WO2017068277A1 - Photovoltaic cell with bypass diode - Google Patents

Photovoltaic cell with bypass diode Download PDF

Info

Publication number
WO2017068277A1
WO2017068277A1 PCT/FR2016/052691 FR2016052691W WO2017068277A1 WO 2017068277 A1 WO2017068277 A1 WO 2017068277A1 FR 2016052691 W FR2016052691 W FR 2016052691W WO 2017068277 A1 WO2017068277 A1 WO 2017068277A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor
bypass diode
photovoltaic cell
conductivity type
Prior art date
Application number
PCT/FR2016/052691
Other languages
French (fr)
Inventor
Rémi Monna
Wilfried FAVRE
Eric Pilat
Original Assignee
Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique et aux Energies Alternatives filed Critical Commissariat à l'Energie Atomique et aux Energies Alternatives
Publication of WO2017068277A1 publication Critical patent/WO2017068277A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • H01L27/1421Energy conversion devices comprising bypass diodes integrated or directly associated with the device, e.g. bypass diode integrated or formed in or on the same substrate as the solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic cell, as well as to a method of manufacturing a photovoltaic cell. More specifically, the photovoltaic cell comprises a bypass diode (also called antiparallel diode, and "bypass diode” in English) to protect it in case of reverse bias.
  • a bypass diode also called antiparallel diode, and "bypass diode” in English
  • An inverse polarization of the photovoltaic cell can take place in the event of shading, and is likely to cause a strong reverse current that can locally damage the photovoltaic cell irreversibly (a phenomenon called "hot spot" in English).
  • D1 discloses a photovoltaic cell, comprising:
  • a substrate of a doped semiconductor material of a first conductivity type comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
  • first and second semiconductor regions respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces of the substrate, each of the first and second semiconductor zones being intended to be in contact with an electrode;
  • a diode of derivation electrically isolated from the substrate, and comprising a junction between first and second semiconductor regions respectively doped with the first and the second type of conductivity, the first and second semiconductor regions of the bypass diode being respectively located at a distance from the first and second semiconductor zones.
  • the bypass diode is electrically isolated from the substrate via a trench.
  • Such a photovoltaic cell of D1 is not entirely satisfactory because the electrical contacts must be doubled. Indeed, it is necessary to provide electrical contacts for both the first and second semiconductor regions and for the first and second semiconductor regions of the bypass diode.
  • the present invention aims to remedy all or part of the aforementioned drawbacks, and for this purpose concerns a photovoltaic cell, comprising:
  • a substrate of a doped semiconductor material of a first conductivity type comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
  • first and second semiconductor regions respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces of the substrate, each of the first and second semiconductor zones being intended to be in contact with an electrode;
  • a diode of derivation electrically isolated from the substrate, and comprising a junction between first and second respectively doped semiconductor regions of the first and the second type of conductivity, the first and second semiconductor regions of the bypass diode being respectively located remote from the first and second semiconductor regions;
  • the photovoltaic cell being remarkable in that the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor zones; and in that the second semiconductor region of the bypass diode is in direct contact with the four side surfaces of the substrate.
  • Such a photovoltaic cell makes it possible to dispense with electrical contacts dedicated to the photovoltaic cell and the diode of derivation because the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor regions.
  • the bypass diode is a pn junction having a semiconductor region in direct contact with the four lateral surfaces of the substrate, which allows the passage of the reverse current via these lateral surfaces of the substrate in case of shading of the photovoltaic cell.
  • the first region of the bypass diode is located at a distance (i.e., without direct contact) from the first semiconductor region.
  • the second region of the bypass diode is located at a distance (i.e., without direct contact) from the second semiconductor zone.
  • the photovoltaic cell comprises an insulating zone, made of a compensated semiconductor material, arranged to electrically isolate the bypass diode and the substrate.
  • the compensated semiconductor material is obtained from the second semiconductor zone.
  • the insulating zone extends between the second semiconductor region of the bypass diode and the second semiconductor zone.
  • the insulating zone extends under the second surface of the substrate.
  • the insulating zone extends at the periphery of the second surface of the substrate.
  • Such an insulating zone is disposed in the vicinity of the second semiconductor region of the bypass diode, thereby facilitating electrical isolation between the second semiconductor region and the second semiconductor region.
  • the first semiconductor region of the bypass diode extends over the insulating zone.
  • the insulating zone has a free carrier concentration of less than 10 14 at.cm- 3 .
  • the insulating zone from the compensated semiconductor material of the second semiconductor zone.
  • each of the first or second semiconductor regions of the bypass diode comprises:
  • each of the first or second semiconductor zones comprises:
  • the semiconductor material of the substrate is based on crystalline silicon.
  • the present invention also relates to a method of manufacturing a photovoltaic cell according to the invention, comprising the steps:
  • a substrate of a doped semiconductor material of a first conductivity type comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
  • first and second semiconductor regions respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces of the substrate, each of the first and second second semiconductor regions being intended to be in contact with an electrode;
  • bypass diode electrically isolated from the substrate, and comprising a junction between first and second semiconductor regions respectively doped with the first and the second conductivity type, the first and second semiconductor regions of the bypass diode being respectively located at a distance from the first and second semiconductor zones;
  • step b) is performed so that the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor regions, and so that the second semiconductor region of the bypass diode is in direct contact with the side surfaces of the substrate.
  • step a) comprises the steps:
  • a1) providing the substrate of the doped semiconductor material of the first conductivity type, the substrate comprising the first and second opposing surfaces, and the four opposite side surfaces in pairs connecting the first and second surfaces;
  • steps a2) and a3) make it possible to concomitantly form the second semiconductor zone and the second semiconductor region of the bypass diode so as to limit the operation time of the method.
  • step a) comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface of the substrate so as to form the first semiconductor zone.
  • step b) comprises a step b1) of removing at least a portion of the dielectric layer formed in step a2).
  • step b1) is executed so as to expose a portion, preferably peripheral, of the second surface of the substrate; and step b) comprises a step b2) of incorporating the dopants of the first conductivity type, preferably in the gas phase, to the portion of the second surface of the substrate exposed after step b1); steps b2) and a4) being preferably concomitant.
  • step b2) is executed so as to form:
  • step b1) is executed so as to completely eliminate the dielectric layer formed during step a2); and step b) comprises a step b2 ') consisting of:
  • step b2 ') is executed so as to form:
  • FIG. 1 is a schematic perspective view of a photovoltaic cell according to the invention
  • FIG. 2 is a partial schematic perspective view of a photovoltaic cell according to the invention.
  • FIG. 3 is a schematic sectional view of a photovoltaic cell according to the invention, along the sectional plane P of FIG. 1,
  • FIG. 4 is a graph showing in abscissa the implantation depth (in nm) and the ordinate the dopant concentration (at cm. "3), according to various fluences of a laser (in J. cm" 2, which a reference denoted REF),
  • FIGS. 5a to 5g are schematic sectional views illustrating steps of a first method of manufacturing a photovoltaic cell according to the invention
  • FIGS. 6a to 6f are schematic sectional views illustrating steps of a second method of manufacturing a photovoltaic cell according to the invention.
  • a photovoltaic cell according to the invention comprises:
  • a substrate 1 of a doped semiconductor material of a first conductivity type comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
  • first and second semiconductor regions 100, 1 respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces 10, 11 of the substrate 1, each of the first and second second semiconductor regions 100, 1 being intended to be in contact with an electrode E;
  • the first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100.
  • the second semiconductor region 3 of the bypass diode is in contact direct with the four lateral surfaces 12 of the substrate 1.
  • the semiconductor material of the substrate 1 is advantageously based on crystalline silicon.
  • the substrate 1 advantageously has a resistivity of between 1 and 10 ⁇ .cm.
  • the four lateral surfaces 12 of the substrate 1 extend in a direction parallel to normal to the substrate 1.
  • the four lateral surfaces 12 of the substrate 1 have a ring-shaped cross section. "Transverse" means a direction perpendicular to the normal to the substrate 1.
  • Each side surface 12 forms a physical edge of the substrate 1.
  • the first type of conductivity is type n or type p.
  • the second type of conductivity is type n or type p.
  • the first type of conductivity is n type
  • the second type of conductivity is the type p.
  • the first type of conductivity is the type p
  • the second type of conductivity is the type n.
  • the first and second types of conductivity are opposite.
  • the first and second semiconductor zones 100, 1 10 are spaced from the lateral surfaces 12 of the substrate 1 by a distance of the order of 0.2 to 1 ⁇ in the transverse direction.
  • the first semiconductor region 100 has a dopant concentration of the first conductivity type, preferably between 10 18 and 10 20 at.cm "3.
  • the second semiconductor zone 1 10 has a doping concentration C2 of the second type conductivity. C2 is preferably between 10 18 and 10 20 at.cm "3.
  • Each of the first or second semiconductor zones 100, 1 10 advantageously comprises:
  • the photovoltaic cell advantageously comprises an insulating zone 4, made of a compensated semiconductor material, arranged to electrically isolate the bypass diode and the substrate 1 .
  • the insulating zone 4 advantageously extends between the second semiconductor region 3 of the bypass diode and the second semiconductor zone 1 10.
  • the insulating zone 4 advantageously extends under the second surface 1 1 of the substrate 1.
  • the insulating zone 4 advantageously extends around the periphery of the second surface 1 1 of the substrate 1.
  • the compensated semiconductor material of the insulating zone 4 is the semiconductor material of the substrate 1.
  • the insulating zone 4 advantageously has a concentration of free carriers less than 10 14 at.cm- 3
  • the insulating zone 4 advantageously has a resistivity greater than 500 ⁇ .cm.
  • the insulating zone 4 preferably has a thickness of between 0.1 and 0.5 ⁇ "Thickness" means the dimension following the normal to the substrate 1.
  • the first semiconductor region 2 of the bypass diode advantageously extends over the insulating zone 4.
  • the second semiconductor region 3 of the bypass diode preferably extends all along the lateral surfaces 12 of the substrate 1.
  • the second semiconductor region 3 preferably extends within the substrate 1, in direct contact with the lateral surfaces 12.
  • the bypass diode is thus integrated under each electrode E, at the periphery of the photovoltaic cell, which makes it possible to not use the active surface of the photovoltaic cell, and thereby avoid a loss of efficiency for the photovoltaic cell.
  • Each of the first or second semiconductor regions 2, 3 of the bypass diode advantageously comprises:
  • Each of the first or second semiconductor regions 2, 3 of the bypass diode advantageously has:
  • the junction between the first and second semiconductor regions 2, 3 preferably has a thickness of between 0.3 and 0.5 ⁇ .
  • the photovoltaic cell advantageously comprises a first dielectric layer 5 arranged to cover the bypass diode.
  • the first dielectric layer 5 is preferably a silicon oxide.
  • the first dielectric layer preferably has a thickness of between 2 and 10 nm.
  • the photovoltaic cell advantageously comprises a second dielectric layer 6 covering the first dielectric layer 5.
  • the second dielectric layer 6 is preferably a silicon nitride.
  • the second dielectric layer preferably has a thickness of between 20 and 100 nm.
  • Each electrode E is advantageously made of silver and / or aluminum.
  • the electrode E in contact with the second semiconductor zone 1 10 is also in contact with the first semiconductor region 2 of the bypass diode.
  • the electrode E in contact with the first semiconductor zone 100 is also in contact with the second semiconductor region 3 of the bypass diode.
  • a first method of manufacturing a photovoltaic cell according to the invention comprises the steps:
  • a substrate 1 of a doped semiconductor material of a first conductivity type comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
  • first and second semiconductor regions 100, 1 respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces 10, 11 of the substrate 1, each of the first and second second semiconductor regions 100, 1 being intended to be in contact with an electrode E;
  • Step b) is executed so that the first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100, and so that the second semiconductor region 3 of the bypass diode is in direct contact with the four side surfaces 12 of the substrate 1.
  • step a) comprises the steps: a1) providing the substrate 1 of the doped semiconductor material of the first conductivity type, the substrate 1 comprising the first and second surfaces 10, 1 1 opposite, and the four side surfaces 12 opposite in pairs connecting the first and second surfaces 10 , 1 1;
  • step a3) diffusing the dopants of the second conductivity type from the dielectric layer 8 to the second surface 11 and up to the four lateral surfaces 12 so as to form the second semiconductor zone 1 10 and the second semiconductor region respectively conductor 3 of the bypass diode, step a3) being illustrated in Figure 5b.
  • the dielectric layer 8 formed during step a2) is preferably a doped SiO x silicon oxide.
  • the first surface 10 of the substrate 1 is devoid of the dielectric layer 8 formed during step a2).
  • Step a2) is advantageously carried out by a chemical vapor deposition of the dielectric layer 8.
  • the dielectric layer 8 is a silicon oxide
  • the chemical vapor deposition is carried out using reactive gases comprising SiH 4 silane and N 2 O nitrous oxide.
  • the dielectric layer 8 comprises phosphorus or arsenic atoms, forming n-type dopants
  • said atoms are advantageously incorporated into the silicon oxide by an injection of phosphine PH 3 or arsine AsH 3 with the reactive gases.
  • the dielectric layer 8 comprises boron atoms, forming p-type dopants
  • said atoms are advantageously incorporated into the silicon oxide by an injection of diborane B 2 H 6 with the reactive gases.
  • Step a3) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace.
  • the thermal annealing applied during step a3) advantageously has:
  • an annealing temperature value of between 850 ° C. and 940 ° C.
  • the dielectric layer 8 is a silicon oxide
  • step b) advantageously comprises a step b1) of eliminating at least a portion of the dielectric layer 8 formed during step a2).
  • Step b1) is performed so as to expose a part, preferably peripheral, of the second surface 1 1 of the substrate 1.
  • Step b1) is preferably performed by laser ablation.
  • the laser is a pulsed laser with a pulse duration of the order of 15 ps; the wavelength of the laser is 355 nm or 532 nm with a frequency of between 50 kHz and 200 kHz; the fluence of the laser is between 0.1 and 1 J.cm -2 .
  • step b) advantageously comprises a step b2) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the portion of the second surface 11 of the substrate exposed after step b1).
  • Step b2) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace.
  • the thermal annealing applied during step b2) advantageously has:
  • an annealing temperature value of between 850 ° C. and 940 ° C.
  • thermal annealing is advantageously applied during step b2) under an atmosphere containing dioxygen and POCI3.
  • the thermal annealing is advantageously applied during step b2) under an atmosphere containing oxygen, and BBr 3 or BCI3.
  • Step b2) is advantageously executed so as to form:
  • step a) advantageously comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface 10 of the substrate 1 of in order to form the first semiconductor zone 100.
  • the steps b2) and a4) are preferably concomitant.
  • the first method advantageously comprises a step c) of removing the dielectric layer 8, preferably by chemical etching, for example by means of hydrofluoric acid, for a period of 5 to 20 minutes.
  • the first method advantageously comprises the steps:
  • the first dielectric layer 5 is preferably a silicon oxide.
  • the first dielectric layer 5 preferably has a thickness of between 2 and 10 nm.
  • the second dielectric layer 6 is preferably a silicon nitride.
  • the second dielectric layer 6 preferably has a thickness of between 20 and 100 nm.
  • the first method advantageously comprises a step f) of bringing each of the first and second semiconductor regions 100, 1 10 and each of the first and second semiconductor regions 2, 3 of the diode into contact with each other.
  • step f) comprises a metallization step, preferably performed by screen printing, followed by an annealing step preferably carried out at a temperature of between 720 ° C. and 850 ° C. for 5 to 15 minutes. seconds in an oven with infrared lamps with air passage.
  • the metal can pass through the first and second dielectric layers 5, 6 formed during steps d) and e).
  • Each electrode E is advantageously made of silver and / or aluminum.
  • a second method of manufacturing a photovoltaic cell according to the invention comprises the steps: predictable :
  • a substrate 1 of a doped semiconductor material of a first conductivity type comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
  • Step b) is executed so that the first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100, and so that the second semiconductor region 3 of the bypass diode is in direct contact with the four side surfaces 12 of the substrate 1.
  • step a) comprises the steps:
  • a1) providing the substrate 1 of the doped semiconductor material of the first conductivity type, the substrate 1 comprising the first and second surfaces 10, 1 1 opposite, and the four side surfaces 12 opposite in pairs connecting the first and second surfaces 10 , 1 1;
  • step a3) diffusing the dopants of the second conductivity type from the dielectric layer 8 to the second surface 11 and up to the four lateral surfaces 12 so as to form the second semiconductor zone 1 10 and the second semiconductor region 3 of the bypass diode, step a3) being illustrated in FIG. 6b.
  • the dielectric layer 8 formed during step a2) is preferably a doped SiO x silicon oxide.
  • the first surface 10 of the substrate 1 is devoid of the dielectric layer 8 formed during step a2).
  • Step a2) is advantageously carried out by a chemical vapor deposition of the dielectric layer 8.
  • the dielectric layer 8 is a silicon oxide
  • the chemical vapor deposition is carried out using reactive gases comprising SiH 4 silane and N 2 O nitrous oxide.
  • the dielectric layer 8 comprises phosphorus or arsenic atoms, forming n-type dopants
  • said atoms are advantageously incorporated into the silicon oxide by an injection of phosphine PH 3 or arsine AsH 3 with the reactive gas.
  • the dielectric layer 8 comprises boron atoms, forming p-type dopants
  • said atoms are advantageously incorporated into the silicon oxide by an injection of diborane B 2 H 6 with the reactive gases.
  • Step a3) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace.
  • the thermal annealing applied during step a3) advantageously has:
  • an annealing temperature value of between 850 ° C. and 940 ° C.
  • x is of the order of 0.768 before thermal annealing, and is of the order of 1.828 after thermal annealing.
  • step a) advantageously comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface 10 of the substrate 1 so as to form the first semiconductor zone 100.
  • the dopants of the first conductivity type comprise phosphorus atoms forming n-type dopants
  • a phosphor glass 9, P2O 5 -S1O2 is also formed at the first surface 10 of the substrate 1 when of step a4).
  • step b) advantageously comprises a step b1) of completely eliminating the dielectric layer 8 formed during step a2), as well as the phosphor glass 9.
  • step b) advantageously comprises a step b2 ') consisting of:
  • Step b2 ') is advantageously executed so as to form:
  • the laser 7 used in step b2 ') is a pulsed laser with a pulse duration of between 10 and 150 ns; the wavelength of the laser 7 is 515 nm or 532 nm with a frequency between 10 kHz and 300 kHz; the fluence of the laser is between 0.8 and 1.8 J.cm -2 .
  • the depth of the doping is adapted by modifying the fluence of the laser 7, as illustrated in FIG.
  • the second method advantageously comprises the steps:
  • the first dielectric layer 5 is preferably a silicon oxide.
  • the first dielectric layer 5 preferably has a thickness of between 2 and 10 nm.
  • the second dielectric layer 6 is preferably a silicon nitride.
  • the second dielectric layer 6 preferably has a thickness of between 20 and 100 nm.
  • the second method advantageously comprises a step e) of bringing each of the first and second semiconductor regions 100, 1 10 and each of the first and second semiconductor regions 2, 3 of the diode into contact with each other. by way of an electrode E.
  • Step e) advantageously comprises a metallization step, preferably carried out by screen printing, followed by an annealing step preferably carried out at a temperature of between 720 ° C. and 850 ° C. for 5 to 15 minutes. seconds in an oven with infrared lamps with air passage.
  • the metal can pass through the first and second dielectric layers 5, 6 formed in steps c) and d).
  • Each electrode E is advantageously made of silver and / or

Abstract

Photovoltaic cell with bypass diode. This photovoltaic cell includes a substrate (1) doped a first conductivity type, the substrate (1) comprising first and second opposite surfaces (10, 11), and four lateral surfaces (12); first and second semiconductor zones (100, 110) doped the first and a second conductivity type, respectively, and intended to make contact with an electrode (E); a bypass diode comprising a junction between the first and second semiconductor regions (2, 3), which are respectively doped the first and the second conductivity type; the photovoltaic cell being noteworthy in that the first and second semiconductor regions (2, 3) of the bypass diode make direct contact with the second and first semiconductor zones (110, 100), respectively; and in that the second semiconductor region (3) of the bypass diode makes direct contact with the four lateral surfaces (12) of the substrate (1).

Description

CELLULE PHOTOVOLTAÏQUE AVEC DIODE DE DERIVATION Domaine technique  PHOTOVOLTAIC CELL WITH DERIVATION DIODE Technical field
La présente invention a trait à une cellule photovoltaïque, ainsi qu'à un procédé de fabrication d'une cellule photovoltaïque. Plus précisément, la cellule photovoltaïque comporte une diode de dérivation (également appelée diode antiparallèle, et « bypass diode » en langue anglaise) permettant de la protéger en cas de polarisation inverse. Une polarisation inverse de la cellule photovoltaïque peut avoir lieu en cas d'ombrage, et est susceptible d'occasionner un fort courant inverse pouvant détériorer localement la cellule photovoltaïque de manière irréversible (phénomène appelé « hot spot » en langue anglaise).  The present invention relates to a photovoltaic cell, as well as to a method of manufacturing a photovoltaic cell. More specifically, the photovoltaic cell comprises a bypass diode (also called antiparallel diode, and "bypass diode" in English) to protect it in case of reverse bias. An inverse polarization of the photovoltaic cell can take place in the event of shading, and is likely to cause a strong reverse current that can locally damage the photovoltaic cell irreversibly (a phenomenon called "hot spot" in English).
Etat de la technique antérieure State of the art
Il est connu de l'état de la technique de disposer des diodes de dérivation en parallèle au sein d'un ensemble de cellules photovoltaïques connectées en série. Classiquement, on dispose une diode de dérivation en parallèle pour 9 cellules connectées en série. En cas d'ombrage d'une cellule photovoltaïque parmi l'ensemble, une forte perte de puissance est observée.  It is known from the state of the art to have parallel bypass diodes in a series of photovoltaic cells connected in series. Conventionally, there is a parallel branch diode for 9 cells connected in series. In case of shading of a photovoltaic cell among the whole, a strong loss of power is observed.
Pour pallier ce problème, il est connu de l'état de la technique, notamment du document US 2014/102531 (ci-après D1 ), d'intégrer de manière monolithique une diode de dérivation à chaque cellule photovoltaïque.  To overcome this problem, it is known from the state of the art, in particular US 2014/102531 (hereinafter D1), to monolithically integrate a bypass diode to each photovoltaic cell.
D1 divulgue une cellule photovoltaïque, comportant :  D1 discloses a photovoltaic cell, comprising:
- un substrat d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat comprenant des première et seconde surfaces opposées, et quatre surfaces latérales opposées deux à deux reliant les première et seconde surfaces ;  a substrate of a doped semiconductor material of a first conductivity type, the substrate comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
- des première et seconde zones semi-conductrices, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces du substrat, chacune des première et seconde zones semi-conductrices étant destinée à être en contact avec une électrode ; first and second semiconductor regions, respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces of the substrate, each of the first and second semiconductor zones being intended to be in contact with an electrode;
- une diode de dérivation électriquement isolée du substrat, et comprenant une jonction entre des première et seconde régions semi-conductrices respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices. a diode of derivation electrically isolated from the substrate, and comprising a junction between first and second semiconductor regions respectively doped with the first and the second type of conductivity, the first and second semiconductor regions of the bypass diode being respectively located at a distance from the first and second semiconductor zones.
Dans D1 , la diode de dérivation est électriquement isolée du substrat par l'intermédiaire d'une tranchée.  In D1, the bypass diode is electrically isolated from the substrate via a trench.
Une telle cellule photovoltaïque de D1 n'est pas entièrement satisfaisante car les contacts électriques doivent être doublés. En effet, il est nécessaire de prévoir des contacts électriques à la fois pour les première et deuxième zones semi- conductrices et pour les première et seconde régions semi-conductrices de la diode de dérivation.  Such a photovoltaic cell of D1 is not entirely satisfactory because the electrical contacts must be doubled. Indeed, it is necessary to provide electrical contacts for both the first and second semiconductor regions and for the first and second semiconductor regions of the bypass diode.
Exposé de l'invention Presentation of the invention
Ainsi, la présente invention vise à remédier en tout ou partie aux inconvénients précités, et concerne à cet effet une cellule photovoltaïque, comportant :  Thus, the present invention aims to remedy all or part of the aforementioned drawbacks, and for this purpose concerns a photovoltaic cell, comprising:
- un substrat d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat comprenant des première et seconde surfaces opposées, et quatre surfaces latérales opposées deux à deux reliant les première et seconde surfaces ;  a substrate of a doped semiconductor material of a first conductivity type, the substrate comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
- des première et seconde zones semi-conductrices, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces du substrat, chacune des première et seconde zones semi-conductrices étant destinée à être en contact avec une électrode ; first and second semiconductor regions, respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces of the substrate, each of the first and second semiconductor zones being intended to be in contact with an electrode;
- une diode de dérivation électriquement isolée du substrat, et comprenant une jonction entre des première et seconde régions semi-conductrices respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices ; a diode of derivation electrically isolated from the substrate, and comprising a junction between first and second respectively doped semiconductor regions of the first and the second type of conductivity, the first and second semiconductor regions of the bypass diode being respectively located remote from the first and second semiconductor regions;
la cellule photovoltaïque étant remarquable en ce que les première et seconde régions semi-conductrices de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices ; et en ce que la seconde région semi-conductrice de la diode de dérivation est en contact direct avec les quatre surfaces latérales du substrat. the photovoltaic cell being remarkable in that the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor zones; and in that the second semiconductor region of the bypass diode is in direct contact with the four side surfaces of the substrate.
Ainsi, une telle cellule photovoltaïque selon l'invention permet de s'affranchir de contacts électriques dédiés à la cellule photovoltaïque et à la diode de dérivation car les première et seconde régions semi-conductrices de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices. La diode de dérivation est une jonction p-n comportant une région semi-conductrice en contact direct avec les quatre surfaces latérales du substrat, ce qui autorise le passage du courant inverse via ces surfaces latérales du substrat en cas d'ombrage de la cellule photovoltaïque. La première région de la diode de dérivation est située à distance (c'est-à-dire sans contact direct) de la première zone semi-conductrice. La seconde région de la diode de dérivation est située à distance (c'est-à-dire sans contact direct) de la seconde zone semi-conductrice. Thus, such a photovoltaic cell according to the invention makes it possible to dispense with electrical contacts dedicated to the photovoltaic cell and the diode of derivation because the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor regions. The bypass diode is a pn junction having a semiconductor region in direct contact with the four lateral surfaces of the substrate, which allows the passage of the reverse current via these lateral surfaces of the substrate in case of shading of the photovoltaic cell. The first region of the bypass diode is located at a distance (i.e., without direct contact) from the first semiconductor region. The second region of the bypass diode is located at a distance (i.e., without direct contact) from the second semiconductor zone.
Avantageusement, la cellule photovoltaïque comporte une zone isolante, réalisée dans un matériau semi-conducteur compensé, agencée pour isoler électriquement la diode de dérivation et le substrat. Advantageously, the photovoltaic cell comprises an insulating zone, made of a compensated semiconductor material, arranged to electrically isolate the bypass diode and the substrate.
Préférentiellement, le matériau semi-conducteur compensé est obtenu à partir de la seconde zone semi-conductrice.  Preferably, the compensated semiconductor material is obtained from the second semiconductor zone.
Ainsi, il est possible de former aisément la zone isolante à partir de la seconde zone semi-conductrice. Avantageusement, la zone isolante s'étend entre la seconde région semi- conductrice de la diode de dérivation et la seconde zone semi-conductrice.  Thus, it is possible to easily form the insulating zone from the second semiconductor zone. Advantageously, the insulating zone extends between the second semiconductor region of the bypass diode and the second semiconductor zone.
Avantageusement, la zone isolante s'étend sous la seconde surface du substrat. Advantageously, the insulating zone extends under the second surface of the substrate.
Avantageusement, la zone isolante s'étend en périphérie de la seconde surface du substrat. Advantageously, the insulating zone extends at the periphery of the second surface of the substrate.
Ainsi, une telle zone isolante est disposée au voisinage de la seconde région semi-conductrice de la diode de dérivation, ce qui permet de faciliter l'isolation électrique entre la seconde région semi-conductrice et la seconde zone semi- conductrice.  Thus, such an insulating zone is disposed in the vicinity of the second semiconductor region of the bypass diode, thereby facilitating electrical isolation between the second semiconductor region and the second semiconductor region.
Avantageusement, la première région semi-conductrice de la diode de dérivation s'étend sur la zone isolante. Avantageusement, la zone isolante présente une concentration de porteurs libres inférieure à 1014 at.cm"3. Advantageously, the first semiconductor region of the bypass diode extends over the insulating zone. Advantageously, the insulating zone has a free carrier concentration of less than 10 14 at.cm- 3 .
Ainsi, il est possible de former la zone isolante à partir du matériau semi- conducteur compensé de la seconde zone semi-conductrice.  Thus, it is possible to form the insulating zone from the compensated semiconductor material of the second semiconductor zone.
Selon une forme d'exécution, chacune des première ou seconde régions semi- conductrices de la diode de dérivation comporte : According to one embodiment, each of the first or second semiconductor regions of the bypass diode comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ;  phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type P-  - boron or aluminum atoms when their conductivity type is the type P-
Selon une forme d'exécution, chacune des première ou seconde zones semi- conductrices comporte : According to one embodiment, each of the first or second semiconductor zones comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ;  phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type P-  - boron or aluminum atoms when their conductivity type is the type P-
Avantageusement, le matériau semi-conducteur du substrat est à base de silicium cristallin. Advantageously, the semiconductor material of the substrate is based on crystalline silicon.
La présente invention concerne également un procédé de fabrication d'une cellule photovoltaïque conforme à l'invention, comportant les étapes : The present invention also relates to a method of manufacturing a photovoltaic cell according to the invention, comprising the steps:
a) prévoir : predictable :
- un substrat d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat comprenant des première et seconde surfaces opposées, et quatre surfaces latérales opposées deux à deux reliant les première et seconde surfaces ;  a substrate of a doped semiconductor material of a first conductivity type, the substrate comprising first and second opposed surfaces, and four opposite two-to-two side surfaces connecting the first and second surfaces;
- des première et seconde zones semi-conductrices, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces du substrat, chacune des première et seconde zones semi-conductrices étant destinée à être en contact avec une électrode ; first and second semiconductor regions, respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces of the substrate, each of the first and second second semiconductor regions being intended to be in contact with an electrode;
b) former une diode de dérivation électriquement isolée du substrat, et comprenant une jonction entre des première et seconde régions semi- conductrices respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices ; b) forming a bypass diode electrically isolated from the substrate, and comprising a junction between first and second semiconductor regions respectively doped with the first and the second conductivity type, the first and second semiconductor regions of the bypass diode being respectively located at a distance from the first and second semiconductor zones;
le procédé étant remarquable en ce que l'étape b) est exécutée de sorte que les première et seconde régions semi-conductrices de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi- conductrices, et de sorte que la seconde région semi-conductrice de la diode de dérivation est en contact direct avec les surfaces latérales du substrat. Ainsi, un tel procédé selon l'invention permet de s'affranchir de contacts électriques dédiés à la cellule photovoltaïque et à la diode de dérivation car les première et seconde régions semi-conductrices de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi- conductrices. La diode de dérivation est une jonction p-n comportant une région semi-conductrice en contact direct avec les quatre surfaces latérales du substrat, ce qui autorise le passage du courant inverse via ces surfaces latérales du substrat en cas d'ombrage de la cellule photovoltaïque. the method being remarkable in that step b) is performed so that the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor regions, and so that the second semiconductor region of the bypass diode is in direct contact with the side surfaces of the substrate. Thus, such a method according to the invention makes it possible to dispense with electrical contacts dedicated to the photovoltaic cell and to the bypass diode because the first and second semiconductor regions of the bypass diode are respectively in direct contact with the second and first semiconductor regions. The bypass diode is a p-n junction having a semiconductor region in direct contact with the four lateral surfaces of the substrate, which allows the passage of the reverse current via these lateral surfaces of the substrate in case of shading of the photovoltaic cell.
Avantageusement, l'étape a) comporte les étapes : Advantageously, step a) comprises the steps:
a1 ) prévoir le substrat du matériau semi-conducteur dopé du premier type de conductivité, le substrat comprenant les première et seconde surfaces opposées, et les quatre surfaces latérales opposées deux à deux reliant les première et seconde surfaces ; a1) providing the substrate of the doped semiconductor material of the first conductivity type, the substrate comprising the first and second opposing surfaces, and the four opposite side surfaces in pairs connecting the first and second surfaces;
a2) former une couche diélectrique à la seconde surface et aux surfaces latérales, la couche diélectrique comportant des dopants du second type de conductivité ; a2) forming a dielectric layer at the second surface and the side surfaces, the dielectric layer having dopants of the second conductivity type;
a3) diffuser les dopants du second type de conductivité depuis la couche diélectrique jusqu'à la seconde surface et jusqu'aux quatre surfaces latérales de manière à former respectivement la seconde zone semi-conductrice et la seconde région semi-conductrice de la diode de dérivation. a3) diffusing the dopants of the second conductivity type from the dielectric layer to the second surface and up to the four side surfaces of so as to form respectively the second semiconductor region and the second semiconductor region of the bypass diode.
Ainsi, les étapes a2) et a3) permettent de former concomitamment la seconde zone semi-conductrice et la seconde région semi-conductrice de la diode de dérivation de manière à limiter le temps d'opération du procédé.  Thus, steps a2) and a3) make it possible to concomitantly form the second semiconductor zone and the second semiconductor region of the bypass diode so as to limit the operation time of the method.
Avantageusement, l'étape a) comporte une étape a4) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la première surface du substrat de manière à former la première zone semi-conductrice. Advantageously, step a) comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface of the substrate so as to form the first semiconductor zone.
Avantageusement, l'étape b) comporte une étape b1 ) consistant à éliminer au moins une partie de la couche diélectrique formée lors de l'étape a2). Selon un mode de mise en œuvre, l'étape b1 ) est exécutée de manière à exposer une partie, de préférence périphérique, de la seconde surface du substrat ; et l'étape b) comporte une étape b2) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la partie de la seconde surface du substrat exposée après l'étape b1 ) ; les étapes b2) et a4) étant de préférence concomitantes. Advantageously, step b) comprises a step b1) of removing at least a portion of the dielectric layer formed in step a2). According to one embodiment, step b1) is executed so as to expose a portion, preferably peripheral, of the second surface of the substrate; and step b) comprises a step b2) of incorporating the dopants of the first conductivity type, preferably in the gas phase, to the portion of the second surface of the substrate exposed after step b1); steps b2) and a4) being preferably concomitant.
Avantageusement, l'étape b2) est exécutée de manière à former : Advantageously, step b2) is executed so as to form:
- une zone isolante s'étendant entre la seconde région semi-conductrice de la diode de dérivation et la seconde zone semi-conductrice ;  an insulating zone extending between the second semiconductor region of the bypass diode and the second semiconductor zone;
- la première région semi-conductrice de la diode de dérivation s'étendant sur la zone isolante. the first semiconductor region of the bypass diode extending over the insulating zone.
Selon une variante de mise en œuvre, l'étape b1 ) est exécutée de manière à éliminer en totalité la couche diélectrique formée lors de l'étape a2) ; et l'étape b) comporte une étape b2') consistant à : According to an implementation variant, step b1) is executed so as to completely eliminate the dielectric layer formed during step a2); and step b) comprises a step b2 ') consisting of:
- appliquer une solution comprenant les dopants du premier type de conductivité sur une partie, de préférence périphérique, de la seconde surface du substrat ; applying a solution comprising the dopants of the first type of conductivity to a portion, preferably peripheral, of the second surface of the substrate;
- irradier la partie de la seconde surface du substrat avec un laser. L'application de la solution et l'irradiation lors de l'étape b2') sont avantageusement concomitantes. Pour ce faire, la solution est avantageusement incorporée dans le faisceau laser. Avantageusement, l'étape b2') est exécutée de manière à former : irradiating the part of the second surface of the substrate with a laser. The application of the solution and the irradiation during step b2 ') are advantageously concomitant. To do this, the solution is advantageously incorporated into the laser beam. Advantageously, step b2 ') is executed so as to form:
- une zone isolante s'étendant entre la seconde région semi-conductrice de la diode de dérivation et la seconde zone semi-conductrice ;  an insulating zone extending between the second semiconductor region of the bypass diode and the second semiconductor zone;
- la première région semi-conductrice de la diode de dérivation s'étendant sur la zone isolante.  the first semiconductor region of the bypass diode extending over the insulating zone.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre de différents modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :  Other characteristics and advantages will appear in the following description of various embodiments of the invention, given by way of non-limiting examples, with reference to the appended drawings in which:
- la figure 1 est une vue schématique en perspective d'une cellule photovoltaïque selon l'invention, FIG. 1 is a schematic perspective view of a photovoltaic cell according to the invention,
- la figure 2 est une vue schématique partielle en perspective d'une cellule photovoltaïque selon l'invention,  FIG. 2 is a partial schematic perspective view of a photovoltaic cell according to the invention,
- la figure 3 est une vue schématique en coupe d'une cellule photovoltaïque selon l'invention, suivant le plan de coupe P de la figure 1 ,  FIG. 3 is a schematic sectional view of a photovoltaic cell according to the invention, along the sectional plane P of FIG. 1,
- la figure 4 est un graphique représentant en abscisses la profondeur d'implantation (en nm) et en ordonnées la concentration de dopants (at. cm"3), selon différentes fluences d'un laser (en J. cm"2, dont une référence notée REF),- Figure 4 is a graph showing in abscissa the implantation depth (in nm) and the ordinate the dopant concentration (at cm. "3), according to various fluences of a laser (in J. cm" 2, which a reference denoted REF),
- les figures 5a à 5g sont des vues schématiques en coupe illustrant des étapes d'un premier procédé de fabrication d'une cellule photovoltaïque selon l'invention,FIGS. 5a to 5g are schematic sectional views illustrating steps of a first method of manufacturing a photovoltaic cell according to the invention,
- les figures 6a à 6f sont des vues schématiques en coupe illustrant des étapes d'un second procédé de fabrication d'une cellule photovoltaïque selon l'invention. - Figures 6a to 6f are schematic sectional views illustrating steps of a second method of manufacturing a photovoltaic cell according to the invention.
Exposé détaillé des modes de réalisation Detailed description of the embodiments
Pour les différents modes de réalisation, les mêmes références seront utilisées pour des éléments identiques ou assurant la même fonction, par souci de simplification de la description. Les caractéristiques techniques décrites ci-après pour différents modes de réalisation sont à considérer isolément ou selon toute combinaison techniquement possible. Une cellule photovoltaïque selon l'invention comporte : For the different embodiments, the same references will be used for identical elements or ensuring the same function, for the sake of simplification of the description. The technical characteristics described below for different embodiments are to be considered in isolation or in any technically possible combination. A photovoltaic cell according to the invention comprises:
- un substrat 1 d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat 1 comprenant des première et seconde surfaces 10, 1 1 opposées, et quatre surfaces latérales 12 opposées deux à deux reliant les première et seconde surfaces 10, 1 1 ;  a substrate 1 of a doped semiconductor material of a first conductivity type, the substrate 1 comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
- des première et seconde zones semi-conductrices 100, 1 10, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces 10, 1 1 du substrat 1 , chacune des première et seconde zones semi-conductrices 100, 1 10 étant destinée à être en contact avec une électrode E ;  first and second semiconductor regions 100, 1 10, respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces 10, 11 of the substrate 1, each of the first and second second semiconductor regions 100, 1 being intended to be in contact with an electrode E;
- une diode de dérivation électriquement isolée du substrat 1 , et comprenant une jonction entre des première et seconde régions semi-conductrices 2, 3 respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices 2, 3 de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi- conductrices 100, 1 10.  a diode of derivation electrically isolated from the substrate 1, and comprising a junction between first and second semiconductor regions 2, 3 respectively doped with the first and the second type of conductivity, the first and second semiconductor regions 2, 3 of the bypass diode being respectively located at a distance from the first and second semiconductor regions 100, 1 10.
Les première et seconde régions semi-conductrices 2, 3 de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices 1 10, 100. La seconde région semi-conductrice 3 de la diode de dérivation est en contact direct avec les quatre surfaces latérales 12 du substrat 1 .  The first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100. The second semiconductor region 3 of the bypass diode is in contact direct with the four lateral surfaces 12 of the substrate 1.
Le matériau semi-conducteur du substrat 1 est avantageusement à base de silicium cristallin. Le substrat 1 présente avantageusement une résistivité comprise entre 1 et 10 Q.cm. Les quatre surfaces latérales 12 du substrat 1 s'étendent suivant une direction parallèle à la normale au substrat 1 . Les quatre surfaces latérales 12 du substrat 1 présentent une section transversale de forme annulaire. Par « transversale », on entend une direction perpendiculaire à la normale au substrat 1 . Chaque surface latérale 12 forme un bord physique du substrat 1 . The semiconductor material of the substrate 1 is advantageously based on crystalline silicon. The substrate 1 advantageously has a resistivity of between 1 and 10 Ω.cm. The four lateral surfaces 12 of the substrate 1 extend in a direction parallel to normal to the substrate 1. The four lateral surfaces 12 of the substrate 1 have a ring-shaped cross section. "Transverse" means a direction perpendicular to the normal to the substrate 1. Each side surface 12 forms a physical edge of the substrate 1.
Le premier type de conductivité est le type n ou le type p. Le second type de conductivité est le type n ou le type p. Lorsque le premier type de conductivité est le type n, alors le second type de conductivité est le type p. Lorsque le premier type de conductivité est le type p, alors le second type de conductivité est le type n. En d'autres termes, les premier et second types de conductivité sont opposés. Préférentiellement, les première et seconde zones semi-conductrices 100, 1 10 sont espacées des surfaces latérales 12 du substrat 1 selon une distance de l'ordre de 0,2 à 1 μιτι suivant la direction transversale. The first type of conductivity is type n or type p. The second type of conductivity is type n or type p. When the first type of conductivity is n type, then the second type of conductivity is the type p. When the first type of conductivity is the type p, then the second type of conductivity is the type n. In other words, the first and second types of conductivity are opposite. Preferably, the first and second semiconductor zones 100, 1 10 are spaced from the lateral surfaces 12 of the substrate 1 by a distance of the order of 0.2 to 1 μιτι in the transverse direction.
La première zone semi-conductrice 100 présente une concentration de dopants du premier type de conductivité, de préférence compris entre 1018 et 1020 at.cm"3. La seconde zone semi-conductrice 1 10 présente une concentration C2 de dopants du second type de conductivité. C2 est de préférence compris entre 1018 et 1020 at.cm"3. The first semiconductor region 100 has a dopant concentration of the first conductivity type, preferably between 10 18 and 10 20 at.cm "3. The second semiconductor zone 1 10 has a doping concentration C2 of the second type conductivity. C2 is preferably between 10 18 and 10 20 at.cm "3.
Chacune des première ou seconde zones semi-conductrices 100, 1 10 comporte avantageusement :  Each of the first or second semiconductor zones 100, 1 10 advantageously comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ; phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type P- La cellule photovoltaïque comporte avantageusement une zone isolante 4, réalisée dans un matériau semi-conducteur compensé, agencée pour isoler électriquement la diode de dérivation et le substrat 1 . La zone isolante 4 s'étend avantageusement entre la seconde région semi-conductrice 3 de la diode de dérivation et la seconde zone semi-conductrice 1 10. La zone isolante 4 s'étend avantageusement sous la seconde surface 1 1 du substrat 1 . La zone isolante 4 s'étend avantageusement en périphérie de la seconde surface 1 1 du substrat 1 .  - The boron or aluminum atoms when their conductivity type is the type P- The photovoltaic cell advantageously comprises an insulating zone 4, made of a compensated semiconductor material, arranged to electrically isolate the bypass diode and the substrate 1 . The insulating zone 4 advantageously extends between the second semiconductor region 3 of the bypass diode and the second semiconductor zone 1 10. The insulating zone 4 advantageously extends under the second surface 1 1 of the substrate 1. The insulating zone 4 advantageously extends around the periphery of the second surface 1 1 of the substrate 1.
Le matériau semi-conducteur compensé de la zone isolante 4 est le matériau semi-conducteur du substrat 1 . La zone isolante 4 présente avantageusement une concentration de porteurs libres inférieure à 1014 at.cm"3. La zone isolante 4 présente avantageusement une résistivité supérieure à 500 Q.cm. La zone isolante 4 présente préférentiellement une épaisseur comprise entre 0,1 et 0,5 μιτι. Par « épaisseur », on entend la dimension suivant la normale au substrat 1 . La première région semi-conductrice 2 de la diode de dérivation s'étend avantageusement sur la zone isolante 4. La seconde région semi-conductrice 3 de la diode de dérivation s'étend préférentiel lement tout le long des surfaces latérales 12 du substrat 1 . La seconde région semi-conductrice 3 s'étend préférentiellement au sein du substrat 1 , en contact direct avec les surfaces latérales 12. La diode de dérivation est ainsi intégrée sous chaque électrode E, en périphérie de la cellule photovoltaïque, ce qui permet de ne pas utiliser la surface active de la cellule photovoltaïque, et par là-même d'éviter une perte de rendement pour la cellule photovoltaïque. The compensated semiconductor material of the insulating zone 4 is the semiconductor material of the substrate 1. The insulating zone 4 advantageously has a concentration of free carriers less than 10 14 at.cm- 3 The insulating zone 4 advantageously has a resistivity greater than 500 Ω.cm.The insulating zone 4 preferably has a thickness of between 0.1 and 0.5 μιτι "Thickness" means the dimension following the normal to the substrate 1. The first semiconductor region 2 of the bypass diode advantageously extends over the insulating zone 4. The second semiconductor region 3 of the bypass diode preferably extends all along the lateral surfaces 12 of the substrate 1. The second semiconductor region 3 preferably extends within the substrate 1, in direct contact with the lateral surfaces 12. The bypass diode is thus integrated under each electrode E, at the periphery of the photovoltaic cell, which makes it possible to not use the active surface of the photovoltaic cell, and thereby avoid a loss of efficiency for the photovoltaic cell.
Chacune des première ou seconde régions semi-conductrices 2, 3 de la diode de dérivation comporte avantageusement :  Each of the first or second semiconductor regions 2, 3 of the bypass diode advantageously comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ;  phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type p.  boron or aluminum atoms when their conductivity type is the p type.
Chacune des première ou seconde régions semi-conductrices 2, 3 de la diode de dérivation présente avantageusement :  Each of the first or second semiconductor regions 2, 3 of the bypass diode advantageously has:
- une concentration de dopants comprise entre 5.1019 et 3.1020 at.cm"3 lorsque leur type de conductivité est le type n ; - a dopant concentration of between 5.10 19 and 3.10 20 at.cm "3 when their conductivity type is n-type;
- une concentration de dopants comprise entre 5.1018 et 5.1019 at.cm"3 lorsque leur type de conductivité est le type p. a dopant concentration of between 5.10 18 and 5.10 19 at.cm- 3 when their conductivity type is the p type.
La jonction entre les première et seconde régions semi-conductrices 2, 3 présente préférentiellement une épaisseur comprise entre 0,3 et 0,5 μιτι. La cellule photovoltaïque comporte avantageusement une première couche diélectrique 5 agencée pour recouvrir la diode de dérivation. La première couche diélectrique 5 est préférentiellement un oxyde de silicium. La première couche diélectrique présente préférentiellement une épaisseur comprise entre 2 et 10 nm. La cellule photovoltaïque comporte avantageusement une seconde couche diélectrique 6 recouvrant la première couche diélectrique 5. La seconde couche diélectrique 6 est préférentiellement un nitrure de silicium. La seconde couche diélectrique présente préférentiellement une épaisseur comprise entre 20 et 100 nm. Chaque électrode E est avantageusement réalisée en argent et/ou en aluminium. L'électrode E en contact avec la seconde zone semi-conductrice 1 10 est également en contact avec la première région semi-conductrice 2 de la diode de dérivation. L'électrode E en contact avec la première zone semi-conductrice 100 est également en contact avec la seconde région semi-conductrice 3 de la diode de dérivation. The junction between the first and second semiconductor regions 2, 3 preferably has a thickness of between 0.3 and 0.5 μιτι. The photovoltaic cell advantageously comprises a first dielectric layer 5 arranged to cover the bypass diode. The first dielectric layer 5 is preferably a silicon oxide. The first dielectric layer preferably has a thickness of between 2 and 10 nm. The photovoltaic cell advantageously comprises a second dielectric layer 6 covering the first dielectric layer 5. The second dielectric layer 6 is preferably a silicon nitride. The second dielectric layer preferably has a thickness of between 20 and 100 nm. Each electrode E is advantageously made of silver and / or aluminum. The electrode E in contact with the second semiconductor zone 1 10 is also in contact with the first semiconductor region 2 of the bypass diode. The electrode E in contact with the first semiconductor zone 100 is also in contact with the second semiconductor region 3 of the bypass diode.
Un premier procédé de fabrication d'une cellule photovoltaïque selon l'invention, illustré aux figures 5a à 5g, comporte les étapes : A first method of manufacturing a photovoltaic cell according to the invention, illustrated in FIGS. 5a to 5g, comprises the steps:
a) prévoir : predictable :
- un substrat 1 d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat 1 comprenant des première et seconde surfaces 10, 1 1 opposées, et quatre surfaces latérales 12 opposées deux à deux reliant les première et seconde surfaces 10, 1 1 ;  a substrate 1 of a doped semiconductor material of a first conductivity type, the substrate 1 comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
- des première et seconde zones semi-conductrices 100, 1 10, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces 10, 1 1 du substrat 1 , chacune des première et seconde zones semi-conductrices 100, 1 10 étant destinée à être en contact avec une électrode E ;  first and second semiconductor regions 100, 1 10, respectively doped with the first and a second type of conductivity, and extending respectively under the first and second surfaces 10, 11 of the substrate 1, each of the first and second second semiconductor regions 100, 1 being intended to be in contact with an electrode E;
b) former une diode de dérivation électriquement isolée du substrat 1 , et comprenant une jonction entre des première et seconde régions semi- conductrices 2, 3 respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices 2, 3 de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices 100, 1 10. b) forming an electrically isolated bypass diode of the substrate 1, and comprising a junction between first and second semiconductor regions 2, 3 respectively doped with the first and the second type of conductivity, the first and second semiconductor regions 2, 3 of the bypass diode being respectively located at a distance from the first and second semiconductor zones 100, 1 10.
L'étape b) est exécutée de sorte que les première et seconde régions semi- conductrices 2, 3 de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices 1 10, 100, et de sorte que la seconde région semi-conductrice 3 de la diode de dérivation est en contact direct avec les quatre surfaces latérales 12 du substrat 1 .  Step b) is executed so that the first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100, and so that the second semiconductor region 3 of the bypass diode is in direct contact with the four side surfaces 12 of the substrate 1.
Avantageusement, l'étape a) comporte les étapes : a1 ) prévoir le substrat 1 du matériau semi-conducteur dopé du premier type de conductivité, le substrat 1 comprenant les première et seconde surfaces 10, 1 1 opposées, et les quatre surfaces latérales 12 opposées deux à deux reliant les première et seconde surfaces 10, 1 1 ; Advantageously, step a) comprises the steps: a1) providing the substrate 1 of the doped semiconductor material of the first conductivity type, the substrate 1 comprising the first and second surfaces 10, 1 1 opposite, and the four side surfaces 12 opposite in pairs connecting the first and second surfaces 10 , 1 1;
a2) former une couche diélectrique 8 à la seconde surface 1 1 et aux surfaces latérales 12, la couche diélectrique 8 comportant des dopants du second type de conductivité ; les étapes a1 ) et a2) étant illustrées à la figure 5a, a2) forming a dielectric layer 8 at the second surface 11 and the side surfaces 12, the dielectric layer 8 having dopants of the second conductivity type; the steps a1) and a2) being illustrated in FIG. 5a,
a3) diffuser les dopants du second type de conductivité depuis la couche diélectrique 8 jusqu'à la seconde surface 1 1 et jusqu'aux quatre surfaces latérales 12 de manière à former respectivement la seconde zone semi-conductrice 1 10 et la seconde région semi-conductrice 3 de la diode de dérivation, l'étape a3) étant illustrée à la figure 5b. a3) diffusing the dopants of the second conductivity type from the dielectric layer 8 to the second surface 11 and up to the four lateral surfaces 12 so as to form the second semiconductor zone 1 10 and the second semiconductor region respectively conductor 3 of the bypass diode, step a3) being illustrated in Figure 5b.
La couche diélectrique 8 formée lors de l'étape a2) est préférentiellement un oxyde de silicium SiOx dopé. La première surface 10 du substrat 1 est dépourvue de la couche diélectrique 8 formée lors de l'étape a2). The dielectric layer 8 formed during step a2) is preferably a doped SiO x silicon oxide. The first surface 10 of the substrate 1 is devoid of the dielectric layer 8 formed during step a2).
L'étape a2) est avantageusement exécutée par un dépôt chimique en phase vapeur de la couche diélectrique 8. Lorsque la couche diélectrique 8 est un oxyde de silicium, le dépôt chimique en phase vapeur est réalisé à partir de gaz réactifs comportant du silane SiH4 et du protoxyde d'azote N2O. Lorsque la couche diélectrique 8 comporte des atomes de phosphore ou d'arsenic, formant des dopants de type n, lesdits atomes sont avantageusement incorporés à l'oxyde de silicium par une injection de phosphine PH3 ou d'arsine AsH3 avec les gaz réactifs. Lorsque la couche diélectrique 8 comporte des atomes de bore, formant des dopants de type p, lesdits atomes sont avantageusement incorporés à l'oxyde de silicium par une injection de diborane B2H6 avec les gaz réactifs. Step a2) is advantageously carried out by a chemical vapor deposition of the dielectric layer 8. When the dielectric layer 8 is a silicon oxide, the chemical vapor deposition is carried out using reactive gases comprising SiH 4 silane and N 2 O nitrous oxide. When the dielectric layer 8 comprises phosphorus or arsenic atoms, forming n-type dopants, said atoms are advantageously incorporated into the silicon oxide by an injection of phosphine PH 3 or arsine AsH 3 with the reactive gases. When the dielectric layer 8 comprises boron atoms, forming p-type dopants, said atoms are advantageously incorporated into the silicon oxide by an injection of diborane B 2 H 6 with the reactive gases.
L'étape a3) est avantageusement exécutée par un recuit thermique appliqué à l'ensemble formé par le substrat 1 et la couche diélectrique 8, préférentiellement dans un four. Le recuit thermique appliqué lors de l'étape a3) présente avantageusement :  Step a3) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace. The thermal annealing applied during step a3) advantageously has:
- une valeur de température de recuit comprise entre 850°C et 940°C,  an annealing temperature value of between 850 ° C. and 940 ° C.,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure.  - a value of annealing time of between 10 minutes and 1 hour.
A titre d'exemple, lorsque la couche diélectrique 8 est un oxyde de silicium For example, when the dielectric layer 8 is a silicon oxide
SiOx, x est de l'ordre de 0,768 avant le recuit thermique, et est de l'ordre de 1 ,828 après le recuit thermique. Comme illustré à la figure 5c, l'étape b) comporte avantageusement une étape b1 ) consistant à éliminer au moins une partie de la couche diélectrique 8 formée lors de l'étape a2). L'étape b1 ) est exécutée de manière à exposer une partie, de préférence périphérique, de la seconde surface 1 1 du substrat 1 . L'étape b1 ) est préférentiellement exécutée par une ablation laser. A titre d'exemple, le laser est un laser impulsionnel avec une durée d'impulsion de l'ordre de 15 ps ; la longueur d'onde du laser est 355 nm ou 532 nm avec une fréquence comprise entre 50 kHz et 200 kHz ; la fluence du laser est comprise entre 0,1 et 1 J.cm"2. SiOx, x is of the order of 0.768 before thermal annealing, and is of the order of 1. 828 after thermal annealing. As illustrated in FIG. 5c, step b) advantageously comprises a step b1) of eliminating at least a portion of the dielectric layer 8 formed during step a2). Step b1) is performed so as to expose a part, preferably peripheral, of the second surface 1 1 of the substrate 1. Step b1) is preferably performed by laser ablation. For example, the laser is a pulsed laser with a pulse duration of the order of 15 ps; the wavelength of the laser is 355 nm or 532 nm with a frequency of between 50 kHz and 200 kHz; the fluence of the laser is between 0.1 and 1 J.cm -2 .
Comme illustré à la figure 5d, l'étape b) comporte avantageusement une étape b2) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la partie de la seconde surface 1 1 du substrat exposée après l'étape b1 ). L'étape b2) est avantageusement exécutée par un recuit thermique appliqué à l'ensemble formé par le substrat 1 et la couche diélectrique 8, préférentiellement dans un four. Le recuit thermique appliqué lors de l'étape b2) présente avantageusement :  As illustrated in FIG. 5d, step b) advantageously comprises a step b2) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the portion of the second surface 11 of the substrate exposed after step b1). Step b2) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace. The thermal annealing applied during step b2) advantageously has:
- une valeur de température de recuit comprise entre 850°C et 940°C,  an annealing temperature value of between 850 ° C. and 940 ° C.,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure.  - a value of annealing time of between 10 minutes and 1 hour.
Lorsque les dopants du premier type de conductivité sont des atomes de phosphore, le recuit thermique est avantageusement appliqué lors de l'étape b2) sous une atmosphère contenant du dioxygène et du POCI3. Lorsque les dopants du premier type de conductivité sont des atomes de bore, le recuit thermique est avantageusement appliqué lors de l'étape b2) sous une atmosphère contenant du dioxygène, et du BBr3 ou du BCI3. When the dopants of the first conductivity type are phosphorus atoms, thermal annealing is advantageously applied during step b2) under an atmosphere containing dioxygen and POCI3. When the dopants of the first conductivity type are boron atoms, the thermal annealing is advantageously applied during step b2) under an atmosphere containing oxygen, and BBr 3 or BCI3.
L'étape b2) est avantageusement exécutée de manière à former :  Step b2) is advantageously executed so as to form:
- une zone isolante 4 s'étendant entre la seconde région semi-conductrice 3 de la diode de dérivation et la seconde zone semi-conductrice 1 10 ;  an insulating zone 4 extending between the second semiconductor region 3 of the bypass diode and the second semiconductor zone 1 10;
- la première région semi-conductrice 2 de la diode de dérivation s'étendant sur la zone isolante 4.  the first semiconductor region 2 of the bypass diode extending over the insulating zone 4.
Comme illustré à la figure 5d, l'étape a) comporte avantageusement une étape a4) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la première surface 10 du substrat 1 de manière à former la première zone semi-conductrice 100. Les étapes b2) et a4) sont de préférence concomitantes. As illustrated in FIG. 5d, step a) advantageously comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface 10 of the substrate 1 of in order to form the first semiconductor zone 100. The steps b2) and a4) are preferably concomitant.
Comme illustré à la figure 5e, le premier procédé comporte avantageusement une étape c) consistant à supprimer la couche diélectrique 8, préférentiellement par une gravure chimique, par exemple au moyen d'acide fluorhydrique, pendant une durée de 5 à 20 minutes. As illustrated in FIG. 5e, the first method advantageously comprises a step c) of removing the dielectric layer 8, preferably by chemical etching, for example by means of hydrofluoric acid, for a period of 5 to 20 minutes.
Comme illustré à la figure 5f, le premier procédé comporte avantageusement les étapes : As illustrated in FIG. 5f, the first method advantageously comprises the steps:
d) former une première couche diélectrique 5 agencée pour recouvrir la diode de dérivation et les première et seconde zones semi-conductrices 100, 1 10 ;  d) forming a first dielectric layer 5 arranged to cover the bypass diode and the first and second semiconductor regions 100, 1 10;
e) former une seconde couche diélectrique 6 recouvrant la première couche diélectrique.  e) forming a second dielectric layer 6 covering the first dielectric layer.
La première couche diélectrique 5 est préférentiellement un oxyde de silicium. La première couche diélectrique 5 présente préférentiellement une épaisseur comprise entre 2 et 10 nm. La seconde couche diélectrique 6 est préférentiellement un nitrure de silicium. La seconde couche diélectrique 6 présente préférentiellement une épaisseur comprise entre 20 et 100 nm.  The first dielectric layer 5 is preferably a silicon oxide. The first dielectric layer 5 preferably has a thickness of between 2 and 10 nm. The second dielectric layer 6 is preferably a silicon nitride. The second dielectric layer 6 preferably has a thickness of between 20 and 100 nm.
Comme illustré à la figure 5g, le premier procédé comporte avantageusement une étape f) consistant à mettre en contact chacune des première et seconde zones semi-conductrices 100, 1 10 et chacune des première et seconde régions semi-conductrices 2, 3 de la diode de dérivation par une électrode E. L'étape f) comporte avantageusement une étape de métallisation, de préférence exécutée par sérigraphie, suivie d'une étape de recuit préférentiellement exécutée à une température comprise entre 720°C et 850°C pendant 5 à 15 secondes dans un four à lampes infrarouges à passage sous air. Ainsi, le métal peut traverser les première et seconde couches diélectriques 5, 6 formées lors des étapes d) et e). Chaque électrode E est avantageusement réalisée en argent et/ou en aluminium. As illustrated in FIG. 5g, the first method advantageously comprises a step f) of bringing each of the first and second semiconductor regions 100, 1 10 and each of the first and second semiconductor regions 2, 3 of the diode into contact with each other. Preferably, step f) comprises a metallization step, preferably performed by screen printing, followed by an annealing step preferably carried out at a temperature of between 720 ° C. and 850 ° C. for 5 to 15 minutes. seconds in an oven with infrared lamps with air passage. Thus, the metal can pass through the first and second dielectric layers 5, 6 formed during steps d) and e). Each electrode E is advantageously made of silver and / or aluminum.
Un second procédé de fabrication d'une cellule photovoltaïque selon l'invention, illustré aux figures 6a à 6f, comporte les étapes : a) prévoir : A second method of manufacturing a photovoltaic cell according to the invention, illustrated in FIGS. 6a to 6f, comprises the steps: predictable :
- un substrat 1 d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat 1 comprenant des première et seconde surfaces 10, 1 1 opposées, et quatre surfaces latérales 12 opposées deux à deux reliant les première et seconde surfaces 10, 1 1 ;  a substrate 1 of a doped semiconductor material of a first conductivity type, the substrate 1 comprising opposite first and second surfaces 10, 11, and four opposite side surfaces 12 connecting the first and second surfaces 10, 1 1;
- des première et seconde zones semi-conductrices 100, 1 10, respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces 10, 1 1 , chacune des première et seconde zones semi-conductrices 100, 1 10 étant destinée à être en contact avec une électrode E ;  first and second semiconductor regions 100, 1 10, respectively doped with the first and second conductivity type, and extending respectively under the first and second surfaces 10, 1 1, each of the first and second semi zones; -conductrices 100, 1 10 being intended to be in contact with an electrode E;
b) former une diode de dérivation électriquement isolée du substrat 1 , et comprenant une jonction entre des première et seconde régions semi- conductrices 2, 3 respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices 2, 3 de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices 100, 1 10. b) forming an electrically isolated bypass diode of the substrate 1, and comprising a junction between first and second semiconductor regions 2, 3 respectively doped with the first and the second type of conductivity, the first and second semiconductor regions 2, 3 of the bypass diode being respectively located at a distance from the first and second semiconductor zones 100, 1 10.
L'étape b) est exécutée de sorte que les première et seconde régions semi- conductrices 2, 3 de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices 1 10, 100, et de sorte que la seconde région semi-conductrice 3 de la diode de dérivation est en contact direct avec les quatre surfaces latérales 12 du substrat 1 .  Step b) is executed so that the first and second semiconductor regions 2, 3 of the bypass diode are respectively in direct contact with the second and first semiconductor regions 1 10, 100, and so that the second semiconductor region 3 of the bypass diode is in direct contact with the four side surfaces 12 of the substrate 1.
Avantageusement, l'étape a) comporte les étapes : Advantageously, step a) comprises the steps:
a1 ) prévoir le substrat 1 du matériau semi-conducteur dopé du premier type de conductivité, le substrat 1 comprenant les première et seconde surfaces 10, 1 1 opposées, et les quatre surfaces latérales 12 opposées deux à deux reliant les première et seconde surfaces 10, 1 1 ; a1) providing the substrate 1 of the doped semiconductor material of the first conductivity type, the substrate 1 comprising the first and second surfaces 10, 1 1 opposite, and the four side surfaces 12 opposite in pairs connecting the first and second surfaces 10 , 1 1;
a2) former une couche diélectrique 8 à la seconde surface 1 1 et aux surfaces latérales 12, la couche diélectrique 8 comportant des dopants du second type de conductivité ; les étapes a1 ) et a2) étant illustrées à la figure 6a, a2) forming a dielectric layer 8 at the second surface 11 and the side surfaces 12, the dielectric layer 8 having dopants of the second conductivity type; the steps a1) and a2) being illustrated in FIG. 6a,
a3) diffuser les dopants du second type de conductivité depuis la couche diélectrique 8 jusqu'à la seconde surface 1 1 et jusqu'aux quatre surfaces latérales 12 de manière à former respectivement la seconde zone semi-conductrice 1 10 et la seconde région semi-conductrice 3 de la diode de dérivation, l'étape a3) étant illustrée à la figure 6b. a3) diffusing the dopants of the second conductivity type from the dielectric layer 8 to the second surface 11 and up to the four lateral surfaces 12 so as to form the second semiconductor zone 1 10 and the second semiconductor region 3 of the bypass diode, step a3) being illustrated in FIG. 6b.
La couche diélectrique 8 formée lors de l'étape a2) est préférentiellement un oxyde de silicium SiOx dopé. La première surface 10 du substrat 1 est dépourvue de la couche diélectrique 8 formée lors de l'étape a2). The dielectric layer 8 formed during step a2) is preferably a doped SiO x silicon oxide. The first surface 10 of the substrate 1 is devoid of the dielectric layer 8 formed during step a2).
L'étape a2) est avantageusement exécutée par un dépôt chimique en phase vapeur de la couche diélectrique 8. Lorsque la couche diélectrique 8 est un oxyde de silicium, le dépôt chimique en phase vapeur est réalisé à partir de gaz réactifs comportant du silane SiH4 et du protoxyde d'azote N2O. Lorsque la couche diélectrique 8 comporte des atomes de phosphore ou d'arsenic, formant des dopants de type n, lesdits atomes sont avantageusement incorporés à l'oxyde de silicium par une injection de phosphine PH3 ou d'arsine AsH3 avec les gaz réactifs. Lorsque la couche diélectrique 8 comporte des atomes de bore, formant des dopants de type p, lesdits atomes sont avantageusement incorporés à l'oxyde de silicium par une injection de diborane B2H6 avec les gaz réactifs. Step a2) is advantageously carried out by a chemical vapor deposition of the dielectric layer 8. When the dielectric layer 8 is a silicon oxide, the chemical vapor deposition is carried out using reactive gases comprising SiH 4 silane and N 2 O nitrous oxide. When the dielectric layer 8 comprises phosphorus or arsenic atoms, forming n-type dopants, said atoms are advantageously incorporated into the silicon oxide by an injection of phosphine PH 3 or arsine AsH 3 with the reactive gas. When the dielectric layer 8 comprises boron atoms, forming p-type dopants, said atoms are advantageously incorporated into the silicon oxide by an injection of diborane B 2 H 6 with the reactive gases.
L'étape a3) est avantageusement exécutée par un recuit thermique appliqué à l'ensemble formé par le substrat 1 et la couche diélectrique 8, préférentiellement dans un four. Le recuit thermique appliqué lors de l'étape a3) présente avantageusement :  Step a3) is advantageously carried out by thermal annealing applied to the assembly formed by the substrate 1 and the dielectric layer 8, preferably in a furnace. The thermal annealing applied during step a3) advantageously has:
- une valeur de température de recuit comprise entre 850°C et 940°C,  an annealing temperature value of between 850 ° C. and 940 ° C.,
- une valeur de durée de recuit comprise entre 10 minutes et 1 heure.  - a value of annealing time of between 10 minutes and 1 hour.
A titre d'exemple, lorsque la couche diélectrique 8 est un oxyde de silicium SiOx, x est de l'ordre de 0,768 avant le recuit thermique, et est de l'ordre de 1 ,828 après le recuit thermique.  By way of example, when the dielectric layer 8 is a SiOx silicon oxide, x is of the order of 0.768 before thermal annealing, and is of the order of 1.828 after thermal annealing.
Comme illustré à la figure 6b, l'étape a) comporte avantageusement une étape a4) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la première surface 10 du substrat 1 de manière à former la première zone semi-conductrice 100. Lorsque les dopants du premier type de conductivité comportent des atomes de phosphore formant des dopants de type n, un verre de phosphore 9, P2O5-S1O2, est également formé à la première surface 10 du substrat 1 lors de l'étape a4). Comme illustré à la figure 6c, l'étape b) comporte avantageusement une étape b1 ) consistant à éliminer en totalité la couche diélectrique 8 formée lors de l'étape a2), ainsi que le verre de phosphore 9. As illustrated in FIG. 6b, step a) advantageously comprises a step a4) of incorporating the dopants of the first type of conductivity, preferably in the gas phase, to the first surface 10 of the substrate 1 so as to form the first semiconductor zone 100. When the dopants of the first conductivity type comprise phosphorus atoms forming n-type dopants, a phosphor glass 9, P2O 5 -S1O2, is also formed at the first surface 10 of the substrate 1 when of step a4). As illustrated in FIG. 6c, step b) advantageously comprises a step b1) of completely eliminating the dielectric layer 8 formed during step a2), as well as the phosphor glass 9.
Comme illustré à la figure 6d, l'étape b) comporte avantageusement une étape b2') consistant à : As illustrated in FIG. 6d, step b) advantageously comprises a step b2 ') consisting of:
- appliquer une solution comprenant les dopants du premier type de conductivité sur une partie, de préférence périphérique, de la seconde surface 1 1 du substrat 1 ;  applying a solution comprising the dopants of the first type of conductivity to a portion, preferably a peripheral portion, of the second surface 11 of the substrate 1;
- irradier la partie de la seconde surface 1 1 du substrat 1 avec un laser 7.  irradiating the part of the second surface 1 1 of the substrate 1 with a laser 7.
L'étape b2') est avantageusement exécutée de manière à former :  Step b2 ') is advantageously executed so as to form:
- une zone isolante 4 s'étendant entre la seconde région semi-conductrice 3 de la diode de dérivation et la seconde zone semi-conductrice 1 10 ;  an insulating zone 4 extending between the second semiconductor region 3 of the bypass diode and the second semiconductor zone 1 10;
- la première région semi-conductrice 2 de la diode de dérivation s'étendant sur la zone isolante 4.  the first semiconductor region 2 of the bypass diode extending over the insulating zone 4.
A cet effet, le laser 7 utilisé lors de l'étape b2') est un laser impulsionnel avec une durée d'impulsion comprise entre 10 et 150 ns ; la longueur d'onde du laser 7 est 515 nm ou 532 nm avec une fréquence comprise entre 10 kHz et 300 kHz ; la fluence du laser est comprise entre 0,8 et 1 ,8 J.cm"2. La profondeur du dopage est adaptée en modifiant la fluence du laser 7, comme illustré à la figure 4. For this purpose, the laser 7 used in step b2 ') is a pulsed laser with a pulse duration of between 10 and 150 ns; the wavelength of the laser 7 is 515 nm or 532 nm with a frequency between 10 kHz and 300 kHz; the fluence of the laser is between 0.8 and 1.8 J.cm -2 .The depth of the doping is adapted by modifying the fluence of the laser 7, as illustrated in FIG.
Comme illustré à la figure 6e, le second procédé comporte avantageusement les étapes : As illustrated in FIG. 6e, the second method advantageously comprises the steps:
c) former une première couche diélectrique 5 agencée pour recouvrir la diode de dérivation et les première et seconde zones semi-conductrices 100, 1 10 ;  c) forming a first dielectric layer 5 arranged to cover the bypass diode and the first and second semiconductor regions 100, 1 10;
d) former une seconde couche diélectrique 6 recouvrant la première couche diélectrique.  d) forming a second dielectric layer 6 covering the first dielectric layer.
La première couche diélectrique 5 est préférentiellement un oxyde de silicium. La première couche diélectrique 5 présente préférentiellement une épaisseur comprise entre 2 et 10 nm. La seconde couche diélectrique 6 est préférentiellement un nitrure de silicium. La seconde couche diélectrique 6 présente préférentiellement une épaisseur comprise entre 20 et 100 nm. Comme illustré à la figure 6f, le second procédé comporte avantageusement une étape e) consistant à mettre en contact chacune des première et seconde zones semi-conductrices 100, 1 10 et chacune des première et seconde régions semi-conductrices 2, 3 de la diode de dérivation par une électrode E. L'étape e) comporte avantageusement une étape de métallisation, de préférence exécutée par sérigraphie, suivie d'une étape de recuit préférentiellement exécutée à une température comprise entre 720°C et 850°C pendant 5 à 15 secondes dans un four à lampes infrarouges à passage sous air. Ainsi, le métal peut traverser les première et seconde couches diélectriques 5, 6 formées lors des étapes c) et d). Chaque électrode E est avantageusement réalisée en argent et/ou en aluminium. The first dielectric layer 5 is preferably a silicon oxide. The first dielectric layer 5 preferably has a thickness of between 2 and 10 nm. The second dielectric layer 6 is preferably a silicon nitride. The second dielectric layer 6 preferably has a thickness of between 20 and 100 nm. As illustrated in FIG. 6f, the second method advantageously comprises a step e) of bringing each of the first and second semiconductor regions 100, 1 10 and each of the first and second semiconductor regions 2, 3 of the diode into contact with each other. by way of an electrode E. Step e) advantageously comprises a metallization step, preferably carried out by screen printing, followed by an annealing step preferably carried out at a temperature of between 720 ° C. and 850 ° C. for 5 to 15 minutes. seconds in an oven with infrared lamps with air passage. Thus, the metal can pass through the first and second dielectric layers 5, 6 formed in steps c) and d). Each electrode E is advantageously made of silver and / or aluminum.

Claims

Revendications claims
1 . Cellule photovoltaïque, comportant : 1. Photovoltaic cell, comprising:
- un substrat (1 ) d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat (1 ) comprenant des première et seconde surfaces (10, a substrate (1) of doped semiconductor material of a first conductivity type, the substrate (1) comprising first and second surfaces (10,
1 1 ) opposées, et quatre surfaces latérales (12) opposées deux à deux reliant les première et seconde surfaces (10, 1 1 ) ; 1 1) and four opposing lateral surfaces (12) in pairs connecting the first and second surfaces (10, 1 1);
- des première et seconde zones semi-conductrices (100, 1 10), respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces (10, 1 1 ) du substrat (1 ), chacune des première et seconde zones semi-conductrices (100, 1 10) étant destinée à être en contact avec une électrode (E) ;  first and second semiconductor regions (100, 1 10) respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces (10, 1 1) of the substrate (1 ), each of the first and second semiconductor regions (100, 1 10) being intended to be in contact with an electrode (E);
- une diode de dérivation électriquement isolée du substrat (1 ), et comprenant une jonction entre des première et seconde régions semi-conductrices (2, 3) respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices (2, 3) de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi- conductrices (100, 1 10) ;  a diode of derivation electrically isolated from the substrate (1), and comprising a junction between first and second semiconductor regions (2, 3) respectively doped with the first and the second type of conductivity, the first and second semiconductor regions; (2, 3) of the bypass diode being respectively located at a distance from the first and second semiconductor regions (100, 1 10);
la cellule photovoltaïque étant caractérisée en ce que les première et seconde régions semi-conductrices (2, 3) de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi-conductrices (1 10, 100) ; et en ce que la seconde région semi-conductrice (3) de la diode de dérivation est en contact direct avec les quatre surfaces latérales (12) du substrat (1 ). the photovoltaic cell being characterized in that the first and second semiconductor regions (2, 3) of the bypass diode are respectively in direct contact with the second and first semiconductor regions (1 10, 100); and in that the second semiconductor region (3) of the bypass diode is in direct contact with the four side surfaces (12) of the substrate (1).
2. Cellule photovoltaïque selon la revendication 1 , caractérisée en ce qu'elle comporte une zone isolante (4), réalisée dans un matériau semi-conducteur compensé, agencée pour isoler électriquement la diode de dérivation et le substrat (1 ). 2. Photovoltaic cell according to claim 1, characterized in that it comprises an insulating zone (4), made of a compensated semiconductor material, arranged to electrically isolate the bypass diode and the substrate (1).
3. Cellule photovoltaïque selon la revendication 2, caractérisée en ce que la zone isolante (4) s'étend entre la seconde région semi-conductrice (3) de la diode de dérivation et la seconde zone semi-conductrice (1 10). Photovoltaic cell according to claim 2, characterized in that the insulating zone (4) extends between the second semiconductor region (3) of the bypass diode and the second semiconductor zone (1 10).
4. Cellule photovoltaïque selon la revendication 2 ou 3, caractérisée en ce que la zone isolante (4) s'étend sous la seconde surface (1 1 ) du substrat (1 ). 4. Photovoltaic cell according to claim 2 or 3, characterized in that the insulating zone (4) extends under the second surface (1 1) of the substrate (1).
5. Cellule photovoltaïque selon l'une des revendications 2 à 4, caractérisée en ce que la zone isolante (4) s'étend en périphérie de la seconde surface (1 1 ) du substrat (1 ). 5. Photovoltaic cell according to one of claims 2 to 4, characterized in that the insulating zone (4) extends at the periphery of the second surface (1 1) of the substrate (1).
6. Cellule photovoltaïque selon l'une des revendications 2 à 5, caractérisée en ce que la première région semi-conductrice (2) de la diode de dérivation s'étend sur la zone isolante (4). 6. Photovoltaic cell according to one of claims 2 to 5, characterized in that the first semiconductor region (2) of the bypass diode extends over the insulating region (4).
7. Cellule photovoltaïque selon l'une des revendications 2 à 6, caractérisée en ce que la zone isolante (4) présente une concentration de porteurs libres inférieure à 1014 at.cm"3. 7. Photovoltaic cell according to one of claims 2 to 6, characterized in that the insulating zone (4) has a concentration of free carriers less than 10 14 at.cm- 3 .
8. Cellule photovoltaïque selon l'une des revendications 1 à 7, caractérisée en ce que chacune des première ou seconde régions semi-conductrices (2, 3) de la diode de dérivation comporte : Photovoltaic cell according to one of claims 1 to 7, characterized in that each of the first or second semiconductor regions (2, 3) of the bypass diode comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ;  phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type P-  - boron or aluminum atoms when their conductivity type is the type P-
9. Cellule photovoltaïque selon l'une des revendications 1 à 8, caractérisée en ce que chacune des première ou seconde zones semi-conductrices (100, 1 10) comporte : 9. Photovoltaic cell according to one of claims 1 to 8, characterized in that each of the first or second semiconductor zones (100, 1 10) comprises:
- des atomes de phosphore ou d'arsenic lorsque leur type de conductivité est le type n ;  phosphorus or arsenic atoms when their conductivity type is n-type;
- des atomes de bore ou d'aluminium lorsque leur type de conductivité est le type p.  boron or aluminum atoms when their conductivity type is the p type.
10. Cellule photovoltaïque selon l'une des revendications 1 à 9, caractérisée en ce que le matériau semi-conducteur du substrat (1 ) est à base de silicium cristallin. 10. Photovoltaic cell according to one of claims 1 to 9, characterized in that the semiconductor material of the substrate (1) is based on crystalline silicon.
1 1 . Procédé de fabrication d'une cellule photovoltaïque selon l'une des revendications 1 à 10, comportant les étapes : 1 1. A method of manufacturing a photovoltaic cell according to one of claims 1 to 10, comprising the steps:
a) prévoir : predictable :
- un substrat (1 ) d'un matériau semi-conducteur dopé d'un premier type de conductivité, le substrat (1 ) comprenant des première et seconde surfaces (10, 1 1 ) opposées, et quatre surfaces latérales (12) opposées deux à deux reliant les première et seconde surfaces (10, 1 1 ) ;  a substrate (1) of a doped semiconductor material of a first conductivity type, the substrate (1) comprising opposite first and second surfaces (10, 1 1), and four opposite lateral surfaces (12). two connecting the first and second surfaces (10, 1 1);
- des première et seconde zones semi-conductrices (100, 1 10), respectivement dopées du premier et d'un second type de conductivité, et s'étendant respectivement sous les première et seconde surfaces (10, 1 1 ) du substrat (1 ), chacune des première et seconde zones semi-conductrices (100, 1 10) étant destinée à être en contact avec une électrode (E) ;  first and second semiconductor regions (100, 1 10) respectively doped with the first and a second conductivity type, and respectively extending under the first and second surfaces (10, 1 1) of the substrate (1 ), each of the first and second semiconductor regions (100, 1 10) being intended to be in contact with an electrode (E);
b) former une diode de dérivation électriquement isolée du substrat (1 ), et comprenant une jonction entre des première et seconde régions semi- conductrices (2, 3) respectivement dopées du premier et du second type de conductivité, les première et seconde régions semi-conductrices (2, 3) de la diode de dérivation étant respectivement situées à distance des première et seconde zones semi-conductrices (100, 1 10) ; b) forming an electrically isolated bypass diode of the substrate (1), and comprising a junction between first and second semiconductor regions (2, 3) respectively doped with the first and second conductivity type, the first and second semi regions -conductors (2, 3) of the bypass diode being respectively located at a distance from the first and second semiconductor regions (100, 1 10);
le procédé étant caractérisé en ce que l'étape b) est exécutée de sorte que les première et seconde régions semi-conductrices (2, 3) de la diode de dérivation sont respectivement en contact direct avec les seconde et première zones semi- conductrices (1 10, 100), et de sorte que la seconde région semi-conductrice (3) de la diode de dérivation est en contact direct avec les quatre surfaces latérales (12) du substrat (1 ). the method being characterized in that step b) is performed so that the first and second semiconductor regions (2, 3) of the bypass diode are respectively in direct contact with the second and first semiconductor regions ( 1 10, 100), and so that the second semiconductor region (3) of the bypass diode is in direct contact with the four side surfaces (12) of the substrate (1).
12. Procédé selon la revendication 1 1 , caractérisé en ce que l'étape a) comporte les étapes : 12. Method according to claim 1 1, characterized in that step a) comprises the steps:
a1 ) prévoir le substrat (1 ) du matériau semi-conducteur dopé du premier type de conductivité, le substrat (1 ) comprenant les première et seconde surfaces (10, 1 1 ) opposées, et les quatre surfaces latérales (12) opposées deux à deux reliant les première et seconde surfaces (10, 1 1 ) ; a2) former une couche diélectrique (8) à la seconde surface (1 1 ) et aux quatre surfaces latérales (12), la couche diélectrique (8) comportant des dopants du second type de conductivité ; a1) providing the substrate (1) of the doped semiconductor material of the first conductivity type, the substrate (1) comprising the first and second opposed surfaces (10, 1 1), and the four opposite side surfaces (12) two connecting the first and second surfaces (10, 1 1); a2) forming a dielectric layer (8) at the second surface (11) and the four side surfaces (12), the dielectric layer (8) having dopants of the second conductivity type;
a3) diffuser les dopants du second type de conductivité depuis la couche diélectrique (8) jusqu'à la seconde surface (1 1 ) et jusqu'aux quatre surfaces latérales (12) de manière à former respectivement la seconde zone semi- conductrice (1 10) et la seconde région semi-conductrice (3) de la diode de dérivation. a3) diffusing the dopants of the second conductivity type from the dielectric layer (8) to the second surface (1 1) and to the four lateral surfaces (12) so as to form the second semiconductor region (1 10) and the second semiconductor region (3) of the bypass diode.
13. Procédé selon la revendication 12, caractérisé en ce que l'étape a) comporte une étape a4) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la première surface (10) du substrat (1 ) de manière à former la première zone semi-conductrice (100). 13. The method of claim 12, characterized in that step a) comprises a step a4) of incorporating the dopants of the first conductivity type, preferably in the gas phase, to the first surface (10) of the substrate. (1) to form the first semiconductor region (100).
14. Procédé selon la revendication 12 ou 13, caractérisé en ce que l'étape b) comporte une étape b1 ) consistant à éliminer au moins une partie de la couche diélectrique (8) formée lors de l'étape a2). 14. The method of claim 12 or 13, characterized in that step b) comprises a step b1) of removing at least a portion of the dielectric layer (8) formed in step a2).
15. Procédé selon la revendication 14, caractérisé en ce que l'étape b1 ) est exécutée de manière à exposer une partie, de préférence périphérique, de la seconde surface (1 1 ) du substrat (1 ) ; et en ce que l'étape b) comporte une étape b2) consistant à incorporer les dopants du premier type de conductivité, de préférence en phase gazeuse, jusqu'à la partie de la seconde surface (1 1 ) du substrat (1 ) exposée après l'étape b1 ) ; les étapes b2) et a4) étant de préférence concomitantes lorsque la revendication 14 dépend de la revendication 13. 15. The method of claim 14, characterized in that step b1) is performed so as to expose a portion, preferably peripheral, of the second surface (1 1) of the substrate (1); and in that step b) comprises a step b2) of incorporating the dopants of the first conductivity type, preferably in the gas phase, to the portion of the second surface (1 1) of the exposed substrate (1) after step b1); steps b2) and a4) being preferably concomitant when claim 14 depends on claim 13.
16. Procédé selon la revendication 15, caractérisé en ce que l'étape b2) est exécutée de manière à former : 16. The method of claim 15, characterized in that step b2) is executed so as to form:
- une zone isolante (4) s'étendant entre la seconde région semi-conductrice (3) de la diode de dérivation et la seconde zone semi-conductrice (1 10) ;  an insulating zone (4) extending between the second semiconductor region (3) of the bypass diode and the second semiconductor zone (1 10);
- la première région semi-conductrice (2) de la diode de dérivation s'étendant sur la zone isolante (4). the first semiconductor region (2) of the bypass diode extending over the insulating zone (4).
17. Procédé selon la revendication 14, caractérisé en ce que l'étape b1 ) est exécutée de manière à éliminer en totalité la couche diélectrique (8) formée lors de l'étape a2) ; et en ce que l'étape b) comporte une étape b2') consistant à :17. The method of claim 14, characterized in that step b1) is performed so as to completely eliminate the dielectric layer (8) formed in step a2); and in that step b) comprises a step b2 ') consisting of:
- appliquer une solution comprenant les dopants du premier type de conductivité sur une partie, de préférence périphérique, de la seconde surface (1 1 ) du substratapplying a solution comprising the dopants of the first type of conductivity to a part, preferably a peripheral part, of the second surface (1 1) of the substrate
(1 ) ; (1);
- irradier la partie de la seconde surface (1 1 ) du substrat (1 ) avec un laser (7).  - irradiating the portion of the second surface (1 1) of the substrate (1) with a laser (7).
18. Procédé selon la revendication 17, caractérisé en ce que l'étape b2') est exécutée de manière à former : 18. The method of claim 17, characterized in that step b2 ') is executed so as to form:
- une zone isolante (4) s'étendant entre la seconde région semi-conductrice (3) de la diode de dérivation et la seconde zone semi-conductrice (1 10) ;  an insulating zone (4) extending between the second semiconductor region (3) of the bypass diode and the second semiconductor zone (1 10);
- la première région semi-conductrice (2) de la diode de dérivation s'étendant sur la zone isolante (4).  the first semiconductor region (2) of the bypass diode extending over the insulating zone (4).
PCT/FR2016/052691 2015-10-19 2016-10-18 Photovoltaic cell with bypass diode WO2017068277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559932A FR3042644B1 (en) 2015-10-19 2015-10-19 PHOTOVOLTAIC CELL WITH DERIVATION DIODE
FR1559932 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017068277A1 true WO2017068277A1 (en) 2017-04-27

Family

ID=54608899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052691 WO2017068277A1 (en) 2015-10-19 2016-10-18 Photovoltaic cell with bypass diode

Country Status (2)

Country Link
FR (1) FR3042644B1 (en)
WO (1) WO2017068277A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277820A1 (en) * 2010-05-17 2011-11-17 The Boeing Company Solar Cell Structure Including A Silicon Carrier Containing A By-Pass Diode
US20120234388A1 (en) * 2009-08-26 2012-09-20 Robert Stancel Assembly for electrical breakdown protection for high current, non-elongate solar cells with electrically conductive substrates
US20140102531A1 (en) 2012-10-16 2014-04-17 Solexel, Inc. Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules
US20140166072A1 (en) * 2011-01-31 2014-06-19 Roland Schilling Photovoltaic assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120234388A1 (en) * 2009-08-26 2012-09-20 Robert Stancel Assembly for electrical breakdown protection for high current, non-elongate solar cells with electrically conductive substrates
US20110277820A1 (en) * 2010-05-17 2011-11-17 The Boeing Company Solar Cell Structure Including A Silicon Carrier Containing A By-Pass Diode
US20140166072A1 (en) * 2011-01-31 2014-06-19 Roland Schilling Photovoltaic assembly
US20140102531A1 (en) 2012-10-16 2014-04-17 Solexel, Inc. Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREEN M A ET AL: "SILICON SOLAR CELLS WITH INTEGRAL BYPASS DIODES", PHOTOVOLTAIC SPECIALISTS CONFERENCE. KISSIMMEE, MAY 1 - 4, 1984; [PHOTOVOLTAIC SPECIALISTS CONFERENCE], NEW YORK, IEEE, US, vol. CONF. 17, no. 1984, 1 May 1984 (1984-05-01), pages 513 - 517, XP000013435 *

Also Published As

Publication number Publication date
FR3042644A1 (en) 2017-04-21
FR3042644B1 (en) 2017-12-15

Similar Documents

Publication Publication Date Title
US20080251126A1 (en) Photovoltaic device and method for manufacturing the same
EP2091086A2 (en) Semi-conductor device with heterojunctions
FR2988908A1 (en) METHOD FOR MANUFACTURING A PHOTOVOLTAIC CELL WITH REAR-FACED INTERFIGITE CONTACTS
EP3289616B1 (en) Photovoltaic cell and its fabrication method
EP3331031B1 (en) Method for manufacturing a photovoltaic cell and photovoltaic cell
US9537041B2 (en) Emitters of a backside contact solar cell
EP3682485B1 (en) Process for manufacturing a homojunction photovoltaic cell
EP3331030B1 (en) Passivation structure and process
WO2017068277A1 (en) Photovoltaic cell with bypass diode
EP3671864B1 (en) Process for fabrication a junction with interband tunnel effect
EP3316319B1 (en) Photovoltaic cells with rear contacts and their method for manufacturing
JP2008060161A (en) Optical detector, and method of manufacturing optical detector
EP3826077A1 (en) Method for manufacturing a photovoltaic cell
WO2016174352A1 (en) Process for manufacturing a photovoltaic cell
EP3660928B1 (en) Method for manufacturing photovoltaic cells
WO2022058238A1 (en) Method for manufacturing a passive-contact photovoltaic cell
EP4179577A1 (en) Solar cell manufacture
EP4060716A1 (en) Method for modifying a state of stress of at least one semiconductor layer
WO2021037846A1 (en) Method for manufacturing a photovoltaic cell
FR2964252A1 (en) Selective emitter structure i.e. photovoltaic cell, forming method, involves applying thermal energy on surface of substrate comprising temporary layer and residual zone, to simultaneously form final semiconductor layer and region
WO2013004923A1 (en) Method for producing a homojunction photovoltaic cell comprising a passivation thin film made from crystalline silicon oxide
WO2016066570A1 (en) Method for manufacturing a photovoltaic cell
FR3052293A1 (en) METHOD FOR MANUFACTURING A STACK OF ELECTRONIC DEVICES
EP2884543A1 (en) Photovoltaic cell and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806212

Country of ref document: EP

Kind code of ref document: A1