WO2017065512A1 - Plant-soil battery - Google Patents

Plant-soil battery Download PDF

Info

Publication number
WO2017065512A1
WO2017065512A1 PCT/KR2016/011477 KR2016011477W WO2017065512A1 WO 2017065512 A1 WO2017065512 A1 WO 2017065512A1 KR 2016011477 W KR2016011477 W KR 2016011477W WO 2017065512 A1 WO2017065512 A1 WO 2017065512A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
soil
battery
electrode
anode electrode
Prior art date
Application number
PCT/KR2016/011477
Other languages
French (fr)
Korean (ko)
Inventor
전희창
쿠마르 기르타르선일
강태원
Original Assignee
동국대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교산학협력단 filed Critical 동국대학교산학협력단
Priority to US16/092,983 priority Critical patent/US10985410B2/en
Priority claimed from KR1020160132496A external-priority patent/KR20170043467A/en
Publication of WO2017065512A1 publication Critical patent/WO2017065512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a plant soil battery.
  • the microbial fuel cell is a device that converts the reducing power generated in the energy metabolism process of the microorganism into electrical energy, which is currently in the spotlight as a natural friendly energy generating medium.
  • the microbial fuel cell is generally composed of a cathode portion and an anode portion, the cathode portion and the anode portion.
  • the material of the electrode disposed in the cathode portion and the anode portion is changed, the surface area of the electrode is increased, the gap between the electrodes is adjusted, the catalyst efficiency is improved, the electrolyte Increasing the conductivity and the structure, material, thickness of the cation exchange membrane has been actively studied.
  • Korean Patent Publication No. 2013-0050577 discloses a microbial fuel cell device including a water treatment membrane and a wastewater treatment method using the same.
  • An object of the present invention is to provide a plant soil battery having a continuous structure based on the soil in which the plant is grown and capable of generating a smooth current.
  • An object of the present invention is to provide a plant soil battery that obtains an energy source from environmentally friendly materials and plants without causing problems such as odors.
  • Soil layer in which the plant is planted is planted
  • An anode electrode disposed in the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons;
  • a cathode electrode disposed in the soil layer to receive the electrons.
  • the soil layer is further comprising the leaves extract and galactose, including galactosidase, plant soil cells.
  • the soil layer is a livestock soil, plant soil cells.
  • the cathode electrode is an electrode containing a carbon material, plant soil battery.
  • the cathode electrode is an electrode containing a carbon material, plant soil battery.
  • the cathode electrode is an electrode containing a carbon material ionized surface functional groups, plant soil battery.
  • anode electrode is a mesh cylinder, disposed in the soil layer so that at least a portion of the root of the plant is located inside, plant soil battery.
  • the cathode electrode is a cylindrical soil cell spaced apart from the anode by a predetermined distance, plant soil battery.
  • the cathode electrode is a mesh cylinder, further comprising a support wire surrounding the cathode electrode, plant soil battery.
  • the plant soil battery of claim 1 comprising a plurality of mesh cylindrical anode electrodes and a mesh cylindrical cathode electrode, wherein the anode electrode and the cathode electrode are alternately disposed.
  • Soil layer in which the plant is planted is planted
  • At least a portion of the root of the plant in the soil layer is disposed so that the inside, the mesh cylindrical anode electrode containing a microorganism that generates electrons by decomposing glucose discharged from the plant and
  • a plant soil battery comprising a mesh cylindrical cathode electrode surrounding the anode electrode spaced apart from the anode electrode by a predetermined distance and accommodating the electrons.
  • the soil layer is further comprising a leaf extract and galactose, including galactosidase, plant soil cells.
  • a soil layer in which the plant is planted is planted
  • An anode electrode in contact with the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons;
  • a cation exchange membrane Separation from the soil layer by a cation exchange membrane, comprising a cathode electrode for receiving the electrons, plant soil battery.
  • the plant soil battery of the present invention can supply energy for 24 hours and is harmless to the environment. Thus, it can be replaced with environmentally friendly batteries such as conventional solar cells, wind power generation.
  • Plant soil battery of the present invention can be easily moved and installed in the form of a pot. This makes the production simple and economical.
  • the plant soil battery of the present invention can easily adjust the power generation capacity by adjusting the size of plants, soil, pollen, and the like.
  • FIG. 1 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
  • FIG. 2 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
  • FIG. 3 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
  • FIG. 4 is a photograph of an embodiment in which a mesh type anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
  • FIG. 5 is a photograph of an embodiment in which a circuit is formed using a plant soil battery.
  • FIG. 6 is a photograph of one embodiment of a plant soil battery.
  • the present invention provides a plant, a soil layer in which the plant is planted, an anode electrode disposed in the soil layer and containing microorganisms that generate electrons by decomposing glucose discharged from the plant, and a cathode electrode disposed in the soil layer and receiving the electrons.
  • a plant By including, it is possible to supply energy 24 hours, harmless to the environment, and relates to a plant soil battery that can be easily moved, installed and power generation capacity control.
  • the plant soil battery of the present invention includes a plant, an anode electrode, a soil layer and a cathode electrode.
  • Plants form glucose by photosynthesis, and only some of the glucose is used for the respiration, growth, and energy storage of the plant, and most of it is released through the roots into the soil.
  • the plant soil battery of the present invention generates electrons by decomposing glucose discharged into the soil layer by microorganisms, and transfers the electrons to the cathode electrode through an electrochemical reaction due to the corrosion of the anode electrode.
  • Plants according to the present invention is not limited as long as it can photosynthesis, all kinds of plants can be used.
  • the glucose is discharged from the roots into the soil, it is preferable to use a plant having a large rooted root or a plant having a storage root in terms of increasing the amount of glucose and increasing the amount of contact between the microorganisms of the glucose and the anode. It is more preferable.
  • the soil layer is the soil in which the plant is planted.
  • protons generated at the anode electrode may move to the cathode electrode, and water generated at the cathode electrode may move to the anode electrode through the soil layer.
  • the soil layer may be added with a weak acid electrolyte. In such a case, the growth of the plant is promoted, and the protons contained in the soil layer are increased, so that a smoother generation of electric current is possible.
  • the weakly acidic electrolyte may be, for example, a weakly acidic fertilizer. Specifically, it may be nitrate fertilizer, phosphate fertilizer, urea fertilizer, or the like, or animal urine may be used.
  • the weakly acidic electrolyte is preferable in that the liquid phase can further promote the proton migration.
  • the soil layer may be one that further comprises galactose and leaf extract including galactosidase.
  • the leaf extract acts as an antioxidant, and when the weakly acidic electrolyte is added, the corrosion of the anode electrode and the cathode electrode may be accelerated and the life thereof may be reduced, but the leaf extract suppresses such corrosion to allow the generation of a long-lasting current. do.
  • the leaf extract may be one obtained by heating and extracting the leaves into a solvent such as water and ethanol having 1 to 4 carbon atoms, but is not limited thereto.
  • Leaf extracts include galactosidase.
  • Galactosidase may be inherent in the leaves or may be additionally added.
  • leaves incorporating galactosidase include, but are not limited to, maple leaves.
  • galactose is decomposed by the mechanism described below to generate electrons, thereby further improving power generation efficiency.
  • Galactose is usually present in the soil and may be contained in the soil itself, or may be additionally added.
  • the soil layer may further include blueberries, honey and the like. It may play the same role as the leaf extract, and may be used alone or in combination with the leaf extract.
  • the soil layer may further include livestock meal (solid).
  • livestock meal solid
  • the microorganisms in the soil layer are more abundant to promote glucose decomposition and thus electron generation, thereby increasing the efficiency of the battery.
  • Livestock meal can be used without limitation the cattle ( ⁇ ), for example, cattle, pigs, dogs, horses, sheep, chickens, ducks, etc. may be a minute of cattle.
  • the content of livestock meal in the soil layer is not particularly limited, and may be, for example, 0.01 wt% to 100 wt%.
  • the content of the animal meal in the soil layer is 100% by weight, even when the soil layer is composed only of the animal meal, the generation of electrons, the electron exchange, and the like may occur smoothly, thereby showing excellent efficiency.
  • the soil layer may further include an oxidizing agent.
  • the cathode electrode can be made easier to adsorb cations.
  • the oxidizing agent may be used, for example, chlorine, bromine, iodine and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
  • the anode electrode serves to generate electrons.
  • the anode electrode includes a microorganism that generates electrons by decomposing glucose emitted from the plant.
  • an electrode material known in the art may be used without limitation.
  • silver, copper, chromium, gold, aluminum, lead, zinc, silicon, iron, platinum, manganese, titanium, lanthanum, magnesium, molybdenum, tin, tungsten, nickel, stainless steel, etc. are mentioned. These may be used alone, in combination of two or more, or as an alloy.
  • iron, silver, gold, platinum, stainless steel, and the like are preferable, economical, and stainless steel is preferable in view of improvement of life due to corrosion inhibition.
  • the cathode electrode and the anode electrode may use different metals (metals having different standard reduction potential values).
  • metals metal having different standard reduction potential values
  • a material having a small standard reduction potential value may be used as a cathode electrode and a large value thereof as an anode electrode. It is preferable to configure the standard reduction potential value so that the difference is large, and the materials can be appropriately selected in consideration of the standard reduction potential value and the degree of oxidation.
  • the anode electrode according to the present invention may be an electrode manufactured by including a carbon material.
  • an electrode including a carbon material it is environmentally friendly due to less corrosion and abrasion than an electrode made of a metal material such as iron, zinc, or copper in the soil layer containing moisture, and thus no additional product is generated.
  • the degree of oxidation is less than that of metal, it has excellent durability, and the replacement cycle is very long.
  • the carbon material may include, for example, carbon felt, carbon paper, carbon cloth, carbon rod, and the like, but is not limited thereto.
  • the anode electrode is preferably a large surface area in order to increase the efficiency of electricity generation, the structure may be, for example, plate or cylindrical. In the case of a cylindrical shape, if the cross section is a single closed curve, the shape is not limited to circular, polygonal or any other shape.
  • the position between the plant and the anode electrode is not particularly limited, and the plant may be planted inside, outside, top, and bottom of the anode electrode.
  • the anode electrode is cylindrical in terms of widening the contact area with microorganisms and glucose, and in such a case, it is more preferable that at least part of the root of the plant is disposed in the soil layer. More preferably, the plant may be positioned to be planted in an inner region of the cylinder cross section of the anode electrode.
  • the anode electrode has a mesh to widen the contact area with the microorganism and glucose, and to facilitate the movement of oxygen, moisture and the like.
  • the microorganism is to break down glucose at the anode electrode to generate electrons, which may be located on or around the anode electrode.
  • the perimeter can be, for example, 5 cm or less, preferably 1 cm or less, more preferably 5 mm or less, most preferably 1 mm or less.
  • the microorganism is not particularly limited as long as it can break down glucose to generate electrons.
  • any microorganism may be further used in the art known to degrade glucose.
  • the cathode electrode is connected to the anode electrode through an external resistance (load), if necessary, electrons generated at the anode electrode can be transferred to the cathode electrode through the external resistance, the proton is transferred to the cathode electrode, the potential difference is formed Depending on the current can flow.
  • load an external resistance
  • an electrode material known in the art may be used without limitation.
  • silver, copper, chromium, gold, aluminum, lead, zinc, silicon, iron, platinum, manganese, titanium, lanthanum, magnesium, molybdenum, tin, tungsten, nickel, stainless steel, etc. are mentioned. These may be used alone, in combination of two or more, or as an alloy.
  • iron, silver, gold, platinum, stainless steel, and the like are preferable, economical, and stainless steel is preferable in view of improvement of life due to corrosion inhibition.
  • the cathode electrode according to the present invention may be an electrode manufactured by including a carbon material.
  • an electrode including a carbon material it is environmentally friendly due to less corrosion and abrasion than an electrode made of a metal material such as iron, zinc, or copper in the soil layer containing moisture, and thus no additional product is generated.
  • the degree of oxidation is less than that of metal, it has excellent durability, and the replacement cycle is very long.
  • the electrode including the carbon material may be an anion of the surface functional group.
  • the potential difference with the anode electrode is increased, so that the amount of current generated is larger, and even if the anode electrode is made of an electrode containing a carbon material, a potential difference is formed with the anode electrode, thereby allowing current generation.
  • the method of anionizing the surface functional group is not particularly limited and any method known in the art may be used without limitation, and for example, an acid treatment, a high temperature treatment, an iodine treatment, or the like may be used.
  • acids such as hydrochloric acid, nitric acid, sulfuric acid, carbonic acid, phosphoric acid, acetic acid and boric acid can be used without limitation.
  • the cathode electrode can be, for example, plate or cylindrical.
  • the shape is not limited to circular, polygonal or any other shape.
  • the cathode electrode is cylindrical, it is preferable to surround the anode electrode in terms of receiving the electrons generated at the anode electrode to the maximum and easily transferring the electrons to the anode electrode as easily as possible.
  • the cathode electrode preferably has a mesh.
  • 1 to 4 are photographs of plant soil cells using iron anode electrodes and carbon rod cathode electrodes (plants not shown for the sake of clarity).
  • 1 to 3 show a mesh plate anode electrode and a carbon rod cathode electrode
  • FIG. 4 shows a mesh cylindrical anode electrode and a carbon rod cathode electrode.
  • the cathode When the cathode is in contact with the anode, a short occurs, so that the cathode is positioned at a predetermined distance from the anode.
  • the distance may be, for example, 0.5 to 5 cm, but is not limited thereto. If the separation distance is less than 0.5cm, it is difficult to maintain the gap between the electrodes may cause a short circuit. When the separation distance is greater than 5 cm, the material exchange of the reaction scheme between the anode electrode and the cathode electrode is difficult, and current generation efficiency may be reduced.
  • the anode electrode and the cathode electrode may be in contact with each other with the separator interposed therebetween.
  • the separation distance between the anode electrode and the cathode electrode can be minimized while minimizing the separation distance between the anode electrode and the cathode electrode, and the current generation efficiency is excellent.
  • the separator is, for example, a cloth such as woven fabric, knitted fabric, or nonwoven fabric; Or a resin film.
  • a nonwoven wiper may be used.
  • Non-woven wiper is generally used for cleaning the inside of a semiconductor clean room, and has excellent insulation and antistatic effects, so that a short thickness between the electrodes can be prevented, and the distance between electrodes can be minimized. In addition, it is excellent in strength and can maintain excellent strength even when water is absorbed in the soil.
  • the plant soil battery of the present invention may further include a support wire that surrounds the anode electrode or the cathode electrode and supports them.
  • the plant soil battery of the present invention may include a plurality of anode electrodes and cathode electrodes.
  • FIG 5 illustrates an example of using a plurality of anode electrodes and cathode electrodes.
  • the anode electrodes may be positioned at the innermost side, and then alternately positioned in the order of the cathode electrode, the anode electrode, and the cathode electrode.
  • a plurality of anode electrodes may be included to generate more electrons by decomposing more glucose from the root of the plant, and a cathode electrode is positioned between the anode electrodes, and an anode electrode is positioned between the cathode electrodes.
  • the exchange of glucose decomposition reaction products is smooth among them, maximizing current generation.
  • the structure of the anode electrode and the cathode electrode may be in the above-described range.
  • the plant soil battery of the present invention is a plant; A soil layer in which the plant is planted; An anode comprising microorganisms in contact with the soil layer and decomposing glucose emitted from the plant to generate electrons; It is separated from the soil layer by a cation exchange membrane, and comprises a cathode electrode for receiving the electrons.
  • Plants, soil layers, anode electrodes and cathode electrodes can be used in the above-mentioned range.
  • the cathode electrode is separated from the soil layer by a cation exchange membrane.
  • current generation efficiency may be increased by minimizing a short between the cathode electrode and the anode electrode and improving the cation exchange efficiency.
  • the cation exchange membrane solidified clay, clay, loess, and the like may be used.
  • the electrolyte may be further mixed.
  • the electrolyte may be mixed and kneaded with clay, clay, loess, and the like.
  • an electrolyte or the like used in a battery may be used without limitation, and for example, ammonium chloride, potassium hydroxide, zinc chloride, or the like may be used. These can be used individually or in mixture of 2 or more types.
  • the plant soil battery of the present invention may further include a first auxiliary soil layer in contact with the anode electrode.
  • the first auxiliary soil layer may include the above-mentioned weakly acidic electrolyte, leaf extract including galactosidase, and galactose, blueberries, honey, livestock meal, and the like.
  • the current generation efficiency may be further improved.
  • it may further include a second auxiliary soil layer in contact with the cathode electrode.
  • the second auxiliary soil layer may include the above-described acid, oxidant, and the like, which may anionize the surface functional group of the cathode electrode.
  • the potential difference with the anode electrode may be increased, thereby increasing the amount of current generated.
  • the plant soil battery of the present invention including the above configurations may have a layer structure of a first auxiliary soil layer, an anode electrode, a soil layer, a cation exchange membrane, a cathode electrode, and a second auxiliary soil layer.
  • Celestial fragrance was planted in the mixed earth, green earth, and an iron plate anode electrode was installed under the root.
  • Celestial fragrance was planted in green earth, which is a mixed culture soil, and the root of the fragrance was wrapped with an anode electrode by using a cylindrical iron mesh network having the upper and lower portions of the mesh opened as an anode electrode.
  • a mesh cylindrical cathode electrode was positioned in the soil layer to surround the anode electrode at a distance of 1 cm from the anode electrode.
  • the circuit was then constructed using the EIC-108 breadboard.
  • a plant soil battery was manufactured in the same manner as in Example 1, except that the cathode was used as the carbon rod.
  • a plant soil battery was prepared in the same manner as in Example 3 except that the urine of the animal was added to the green soil.
  • maple leaf extract was added to 100 ml of water, soaked for 24 hours, and the maple leaf was removed to obtain a maple leaf extract.
  • a plant soil battery was manufactured in the same manner as in Example 3, except that the maple leaf extract was added to the green earth.
  • a plant soil battery was manufactured in the same manner as in Example 4, except that the maple leaf extract obtained in Example 5 was further added to green earth.
  • a plant soil battery was manufactured in the same manner as in Example 3, except that the cathode was immersed in 1.0 N nitric acid solution for 1 minute.
  • a plant soil battery was prepared in the same manner as in Example 7, except that the urine of the animal was added to the green soil.
  • a plant soil battery was prepared in the same manner as in Example 7, except that the maple leaf extract obtained in Example 5 was added to green earth.
  • a plant soil battery was prepared in the same manner as in Example 8, except that the maple leaf extract obtained in Example 5 was further added to green earth.
  • a plant soil battery was manufactured in the same manner as in Example 7, except that the upper and lower portions of the cylindrical iron mesh network were used as the anode electrode to surround the cathode electrode at a distance of 1 cm from the cathode electrode.
  • a plant soil battery having a layer structure of an anode electrode, a soil layer, a cation exchange membrane, and a cathode electrode was prepared.
  • Clay was prepared by mixing scented scent as a plant, stainless as an anode electrode, cow dung as soil layer, ammonium chloride as cation exchange membrane, and carbon felt as cathode electrode.
  • the first auxiliary soil layer in contact with the anode electrode and the second auxiliary soil layer in contact with the cathode electrode were further included.
  • Example 1 0.850 1.0
  • Example 2 0.921 1.5
  • Example 3 0.913 1.7
  • Example 4 1.039 5.8
  • Example 5 1.001 2.3
  • Example 6 0.862 5.1
  • Example 7 1.691 6.5
  • Example 8 1.681 8.1
  • Example 9 1.679 30
  • Example 10 1.858 50
  • Example 11 1.778 10.3
  • Example 12 0.9 35
  • Example 13 1.1 40
  • the voltage and current generation amount is increased by the use of the carbon electrode, the use of the mesh-type electrode, the addition of urine, the addition of maple leaf extract, the use of acid-treated carbon electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a plant-soil battery and, more particularly, to a plant-soil battery that includes: a plant body; a soil layer in which the plant body is planted; an anode electrode disposed in the soil layer and including microorganisms that decompose glucose discharged from the plant body and generate electrons; and a cathode electrode disposed in the soil layer and receiving the electrons. Thus, the plant-soil battery is capable of supplying energy 24 hours a day, is harmless to the environment, can be easily moved and installed, and has an adjustable generating capacity.

Description

식물토양전지Plant Soil Battery
본 발명은 식물토양전지에 관한 것이다.The present invention relates to a plant soil battery.
미생물 연료 전지는 미생물의 에너지 대사과정에서 발생하는 환원력을 전기 에너지로 전환시키는 장치로서, 자연 친화적인 에너지 발생매체로 현재 각광을 받고 있다. 한편, 상기 미생물 연료 전지는 일반적으로 음극부와 양극부, 상기 음극부와 상기 양극부로 구성되어 있다.The microbial fuel cell is a device that converts the reducing power generated in the energy metabolism process of the microorganism into electrical energy, which is currently in the spotlight as a natural friendly energy generating medium. On the other hand, the microbial fuel cell is generally composed of a cathode portion and an anode portion, the cathode portion and the anode portion.
최근에는 미생물 연료 전지로부터 출력되는 전지 에너지량을 향상시키기 위해, 상기 음극부와 상기 양극부에 배치되는 전극의 재질을 변경, 상기 전극의 표면적을 증대, 상기 전극 간의 간격조절, 촉매효율 향상, 전해질의 전도도 증대 및 양이온 교환막의 구조, 재질, 두께 변경 등이 활발하게 연구되고 있다.Recently, in order to improve the amount of battery energy output from the microbial fuel cell, the material of the electrode disposed in the cathode portion and the anode portion is changed, the surface area of the electrode is increased, the gap between the electrodes is adjusted, the catalyst efficiency is improved, the electrolyte Increasing the conductivity and the structure, material, thickness of the cation exchange membrane has been actively studied.
그러나, 이와 같은 미생물 연료 전지는 일회성이며, 전해질 처리 문제 등으로 실용화에 있어 문제가 되고 있다.However, such a microbial fuel cell is a one-time one and has become a problem in practical use due to electrolyte treatment problems and the like.
또한, 종래의 미생물 연료 전지는 폐수 등을 전기 에너지 발생의 매개체로 사용하기 때문에, 축산 분뇨와 같이 악취가 심한 폐수를 적용시, 악취와 전극의 화학적 마모 등에 대한 문제를 해결해야만 한다.In addition, since the conventional microbial fuel cell uses wastewater and the like as a medium for generating electrical energy, when odorous wastewater with high odors, such as livestock manure, is applied, problems with odor and chemical wear of electrodes must be solved.
한국공개특허 제2013-0050577호에는 수처리 분리막을 포함하는 미생물 연료전지 장치 및 이를 이용한 폐수처리방법이 개시되어 있다.Korean Patent Publication No. 2013-0050577 discloses a microbial fuel cell device including a water treatment membrane and a wastewater treatment method using the same.
본 발명은 식물이 자라는 토양을 기반으로 하여 지속적인 구조이며, 원활한 전류 생성이 가능한 식물토양전지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a plant soil battery having a continuous structure based on the soil in which the plant is grown and capable of generating a smooth current.
본 발명은 악취 등의 문제가 발생하지 않으면서 친환경적인 재료와 식물체로부터 에너지원을 얻는 식물토양전지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a plant soil battery that obtains an energy source from environmentally friendly materials and plants without causing problems such as odors.
1. 식물체,Plant,
상기 식물체가 식재되는 토양층,Soil layer in which the plant is planted,
상기 토양층 내에 배치되며 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극 및An anode electrode disposed in the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons;
상기 토양층 내에 배치되며 상기 전자를 수용하는 캐소드 전극을 포함하는, 식물토양전지.And a cathode electrode disposed in the soil layer to receive the electrons.
2. 위 1에 있어서, 상기 토양층은 약산성 전해질을 첨가한 것인, 식물토양전지.2. In the above 1, wherein the soil layer is a weak acid electrolyte is added, plant soil battery.
3. 위 1에 있어서, 상기 전해질은 액상인, 식물토양전지.3. In the above 1, wherein the electrolyte is a liquid, plant soil battery.
4. 위 2에 있어서, 상기 토양층은 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스를 더 포함한 것인, 식물토양전지.4. according to the above 2, wherein the soil layer is further comprising the leaves extract and galactose, including galactosidase, plant soil cells.
5. 위 1에 있어서, 상기 토양층은 가축분을 포함한 것인, 식물토양전지.5. according to the above 1, wherein the soil layer is a livestock soil, plant soil cells.
6. 위 1에 있어서, 상기 토양층은 고형 가축분인, 식물토양전지.6. In the above 1, wherein the soil layer is a solid livestock powder, plant soil cells.
7. 위 1에 있어서, 상기 애노드 전극은 철 전극이고, 캐소드 전극은 탄소 소재를 포함한 전극인, 식물토양전지.7. In the above 1, wherein the anode electrode is an iron electrode, the cathode electrode is an electrode containing a carbon material, plant soil battery.
8. 위 1에 있어서, 상기 애노드 전극은 스테인리스 전극이고, 캐소드 전극은 탄소 소재를 포함한 전극인, 식물토양전지.8. In the above 1, wherein the anode electrode is a stainless steel electrode, the cathode electrode is an electrode containing a carbon material, plant soil battery.
9. 위 1에 있어서, 상기 애노드 전극은 탄소 소재를 포함한 전극이고, 캐소드 전극은 표면 관능기가 음이온화된 탄소 소재를 포함한 전극인, 식물토양전지.9. In the above 1, wherein the anode electrode is an electrode containing a carbon material, the cathode electrode is an electrode containing a carbon material ionized surface functional groups, plant soil battery.
10. 위 1에 있어서, 상기 애노드 전극 및 캐소드 전극은 서로 독립적으로 실린더형 또는 판형인, 식물토양전지.10. In the above 1, wherein the anode electrode and the cathode electrode is a cylindrical or plate type independently of each other, plant soil battery.
11. 위 1에 있어서, 상기 애노드 전극은 메쉬 실린더형이며, 상기 토양층 내에서 상기 식물체의 뿌리의 적어도 일부가 내부에 위치하도록 배치되는, 식물토양전지.11. In the above 1, wherein the anode electrode is a mesh cylinder, disposed in the soil layer so that at least a portion of the root of the plant is located inside, plant soil battery.
12. 위 11에 있어서, 상기 식물체는 상기 애노드 전극의 실린더 단면의 내부 영역에 식재되는, 식물토양전지.12. The plant soil cell of claim 11, wherein the plant is planted in an inner region of a cylinder cross section of the anode electrode.
13. 위 11에 있어서, 상기 애노드 전극을 감싸는 지지 와이어를 더 포함하는, 식물토양전지.13. The plant soil battery of claim 11, further comprising a support wire surrounding the anode electrode.
14. 위 1에 있어서, 상기 캐소드 전극은 애노드 전극으로부터 소정 거리 이격되어 이를 감싸는 실린더형인, 식물토양전지.14. In the above 1, wherein the cathode electrode is a cylindrical soil cell spaced apart from the anode by a predetermined distance, plant soil battery.
15. 위 1에 있어서, 상기 캐소드 전극은 메쉬 실린더형이고, 캐소드 전극을 감싸는 지지 와이어를 더 포함하는, 식물토양전지.15. In the above 1, wherein the cathode electrode is a mesh cylinder, further comprising a support wire surrounding the cathode electrode, plant soil battery.
16. 위 1에 있어서, 상기 애노드 전극 및 캐소드 전극은 격리막을 사이에 두고 서로 접하는, 식물토양전지.16. The plant soil battery of 1 above, wherein the anode electrode and the cathode electrode are in contact with each other with a separator interposed therebetween.
17. 위 1에 있어서, 메쉬 실린더형 애노드 전극 및 메쉬 실린더형 캐소드 전극을 복수개 포함하며, 상기 애노드 전극과 캐소드 전극이 서로 번갈아가며 배치된, 식물토양전지.17. The plant soil battery of claim 1, comprising a plurality of mesh cylindrical anode electrodes and a mesh cylindrical cathode electrode, wherein the anode electrode and the cathode electrode are alternately disposed.
18. 식물체,18.
상기 식물체가 식재되는 토양층,Soil layer in which the plant is planted,
상기 토양층 내에서 상기 식물체의 뿌리의 적어도 일부가 내부에 위치하도록 배치되며, 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 메쉬 실린더형 애노드 전극 및At least a portion of the root of the plant in the soil layer is disposed so that the inside, the mesh cylindrical anode electrode containing a microorganism that generates electrons by decomposing glucose discharged from the plant and
상기 애노드 전극으로부터 소정 거리 이격되어 애노드 전극을 감싸며, 상기 전자를 수용하는 메쉬 실린더형 캐소드 전극을 포함하는, 식물토양전지.A plant soil battery comprising a mesh cylindrical cathode electrode surrounding the anode electrode spaced apart from the anode electrode by a predetermined distance and accommodating the electrons.
19. 위 18에 있어서, 상기 토양층은 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스를 더 포함한 것인, 식물토양전지.19. In the above 18, wherein the soil layer is further comprising a leaf extract and galactose, including galactosidase, plant soil cells.
20. 위 19에 있어서, 상기 토양층은 산화방지제를 더 첨가한 것인, 식물토양전지.20. In the above 19, wherein the soil layer is further added to the antioxidant, plant soil battery.
21. 위 18에 있어서, 상기 애노드 전극 및 캐소드 전극을 각각 감싸는 지지 와이어를 더 포함하는, 식물토양전지.21. In the above 18, further comprising a support wire surrounding the anode electrode and the cathode electrode, plant soil battery.
22. 위 18에 있어서, 상기 애노드 전극 및 캐소드 전극은 격리막을 사이에 두고 서로 접하는, 식물토양전지.22. The plant soil battery of claim 18, wherein the anode electrode and the cathode electrode are in contact with each other with a separator interposed therebetween.
23. 식물체;23. plants;
상기 식물체가 식재되는 토양층;A soil layer in which the plant is planted;
상기 토양층과 접하며, 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극; 및An anode electrode in contact with the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons; And
양이온 교환막에 의해 상기 토양층과 분리되며, 상기 전자를 수용하는 캐소드 전극을 포함하는, 식물토양전지.Separation from the soil layer by a cation exchange membrane, comprising a cathode electrode for receiving the electrons, plant soil battery.
24. 위 23에 있어서, 상기 토양층은 가축분을 포함한 것인, 식물토양전지.24. The plant soil cell of claim 23, wherein the soil layer comprises livestock meal.
25. 위 24에 있어서, 상기 양이온 교환막은 찰흙, 점토 및 황토로 이루어진 군에서 선택된 1종인, 식물토양전지.25. The plant soil battery according to 24 above, wherein the cation exchange membrane is one selected from the group consisting of clay, clay and loess.
26. 위 25에 있어서, 상기 양이온 교환막은 염화암모늄, 수산화칼륨 및 염화아연으로 이루어진 군에서 선택된 1종 이상의 전해질을 더 포함하는, 식물토양전지.26. The plant soil battery of 25, wherein the cation exchange membrane further comprises at least one electrolyte selected from the group consisting of ammonium chloride, potassium hydroxide and zinc chloride.
27. 위 23에 있어서, 상기 애노드 전극과 접하며, 약산성 전해질, 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스, 블루베리, 꿀 및 가축분을 포함하는 제1 보조토양층을 더 포함하는, 식물토양전지.27. The plant soil battery of claim 23, further comprising a first acidic soil layer in contact with the anode electrode, the leaf extract including gallictosidase and galactose, blueberries, honey and livestock meal.
28. 위 23에 있어서, 상기 캐소드 전극과 접하며, 산과 산화제를 포함하는 제2 보조토양층을 더 포함하는, 식물토양전지.28. The plant soil battery of claim 23, further comprising a second auxiliary soil layer in contact with the cathode electrode and including an acid and an oxidizing agent.
본 발명의 식물토양전지는 24시간 에너지 공급이 가능하고, 환경에 무해하다. 이에, 기존 태양전지, 풍력발전 등의 친환경 전지 등을 대체할 수 있다.The plant soil battery of the present invention can supply energy for 24 hours and is harmless to the environment. Thus, it can be replaced with environmentally friendly batteries such as conventional solar cells, wind power generation.
본 발명의 식물토양전지는 화분의 형태로 용이하게 이동 및 설치가 가능하다. 이에 제작이 간단하고 경제적이다.Plant soil battery of the present invention can be easily moved and installed in the form of a pot. This makes the production simple and economical.
본 발명의 식물토양전지는 식물, 흙, 화분 크기 등을 조절함으로써 용이하게 발전 용량을 조절할 수 있다.The plant soil battery of the present invention can easily adjust the power generation capacity by adjusting the size of plants, soil, pollen, and the like.
도 1은 토양층에 판형 애노드 전극 및 탄소 막대 캐소드 전극을 배치시킨 일 구현예의 사진이다.1 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
도 2는 토양층에 판형 애노드 전극 및 탄소 막대 캐소드 전극을 배치시킨 일 구현예의 사진이다.2 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
도 3은 토양층에 판형 애노드 전극 및 탄소 막대 캐소드 전극을 배치시킨 일 구현예의 사진이다.3 is a photograph of an embodiment in which a plate-shaped anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
도 4는 토양층에 메쉬형 애노드 전극 및 탄소 막대 캐소드 전극을 배치시킨 일 구현예의 사진이다.4 is a photograph of an embodiment in which a mesh type anode electrode and a carbon rod cathode electrode are disposed in a soil layer.
도 5는 식물토양전지를 이용해 회로를 형성한 일 구현예의 사진이다.5 is a photograph of an embodiment in which a circuit is formed using a plant soil battery.
도 6은 식물토양전지의 일 구현예의 사진이다.6 is a photograph of one embodiment of a plant soil battery.
본 발명은 식물체, 상기 식물체가 식재되는 토양층, 상기 토양층 내에 배치되며 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극 및 상기 토양층 내에 배치되며 상기 전자를 수용하는 캐소드 전극을 포함함으로써, 24시간 에너지 공급이 가능하고, 환경에 무해하며, 용이하게 이동, 설치 및 발전 용량 조절이 가능한 식물토양전지에 관한 것이다.The present invention provides a plant, a soil layer in which the plant is planted, an anode electrode disposed in the soil layer and containing microorganisms that generate electrons by decomposing glucose discharged from the plant, and a cathode electrode disposed in the soil layer and receiving the electrons. By including, it is possible to supply energy 24 hours, harmless to the environment, and relates to a plant soil battery that can be easily moved, installed and power generation capacity control.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 식물토양전지는 식물체, 애노드 전극, 토양층 및 캐소드 전극을 포함한다.The plant soil battery of the present invention includes a plant, an anode electrode, a soil layer and a cathode electrode.
식물체는 광합성에 의해 포도당을 형성하는데, 형성되는 포도당 중 일부만이 식물체의 호흡, 성장, 에너지 저장 등에 사용되고, 나머지 대부분은 뿌리를 통해 토양으로 배출되게 된다.Plants form glucose by photosynthesis, and only some of the glucose is used for the respiration, growth, and energy storage of the plant, and most of it is released through the roots into the soil.
본 발명의 식물토양전지는 토양층으로 배출되는 포도당을 미생물에 의해 분해하여 전자를 생성하고, 상기 전자를 애노드 전극의 부식에 따른 전기 화학적 반응을 통해 캐소드 전극으로 전달함으로써 전류를 발생시킨다.The plant soil battery of the present invention generates electrons by decomposing glucose discharged into the soil layer by microorganisms, and transfers the electrons to the cathode electrode through an electrochemical reaction due to the corrosion of the anode electrode.
본 발명에 따른 식물체는 광합성을 할 수 있는 것이라면 한정되지 않고 모든 종류의 식물을 다 사용할 수 있다.Plants according to the present invention is not limited as long as it can photosynthesis, all kinds of plants can be used.
다만, 뿌리에서 포도당이 흙으로 배출되는 것인 바, 포도당의 배출량을 늘려 포도당과 애소드 전극의 미생물 간의 접촉량을 늘린다는 측면에서 바람직하게는 잔뿌리가 많은 식물 또는 저장 뿌리를 갖는 식물을 사용하는 것이 보다 바람직하다.However, since the glucose is discharged from the roots into the soil, it is preferable to use a plant having a large rooted root or a plant having a storage root in terms of increasing the amount of glucose and increasing the amount of contact between the microorganisms of the glucose and the anode. It is more preferable.
토양층은 상기 식물이 식재되는 토양이다.The soil layer is the soil in which the plant is planted.
토양층은 식물의 재배를 위해 수분을 포함하고 있으므로, 토양층을 통해 애노드 전극에서 생성된 양성자가 캐소드 전극으로 이동하고, 캐소드 전극에서 생성된 물이 애노드 전극으로 이동할 수 있다.Since the soil layer contains moisture for plant cultivation, protons generated at the anode electrode may move to the cathode electrode, and water generated at the cathode electrode may move to the anode electrode through the soil layer.
토양층은 약산성 전해질이 첨가된 것일 수 있다. 그러한 경우에 식물체의 생장은 촉진하면서, 토양층에 함유된 양성자가 많아져 보다 원활한 전류의 발생이 가능하다.The soil layer may be added with a weak acid electrolyte. In such a case, the growth of the plant is promoted, and the protons contained in the soil layer are increased, so that a smoother generation of electric current is possible.
약산성 전해질은 예를 들면 약산성 비료일 수 있다. 구체적으로, 질산 비료, 인산 비료, 요소 비료 등일 수 있고, 또는 동물의 소변 등을 사용할 수도 있다.The weakly acidic electrolyte may be, for example, a weakly acidic fertilizer. Specifically, it may be nitrate fertilizer, phosphate fertilizer, urea fertilizer, or the like, or animal urine may be used.
약산성 전해질은 액상인 것이 양성자의 이동을 더욱 촉진할 수 있다는 측면에서 바람직하다.The weakly acidic electrolyte is preferable in that the liquid phase can further promote the proton migration.
또한, 토양층은 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스를 더 포함한 것일 수 있다.In addition, the soil layer may be one that further comprises galactose and leaf extract including galactosidase.
나뭇잎 추출물은 산화 방지제의 역할을 하는 것으로서, 약산성 전해질 첨가시에 애노드 전극과 캐소드 전극의 부식이 촉진되어 수명이 저하될 수 있는데, 나뭇잎 추출물은 그러한 부식을 억제하여 보다 장기간 지속적인 전류의 생성을 가능하게 한다.The leaf extract acts as an antioxidant, and when the weakly acidic electrolyte is added, the corrosion of the anode electrode and the cathode electrode may be accelerated and the life thereof may be reduced, but the leaf extract suppresses such corrosion to allow the generation of a long-lasting current. do.
나뭇잎 추출물은 나뭇잎을 물, 탄소수 1 내지 4의 에탄올 등의 용매에 넣고 가열 추출한 것일 수 있으나, 이에 제한되는 것은 아니다.The leaf extract may be one obtained by heating and extracting the leaves into a solvent such as water and ethanol having 1 to 4 carbon atoms, but is not limited thereto.
나뭇잎 추출물은 갈락토시다아제를 포함한다. 갈락토시다아제는 나뭇잎에 내재된 것일 수도 있고, 추가로 첨가된 것일 수도 있다. 갈락토시다아제를 내재한 나뭇잎의 예로는 단풍잎 등을 들 수 있으나, 이에 제한되는 것은 아니다.Leaf extracts include galactosidase. Galactosidase may be inherent in the leaves or may be additionally added. Examples of leaves incorporating galactosidase include, but are not limited to, maple leaves.
토양층이 갈락토오스를 포함하고, 나뭇잎 추출물이 갈락토시다아제를 포함하는 경우, 후술하는 메커니즘에 의해 갈락토오스가 분해되어 전자가 발생되어, 발전 효율이 더욱 개선될 수 있다.When the soil layer contains galactose and the leaf extract contains galactosidase, galactose is decomposed by the mechanism described below to generate electrons, thereby further improving power generation efficiency.
갈락토오스는 통상 토양에 존재하는 것으로서, 토양 자체에 함유된 것일 수도 있고, 추가로 첨가된 것일 수도 있다.Galactose is usually present in the soil and may be contained in the soil itself, or may be additionally added.
또한, 토양층은 블루베리, 꿀 등을 더 포함할 수 있다. 이는 나뭇잎 추출물과 마찬가지의 역할을 할 수 있는 것으로서, 단독으로 또는 나뭇잎 추출물과 함께 사용이 가능하다.In addition, the soil layer may further include blueberries, honey and the like. It may play the same role as the leaf extract, and may be used alone or in combination with the leaf extract.
또한, 토양층은 가축분(고형)을 더 포함할 수 있다. 그러한 경우, 토양층 내에 미생물이 보다 풍부해져 포도당 분해 및 이에 따른 전자 생성이 보다 촉진되고, 이에 전지의 효율이 증가될 수 있다.In addition, the soil layer may further include livestock meal (solid). In such a case, the microorganisms in the soil layer are more abundant to promote glucose decomposition and thus electron generation, thereby increasing the efficiency of the battery.
가축분은 가축의 분(糞)이 제한 없이 사용될 수 있으며, 예를 들면, 소, 돼지, 개, 말, 양, 닭, 오리 등의 분일 수 있으며, 구체적으로 소의 분일 수 있다.Livestock meal can be used without limitation the cattle (가축), for example, cattle, pigs, dogs, horses, sheep, chickens, ducks, etc. may be a minute of cattle.
토양층 내 가축분의 함량은 특별히 한정되지 않으며, 예를 들면 0.01중량% 내지 100중량%일 수 있다.The content of livestock meal in the soil layer is not particularly limited, and may be, for example, 0.01 wt% to 100 wt%.
토양층 내 가축분의 함량이 100중량%가 되어 토양층이 가축분으로만 이루어진 경우에도 마찬가지로 전자 생성, 전자 교환 등이 원활하게 일어나 우수한 효율을 나타낼 수 있다.Since the content of the animal meal in the soil layer is 100% by weight, even when the soil layer is composed only of the animal meal, the generation of electrons, the electron exchange, and the like may occur smoothly, thereby showing excellent efficiency.
또한, 토양층은 산화제를 더 포함할 수 있다. 그러한 경우, 캐소드 전극이 양이온 흡착이 보다 용이해질 수 있다.In addition, the soil layer may further include an oxidizing agent. In such a case, the cathode electrode can be made easier to adsorb cations.
산화제는 예를 들면 염소, 브롬, 요오드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The oxidizing agent may be used, for example, chlorine, bromine, iodine and the like, but is not limited thereto. These can be used individually or in mixture of 2 or more types.
애노드 전극은 전자를 생성하는 역할을 하는 것으로, 이를 위해 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함한다.The anode electrode serves to generate electrons. For this purpose, the anode electrode includes a microorganism that generates electrons by decomposing glucose emitted from the plant.
포도당의 분해에 의한 전자의 생성은 하기 반응식 1에 따라 수행된다.The generation of electrons by the decomposition of glucose is carried out according to Scheme 1 below.
[반응식 1] Scheme 1
애노드: C6H12O6 + 6H2O -> 6CO2 + 24H+ + 24e- Anode: C 6 H 12 O 6 + 6H 2 O -> 6CO 2 + 24H + + 24e -
Galactose + O2 -> H2O2 + Galactose Dialdehyde DerivativeGalactose + O 2- > H 2 O 2 + Galactose Dialdehyde Derivative
캐소드: 6O2 + 24H+ + 24e- -> 12H2O Cathode: 6O 2 + 24H + + 24e - -> 12H 2 O
H2O2 -> 2H+ + O2 + 2e- H 2 O 2 -> 2H + + O 2 + 2e -
본 발명에 따른 애노드 전극으로는 당 분야에 공지된 전극 소재가 제한없이 사용될 수 있다. 예를 들면 은, 구리, 크롬, 금, 알루미늄, 납, 아연, 규소, 철, 백금, 망간, 티타늄, 란타넘, 마그네슘, 몰리브데늄, 주석, 텅스텐, 니켈, 스테인리스 등을 들 수 있다. 이들은 단독으로, 2종 이상 조합하여, 또는 합금으로 사용될 수 있다. 전기 전도도의 측면에서 철, 은, 금, 백금, 스테인리스 등이 바람직하고, 경제적이며, 부식 억제에 따른 수명 개선의 측면에서는 스테인리스가 바람직하다.As the anode electrode according to the present invention, an electrode material known in the art may be used without limitation. For example, silver, copper, chromium, gold, aluminum, lead, zinc, silicon, iron, platinum, manganese, titanium, lanthanum, magnesium, molybdenum, tin, tungsten, nickel, stainless steel, etc. are mentioned. These may be used alone, in combination of two or more, or as an alloy. In terms of electrical conductivity, iron, silver, gold, platinum, stainless steel, and the like are preferable, economical, and stainless steel is preferable in view of improvement of life due to corrosion inhibition.
전위차 형성을 위해 캐소드 전극과 애노드 전극은 서로 다른 금속(표준 환원 전위값에 차이가 있는 금속)을 사용할 수 있다. 예를 들어 표준 환원 전위값이 작은 소재를 캐소드 전극, 그 값이 큰 것을 애노드 전극으로 사용할 수 있다. 표준 환원 전위값이 차이가 크도록 구성하는 것이 기전력이 커진다는 측면에서 바람직하고, 그 소재들은 표준 환원 전위값 및 산화 정도를 고려하여 적절히 선택될 수 있다.In order to form the potential difference, the cathode electrode and the anode electrode may use different metals (metals having different standard reduction potential values). For example, a material having a small standard reduction potential value may be used as a cathode electrode and a large value thereof as an anode electrode. It is preferable to configure the standard reduction potential value so that the difference is large, and the materials can be appropriately selected in consideration of the standard reduction potential value and the degree of oxidation.
또한, 본 발명에 따른 애노드 전극은 탄소 소재를 포함하여 제조된 전극일 수 있다. 탄소 소재를 포함한 전극인 경우 수분을 포함하고 있는 토양층 내에서 철, 아연, 구리 등의 금속 소재로 제조된 전극에 비해 부식 및 마모 정도가 적어 친환경적이며, 이에 따른 추가 생성물이 발생하지 않는다. 또한, 금속에 비해 산화 정도가 적어 우수한 내구성을 갖고, 교체 주기가 매우 길다.In addition, the anode electrode according to the present invention may be an electrode manufactured by including a carbon material. In the case of an electrode including a carbon material, it is environmentally friendly due to less corrosion and abrasion than an electrode made of a metal material such as iron, zinc, or copper in the soil layer containing moisture, and thus no additional product is generated. In addition, the degree of oxidation is less than that of metal, it has excellent durability, and the replacement cycle is very long.
탄소 소재는 예를 들면 카본 펠트, 카본 페이퍼, 카본 클로스, 카본 막대 등을 들 수 있으나, 이에 제한되는 것은 아니다.The carbon material may include, for example, carbon felt, carbon paper, carbon cloth, carbon rod, and the like, but is not limited thereto.
애노드 전극은 전기 생성 효율을 높이기 위해 표면적이 넓은 것이 바람직하고 그 구조는 예를 들면 판형 또는 실린더형일 수 있다. 실린더형인 경우 그 단면이 단일 폐곡선이라면 그 형태는 원형, 다각형, 그 외 어떠한 형태라도 한정되지 않는다.The anode electrode is preferably a large surface area in order to increase the efficiency of electricity generation, the structure may be, for example, plate or cylindrical. In the case of a cylindrical shape, if the cross section is a single closed curve, the shape is not limited to circular, polygonal or any other shape.
식물체와 애노드 전극 간의 위치는 특별히 한정되지 않으며, 식물체가 애노드 전극 내부, 외부, 상부, 하부 등에 식재될 수 있다.The position between the plant and the anode electrode is not particularly limited, and the plant may be planted inside, outside, top, and bottom of the anode electrode.
애노드 전극이 실린더형인 것이 미생물 및 포도당과의 접촉 면적을 넓힌다는 측면에서 바람직하고, 그러한 경우에 토양층 내에서 식물체의 뿌리의 적어도 일부가 내부에 위치하도록 배치되는 것이 보다 바람직하다. 더욱 바람직하게는 상기 식물체가 애노드 전극의 실린더 단면의 내부 영역에 식재하도록 위치할 수 있다.It is preferable that the anode electrode is cylindrical in terms of widening the contact area with microorganisms and glucose, and in such a case, it is more preferable that at least part of the root of the plant is disposed in the soil layer. More preferably, the plant may be positioned to be planted in an inner region of the cylinder cross section of the anode electrode.
또한, 애노드 전극은 미생물 및 포도당과의 접촉 면적을 넓히며, 산소, 수분 등의 이동이 보다 용이하도록 메쉬를 갖는 것이 바람직하다.In addition, the anode electrode has a mesh to widen the contact area with the microorganism and glucose, and to facilitate the movement of oxygen, moisture and the like.
미생물은 애노드 전극에서 포도당을 분해하여 전자를 생성하는 것인 바, 애노드 전극 상에 또는 애노드 전극의 주변에 위치할 수 있다. 주변은 예를 들면 5cm 이하, 바람직하게는 1cm 이하, 보다 바람직하게는 5mm 이하, 가장 바람직하게는 1mm 이하일 수 있다. 애노드 전극을 토양층 내에 배치함으로써 토양층 내에 존재하던 미생물이 애노드 전극의 표면 또는 주변에 위치할 수도 있고, 별도의 미생물을 애노드 전극의 표면에 처리할 수도 있다.The microorganism is to break down glucose at the anode electrode to generate electrons, which may be located on or around the anode electrode. The perimeter can be, for example, 5 cm or less, preferably 1 cm or less, more preferably 5 mm or less, most preferably 1 mm or less. By placing the anode electrode in the soil layer, the microorganisms that existed in the soil layer may be located on or around the surface of the anode electrode, and separate microorganisms may be treated on the surface of the anode electrode.
미생물은 포도당을 분해하여 전자를 생성할 수 있는 것이라면 특별히 한정되지 않고 예를 들면 사카로마이세스 속, 류코노스토아 속, 한세눌라 속, 락토바실러스 속, 캔디다 속, 마이크로코커스 속, 스트렙토코커스 속, 스타필로코커스 속, 코리네박테리움 속, 바실러스 속, 아스로박터 속, 클로스트리디움 속, 나이세리아 속, 에세리키아 속, 엔테로박터 속, 아크로모박터 속, 셀라티아 속, 플라보박테리움 속, 알칼리제네스속, 모락셀라 속, 아세토박터 속, 니트로소모나스 속, 티오바실러스 속, 니트로박터 속, 글루코노박터 속, 산토모나스 속, 슈도모나스 속, 비브리오 속, 프로테우스 속, 코마모나스 속 등을 들 수 있고, 이 외에도 포도당을 분해하는 것으로 알려진 당 분야에 어떠한 미생물도 더 사용이 가능하다.The microorganism is not particularly limited as long as it can break down glucose to generate electrons. For example, the genus Saccharomyces, Leukonostea, Hansenula, Lactobacillus, Candida, Micrococcus, Streptococcus, Staphylococcus, Corynebacterium, Bacillus, Asrobacter, Clostridium, Neisseria, Esserichia, Enterobacter, Acromobacter, Celatatia, Flavobacterium Genus, Alkogenes, Moraxella, Acetobacter, Nitrosomonas, Thiobacillus, Nitrobacter, Glunobacter, Santomonas, Pseudomonas, Vibrio, Proteus, Comamonas, etc. In addition, any microorganism may be further used in the art known to degrade glucose.
캐소드 전극은 필요에 따라, 외부 저항(부하)를 통해 애노드 전극과 연결되어, 애노드 전극에서 생성된 전자가 외부 저항을 통해 캐소드 전극으로 전달될 수 있으며, 캐소드 전극으로 양성자가 전달되어, 전위차가 형성됨에 따라 전류가 흐를 수 있다.The cathode electrode is connected to the anode electrode through an external resistance (load), if necessary, electrons generated at the anode electrode can be transferred to the cathode electrode through the external resistance, the proton is transferred to the cathode electrode, the potential difference is formed Depending on the current can flow.
본 발명에 따른 캐소드 전극으로는 당 분야에 공지된 전극 소재가 제한없이 사용될 수 있다. 예를 들면 은, 구리, 크롬, 금, 알루미늄, 납, 아연, 규소, 철, 백금, 망간, 티타늄, 란타넘, 마그네슘, 몰리브데늄, 주석, 텅스텐, 니켈, 스테인리스 등을 들 수 있다. 이들은 단독으로, 2종 이상 조합하여, 또는 합금으로 사용될 수 있다. 전기 전도도의 측면에서 철, 은, 금, 백금, 스테인리스 등이 바람직하고, 경제적이며, 부식 억제에 따른 수명 개선의 측면에서는 스테인리스가 바람직하다.As the cathode electrode according to the present invention, an electrode material known in the art may be used without limitation. For example, silver, copper, chromium, gold, aluminum, lead, zinc, silicon, iron, platinum, manganese, titanium, lanthanum, magnesium, molybdenum, tin, tungsten, nickel, stainless steel, etc. are mentioned. These may be used alone, in combination of two or more, or as an alloy. In terms of electrical conductivity, iron, silver, gold, platinum, stainless steel, and the like are preferable, economical, and stainless steel is preferable in view of improvement of life due to corrosion inhibition.
또한, 본 발명에 따른 캐소드 전극은 탄소 소재를 포함하여 제조된 전극일 수 있다. 탄소 소재를 포함한 전극인 경우 수분을 포함하고 있는 토양층 내에서 철, 아연, 구리 등의 금속 소재로 제조된 전극에 비해 부식 및 마모 정도가 적어 친환경적이며, 이에 따른 추가 생성물이 발생하지 않는다. 또한, 금속에 비해 산화 정도가 적어 우수한 내구성을 갖고, 교체 주기가 매우 길다.In addition, the cathode electrode according to the present invention may be an electrode manufactured by including a carbon material. In the case of an electrode including a carbon material, it is environmentally friendly due to less corrosion and abrasion than an electrode made of a metal material such as iron, zinc, or copper in the soil layer containing moisture, and thus no additional product is generated. In addition, the degree of oxidation is less than that of metal, it has excellent durability, and the replacement cycle is very long.
바람직하게는 탄소 소재를 포함한 전극은 표면 관능기가 음이온화된 것일 수 있다. 그러한 경우에 애노드 전극과의 전위차가 커져 전류 생성량이 더 커지고, 애노드 전극을 탄소 소재를 포함한 전극을 사용한다고 하더라도 애노드 전극과 전위차가 형성되어 전류 생성이 가능하다.Preferably, the electrode including the carbon material may be an anion of the surface functional group. In such a case, the potential difference with the anode electrode is increased, so that the amount of current generated is larger, and even if the anode electrode is made of an electrode containing a carbon material, a potential difference is formed with the anode electrode, thereby allowing current generation.
표면 관능기를 음이온화하는 방법은 특별히 제한되지 않고 당 분야에 공지된 방법을 제한없이 사용할 수 있으며, 예를 들면 산처리, 고온처리, 요오드 처리 등의 방법을 사용할 수 있다.The method of anionizing the surface functional group is not particularly limited and any method known in the art may be used without limitation, and for example, an acid treatment, a high temperature treatment, an iodine treatment, or the like may be used.
처리 가능한 산으로는 예를 들면 염산, 질산, 황산, 탄산, 인산, 아세트산, 붕산 등의 산을 제한없이 사용할 수 있다.As the acid which can be treated, acids such as hydrochloric acid, nitric acid, sulfuric acid, carbonic acid, phosphoric acid, acetic acid and boric acid can be used without limitation.
캐소드 전극은 예를 들면 판형 또는 실린더형일 수 있다. 실린더형인 경우 그 단면이 단일 폐곡선이라면 그 형태는 원형, 다각형, 그 외 어떠한 형태라도 한정되지 않는다.The cathode electrode can be, for example, plate or cylindrical. In the case of a cylindrical shape, if the cross section is a single closed curve, the shape is not limited to circular, polygonal or any other shape.
캐소드 전극이 실린더형인 경우, 애노드 전극을 감싸는 것이 애노드 전극에서 생성된 전자를 최대한으로 수용하고, 애노드 전극으로 전자를 최대한으로 쉽게 전달할 수 있다는 측면에서 바람직하다.In the case where the cathode electrode is cylindrical, it is preferable to surround the anode electrode in terms of receiving the electrons generated at the anode electrode to the maximum and easily transferring the electrons to the anode electrode as easily as possible.
마찬가지의 측면에서 캐소드 전극은 메쉬를 갖는 것이 바람직하다.In a similar aspect, the cathode electrode preferably has a mesh.
도 1 내지 4는 철 애노드 전극 및 탄소 막대 캐소드 전극을 사용한 식물토양전지의 사진(원활한 도시를 위해 식물은 미첨부)이다. 도 1 내지 3은 메쉬 판형 애노드 전극, 탄소 막대 캐소드 전극을 사용한 경우이고, 도 4는 메쉬 실린더형 애노드 전극, 탄소 막대 캐소드 전극을 사용한 경우이다.1 to 4 are photographs of plant soil cells using iron anode electrodes and carbon rod cathode electrodes (plants not shown for the sake of clarity). 1 to 3 show a mesh plate anode electrode and a carbon rod cathode electrode, and FIG. 4 shows a mesh cylindrical anode electrode and a carbon rod cathode electrode.
캐소드 전극이 애노드 전극과 접촉하게 되면 쇼트가 발생하게 되므로 캐소드 전극은 애노드 전극으로부터 소정 거리 이격되어 위치한다. 그 거리는 예를 들면 0.5 내지 5cm일 수 있으나, 이에 제한되는 것은 아니다. 이격 거리가 0.5cm 미만이면 전극 사이의 간격이 유지되기 어려워 합선이 발생할 수 있다. 이격 거리가 5cm 초과이면 애노드 전극과 캐소드 전극 간의 상기 반응식의 물질 교환이 어려워 전류 생성 효율이 떨어질 수 있다.When the cathode is in contact with the anode, a short occurs, so that the cathode is positioned at a predetermined distance from the anode. The distance may be, for example, 0.5 to 5 cm, but is not limited thereto. If the separation distance is less than 0.5cm, it is difficult to maintain the gap between the electrodes may cause a short circuit. When the separation distance is greater than 5 cm, the material exchange of the reaction scheme between the anode electrode and the cathode electrode is difficult, and current generation efficiency may be reduced.
바람직하게는 본 발명의 식물토양전지는 애노드 전극과 캐소드 전극은 격리막을 사이에 두고 서로 접할 수 있다. 그러한 경우에 애노드 전극과 캐소드 전극 사이의 쇼트는 방지하면서 서로간의 이격 거리는 최소화 할 수 있어 전류 생성 효율이 우수하다.Preferably, in the plant soil battery of the present invention, the anode electrode and the cathode electrode may be in contact with each other with the separator interposed therebetween. In such a case, the separation distance between the anode electrode and the cathode electrode can be minimized while minimizing the separation distance between the anode electrode and the cathode electrode, and the current generation efficiency is excellent.
격리막은 예를 들면 직물, 편물, 부직포 등의 천; 또는 수지 필름일 수 있다. 바람직한 구체적 예시로는 부직포 와이퍼를 사용할 수 있다. 부직포 와이퍼는 통상 반도체 클린룸 내부 클리닝용으로 사용되는 것으로서, 절연 및 정전기 방지 효과가 우수하여 전극 사이의 쇼트는 방지하면서 매우 얇은 두께를 가져 전극 간 이격 거리는 최소화 할 수 있다. 또한, 강도가 우수하여 토양 내에서 수분 흡수시에도 우수한 강도를 유지할 수 있다.The separator is, for example, a cloth such as woven fabric, knitted fabric, or nonwoven fabric; Or a resin film. As a preferable specific example, a nonwoven wiper may be used. Non-woven wiper is generally used for cleaning the inside of a semiconductor clean room, and has excellent insulation and antistatic effects, so that a short thickness between the electrodes can be prevented, and the distance between electrodes can be minimized. In addition, it is excellent in strength and can maintain excellent strength even when water is absorbed in the soil.
사용가능한 시판품의 구체적인 예시로는 유한킴벌리의 킴테크 와이퍼를 들 수 있으나, 이에 제한되는 것은 아니다.Specific examples of commercially available products include, but are not limited to, Kimtech Wiper of Yuhan-Kimberly.
애노드 전극이나 캐소드 전극이 메쉬를 갖는 경우, 토양층 내부에서 토양 환경, 식물체 성장 등에 의해 그 형태, 간격 등의 유지가 어려울 수 있다. 이에, 본 발명의 식물토양전지는 애노드 전극이나 캐소드 전극을 각각 감싸서 이들을 지지하는 지지 와이어를 더 포함할 수 있다.When the anode electrode or the cathode electrode has a mesh, it may be difficult to maintain its shape, spacing, etc. due to soil environment, plant growth, etc. in the soil layer. Thus, the plant soil battery of the present invention may further include a support wire that surrounds the anode electrode or the cathode electrode and supports them.
또한, 본 발명의 식물토양전지는 애노드 전극 및 캐소드 전극을 복수개로 포함할 수 있다.In addition, the plant soil battery of the present invention may include a plurality of anode electrodes and cathode electrodes.
도 5는 복수개의 애노드 전극, 캐소드 전극을 사용한 경우의 일 예시가 도시되어 있다.5 illustrates an example of using a plurality of anode electrodes and cathode electrodes.
복수개의 애노드 전극 및 캐소드 전극을 포함하는 경우, 애노드 전극이 최내부에 위치하고, 그 이후에 캐소드 전극, 애노드 전극, 캐소드 전극의 순으로 서로 번갈아가며 위치할 수 있다.In the case of including a plurality of anode electrodes and cathode electrodes, the anode electrodes may be positioned at the innermost side, and then alternately positioned in the order of the cathode electrode, the anode electrode, and the cathode electrode.
그러한 경우에, 복수개의 애노드 전극을 포함하여 식물체의 뿌리로부터 배출되는 포도당을 보다 많이 분해하여 전자를 생성할 수 있고, 애노드 전극들 사이에 캐소드 전극이, 캐소드 전극들 사이에 애노드 전극이 위치하므로 전극들 사이에 포도당 분해 반응 산물의 교환이 원활하여, 전류 생성을 극대화할 수 있다. In such a case, a plurality of anode electrodes may be included to generate more electrons by decomposing more glucose from the root of the plant, and a cathode electrode is positioned between the anode electrodes, and an anode electrode is positioned between the cathode electrodes. The exchange of glucose decomposition reaction products is smooth among them, maximizing current generation.
애노드 전극 및 캐소드 전극의 구조는 전술한 범위 내일 수 있다.The structure of the anode electrode and the cathode electrode may be in the above-described range.
본 발명의 다른 일 구현예에 따르면, 본 발명의 식물토양전지는 식물체; 상기 식물체가 식재되는 토양층; 상기 토양층과 접하며 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극; 양이온 교환막에 의해 상기 토양층과 분리되며, 상기 전자를 수용하는 캐소드 전극을 포함한다.According to another embodiment of the present invention, the plant soil battery of the present invention is a plant; A soil layer in which the plant is planted; An anode comprising microorganisms in contact with the soil layer and decomposing glucose emitted from the plant to generate electrons; It is separated from the soil layer by a cation exchange membrane, and comprises a cathode electrode for receiving the electrons.
식물체, 토양층, 애노드 전극 및 캐소드 전극은 전술한 범위 내의 것을 사용할 수 있다.Plants, soil layers, anode electrodes and cathode electrodes can be used in the above-mentioned range.
캐소드 전극은 양이온 교환막에 의해 상기 토양층과 분리된다. 이에 의해 캐소드 전극과 애노드 전극간의 쇼트를 최소화하고 양이온 교환 효율을 개선하여 전류 생성 효율이 증가될 수 있다.The cathode electrode is separated from the soil layer by a cation exchange membrane. As a result, current generation efficiency may be increased by minimizing a short between the cathode electrode and the anode electrode and improving the cation exchange efficiency.
양이온 교환막으로는 찰흙, 점토, 황토 등을 고형화시킨 것을 사용할 수 있으며, 양이온 교환 효율 개선 측면에서 바람직하게는 전해질을 더 혼합하여 사용할 수 있다.As the cation exchange membrane, solidified clay, clay, loess, and the like may be used. In view of improving cation exchange efficiency, the electrolyte may be further mixed.
전해질은 찰흙, 점토, 황토 등에 혼합되어 반죽될 수 있다. 사용가능한 전해질로는 전지에 사용되는 전해질 등이 제한없이 사용될 수 있으며, 예를 들면 염화암모늄, 수산화칼륨, 염화아연 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The electrolyte may be mixed and kneaded with clay, clay, loess, and the like. As the electrolyte that can be used, an electrolyte or the like used in a battery may be used without limitation, and for example, ammonium chloride, potassium hydroxide, zinc chloride, or the like may be used. These can be used individually or in mixture of 2 or more types.
본 발명의 식물토양전지는 애노드 전극과 접하는 제1 보조토양층을 더 포함할 수 있다.The plant soil battery of the present invention may further include a first auxiliary soil layer in contact with the anode electrode.
제1 보조토양층에는 전술한 약산성 전해질, 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스, 블루베리, 꿀, 가축분 등이 포함될 수 있다.The first auxiliary soil layer may include the above-mentioned weakly acidic electrolyte, leaf extract including galactosidase, and galactose, blueberries, honey, livestock meal, and the like.
제1 보조토양층의 포함시 전류 생성 효율이 더욱 개선될 수 있다.When the first auxiliary soil layer is included, the current generation efficiency may be further improved.
또한, 캐소드 전극과 접하는 제2 보조토양층을 더 포함할 수 있다.In addition, it may further include a second auxiliary soil layer in contact with the cathode electrode.
제2 보조토양층에는 캐소드 전극의 표면 관능기를 음이온화 할 수 있는 전술한 산, 산화제 등이 포함될 수 있다.The second auxiliary soil layer may include the above-described acid, oxidant, and the like, which may anionize the surface functional group of the cathode electrode.
제2 보조토양층의 포함시 애노드 전극과의 전위차가 커져 전류 생성량이 커질 수 있다.When the second auxiliary soil layer is included, the potential difference with the anode electrode may be increased, thereby increasing the amount of current generated.
상기 구성들을 포함하는 본 발명의 식물토양전지는 도 6에 예시된 바와 같이, 제1 보조토양층, 애노드 전극, 토양층, 양이온 교환막, 캐소드 전극, 제2 보조토양층 순의 층 구조를 가질 수 있다.As illustrated in FIG. 6, the plant soil battery of the present invention including the above configurations may have a layer structure of a first auxiliary soil layer, an anode electrode, a soil layer, a cation exchange membrane, a cathode electrode, and a second auxiliary soil layer.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to Examples.
실시예Example 1. 식물토양전지의 제조 1. Manufacture of Plant Soil Battery
천리향을 혼합 배양토인 그린토에 심고, 철판 애노드 전극을 뿌리 하측에 설치하였다.Celestial fragrance was planted in the mixed earth, green earth, and an iron plate anode electrode was installed under the root.
이후에, 구리판을 캐소드 전극으로 사용하여, 상기 애노드 전극 하측에 1cm 이격시켜 설치하였다. 이후, EIC-108 브레드보드를 사용하여 회로를 구성하였다.Thereafter, using a copper plate as a cathode electrode, it was installed spaced 1cm below the anode electrode. The circuit was then constructed using the EIC-108 breadboard.
실시예Example 2. 식물토양전지의 제조 2. Manufacture of Plant Soil Battery
천리향을 혼합 배양토인 그린토에 심고, 메쉬의 상하부가 개구된 원통형 철 메쉬망을 애노드 전극으로 사용하여, 애노드 전극으로 천리향의 뿌리를 감쌌다.Celestial fragrance was planted in green earth, which is a mixed culture soil, and the root of the fragrance was wrapped with an anode electrode by using a cylindrical iron mesh network having the upper and lower portions of the mesh opened as an anode electrode.
이후에, 상하부가 개구된 원통형 구리 메쉬망을 캐소드 전극으로 사용하여, 상기 애노드 전극으로부터 1cm 이격된 거리에서 상기 애노드 전극을 감싸도록 메쉬 실린더형 캐소드 전극을 토양층 내에 위치시켰다. 이후, EIC-108 브레드보드를 사용하여 회로를 구성하였다.Subsequently, using a cylindrical copper mesh net having an upper and lower opening as a cathode electrode, a mesh cylindrical cathode electrode was positioned in the soil layer to surround the anode electrode at a distance of 1 cm from the anode electrode. The circuit was then constructed using the EIC-108 breadboard.
실시예Example 3. 식물토양전지의 제조 3. Manufacture of Plant Soil Battery
캐소드 전극을 탄소 막대를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was manufactured in the same manner as in Example 1, except that the cathode was used as the carbon rod.
실시예Example 4. 식물토양전지의 제조 4. Manufacture of Plant Soil Cells
그린토에 동물의 소변을 첨가한 것을 제외하고는 실시예 3과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was prepared in the same manner as in Example 3 except that the urine of the animal was added to the green soil.
실시예Example 5. 식물토양전지의 제조 5. Manufacture of Plant Soil Battery
상온에서 단풍잎 20g을 물 100ml에 넣어 24시간 동안 침지시킨 다음, 단풍잎을 제거하여 단풍잎 추출액을 얻었다. 상기 단풍잎 추출액을 그린토에 첨가한 것을 제외하고는 실시예 3과 동일한 방법으로 식물토양전지를 제조하였다.At room temperature, 20 g of maple leaf was added to 100 ml of water, soaked for 24 hours, and the maple leaf was removed to obtain a maple leaf extract. A plant soil battery was manufactured in the same manner as in Example 3, except that the maple leaf extract was added to the green earth.
실시예Example 6. 식물토양전지의 제조 6. Manufacture of Plant Soil Cells
실시예 5의 방법으로 얻은 단풍잎 추출액을 그린토에 더 첨가한 것을 제외하고는 실시예 4와 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was manufactured in the same manner as in Example 4, except that the maple leaf extract obtained in Example 5 was further added to green earth.
실시예Example 7. 식물토양전지의 제조 7. Manufacture of Plant Soil Battery
캐소드 전극을 1.0N 질산 용액에 1분간 침지시킨 것을 제외하고는 실시예 3과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was manufactured in the same manner as in Example 3, except that the cathode was immersed in 1.0 N nitric acid solution for 1 minute.
실시예Example 8. 식물토양전지의 제조 8. Manufacture of Plant Soil Battery
그린토에 동물의 소변을 첨가한 것을 제외하고는 실시예 7과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was prepared in the same manner as in Example 7, except that the urine of the animal was added to the green soil.
실시예Example 9. 식물토양전지의 제조 9. Manufacture of Plant Soil Battery
실시예 5의 방법으로 얻은 단풍잎 추출액을 그린토에 첨가한 것을 제외하고는 실시예 7과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was prepared in the same manner as in Example 7, except that the maple leaf extract obtained in Example 5 was added to green earth.
실시예Example 10. 식물토양전지의 제조 10. Manufacture of Plant Soil Battery
실시예 5의 방법으로 얻은 단풍잎 추출액을 그린토에 더 첨가한 것을 제외하고는 실시예 8과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was prepared in the same manner as in Example 8, except that the maple leaf extract obtained in Example 5 was further added to green earth.
실시예Example 11. 식물토양전지의 제조 11. Manufacture of Plant Soil Cells
상하부가 개구된 원통형 철 메쉬망을 애노드 전극으로 사용하여 캐소드 전극과 1cm 이격된 거리에서 캐소드 전극을 감싸도록 한 것을 제외하고는 실시예 7과 동일한 방법으로 식물토양전지를 제조하였다.A plant soil battery was manufactured in the same manner as in Example 7, except that the upper and lower portions of the cylindrical iron mesh network were used as the anode electrode to surround the cathode electrode at a distance of 1 cm from the cathode electrode.
실시예Example 12. 식물토양전지의 제조 12. Manufacture of Plant Soil Battery
애노드 전극, 토양층, 양이온 교환막, 캐소드 전극 순의 층 구조의 식물토양전지를 제조하였다.A plant soil battery having a layer structure of an anode electrode, a soil layer, a cation exchange membrane, and a cathode electrode was prepared.
식물체로는 천리향, 애노드 전극으로는 스테인리스, 토양층으로는 소똥, 양이온 교환막으로는 염화암모늄을 혼합하여 반죽한 찰흙, 캐소드 전극으로는 카본펠트를 사용하였다.Clay was prepared by mixing scented scent as a plant, stainless as an anode electrode, cow dung as soil layer, ammonium chloride as cation exchange membrane, and carbon felt as cathode electrode.
실시예Example 13. 식물토양전지의 제조 13. Manufacture of Plant Soil Battery
도 6에 도시된 바와 같이, 애노드 전극에 접하는 제1 보조토양층, 캐소드 전극에 접하는 제2 보조토양층을 더 포함시켰다.As shown in FIG. 6, the first auxiliary soil layer in contact with the anode electrode and the second auxiliary soil layer in contact with the cathode electrode were further included.
제1 보조토양층에는 모래에 동물 소변, 단풍잎 추출액을 첨가하였고, 제2 보조토양층에는 모래에 질산을 첨가하였다.Animal urine and maple leaf extracts were added to the sand in the first auxiliary soil layer, and nitric acid was added to the sand in the second auxiliary soil layer.
실험예Experimental Example . 전압, 전류 측정. Voltage, current measurement
전압전류측정기로 실시예의 식물토양전지의 전압 및 전류를 측정하였고, 결과는 하기 표 1에 나타내었다.The voltage and current of the plant soil battery of Example were measured with a voltage current meter, and the results are shown in Table 1 below.
구분division 전압(V)Voltage (V) 전류(mA)Current (mA)
실시예 1Example 1 0.8500.850 1.01.0
실시예 2Example 2 0.9210.921 1.51.5
실시예 3Example 3 0.9130.913 1.71.7
실시예 4Example 4 1.0391.039 5.85.8
실시예 5Example 5 1.0011.001 2.32.3
실시예 6Example 6 0.8620.862 5.15.1
실시예 7Example 7 1.6911.691 6.56.5
실시예 8Example 8 1.6811.681 8.18.1
실시예 9Example 9 1.6791.679 3030
실시예 10Example 10 1.8581.858 5050
실시예 11Example 11 1.7781.778 10.310.3
실시예 12Example 12 0.90.9 3535
실시예 13Example 13 1.11.1 4040
상기 표를 참조하면, 탄소 소재 전극의 사용, 메쉬형 전극의 사용, 소변 첨가, 단풍잎 추출액 첨가, 산처리된 탄소 전극 사용 등에 의해 전압 및 전류 생성량이 증가하는 것을 확인할 수 있다.Referring to the table, it can be seen that the voltage and current generation amount is increased by the use of the carbon electrode, the use of the mesh-type electrode, the addition of urine, the addition of maple leaf extract, the use of acid-treated carbon electrode.

Claims (28)

  1. 식물체,Plant,
    상기 식물체가 식재되는 토양층,Soil layer in which the plant is planted,
    상기 토양층 내에 배치되며 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극 및An anode electrode disposed in the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons;
    상기 토양층 내에 배치되며 상기 전자를 수용하는 캐소드 전극을 포함하는, 식물토양전지.And a cathode electrode disposed in the soil layer to receive the electrons.
  2. 청구항 1에 있어서, 상기 토양층은 약산성 전해질을 첨가한 것인, 식물토양전지.The plant soil battery of claim 1, wherein the soil layer is added with a weak acid electrolyte.
  3. 청구항 1에 있어서, 상기 전해질은 액상인, 식물토양전지.The plant soil battery of claim 1, wherein the electrolyte is a liquid phase.
  4. 청구항 2에 있어서, 상기 토양층은 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스를 더 포함한 것인, 식물토양전지.The plant soil battery of claim 2, wherein the soil layer further comprises galaxose and leaf extract including galactosidase.
  5. 청구항 1에 있어서, 상기 토양층은 가축분을 포함한 것인, 식물토양전지.The plant soil battery of claim 1, wherein the soil layer comprises livestock meal.
  6. 청구항 1에 있어서, 상기 토양층은 고형 가축분인, 식물토양전지.The plant soil battery of claim 1, wherein the soil layer is solid livestock meal.
  7. 청구항 1에 있어서, 상기 애노드 전극은 철 전극이고, 캐소드 전극은 탄소 소재를 포함한 전극인, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode is an iron electrode, and the cathode electrode is an electrode including a carbon material.
  8. 청구항 1에 있어서, 상기 애노드 전극은 스테인리스 전극이고, 캐소드 전극은 탄소 소재를 포함한 전극인, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode is a stainless steel electrode, and the cathode electrode is an electrode including a carbon material.
  9. 청구항 1에 있어서, 상기 애노드 전극은 탄소 소재를 포함한 전극이고, 캐소드 전극은 표면 관능기가 음이온화된 탄소 소재를 포함한 전극인, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode is an electrode containing a carbon material, and the cathode electrode is an electrode containing a carbon material having an anionic surface functional group.
  10. 청구항 1에 있어서, 상기 애노드 전극 및 캐소드 전극은 서로 독립적으로 실린더형 또는 판형인, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode and the cathode electrode are cylindrical or plate-shaped independently of each other.
  11. 청구항 1에 있어서, 상기 애노드 전극은 메쉬 실린더형이며, 상기 토양층 내에서 상기 식물체의 뿌리의 적어도 일부가 내부에 위치하도록 배치되는, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode is mesh-cylindrical and is disposed such that at least a part of the root of the plant is located in the soil layer.
  12. 청구항 11에 있어서, 상기 식물체는 상기 애노드 전극의 실린더 단면의 내부 영역에 식재되는, 식물토양전지.The plant soil battery of claim 11, wherein the plant is planted in an inner region of a cylinder cross section of the anode electrode.
  13. 청구항 11에 있어서, 상기 애노드 전극을 감싸는 지지 와이어를 더 포함하는, 식물토양전지.The plant soil battery of claim 11, further comprising a support wire surrounding the anode electrode.
  14. 청구항 1에 있어서, 상기 캐소드 전극은 애노드 전극으로부터 소정 거리 이격되어 이를 감싸는 실린더형인, 식물토양전지.The plant soil battery of claim 1, wherein the cathode is a cylindrical shape spaced apart from the anode by a predetermined distance.
  15. 청구항 1에 있어서, 상기 캐소드 전극은 메쉬 실린더형이고, 캐소드 전극을 감싸는 지지 와이어를 더 포함하는, 식물토양전지.The plant soil battery of claim 1, wherein the cathode electrode is a mesh cylinder and further includes a support wire surrounding the cathode electrode.
  16. 청구항 1에 있어서, 상기 애노드 전극 및 캐소드 전극은 격리막을 사이에 두고 서로 접하는, 식물토양전지.The plant soil battery of claim 1, wherein the anode electrode and the cathode electrode are in contact with each other with a separator interposed therebetween.
  17. 청구항 1에 있어서, 메쉬 실린더형 애노드 전극 및 메쉬 실린더형 캐소드 전극을 복수개 포함하며, 상기 애노드 전극과 캐소드 전극이 서로 번갈아가며 배치된, 식물토양전지.The plant soil battery of claim 1, comprising a plurality of mesh cylindrical anode electrodes and a mesh cylindrical cathode electrode, wherein the anode electrode and the cathode electrode are alternately disposed.
  18. 식물체,Plant,
    상기 식물체가 식재되는 토양층,Soil layer in which the plant is planted,
    상기 토양층 내에서 상기 식물체의 뿌리의 적어도 일부가 내부에 위치하도록 배치되며, 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 메쉬 실린더형 애노드 전극 및At least a portion of the root of the plant in the soil layer is disposed so that the inside, the mesh cylindrical anode electrode containing a microorganism that generates electrons by decomposing glucose discharged from the plant and
    상기 애노드 전극으로부터 소정 거리 이격되어 애노드 전극을 감싸며, 상기 전자를 수용하는 메쉬 실린더형 캐소드 전극을 포함하는, 식물토양전지.A plant soil battery comprising a mesh cylindrical cathode electrode surrounding the anode electrode spaced apart from the anode electrode by a predetermined distance and accommodating the electrons.
  19. 청구항 18에 있어서, 상기 토양층은 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스를 더 포함한 것인, 식물토양전지.The plant soil battery of claim 18, wherein the soil layer further comprises galaxose and leaf extract including galactosidase.
  20. 청구항 19에 있어서, 상기 토양층은 산화방지제를 더 첨가한 것인, 식물토양전지.The plant soil battery according to claim 19, wherein the soil layer is further added with an antioxidant.
  21. 청구항 18에 있어서, 상기 애노드 전극 및 캐소드 전극을 각각 감싸는 지지 와이어를 더 포함하는, 식물토양전지.The plant soil battery of claim 18, further comprising a support wire surrounding each of the anode electrode and the cathode electrode.
  22. 청구항 18에 있어서, 상기 애노드 전극 및 캐소드 전극은 격리막을 사이에 두고 서로 접하는, 식물토양전지.The plant soil battery of claim 18, wherein the anode electrode and the cathode electrode are in contact with each other with a separator interposed therebetween.
  23. 식물체;Plants;
    상기 식물체가 식재되는 토양층;A soil layer in which the plant is planted;
    상기 토양층과 접하며, 상기 식물체에서 배출되는 포도당을 분해하여 전자를 생성하는 미생물을 포함하는 애노드 전극; 및An anode electrode in contact with the soil layer and including a microorganism that decomposes glucose discharged from the plant to generate electrons; And
    양이온 교환막에 의해 상기 토양층과 분리되며, 상기 전자를 수용하는 캐소드 전극을 포함하는, 식물토양전지.Separation from the soil layer by a cation exchange membrane, comprising a cathode electrode for receiving the electrons, plant soil battery.
  24. 청구항 23에 있어서, 상기 토양층은 가축분을 포함한 것인, 식물토양전지.The plant soil battery of claim 23, wherein the soil layer comprises livestock meal.
  25. 청구항 24에 있어서, 상기 양이온 교환막은 찰흙, 점토 및 황토로 이루어진 군에서 선택된 1종인, 식물토양전지.The plant soil battery of claim 24, wherein the cation exchange membrane is one selected from the group consisting of clay, clay and loess.
  26. 청구항 25에 있어서, 상기 양이온 교환막은 염화암모늄, 수산화칼륨 및 염화아연으로 이루어진 군에서 선택된 1종 이상의 전해질을 더 포함하는, 식물토양전지.The plant soil battery of claim 25, wherein the cation exchange membrane further comprises at least one electrolyte selected from the group consisting of ammonium chloride, potassium hydroxide and zinc chloride.
  27. 청구항 23에 있어서, 상기 애노드 전극과 접하며, 약산성 전해질, 갈락토시다아제를 포함한 나뭇잎 추출물 및 갈락토오스, 블루베리, 꿀 및 가축분으로 이루어진 군에서 선택된 1종 이상을 포함하는 제1 보조토양층을 더 포함하는, 식물토양전지.The method according to claim 23, further comprising a first auxiliary soil layer in contact with the anode electrode, including a weak acid electrolyte, a leaf extract including galactosidase and at least one selected from the group consisting of galactose, blueberries, honey and livestock meal. , Plant soil cells.
  28. 청구항 23에 있어서, 상기 캐소드 전극과 접하며, 산, 산화제 등을 포함하는 제2 보조토양층을 더 포함하는, 식물토양전지.The plant soil battery of claim 23, further comprising a second auxiliary soil layer in contact with the cathode and comprising an acid, an oxidant, and the like.
PCT/KR2016/011477 2015-10-13 2016-10-13 Plant-soil battery WO2017065512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/092,983 US10985410B2 (en) 2015-10-13 2016-10-13 Plant-soil battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0142729 2015-10-13
KR20150142729 2015-10-13
KR10-2016-0132496 2016-10-13
KR1020160132496A KR20170043467A (en) 2015-10-13 2016-10-13 Plant soil fuel cell

Publications (1)

Publication Number Publication Date
WO2017065512A1 true WO2017065512A1 (en) 2017-04-20

Family

ID=58517387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011477 WO2017065512A1 (en) 2015-10-13 2016-10-13 Plant-soil battery

Country Status (1)

Country Link
WO (1) WO2017065512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205968A (en) * 2021-11-24 2022-03-18 中国联合网络通信集团有限公司 Street lamp system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028907A (en) * 2005-07-22 2007-02-08 Ohbayashi Corp Greening soil and method for producing the same
WO2008127109A1 (en) * 2007-04-17 2008-10-23 Wageningen Universiteit Device and method for converting light energy into electrical energy
JP2009163914A (en) * 2007-12-28 2009-07-23 Tokuyama Corp Complex cation exchange membrane and diaphragm for fuel cell
KR20150015623A (en) * 2013-07-31 2015-02-11 포항공과대학교 산학협력단 Pot for monitoring co2 concentration using plant-microbial fuel cell
KR20150081873A (en) * 2014-01-07 2015-07-15 화이젠 주식회사 Soil fuel cell and electricity producing method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028907A (en) * 2005-07-22 2007-02-08 Ohbayashi Corp Greening soil and method for producing the same
WO2008127109A1 (en) * 2007-04-17 2008-10-23 Wageningen Universiteit Device and method for converting light energy into electrical energy
JP2009163914A (en) * 2007-12-28 2009-07-23 Tokuyama Corp Complex cation exchange membrane and diaphragm for fuel cell
KR20150015623A (en) * 2013-07-31 2015-02-11 포항공과대학교 산학협력단 Pot for monitoring co2 concentration using plant-microbial fuel cell
KR20150081873A (en) * 2014-01-07 2015-07-15 화이젠 주식회사 Soil fuel cell and electricity producing method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205968A (en) * 2021-11-24 2022-03-18 中国联合网络通信集团有限公司 Street lamp system
CN114205968B (en) * 2021-11-24 2023-12-19 中国联合网络通信集团有限公司 Street lamp system

Similar Documents

Publication Publication Date Title
Reinecke et al. The influence of feeding patterns on growth and reproduction of the vermicomposting earthworm Eisenia fetida (Oligochaeta)
Kaku et al. Plant/microbe cooperation for electricity generation in a rice paddy field
WO2017065512A1 (en) Plant-soil battery
ATE251804T1 (en) METHOD AND APPARATUS FOR INCREASING THE TEMPERATURE OF A FUEL CELL USING POLYMER ELECTROLYTE
DE60037107D1 (en) PLURIPOTENTE EMBRYONIC GERMANY FROM BIRDS
Pamintuan et al. Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes)
UA42670C2 (en) Method for electric power generation of organic matters
CN109231495A (en) A kind of control algae microorganism formulation and preparation method thereof
KR101868491B1 (en) Plant soil fuel cell
ES2165682T3 (en) CELL FOR THE MANUFACTURE OF ALUMINUM BY ELECTROLYSIS.
CA2380309A1 (en) Cable, in particular for transport or distribution of electrical energy and insulating composition
Soussan et al. The open circuit potential of Geobacter sulfurreducens bioanodes depends on the electrochemical adaptation of the strain
Ong et al. Evaluation on the electricity generation using membrane-less fixed-bed upflow microbial fuel cell
CN114634241B (en) Method for simultaneously removing sulfate and florfenicol in water
Kumar et al. Control of Anopheles stephensi breeding in construction sites and abandoned overhead tanks with Bacillus thuringiensis var. israelensis
EP3840094A1 (en) A device and a method for generating electrical energy from soil degradation
WO2021010724A1 (en) Water-splitting catalyst electrode and manufacturing method thereof
WO2018194299A1 (en) Microbial fuel cell connected in series within shared electrolyte, and method for connecting same in series
DE60003198D1 (en) INHIBITION OF ABNORMAL CELL GROWTH WITH ANALOGS OF THE CORTICOTROPIN RELEASING HORMONE
Horsfall et al. Thermal Stress and Anomalous Development of Mosquitoes (Diptera: Culicidae) III. Aedes sierrensis1, 2
WO2016076447A1 (en) Pharmaceutical composition and antimicrobial composition for treating respiratory disease containing extract of morus alba
Avery The influence of chemical reclamation on a small brown trout stream in southwestern Wisconsin
Benhabylès et al. Bioelectricity Production from Arundo Donax-MFC and Chlorophytum Comosum-MFC
주홍일 et al. Heavy Metal Removal through Microbial Fuel Cell using Silver Grass-derived Porous Carbon Electrodes for Enhanced Energy Generation
Logroño et al. Microalgae biofilm assisted-cathode in a single chamber microbial fuel cell (SMFC) powered with dye textile wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855729

Country of ref document: EP

Kind code of ref document: A1