WO2017068155A1 - Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe - Google Patents

Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe Download PDF

Info

Publication number
WO2017068155A1
WO2017068155A1 PCT/EP2016/075454 EP2016075454W WO2017068155A1 WO 2017068155 A1 WO2017068155 A1 WO 2017068155A1 EP 2016075454 W EP2016075454 W EP 2016075454W WO 2017068155 A1 WO2017068155 A1 WO 2017068155A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
antenna
acquisition
main
source
Prior art date
Application number
PCT/EP2016/075454
Other languages
English (en)
Inventor
Pascal Cousin
Christophe MELLE
Alain KARAS
Original Assignee
Zodiac Data Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zodiac Data Systems filed Critical Zodiac Data Systems
Priority to US15/769,574 priority Critical patent/US10700407B2/en
Priority to EP16784538.7A priority patent/EP3365943B1/fr
Publication of WO2017068155A1 publication Critical patent/WO2017068155A1/fr
Priority to IL258834A priority patent/IL258834B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands

Definitions

  • An acquisition aiding antenna device and an antenna system for tracking a moving target including such a device for assisting acquisition.
  • the invention applies to monitoring stations, tracking, telemetry and flight tests of aircraft or aircraft (aircraft, missiles, drones ...) or in the space domain as the receipt of data from scientific and observation payloads (low-orbiting satellites), orbit control during the launch phase for all types of satellites (LEO, MEO, GEO), for both ground-based and well-grounded antenna systems on warships or civilians, air defense systems, monopulse and multi-band radar systems.
  • the main antenna is particularly directive with a fine emission beam, having an opening angle of a few degrees. Given the fineness of its beam, it is difficult to point the main antenna towards the target, especially when it is moving quickly.
  • auxiliary antennas intended to be attached to main antennas in a telemetry station.
  • This acquisition aid antenna is generally attached to the main antenna and has a much wider lobe than that of the main antenna (between 15 and 30 °, ie up to 20 times that of the main antenna). ).
  • the role of the acquisition support antenna is to facilitate rapid acquisition and ensure short-range pursuit. Once the main antenna is properly oriented and the received signal level from the target is sufficient to allow reception by the main antenna, the signal is switched to the main antenna, without loss of pursuit when the target is at a good distance.
  • the acquisition aid antenna is also used to retrieve telemetry data in the event of loss of signal by the main antenna.
  • the acquisition aid antenna makes it possible to continue tracking a moving target (drone, airplane or missile, for example) when the target is near or moving rapidly.
  • Switching from the main antenna to the acquisition aid antenna can also be carried out as a preventive measure when the proximity of the target may cause saturation of the radio frequency equipment.
  • Acquisition assistance antennas comprising an antenna source and a small diameter parabolic reflector, the antenna source being disposed at the focus of the reflector.
  • a disadvantage of this type of antenna is that, the reflector being of small diameter, the antenna source masks a large part of the reflector. As a result, the acquisition assist antenna exhibits poor performance and a poor reception pattern (having high amplitude side lobes).
  • Acquisition assistance antennas are also known comprising a plane array of radiating elements.
  • the bandwidth of the network is limited, which can lead to the use of multiple networks in parallel to achieve multi-band reception, and impact the cost and size of the support antenna. acquisition.
  • An object of the invention is to propose an antenna system including an antenna for assisting acquisition, which has a small footprint and good performance in terms of performance and quality of the radiation pattern.
  • an antenna system for tracking a moving target comprising: a main antenna device comprising:
  • a parabolic reflector capable of reflecting a radiation emitted by a target according to a first reception pattern having a main reception lobe having a first opening angle
  • a source of main antenna adapted to receive the radiation reflected by the parabolic reflector
  • An acquisition antenna device mounted fixedly relative to the main antenna device comprising:
  • a multi-band acquisition aid antenna source adapted to receive radiation emitted by a target according to a second reception pattern having a main reception lobe having a second opening angle
  • a lens disposed in the main reception lobe of the acquisition aid antenna source for concentrating the radiation received from the target towards the antenna source, so as to receive the radiation emitted by the target according to a third reception pattern having a main reception lobe having a third opening angle smaller than the second opening angle and greater than the first opening angle.
  • the proposed acquisition assist antenna device enables target radiation to be focused on the antenna source while having a small footprint.
  • the diameter of the device can be in the range of 1.5 to 5 wavelengths, which allows the acquisition antenna device to be placed on the side of the larger main antenna device. diameter.
  • the use of a lens disposed in the main receiving lobe of the acquisition-aid antenna source makes it possible to adjust the opening angle of the acquisition-assist antenna device, and provides a good performance while having a small footprint.
  • the proposed system makes it possible in particular to use an acquisition antenna source identical to that used for the main antenna device.
  • the lens makes it possible to reduce the angle of aperture of the main lobe of the antenna source of assistance with the acquisition of a third angle / second angle quotient between 1 / 6.5 and 1 / 3.25 ,
  • the acquisition antenna source comprises a plurality of radiating assemblies, each radiating assembly being adapted to receive radiation in a given frequency band, different from the frequency bands received by the other radiating assemblies, and in which radiating ensemble in the lowest frequency range has a phase center located at the focal point of the lens,
  • the other radiating assemblies have phase centers located on an optical axis of the lens while being offset with respect to the focal point of the lens,
  • the radiating elements are arranged such that the higher the frequency range of a radiating element, the closer the phase center of the radiating element is to the lens,
  • the lens is configured to transform a quasi-plane wave received from the target into a spherical wave, the spherical wave being emitted towards the acquisition antenna source,
  • the lens is formed in at least one block of material, the material having a density of between 1.05 and 1.15, and a relative permittivity (or dielectric constant) of between 2.5 and 2.7,
  • the material forming the lens is a polymeric material, preferably a polystyrene-based material,
  • the main antenna source and the acquisition antenna source are identical to each other.
  • FIGS. 1 and 2 schematically represent an antenna system for tracking a moving target, according to an embodiment of the invention
  • FIG. 3 schematically represents, in longitudinal section, an antenna device for assisting the acquisition
  • FIG. 4 schematically represents, in longitudinal section, a lens of the device for assisting acquisition
  • the antenna system 1 shown comprises a main antenna device 2 and an associated auxiliary antenna device 3.
  • the main antenna device 2 comprises a main antenna source 4 and a parabolic reflector 5.
  • the main antenna source 4 is positioned at the focus of the parabolic reflector 5.
  • the main antenna source 4 is held in this position by a support 6 for fixing the main antenna source 4 on the parabolic reflector 5.
  • the main antenna source 4 may be a multiband source, for example a multiband source as described in the document FR 3 007 215. Such a source is able to transmit and / or receive telemetry signals selectively in each of the bands. frequency L (1 GHz to 2GHz), S (2GHz to 4GHz) and C (4 GHz to 8GHz).
  • the main antenna source 4 is adapted to illuminate the parabolic reflector 5 with an opening angle at -10 dB approximately 70 degrees around the main receiving axis X 1 of the source 4.
  • the source main antenna 4 substantially illuminates the entire reflective surface of the parabolic reflector 5.
  • the parabolic reflector 5 is adapted to reflect radiation emitted by a target towards the source 4 with an opening angle at -10dB ⁇ of between 2 and 8 degrees.
  • the auxiliary antenna device 3 (referred to as an "acquisition antenna device") is arranged adjacent to the main antenna device 2.
  • the acquisition aid antenna device 3 is mounted fixed on the main antenna device 2. Thus, when tracking a moving target, the two devices 2 and 3 are driven together in an identical displacement.
  • the acquisition aid antenna device 3 comprises an acquisition aid antenna source 7, a lens holder 8 and a lens 9.
  • the antenna system 1 also comprises a support arm 10 connecting the acquisition aid antenna device 3 to the main antenna device 2.
  • the support arm 10 is fixed on the one hand to the parabolic reflector 5 of the main antenna device 2 and on the other hand to the casing of the acquisition aid antenna source 7.
  • the support arm 10 holds the acquisition aid antenna device 3 in a fixed position relative to the main antenna device 2.
  • the acquisition aid antenna source 7 is identical to the main antenna source 4.
  • the source of acquisition aid has the same characteristics of frequency bands, polarization and diagrams (sum and difference) as the main antenna source.
  • the source An acquisition support antenna can be used temporarily as the main antenna source.
  • the acquisition assist antenna device is illustrated more precisely in FIG. 3.
  • the acquisition aid antenna source 7 has a main reception axis X2, parallel to the main reception axis X1 of the main antenna source.
  • the acquisition aid antenna source 7 comprises a plurality of radiating assemblies 1 1 to 16 capable of generating radiation respectively in the frequency bands C, S and L. Each radiating assembly 1 1 to 16 is clean. receiving radiation according to a first reception pattern having a reception main lobe oriented along the main reception axis X2.
  • the radiating assemblies comprise:
  • a first delta radiating assembly 1 1 able to receive a delta radiation in the first frequency band L
  • a first sigma radiating assembly 12 capable of receiving a sigma radiation in the first frequency band L
  • a second delta radiating assembly 13 able to receive a delta radiation in the second frequency band S
  • a second sigma radiating assembly 14 able to receive a sigma radiation in the second frequency band S
  • a third delta radiating assembly 15 capable of receiving delta radiation in the third frequency band C
  • a third sigma radiating assembly 16 capable of receiving a sigma radiation in the third frequency band C.
  • the main reception lobe has an opening angle ⁇ .
  • An aperture angle ⁇ denotes the aperture angle of the acquisition assist antenna source 7 alone, without the lens 9.
  • the aperture angle ⁇ is about 130 degrees at - 10dB.
  • the lens 9 is positioned on the main reception axis X2 of the acquisition aid antenna source 7, the optical axis of the lens 9 coinciding with the main receiving axis of the source 7.
  • the lens 9 is disposed with respect to the acquisition aid antenna source 7 so that the source receives all the radiation transmitted by the lens.
  • the lens 9 is a convergent lens having a first convex surface 17 (also called “inner surface”) and a second convex surface 18 (also called “outer surface”), opposite to the first convex surface 17.
  • the first convex surface 17 is directed towards the source 7.
  • the second convex surface 18 is directed towards a target to be detected.
  • the lens 9 is configured to focus the radiation emitted by the target to the acquisition assist antenna source 7, so as to obtain a reception pattern of the acquisition assist antenna device having a receiving main lobe having an opening angle ⁇ less than the opening angle ⁇ .
  • the lens 9 is sized to reduce the opening angle of the main lobe with a ⁇ / ⁇ quotient between 1 / 6.5 and 1 / 3.25.
  • the angle ⁇ is thus between 20 and 40 degrees at -10 dB (depending on the frequency band considered).
  • the lens holder 8 makes it possible to mount the fixed lens 9 with respect to the acquisition-aid antenna source 7.
  • the lens holder 8 has a generally tubular shape.
  • the lens holder 8 comprises a wall 19 of generally cylindrical shape of revolution defining a first opening 21 and a second opening 22.
  • the lens support 8 is fixed on the one hand to the source of acquisition aid 7, the source extending through the first opening 21, and secondly to the lens 9, the lens 9 obstructing the second opening 22.
  • the lens 9 has a point focus.
  • the assembly radiating in the lowest frequency range (in this case, the assembly 12 radiating in the band L) has its phase center located at the focus of the lens 9.
  • the radiating assemblies in the other frequency ranges (in this case, the sets 14 and 16 radiating in the strips S and C) have phase centers located on the optical axis of the lens 9 being offset from the focal point of the lens 9.
  • the radiating assemblies 12, 14 and 16 are arranged so that the higher the frequency range of a radiating assembly is high, the phase center of the radiating assembly is away from the focus of the lens 9 and close to the first surface 17 of the lens 9.
  • the phase centers of the radiating elements in the ranges of the highest frequency (in this case, the sets 14 and 16 radiating in the bands S and C) are located between the focus of the lens 9 and the lens 9.
  • the radiating assemblies 12, 14 and 16 By controlling the position of the phase centers of the radiating assemblies 12, 14 and 16 with respect to the focal point of the lens 9, it is possible to adjust the opening angle ⁇ for each of the frequency ranges L, S and C , on a bandwidth of 2 octaves.
  • the radiating assemblies 12, 14 and 16 may be arranged along the optical axis of the lens so as to minimize the variation of the opening angle ⁇ as a function of the reception frequency range L, S and C.
  • the lens 9 is dimensioned to transform a quasi-plane wave received from the target into a spherical wave, the spherical wave being emitted towards the antenna source 7, in the lowest frequency range (in this case, the band L).
  • the lens 9 can be formed by machining in one or more blocks of material.
  • the material used preferably has a density of between 1.05 and 1.15, and a relative permittivity of between 2.5 and 2.7.
  • the material forming the lens 9 is a dielectric material, such as a polymeric material, having low dielectric losses (loss tangent ⁇ 0.0007 to 10 GHz) in the reception frequency ranges of the light source. acquisition and a refractive index greater than 1.5.
  • the polymeric material may be a polystyrene and hydrocarbon material.
  • An example of a suitable material is a material sold under the name Rexolite® by San Diego Plastics, Inc., obtained by crosslinking a polystyrene with a divinylbenzene.
  • the lens 9 is formed of two pieces of material 23 and 24.
  • the two pieces 23 and 24 are fixed to one another by means of screws 25. It is thus it is possible to manufacture each part 23, 24 independently of the other, and in particular to machine each convex surface 17 and 18 separately.
  • Figure 5 schematically shows the parameterization of the lens for calculating the equations of the surfaces 17 and 18 of the lens.
  • L Q distance between the focus 0 1 and the first convex surface 17
  • L 0 ' distance between the point 0 2 and the first convex surface 17
  • T thickness of the lens
  • ⁇ ⁇ maximum angle of focus by the ray lens at point 0 2 ,
  • T ldB level of the field of the incident wave at the edge of the lens
  • T 2dB level of the field of the refracted wave at the edge of the lens
  • n index of the material forming the lens
  • a point M 1 of coordinates x, z ⁇ ), as a point of intersection of a radius with the first surface 17 of the lens, and a point M 2 , of coordinates (x 2 , z 2 ), a point of intersection of the same radius with the second surface 18 of the lens.
  • the resolution of the differential equation can be achieved by a Runge Kutta method, order 4.
  • the resolution of the differential equation leads to obtaining two series of points M 1 and M 2 (each point being defined by its coordinates (x z and (3 ⁇ 4, z 2 )) of the first surface 17 and the second surface 18 of the lens.
  • the surface equation can be calculated as a polynomial by interpolation of the series of points.
  • the lens is thus specifically shaped to have a focal length adjusted to the different phase centers of each sub-band of the source, which allows to achieve excellent performance at even the lowest frequencies.
  • the diameter of the acquisition aid antenna is thus minimized, as is its weight. For example, a lens 30 to 40 centimeters in diameter can simultaneously cover the L, S and C bands of the telemetry with the correct opening angle and reduced side lobes.
  • the use of a lens disposed in the receiving beam of the acquisition-aid antenna source makes it possible to adjust the opening angle of the acquisition-aid antenna device, and allows to obtain a good performance while having a small footprint.
  • the multi-band source based on differentiated radiating elements is a solution that confers good merit factors on the main antenna.
  • the proposed system makes it possible to use an acquisition antenna source identical to the main antenna source. Reusing the main antenna source for acquisition simplifies the design and maintenance of the antenna system, although it is still possible to use different sources.
  • the topology of the tracking device is thus identical for the two antennas.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne un dispositif d'antenne d'aide à l'acquisition (3), destiné à être fixé à un dispositif d'antenne principale, le dispositif d'antenne d'aide à l'acquisition (3) comprenant : - une source d'antenne d'aide à l'acquisition (7) multibande, propre à recevoir un rayonnement émis par une cible, et - une lentille (9) disposée dans le lobe principal de réception de la source d'antenne d'aide à l'acquisition (7) pour concentrer le rayonnement reçu de la cible vers la source d'antenne d'aide à l'acquisition (7). Ce dispositif permet de détecter des cibles qui sont hors du faisceau utile du dispositif d'antenne principale, et d'utiliser une source d'antenne d'aide à l'acquisition identique à la source du dispositif d'antenne principale.

Description

DISPOSITIF D'ANTENNE D'AIDE A L'ACQUISITION ET SYSTEME D'ANTENNE POUR LE SUIVI D'UNE CIBLE EN MOUVEMENT ASSOCIE
DOMAINE DE L'INVENTION
L'invention concerne un dispositif d'antenne d'aide à l'acquisition ainsi qu'un système d'antenne pour le suivi d'une cible en mouvement incluant un tel dispositif d'aide à l'acquisition.
L'invention s'applique aux stations de suivi, de poursuite, pour la télémesure et les essais en vol d'engins ou d'aéronef (avions, missiles, drones...) ou dans le domaine spatial comme la réception de données des charges utiles scientifiques et d'observation (satellites défilants en orbite basse), le contrôle en orbite durant la phase de lancement pour tous types de satellites (LEO, MEO, GEO), aussi bien pour des systèmes d'antenne au sol ou bien embarqués sur des navires de guerre ou civils, des systèmes de défense aérienne, des systèmes de radars monopulse et multi-bandes.
ETAT DE LA TECHNIQUE
Dans une station de télémesure, l'antenne principale est particulièrement directive avec un faisceau d'émission fin, ayant un angle d'ouverture de quelques degrés. Compte tenu de la finesse de son faisceau, il est difficile de pointer l'antenne principale vers la cible, en particulier lorsque celle-ci se déplace rapidement.
Les antennes d'aide à l'acquisition (en anglais, « Acquisition Aid Antenna ») sont des antennes auxiliaires destinées à être fixées à des antennes principales dans une station de télémesure.
Cette antenne d'aide à l'acquisition est généralement solidaire de l'antenne principale et présente un lobe nettement plus large que celui de l'antenne principale (entre 15 et 30°, soit jusqu'à 20 fois celui de l'antenne principale). Le rôle de l'antenne d'aide à l'acquisition est de faciliter une acquisition rapide et d'assurer une poursuite à faible distance. Une fois que l'antenne principale est correctement orientée et que le niveau du signal reçu provenant de la cible est suffisant pour permettre une réception par l'antenne principale, le signal est commuté vers l'antenne principale, sans perte de la poursuite lorsque la cible est à bonne distance.
L'antenne d'aide à l'acquisition est également utilisée pour récupérer des données de télémesure en cas de perte de signal par l'antenne principale. L'antenne d'aide à l'acquisition permet en particulier de continuer à poursuivre une cible en mouvement (drone, avion ou missile par exemple) lorsque la cible est proche ou se déplace rapidement.
Il est ainsi possible de commuter entre l'antenne principale et l'antenne d'aide à l'acquisition afin de maintenir une continuité du signal de télémesure.
Une commutation de l'antenne principale vers l'antenne d'aide à l'acquisition peut également être réalisée à titre préventif lorsque la proximité de la cible risque d'entraîner une saturation des équipements radiofréquence.
On connaît des antennes d'aide à l'acquisition comprenant une source d'antenne et un réflecteur parabolique de petit diamètre, la source d'antenne étant disposée au foyer du réflecteur. Un inconvénient de ce type d'antenne est que, le réflecteur étant de petit diamètre, la source d'antenne masque une partie importante du réflecteur. Cela a pour conséquence que l'antenne d'aide à l'acquisition présente un rendement médiocre et un diagramme de réception de mauvaise qualité (présentant des lobes secondaires d'amplitude élevée).
On connaît également des antennes d'aide à l'acquisition comprenant un réseau plan d'éléments rayonnants. Cependant, la largeur de bande du réseau est limitée, ce qui peut conduire à l'utilisation de plusieurs réseaux en parallèle pour obtenir une réception multi-bande, et impacte le coût et l'encombrement de l'antenne d'aide à l'acquisition.
RESUME DE L'INVENTION
Un but de l'invention est de proposer un système d'antenne incluant une antenne d'aide à l'acquisition, qui présente un encombrement réduit et de bonnes performances en termes de rendement et de qualité du diagramme de rayonnement.
Ce but est atteint dans le cadre de la présente invention grâce à un système d'antenne pour le suivi d'une cible en mouvement, comprenant : · un dispositif d'antenne principale comprenant :
- un réflecteur parabolique propre à réfléchir un rayonnement émis par une cible selon un premier diagramme de réception présentant un lobe principal de réception ayant un premier angle d'ouverture,
- une source d'antenne principale propre à recevoir le rayonnement réfléchi par le réflecteur parabolique, et
• un dispositif d'antenne d'aide à l'acquisition monté fixe par rapport au dispositif d'antenne principale, comprenant :
- une source d'antenne d'aide à l'acquisition multibande, propre à recevoir un rayonnement émis par une cible selon un deuxième diagramme de réception présentant un lobe principal de réception ayant un deuxième angle d'ouverture, et
- une lentille disposée dans le lobe principal de réception de la source d'antenne d'aide à l'acquisition pour concentrer le rayonnement reçu de la cible vers la source d'antenne, de manière à recevoir le rayonnement émis par la cible selon un troisième diagramme de réception présentant un lobe principal de réception ayant un troisième angle d'ouverture inférieur au deuxième angle d'ouverture et supérieur au premier angle d'ouverture.
Grâce à l'utilisation d'une lentille, le dispositif d'antenne d'aide à l'acquisition proposé permet de concentrer le rayonnement de la cible sur la source d'antenne tout en présentant un encombrement réduit. Le diamètre du dispositif peut être de l'ordre de 1 ,5 à 5 longueurs d'ondes, ce qui permet de placer le dispositif d'antenne d'aide à l'acquisition sur le côté du dispositif d'antenne principale de plus grand diamètre.
L'utilisation d'une lentille disposée dans le lobe principal de réception de la source d'antenne d'aide à l'acquisition permet d'ajuster l'angle d'ouverture du dispositif d'antenne d'aide à l'acquisition, et permet d'obtenir un bon rendement tout en présentant un encombrement réduit. Le système proposé permet en particulier d'utiliser une source d'antenne d'aide à l'acquisition identique à celle utilisée pour le dispositif d'antenne principale.
Le système proposé peut en outre présenter les caractéristiques suivantes :
- la lentille permet de diminuer l'angle d'ouverture du lobe principal de la source d'antenne d'aide à l'acquisition d'un quotient troisième angle / deuxième angle compris entre 1/6,5 et 1/3,25,
- la source d'antenne d'aide à l'acquisition comprend plusieurs ensembles rayonnants, chaque ensemble rayonnant étant propre à recevoir un rayonnement dans une bande de fréquences donnée, différente des bandes de fréquences reçus par les autres ensembles rayonnants, et dans lequel l'ensemble rayonnant dans la gamme de fréquences la plus basse a un centre de phase situé au foyer de la lentille,
- les autres ensembles rayonnants ont des centres de phase situés sur un axe optique de la lentille en étant décalés par rapport au foyer de la lentille,
- les éléments rayonnants sont disposés de sorte que plus la gamme de fréquence d'un élément rayonnant est élevée, plus le centre de phase de l'élément rayonnant est proche de la lentille,
- la lentille est configurée pour transformer une onde quasi-plane reçue de la cible en une onde sphérique, l'onde sphérique étant émise vers la source d'antenne d'aide à l'acquisition,
- la lentille est formée dans au moins un bloc de matériau, le matériau présentant une densité comprise entre 1 ,05 et 1 ,15, et une permittivité relative (ou constante diélectrique) comprise entre 2,5 et 2,7,
- le matériau formant la lentille est un matériau polymérique, de préférence un matériau à base de polystyrène,
- la source d'antenne principale et la source d'antenne d'aide à l'acquisition sont identiques entre elles. PRESENTATION DES DESSINS
D'autres caractéristiques et avantages assortiront encore de la description qui suit, laquelle est purement illustrative et non limitative, et doit être lue en regard des figures annexées, parmi lesquelles :
- les figures 1 et 2 représentent de manière schématique un système d'antenne pour le suivi d'une cible en mouvement, conforme à un mode de réalisation de l'invention,
- la figure 3 représente de manière schématique, en coupe longitudinale, un dispositif d'antenne d'aide à l'acquisition,
- la figure 4 représente de manière schématique, en coupe longitudinale, une lentille du dispositif d'aide à l'acquisition,
- la figure 5 représente de manière schématique le paramétrage de la lentille du dispositif d'antenne d'aide à l'acquisition. DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
Sur la figure 1 , le système d'antenne 1 représenté comprend un dispositif d'antenne principale 2 et un dispositif d'antenne auxiliaire 3 associé.
Le dispositif d'antenne principal 2 comprend une source d'antenne principale 4 et un réflecteur parabolique 5. La source d'antenne principale 4 est positionnée au foyer du réflecteur parabolique 5. La source d'antenne principale 4 est maintenue dans cette position par un support 6 permettant de fixer la source d'antenne principale 4 sur le réflecteur parabolique 5.
La source d'antenne principale 4 peut être une source multibande, par exemple une source multibande telle que décrite dans le document FR 3 007 215. Une telle source est propre à émettre et/ou recevoir des signaux de télémesure sélectivement dans chacune des bandes de fréquence L (1 GHz à 2GHz), S (2GHz à 4GHz) et C (4 GHz à 8GHz).
La source d'antenne principale 4 est propre à éclairer le réflecteur parabolique 5 avec un angle d'ouverture à -10dB a d'environ 70 degrés autour de l'axe principale de réception X1 de la source 4. Ainsi, la source d'antenne principale 4 éclaire sensiblement la totalité de la surface réfléchissante du réflecteur parabolique 5.
Le réflecteur parabolique 5 est propre à réfléchir un rayonnement émis par une cible vers la source 4 avec un angle d'ouverture à -10dB β compris entre 2 et 8 degrés.
Le dispositif d'antenne auxiliaire 3 (appelé « dispositif d'antenne d'aide à l'acquisition ») est disposé à côté du dispositif d'antenne principal 2. Le dispositif d'antenne d'aide à l'acquisition 3 est monté fixe sur le dispositif d'antenne principale 2. Ainsi, lors du suivi d'une cible en mouvement, les deux dispositifs 2 et 3 sont entraînés ensemble, selon un déplacement identique.
Le dispositif d'antenne d'aide à l'acquisition 3 comprend une source d'antenne d'aide à l'acquisition 7, un support de lentille 8 et une lentille 9.
Le système d'antenne 1 comprend également un bras de support 10 reliant le dispositif d'antenne d'aide à l'acquisition 3 au dispositif d'antenne principale 2. Le bras de support 10 est fixé d'une part au réflecteur parabolique 5 du dispositif d'antenne principale 2 et d'autre part au carter de la source d'antenne d'aide à l'acquisition 7. Le bras de support 10 maintient le dispositif d'antenne d'aide à l'acquisition 3 dans une position fixe par rapport au dispositif d'antenne principale 2. Ainsi, au cours de l'acquisition de signaux de télémesure, le dispositif d'antenne d'aide à l'acquisition 3 et le dispositif d'antenne principal 2 sont déplacés simultanément, de manière identique.
Dans le mode de réalisation illustré sur les figures 1 et 2, la source d'antenne d'aide à l'acquisition 7 est identique à la source d'antenne principale 4.
Cette caractéristique présente l'avantage de ne pas nécessiter un développement spécifique pour la source d'antenne d'aide à l'acquisition. De cette manière, la source d'aide à l'acquisition présente les mêmes caractéristiques de bandes de fréquences, de polarisation et de diagrammes (somme et différence) que la source d'antenne principale. De plus, en cas de panne de la source d'antenne principale, la source d'antenne d'aide à l'acquisition peut être utilisée de manière provisoire comme source d'antenne principale.
Le dispositif d'antenne d'aide à l'acquisition est illustré plus précisément sur la figure 3.
La source d'antenne d'aide à l'acquisition 7 présente un axe principal de réception X2, parallèle à l'axe principal de réception X1 de la source d'antenne principale.
La source d'antenne d'aide à l'acquisition 7 comprend une pluralité d'ensemble rayonnants 1 1 à 16 propres à générer un rayonnement respectivement dans les bandes de fréquence C, S et L. Chaque ensemble rayonnant 1 1 à 16 est propre à recevoir un rayonnement selon un premier diagramme de réception présentant un lobe principal de réception orienté selon l'axe principal de réception X2.
Plus précisément, les ensembles rayonnants comprennent :
- un premier ensemble rayonnant delta 1 1 propre à recevoir un rayonnement delta dans la première bande de fréquence L,
- un premier ensemble rayonnant sigma 12 propre à recevoir un rayonnement sigma dans la première bande de fréquence L,
- un deuxième ensemble rayonnant delta 13 propre à recevoir un rayonnement delta dans la deuxième bande de fréquence S,
- un deuxième ensemble rayonnant sigma 14 propre à recevoir un rayonnement sigma dans la deuxième bande de fréquence S,
- un troisième ensemble rayonnant delta 15 propre à recevoir un rayonnement delta dans la troisième bande de fréquence C, et
- un troisième ensemble rayonnant sigma 16 propre à recevoir un rayonnement sigma dans la troisième bande de fréquence C.
Dans chacune des bandes de fréquence L, S et C, le lobe principal de réception présente un angle d'ouverture γ. Par angle d'ouverture γ, on désigne l'angle d'ouverture de la source d'antenne d'aide à l'acquisition 7 seule, sans la lentille 9. L'angle d'ouverture γ est d'environ 130 degrés à - 10dB. La lentille 9 est positionnée sur l'axe principal de réception X2 de la source d'antenne d'aide à l'acquisition 7, l'axe optique de la lentille 9 étant confondu avec l'axe principal de réception de la source 7. La lentille 9 est disposée par rapport à la source d'antenne d'aide à l'acquisition 7 de sorte que la source reçoit la totalité du rayonnement transmis par la lentille.
La lentille 9 est une lentille convergente présentant une première surface convexe 17 (appelée également « surface intérieure ») et une deuxième surface convexe 18 (appelée également « surface extérieure »), opposée à la première surface convexe 17. La première surface convexe 17 est dirigée vers la source 7. La deuxième surface convexe 18 est dirigée vers une cible à détecter. La lentille 9 est configurée pour concentrer le rayonnement émis par la cible vers la source d'antenne d'aide à l'acquisition 7, de manière à obtenir un diagramme de réception du dispositif d'antenne d'aide à l'acquisition présentant un lobe principal de réception ayant un angle d'ouverture δ inférieur à l'angle d'ouverture γ.
Plus précisément, la lentille 9 est dimensionnée pour diminuer l'angle d'ouverture du lobe principal avec un quotient δ/γ compris entre 1/6,5 et 1/3,25. L'angle δ est ainsi compris entre 20 et 40 degrés à -10 dB (en fonction de la bande de fréquence considérée).
Le support de lentille 8 permet de monter la lentille 9 fixe par rapport à la source d'antenne d'aide à l'acquisition 7. Le support de lentille 8 présente une forme générale tubulaire. Le support de lentille 8 comprend une paroi 19 de forme générale cylindrique de révolution définissant une première ouverture 21 et une deuxième ouverture 22. Le support de lentille 8 est fixé d'une part à la source d'aide à l'acquisition 7, la source s'étendant à travers la première ouverture 21 , et d'autre part à la lentille 9, la lentille 9 obstruant la deuxième ouverture 22.
La lentille 9 présente un foyer ponctuel. L'ensemble rayonnant dans la gamme de fréquences la plus basse (en l'espèce, l'ensemble 12 rayonnant dans la bande L) a son centre de phase situé au foyer de la lentille 9. En revanche, les ensembles rayonnants dans les autres gammes de fréquences (en l'espèce, les ensembles 14 et 16 rayonnant dans les bandes S et C) ont des centres de phase situés sur l'axe optique de la lentille 9 en étant décalés par rapport au foyer de la lentille 9. Les ensembles rayonnants 12, 14 et 16 sont disposés de sorte que plus la gamme de fréquence d'un ensemble rayonnant est élevée, plus le centre de phase de l'ensemble rayonnant est éloigné du foyer de la lentille 9 et proche de la première surface 17 de la lentille 9. Ainsi, les centres de phase des éléments rayonnants dans les gammes de fréquence les plus élevées (en l'espèce, les ensembles 14 et 16 rayonnant dans les bandes S et C) sont situés entre le foyer de la lentille 9 et la lentille 9.
En contrôlant la position des centres de phase des ensembles rayonnants 12, 14 et 16 par rapport au foyer de la lentille 9, il est possible d'ajuster l'angle d'ouverture δ, pour chacune des gammes de fréquences L, S et C, sur une bande passante de 2 octaves. En particulier, les ensembles rayonnants 12, 14 et 16 peuvent être disposés le long de l'axe optique de la lentille de manière à minimiser la variation de l'angle d'ouverture δ en fonction de la gamme de fréquences de réception L, S et C.
La lentille 9 est dimensionnée pour transformer une onde quasi- plane reçue de la cible en une onde sphérique, l'onde sphérique étant émise vers la source d'antenne 7, dans la gamme de fréquences la plus basse (en l'espèce, la bande L).
Comme illustré sur les figures 3 et 4, la lentille 9 peut être formée par usinage dans un ou plusieurs blocs de matériau. Le matériau utilisé présente de préférence une densité comprise entre 1 ,05 et 1 ,15, et une permittivité relative comprise entre 2,5 et 2,7.
Le matériau formant la lentille 9 est un matériau diélectrique, tel qu'un matériau polymérique, présentant de faibles pertes diélectriques (tangente de perte < 0,0007 à 10 GHz) dans les gammes de fréquence de réception de la source d'aide à l'acquisition et un indice de réfraction supérieur à 1 ,5. Le matériau polymérique peut être un matériau à base de polystyrène et d'hydrocarbure. Un exemple de matériau approprié est un matériau commercialisé sous la dénomination Rexolite® par la société San Diego Plastics, Inc., obtenu par réticulation d'un polystyrène avec un divinylbenzène.
Néanmoins, d'autres matériaux polymériques pourraient être utilisés, tels que du polytétrafluoroéthylène expansé par exemple.
Dans l'exemple illustré sur les figures 3 et 4, la lentille 9 est formée en deux pièces de matériaux 23 et 24. Les deux pièces 23 et 24 sont fixées l'une à l'autre au moyen de vis 25. Il est ainsi possible de fabriquer chaque pièce 23, 24 indépendamment de l'autre, et en particulier d'usiner chaque surface convexe 17 et 18 séparément.
La figure 5 représente de manière schématique le paramétrage de la lentille permettant de calculer les équations des surfaces 17 et 18 de la lentille.
On définit les paramètres suivants :
D : diamètre de la lentille,
01 : foyer de la lentille,
02 : point de calcul à distance quasi-infini (grande par rapport à la distance L0),
LQ : distance entre le foyer 01 et la première surface convexe 17, L0' : distance entre le point 02 et la première surface convexe 17 (LQ' est une distance arbitraire très supérieure à la distance L0, par exemple L'o~10000 x L0),
T : épaisseur de la lentille,
gmax . ang|e maximum de focalisation par la lentille des rayons au foyer 01 de la lentille,
θ αχ : angle maximum de focalisation par la lentille des rayons au point 02 ,
TldB : niveau du champ de l'onde incidente au bord de la lentille T2dB : niveau du champ de l'onde réfractée au bord de la lentille n : indice du matériau formant la lentille. Pour obtenir un gain maximum, les deux conditions suivantes doivent être remplies :
1/ la lentille est collimatrice, c'est-à-dire que les rayons incidents parallèles sont focalisés sur la source, cela implique que |L0'| » \L0\ et L'o~10000 x L0,
21 la répartition d'amplitude du champ électromagnétique dans l'ouverture rayonnante en entrée de la lentille est la plus uniforme possible, cela implique que Τ2άΒαχ) « OdB.
On définit un point M1, de coordonnées x , z^), comme un point d'intersection d'un rayon avec la première surface 17 de la lentille, et un point M2, de coordonnées (x2, z2), un point d'intersection du même rayon avec la deuxième surface 18 de la lentille.
Les coordonnées des points M1 et M2 vérifient l'équation différentielle suivante :
Figure imgf000012_0001
zi
cos(^) =—
Figure imgf000012_0002
dans lequel a et b sont des exposants des lois d'illumination en cos(9) :
TldB
a =
ZOlo cos fl^)
Figure imgf000012_0003
avec rldB = -10 dB
et T7dR = -0.0001 dB
Figure imgf000013_0001
1
a7
sin(92)]2
(1
tan(<¾)
Δ= 3 22 4
Figure imgf000013_0002
α2
*2
¾ = + tan(<¾)
Avec les conditions initiales suivantes
x1 = 0 et z1 = LQ
x2 = 0 et z2 = L0 + T
La résolution de l'équation différentielle peut être réalisée par une méthode de Runge Kutta, d'ordre 4.
La résolution de l'équation différentielle conduit à l'obtention de deux séries de points M1 et M2 (chaque point étant défini par ses coordonnées (x^ z et (¾, z2) ) de la première surface 17 et de la deuxième surface 18 de la lentille.
A partir de chaque série de points, il est possible de calculer une équation de la surface correspondante de la lentille. L'équation de la surface peut être calculée sous la forme d'un polynôme, par interpolation de la série de points.
La lentille est ainsi spécifiquement conformée pour présenter une distance focale ajustée aux différents centres de phase de chaque sous- bande de la source, ce qui permet d'atteindre un excellent rendement aux fréquences même les plus faibles. Le diamètre de l'antenne d'aide à l'acquisition est ainsi minimisé, de même que son poids. Par exemple, une lentille de 30 à 40 centimètres de diamètre peut couvrir simultanément les bandes L, S et C de la télémesure avec le bon angle d'ouverture et des lobes secondaires réduits.
L'utilisation d'une lentille disposée dans le faisceau de réception de la source d'antenne d'aide à l'acquisition permet d'ajuster l'angle d'ouverture du dispositif d'antenne d'aide à l'acquisition, et permet d'obtenir un bon rendement tout en présentant un encombrement réduit.
La source multi-bandes à base d'éléments rayonnants différenciés est une solution qui confère de bons facteurs de mérite à l'antenne principale.
Le système proposé permet d'utiliser une source d'antenne d'aide à l'acquisition identique à la source d'antenne principale. La réutilisation de la source d'antenne principale pour l'acquisition permet de simplifier la conception et la maintenance du système d'antenne, même s'il demeure possible d'utiliser des sources différentes.
La topologie du dispositif de poursuite est ainsi identique pour les deux antennes.

Claims

REVENDICATIONS
1. Système d'antenne (1 ) pour le suivi d'une cible en mouvement, comprenant :
· un dispositif d'antenne principale (2) comprenant :
- un réflecteur parabolique (5) propre à réfléchir un rayonnement émis par une cible selon un premier diagramme de réception présentant un lobe principal de réception ayant un premier angle d'ouverture (β),
- une source d'antenne principale (4) propre à recevoir le rayonnement réfléchi par le réflecteur parabolique (5), et
• un dispositif d'antenne d'aide à l'acquisition (3) monté fixe par rapport au dispositif d'antenne principale (2), comprenant :
- une source d'antenne d'aide à l'acquisition (7) multibande, propre à recevoir un rayonnement émis par une cible selon un deuxième diagramme de réception présentant un lobe principal de réception ayant un deuxième angle d'ouverture (γ), et
- une lentille (9) disposée dans le lobe principal de réception de la source d'antenne d'aide à l'acquisition (7) pour concentrer le rayonnement reçu de la cible vers la source d'antenne (7), de manière à recevoir le rayonnement émis par la cible selon un troisième diagramme de réception présentant un lobe principal de réception ayant un troisième angle d'ouverture (δ) inférieur au deuxième angle d'ouverture (γ) et supérieur au premier angle d'ouverture (β).
2. Système selon la revendication 1 , dans lequel la lentille (9) permet de diminuer l'angle d'ouverture du lobe principal de la source d'antenne d'aide à l'acquisition d'un quotient troisième angle / deuxième angle compris entre 1/3,25 et 1/6,5.
3. Système selon l'une des revendications 1 et 2, dans lequel la source d'antenne d'aide à l'acquisition (7) comprend plusieurs ensembles rayonnants (12, 14, 16), chaque ensemble rayonnant (12, 14, 16) étant propre à recevoir un rayonnement dans une bande de fréquences donnée, et dans lequel l'ensemble rayonnant (12) dans la gamme de fréquences la plus basse a un centre de phase situé au foyer de la lentille (9).
4. Système selon la revendication 3, dans lequel les autres ensembles rayonnants (14, 16) ont des centres de phase situés sur un axe optique de la lentille (9) en étant décalés par rapport au foyer de la lentille (9).
5. Système selon la revendication 4, dans lequel les éléments rayonnants (1 1 -16) sont disposés de sorte que plus la gamme de fréquence d'un élément rayonnant est élevée, plus le centre de phase de l'élément rayonnant est proche de la lentille (9).
6. Système selon l'une des revendications 1 à 5, dans lequel la lentille (9) est configurée pour transformer une onde quasi-plane reçue de la cible en une onde sphérique, l'onde sphérique étant émise vers la source d'antenne d'aide à l'acquisition (7).
7. Système selon l'une des revendications 1 à 6, dans lequel la lentille (9) est formée dans au moins un bloc de matériau, le matériau présentant une densité comprise entre 1 ,05 et 1 ,15, et une permittivité relative comprise entre 2,5 et 2,7.
8. Système selon la revendication 7, dans lequel le matériau formant la lentille (9) est un matériau polymérique, de préférence un matériau à base de polystyrène.
9. Système selon l'une des revendications 1 à 8, dans lequel la source d'antenne principale (4) et la source d'antenne d'aide à l'acquisition (7) sont identiques entre elles.
PCT/EP2016/075454 2015-10-22 2016-10-21 Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe WO2017068155A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/769,574 US10700407B2 (en) 2015-10-22 2016-10-21 Acquisition aid antenna device and associated antenna system for monitoring a moving target
EP16784538.7A EP3365943B1 (fr) 2015-10-22 2016-10-21 Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe
IL258834A IL258834B (en) 2015-10-22 2018-04-22 Acquisition aid antenna device and associated antenna system for monitoring a moving target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560104 2015-10-22
FR1560104A FR3042917B1 (fr) 2015-10-22 2015-10-22 Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe

Publications (1)

Publication Number Publication Date
WO2017068155A1 true WO2017068155A1 (fr) 2017-04-27

Family

ID=55806415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/075454 WO2017068155A1 (fr) 2015-10-22 2016-10-21 Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe

Country Status (5)

Country Link
US (1) US10700407B2 (fr)
EP (1) EP3365943B1 (fr)
FR (1) FR3042917B1 (fr)
IL (1) IL258834B (fr)
WO (1) WO2017068155A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171402B2 (en) * 2018-12-21 2021-11-09 HYDRO-QUéBEC Wireless telecommunication system for an equipment in an underground structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761141A (en) * 1951-08-28 1956-08-28 Malcolm W P Strandberg Continuously varying dielectric constant electromagnetic lens
US4096482A (en) * 1977-04-21 1978-06-20 Control Data Corporation Wide band monopulse antennas with control circuitry
US20100013726A1 (en) * 2006-05-11 2010-01-21 James Christopher Gordon Matthews Antenna
FR3007215A1 (fr) 2013-06-17 2014-12-19 Zodiac Data Systems Source pour antenne parabolique

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2422184A (en) * 1944-01-15 1947-06-17 Bell Telephone Labor Inc Directional microwave antenna
US2825900A (en) * 1950-02-17 1958-03-04 Rand Corp Directional receiver
US3028595A (en) * 1955-02-10 1962-04-03 Lab For Electronics Inc Radar guidance system
US3026517A (en) * 1955-05-09 1962-03-20 Gilfillan Bros Inc Radar scanning system
US2972743A (en) * 1957-06-19 1961-02-21 Westinghouse Electric Corp Combined infrared-radar antenna
FR1221536A (fr) * 1958-04-25 1960-06-02 Telefunken Gmbh Dispositif de pivotement périodique de deux antennes dirigées
US3114149A (en) * 1961-12-04 1963-12-10 Philco Corp Combined radar and infra-red conical scanning antenna
US3170158A (en) * 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
US3384890A (en) * 1965-10-07 1968-05-21 Army Usa Variable aperture variable polarization high gain antenna system for a discrimination radar
US5166698A (en) * 1988-01-11 1992-11-24 Innova, Inc. Electromagnetic antenna collimator
EP0372023A4 (en) * 1988-01-11 1991-03-13 Ordean S. Anderson Multimode dielectric-loaded multi-flare antenna
US5307077A (en) * 1990-12-14 1994-04-26 Hughes Missile Systems Company Multi-spectral seeker antenna
US6768456B1 (en) * 1992-09-11 2004-07-27 Ball Aerospace & Technologies Corp. Electronically agile dual beam antenna system
JP3214548B2 (ja) * 1997-04-09 2001-10-02 日本電気株式会社 レンズアンテナ
US6590544B1 (en) * 1998-09-01 2003-07-08 Qualcomm, Inc. Dielectric lens assembly for a feed antenna
US6642900B2 (en) * 2001-09-21 2003-11-04 The Boeing Company High radiation efficient dual band feed horn
CA2470281A1 (fr) * 2003-06-24 2004-12-24 Her Majesty In Right Of Canada As Represented By The Minister Of Nationa L Defence Cornet d'alimentation permettant l'etablissement de centres de phase multiples pour antenne a reflecteur
US6985118B2 (en) * 2003-07-07 2006-01-10 Harris Corporation Multi-band horn antenna using frequency selective surfaces
US8164533B1 (en) * 2004-10-29 2012-04-24 Lockhead Martin Corporation Horn antenna and system for transmitting and/or receiving radio frequency signals in multiple frequency bands
US7671785B1 (en) * 2005-12-15 2010-03-02 Baron Services, Inc. Dual mode weather and air surveillance radar system
US7365696B1 (en) * 2006-10-04 2008-04-29 Weather Detection Systems, Inc. Multitransmitter RF rotary joint free weather radar system
US8836601B2 (en) * 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
FR2966646B1 (fr) * 2010-10-26 2013-10-04 Thales Sa Positionneur d'antenne parabolique
US9322912B2 (en) * 2012-01-20 2016-04-26 Enterprise Electronics Corporation Transportable radar utilizing harmonic drives for anti-backlash antenna movement
US9865921B2 (en) * 2013-01-28 2018-01-09 Bae Systems Plc Directional multi-band antenna
JP2014182023A (ja) * 2013-03-19 2014-09-29 National Univ Corp Shizuoka Univ 車載用のレーダ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761141A (en) * 1951-08-28 1956-08-28 Malcolm W P Strandberg Continuously varying dielectric constant electromagnetic lens
US4096482A (en) * 1977-04-21 1978-06-20 Control Data Corporation Wide band monopulse antennas with control circuitry
US20100013726A1 (en) * 2006-05-11 2010-01-21 James Christopher Gordon Matthews Antenna
FR3007215A1 (fr) 2013-06-17 2014-12-19 Zodiac Data Systems Source pour antenne parabolique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOSEF MIGL ET AL: "X-Band acquisition aid antenna for ground stations application", ANTENNAS AND PROPAGATION (EUCAP), 2010 PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 12 April 2010 (2010-04-12), pages 1 - 5, XP031706105, ISBN: 978-1-4244-6431-9 *

Also Published As

Publication number Publication date
US10700407B2 (en) 2020-06-30
IL258834A (en) 2018-06-28
EP3365943A1 (fr) 2018-08-29
IL258834B (en) 2019-06-30
FR3042917A1 (fr) 2017-04-28
US20180358682A1 (en) 2018-12-13
EP3365943B1 (fr) 2020-01-15
FR3042917B1 (fr) 2018-12-07

Similar Documents

Publication Publication Date Title
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
EP0012055A1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
EP1416586A1 (fr) Antenne pourvue d&#39;un assemblage de matériaux filtrant
JPS63502237A (ja) 高効率光限定走査アンテナ
FR3035546A1 (fr) Module structural d&#39;antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
WO2017077038A1 (fr) Antenne compacte à faisceau orientable
EP3446362B1 (fr) Systeme de deflexion et de pointage d&#39;un faisceau hyperfrequence
EP3176875A1 (fr) Architecture d&#39;antenne active a formation de faisceaux hybride reconfigurable
FR3069713B1 (fr) Antenne integrant des lentilles a retard a l&#39;interieur d&#39;un repartiteur a base de diviseurs a guide d&#39;ondes a plaques paralleles
EP3365943B1 (fr) Dispositif d&#39;antenne d&#39;aide a l&#39;acquisition et systeme d&#39;antenne pour le suivi d&#39;une cible en mouvement associe
EP3026754A1 (fr) Module compact d&#39;excitation radiofréquence à cinématique intégrée et antenne compacte biaxe comportant au moins un tel module compact
EP0072316B1 (fr) Antenne à balayage électronique à accès multiples et radar comportant une telle antenne
FR2814614A1 (fr) Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille
EP3155689B1 (fr) Antenne plate de telecommunication par satellite
FR2784803A1 (fr) Antenne pour des postes radar d&#39;un petit gabarit de detection et de poursuite des objectifs et des missiles
EP4046241A1 (fr) Antenne-reseau
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
EP3155690B1 (fr) Antenne plate de telecommunication par satellite
EP4207493B1 (fr) Antenne rf directive passive à balayage en une ou deux dimensions
EP0762534A1 (fr) Procédé d&#39;élargissement du faisceau d&#39;une antenne stérique
WO2019238643A1 (fr) Systeme de depointage a formation de faisceau
EP3542415A1 (fr) Dispositif de depointage de faisceau par deplacement de rouleaux dielectriques effectifs
FR3135572A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
Minin et al. Some Fields of Lens Array Applications
FR2596208A1 (fr) Antenne bifrequence a faisceaux orientables independants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16784538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 258834

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016784538

Country of ref document: EP