, a timing prediction unit 18, a transmission control unit 19, a communication data reception unit 20, a timer 22, and a slave time synchronization unit 25, which will be described later.
10 schematically illustrates a state in which the processor 901 is executing a program that realizes the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25. It represents.
The wireless communication I / F 903 is an interface for wireless communication with the time master device 1.
The wireless communication I / F 903 receives a wireless frame by wireless communication, and performs a demodulation process on the wireless frame. The communication unit 8 performs error correction processing on the radio frame after demodulation processing. If necessary, the communication unit 8 performs decapsulation processing of the radio frame.
Further, the communication unit 8 generates a radio frame by adding address information and an error correction code to the communication data in accordance with the communication protocol. The wireless communication I / F 903 performs modulation processing on the wireless frame generated by the communication unit 8 and transmits the wireless frame by wireless communication.
In the following, for simplicity of explanation, expressions such as “the communication unit 8 receives a radio frame” and “the communication unit 8 transmits a radio frame” are used. However, the reception of the radio frame and the transmission of the radio frame are used. Assume that the wireless communication I / F 903 performs the above-described operation.
The wired communication I / F 904 is an interface for wired communication.
The wired communication I / F 904 receives communication data by wired communication. The communication data receiving unit 20 performs error correction processing for communication data. Further, if necessary, the communication data receiving unit 20 performs communication data decapsulation processing.
In the following, for simplicity of explanation, the expression “communication data receiving unit 20 receives communication data” is used. However, in receiving communication data, wired communication I / F 904 performs the above-described operation. Shall.
Although FIG. 10 shows an example in which the timer 22 is realized by software, the timer 22 may be realized by hardware.
***動作の説明***
 図2を参照して、本実施の形態に係る時刻スレーブ装置2の動作の概要を説明する。
 本実施の形態では、時刻スレーブ装置2は、図2に示す、時刻マスタ装置1の時刻情報送信周期13を予測する。
 時刻情報送信周期13は、時刻情報の送信タイミングの間隔である。
 そして、時刻スレーブ装置2は、時刻マスタ装置1が時刻情報を送信するタイミングの前後にデータ送信禁止期間17を設け、データ送信禁止期間17の間は、時刻スレーブ装置2からの通信データの送信を行わないようにする。
 つまり、本実施の形態に係る時刻スレーブ装置2は、時刻マスタ装置1が時刻情報を送信するタイミングでは、時刻マスタ装置1への通信データの送信を保留し、時刻マスタ装置1が時刻情報を送信するタイミング以外のタイミングで時刻マスタ装置1に通信データを送信する。
 これにより、時刻マスタ装置1は遅延なく時刻情報を送信することができる。
 なお、時刻スレーブ装置2の動作は、通信方法及び通信プログラムの例に相当する。
*** Explanation of operation ***
With reference to FIG. 2, an outline of the operation of time slave device 2 according to the present embodiment will be described.
In the present embodiment, the time slave device 2 predicts the time information transmission cycle 13 of the time master device 1 shown in FIG.
The time information transmission cycle 13 is an interval of time information transmission timing.
The time slave device 2 has a data transmission prohibition period 17 before and after the timing at which the time master device 1 transmits time information. During the data transmission prohibition period 17, the time slave device 2 transmits communication data from the time slave device 2. Do not do it.
That is, the time slave device 2 according to the present embodiment suspends transmission of communication data to the time master device 1 at the timing when the time master device 1 transmits time information, and the time master device 1 transmits time information. The communication data is transmitted to the time master device 1 at a timing other than the timing to be performed.
Thereby, the time master device 1 can transmit time information without delay.
The operation of the time slave device 2 corresponds to an example of a communication method and a communication program.
 次に、図3に示す時刻スレーブ装置2の構成要素の詳細を説明する。 Next, details of the components of the time slave device 2 shown in FIG. 3 will be described.
 通信部8は、無線通信I/F903を介して、時刻マスタ装置1から時刻情報が含まれる無線フレームを受信するとともに、時刻マスタ装置1に通信データが含まれる無線フレームを送信する。
 通信部8の動作は通信処理の例に相当する。
 タイミング予測部18は、タイマー22を用いて、時刻マスタ装置1が時刻情報を送信するタイミング(以下、予測送信タイミングという)を予測する。
 タイマー22は、タイミング予測部18により設定された時間が経過すると、タイミング予測部18に、設定された時間が経過したことを通知する。
 送信制御部19は、タイミング予測部18により予測された予測送信タイミングを基準にしてデータ送信禁止期間17を設定し、データ送信禁止期間17の間、通信部8による時刻マスタ装置1への通信データの送信を禁止する。
 より具体的には、送信制御部19は、予測送信タイミングから通信部8により時刻情報が受信されるまでの期間が含まれる期間をデータ送信禁止期間17として設定する。
 時刻マスタ装置1は、周期的に時刻情報が含まれる無線フレームを送信し、送信制御部19は、時刻マスタ装置1が時刻情報が含まれる無線フレームを送信する各タイミングで、通信部8による時刻マスタ装置1への無線フレームの送信を禁止する。
 送信制御部19の動作は送信制御処理の例に相当する。
 通信データ受信部20は、有線通信I/F904を介して、有線通信により通信データを受信する。
 蓄積部21は、通信データ受信部20により受信された通信データを蓄積(バッファリング)する。
 送信制御部19は、データ送信禁止期間17の間、蓄積部21に、通信データ受信部20により受信された通信データを蓄積させる。
 そして、送信制御部19は、データ送信禁止期間17が経過した後に、通信部8に、蓄積部21に蓄積されている通信データを時刻マスタ装置1に送信させる。
The communication unit 8 receives a radio frame including time information from the time master device 1 via the radio communication I / F 903 and transmits a radio frame including communication data to the time master device 1.
The operation of the communication unit 8 corresponds to an example of communication processing.
The timing prediction unit 18 uses the timer 22 to predict the timing at which the time master device 1 transmits time information (hereinafter referred to as predicted transmission timing).
When the time set by the timing prediction unit 18 elapses, the timer 22 notifies the timing prediction unit 18 that the set time has elapsed.
The transmission control unit 19 sets the data transmission prohibition period 17 based on the predicted transmission timing predicted by the timing prediction unit 18, and the communication data to the time master device 1 by the communication unit 8 during the data transmission prohibition period 17. Prohibit sending.
More specifically, the transmission control unit 19 sets a period including a period from the predicted transmission timing until the time information is received by the communication unit 8 as the data transmission prohibition period 17.
The time master device 1 periodically transmits a radio frame including time information, and the transmission control unit 19 performs the time by the communication unit 8 at each timing at which the time master device 1 transmits a radio frame including time information. Transmission of radio frames to the master device 1 is prohibited.
The operation of the transmission control unit 19 corresponds to an example of a transmission control process.
The communication data receiving unit 20 receives communication data by wired communication via the wired communication I / F 904.
The accumulating unit 21 accumulates (buffers) the communication data received by the communication data receiving unit 20.
The transmission control unit 19 stores the communication data received by the communication data receiving unit 20 in the storage unit 21 during the data transmission prohibition period 17.
Then, the transmission control unit 19 causes the communication unit 8 to transmit the communication data stored in the storage unit 21 to the time master device 1 after the data transmission prohibition period 17 has elapsed.
 また、スレーブ時刻同期部25において、時刻同期情報抽出部9は、通信部8が受信した無線フレームから時刻情報を抽出する。
 時刻同期フィルタ部10は、時刻同期情報抽出部9により抽出された時刻情報と時刻スレーブ装置2の内部時刻を比較して時刻マスタ装置1の基準時刻に対する時刻スレーブ装置2の内部時刻のずれを推定し時刻補正量を算出する。
 スレーブ時刻設定部11は、時刻同期フィルタ部10により推定された時刻補正量を用いて時刻スレーブ装置2の時刻を設定する。
 スレーブ内部時刻生成部12は、スレーブ時刻設定部11からの設定情報を用いて時刻スレーブ装置2の内部時刻を生成する。
In the slave time synchronization unit 25, the time synchronization information extraction unit 9 extracts time information from the radio frame received by the communication unit 8.
The time synchronization filter unit 10 compares the time information extracted by the time synchronization information extraction unit 9 with the internal time of the time slave device 2, and estimates the deviation of the internal time of the time slave device 2 with respect to the reference time of the time master device 1. The time correction amount is calculated.
The slave time setting unit 11 sets the time of the time slave device 2 using the time correction amount estimated by the time synchronization filter unit 10.
The slave internal time generation unit 12 generates the internal time of the time slave device 2 using the setting information from the slave time setting unit 11.
 図4は、通信部8、タイミング予測部18、送信制御部19の具体的な動作シーケンス例を示す。 FIG. 4 shows a specific operation sequence example of the communication unit 8, the timing prediction unit 18, and the transmission control unit 19.
 タイミング予測部18は、時刻情報送信周期13に合わせてタイマーをセットし、タイマーが満了したタイミングを予測送信タイミングとみなす。
 タイマーが満了すると(S1)、タイミング予測部18は、送信制御部19に通信データのバッファリング開始指示を出力する(S2)。
 送信制御部19は、バッファリング開始指示により通信データのバッファリングを開始する(S3)。
 すなわち、送信制御部19は、通信データ受信部20により受信された通信データを通信データ受信部20から取得し、通信データを蓄積部21にバッファリングする。
 また、通信部8が時刻マスタ装置1から時刻情報が含まれた無線フレームを受信すると、通信部8はタイミング予測部18に時刻情報を受信した旨を通知する(S4)。
 タイミング予測部18は、データ送信開始指示を送信制御部19に出力する(S5)。
 また、タイミング予測部18は、次回の時刻情報の送信タイミングを予測するためのタイマー設定を行う(S6)。
 送信制御部19はタイミング予測部18からのデータ送信開始指示を受けて、蓄積部21からバッファリングデータを読み出し、読み出したバッファリングデータを通信部8に出力し、バッファリングを終了する(S7)。
 通信部8は、バッファリングデータ(通信データ)の時刻マスタ装置1への送信を開始する。
 上記の予測送信タイミング(S1)から時刻情報の受信(S4)までが図2のデータ送信禁止期間17に相当する。
The timing prediction unit 18 sets a timer according to the time information transmission cycle 13, and regards the timing when the timer expires as the predicted transmission timing.
When the timer expires (S1), the timing prediction unit 18 outputs a communication data buffering start instruction to the transmission control unit 19 (S2).
The transmission control unit 19 starts buffering communication data in response to a buffering start instruction (S3).
That is, the transmission control unit 19 acquires the communication data received by the communication data receiving unit 20 from the communication data receiving unit 20 and buffers the communication data in the storage unit 21.
In addition, when the communication unit 8 receives a radio frame including time information from the time master device 1, the communication unit 8 notifies the timing prediction unit 18 that the time information has been received (S4).
The timing prediction unit 18 outputs a data transmission start instruction to the transmission control unit 19 (S5).
Further, the timing prediction unit 18 performs timer setting for predicting the transmission timing of the next time information (S6).
In response to the data transmission start instruction from the timing prediction unit 18, the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). .
The communication unit 8 starts transmission of buffering data (communication data) to the time master device 1.
From the predicted transmission timing (S1) to the reception of time information (S4) corresponds to the data transmission prohibition period 17 in FIG.
 次に、図11を参照して、通信部8の動作例を説明する。
 通信部8は、無線フレームを受信した場合(S11でYES)に、無線フレームから時刻情報を抽出し、時刻情報を受信した旨をタイミング予測部18に通知する(S12)。なお、抽出した時刻情報はスレーブ時刻同期部25に出力される。
 次に、送信制御部19からデータが出力された場合(S13でYES)に、通信部8は、送信制御部19から出力されたデータにアドレス情報及び誤り訂正符号等を付加して無線フレームを生成し、生成した無線フレームを送信する(S14)。
Next, an operation example of the communication unit 8 will be described with reference to FIG.
When receiving the radio frame (YES in S11), the communication unit 8 extracts time information from the radio frame and notifies the timing prediction unit 18 that the time information has been received (S12). The extracted time information is output to the slave time synchronization unit 25.
Next, when data is output from the transmission control unit 19 (YES in S13), the communication unit 8 adds a radio frame by adding address information and an error correction code to the data output from the transmission control unit 19. Generate and transmit the generated radio frame (S14).
 次に、図12を参照して、通信データ受信部20の動作例を説明する。
 通信データ受信部20は、通信データを受信した場合(S21でYES)に、誤り訂正処理等の後、通信データを送信制御部19に出力する(S22)。
Next, an operation example of the communication data receiving unit 20 will be described with reference to FIG.
When the communication data is received (YES in S21), the communication data receiving unit 20 outputs the communication data to the transmission control unit 19 after error correction processing (S22).
 次に、図13を参照して、タイミング予測部18の動作例を説明する。
 先ず、タイミング予測部18は、タイマー22をセットする(S31)。
 次に、タイマー22が満了した場合(S32でYES)、すなわち、タイマー22から通知があった場合に、タイミング予測部18は、バッファリング開始指示を送信制御部19に出力する(S33)。
 次に、通信部8から時刻情報の受信が通知された場合(S34でYES)に、タイミング制御部18は、データ送信開始指示を送信制御部19に出力する(S35)。
Next, an operation example of the timing prediction unit 18 will be described with reference to FIG.
First, the timing prediction unit 18 sets the timer 22 (S31).
Next, when the timer 22 has expired (YES in S32), that is, when notified from the timer 22, the timing prediction unit 18 outputs a buffering start instruction to the transmission control unit 19 (S33).
Next, when reception of time information is notified from the communication unit 8 (YES in S34), the timing control unit 18 outputs a data transmission start instruction to the transmission control unit 19 (S35).
 次に、図14を参照して、送信制御部19の動作例を説明する。
 通信データ受信部20において通信データが受信された場合(S41でYES)に、送信制御部19は通信データ受信部20から通信データを取得する。
 次に、タイミング予測部18から既にバッファリング開始指示が出力されている場合(S42でYES)は、送信制御部19は、通信データのバッファリングを行う(S44)。
 一方、バッファリング開始指示が出力されていない場合(S42でNO)は、送信制御部19は、通信データを通信部8に出力する。
 次に、タイミング予測部18からデータ送信開始指示が出力された場合(S45でYES)は、送信制御部19は、蓄積部21からバッファリングデータを読み出す(S46)。
 そして、送信制御部19は、蓄積部21から読み出したバッファリングデータを通信部8に出力する(S47)。
Next, an operation example of the transmission control unit 19 will be described with reference to FIG.
When communication data is received by the communication data receiving unit 20 (YES in S41), the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
Next, when the buffering start instruction has already been output from the timing prediction unit 18 (YES in S42), the transmission control unit 19 performs buffering of communication data (S44).
On the other hand, when the buffering start instruction is not output (NO in S42), the transmission control unit 19 outputs the communication data to the communication unit 8.
Next, when a data transmission start instruction is output from the timing prediction unit 18 (YES in S45), the transmission control unit 19 reads buffering data from the storage unit 21 (S46).
Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
 なお、図4では、通信部8がデータ送信禁止期間の後にタイミング予測部18に時刻情報を受信した旨を通知し、タイミング予測部18が送信制御部19にデータ送信開始指示を出力し、送信制御部19がバッファリングを停止している。
 これに代えて、通信部8は時刻情報を受信したらデータ送信禁止期間中であってもタイミング予測部18に時刻情報を受信した旨を通知し、データ送信禁止期間中に送信制御部19がバッファリングを停止し、通信部8がバッファリングデータを送信するようにしてもよい。
 つまり、送信制御部19は、データ送信禁止期間中に通信部8により時刻情報が受信された場合は、データ送信禁止期間中であっても、通信部8による時刻マスタ装置1への通信データの送信を許可するようにしてもよい。
In FIG. 4, the communication unit 8 notifies the timing prediction unit 18 that the time information has been received after the data transmission prohibition period, and the timing prediction unit 18 outputs a data transmission start instruction to the transmission control unit 19 for transmission. The controller 19 has stopped buffering.
Instead, when the communication unit 8 receives the time information, it notifies the timing prediction unit 18 that the time information has been received even during the data transmission prohibition period, and the transmission control unit 19 buffers the data transmission prohibition period. The ring may be stopped and the communication unit 8 may transmit buffering data.
That is, when the time information is received by the communication unit 8 during the data transmission prohibition period, the transmission control unit 19 transmits the communication data to the time master device 1 by the communication unit 8 even during the data transmission prohibition period. Transmission may be permitted.
***実施の形態の効果の説明***
 このように、実施の形態1に係る時刻スレーブ装置2は、時刻マスタ装置1が時刻情報を送信するタイミングでの時刻マスタ装置1への通信データの送信を禁止するため、時刻マスタ装置1は遅延なく時刻情報を送信することができる。
 そして、時刻情報の送信にゆらぎ誤差が発生しないので、時刻同期フィルタを正常に動作させることができる。
*** Explanation of the effect of the embodiment ***
As described above, the time slave device 2 according to the first embodiment prohibits transmission of communication data to the time master device 1 at the timing when the time master device 1 transmits time information. Time information can be transmitted.
Since no fluctuation error occurs in the transmission of time information, the time synchronization filter can be operated normally.
実施の形態2.
 実施の形態1では、図4に示すように、通信部8が時刻マスタ装置1から時刻情報を受信した際に、送信制御部19がバッファリングを停止し、バッファリングデータを通信部8に出力する。
 本実施の形態では、通信部8による時刻情報の受信とは非同期に送信制御部19がバッファリングを停止し、バッファリングデータを通信部8に出力する例を説明する。
 本実施の形態に係る時刻マスタ装置1の機能構成及び時刻スレーブ装置2の機能構成は実施の形態1で説明したものと同じである。
 なお、本実施の形態では、各通信データのデータサイズは同じであり、通信データ受信部20は、通信データを一定範囲の受信レートにて受信する。
 以下では、実施の形態1との違いを主に説明する。以下にて説明していない事項は、実施の形態1と同じである。
Embodiment 2. FIG.
In the first embodiment, as shown in FIG. 4, when the communication unit 8 receives time information from the time master device 1, the transmission control unit 19 stops buffering and outputs buffering data to the communication unit 8. To do.
In the present embodiment, an example will be described in which the transmission control unit 19 stops buffering and outputs buffering data to the communication unit 8 asynchronously with reception of time information by the communication unit 8.
The functional configuration of the time master device 1 and the functional configuration of the time slave device 2 according to the present embodiment are the same as those described in the first embodiment.
In the present embodiment, the data size of each communication data is the same, and the communication data receiving unit 20 receives the communication data at a reception rate within a certain range.
In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
 図5は、本実施の形態に係る時刻スレーブ装置2の動作シーケンスの例を示す。
 タイミング予測部18は、実施の形態1と同様に、タイマーをセットし、タイマーが満了したタイミングを予測送信タイミングとする。
 タイマーが満了した際に、タイミング予測部18は、送信制御部19に通信データのバッファリング開始指示を出力する(S2)とともにタイマー設定を行う(S8)。
 送信制御部19は、バッファリング開始指示により通信データのバッファリングを開始する(S3)。
 送信制御部19は、既定値である送信閾値を記憶しており、バッファリングデータのデータ量が送信閾値以上であるか否かを判定する(S9)。
 送信制御部19は、バッファリングデータのデータ量が送信閾値になるまではバッファリングを継続する。
 バッファリングデータのデータ量が送信閾値になった際に、送信制御部19は蓄積部21からバッファリングデータを読み出し、読み出したバッファリングデータを通信部8に出力し、バッファリングを終了する(S7)。
 本実施の形態では、予測送信タイミング(S8)からバッファリングデータのデータ量が送信閾値に達するまで(S9でYES)が図2のデータ送信禁止期間17に相当する。 
FIG. 5 shows an example of an operation sequence of the time slave device 2 according to the present embodiment.
Similar to the first embodiment, the timing prediction unit 18 sets a timer and sets the timing when the timer expires as the predicted transmission timing.
When the timer expires, the timing prediction unit 18 outputs a communication data buffering start instruction to the transmission control unit 19 (S2) and sets the timer (S8).
The transmission control unit 19 starts buffering communication data in response to a buffering start instruction (S3).
The transmission control unit 19 stores a transmission threshold that is a predetermined value, and determines whether or not the data amount of the buffering data is equal to or larger than the transmission threshold (S9).
The transmission control unit 19 continues buffering until the amount of buffered data reaches the transmission threshold.
When the data amount of the buffering data reaches the transmission threshold, the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). ).
In the present embodiment, the period from the predicted transmission timing (S8) until the data amount of the buffering data reaches the transmission threshold (YES in S9) corresponds to the data transmission prohibition period 17 in FIG.
 次に、図15を参照して、通信部8の動作例を説明する。
 送信制御部19からデータが出力された場合(S13でYES)に、通信部8は、送信制御部19から出力されたデータにアドレス情報及び誤り訂正符号等を付加して無線フレームを生成し、生成した無線フレームを送信する(S14)。
Next, an operation example of the communication unit 8 will be described with reference to FIG.
When data is output from the transmission control unit 19 (YES in S13), the communication unit 8 generates a radio frame by adding address information and an error correction code to the data output from the transmission control unit 19, The generated radio frame is transmitted (S14).
 次に、図16を参照して、タイミング予測部18の動作例を説明する。
 先ず、タイミング予測部18は、タイマー22をセットする(S31)。
 次に、タイマー22が満了した場合(S32でYES)、すなわち、タイマー22から通知があった場合に、タイミング予測部18は、バッファリング開始指示を送信制御部19に出力する(S33)。
Next, an operation example of the timing prediction unit 18 will be described with reference to FIG.
First, the timing prediction unit 18 sets the timer 22 (S31).
Next, when the timer 22 has expired (YES in S32), that is, when notified from the timer 22, the timing prediction unit 18 outputs a buffering start instruction to the transmission control unit 19 (S33).
 次に、図17を参照して、送信制御部19の動作例を説明する。
 通信データ受信部20において通信データが受信された場合(S41でYES)に、送信制御部19は通信データ受信部20から通信データを取得する。
 次に、タイミング予測部18から既にバッファリング開始指示が出力されている場合(S42でYES)は、送信制御部19は、通信データのバッファリングを行う(S44)。
 一方、バッファリング開始指示が出力されていない場合(S42でNO)は、送信制御部19は、通信データを通信部8に出力する。
 次に、バッファリングデータのデータ量が送信閾値以上になった場合(S48でYES)に、送信制御部19は、蓄積部21からバッファリングデータを読み出す(S46)。
 そして、送信制御部19は、蓄積部21から読み出したバッファリングデータを通信部8に出力する(S47)。
Next, an operation example of the transmission control unit 19 will be described with reference to FIG.
When communication data is received by the communication data receiving unit 20 (YES in S41), the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
Next, when the buffering start instruction has already been output from the timing prediction unit 18 (YES in S42), the transmission control unit 19 performs buffering of communication data (S44).
On the other hand, when the buffering start instruction is not output (NO in S42), the transmission control unit 19 outputs the communication data to the communication unit 8.
Next, when the data amount of the buffering data is equal to or larger than the transmission threshold (YES in S48), the transmission control unit 19 reads the buffering data from the storage unit 21 (S46).
Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
 本実施の形態では、バッファリングデータのデータ量が送信閾値になった際にバッファリングデータを時刻マスタ装置1に送信してもバッファリングデータの送信タイミングが時刻マスタ装置1の時刻情報の送信タイミングと重ならないようにする必要がある。
 このため、本実施の形態の送信閾値として以下の(1)、(2-1)及び(2-2)が考えられる。
 (1)バッファリング開始からバッファリングデータのデータ量が送信閾値に達するまでの時間が時刻情報送信周期13をわずかに超えるような送信閾値が考えられる。
 通信データのデータサイズと通信データ受信部20の通信データの受信レートとの乗算によりバッファリング開始からバッファリングデータのデータ量が送信閾値に達するまでの概略時間が得られるので、この概略時間が時刻情報送信周期13をわずかに超えるような送信閾値が考えられる。
 (2-1)バッファリング開始からバッファリングデータのデータ量が送信閾値に達するまでの時間が時刻情報送信周期13の整数倍となるような送信閾値が考えられる。
 (2-2)バッファリング開始からバッファリングデータのデータ量が送信閾値に達するまでの時間が、時刻情報送信周期13を時刻スレーブ装置2の台数で除算した余りに相当する時間となるような送信閾値が考えられる。
 また、時刻スレーブ装置2ごとに異なる送信閾値を設定することも可能である。
In the present embodiment, even when the buffering data is transmitted to the time master device 1 when the data amount of the buffering data reaches the transmission threshold, the transmission timing of the buffering data is the transmission timing of the time information of the time master device 1. It is necessary not to overlap.
For this reason, the following (1), (2-1), and (2-2) are conceivable as transmission threshold values in the present embodiment.
(1) A transmission threshold may be considered such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold slightly exceeds the time information transmission cycle 13.
By multiplying the data size of the communication data by the communication data reception rate of the communication data receiving unit 20, an approximate time from the start of buffering until the data amount of the buffering data reaches the transmission threshold is obtained. A transmission threshold that slightly exceeds the information transmission period 13 can be considered.
(2-1) A transmission threshold may be considered such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold is an integral multiple of the time information transmission period 13.
(2-2) Transmission threshold value such that the time from the start of buffering until the amount of buffered data reaches the transmission threshold value is equivalent to the remainder obtained by dividing the time information transmission period 13 by the number of time slave devices 2 Can be considered.
It is also possible to set a different transmission threshold value for each time slave device 2.
 このように、本実施の形態では、送信制御部19は、予測送信タイミングから蓄積部21における通信データの蓄積量が既定値である送信閾値に達するまでの期間をデータ送信禁止期間として設定する。
 そして、送信制御部19は、データ送信禁止期間の間、蓄積部21に、通信データ受信部20により受信された通信データを蓄積させる。
 データ送信禁止期間が経過した後に、送信制御部19は、通信部8に、蓄積部21に蓄積されている通信データを時刻マスタ装置1に送信させる。
As described above, in the present embodiment, the transmission control unit 19 sets a period from the predicted transmission timing until the accumulated amount of communication data in the accumulating unit 21 reaches the transmission threshold value which is a predetermined value as the data transmission prohibition period.
Then, the transmission control unit 19 causes the storage unit 21 to store the communication data received by the communication data receiving unit 20 during the data transmission prohibition period.
After the data transmission prohibition period has elapsed, the transmission control unit 19 causes the communication unit 8 to transmit the communication data stored in the storage unit 21 to the time master device 1.
実施の形態3.
 本実施の形態では、図3に示すタイミング予測部18を省略した時刻スレーブ装置2を説明する。
Embodiment 3 FIG.
In the present embodiment, a time slave device 2 in which the timing prediction unit 18 shown in FIG. 3 is omitted will be described.
 図6は、本実施の形態に係る時刻スレーブ装置2の機能構成例を示す。
 図6では、図3に示すタイミング予測部18が省略されている。
 図6に示す各構成要素は、図3に示した同一の符号が付された構成要素と同じである。
 なお、本実施の形態では、各通信データのデータサイズは同じであり、通信データ受信部20は、通信データを一定範囲の受信レートにて受信する。
 本実施の形態に係る時刻マスタ装置1の機能構成は、実施の形態1で説明したものと同じである。
 以下では、実施の形態1との違いを主に説明する。以下にて説明していない事項は、実施の形態1と同じである。
FIG. 6 shows a functional configuration example of the time slave device 2 according to the present embodiment.
In FIG. 6, the timing prediction unit 18 shown in FIG. 3 is omitted.
Each component shown in FIG. 6 is the same as the component given the same reference numeral shown in FIG.
In the present embodiment, the data size of each communication data is the same, and the communication data receiving unit 20 receives the communication data at a reception rate within a certain range.
The functional configuration of the time master device 1 according to the present embodiment is the same as that described in the first embodiment.
In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
 図7は、本実施の形態に係る時刻スレーブ装置2の動作シーケンスの例を示す。
 本実施の形態でも、通信データ受信部20は通信データを受信し(S11)、受信した通信データを送信制御部19に転送する。
 送信制御部19は、通信データを蓄積部21にバッファリングする(S3)。
 送信制御部19は、既定値である送信閾値を記憶しており、バッファリングデータのデータ量が送信閾値以上であるか否かを判定する(S9)。
 送信制御部19は、バッファリングデータのデータ量が送信閾値になるまではバッファリングを継続する。
 バッファリングデータのデータ量が送信閾値になった際に、送信制御部19は蓄積部21からバッファリングデータを読み出し、読み出したバッファリングデータを通信部8に出力し、バッファリングを終了する(S7)。
 なお、本実施の形態では、実施の形態2に記載の(2-1)及び(2-2)の送信閾値を用いることが考えられる。
 つまり、本実施の形態でも、バッファリングデータのデータ量が送信閾値になった際にバッファリングデータを時刻マスタ装置1に送信してもバッファリングデータの送信タイミングが時刻マスタ装置1の時刻情報の送信タイミングと重ならない。
FIG. 7 shows an example of an operation sequence of the time slave device 2 according to the present embodiment.
Also in the present embodiment, the communication data receiving unit 20 receives the communication data (S11) and transfers the received communication data to the transmission control unit 19.
The transmission control unit 19 buffers the communication data in the storage unit 21 (S3).
The transmission control unit 19 stores a transmission threshold that is a predetermined value, and determines whether or not the data amount of the buffering data is equal to or larger than the transmission threshold (S9).
The transmission control unit 19 continues buffering until the amount of buffered data reaches the transmission threshold.
When the data amount of the buffering data reaches the transmission threshold, the transmission control unit 19 reads the buffering data from the storage unit 21, outputs the read buffering data to the communication unit 8, and ends the buffering (S7). ).
In this embodiment, it is conceivable to use the transmission threshold values (2-1) and (2-2) described in the second embodiment.
That is, even in the present embodiment, even when the buffering data is transmitted to the time master device 1 when the data amount of the buffering data reaches the transmission threshold, the transmission timing of the buffering data is the time information of the time master device 1. Does not overlap with transmission timing.
 次に、図18を参照して、送信制御部19の動作例を説明する。
 通信データ受信部20において通信データが受信された場合(S41でYES)に、送信制御部19は通信データ受信部20から通信データを取得する。
 次に、送信制御部19は、通信データのバッファリングを行う(S44)。
 次に、バッファリングデータのデータ量が送信閾値以上になった場合(S48でYES)に、送信制御部19は、蓄積部21からバッファリングデータを読み出す(S46)。
 そして、送信制御部19は、蓄積部21から読み出したバッファリングデータを通信部8に出力する(S47)。
Next, an operation example of the transmission control unit 19 will be described with reference to FIG.
When communication data is received by the communication data receiving unit 20 (YES in S41), the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
Next, the transmission control unit 19 performs buffering of communication data (S44).
Next, when the data amount of the buffering data is equal to or larger than the transmission threshold (YES in S48), the transmission control unit 19 reads the buffering data from the storage unit 21 (S46).
Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
 このように、本実施の形態では、送信制御部19は、通信データ受信部20により受信された通信データを蓄積部21に蓄積させた場合の蓄積部21における通信データの蓄積量が送信閾値に達するタイミングが、時刻マスタ装置1が時刻情報を送信するタイミングと重複しない送信閾値の値を記憶している。
 そして、送信制御部19は、蓄積部21に、通信データ受信部20により受信された通信データを蓄積させ、蓄積部21における通信データの蓄積量が送信閾値の値に達した際に、通信部8に、蓄積部21に蓄積されている通信データを時刻マスタ装置1に送信させる。
As described above, in the present embodiment, the transmission control unit 19 uses the accumulated amount of communication data in the accumulating unit 21 when the communication data received by the communication data receiving unit 20 is accumulated in the accumulating unit 21 as the transmission threshold. The transmission threshold value that does not overlap with the timing at which the time master device 1 transmits time information is stored.
Then, the transmission control unit 19 causes the storage unit 21 to store the communication data received by the communication data receiving unit 20, and when the storage amount of the communication data in the storage unit 21 reaches the transmission threshold value, the communication unit 8, the communication data stored in the storage unit 21 is transmitted to the time master device 1.
実施の形態4.
 図8は、本実施の形態に係る時刻スレーブ装置2の機能構成例を示す。
 図8に示す各構成要素は、図3に示した同一の符号が付された構成要素と同じである。
 本実施の形態では、時刻同期フィルタ部10は時刻解析部の例に相当し、通信部8による時刻情報の受信時刻と、通信部8により受信された時刻情報で通知されている時刻とを用いた解析を行う。
 そして、時刻同期フィルタ部10は、解析結果である、時刻ずれ量の分散の計算に用いられる値を送信制御部19に出力する。
 以下では、実施の形態1との違いを主に説明する。以下にて説明していない事項は、実施の形態1と同じである。
Embodiment 4 FIG.
FIG. 8 shows a functional configuration example of the time slave device 2 according to the present embodiment.
Each component shown in FIG. 8 is the same as the component given the same reference numeral shown in FIG.
In the present embodiment, the time synchronization filter unit 10 corresponds to an example of a time analysis unit, and uses the reception time of the time information by the communication unit 8 and the time notified by the time information received by the communication unit 8. Perform analysis.
Then, the time synchronization filter unit 10 outputs to the transmission control unit 19 a value that is an analysis result and is used for calculation of variance of the time lag amount.
In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
 本実施の形態では、初期状態では、送信制御部19が通信データの送信タイミングの制限を行うことなく、特許文献2と同様に、時刻同期フィルタ部10が前述の式(1)~(3)に基づく計算を行っている。
 そして、時刻同期フィルタ部10は、式(1)に示すtTD(k+1)の値、式(2)に示すtRD(k+1)の値、式(3)に示すd(k+1)の値を、送信制御部19に出力する。
 送信制御部19は、時刻同期フィルタ部10から出力された値が既定の条件に合致する場合に、時刻マスタ装置1が時刻情報を送信するタイミングでの通信部8による時刻マスタ装置1への通信データの送信を禁止する。
 つまり、送信制御部19は、時刻同期フィルタ部10から出力された値の分散(周波数発振器の影響による時刻ずれ量の分散)を算出し、算出した分散が一定値を超える場合は、図14に示すように、時刻マスタ装置1が時刻情報を送信するタイミングがCSMA/CAにより遅延していると判定し、例えば実施の形態1に示す方法で、通信データの送信タイミングを制限する。
In the present embodiment, in the initial state, the transmission control unit 19 does not limit the transmission timing of communication data, and the time synchronization filter unit 10 performs the above-described equations (1) to (3) as in Patent Document 2. Calculation based on
Then, the time synchronization filter unit 10 transmits the value of tTD (k + 1) shown in Equation (1), the value of tRD (k + 1) shown in Equation (2), and the value of d (k + 1) shown in Equation (3). Output to the control unit 19.
When the value output from the time synchronization filter unit 10 matches a predetermined condition, the transmission control unit 19 communicates with the time master device 1 by the communication unit 8 at a timing when the time master device 1 transmits time information. Prohibit data transmission.
That is, the transmission control unit 19 calculates the variance of the value output from the time synchronization filter unit 10 (dispersion of the time shift amount due to the influence of the frequency oscillator), and when the calculated variance exceeds a certain value, FIG. As shown, the timing at which the time master device 1 transmits time information is determined to be delayed by CSMA / CA, and the transmission timing of communication data is limited by the method shown in the first embodiment, for example.
 送信制御部19は、式(1)~(3)の値を用いて、以下の計算により、時刻ずれ量の分散を計算する。
  時刻ずれ量の分散=(Σ(d(k+1)-u))/(M-2)  (4)
  ただし、uは時刻ずれ量の平均値
 送信制御部19は、算出した時刻すれ量の分散値が一定値を超えた場合には、例えば実施の形態1で示した方法による通信データの送信タイミングの制限を開始する。
The transmission control unit 19 calculates the variance of the time lag amount by the following calculation using the values of the equations (1) to (3).
Dispersion of time lag amount = (Σ (d (k + 1) −u) 2 ) / (M−2) (4)
However, u is an average value of the time lag amount. When the calculated dispersion value of the time lapse amount exceeds a certain value, the transmission control unit 19 determines the transmission timing of communication data by the method shown in the first embodiment, for example. Start restriction.
 次に、図19を参照して、時刻同期フィルタ部10の動作例を説明する。
 先ず、時刻同期フィルタ部10は、tTD(k+1)の値を算出する(S61)。
 次に、時刻同期フィルタ部10は、tRD(k+1)の値を算出する(S62)。
 次に、時刻同期フィルタ部10は、d(k+1)の値を算出する(S63)。
 そして、時刻同期フィルタ部10は、tTD(k+1)の値、tRD(k+1)の値、d(k+1)の値を、送信制御部19に出力する(S64)。
Next, an operation example of the time synchronization filter unit 10 will be described with reference to FIG.
First, the time synchronization filter unit 10 calculates the value of tTD (k + 1) (S61).
Next, the time synchronization filter unit 10 calculates the value of tRD (k + 1) (S62).
Next, the time synchronization filter unit 10 calculates the value of d (k + 1) (S63).
Then, the time synchronization filter unit 10 outputs the value of tTD (k + 1), the value of tRD (k + 1), and the value of d (k + 1) to the transmission control unit 19 (S64).
 次に、図20及び図21を参照して、送信制御部19の動作例を説明する。
 通信データ受信部20において通信データが受信された場合(S41でYES)に、送信制御部19は通信データ受信部20から通信データを取得する。
 次に、送信制御部19は時刻同期フィルタ部10からtTD(k+1)の値、tRD(k+1)の値、d(k+1)の値を取得しているかどうかを判定する(S51)。
 これらの値を取得していない場合(S51でNO)は、送信制御部19は、ステップS43の処理を実施する。
 一方、これらの値を取得している場合(S51でYES)は、送信制御部19は、前述のように、これらの値を用いて、通信データの送信を禁止するか否かを判定する(S52)。
 通信データの送信を禁止する場合は、送信制御部19は、ステップS44の処理を実施し、通信データの送信を禁止しない場合は、送信制御部19は、ステップS43の処理を実施する。
 ステップS43では、送信制御部19は、通信データを通信部8に出力する。
 ステップS44では、送信制御部19は通信データのバッファリングを行う。
 次に、バッファリングデータのデータ量が送信閾値以上になった場合(S48でYES)に、送信制御部19は、蓄積部21からバッファリングデータを読み出す(S46)。
 そして、送信制御部19は、蓄積部21から読み出したバッファリングデータを通信部8に出力する(S47)。
 バッファリングデータのデータ量が送信閾値未満である場合(S48でNO)は、通信データが受信される度(S41でYES)に、ステップS44以降の動作が繰り返される。
Next, an operation example of the transmission control unit 19 will be described with reference to FIGS.
When communication data is received by the communication data receiving unit 20 (YES in S41), the transmission control unit 19 acquires the communication data from the communication data receiving unit 20.
Next, the transmission control unit 19 determines whether or not the value of tTD (k + 1), the value of tRD (k + 1), and the value of d (k + 1) are acquired from the time synchronization filter unit 10 (S51).
If these values have not been acquired (NO in S51), the transmission control unit 19 performs the process of step S43.
On the other hand, when these values are acquired (YES in S51), the transmission control unit 19 uses these values to determine whether or not to prohibit transmission of communication data as described above ( S52).
When the transmission of communication data is prohibited, the transmission control unit 19 performs the process of step S44, and when the transmission of communication data is not prohibited, the transmission control unit 19 performs the process of step S43.
In step S <b> 43, the transmission control unit 19 outputs communication data to the communication unit 8.
In step S44, the transmission control unit 19 buffers communication data.
Next, when the data amount of the buffering data is equal to or larger than the transmission threshold (YES in S48), the transmission control unit 19 reads the buffering data from the storage unit 21 (S46).
Then, the transmission control unit 19 outputs the buffering data read from the storage unit 21 to the communication unit 8 (S47).
When the data amount of the buffering data is less than the transmission threshold (NO in S48), the operation after step S44 is repeated every time communication data is received (YES in S41).
実施の形態5.
 複数の時刻スレーブ装置2において実施の形態1に示す方法によりデータ送信禁止期間17が設けられると、データ送信禁止期間17が経過した後に、複数の時刻スレーブ装置2から同時に通信データが送信される可能性がある。
 本実施の形態では、このような複数の時刻スレーブ装置2からの通信データの同時送信を避けるために、時刻スレーブ装置2ごとに異なるデータ送信禁止期間17を設定する例を説明する。
 以下では、実施の形態1との違いを主に説明する。以下にて説明していない事項は、実施の形態1と同じである。
Embodiment 5 FIG.
When the data transmission prohibition period 17 is provided in the plurality of time slave devices 2 by the method shown in the first embodiment, communication data can be transmitted simultaneously from the plurality of time slave devices 2 after the data transmission prohibition period 17 has elapsed. There is sex.
In the present embodiment, an example will be described in which a different data transmission prohibition period 17 is set for each time slave device 2 in order to avoid simultaneous transmission of communication data from the plurality of time slave devices 2.
In the following, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
 図9に実施の形態5に係る時刻スレーブ装置2の動作例を示す。
 本実施の形態では、時刻スレーブ装置2ごとにデータ送信禁止期間17の長さを変えることにより複数の時刻スレーブ装置2から通信データが送信されるタイミングが分散している。
 本実施の形態では、各時刻スレーブ装置2の送信制御部19は、乱数を用いてデータ送信禁止期間の長さを決定する。
 例えば、各時刻スレーブ装置2の送信制御部19が、時刻情報を種とする乱数にてデータ送信禁止期間の長さを設定する。
 また、各時刻スレーブ装置2の送信制御部19は、時刻スレーブ装置2の台数を上限とした乱数を用いるようにしてもよい。
 この場合には、時刻マスタ装置1が時刻スレーブ装置2の台数を各時刻スレーブ装置2に通知する。
FIG. 9 shows an operation example of the time slave device 2 according to the fifth embodiment.
In the present embodiment, the timing at which communication data is transmitted from a plurality of time slave devices 2 is dispersed by changing the length of the data transmission prohibition period 17 for each time slave device 2.
In this Embodiment, the transmission control part 19 of each time slave apparatus 2 determines the length of a data transmission prohibition period using a random number.
For example, the transmission control unit 19 of each time slave device 2 sets the length of the data transmission prohibited period with a random number using time information as a seed.
Further, the transmission control unit 19 of each time slave device 2 may use a random number with the number of time slave devices 2 as an upper limit.
In this case, the time master device 1 notifies the time slave devices 2 of the number of time slave devices 2.
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
***ハードウェア構成の説明***
 最後に、時刻スレーブ装置2のハードウェア構成の補足説明を行う。
 時刻スレーブ装置2はコンピュータである。
 図10に示すプロセッサ901は、プロセッシングを行うIC(Integrated
 Circuit)である。
 プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図10に示す記憶装置902は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 図10に示す無線通信I/F903及び有線通信I/F904は、データを受信するレシーバー及びデータを送信するトランスミッターを含む。
 無線通信I/F903及び有線通信I/F904は、例えば、通信チップ又はNIC(Network Interface Card)である。
As mentioned above, although embodiment of this invention was described, you may implement in combination of 2 or more among these embodiment.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined.
In addition, this invention is not limited to these embodiment, A various change is possible as needed.
*** Explanation of hardware configuration ***
Finally, a supplementary description of the hardware configuration of the time slave device 2 will be given.
The time slave device 2 is a computer.
A processor 901 illustrated in FIG. 10 has an IC (Integrated) that performs processing.
Circuit).
The processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
The storage device 902 illustrated in FIG. 10 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
The wireless communication I / F 903 and the wired communication I / F 904 illustrated in FIG. 10 include a receiver that receives data and a transmitter that transmits data.
The wireless communication I / F 903 and the wired communication I / F 904 are, for example, a communication chip or a NIC (Network Interface Card).
 また、記憶装置902には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の機能を実現するプログラムを実行する。
 図10では、1つのプロセッサが図示されているが、時刻スレーブ装置2が複数のプロセッサを備えていてもよい。
 また、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の処理の結果を示す情報やデータや信号値や変数値が、記憶装置902、又は、プロセッサ901内のレジスタ又はキャッシュメモリに記憶される。
 また、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記憶媒体に記憶されていてもよい。
The storage device 902 also stores an OS (Operating System).
Then, at least a part of the OS is executed by the processor 901.
The processor 901 executes a program that realizes the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 while executing at least a part of the OS. .
Although one processor is illustrated in FIG. 10, the time slave device 2 may include a plurality of processors.
In addition, information, data, signal values, and variable values indicating processing results of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 are stored in the storage device 902. Or stored in a register or cache memory in the processor 901.
The programs for realizing the functions of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 are a magnetic disk, a flexible disk, an optical disk, a compact disk, and a Blu-ray. (Registered trademark) It may be stored in a portable storage medium such as a disk or DVD.
 また、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、タイマー22、スレーブ時刻同期部25の実現手段を「プロセッシングサーキットリー」又は「回路」にしてもよい。「工程」又は「手順」又は「処理」に読み替えてもよい。
 「プロセッシングサーキットリー」又は「回路」は、プロセッサ901だけでなく、ロジックIC又はGA(Gate Array)又はASIC(Application Specific Integrated Circuit)又はFPGA(Field-Programmable Gate Array)といった他の種類の処理回路をも包含する概念である。
 また、通信部8、タイミング予測部18、送信制御部19、通信データ受信部20、スレーブ時刻同期部25の「~部」を「工程」又は「手順」又は「処理」に読み替えてもよい。
Further, the means for realizing the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, the timer 22, and the slave time synchronization unit 25 may be a “processing circuitry” or a “circuit”. It may be read as “process” or “procedure” or “processing”.
The “processing circuit” or “circuit” is not only the processor 901 but also other types of processing circuits such as a logic IC or GA (Gate Array) or ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). Is a concept that also includes
In addition, “to part” of the communication unit 8, the timing prediction unit 18, the transmission control unit 19, the communication data reception unit 20, and the slave time synchronization unit 25 may be read as “process”, “procedure”, or “processing”.
 1 時刻マスタ装置、2 時刻スレーブ装置、3 基準時刻情報信号、4 基準時刻受信部、5 マスタ時刻設定部、6 マスタ内部時刻生成部、7 時刻情報挿入部、8 通信部、9 時刻同期情報抽出部、10 時刻同期フィルタ部、11 スレーブ時刻設定部、12 スレーブ内部時刻生成部、13 時刻情報送信周期、14 データ送信周期、15 時刻情報(トラヒックなし)、16 時刻情報(トラヒック有り)、17 データ送信禁止期間、18 タイミング予測部、19 送信制御部、20 通信データ受信部、21 蓄積部、22 タイマー、24 マスタ時刻同期部、25 スレーブ時刻同期部、200 時刻スレーブ装置。 1 time master device, 2 time slave device, 3 reference time information signal, 4 reference time receiving unit, 5 master time setting unit, 6 master internal time generation unit, 7 time information insertion unit, 8 communication unit, 9 time synchronization information extraction Unit, 10 time synchronization filter unit, 11 slave time setting unit, 12 slave internal time generation unit, 13 time information transmission cycle, 14 data transmission cycle, 15 time information (without traffic), 16 time information (with traffic), 17 data Transmission prohibition period, 18 timing prediction unit, 19 transmission control unit, 20 communication data reception unit, 21 storage unit, 22 timer, 24 master time synchronization unit, 25 slave time synchronization unit, 200 time slave device.

Claims (12)

  1.  時刻情報を送信する制御装置に通信データを送信する通信部と、
     前記制御装置が前記時刻情報を送信するタイミングでの前記通信部による前記制御装置への前記通信データの送信を禁止する送信制御部とを有する通信装置。
    A communication unit that transmits communication data to a control device that transmits time information;
    A communication apparatus comprising: a transmission control unit that prohibits transmission of the communication data to the control device by the communication unit at a timing at which the control device transmits the time information.
  2.  前記通信装置は、更に、
     前記制御装置が前記時刻情報を送信するタイミングを予測するタイミング予測部を有し、
     前記送信制御部は、
     前記タイミング予測部により予測された予測送信タイミングを基準にしてデータ送信禁止期間を設定し、前記データ送信禁止期間の間、前記通信部による前記制御装置への前記通信データの送信を禁止する請求項1に記載の通信装置。
    The communication device further includes:
    A timing prediction unit for predicting a timing at which the control device transmits the time information;
    The transmission control unit
    The data transmission prohibition period is set based on the predicted transmission timing predicted by the timing prediction unit, and the communication unit prohibits transmission of the communication data to the control device during the data transmission prohibition period. The communication apparatus according to 1.
  3.  前記通信部は、
     前記制御装置から送信された前記時刻情報を受信し、
     前記送信制御部は、
     前記予測送信タイミングから前記通信部により前記時刻情報が受信されるまでの期間が含まれる期間を前記データ送信禁止期間として設定する請求項2に記載の通信装置。
    The communication unit is
    Receiving the time information transmitted from the control device;
    The transmission control unit
    The communication apparatus according to claim 2, wherein a period including a period from the predicted transmission timing until the time information is received by the communication unit is set as the data transmission prohibition period.
  4.  前記通信装置は、更に、
     前記通信データを受信する通信データ受信部と、
     前記通信データを蓄積する蓄積部とを有し、
     前記送信制御部は、
     前記データ送信禁止期間の間、前記蓄積部に、前記通信データ受信部により受信された前記通信データを蓄積させ、前記データ送信禁止期間が経過した後に、前記通信部に、前記蓄積部に蓄積されている前記通信データを前記制御装置に送信させる請求項3に記載の通信装置。
    The communication device further includes:
    A communication data receiving unit for receiving the communication data;
    A storage unit for storing the communication data;
    The transmission control unit
    During the data transmission prohibition period, the storage unit stores the communication data received by the communication data reception unit, and after the data transmission prohibition period has elapsed, the communication unit stores the communication data in the storage unit. The communication device according to claim 3, wherein the communication data is transmitted to the control device.
  5.  前記送信制御部は、
     前記データ送信禁止期間中に前記通信部により前記時刻情報が受信された場合は、前記データ送信禁止期間中であっても、前記通信部による前記制御装置への前記通信データの送信を許可する請求項2に記載の通信装置。
    The transmission control unit
    When the time information is received by the communication unit during the data transmission prohibition period, transmission of the communication data to the control device by the communication unit is permitted even during the data transmission prohibition period. Item 3. The communication device according to Item 2.
  6.  前記通信装置は、更に、
     前記通信データを受信する通信データ受信部と、
     前記通信データを蓄積する蓄積部とを有し、
     前記送信制御部は、
     前記予測送信タイミングから前記蓄積部における前記通信データの蓄積量が閾値に達するまでの期間を前記データ送信禁止期間として設定し、
     前記データ送信禁止期間の間、前記蓄積部に、前記通信データ受信部により受信された前記通信データを蓄積させ、前記データ送信禁止期間が経過した後に、前記通信部に、前記蓄積部に蓄積されている前記通信データを前記制御装置に送信させる請求項2に記載の通信装置。
    The communication device further includes:
    A communication data receiving unit for receiving the communication data;
    A storage unit for storing the communication data;
    The transmission control unit
    A period from the predicted transmission timing until the amount of communication data stored in the storage unit reaches a threshold is set as the data transmission prohibition period,
    During the data transmission prohibition period, the storage unit stores the communication data received by the communication data reception unit, and after the data transmission prohibition period has elapsed, the communication unit stores the communication data in the storage unit. The communication device according to claim 2, wherein the communication data is transmitted to the control device.
  7.  前記通信装置は、更に、
     前記通信データを一定範囲の受信レートにて受信する通信データ受信部と、
     前記通信データを蓄積する蓄積部とを有し、
     前記送信制御部は、
     前記通信データ受信部により受信された前記通信データを前記蓄積部に蓄積させた場合の前記蓄積部における前記通信データの蓄積量が閾値に達するタイミングが、前記制御装置が前記時刻情報を送信するタイミングと重複しない閾値の値を記憶し、
     前記蓄積部に、前記通信データ受信部により受信された前記通信データを蓄積させ、前記蓄積部における前記通信データの蓄積量が前記閾値の値に達した際に、前記通信部に、前記蓄積部に蓄積されている前記通信データを前記制御装置に送信させる請求項1に記載の通信装置。
    The communication device further includes:
    A communication data receiving unit for receiving the communication data at a certain range of reception rates;
    A storage unit for storing the communication data;
    The transmission control unit
    When the communication data received by the communication data receiving unit is stored in the storage unit, the timing at which the storage amount of the communication data in the storage unit reaches a threshold is the timing at which the control device transmits the time information Memorize the threshold value that does not overlap with
    The storage unit stores the communication data received by the communication data receiving unit, and when the storage amount of the communication data in the storage unit reaches the threshold value, the storage unit stores the communication data. The communication device according to claim 1, wherein the communication data stored in the communication device is transmitted to the control device.
  8.  前記通信装置は、更に、
     前記通信部による前記時刻情報の受信時刻と、前記通信部により受信された前記時刻情報で通知されている時刻とを用いた解析を行う時刻解析部を有し、
     前記送信制御部は、
     前記時刻解析部による解析結果が既定の条件に合致する場合に、前記制御装置が前記時刻情報を送信するタイミングでの前記通信部による前記制御装置への前記通信データの送信を禁止する請求項1に記載の通信装置。
    The communication device further includes:
    A time analysis unit that performs analysis using the reception time of the time information by the communication unit and the time notified by the time information received by the communication unit;
    The transmission control unit
    The transmission of the communication data to the control device by the communication unit at a timing when the control device transmits the time information when the analysis result by the time analysis unit matches a predetermined condition. The communication apparatus as described in.
  9.  前記送信制御部は、
     乱数を用いて前記データ送信禁止期間の長さを決定する請求項2に記載の通信装置。
    The transmission control unit
    The communication apparatus according to claim 2, wherein a length of the data transmission prohibition period is determined using a random number.
  10.  前記制御装置は、
     周期的に前記時刻情報を送信し、
     前記送信制御部は、
     前記制御装置が前記時刻情報を送信する各タイミングで、前記通信部による前記制御装置への前記通信データの送信を禁止する請求項1に記載の通信装置。
    The control device includes:
    Send the time information periodically,
    The transmission control unit
    The communication device according to claim 1, wherein transmission of the communication data to the control device by the communication unit is prohibited at each timing at which the control device transmits the time information.
  11.  時刻情報を送信する制御装置に通信データを送信する通信装置が、
     前記制御装置が前記時刻情報を送信するタイミングでは、前記制御装置への通信データの送信を保留し、前記制御装置が前記時刻情報を送信するタイミング以外のタイミングで前記制御装置に前記通信データを送信する通信方法。
    A communication device that transmits communication data to a control device that transmits time information.
    At the timing when the control device transmits the time information, transmission of communication data to the control device is suspended, and the communication data is transmitted to the control device at a timing other than the timing at which the control device transmits the time information. Communication method.
  12.  時刻情報を送信する制御装置に通信データを送信する通信処理と、
     前記制御装置が前記時刻情報を送信するタイミングでの前記通信処理による前記制御装置への前記通信データの送信を禁止する送信制御処理とをコンピュータに実行させる通信プログラム。
    A communication process for transmitting communication data to a control device for transmitting time information;
    A communication program for causing a computer to execute a transmission control process for prohibiting transmission of the communication data to the control apparatus by the communication process at a timing at which the control apparatus transmits the time information.
PCT/JP2015/079696 2015-10-21 2015-10-21 Communication device, communication method, and communication program WO2017068663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079696 WO2017068663A1 (en) 2015-10-21 2015-10-21 Communication device, communication method, and communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079696 WO2017068663A1 (en) 2015-10-21 2015-10-21 Communication device, communication method, and communication program

Publications (1)

Publication Number Publication Date
WO2017068663A1 true WO2017068663A1 (en) 2017-04-27

Family

ID=58557090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079696 WO2017068663A1 (en) 2015-10-21 2015-10-21 Communication device, communication method, and communication program

Country Status (1)

Country Link
WO (1) WO2017068663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329120A (en) * 2020-02-28 2021-08-31 卡西欧计算机株式会社 Communication device, communication system, and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042221A (en) * 2004-07-30 2006-02-09 Clarion Co Ltd Radio communication system, way side radio communication device, mobile station, control method of way side radio communication deice, control method of mobile station, control program of way side radio communication device, and control program of mobile station
JP2007116408A (en) * 2005-10-20 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> Multihop radio communication system, and base station and radio terminal thereof
WO2015122027A1 (en) * 2014-02-13 2015-08-20 三菱電機株式会社 Time synchronization device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042221A (en) * 2004-07-30 2006-02-09 Clarion Co Ltd Radio communication system, way side radio communication device, mobile station, control method of way side radio communication deice, control method of mobile station, control program of way side radio communication device, and control program of mobile station
JP2007116408A (en) * 2005-10-20 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> Multihop radio communication system, and base station and radio terminal thereof
WO2015122027A1 (en) * 2014-02-13 2015-08-20 三菱電機株式会社 Time synchronization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329120A (en) * 2020-02-28 2021-08-31 卡西欧计算机株式会社 Communication device, communication system, and communication method
CN113329120B (en) * 2020-02-28 2023-10-13 卡西欧计算机株式会社 Electronic timepiece, smart phone, communication method, and storage medium

Similar Documents

Publication Publication Date Title
EP2533586B1 (en) Wireless Communication System, Its Base Station and Mobile Station, Communication Synchronization Management Method and Timer Control Program Therefor
US10334545B2 (en) Synchronizing time among two or more devices
US8265041B2 (en) Wireless communications systems and channel-switching method
US11050548B2 (en) Image transmission system, imaging terminal, display terminal, adjustment method, adjustment assistance method, and non-transitory computer-readable recording medium storing program
EP3082282A1 (en) Method for time synchronization
JP2017515348A (en) System and method for performance measurement of a wireless local area network access point
RU2657865C2 (en) System and method to measure an error rate of a wireless local area network
US10567400B2 (en) Attack detection device, attack detection method, and non-transitory computer-readable recording medium
WO2017068663A1 (en) Communication device, communication method, and communication program
US9781734B2 (en) Communication apparatus, communication method, and recording medium
JP4678046B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, DELAY TIME MEASUREMENT TIME SETTING METHOD, DELAY TIME CALCULATION METHOD, AND PROGRAM
CN107925527B (en) Method, apparatus, device and storage medium for controlling retry of data packet transfer
JP2016019198A (en) Communication apparatus, control method for communication apparatus, and program
US10749781B2 (en) Setting device, setting method, recording medium to which setting program is recorded, communication system, client device, and server device
WO2015037191A1 (en) Delay estimation apparatus, delay estimation method, recording medium, and information system
JP2018037782A (en) System and method thereof for estimating available band in communication network
CN109997338B (en) Relay device, relay method, and computer-readable storage medium
JP6276725B2 (en) Wireless communication method and wireless communication system
JP6075518B1 (en) Communication processing apparatus and network system
JP2020031346A (en) Communication device, control method of the same, and program
JP2018019320A (en) Radio communication network system, radio transmitter, radio communication method, and sensor network system
JP2006093967A (en) Network system
JP2017034305A (en) Communication device, system, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP