WO2017065501A1 - Scptm 서비스 연속성을 지원하는 방법 및 장치 - Google Patents

Scptm 서비스 연속성을 지원하는 방법 및 장치 Download PDF

Info

Publication number
WO2017065501A1
WO2017065501A1 PCT/KR2016/011451 KR2016011451W WO2017065501A1 WO 2017065501 A1 WO2017065501 A1 WO 2017065501A1 KR 2016011451 W KR2016011451 W KR 2016011451W WO 2017065501 A1 WO2017065501 A1 WO 2017065501A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mbms
base station
mce
service information
Prior art date
Application number
PCT/KR2016/011451
Other languages
English (en)
French (fr)
Inventor
변대욱
쑤지안
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/768,246 priority Critical patent/US10476695B2/en
Publication of WO2017065501A1 publication Critical patent/WO2017065501A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for supporting the continuity of SCPTM service.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • MBMS Multimedia Broadcast / Multicast Service
  • CBS Cell Broadcast Service
  • MBMS is intended for high-speed multimedia data transmission.
  • CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. According to the MBMS, when a certain level of users exist in the same cell, the users can receive the same multimedia data using a shared resource (or channel), thereby increasing the efficiency of radio resources and allowing users to value multimedia services. It is available cheaply.
  • the MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. For one service data, the base station does not allocate a dedicated channel as many as the number of terminals to receive the service in one cell, but allocates only one shared channel. In addition, since a plurality of terminals simultaneously receive the shared channel, the efficiency of radio resources is increased. In relation to the MBMS, the terminal may receive the MBMS after receiving system information about the corresponding cell.
  • GCSE_LTE public safety and Group Communication System Enablers for LTE
  • group communication was designated as eMBMS.
  • the eMBMS is designed to deliver media content to a wide range of preplanned areas (ie, MBSFN areas).
  • MBSFN area is rather static (eg set by O & M) and cannot be dynamically adjusted according to user distribution.
  • eMBMS transmission occupies the entire system bandwidth and unicast and multiplexing are not allowed in the same subframe.
  • the MBSFN subframe setting is also rather static (eg, set by O & M).
  • the MBSFN subframe cannot be dynamically adjusted according to the number of dynamic groups and the traffic load of the dynamic groups.
  • radio resource setup for eMBMS can be wasted unnecessary. Therefore, Single-Cell Point-to-Multipoint transmission has been proposed for efficient use of radio resources. While MBSFN transmissions transmit identifiable signals in multiple cells simultaneously, SCPTM transmissions carry MBMS services in a single cell.
  • the SCPTM service is broadcast, it is transmitted through a Dedicated Traffic Channel (DTCH), so if the terminal moves to a cell of a neighboring base station not serving the same SCPTM service, a problem may occur in the continuity of receiving the SCPTM service. Therefore, the serving base station needs to inform the neighbor base station of SCPTM service information. The serving base station also needs to inform the MCE of the SCPTM service information.
  • DTCH Dedicated Traffic Channel
  • a method of supporting a single-cell point-to-multipoint (SCP) service continuity by a base station in a wireless communication system receives an MBMS Session Start Request message (MBMS Session Start Request Message) including a cell ID list from a multi-cell coordination entity (MCE), confirms whether the requested MBMS resource is established, and MBMS bearer per cell And transmitting the service information to the neighbor base station.
  • MBMS Session Start Request Message including a cell ID list from a multi-cell coordination entity (MCE)
  • MCE multi-cell coordination entity
  • the base station may further include sending an MBMS Session Start Failure Message to the MCE.
  • the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • the MBMS bearer service information for each cell may be MBMS bearer service information for each cell currently served by the base station.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • the base station is further configured to send an MBMS Session Start Response Message including the list of the at least one cell to the MCE. It may include.
  • the MBMS bearer service information for each cell may be transmitted to the neighbor base station.
  • the per-cell MBMS bearer service information may include at least one of per-cell MBMS bearer service information currently updated by the base station or updated per-cell MBMS bearer service information.
  • the cell ID list received from the MCE may be the same as the cell ID list received by the MCE from the MME.
  • a method of supporting a single-cell point-to-multipoint (CSTM) service continuity by a base station in a wireless communication system receives an MBMS Session Update Request message (MBMS Session Update Request Message) including a cell ID list from a multi-cell coordination entity (MCE), confirms whether the MBMS session is updated, and provides MBMS bearer service information for each cell. It may include transmitting to the neighbor base station.
  • MBMS Session Update Request Message including a cell ID list from a multi-cell coordination entity (MCE)
  • MCE multi-cell coordination entity
  • the base station may further include sending an MBMS Session Update Failure Message to the MCE. After the MBMS session update failure message is transmitted, the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • the base station further comprises sending an MBMS Session Update Response message including a list of the at least one cell to the MCE. Can be.
  • the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • a base station supporting Single-Cell Point-to-Multipoint (SCPM) service continuity in a wireless communication system includes a memory; Transceiver; And a processor that connects the memory and the transceiver, wherein the processor is configured to receive an MBMS Session Start Request message (MBMS Session Start Request Message) including a cell ID list from a multi-cell coordination entity (MCE). Control, confirm whether the requested MBMS resource is established, and control the transceiver to transmit per-cell MBMS bearer service information to the neighbor base station.
  • MCE multi-cell coordination entity
  • FIG. 1 shows a structure of an LTE system.
  • FIG. 2 shows a network structure for MBMS.
  • FIG 3 shows an air interface protocol of an LTE system for a control plane and a user plane.
  • FIG. 4 shows a structure of an MBSFN subframe.
  • FIG. 5 shows an example of configuration of an MBSFN subframe for performing an MBMS service.
  • FIG. 7 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 8 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 9 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 10 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a method for a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating a method for a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • FIG. 13 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • FIG. 1 shows a structure of an LTE system.
  • Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
  • VoIP Voice over internet protocol
  • an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
  • the terminal 10 is a communication device moved by a user.
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • wireless device a wireless device.
  • the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the terminal.
  • the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
  • One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
  • DL means communication from the eNB 20 to the terminal 10
  • UL means communication from the terminal 10 to the eNB 20.
  • the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
  • the EPC may include a mobility management entity (MME) that serves as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that serves as a user plane.
  • MME mobility management entity
  • SAE system architecture evolution gateway
  • S-GW gateway
  • the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint.
  • the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
  • the EPC may further include a packet data network (PDN) -gateway (GW).
  • PDN-GW is a gateway with PDN as an endpoint.
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • MME selection for handover with MME change
  • 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
  • SGSN serving GPRS support no
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
  • MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the terminal 10 and the eNB 20 may be connected by the Uu interface.
  • the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
  • the eNBs 20 may be connected with the EPC by the S1 interface.
  • the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
  • the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
  • the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
  • RRC radio resource control
  • BCH scheduling channel information
  • the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
  • FIG. 2 shows a network structure for a multimedia broadcast / multicast service (MBMS).
  • MBMS multimedia broadcast / multicast service
  • a radio access network (E-UTRAN) 200 includes a multi-cell coordination entity (hereinafter referred to as MCE, 210) and a base station (eNB) 220.
  • the MCE 210 is a main entity controlling the MBMS, and serves as session management, radio resource allocation, or admission control of the base station 220 in the MBSFN region. .
  • the MCE 210 may be implemented in the base station 220 or may be implemented independently of the base station 220.
  • the interface between the MCE 210 and the base station 220 is called an M2 interface.
  • the M2 interface is an internal control plane interface of the wireless access network 200, and MBMS control information is transmitted. If the MCE 210 is implemented in the base station 220, the M2 interface may only exist logically.
  • An Evolved Packet Core (EPC) 250 includes an MME 260 and an MBMS Gateway (MBMS GW) 270.
  • the MBMS gateway 270 is an entity that transmits MBMS service data and is located between the base station 220 and the BM-SC, and performs MBMS packet transmission and broadcast to the base station 220.
  • the MBMS gateway 270 uses PDCP and IP multicast to transmit user data to the base station 220, and performs session control signaling for the radio access network 200.
  • the interface between the MME 260 and the MCE 210 is a control plane interface between the radio access network 200 and the EPC 250, which is called an M3 interface, and transmits control information related to MBMS session control.
  • the MME 260 and the MCE 210 transmit session control signaling, such as a session start / stop message for session start or session stop, to the base station 220,
  • the base station 220 may inform the terminal that the MBMS service is started or stopped through cell notification.
  • the interface between the base station 220 and the MBMS gateway 270 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
  • FIG. 3 shows an air interface protocol of an LTE system for a control plane and a user plane.
  • 3 (a) is the air interface protocol of the LTE system for the control plane
  • FIG. 3 (b) is the air interface protocol of the LTE system for the user plane.
  • the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
  • the air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals.
  • Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
  • the physical layer belongs to L1.
  • the physical layer provides an information transmission service to a higher layer through a physical channel.
  • the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
  • Physical channels are mapped to transport channels.
  • Data may be transmitted between the MAC layer and the physical layer through a transport channel.
  • Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
  • the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical layer uses several physical control channels.
  • a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
  • the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
  • a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
  • a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
  • the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
  • One subframe consists of a plurality of symbols in the time domain.
  • One subframe consists of a plurality of resource blocks (RBs).
  • One resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
  • the first symbol of the subframe may be used for the PDCCH.
  • the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
  • a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
  • One subframe may have a length of 1 ms.
  • a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
  • the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
  • System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
  • MCH multicast channel
  • the UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like.
  • the UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding.
  • the UL-SCH may enable the use of beamforming.
  • RACH is generally used for initial connection to a cell.
  • the MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
  • the logical channel is located above the transport channel and mapped to the transport channel.
  • the control channel is used only for conveying information in the control plane.
  • the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
  • BCCH is a downlink channel for broadcasting system control information.
  • PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network.
  • CCCH is used by the terminal when there is no RRC connection with the network.
  • MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal.
  • DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
  • the traffic channel is used only for conveying information in the user plane.
  • the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink.
  • MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
  • the uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
  • the downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
  • the RLC layer belongs to L2.
  • the function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data.
  • the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation.
  • TM transparent mode
  • UM unacknowledged mode
  • AM acknowledged mode
  • AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission.
  • ARQ automatic repeat request
  • the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
  • the packet data convergence protocol (PDCP) layer belongs to L2.
  • the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data.
  • the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
  • the radio resource control (RRC) layer belongs to L3.
  • the RRC layer at the bottom of L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages through the RRC layer.
  • the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs.
  • RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation.
  • RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
  • SRBs signaling RBs
  • DRBs data RBs
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • the RLC and MAC layer may perform functions such as scheduling, ARQ and HARQ.
  • the RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control.
  • the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
  • the RLC and MAC layer may perform the same function as the function in the control plane.
  • the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
  • the RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN.
  • the RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE).
  • RRC_CONNECTED RRC connected state
  • RRC_IDLE RRC idle state
  • the E-UTRAN cannot grasp the terminal of the RRC_IDLE, and manages the terminal in units of a tracking area in which a core network (CN) is larger than a cell. That is, the terminal of the RRC_IDLE is only identified as a unit of a larger area, and in order to receive a normal mobile communication service such as voice or data communication, the terminal must transition to RRC_CONNECTED.
  • CN core network
  • the terminal may receive a broadcast of system information and paging information.
  • the terminal may be assigned an identification (ID) that uniquely designates the terminal in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection.
  • ID an identification
  • PLMN public land mobile network
  • the UE may have an E-UTRAN RRC connection and an RRC context in the E-UTRAN to transmit data to the eNB and / or receive data from the eNB.
  • the terminal may report channel quality information and feedback information to the eNB.
  • the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to the terminal and / or receive data from the terminal, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through mobility of the terminal (handover and network assisted cell change (NACC)). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
  • GSM EDGE radio access network GERAN
  • NACC network assisted cell change
  • the UE designates a paging DRX cycle.
  • the UE monitors a paging signal at a specific paging occasion for each UE specific paging DRX cycle.
  • Paging opportunity is the time interval during which the paging signal is transmitted.
  • the terminal has its own paging opportunity.
  • the paging message is sent across all cells belonging to the same tracking area. If the terminal moves from one tracking area to another tracking area, the terminal sends a tracking area update (TAU) message to the network to update the location.
  • TAU tracking area update
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have the context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • MBMS and MBSFN multicast / broadcast single frequency network
  • Transmission in MBSFN transmission or MBSFN mode refers to a simultaneous transmission scheme implemented by transmitting the same signal in a plurality of cells at the same time.
  • MBSFN transmissions from a plurality of cells within the MBSFN area appear to the UE as a single transmission.
  • the MBMS service area is a general term for the area where a particular MBMS service is provided. For example, if an area where a specific MBMS service A is performed is called an MBMS service area A, the network may be in a state of transmitting an MBMS service A in the MBMS service area A. In this case, the terminal may receive the MBMS service A according to the capability of the terminal.
  • the MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
  • a logical channel multicast control channel (MCCH) or a multicast traffic channel (MTCH) may be mapped to a transport channel MCH for an MBMS.
  • MCCH transmits MBMS related RRC message
  • MTCH transmits traffic of specific MBMS service.
  • MBSFN Single Frequency Network
  • the terminal may receive a plurality of MCCHs.
  • the MCCH contains one MBSFN area setup RRC message and has a list of all MBMS services.
  • a physical downlink control channel transmits an MBMS Radio Network Temporary Identity (M-RNTI) and an indicator indicating a specific MCCH.
  • M-RNTI MBMS Radio Network Temporary Identity
  • the terminal supporting the MBMS may receive the M-RNTI and the MCCH indicator through the PDCCH, determine that the MBMS-related RRC message has been changed in the specific MCCH, and receive the specific MCCH.
  • the RRC message of the MCCH may be changed at each modification period, and is repeatedly broadcasted at every repetition period.
  • a notification mechanism is used to inform the change of the MCCH due to the presence of the MCCH session start or MBMS counting request message.
  • the UE detects a known MCCH change through the MCCH monitoring in the change cycle, not by the notification mechanism.
  • the MTCH is a logical channel carrying an MBMS service. When there are many services provided in the MBSFN area, a plurality of MTCHs may be configured.
  • the terminal may receive a dedicated service while receiving the MBMS service.
  • a user may watch a TV through an MBMS service through his own smartphone, and chat using an IM (instant messaging) service such as MSN or Skype using the smartphone.
  • IM instant messaging
  • the MBMS service is provided through MTCH received by several terminals together, and the service provided to each terminal individually, such as IM service, will be provided through a dedicated bearer such as DCCH or DTCH.
  • some base stations can use multiple frequencies at the same time.
  • the network may select one of a plurality of frequencies to provide an MBMS service only at that frequency and provide a dedicated bearer to each terminal at all frequencies.
  • the terminal when a terminal that has received a service using a dedicated bearer at a frequency where the MBMS service is not provided, if the terminal wants to receive the MBMS service, the terminal should be handed over to the frequency where the MBMS is provided. To this end, the terminal transmits an MBMS interest indication to the base station.
  • the terminal when the terminal wants to receive the MBMS service, the terminal transmits an MBMS interest indication to the base station, and when the base station receives the instruction, the terminal recognizes that the terminal wants to receive the MBMS service, and the terminal receives the MBMS service frequency. Move to.
  • the MBMS interest indicator refers to information that the terminal wants to receive the MBMS service, and additionally includes information on which frequency it wants to move to.
  • a terminal that wants to receive a specific MBMS service first grasps frequency information and broadcast time information provided with the specific service. If the MBMS service is already broadcasting or soon starts broadcasting, the terminal sets the highest priority of the frequency in which the MBMS service is provided. The UE moves to a cell providing the MBMS service and receives the MBMS service by performing a cell reselection procedure using the reset frequency priority information.
  • the reselected cell is SIB13 (System Information Block 13; System Information).
  • SIB13 System Information Block 13; System Information
  • SAIs Service Area Identities
  • SIB15 is not broadcasted in the serving cell and its frequency is included in the USD of the service.
  • the UE should be able to receive MBMS in RRC_IDLE and RRC_CONNECTED states.
  • FIG. 4 shows a structure of an MBSFN subframe.
  • MBSFN transmission is set in subframe units.
  • a subframe configured to perform MBSFN transmission is called an MBSFN subframe.
  • MBSFN transmission is performed on the remaining OFDM symbols except for the first two OFDM symbols for PDCCH transmission.
  • the area used for MBSFN transmission is referred to as an MBSFN area for convenience. Then, in the MBSFN region, the CRS for unicast is not transmitted, and the MBMS dedicated RS common to all cells participating in the transmission is used.
  • the CRS In order to inform the UE that does not receive the MBMS, the CRS is not transmitted in the MBSFN area, and broadcasts the configuration information of the MBSFN subframe in the system information of the cell. Since most terminals perform radio resource management (RRM), radio link failure (RLF) processing, and synchronization using the CRS, it is important to inform that the CRS is not in a specific region.
  • the CRS is transmitted in the first two OFDM symbols used as the PDCCH in the MBSFN subframe, and this CRS is not for MBSFN use.
  • the CP of the CRS transmitted (that is, whether the CRS uses a normal CP or an extended CP) is a normal subframe, that is, a subframe other than the MBSFN subframe.
  • the CRS according to the general CP is also used in the first two OFDM symbols 412 of the MBSFN subframe.
  • subframes that can be configured as MBSFN subframes are designated for FDD and TDD, respectively, and can indicate whether or not they are MBSFN subframes through a bitmap. That is, if a bit corresponding to a specific subframe is 1 in the bitmap, the specific subframe is set to the MBSFN subframe.
  • FIG. 5 shows an example of configuration of an MBSFN subframe for performing an MBMS service.
  • the UE acquires MBSFN subframe configuration information, MBSFN notification configuration information, and MBSFN area information list to perform MBMS service.
  • the UE may know the MBSFN subframe configuration information, that is, the location of the MBSFN subframe through SIB2 and RRC dedicated signaling.
  • the MBSFN subframe configuration information may be included in an MBSFN-SubframeConfig information element (IE).
  • IE MBSFN-SubframeConfig information element
  • the UE may acquire MBSFN region information list and MBMS notification configuration information as information necessary for obtaining MBMS control information associated with one or more MBSFN regions capable of performing MBMS service through SIB13.
  • the MBSFN region information list includes MBSFN region ID for each MBSFN region, MBSFN region information in MBSFN subframe in MBSFN region, MBSFN subframe position where MCCH transmission is performed, and MBMS control information channel. May contain information.
  • the MBSFN area information list may be included in the MBSFN-AreaInfoList information element.
  • MBSFN notification configuration information is the configuration information for the subframe location in which the MBMS notification that informs that there is a change in the MBSFN region configuration information transmitted to the terminal through the MCCH.
  • the MBSFN notification configuration information may be included in the MBMS-NotificationConfig information element.
  • the MBSFN notification configuration information includes time information used for change notification of the MCCH applicable to all MBSFN regions.
  • the time information may include a notification repetition coefficient (notificationRepetitionCoeff), a notification offset (notificationOffset) and a notification subframe index (notificationSF-Index).
  • the notification repetition coefficient means a common change notification repetition period for all MCCHs.
  • the notification offset indicates an offset of a radio frame for which MCCH change notification information is scheduled.
  • the notification subframe index is a subframe index used for transmitting the MCCH change notification on the PDCCH.
  • the UE may obtain MBSFN region configuration information through the MCCH corresponding to each of the MBSFN regions obtained through SIB13.
  • the MBSFN region configuration information may be included in the MBSFNAreaconfiguration message, and includes information on physical multicast channels (PMCHs) used by the corresponding MBSFN region.
  • PMCHs physical multicast channels
  • the information on each PMCH includes the location of the MBSFN subframe in which the PMCH is located, Modulation and Coding Scheme (MCS) level information used for data transmission in the subframe, and MBMS service information transmitted by the PMCH. It may include.
  • MCS Modulation and Coding Scheme
  • MCH Scheduling Information MCH Scheduling Information
  • the transmission method of MBMS service is SCPTM transmission and MBSFN (Multimedia Broadcast multicast service Single Frequency Network) transmission. While MBSFN transmissions transmit identifiable signals in multiple cells simultaneously, SCPTM transmissions carry MBMS services in a single cell. Thus, SCPTM transmissions do not require cell-to-cell synchronization unlike MBSFN transmissions. Also, since SCPTM transmission uses the existing PDSCH, it has unicast characteristics unlike MBSFN transmission. That is, a plurality of terminals read the same PDCCH, obtains an RNTI for each service and receives the SCPTM service.
  • MBSFN Multiple Broadcast multicast service Single Frequency Network
  • the terminal may receive the SCPTM service by acquiring the corresponding RNTI value and reading the PDCCH through the RNTI.
  • the terminal may inform the serving cell about the carrier frequency on which the MBMS service of interest is to be transmitted to support the service continuity. Then, the base station is likely to move the terminal to the cell on the carrier frequency carrying the MBMS service.
  • the above-described method is applied to SCPTM transmission to support service continuity, the following problem may occur.
  • a current UE is in an RRC_CONNECTED state and receives a first group call service through SCPTM of cell 2.
  • the terminal receives the first group call service through the SCPTM of the cell 2
  • the terminal moves to the overlap area of the cell 6 and cell 7.
  • the first base station does not know about cell 6 of the second base station servicing the second group call service and cell 7 of the third base station servicing the first group call service. Therefore, if the first base station performs handover to cell 6 of the second base station servicing the second group call service, a service failure for the first group call service may occur. Therefore, there is a need to propose a method for supporting SCPTM service continuity and a device supporting the same.
  • FIG. 7 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the MCE may receive a cell ID list from the MME.
  • the cell ID list may be received from the MME through an MBMS Session Start Request Message.
  • the cell ID list may be used to identify a cell providing SCPTM service.
  • Temporary Mobile Group Identifier (TMGI) may be used with the cell ID list to identify the cell providing the SCPTM service.
  • the base station may receive an MBMS session start request message from the MCE.
  • the MBMS session start request message may include a cell ID list.
  • the cell ID list may be provided from the MCE without filtering. That is, the cell ID list received by the MCE from the MME and the cell ID list received by the base station from the MCE may be the same.
  • the base station may check whether the requested MBMS resource can be established.
  • the requested MBMS resource may be an MBMS resource requested by the MBMS session start request message.
  • step S740 if the base station can not establish the requested MBMS resources at all, the base station may send an MBMS Session Start Failure Message (MBMS Session Start Failure Message) to the MCE. That is, if the MBMS resource requested by the MBMS session start request message is not established in all cells, the base station may transmit an MBMS session start failure message to the MCE.
  • MBMS Session Start Failure Message MBMS Session Start Failure Message
  • the base station may transmit an eNB configuration update message or a new message to the neighbor base station.
  • the eNB configuration update message or a new message may be transmitted to the neighbor base station.
  • the eNB configuration update message may include MBMS bearer service information for each cell currently served by the base station.
  • the new message may include MBMS bearer service information for each cell currently served by the base station.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • FIG. 8 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the MCE may receive a cell ID list from the MME.
  • the cell ID list may be received from the MME through an MBMS Session Update Request message.
  • the cell ID list may be used to identify a cell providing SCPTM service.
  • Temporary Mobile Group Identifier (TMGI) may be used with the cell ID list to identify the cell providing the SCPTM service.
  • the base station may receive an MBMS session update request message from the MCE.
  • the MBMS session update request message may include a cell ID list.
  • the cell ID list may be provided from the MCE without filtering. That is, the cell ID list received by the MCE from the MME and the cell ID list received by the base station from the MCE may be the same.
  • the base station may check whether the MBMS session is updated.
  • the MBMS session may be updated by an MBMS session update request message.
  • step S840 if the base station fails to update the MBMS session, the base station may send an MBMS Session Update Failure Message to the MCE. If all MBMS session updates requested by the MBMS session update request message fail, the base station may send an MBMS session update failure message to the MCE. That is, if the MBMS session is not updated in all cells, the base station may transmit an MBMS session update failure message to the MCE.
  • the base station may transmit an eNB configuration update message or a new message to the neighbor base station.
  • the eNB configuration update message or a new message may be transmitted to the neighboring base station.
  • the eNB configuration update message may include MBMS bearer service information for each cell currently served by the base station.
  • the new message may include MBMS bearer service information for each cell currently served by the base station.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • FIG. 9 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the MCE may receive a cell ID list from the MME.
  • the cell ID list may be received from the MME through an MBMS Session Start Request Message.
  • the cell ID list may be used to identify a cell providing SCPTM service.
  • Temporary Mobile Group Identifier (TMGI) may be used with the cell ID list to identify the cell providing the SCPTM service.
  • the base station may receive an MBMS session start request message from the MCE.
  • the MBMS session start request message may include a cell ID list.
  • the cell ID list may be provided from the MCE without filtering. That is, the cell ID list received by the MCE from the MME and the cell ID list received by the base station from the MCE may be the same.
  • the base station may check whether the requested MBMS resource can be established.
  • the requested MBMS resource may be an MBMS resource requested by the MBMS session start request message.
  • step S940 if the base station cannot establish the requested MBMS resource in a specific cell, the base station may transmit an MBMS Session Start Response Message to the MCE.
  • the session start response message may include a failed cell list. That is, if the MBMS resource requested by the MBMS session start request message is not established in at least one cell, the base station may transmit an MBMS session start response message including the list of the at least one cell to the MCE.
  • the base station may transmit an eNB configuration update message or a new message to the neighbor base station.
  • the base station transmits an MBMS session start response message to the MCE
  • the eNB configuration update message or a new message may be transmitted to the neighboring base station.
  • the eNB configuration update message or a new message may be transmitted to the neighboring base station.
  • the eNB configuration update message may include MBMS bearer service information for each cell currently served by the base station.
  • the eNB configuration update message may include updated and / or changed cell-specific MBMS bearer service information when the base station cannot establish a requested MBMS resource in a specific cell.
  • the new message may include MBMS bearer service information for each cell currently served by the base station.
  • the new message may include updated and / or changed cell-specific MBMS bearer service information when the base station cannot establish a requested MBMS resource in a specific cell.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • FIG. 10 illustrates a method of transmitting MBMS bearer service information per cell to a neighbor base station by a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the MCE may receive a cell ID list from the MME.
  • the cell ID list may be received from the MME through an MBMS Session Update Request message.
  • the cell ID list may be used to identify a cell providing SCPTM service.
  • Temporary Mobile Group Identifier (TMGI) may be used with the cell ID list to identify the cell providing the SCPTM service.
  • the base station may receive an MBMS session update request message from the MCE.
  • the MBMS session update request message may include a cell ID list.
  • the cell ID list may be provided from the MCE without filtering. That is, the cell ID list received by the MCE from the MME and the cell ID list received by the base station from the MCE may be the same.
  • the base station can check whether the MBMS session is updated.
  • the MBMS session may be updated by an MBMS session update request message.
  • step S1040 if the base station fails to update the MBMS session in a particular cell, the base station may transmit an MBMS Session Update Response message to the MCE.
  • the session update response message may include a failed cell list. If some MBMS session update requested by the MBMS session update request message fails, the base station may transmit an MBMS session update response message including the failed cell list to the MCE. That is, if the MBMS session is not updated in at least one cell, the base station may transmit an MBMS session update response message including the list of the at least one cell to the MCE.
  • the base station may transmit an eNB configuration update message or a new message to the neighbor base station.
  • the base station transmits an MBMS session update response message to the MCE
  • the eNB configuration update message or a new message may be transmitted to the neighboring base station.
  • the eNB configuration update message or a new message may be transmitted to the neighboring base station.
  • the eNB configuration update message may include MBMS bearer service information for each cell currently served by the base station.
  • the eNB configuration update message may include updated and / or changed cell-specific MBMS bearer service information when the base station cannot update the MBMS session in a specific cell.
  • the new message may include MBMS bearer service information for each cell currently served by the base station.
  • the new message may include updated and / or changed cell-specific MBMS bearer service information when the base station cannot update the MBMS session in a specific cell.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • FIG. 11 is a block diagram illustrating a method for a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the base station may receive an MBMS Session Start Request Message (MBMS Session Start Request Message) including a cell ID list from a multi-cell coordination entity (MCE).
  • MBMS Session Start Request Message MBMS Session Start Request Message
  • MCE multi-cell coordination entity
  • step S1120 the base station may check whether the requested MBMS resource is established.
  • the base station may transmit cell-specific MBMS bearer service information to the neighbor base station.
  • the base station may send an MBMS Session Start Failure Message to the MCE.
  • the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • the MBMS bearer service information for each cell may be MBMS bearer service information for each cell currently served by the base station.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • the base station may transmit an MBMS Session Start Response Message including a list of the at least one cell to the MCE.
  • the MBMS bearer service information for each cell may be transmitted to the neighbor base station.
  • the per-cell MBMS bearer service information may include at least one of per-cell MBMS bearer service information currently updated by the base station or updated per-cell MBMS bearer service information.
  • the cell ID list received from the MCE may be the same as the cell ID list received by the MCE from the MME.
  • FIG. 12 is a block diagram illustrating a method for a base station to support SCPTM service continuity according to an embodiment of the present invention.
  • the base station may receive an MBMS Session Update Request message including a cell ID list from a multi-cell coordination entity (MCE).
  • MCE multi-cell coordination entity
  • step S1220 the base station may check whether the MBMS session is updated.
  • the base station may transmit cell-specific MBMS bearer service information to the neighbor base station.
  • the base station may send an MBMS Session Update Failure Message to the MCE.
  • the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • the MBMS bearer service information for each cell may be MBMS bearer service information for each cell currently served by the base station.
  • the MBMS bearer service information for each cell may be Temporary Mobile Group Identifier (TMGI) information for each cell.
  • TMGI Temporary Mobile Group Identifier
  • the base station may send an MBMS Session Update Response message including a list of the at least one cell to the MCE.
  • the cell-specific MBMS bearer service information may be transmitted to the neighbor base station.
  • the per-cell MBMS bearer service information may include at least one of per-cell MBMS bearer service information currently updated by the base station or updated per-cell MBMS bearer service information.
  • the cell ID list received from the MCE may be the same as the cell ID list received by the MCE from the MME.
  • FIG. 13 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 1300 includes a processor 1301, a memory 1302, and a transceiver 1303.
  • the memory 1302 is connected to the processor 1301 and stores various information for driving the processor 1301.
  • the transceiver 1303 is connected to the processor 1301 to transmit and / or receive a radio signal.
  • the processor 1301 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1301.
  • the MCE 1310 includes a processor 1311, a memory 1312, and a transceiver 1313.
  • the memory 1312 is connected to the processor 1311 and stores various information for driving the processor 1311.
  • the transceiver 1313 is connected to the processor 1311 to transmit and / or receive a radio signal.
  • the processor 1311 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the MCE may be implemented by the processor 1311.
  • the MME 1320 includes a processor 1321, a memory 1322, and a transceiver 1323.
  • the memory 1322 is connected to the processor 1321 and stores various information for driving the processor 1321.
  • the transceiver 1323 is connected to the processor 1321 to transmit and / or receive a radio signal.
  • Processor 1321 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the MME may be implemented by the processor 1321.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 기지국이 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 방법 및 이를 지원하는 장치가 제공된다. 상기 기지국은 셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하고, 요청된 MBMS 자원이 확립되는지 여부를 확인하고, 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 포함할 수 있다.

Description

SCPTM 서비스 연속성을 지원하는 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 SCPTM 서비스의 연속성을 지원하는 방법 및 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
MBMS(Multimedia Broadcast/Multicast Service)는 기존의 CBS(Cell Broadcast Service)와 유사하게 동일하게 데이터 패킷을 다수의 사용자들에게 동시에 전송하는 서비스이다. 그러나 CBS는 저속의 메시지 기반 서비스이지만 MBMS는 고속의 멀티미디어 데이터 전송을 목적으로 하고 있다. 또한 CBS는 IP(internet protocol) 기반이 아니지만 MBMS는 IP 멀티캐스트 기반으로 이루어진다는 차이점이 있다. MBMS에 따르면, 일정 수준의 사용자들이 동일한 셀에 존재하는 경우, 사용자들은 공유 자원(또는 채널)을 사용하여 동일한 멀티미디어 데이터를 수신할 수 있기 때문에, 무선 자원의 효율이 높아지고, 사용자들은 멀티미디어 서비스를 값싸게 이용할 수 있다.
MBMS는 하나의 서비스를 복수의 단말이 효율적으로 데이터를 수신하도록 하기 위해서, 공용채널을 사용한다. 하나의 서비스 데이터에 대해서, 기지국은 한 셀에서 상기 서비스를 수신하고자 하는 단말의 수만큼 전용채널을 할당하지 않고, 하나의 공용채널만을 할당한다. 그리고 복수의 단말들은 상기 공용채널을 동시에 수신하므로, 무선 자원의 효율성이 높아진다. MBMS 관련하여 단말은 해당 셀에 대한 시스템 정보(System information) 수신 후에 MBMS를 수신할 수 있다.
공공 안전, GCSE_LTE(Group Communication System Enablers for LTE)와 같은 중요한 통신 기술이 Rel-12에서 소개되었다. Rel-12 GCSE에서, 그룹 통신은 eMBMS로 지정되었다. eMBMS는 미리 계획된 넓은 영역(즉, MBSFN 영역)에 미디어 컨텐츠를 공급하기 위해 설계되었다. MBSFN 영역은 오히려 정적(예를 들어, O&M에 의해 설정)이며, 사용자 분포에 따라 동적으로 조정될 수 없다. 비록 주파수 영역의 모든 무선 자원이 사용되지 않더라도, eMBMS 전송은 전체 시스템 대역폭을 점유하고, 동일 서브프레임에서 유니캐스트와 다중화가 허용되지 않는다. MBSFN 서브프레임 설정 또한 오히려 정적(예를 들어, O&M에 의해 설정)이다. 즉, MBSFN 서브프레임은 동적인 그룹의 개수 및 동적인 그룹의 트래픽 부하에 따라 동적으로 조정될 수 없다. 따라서, 중요한 통신 서비스를 제공할 때, eMBMS에 대한 무선 자원 설정은 불필요하게 낭비될 수 있다. 그러므로, 무선 자원의 효율적인 사용을 위해 SCPTM(Single-Cell Point-to-Multipoint) 전송이 제안되었다. MBSFN 전송이 복수의 셀에서 동시에 식별 가능한 신호를 전송하는 반면, SCPTM 전송은 단일 셀에서 MBMS 서비스를 전송한다.
SCPTM 서비스는 방송되지만, DTCH(Dedicated Traffic Channel)를 통해 전송되므로, 단말이 동일한 SCPTM 서비스를 서비스하지 않는 이웃 기지국의 셀로 이동하면 SCPTM 서비스 수신의 연속성에 문제가 발생할 수 있다. 따라서, 서빙 기지국은 이웃 기지국에게 SCPTM 서비스 정보를 알릴 필요가 있다. 또한, 서빙 기지국은 MCE에게 SCPTM 서비스 정보를 알릴 필요가 있다.
일 실시 예에 있어서, 무선 통신 시스템에서 기지국이 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 방법이 제공된다. 상기 기지국은 셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하고, 요청된 MBMS 자원이 확립되는지 여부를 확인하고, 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 포함할 수 있다.
상기 요청된 MBMS 자원이 모든 셀에서 확립되지 않으면, 상기 기지국은 MBMS 세션 시작 실패 메시지(MBMS Session Start Failure Message)를 상기 MCE로 전송하는 것을 더 포함할 수 있다. 상기 MBMS 세션 시작 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보일 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
상기 요청된 MBMS 자원이 적어도 어느 하나의 셀에서 확립되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 시작 응답 메시지(MBMS Session Start Response Message)를 상기 MCE로 전송하는 것을 더 포함할 수 있다. 상기 MBMS 세션 시작 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국에 의해 현재 서비스되는 셀 별 MBMS 베어러 서비스 정보 또는 업데이트된 셀 별 MBMS 베어러 서비스 정보 중 적어도 어느 하나를 포함할 수 있다.
상기 MCE로부터 수신된 셀 ID 리스트는 상기 MCE가 MME로부터 수신한 셀 ID 리스트와 동일할 수 있다.
다른 실시 예에 있어서, 무선 통신 시스템에서 기지국이 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 방법이 제공된다. 상기 기지국은 셀 ID 리스트를 포함하는 MBMS 세션 업데이트 요청 메시지(MBMS Session Update Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하고, MBMS 세션이 업데이트되는지 여부를 확인하고, 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 포함할 수 있다.
상기 MBMS 세션이 모든 셀에서 업데이트되지 않으면, 상기 기지국은 MBMS 세션 업데이트 실패 메시지(MBMS Session Update Failure Message)를 상기 MCE로 전송하는 것을 더 포함할 수 있다. 상기 MBMS 세션 업데이트 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다.
상기 MBMS 세션이 적어도 어느 하나의 셀에서 업데이트되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 업데이트 응답 메시지(MBMS Session Update Response Message)를 상기 MCE로 전송하는 것을 더 포함할 수 있다. 상기 MBMS 세션 업데이트 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다.
다른 실시 예에 있어서, 무선 통신 시스템에서 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 기지국이 제공된다. 상기 기지국은 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 상기 송수신기가 셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하도록 제어하고, 요청된 MBMS 자원이 확립되는지 여부를 확인하고, 상기 송수신기가 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 제어하도록 구성될 수 있다.
SCTPM 서비스의 연속성을 지원할 수 있다.
도 1은 LTE 시스템의 구조를 나타낸다.
도 2는 MBMS를 위한 망 구조를 나타낸다.
도 3은 제어 평면 및 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 4는 MBSFN 서브프레임의 구조를 나타낸다.
도 5는 MBMS 서비스를 수행하기 위한 MBSFN 서브프레임 구성의 일 예를 나타낸다.
도 6은 서비스 연속성 지원에 대한 문제를 나타낸다.
도 7은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 8은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 9는 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 10은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 11은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하는 방법을 나타내는 블록도이다.
도 12는 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하는 방법을 나타내는 블록도이다.
도 13은 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 LTE 시스템의 구조를 나타낸다. 통신 네트워크는 IMS 및 패킷 데이터를 통한 인터넷 전화(Voice over internet protocol: VoIP)와 같은 다양한 통신 서비스들을 제공하기 위하여 넓게 설치된다.
도 1을 참조하면, LTE 시스템 구조는 하나 이상의 단말(UE; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. 단말(10)은 사용자에 의해 움직이는 통신 장치이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.
E-UTRAN은 하나 이상의 eNB(evolved node-B; 20)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. eNB(20)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. eNB(20)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. 하나의 셀은 1.25, 2.5, 5, 10 및 20 MHz 등의 대역폭 중 하나를 가지도록 설정되어 여러 단말에게 하향링크(DL; downlink) 또는 상향링크(UL; uplink) 전송 서비스를 제공할 수 있다. 이때 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
이하에서, DL은 eNB(20)에서 단말(10)로의 통신을 의미하며, UL은 단말(10)에서 eNB(20)으로의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 단말(10)의 일부일 수 있다. UL에서 송신기는 단말(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다.
EPC는 제어 평면의 기능을 담당하는 MME(mobility management entity), 사용자 평면의 기능을 담당하는 S-GW(system architecture evolution (SAE) gateway)를 포함할 수 있다. MME/S-GW(30)은 네트워크의 끝에 위치할 수 있으며, 외부 네트워크와 연결된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지며, 이러한 정보는 주로 단말의 이동성 관리에 사용될 수 있다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. MME/S-GW(30)은 세션의 종단점과 이동성 관리 기능을 단말(10)에 제공한다. EPC는 PDN(packet data network)-GW(gateway)를 더 포함할 수 있다. PDN-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 단말을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: 지진/쓰나미 경보 시스템(ETWS) 및 상용 모바일 경보 시스템(CMAS) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. 명확성을 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 eNB(20)은 Uu 인터페이스에 의해 연결될 수 있다. eNB(20)들은 X2 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 eNB(20)들은 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)들은 S1 인터페이스에 의해 EPC와 연결될 수 있다. eNB(20)들은 S1-MME 인터페이스에 의해 EPC와 연결될 수 있으며, S1-U 인터페이스에 의해 S-GW와 연결될 수 있다. S1 인터페이스는 eNB(20)와 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
eNB(20)은 게이트웨이(30)에 대한 선택, RRC(radio resource control) 활성(activation) 동안 게이트웨이(30)로의 라우팅(routing), 페이징 메시지의 스케줄링 및 전송, BCH(broadcast channel) 정보의 스케줄링 및 전송, UL 및 DL에서 단말(10)들로의 자원의 동적 할당, eNB 측정의 설정(configuration) 및 제공(provisioning), 무선 베어러 제어, RAC(radio admission control) 및 LTE 활성 상태에서 연결 이동성 제어 기능을 수행할 수 있다. 상기 언급처럼 게이트웨이(30)는 EPC에서 페이징 개시, LTE 아이들 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어 및 NAS 시그널링의 암호화와 무결성 보호 기능을 수행할 수 있다.
도 2는 MBMS(Multimedia Broadcast/Multicast Service)를 위한 망 구조를 나타낸다.
도 2를 참조하면, 무선접속망(E-UTRAN, 200)은 다중 셀 조정개체(Multi-cell Coordination Entity, 이하 MCE, 210)와 기지국(eNB, 220)을 포함한다. MCE(210)는 MBMS를 제어하는 주요 개체(main entity)로서, MBSFN 지역 내에서의 기지국(220)의 세션 관리, 무선자원할당(radio resource allocation)이나 허가제어(admission control)의 역할을 수행한다. MCE(210)는 기지국(220)내에 구현될 수도 있고, 기지국(220)과는 독립적으로 구현될 수도 있다. MCE(210)와 기지국(220)간의 인터페이스는 M2 인터페이스라 한다. M2 인터페이스는 무선접속망(200)의 내부 제어평면(internal control plane) 인터페이스로서 MBMS 제어정보가 전송된다. MCE(210)가 기지국(220)내에 구현되는 경우, M2 인터페이스는 논리적으로만 존재할 수 있다.
EPC(Evolved Packet Core, 250)는 MME(260)와 MBMS 게이트웨이(MBMS GW, 270)를 포함한다. MBMS 게이트웨이(270)는 MBMS 서비스 데이터를 전송하는 개체로서 기지국(220)과 BM-SC의 사이에 위치하며 기지국(220)으로의 MBMS 패킷 전송과 브로드캐스트를 수행한다. MBMS 게이트웨이(270)는 사용자 데이터를 기지국(220)으로 전송하기 위해 PDCP와 IP 멀티캐스트를 이용하고, 무선접속망(200)에 대해 세션 제어 시그널링을 수행한다.
MME(260)와 MCE(210)간의 인터페이스는 무선접속망(200)과 EPC(250)간의 제어평면 인터페이스로서, M3 인터페이스라 하며 MBMS 세션 제어와 관련된 제어정보가 전송된다. MME(260)와 MCE(210)은 세션 개시(Session start) 또는 세션 중단(session stop)을 위한 세션 개시/중단(session start/stop) 메시지와 같은 세션 제어 시그널링을 기지국(220)으로 전송하고, 기지국(220)은 셀 통지(notification)를 통하여 해당 MBMS 서비스가 개시 또는 중단되었음을 단말에 알려 줄 수 있다.
기지국(220)과 MBMS 게이트웨이(270)간의 인터페이스는 사용자 평면의 인터페이스로서, M1 인터페이스라 하며 MBMS 서비스 데이터가 전송된다.
도 3은 제어 평면 및 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 도 3(a)는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜이고, 도 3(b)는 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜이다.
단말과 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다. 단말과 E-UTRAN 간의 무선 인터페이스 프로토콜은 수평적으로 물리 계층, 데이터 링크 계층(data link layer) 및 네트워크 계층(network layer)으로 구분될 수 있고, 수직적으로는 제어 신호 전송을 위한 프로토콜 스택(protocol stack)인 제어 평면(control plane)과 데이터 정보 전송을 위한 프로토콜 스택인 사용자 평면(user plane)으로 구분될 수 있다. 무선 인터페이스 프로토콜의 계층은 단말과 E-UTRAN에서 쌍(pair)으로 존재할 수 있고, 이는 Uu 인터페이스의 데이터 전송을 담당할 수 있다.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑 된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송될 수 있다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 무선 자원을 이용하여 전송될 수 있다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식을 이용하여 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층은 몇몇의 물리 제어 채널(physical control channel)을 사용한다. PDCCH(physical downlink control channel)은 PCH(paging channel) 및 DL-SCH(downlink shared channel)의 자원 할당, DL-SCH와 관련되는 HARQ(hybrid automatic repeat request) 정보에 대하여 단말에 보고한다. PDCCH는 상향링크 전송의 자원 할당에 관하여 단말에 보고하기 위해 상향링크 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)은 PDCCH를 위해 사용되는 OFDM 심벌의 개수를 단말에 알려주며, 모든 서브프레임마다 전송된다. PHICH(physical hybrid ARQ indicator channel)은 UL-SCH 전송에 대한 HARQ ACK(acknowledgement)/NACK(non-acknowledgement) 신호를 나른다. PUCCH(physical uplink control channel)은 하향링크 전송을 위한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 UL 제어 정보를 나른다. PUSCH(physical uplink shared channel)은 UL-SCH(uplink shared channel)를 나른다.
물리 채널은 시간 영역에서 복수의 서브프레임(subframe)들과 주파수 영역에서 복수의 부반송파(subcarrier)들로 구성된다. 하나의 서브프레임은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성된다. 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한, 각 서브프레임은 PDCCH를 위하여 해당 서브프레임의 특정 심벌들의 특정 부반송파들을 이용할 수 있다. 예를 들어, 서브프레임의 첫 번째 심벌이 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다. 데이터가 전송되는 단위 시간인 TTI(transmission time interval)는 1개의 서브프레임의 길이와 동일할 수 있다. 서브프레임 하나의 길이는 1ms일 수 있다.
전송채널은 채널이 공유되는지 아닌지에 따라 공통 전송 채널 및 전용 전송 채널로 분류된다. 네트워크에서 단말로 데이터를 전송하는 DL 전송 채널(DL transport channel)은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하는 DL-SCH 등을 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다. 시스템 정보는 하나 이상의 시스템 정보 블록들을 나른다. 모든 시스템 정보 블록들은 같은 주기로 전송될 수 있다. MBMS(multimedia broadcast/multicast service)의 트래픽 또는 제어 신호는 MCH(multicast channel)를 통해 전송된다.
단말에서 네트워크로 데이터를 전송하는 UL 전송 채널은 초기 제어 메시지(initial control message)를 전송하는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하는 UL-SCH 등을 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원할 수 있다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다. RACH는 일반적으로 셀로의 초기 접속에 사용된다.
L2에 속하는 MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 나눌 수 있다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 다른 데이터 전송 서비스를 위해 정의된다. 논리채널은 전송 채널의 상위에 위치하고 전송채널에 맵핑 된다.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 하향링크 채널이다. PCCH는 페이징 정보의 전송 및 셀 단위의 위치가 네트워크에 알려지지 않은 단말을 페이징 하기 위해 사용되는 하향링크 채널이다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 단말에 의해 사용된다. MCCH는 네트워크로부터 단말에게 MBMS 제어 정보를 전송하는데 사용되는 일대다 하향링크 채널이다. DCCH는 RRC 연결 상태에서 단말과 네트워크간에 전용 제어 정보 전송을 위해 단말에 의해 사용되는 일대일 양방향 채널이다.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 단말의 사용자 정보의 전송을 위해 사용되며, 상향링크 및 하향링크 모두에 존재할 수 있다. MTCH는 네트워크로부터 단말에게 트래픽 데이터를 전송하기 위한 일대다 하향링크 채널이다.
논리 채널과 전송 채널간의 상향링크 연결은 UL-SCH에 맵핑 될 수 있는 DCCH, UL-SCH에 맵핑 될 수 있는 DTCH 및 UL-SCH에 맵핑 될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널간의 하향링크 연결은 BCH 또는 DL-SCH에 맵핑 될 수 있는 BCCH, PCH에 맵핑 될 수 있는 PCCH, DL-SCH에 맵핑 될 수 있는 DCCH, DL-SCH에 맵핑 될 수 있는 DTCH, MCH에 맵핑 될 수 있는 MCCH 및 MCH에 맵핑 될 수 있는 MTCH를 포함한다.
RLC 계층은 L2에 속한다. RLC 계층의 기능은 하위 계층이 데이터를 전송하기에 적합하도록 무선 섹션에서 상위 계층으로부터 수신된 데이터의 분할/연접에 의한 데이터의 크기 조정을 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비 확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 신뢰성 있는 데이터 전송을 위해 ARQ(automatic repeat request)를 통해 재전송 기능을 제공한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다.
PDCP(packet data convergence protocol) 계층은 L2에 속한다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다. 헤더 압축은 데이터의 헤더에 필요한 정보만을 전송함으로써 무선 섹션에서 전송 효율을 높인다. 게다가, PDCP 계층은 보안 기능을 제공한다. 보안기능은 제3자의 검사를 방지하는 암호화 및 제3자의 데이터 조작을 방지하는 무결성 보호를 포함한다.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 교환한다. RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 L1 및 L2에 의해 제공되는 논리적 경로이다. 즉, RB는 단말과 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 결정함을 의미한다. RB는 SRB(signaling RB)와 DRB(data RB) 두 가지로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
도 3(a)를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ와 같은 기능을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 단말 측정 보고/제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTE_IDLE에서 페이징 개시 및 단말과 게이트웨이 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.
도 3(b)를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면에서의 기능과 동일한 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능을 수행할 수 있다.
이하, 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대하여 설명한다.
RRC 상태는 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적으로 연결되어 있는지 여부를 지시한다. RRC 상태는 RRC 연결 상태(RRC_CONNECTED) 및 RRC 아이들 상태(RRC_IDLE)와 같이 두 가지로 나누어질 수 있다. 단말의 RRC 계층과 E-UTRAN의 RRC 계층 간의 RRC 연결이 설정되어 있을 때, 단말은 RRC 연결 상태에 있게 되며, 그렇지 않은 경우 단말은 RRC 아이들 상태에 있게 된다. RRC_CONNECTED의 단말은 E-UTRAN과 RRC 연결이 설정되어 있으므로, E-UTRAN은 RRC_CONNECTED의 단말의 존재를 파악할 수 있고, 단말을 효과적으로 제어할 수 있다. 한편, E-UTRAN은 RRC_IDLE의 단말을 파악할 수 없으며, 핵심 망(CN; core network)이 셀보다 더 큰 영역인 트래킹 영역(tracking area) 단위로 단말을 관리한다. 즉, RRC_IDLE의 단말은 더 큰 영역의 단위로 존재만 파악되며, 음성 또는 데이터 통신과 같은 통상의 이동 통신 서비스를 받기 위해서 단말은 RRC_CONNECTED로 천이해야 한다.
RRC_IDLE 상태에서, 단말이 NAS에 의해 설정된 DRX(discontinuous reception)를 지정하는 동안에, 단말은 시스템 정보 및 페이징 정보의 방송을 수신할 수 있다. 그리고, 단말은 트래킹 영역에서 단말을 고유하게 지정하는 ID(identification)를 할당 받고, PLMN(public land mobile network) 선택 및 셀 재선택을 수행할 수 있다. 또한 RRC_IDLE 상태에서, 어떠한 RRC context도 eNB에 저장되지 않는다.
RRC_CONNECTED 상태에서, 단말은 E-UTRAN에서 E-UTRAN RRC 연결 및 RRC context를 가져, eNB로 데이터를 전송 및/또는 eNB로부터 데이터를 수신하는 것이 가능하다. 또한, 단말은 eNB로 채널 품질 정보 및 피드백 정보를 보고할 수 있다. RRC_CONNECTED 상태에서, E-UTRAN은 단말이 속한 셀을 알 수 있다. 그러므로 네트워크는 단말에게 데이터를 전송 및/또는 단말로부터 데이터를 수신할 수 있고, 네트워크는 단말의 이동성(핸드오버 및 NACC(network assisted cell change)를 통한 GERAN(GSM EDGE radio access network)으로 inter-RAT(radio access technology) 셀 변경 지시)을 제어할 수 있으며, 네트워크는 이웃 셀을 위해 셀 측정을 수행할 수 있다.
RRC_IDLE 상태에서 단말은 페이징 DRX 주기를 지정한다. 구체적으로 단말은 단말 특정 페이징 DRX 주기 마다의 특정 페이징 기회(paging occasion)에 페이징 신호를 모니터링 한다. 페이징 기회는 페이징 신호가 전송되는 동안의 시간 간격이다. 단말은 자신만의 페이징 기회를 가지고 있다.
페이징 메시지는 동일한 트래킹 영역에 속하는 모든 셀에 걸쳐 전송된다. 만약 단말이 하나의 트래킹 영역에서 다른 하나의 트래킹 영역으로 이동하면, 단말은 위치를 업데이트하기 위해 TAU(tracking area update) 메시지를 네트워크에 전송한다.
사용자가 단말의 전원을 최초로 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC_IDLE에 머무른다. RRC 연결을 맺을 필요가 있을 때, RRC_IDLE에 머무르던 단말은 RRC 연결 절차를 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED로 천이할 수 있다. RRC_IDLE에 머무르던 단말은 사용자의 통화 시도 등의 이유로 상향링크 데이터 전송이 필요할 때, 또는 E-UTRAN으로부터 페이징 메시지를 수신하고 이에 대한 응답 메시지 전송이 필요할 때 등에 E-UTRAN과 RRC 연결을 맺을 필요가 있을 수 있다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 context 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
이하, MBMS 및 MBSFN(multicast/broadcast single frequency network)에 대하여 설명한다.
MBSFN 전송 또는 MBSFN 모드에서의 전송은 복수의 셀들에서 동일 시간에 동일 신호를 전송하는 것에 의하여 구현되는 동시 전송 기법을 의미한다. MBSFN 영역 내에 있는 복수의 셀들로부터의 MBSFN 전송은 단말에게 단일 전송으로 보이게 된다.
MBMS 서비스는 셀 기반(cell-based) 또는 지리 기반(geography-based)으로 관리 또는 지역화(localization)될 수 있다. MBMS 서비스 지역(service area)은 특정한 MBMS 서비스가 제공되는 지역을 널리 일컫는 용어이다. 예를 들어, 특정한 MBMS 서비스 A가 진행되는 지역을 MBMS 서비스 지역 A라고 한다면, MBMS 서비스 지역 A에서 네트워크는 MBMS 서비스 A를 송신하고 있는 상태일 수 있다. 이 때, 단말은 단말의 성능(capability)에 따라서 MBMS 서비스 A를 수신할 수 있다. MBMS 서비스 영역은 특정한 서비스가 일정 지역에서 제공되는지 또는 그렇지 않은지에 대한 응용(application) 및 서비스의 관점에서 정의될 수 있다.
MBMS를 위한 전송채널 MCH(Multicast Channel)에는 논리채널 MCCH(Multicast Control Channel) 또는 MTCH(Multicast Traffic Channel)이 맵핑 될 수 있다. MCCH는 MBMS 관련 RRC 메시지를 전송하고, MTCH는 특정 MBMS 서비스의 트래픽을 전송한다. 동일한 MBMS정보/트래픽을 전송하는 하나의 MBSFN(MBMS Single Frequency Network) 지역마다 하나의 MCCH가 있으며, 복수의 MBSFN 지역들이 하나의 셀에서 제공될 경우, 단말은 복수의 MCCH를 수신할 수도 있다. MCCH는 하나의 MBSFN 영역 설정 RRC 메시지를 포함하며 모든 MBMS 서비스들의 리스트를 가진다. 특정 MCCH에서 MBMS 관련 RRC 메시지가 변경될 경우, PDCCH(physical downlink control channel)는 M-RNTI(MBMS Radio Network Temporary Identity)와 특정 MCCH를 지시하는 지시자를 전송한다. MBMS를 지원하는 단말은 상기 PDCCH를 통해 M-RNTI와 MCCH 지시자를 수신하여, 특정 MCCH에서 MBMS 관련 RRC 메시지가 변경되었음을 파악하고, 상기 특정 MCCH를 수신할 수 있다. MCCH의 RRC 메시지는 변경 주기(modification period)마다 변경될 수 있으며, 반복 주기마다 반복적으로 방송된다. 알림 메커니즘(notification mechanism)은 MCCH 세션 시작 또는 MBMS 카운팅 요청 메시지의 존재에 기인한 MCCH의 변경을 알리기 위하여 사용된다. 단말은 알림 메커니즘에 의하지 아니하고 알려지는 MCCH 변경을 변경 주기에서의 MCCH 모니터링을 통해 검출한다. MTCH는 MBMS 서비스를 싣고 있는 논리 채널로서, MBSFN 구역 내에 제공되는 서비스가 많은 경우에는 복수 개의 MTCH가 설정될 수 있다.
단말은 MBMS 서비스를 제공받는 동안, 전용 서비스(Dedicated Service)를 받을 수도 있다. 예를 들어 어떤 사용자는, 자신이 가지고 있는 스마트폰을 통해서, MBMS 서비스를 통해서 TV를 시청하는 동시에, 상기 스마트폰을 이용하여 MSN 또는 Skype같은 IM (instant messaging) 서비스를 이용하여 채팅을 할 수 있다. 이 경우, MBMS 서비스는 여러 단말이 같이 수신하는 MTCH를 통해서 제공되고, IM 서비스처럼 각각의 단말에 개별적으로 제공되는 서비스는 DCCH 또는 DTCH같은 전용 베어러(dedicated bearer)를 통해서 제공될 것이다.
한 지역에서, 어떤 기지국은 동시에 여러 주파수를 사용할 수 있다. 이 경우, 네트워크는 무선 자원을 효율적으로 사용하기 위해서, 여러 개의 주파수 중에서 하나를 선택하여 그 주파수에서만 MBMS 서비스를 제공 하고, 그리고 모든 주파수에서 각 단말에게 전용 베어러를 제공할 수 있다. 이 경우, MBMS 서비스가 제공되지 않는 주파수에서 전용 베어러를 이용하여 서비스를 제공 받던 단말이, MBMS서비스를 제공받고 싶은 경우, 상기 단말은 MBMS가 제공되는 주파수로 핸드오버 되어야 한다. 이를 위해서, 단말은 MBMS 관심 지시자(interest Indication)를 기지국으로 전송한다. 즉 단말은 MBMS 서비스를 수신하고 싶을 경우, MBMS 관심 지시자(interest indication)를 기지국으로 전송하고, 기지국은 상기 지시를 받으면, 단말이 MBMS 서비스를 수신하고 싶다고 인식하여, 상기 단말을 MBMS가 제공되는 주파수로 이동시킨다. 여기서 MBMS 관심 지시자는 단말이 MBMS 서비스를 수신하고 싶다는 정보를 의미하며, 추가적으로 어느 주파수로 이동하고 싶은지에 관한 정보를 포함한다.
특정 MBMS 서비스를 수신하고자 하는 단말은 먼저 상기 특정 서비스가 제공되는 주파수 정보와 방송 시간 정보를 파악한다. 상기 MBMS 서비스가 이미 방송 중이거나 또는 곧 방송을 시작하면, 단말은 상기 MBMS 서비스가 제공되는 주파수의 우선 순위를 가장 높게 설정한다. 단말은 재설정된 주파수 우선 순위 정보를 이용하여 셀 재선택 프로시저를 수행함으로써 MBMS 서비스를 제공하는 셀로 이동하여 MBMS 서비스를 수신한다.
단말이 MBMS 서비스를 수신 중에 있거나 또는 수신하는 것이 관심이 있는 경우 및 MBMS 서비스가 제공되는 주파수에 캠프 온 되는 동안 MBMS 서비스를 수신할 수 있는 경우, 재 선택된 셀이 SIB13(System Information Block 13; 시스템 정보 블록 13)을 브로드캐스트하고 있는 상황에서 이하와 같은 상황이 지속되는 한 MBMS 세션 동안 해당 주파수에 최우선순위가 적용되었다고 고려할 수 있다.
- 하나 또는 그 이상의 MBMS SAIs(Service Area Identities)가 해당 서비스의 USD(User Service Description)에 포함되어 있음이 서빙 셀의 SIB15에 의해 지시되는 경우.
- SIB15가 서빙 셀 내에서 방송되지 않고 해당 주파수는 해당 서비스의 USD내에 포함되는 경우.
단말은 RRC_IDLE, RRC_CONNECTED 상태에서 MBMS 수신이 가능해야 한다.
도 4는 MBSFN 서브프레임의 구조를 나타낸다.
도 4를 참조하면, MBSFN 전송은 서브프레임 단위로 설정된다. MBSFN 전송을 수행하도록 설정된 서브프레임을 MBSFN 서브프레임이라 한다. MBSFN 서브프레임으로 설정된 서브프레임에서는 PDCCH 전송을 위한 최초 2개의 OFDM 심벌을 제외한 나머지 OFDM 심벌들에서 MBSFN 전송이 수행된다. MBSFN 전송을 위하여 사용되는 영역을 편의상 MBSFN 영역이라 하자. 그러면, MBSFN 영역에서는 유니캐스트를 위한 CRS는 전송되지 않고, 전송에 참여하는 모든 셀에 공통적인 MBMS 전용 RS를 사용한다.
MBMS를 수신하지 않는 단말에게도 MBSFN 영역에서 CRS가 전송되지 않음을 알려주기 위해서 셀의 시스템 정보에 MBSFN 서브프레임의 설정 정보를 포함하여 방송한다. 대부분의 단말들이 CRS를 이용하여 RRM(radio resource management), RLF(radio link failure)처리, 동기화를 수행하므로, CRS가 특정 영역에 없음을 알려주는 것은 중요하다. MBSFN 서브프레임에서 PDCCH로 사용되는 최초 2개의 OFDM 심벌들에서는 CRS가 전송되며, 이 CRS는 MBSFN 용도를 위한 것이 아니다. MBSFN 서브프레임에서 PDCCH로 사용되는 최초 2개의 OFDM 심벌들에서는 전송되는 CRS의 CP는(즉, 상기 CRS가 일반 CP를 사용하는가 아니면 확장 CP를 사용하는가) 일반 서브프레임 즉, MBSFN 서브프레임이 아닌 서브프레임에서 적용되는 CP를 따른다. 예를 들어, 일반 서브프레임(411)에서 일반 CP를 사용할 경우 MBSFN 서브프레임의 최초 2개의 OFDM 심벌들(412)에서도 일반 CP에 따른 CRS가 사용된다.
한편, MBSFN 서브프레임으로 설정될 수 있는 서브프레임은 FDD, TDD 별로 각각 지정되어 있으며, 비트맵을 통해서 MBSFN 서브프레임인지 여부를 알려줄 수 있다. 즉, 비트맵에서 특정 서브프레임에 대응되는 비트가 1이면 상기 특정 서브프레임은 MBSFN 서브프레임으로 설정됨을 나타낸다.
도 5는 MBMS 서비스를 수행하기 위한 MBSFN 서브프레임 구성의 일 예를 나타낸다.
도 5를 참조하면, 단말은 MBMS 서비스를 수행하기 위하여 MBSFN 서브프레임 구성 정보, MBSFN 통지(notification) 구성 정보 및 MBSFN 지역(area) 정보 리스트를 획득한다.
단말은 SIB2와 RRC 전용 시그널링(dedicated signaling)을 통하여 MBSFN 서브프레임 구성 정보, 즉 MBSFN 서브프레임의 위치를 알 수 있다. 예를 들어 MBSFN 서브프레임 구성 정보는 MBSFN-SubframeConfig 정보 요소(IE: Information Element)에 포함될 수 있다.
또한, 단말은 SIB13을 통하여 MBMS 서비스를 수행할 수 있는 하나 또는 그 이상의 MBSFN 지역들과 연관된 MBMS 제어 정보를 획득하기 위해 필요한 정보로서, MBSFN 지역 정보 리스트 및 MBMS 통지 구성 정보를 획득할 수 있다. 여기서 MBSFN 지역 정보 리스트는 각각의 MBSFN 지역 별로 MBSFN 지역 ID, 해당 MBSFN 지역에서 MBSFN 서브프레임 내에서의 MBSFN 영역(region)에 대한 정보 및 MBMS 제어정보 채널인 MCCH 전송이 발생되는 MBSFN 서브프레임 위치 등과 같은 정보를 포함할 수 있다. 예를 들어 MBSFN 지역 정보 리스트는 MBSFN-AreaInfoList 정보 요소에 포함될 수 있다. 한편, MBSFN 통지 구성 정보는 MCCH를 통해서 단말로 전송되는 MBSFN 지역 구성 정보에 변화가 있음을 알려주는 MBMS 통지가 발생하는 서브프레임 위치에 대한 구성 정보이다. 예를 들어, MBSFN 통지 구성 정보는 MBMS-NotificationConfig 정보 요소에 포함될 수 있다. MBSFN 통지 구성 정보는 모든 MBSFN 지역에서 적용될 수 있는 MCCH의 변경 통지에 활용된 시간 정보를 포함한다. 예를 들어, 상기 시간 정보는 통지 반복 계수(notificationRepetitionCoeff), 통지 오프셋(notificationOffset) 및 통지 서브프레임 인덱스(notificationSF-Index)를 포함할 수 있다. 여기서, 통지 반복 계수는 모든 MCCH들을 위한 공통의 변경 통지 반복 주기(notification repetition period)를 의미한다. 통지 오프셋은 MCCH 변경 통지 정보가 스케줄링되는 무선 프레임의 오프셋을 지시한다. 그리고 통지 서브프레임 인덱스는 PDCCH상에서 MCCH 변경 통지를 전송하기 위해서 사용되는 서브프레임 인덱스이다.
단말은 SIB13을 통해서 얻어진 MBSFN 지역들에 대해서 각각에 대응하는 MCCH를 통하여 MBSFN 지역 구성 정보를 얻을 수 있다. MBSFN 지역 구성 정보는 MBSFNAreaconfiguration 메시지에 포함될 수 있으며, 해당 MBSFN 지역이 사용하는 PMCH(physical multicast channel)들에 대한 정보를 담고 있다. 예를 들어, 각각의 PMCH에 대한 정보는 해당 PMCH가 위치한 MBSFN 서브프레임의 위치와 해당 서브프레임에서의 데이터 전송을 위해 쓰이는 MCS(Modulation and Coding Scheme) 레벨 정보, 해당 PMCH가 전송하는 MBMS 서비스 정보 등을 포함할 수 있다.
단말은 PMCH를 기반으로 MTCH를 통하여 MCH 데이터를 받게 된다. 해당 MCH 데이터에 대한 시간 상에서의 스케줄링은 PMCH를 통해 내려오는 MSI(MCH Scheduling Information; MCH 스케줄링 정보)를 통해 알 수 있다. MSI는 해당 MCH 데이터 전송이 얼마의 시간 동안 지속되는지에 대한 정보를 담고 있다.
이하, SCPTM(Single-Cell Point-to-Multipoint) 전송에 대하여 설명한다.
MBMS 서비스의 전송 방법은 SCPTM 전송과 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) 전송이 있다. MBSFN 전송이 복수의 셀에서 동시에 식별 가능한 신호를 전송하는 반면, SCPTM 전송은 단일 셀에서 MBMS 서비스를 전송한다. 따라서, SCPTM 전송은 MBSFN 전송과 달리 셀 간의 동기화가 필요 없다. 또한, SCPTM 전송은 기존의 PDSCH를 그대로 사용하므로 MBSFN 전송과 달리 유니캐스트의 특성을 갖는다. 즉, 복수의 단말이 동일한 PDCCH를 읽고, 서비스 별 RNTI를 획득하여 SCPTM 서비스를 수신한다. SCPTM 전용 MCCH가 도입되었고, 단말은 MCCH를 통해 내가 원하는 서비스가 SCPTM 서비스라고 판단하면, 해당 RNTI 값을 획득하고, 해당 RNTI를 통해 PDCCH를 읽음으로써 SCPTM 서비스를 수신할 수 있다.
현재 eMBMS 구조에서, 단말이 RRC_CONNECTED 모드에 있는 동안, 단말은 서비스 연속성을 지원하기 위해 서빙 셀에게 관심 있는 MBMS 서비스가 전송될 예정인 반송파 주파수에 대하여 알려줄 수 있다. 그러면, 기지국은 MBMS 서비스를 나르는 반송파 주파수 상의 셀로 단말을 이동시킬 확률이 높다. 그러나, 서비스 연속성을 지원하기 위하여 상술한 방법을 SCPTM 전송에 적용하는 경우에는 다음과 같은 문제점이 발생할 수 있다.
도 6은 서비스 연속성 지원에 대한 문제를 나타낸다.
도 6을 참조하면, 현재 단말은 RRC_CONNECTED 상태에 있고, 셀 2의 SCPTM을 통해 제 1 그룹 콜 서비스를 수신하는 것으로 가정한다. 또한, 상기 단말이 셀 2의 SCPTM을 통해 제 1 그룹 콜 서비스를 수신하는 동안, 상기 단말은 셀 6 및 셀 7의 중첩 영역으로 이동하는 것으로 가정한다. 하지만, 제 1 기지국은 제 2 그룹 콜 서비스를 서비스하는 제 2 기지국의 셀 6 및 제 1 그룹 콜 서비스를 서비스하는 제 3 기지국의 셀 7에 대하여 알지 못한다. 그러므로, 제 1 기지국이 제 2 그룹 콜 서비스를 서비스하는 제 2 기지국의 셀 6으로 핸드오버를 수행하면, 제 1 그룹 콜 서비스에 대한 서비스 장애가 발생할 수 있다. 따라서, SCPTM 서비스 연속성을 지원하기 위한 방법 및 이를 지원하는 장치가 제안될 필요가 있다.
도 7은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 7을 참조하면, 단계 S710에서, MCE는 셀 ID 리스트를 MME로부터 수신할 수 있다. 상기 셀 ID 리스트는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 통해 MME로부터 수신될 수 있다. 상기 셀 ID 리스트는 SCPTM 서비스를 제공하는 셀을 식별하기 위해 사용될 수 있다. TMGI(Temporary Mobile Group Identifier)가 상기 SCPTM 서비스를 제공하는 셀을 식별하기 위해 상기 셀 ID 리스트와 함께 사용될 수 있다.
단계 S720에서, 기지국은 MBMS 세션 시작 요청 메시지를 MCE로부터 수신할 수 있다. 상기 MBMS 세션 시작 요청 메시지는 셀 ID 리스트를 포함할 수 있다. 상기 셀 ID 리스트는 필터링 없이 MCE로부터 제공될 수 있다. 즉, MCE가 MME로부터 수신한 셀 ID 리스트와 기지국이 MCE로부터 수신한 셀 ID 리스트는 서로 동일할 수 있다.
단계 S730에서, 기지국은 요청된 MBMS 자원이 확립될 수 있는지 여부를 확인할 수 있다. 상기 요청된 MBMS 자원은 상기 MBMS 세션 시작 요청 메시지에 의해 요청된 MBMS 자원일 수 있다.
단계 S740에서, 기지국이 요청된 MBMS 자원을 전혀 확립할 수 없으면, 기지국은 MBMS 세션 시작 실패 메시지(MBMS Session Start Failure Message)를 MCE로 전송할 수 있다. 즉, MBMS 세션 시작 요청 메시지에 의해 요청된 MBMS 자원이 모든 셀에서 확립되지 않으면, 기지국은 MBMS 세션 시작 실패 메시지를 MCE로 전송할 수 있다.
단계 S750에서, 기지국은 eNB 설정 업데이트 메시지(eNB Configuration Update Message) 또는 새로운 메시지를 이웃 기지국으로 전송할 수 있다. 상기 기지국이 MBMS 세션 시작 실패 메시지를 MCE로 전송하면, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 또는, 상기 기지국이 MBMS 세션 시작 실패 메시지를 MCE로 전송한 후, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 상기 eNB 설정 업데이트 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 새로운 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
도 8은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 8을 참조하면, 단계 S810에서, MCE는 셀 ID 리스트를 MME로부터 수신할 수 있다. 상기 셀 ID 리스트는 MBMS 세션 업데이트 요청 메시지(MBMS Session Update Request Message)를 통해 MME로부터 수신될 수 있다. 상기 셀 ID 리스트는 SCPTM 서비스를 제공하는 셀을 식별하기 위해 사용될 수 있다. TMGI(Temporary Mobile Group Identifier)가 상기 SCPTM 서비스를 제공하는 셀을 식별하기 위해 상기 셀 ID 리스트와 함께 사용될 수 있다.
단계 S820에서, 기지국은 MBMS 세션 업데이트 요청 메시지를 MCE로부터 수신할 수 있다. 상기 MBMS 세션 업데이트 요청 메시지는 셀 ID 리스트를 포함할 수 있다. 상기 셀 ID 리스트는 필터링 없이 MCE로부터 제공될 수 있다. 즉, MCE가 MME로부터 수신한 셀 ID 리스트와 기지국이 MCE로부터 수신한 셀 ID 리스트는 서로 동일할 수 있다.
단계 S830에서, 기지국은 MBMS 세션이 업데이트 되는지 여부를 확인할 수 있다. 상기 MBMS 세션은 MBMS 세션 업데이트 요청 메시지에 의해 업데이트 될 수 있다.
단계 S840에서, 기지국이 MBMS 세션을 업데이트 하는 것을 실패하면, 기지국은 MBMS 세션 업데이트 실패 메시지(MBMS Session Update Failure Message)를 MCE로 전송할 수 있다. MBMS 세션 업데이트 요청 메시지에 의해 요청된 모든 MBMS 세션 업데이트가 실패되면, 기지국은 MBMS 세션 업데이트 실패 메시지를 MCE로 전송할 수 있다. 즉, MBMS 세션이 모든 셀에서 업데이트되지 않으면, 기지국은 MBMS 세션 업데이트 실패 메시지를 MCE로 전송할 수 있다.
단계 S850에서, 기지국은 eNB 설정 업데이트 메시지(eNB Configuration Update Message) 또는 새로운 메시지를 이웃 기지국으로 전송할 수 있다. 상기 기지국이 MBMS 세션 업데이트 실패 메시지를 MCE로 전송하면, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 또는, 상기 기지국이 MBMS 세션 업데이트 실패 메시지를 MCE로 전송한 후, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 상기 eNB 설정 업데이트 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 새로운 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
도 9는 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 9를 참조하면, 단계 S910에서, MCE는 셀 ID 리스트를 MME로부터 수신할 수 있다. 상기 셀 ID 리스트는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 통해 MME로부터 수신될 수 있다. 상기 셀 ID 리스트는 SCPTM 서비스를 제공하는 셀을 식별하기 위해 사용될 수 있다. TMGI(Temporary Mobile Group Identifier)가 상기 SCPTM 서비스를 제공하는 셀을 식별하기 위해 상기 셀 ID 리스트와 함께 사용될 수 있다.
단계 S920에서, 기지국은 MBMS 세션 시작 요청 메시지를 MCE로부터 수신할 수 있다. 상기 MBMS 세션 시작 요청 메시지는 셀 ID 리스트를 포함할 수 있다. 상기 셀 ID 리스트는 필터링 없이 MCE로부터 제공될 수 있다. 즉, MCE가 MME로부터 수신한 셀 ID 리스트와 기지국이 MCE로부터 수신한 셀 ID 리스트는 서로 동일할 수 있다.
단계 S930에서, 기지국은 요청된 MBMS 자원이 확립될 수 있는지 여부를 확인할 수 있다. 상기 요청된 MBMS 자원은 상기 MBMS 세션 시작 요청 메시지에 의해 요청된 MBMS 자원일 수 있다.
단계 S940에서, 기지국이 요청된 MBMS 자원을 특정 셀에서 확립할 수 없으면, 기지국은 MBMS 세션 시작 응답 메시지(MBMS Session Start Response Message)를 MCE로 전송할 수 있다. 상기 세션 시작 응답 메시지는 실패된 셀 리스트(failed cell list)를 포함할 수 있다. 즉, MBMS 세션 시작 요청 메시지에 의해 요청된 MBMS 자원이 적어도 어느 하나의 셀에서 확립되지 않으면, 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 시작 응답 메시지를 MCE로 전송할 수 있다.
단계 S950에서, 기지국은 eNB 설정 업데이트 메시지(eNB Configuration Update Message) 또는 새로운 메시지를 이웃 기지국으로 전송할 수 있다. 상기 기지국이 MBMS 세션 시작 응답 메시지를 MCE로 전송하면, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 또는, 상기 기지국이 MBMS 세션 시작 응답 메시지를 MCE로 전송한 후, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다.
상기 eNB 설정 업데이트 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 또는, 상기 eNB 설정 업데이트 메시지는 기지국이 요청된 MBMS 자원을 특정 셀에서 확립할 수 없을 때 업데이트된 및/또는 변경된 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 새로운 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 또는, 상기 새로운 메시지는 기지국이 요청된 MBMS 자원을 특정 셀에서 확립할 수 없을 때 업데이트된 및/또는 변경된 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
도 10은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하기 위해 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 방법을 나타낸다.
도 10을 참조하면, 단계 S1010에서, MCE는 셀 ID 리스트를 MME로부터 수신할 수 있다. 상기 셀 ID 리스트는 MBMS 세션 업데이트 요청 메시지(MBMS Session Update Request Message)를 통해 MME로부터 수신될 수 있다. 상기 셀 ID 리스트는 SCPTM 서비스를 제공하는 셀을 식별하기 위해 사용될 수 있다. TMGI(Temporary Mobile Group Identifier)가 상기 SCPTM 서비스를 제공하는 셀을 식별하기 위해 상기 셀 ID 리스트와 함께 사용될 수 있다.
단계 S1020에서, 기지국은 MBMS 세션 업데이트 요청 메시지를 MCE로부터 수신할 수 있다. 상기 MBMS 세션 업데이트 요청 메시지는 셀 ID 리스트를 포함할 수 있다. 상기 셀 ID 리스트는 필터링 없이 MCE로부터 제공될 수 있다. 즉, MCE가 MME로부터 수신한 셀 ID 리스트와 기지국이 MCE로부터 수신한 셀 ID 리스트는 서로 동일할 수 있다.
단계 S1030에서, 기지국은 MBMS 세션이 업데이트 되는지 여부를 확인할 수 있다. 상기 MBMS 세션은 MBMS 세션 업데이트 요청 메시지에 의해 업데이트 될 수 있다.
단계 S1040에서, 기지국이 특정 셀에서 MBMS 세션을 업데이트 하는 것을 실패하면, 기지국은 MBMS 세션 업데이트 응답 메시지(MBMS Session Update Response Message)를 MCE로 전송할 수 있다. 상기 세션 업데이트 응답 메시지는 실패된 셀 리스트(failed cell list)를 포함할 수 있다. MBMS 세션 업데이트 요청 메시지에 의해 요청된 일부 MBMS 세션 업데이트가 실패되면, 기지국은 실패된 셀 리스트를 포함하는 MBMS 세션 업데이트 응답 메시지를 MCE로 전송할 수 있다. 즉, MBMS 세션이 적어도 어느 하나의 셀에서 업데이트되지 않으면, 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 업데이트 응답 메시지를 MCE로 전송할 수 있다.
단계 S1050에서, 기지국은 eNB 설정 업데이트 메시지(eNB Configuration Update Message) 또는 새로운 메시지를 이웃 기지국으로 전송할 수 있다. 상기 기지국이 MBMS 세션 업데이트 응답 메시지를 MCE로 전송하면, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다. 또는, 상기 기지국이 MBMS 세션 업데이트 응답 메시지를 MCE로 전송한 후, 상기 eNB 설정 업데이트 메시지 또는 새로운 메시지가 상기 이웃 기지국으로 전송될 수 있다.
상기 eNB 설정 업데이트 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 또는, 상기 eNB 설정 업데이트 메시지는 기지국이 MBMS 세션을 특정 셀에서 업데이트할 수 없을 때 업데이트된 및/또는 변경된 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 새로운 메시지는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 또는, 상기 새로운 메시지는 기지국이 MBMS 세션을 특정 셀에서 업데이트할 수 없을 때 업데이트된 및/또는 변경된 셀 별 MBMS 베어러 서비스 정보를 포함할 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
도 11은 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하는 방법을 나타내는 블록도이다.
도 11을 참조하면, 단계 S1110에서, 기지국은 셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신할 수 있다.
단계 S1120에서, 기지국은 요청된 MBMS 자원이 확립되는지 여부를 확인할 수 있다.
단계 S1130에서, 기지국은 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송할 수 있다.
상기 요청된 MBMS 자원이 모든 셀에서 확립되지 않으면, 상기 기지국은 MBMS 세션 시작 실패 메시지(MBMS Session Start Failure Message)를 상기 MCE로 전송할 수 있다. 상기 MBMS 세션 시작 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보일 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
상기 요청된 MBMS 자원이 적어도 어느 하나의 셀에서 확립되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 시작 응답 메시지(MBMS Session Start Response Message)를 상기 MCE로 전송할 수 있다. 상기 MBMS 세션 시작 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국에 의해 현재 서비스되는 셀 별 MBMS 베어러 서비스 정보 또는 업데이트된 셀 별 MBMS 베어러 서비스 정보 중 적어도 어느 하나를 포함할 수 있다.
상기 MCE로부터 수신된 셀 ID 리스트는 상기 MCE가 MME로부터 수신한 셀 ID 리스트와 동일할 수 있다.
도 12는 본 발명의 일 실시 예에 따라, 기지국이 SCPTM 서비스 연속성을 지원하는 방법을 나타내는 블록도이다.
도 12를 참조하면, 단계 S1210에서, 기지국은 셀 ID 리스트를 포함하는 MBMS 세션 업데이트 요청 메시지(MBMS Session Update Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신할 수 있다.
단계 S1220에서, 기지국은 MBMS 세션이 업데이트되는지 여부를 확인할 수 있다.
단계 S1230에서, 기지국은 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송할 수 있다.
상기 MBMS 세션이 모든 셀에서 업데이트되지 않으면, 상기 기지국은 MBMS 세션 업데이트 실패 메시지(MBMS Session Update Failure Message)를 상기 MCE로 전송할 수 있다. 상기 MBMS 세션 업데이트 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보일 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보일 수 있다.
상기 MBMS 세션이 적어도 어느 하나의 셀에서 업데이트되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 업데이트 응답 메시지(MBMS Session Update Response Message)를 상기 MCE로 전송할 수 있다. 상기 MBMS 세션 업데이트 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송될 수 있다. 상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국에 의해 현재 서비스되는 셀 별 MBMS 베어러 서비스 정보 또는 업데이트된 셀 별 MBMS 베어러 서비스 정보 중 적어도 어느 하나를 포함할 수 있다.
상기 MCE로부터 수신된 셀 ID 리스트는 상기 MCE가 MME로부터 수신한 셀 ID 리스트와 동일할 수 있다.
도 13은 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(1300)은 프로세서(processor, 1301), 메모리(memory, 1302) 및 송수신기(transceiver, 1303)를 포함한다. 메모리(1302)는 프로세서(1301)와 연결되어, 프로세서(1301)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1303)는 프로세서(1301)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1301)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(1301)에 의해 구현될 수 있다.
MCE(1310)는 프로세서(1311), 메모리(1312) 및 송수신기(1313)를 포함한다. 메모리(1312)는 프로세서(1311)와 연결되어, 프로세서(1311)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1313)는 프로세서(1311)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1311)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 MCE의 동작은 프로세서(1311)에 의해 구현될 수 있다.
MME(1320)는 프로세서(1321), 메모리(1322) 및 송수신기(1323)를 포함한다. 메모리(1322)는 프로세서(1321)와 연결되어, 프로세서(1321)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1323)는 프로세서(1321)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1321)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 MME의 동작은 프로세서(1321)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (15)

  1. 무선 통신 시스템에서 기지국이 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 방법에 있어서,
    셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하고,
    요청된 MBMS 자원이 확립되는지 여부를 확인하고,
    셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 요청된 MBMS 자원이 모든 셀에서 확립되지 않으면, 상기 기지국은 MBMS 세션 시작 실패 메시지(MBMS Session Start Failure Message)를 상기 MCE로 전송하는 것을 더 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 MBMS 세션 시작 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송되는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국이 현재 서비스하는 셀 별 MBMS 베어러 서비스 정보인 것을 특징으로 하는 방법.
  5. 제 3 항에 있어서,
    상기 셀 별 MBMS 베어러 서비스 정보는 셀 별 TMGI(Temporary Mobile Group Identifier) 정보인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 요청된 MBMS 자원이 적어도 어느 하나의 셀에서 확립되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 시작 응답 메시지(MBMS Session Start Response Message)를 상기 MCE로 전송하는 것을 더 포함하는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서,
    상기 MBMS 세션 시작 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송되는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서,
    상기 셀 별 MBMS 베어러 서비스 정보는 상기 기지국에 의해 현재 서비스되는 셀 별 MBMS 베어러 서비스 정보 또는 업데이트된 셀 별 MBMS 베어러 서비스 정보 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 MCE로부터 수신된 셀 ID 리스트는 상기 MCE가 MME로부터 수신한 셀 ID 리스트와 동일한 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 기지국이 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 방법에 있어서,
    셀 ID 리스트를 포함하는 MBMS 세션 업데이트 요청 메시지(MBMS Session Update Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하고,
    MBMS 세션이 업데이트되는지 여부를 확인하고,
    셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 포함하는 것을 특징으로 하는 방법.
  11. 제 10 항에 있어서,
    상기 MBMS 세션이 모든 셀에서 업데이트되지 않으면, 상기 기지국은 MBMS 세션 업데이트 실패 메시지(MBMS Session Update Failure Message)를 상기 MCE로 전송하는 것을 더 포함하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서,
    상기 MBMS 세션 업데이트 실패 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송되는 것을 특징으로 하는 방법.
  13. 제 10 항에 있어서,
    상기 MBMS 세션이 적어도 어느 하나의 셀에서 업데이트되지 않으면, 상기 기지국은 상기 적어도 어느 하나의 셀의 리스트를 포함하는 MBMS 세션 업데이트 응답 메시지(MBMS Session Update Response Message)를 상기 MCE로 전송하는 것을 더 포함하는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서,
    상기 MBMS 세션 업데이트 응답 메시지가 전송된 후, 상기 셀 별 MBMS 베어러 서비스 정보가 상기 이웃 기지국에게 전송되는 것을 특징으로 하는 방법.
  15. 무선 통신 시스템에서 SCPTM(Single-Cell Point-to-Multipoint) 서비스 연속성을 지원하는 기지국에 있어서,
    메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는
    상기 송수신기가 셀 ID 리스트를 포함하는 MBMS 세션 시작 요청 메시지(MBMS Session Start Request Message)를 MCE(Multi-cell Coordination Entity)로부터 수신하도록 제어하고,
    요청된 MBMS 자원이 확립되는지 여부를 확인하고,
    상기 송수신기가 셀 별 MBMS 베어러 서비스 정보를 이웃 기지국에게 전송하는 것을 제어하도록 구성되는 것을 특징으로 하는 기지국.
PCT/KR2016/011451 2015-10-14 2016-10-13 Scptm 서비스 연속성을 지원하는 방법 및 장치 WO2017065501A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/768,246 US10476695B2 (en) 2015-10-14 2016-10-13 Method and apparatus for supporting SCPTM service continuity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562241160P 2015-10-14 2015-10-14
US62/241,160 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065501A1 true WO2017065501A1 (ko) 2017-04-20

Family

ID=58517709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011451 WO2017065501A1 (ko) 2015-10-14 2016-10-13 Scptm 서비스 연속성을 지원하는 방법 및 장치

Country Status (2)

Country Link
US (1) US10476695B2 (ko)
WO (1) WO2017065501A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125956A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396800B1 (ko) * 2015-11-19 2022-05-11 삼성전자 주식회사 무선 통신 시스템에서 공공 안전망 접속 지원 방법 및 장치
WO2018059506A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for network selection
WO2018085078A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Reference signal time difference (rstd) measurements for observed time difference of arrival (otdoa) positioning
US11057882B1 (en) * 2018-04-03 2021-07-06 T-Mobile Innovations Llc Systems and methods for dynamically setting frame configuration in a wireless network
CN113099390B (zh) * 2020-01-09 2023-06-30 成都鼎桥通信技术有限公司 非独立部署的5g系统承载mbms的方法与系统
US11838832B2 (en) * 2020-12-27 2023-12-05 Industrial Technology Research Institute Method for adjusting multicast broadcast service area and network apparatus using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090033313A (ko) * 2007-09-29 2009-04-02 삼성전자주식회사 진보된 방송 및 멀티캐스트 서비스 데이터의 연속 수신 지원 방법
KR20130019732A (ko) * 2011-08-17 2013-02-27 주식회사 팬택 Mbms 서비스에 관한 제어정보의 전송 장치 및 방법
KR20130074849A (ko) * 2011-12-27 2013-07-05 한국전자통신연구원 Mbms 제공 장치 및 이를 이용한 mbms 제공 방법
WO2014146616A1 (en) * 2013-03-22 2014-09-25 Mediatek Inc. Group communication over lte embms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012020138B1 (pt) * 2010-02-12 2021-02-02 Alcatel Lucent método para processamento de atualização de sessão de serviço mbms de serviço de transmissão/multidifusão de multimidia em uma rede de acesso por rádio ran
US8750181B2 (en) * 2012-05-14 2014-06-10 Blackberry Limited Maintaining MBMS continuity
CN103546826B (zh) * 2012-07-16 2017-07-21 上海贝尔股份有限公司 视频业务的传输方法和装置
JP6503071B2 (ja) * 2015-01-30 2019-04-17 京セラ株式会社 サービングセル情報を用いる、ポイントツーマルチポイント(ptm)互換サービスのための送信メカニズム選択

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090033313A (ko) * 2007-09-29 2009-04-02 삼성전자주식회사 진보된 방송 및 멀티캐스트 서비스 데이터의 연속 수신 지원 방법
KR20130019732A (ko) * 2011-08-17 2013-02-27 주식회사 팬택 Mbms 서비스에 관한 제어정보의 전송 장치 및 방법
KR20130074849A (ko) * 2011-12-27 2013-07-05 한국전자통신연구원 Mbms 제공 장치 및 이를 이용한 mbms 제공 방법
WO2014146616A1 (en) * 2013-03-22 2014-09-25 Mediatek Inc. Group communication over lte embms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; E-UTRAN; M2 Application Protocol; (Release 13)", 3GPP TS 36.443 V13.1.0, 22 September 2015 (2015-09-22), XP050996021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125956A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Also Published As

Publication number Publication date
US20180359104A1 (en) 2018-12-13
US10476695B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US10616826B2 (en) Method and device for transmitting and receiving list of cells providing SCPTM service
WO2017026781A1 (ko) 단말이 scptm에 대한 pdcch 모니터링을 수행하는 방법 및 장치
WO2018164471A1 (ko) 빔을 기반으로 mbms 서비스를 수신하는 방법 및 장치
WO2017171354A1 (ko) 단말이 이동성을 수행하는 방법 및 장치
WO2017065501A1 (ko) Scptm 서비스 연속성을 지원하는 방법 및 장치
WO2017135740A1 (ko) V2x 통신을 수행하는 방법 및 장치
WO2017039211A1 (ko) 단말이 셀 재선택을 수행하는 방법 및 장치
WO2017155361A1 (ko) V2x 통신을 위한 자원 할당 방법 및 장치
WO2018088837A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
WO2018084630A1 (ko) 시스템 정보를 수신하는 방법 및 장치
US10194356B2 (en) Method and device for terminal receiving service continuity indicator
WO2017073992A1 (ko) 세션을 제어하는 방법 및 장치
WO2017052154A1 (ko) 우선되는 서비스가 전송되는 방법 및 장치
WO2015147605A1 (en) Method and apparatus for performing d2d operation in wireless communication system
WO2017222290A1 (ko) 단말의 rrc 상태를 보고하는 방법 및 이를 지원하는 장치
WO2018097528A1 (ko) Ran 기반 통지 영역을 설정하는 방법 및 장치
WO2017052317A1 (ko) Scptm 전송을 중단하는 방법 및 장치
WO2018012811A1 (ko) 단말이 mbms 서비스를 수신하는 방법 및 이를 지원하는 장치
WO2016111580A1 (ko) Scptm 수신을 위한 rrc 연결 확립 방법 및 장치
WO2017160134A1 (ko) 셀 그룹 정보를 기반으로 v2x 통신을 수행하는 방법 및 장치
WO2017014533A1 (ko) C-sgn이 스몰 데이터 전송에 대한 정보를 수신하는 방법 및 장치
WO2017090953A1 (ko) 단말이 관심 있는 mbms 서비스를 결정하는 방법 및 장치
WO2018030776A1 (ko) Mbms 서비스 연속성을 지원하는 방법 및 장치
WO2018012810A1 (ko) 단말이 mbms 관심 지시 메시지를 전송하는 방법 및 이를 지원하는 장치
EP3143794A1 (en) Method and apparatus for indicating logged mbms measurement availability in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855718

Country of ref document: EP

Kind code of ref document: A1