WO2017065463A1 - Method for forecasting optimal operation of innovative single-action-type tidal power generation - Google Patents

Method for forecasting optimal operation of innovative single-action-type tidal power generation Download PDF

Info

Publication number
WO2017065463A1
WO2017065463A1 PCT/KR2016/011290 KR2016011290W WO2017065463A1 WO 2017065463 A1 WO2017065463 A1 WO 2017065463A1 KR 2016011290 W KR2016011290 W KR 2016011290W WO 2017065463 A1 WO2017065463 A1 WO 2017065463A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
search
section
node
drainage
Prior art date
Application number
PCT/KR2016/011290
Other languages
French (fr)
Korean (ko)
Inventor
이성훈
곽희진
손동수
Original Assignee
한국수자원공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사 filed Critical 한국수자원공사
Priority to GB1807817.0A priority Critical patent/GB2560122B/en
Publication of WO2017065463A1 publication Critical patent/WO2017065463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/16Regulating, i.e. acting automatically by power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/268Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy making use of a dam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention establishes an operation plan for controlling aberration and hydrology so that the tidal cycle is operated in the order of drainage, power generation standby, power generation, and drainage standby, and the maximum generation amount can be obtained for each tin cycle based on the tide data that are varied for each tidal cycle.
  • a method of predicting optimal operation of single-flow creative tidal power generation that shortens the calculation time required to obtain operating conditions for maximum power generation by minimizing the number of generation calculations in establishing an operation plan. will be.
  • a tidal wave (a tidal dam) with a water wheel generator and a hydrologic gate is built on the shore where the difference between tides is significant, creating a lake, and then creating a lake (water drop) between the sea level and the top of the lake.
  • It is a power generation method that generates electric power by rotating the generator by using the pressure difference, it is divided into double flow type to generate power at high tide and low tide, and single flow type to generate power at high tide or low tide,
  • the stream-flow type is divided into a creation type that generates electricity only at high tide and a fallout type that generates electricity only at low tide.
  • the single-flow creative tidal power generation uses tidal dike to secure the tidal flats, so it is generally assumed that the lake is kept within the range of low tide and average sea level, and Sihwaho tidal power plant, the first tidal power plant in Korea, is a prerequisite. Yes.
  • 1 is a graph showing the operation time of the aberration and hydrology for the single-flow creative tidal power generation. Referring to the graph, the operation time of the aberration and the hydrology is determined according to the water head difference between the sea level and the lake.
  • FIG. 2 is a graph illustrating a change in power generation amount according to a change in power generation start head change.
  • Sea level of the open sea Fluctuates in the form of a sinusoidal wave with a periodicity of approximately twice a day centered on the mean sea level (MSL), and high tide and low tide are produced every tidal cycle due to various factors such as lunar cycles, precession of earth Fluctuates.
  • the opening and closing of the aberration means to control the flow of seawater through the aberration, and it is developed by operating the aberration when introducing the seawater of the open sea into the lake, but also within a given time when the seawater of the lake is drained to the open sea.
  • the generator is placed in an unloaded state and then drained through aberration.
  • the operation method of the single-flow creative tidal power generation On the lake When higher than the headwaters of the open sea and the lake ( To produce electric power by rotating the aberration using the hydraulic pressure difference by) and drain the seawater introduced into the lake at the time of power generation to the open sea when the sea level is lower than the lake to empty the lake so that the power can be produced in the next cycle.
  • a series consisting of drainage operation, power generation standby operation, power generation operation, and drainage standby operation is repeated according to the period of the sea level as follows.
  • the minimum power generation head ( Maximum water level (even before)
  • the maximum management level is generally ) Is EL. -1.00m.
  • the sea level is lowered and waits (drainage) until it becomes the same as on the lake.
  • the water gate and the aberration are opened to produce electric power, and the seawater flowing into the lake is drained to the open sea.
  • the aberration is not for opening for power generation but for drainage, so it is allowed to reverse.
  • additional water gates drainage locks
  • additional water gates are also opened during drainage.
  • the lake level is gradually lowered, and after the low tide, the sea level becomes high, and when the lake level and the sea level become the same, the water gate and the aberration are closed.
  • the water level on the lake can be lowered to perform the power generation operation of the next cycle.
  • tidal power generation is performed by performing power generation standby operation, power generation operation, drainage standby operation, and drainage operation in accordance with the cycle of seawater level. ) And drainage.
  • the floodgate reaches hundreds of tons, the height is 12m, the lifting capacity of the hoisting machine to open and close the gate is 0.5m / min, and the time taken to open the floodgate is at least 24 It takes about a minute, so the amount of water drained through the gate changes over the time it takes to open the gate. Similar time is required to open the gate when it is closed.
  • Patent Document 1 KR 10-0920604 B1 2009.09.29.
  • Non-Patent Document 1 A Study on the Development of Optimal Operational Model for Single Phase Creative Power Generation, Korean Institute of Electrical Engineers Summer Conference 2009. 7., 14-17
  • the problem to be solved in the present invention is to determine the optimum power generation start speed more quickly, and to determine the optimum operating conditions of tidal power plant by determining the time of opening and closing operation of the gate to the maximum drainage amount for the maximum power generation. It provides a method for predicting the optimal operation of a single-phase creative tidal power provided.
  • the present invention is set to a range in which the search interval for the power generation start head is gradually increased and then decreases with the increase in the power generation start head, and for the prediction period input to the input unit 20.
  • the single-flow creative tidal power generation optimal operation prediction method which is generated by the optimum operation search unit 30 which generates an optimum operation prediction result that maximizes the generation amount and outputs it to the output unit 40, the prediction period through the input unit 20.
  • the maximum power generation search step (S200) selects a node that divides the search section into two sections, calculates the amount of power generated at the node, and selects a section that does not belong to the optimum power generation start difference among the divided sections according to the magnitude of the generation amount.
  • the optimal operation exploration step (S5) is based on the tide forecast data, George data and management level of the time when it is possible to drain the optimal hydro-open water head and the optimal hydro-closure water head to secure the maximum drainage for the lake maintained at the management level
  • the maximum power generation amount search step (S200) to obtain the maximum amount of water search step (S100) to obtain a lake after the drainage in accordance with the secured maximum amount of water
  • the maximum amount of power generation step (S200) After the drain on the lake is the drain after the lake obtained in the maximum drainage search step (S100).
  • the process of deleting one section without the optimal power generation start heading is repeated.
  • the present invention selects the nodes using the golden ratio method, the second-order interpolation method or the shunting method, by reducing the search period by adopting the node selection method that can select the section without the optimal power generation start difference while increasing the deletion period as much as possible. It is possible to reduce the number of times to perform the section search step for, thus, it is possible to find the optimum power generation start difference more quickly.
  • the present invention is to search the operating conditions to ensure the maximum drainage to obtain a larger amount of power produced in the power generation operation after the drainage, thereby establishing an overall tidal power operation plan for securing the maximum power generation for each tidal cycle can do.
  • 1 is a graph showing the operation time of the aberration and the hydrologic for single-flow creative tidal power generation.
  • FIG. 2 is a graph illustrating a change in power generation amount according to the change in power generation start head.
  • Figure 3 is an exemplary graph of the instantaneous drainage flow rate that appears upon opening and closing of the water gate according to the hydrological opening and closing water head.
  • Figure 4 is a block diagram of a single flow creative tidal power generation optimal operation prediction system for the implementation of the present invention.
  • FIG. 5 is a flow chart of a method for predicting optimal operation of single-flow creative tidal power generation according to an embodiment of the present invention comprising the system of FIG. 4.
  • FIG. 7 is a flow chart of the process of obtaining drainage water for the specific hydrological water leakage.
  • FIG. 9 is a flow chart of the process of obtaining power generation for a specific power generation start head.
  • FIG. 10 is a graph showing a process of searching for a power generation start car using a golden division method.
  • 11 is an exemplary view showing the output screen of the optimal operation prediction result.
  • FIG. 13 is a graph showing a process of searching for a power generation start head using a quadratic interpolation method.
  • FIG. 14 is a flowchart of a maximum power generation search step S200b using a secant method.
  • FIG. 15 is a graph showing a process of searching for a power generation head car using a secant method.
  • 16 is a flowchart of another embodiment of the maximum displacement search step S100.
  • FIG. 17 is a detailed flowchart of the optimum hydrograph closing water searching step (S130a) shown in FIG. 16.
  • Sea level Is the level of the open sea, which varies with tides.
  • Chicken pox ( ) - The difference in water level or drop between the sea level and the lake is estimated.
  • Development start head ( ) Is the head difference between the sea level and the lake at the time of starting power generation by opening and operating the aberration when the tide is drained to the open sea.
  • Administrative water level Refers to the maximum allowable lake level when seawater from the open sea enters the lake as power generation starts at the head of the power generation.When the water level reaches the management level, power generation is closed by closing the aberration. It will be maintained at the management level.
  • Minimum power head Is the minimum head aberration needed to rotate a stationary aberration. ) Is at least greater than the minimum generation head, and starts to develop and ends when the head reaches the minimum generation head.
  • the amount of power generated (E) is the number of start-up times of power generation for one tidal cycle ( ) Refers to the total amount of power produced until the water level generator reaches the management level or the minimum power generation head after operating the aberration generator. Adopt the method.
  • Hydrologic opening and closing head Is the hydrocephalus, the hydrocephalus, at the beginning of the opening of the hydrology (including additional hydrology, if any).
  • hydrologic closure head the head of the head when the gate is closed to terminate drainage
  • the difference between the head difference at the time of opening and closing the gate and the time difference between the head difference at the time of full opening and the time at which the gate is completely closed are different.
  • the amount of drainage is the water gate
  • To open the sluice and open the sluice closure ( ) Is the total drainage when the gate is operated to close the floodgate, and it calculates and accumulates the drainage according to the head difference at a preset time interval.
  • the management level is generally kept constant, but since the tidal cycle only occurs because of the tidal cycle, the lake after draining can vary by tidal cycle. On the other hand, the management level may be adjusted by rainfall.
  • the search section is the range of values to search.
  • the node is a value determined within the search section, and the node divides the search section by this node.
  • FIG. 4 is a block diagram of a single flow creative tidal power generation optimal operation prediction system 10 for the implementation of the present invention.
  • the single-flow creative tidal power generation optimal operation prediction system for the implementation of the present invention includes a database unit 10 for databaseing the data necessary to predict the operating state of the tidal power plant, and operating conditions including the number of operating generators, the number of operating hydrologic units, and the like. And an input unit 20 for inputting a prediction period, an optimum operation search unit 30 for generating an optimal operation prediction result for ensuring maximum generation amount, and an output unit 40 for outputting an optimum operation prediction result. .
  • the data databased in the database unit 10 includes tide data for obtaining information on changes in sea level due to tidal phenomena, and between the volume (or volume) of Lake Sihwa and the lake level according to the information on the surface area of the lake for each lake level.
  • Calculation information for establishing the relationship generator data including water flow calculation information and power generation calculation information through aberration, and water flow calculation information through water gate, and drainage water flow calculation information through additional water gate when additional water gate is installed
  • it may include hydrological data on which the drainage calculation is based, constraint data including constraints on the management of the lake and drainage time, and initialization conditions including initialization values of various search sections described below.
  • the constraint data may be, for example, time-level management water level, drainage time limit, and the like, and change the value of the management water level according to the constraint data, and stop drainage and calculate the water discharge amount during the drainage time limit.
  • the description does not describe the embodiment to which this is applied.
  • the input unit 20 may be inputted.
  • the optimum operation search unit 30 reflects the tide prediction unit 31 for predicting the tide for the prediction period received, and the operating conditions and databased initialization conditions inputted to the input unit to the maximum power generation search and the maximum drainage search processor. Acquire the optimal hydrological opening and closing head water to secure the maximum drainage based on the tide prediction data, George data, initial water level (management water level), generator data and hydrologic data under the condition setting unit 32 and the operating conditions As a result, the maximum power discharge search unit 33 which obtains the maximum water discharge, and the optimum power generation start to secure the maximum power generation based on the tide prediction data, the George data, the lake level after the drainage, and the generator data while the operating conditions are reflected.
  • It is configured to include a maximum power generation search unit 34 to obtain the head water and consequently also obtain the maximum power generation,
  • the optimum operating forecasts including enemy sluice opening and closing water head difference, the maximum power generation amount and the maximum displacement is outputted through the output unit 40.
  • FIG. 5 is a flowchart of a method for predicting optimal operation of single-flow creative tidal power generation according to an embodiment of the present invention.
  • an input step (S1) for receiving a prediction period and an operating condition through the input unit 20, and a tide for the prediction period based on databased tide data.
  • Tide prediction step (S2) for generating the prediction data
  • operating condition setting step (S3) to reflect the input operating conditions and database-based initialization conditions to the initial conditions for the search for the maximum generation amount and the maximum displacement, and within the prediction period
  • the optimal operation search step (S5) to sequentially perform the maximum power generation search step (S200) and the number of times to repeat the optimal operation search step (S5) by the number of tidal cycles (M) is checked W and predicted tidal number checking step (S6) to
  • the operating conditions received in the input stage (S1) are the initial lake level of the forecast period, the management level, the forecast period, which is the period to establish the operation plan of the tidal power plant, the number of aberration generators and hydrologic units to be operated for each tidal cycle within the forecast period, It may include a kind of search method to be described later. Take the case of the Sihwa Lake embankment, for example, a total of 10 aberration generators, a total of eight main gates, and a total of eight additional flood gates, and if there are changes in the number of operations due to maintenance plans, this will be reflected.
  • the operating conditions received include the management level, which is the maximum allowable value on the lake that rises as power is generated by operating the aberration, but the management level is databased so that it can be applied to the initialization condition when executing the search method described below. good.
  • the management level is the maximum allowable value on the lake that rises as power is generated by operating the aberration
  • the management level is databased so that it can be applied to the initialization condition when executing the search method described below. good.
  • the rainfall is expected according to the weather forecast may be able to adjust the management level up in consideration of the inflow amount according to the rainfall.
  • the initial lake level can be entered as the management level as the starting point lake in the forecast period, or it can be entered into the lake after drainage.
  • the optimal operation search step (S5) performs only the maximum power generation search step (S200) for the first tidal cycle, and if the initial lake is received as the management level, the optimum operation search step ( In S5), the maximum drainage search step S100 and the maximum power generation search step S200 are sequentially performed for the first tidal cycle. From the second tidal cycle, whether the initial lake is on the lake after the drainage or the management water level, the maximum drainage search step S100 and the maximum power generation search step S200 are sequentially performed. In the embodiment of the present invention will be described a case where the initial lake level is received as the management level. Of course, the forecast period can also include only one tidal cycle.
  • the tide prediction data in the prediction period is generated by harmonizing analysis of the tide data previously estimated in the prediction period from the database unit 10.
  • Generation of tide prediction data according to the harmonic analysis is a technique that has been used in the technical field to which the present invention belongs, detailed description thereof will be omitted.
  • the operating condition setting step (S3) includes the aberration generator number, the hydrologic number, the management level and the initial lake level included in the operating condition, the generator data, the hydrologic data, the George data and the initialization condition, and the tide obtained from the database unit 10.
  • the tide prediction data generated in the prediction step S2 is set to be applied to the optimal operation search step S5.
  • the optimal operation search step S5 set as described above first performs the maximum drainage search step S100 for each tidal cycle and then performs the maximum power generation search step S200.
  • the maximum displacement search step (S100) will be described in detail with reference to FIG. 6 showing a flow chart and FIG. 7 showing a flow chart.
  • the maximum drainage search step (S100) After the power generation starts at high tide, the lake level reaches the management level, the power generation ends at the low tide, and the drainage starts at the low tide, and the maximum drainage is lowered as much as possible.
  • Exploration of optimal hydrological opening and closing headwaters (optimal hydrological opening headwater and optimal hydrological closing headwater) based on tide forecast data, George data, management level, hydrologic data, and generator data (aberration data) at the time of drainage
  • the hydrological opening and closing water head search section [P L , P H ] is a section of the hydrological opening water head [X oL , X oH ] is a search interval with a vector value whose x-axis component is in the range and the hydrologic closure water head is a y-axis component in the interval [X cL , X cH ], and is represented by two coordinate points (P L) on the coordinate plane.
  • the search section of the hydrologic closure head is set in advance to initialize the set search period.
  • the initial section [X oL , X oH ] of the hydrological opening headwater is [0m, 0.3m] to reflect the opening / closing constraints of the hydrology and aberration
  • the initial section of the hydrolock closed waterhead [X cL , X cH ] can be [-0.3m, 0].
  • the search section of the hydrologic closure head can be used as [0m, 0.3m] with the negative sign removed.
  • the convergence condition is set in advance to the maximum number of executions (N) of the section searching steps (S120, S130), thereby initializing the variable n for counting the number of performing the searching sections (S120, S130) to 1 to search the section (S120). Counter every time S130 is performed.
  • the section search step (S120, S130) is to calculate the drainage at the node and then select and delete the section that does not belong to the optimal hydrological opening and closing water gap according to the drainage at the node, and reset the remaining section to the search section.
  • the search section is gradually narrowed, so that an optimal hydrological opening and closing head difference can be obtained at least enough to ignore the difference in displacement.
  • a node having a relatively small amount of drainage and one end point adjacent to the node (S132, S133) a search section resetting step (S132, S133) to reset a section including a node having a large drainage amount based on a node having a small drainage amount by deleting one partition section formed between the end points in the distance of the golden ratio).
  • the golden section is a division in Euclidean geometry where the ratio of the large segment to the total segment is equal to the ratio of the small segment to the large segment when the segment is divided into two uneven parts.
  • Fibonacci sequence F n It is represented by Equation 1 as expressed by the infinity ratio of.
  • the length of the search section is multiplied by the golden ratio ⁇ to obtain a distance value L from the end point according to the golden ratio, and a node spaced apart by the distance value L from each end point.
  • one node is spaced from 0 as much as the navigation 0.382L interval minima P L
  • the other one is a node search interval maximum points spaced apart by 0 from 0.382L 0.618L P H, but are spaced in the interval 0 as the minimum point P L .
  • the discharge volume V ⁇ according to the hydro-open water head X o and the hydro-closed water head X c is the management level ( ), So first, the volume of the lake (V), ), Chicken pox ( ), Time (t) and drainage volume (V ⁇ ), respectively, ), The time when the water gate is open (X o ), the time (t o ) when reaching the water gate, and "0" (S11).
  • the calculation is based on the number of movable hydrologic and hydrologic data, and when the drainage is made through aberration, the drainage is also included.
  • the instantaneous drainage can be used by using the data obtained from the change in the discharge of water and the aberration, or as a function of water head difference. Instantaneous drainage during opening and closing can also be estimated.
  • the chicken pox ( ) Is reflected instantaneous drain flow rate is changed during closing the sluice when estimating the instantaneous drain flow since by operating the gates closed head difference by checking whether the X c (S16) water gate closure head when the car X c sluice closing operation Let's do it.
  • the change in the cross-sectional area of the passage through the gate also affects the instantaneous drainage.
  • the instantaneous drainage flow rate corresponding to the change in the cross-sectional area of the water supply is applied considering the time taken to completely close the floodgate, even when the floodgate is closed due to the flood closure head.
  • the segment point selection step including the drainage acquisition process (S120) and the search section resetting step (S130) are repeated until convergence check (N repetition), and then the final step, the selection step (S150), is a very narrow section.
  • the final result of drainage, post-drainage lake volume, after-drainage lake volume, drainage completion time, and drainage start time were selected as the optimal hydrological opening / closing head difference within the search interval converged by Will output
  • the drainage amount at both end points of the last search section is obtained in the drainage acquisition process (S122), the drainage amount at both end points of the final search section. Larger ones may be selected as the optimal hydrological opening and closing head.
  • the optimum hydrologic opening and closing head water, the maximum drainage amount, the drainage lake top, the drainage lake volume, the drainage start time and the drainage completion time obtained in the maximum drainage search step (S100) are transferred to the next generation maximum power generation search step (S200). It is then reflected in the initial conditions to start generating when there is high water after draining.
  • the optimal power generation start number difference using the golden division method ( 9 is a flow chart of a power generation acquisition process, and FIG. 10 is a graph showing a search process of a power generation start vehicle using a golden division method.
  • the search section [X L , X H ] for the power generation start head difference is set to a range in which the power generation amount gradually increases and then decreases as the power generation start head difference increases.
  • An initialization step of initializing the variable n for countering the preset repetition number N to 1 (S210), selecting a node that divides the search section into two sections, calculating the amount of power generated at the node, and then starting optimal generation among the partitioned sections.
  • Section search step (S220, S230) to select and delete the section that does not belong to the head difference according to the amount of power generation at the node, and reset the remaining section to the search section, each time the counter variable n is repeated by 1 Convergence condition confirmation step (S240), which narrows the search section by increasing the interval search step until it reaches the convergence condition N, and convergence tank In the search interval the time is reached and a selection step (S250) of selecting an optimum power generation start water head difference.
  • the search section [X L , X H ] initialized in the initialization step (S210) is at least a value larger than the minimum generation head difference, the minimum value and the maximum head generated in the rated head (the head for the rated operation of the generator) or experience
  • the head head difference can be set to the maximum value, and in the case of the sihwaho lake, it can be set to approximately [2m, 6m] to be used in the initialization step.
  • the search section is narrowed using the golden division method, and in detail, the end points X L and X H of the search section [X L , X H ]
  • the end points X L and X H of the search section [X L , X H ]
  • a node having a relatively large amount of power generation is deleted by deleting a section having one of a relatively small amount of power generation and a node that is adjacent to the end point (that is, an end point adjacent to the distance of the golden ratio ⁇ ).
  • the power generation amount E 2 at the X 2 is smaller than the power generation amount E 1 in X 1 in the both side sections compartment relative to the X 2 X 1 deletes the one side region [X 2, X H] free, and the remaining period [X L, to reset the X 2] as the search range, and the power generation amount E 1 in X 1 without X 2 in less than the power generation amount E 2 at the X 2 or equal to the both side sections compartment based on the X 1 side sections [X L Delete, X 1 ] and reset the remaining sections [X 1 , X H ] to the search sections.
  • the volume of the lake V after draining and on the lake In the maximum drainage search step (S100) after initializing the water volume after the drainage and drainage after the drainage according to the optimal hydrological opening and closing water head, the water head difference Is initialized to node X, power generation is initialized to 0, and the time t is initialized to the time t 0 from the head difference to the start generation head X, based on the tide prediction data at the time of power generation after drainage and the lake level after drainage (S21). ).
  • the minimum power generation head which is a condition to end the power generation And management Is the preset value or the value input to the input unit.
  • the number of generators operated as operating conditions is also reflected in the instantaneous inflow flow rate and power generation amount calculation.
  • chicken pox Calculate the instantaneous inflow flow rate Q according to (S22), calculate the power P when seawater flows into the instantaneous inflow flow rate Q for ⁇ t, obtain power generation amount ⁇ E for ⁇ t (S23), and then obtain ⁇ The generation amount ⁇ E during t is integrated into the generation amount E (S24).
  • power P is generator efficiency ⁇
  • seawater density ⁇ seawater density ⁇
  • gravitational acceleration g instantaneous inflow flow Q
  • head head differential Can be calculated as the product of.
  • the lake volume amount V may be integrated with the flow rate introduced during ⁇ t as the instantaneous inflow flow rate Q. Is obtained based on the George data based on the change in volume, and then obtained as a drop between the sea level and the lake level according to the tide prediction data.
  • the lake level manages the water level at the changed time t Is greater than or equal to the minimum head If smaller, the flow goes to the output step S29, and if not, the flow returns to the step S22 for calculating the instantaneous inflow flow rate Q.
  • the generation amount reflecting the change of instantaneous inflow flow is calculated and accumulated in each interval by ⁇ t interval from the time when the generation start head difference occurs to the end of the generation condition, to obtain the generation amount that can be obtained during one tidal cycle can do.
  • the total accumulated power generation amount, power generation start time and power generation end time are output.
  • the section searching steps (S220, S230) performed while calculating the amount of power generation for the nodes are repeated by N times of convergence conditions, and the search section is narrowed to the position having the optimum power generation start difference, and then finally narrowed in the output step (S250).
  • the optimum power generation head difference is selected within the search section. Since the optimum power generation start head has been selected, the maximum power generation, power generation start time and power generation end time obtained during the calculation of power generation at the optimum power generation start head can be selected.
  • the process of searching for the optimum power generation start head is as follows.
  • the amount of power generation by calculating the amount of power generation at intervals of 0.1m to obtain a power generation graph with a certain precision for the initial search interval [2m, 6m] of the power generation start vehicle
  • a total of 41 generations should be calculated, and in order to increase the accuracy, the number of generations should be greatly increased since power generation by the generation start heading should be calculated at intervals smaller than 0.1m.
  • the golden ratio by equation (2) By applying, the node whose relatively large amount of power is generated among the two nodes X 1 and X 2 selected in the search section becomes one of two nodes to be selected in the next search section (that is, the reduced search section). The amount of power generation is to be calculated for two nodes only, and the amount of power generation for only one of the two nodes is to be calculated in the subsequent search section.
  • the power generation amount needs to be calculated only 11 times, that is, the number of repetitions +1. Can be greatly reduced.
  • the power generation amount is not selected, but the point where the maximum power generation amount can be obtained is more accurate, thereby obtaining more accurate results.
  • the optimum operation search step S5 for sequentially performing the maximum drainage search step S100 and the maximum power generation search step S200 is performed for each tidal cycle within the prediction period, and the optimal operational search step performed for each tidal cycle.
  • the result of S5 is collected and output in the output step S7.
  • the result of each tidal cycle includes the maximum drainage, the optimal hydrologic opening and closing, the drainage lake top, the drainage lake volume, the drainage start time and the drainage completion time as the result of the drainage, and the maximum power generation, the optimum as the result of the power generation. It may include the power generation start head, the power generation start time and the power generation end time.
  • FIG. 11 a graph showing an optimal operation prediction result for 15 tidal cycles with initial values on the lake before draining is shown.
  • the tide forecast data for each tidal cycle is displayed in a graph, and the drainage, power generation waiting, power generation and drainage waiting time, and changes on the lake are displayed, and thus, the schedule for optimal operation at a glance. It is easy to recognize.
  • the result may be processed into various types of outputs.
  • FIG. 12 is a flowchart of the maximum power generation search step S200a using the second interpolation method
  • FIG. 13 is a graph showing a process of searching for a power generation start head difference using the second interpolation method.
  • the maximum power generation search step (S200a) using the second interpolation method is similar to the maximum power generation search step (S200) using the golden division method, the initialization step (S210), the section search step (S220, S230), the convergence condition checking step (S240). And the selection step (S250), but because the second interpolation method is used, there is a difference in the interval search step (S220, S230), there is also a difference in convergence conditions, will be described below with respect to the difference.
  • the convergence condition is set in advance by the iteration number N of the interval search steps S220 and S230 and the approximate satisfaction condition ⁇ of the secondary function described later.
  • the segment selection step (S220) selects a random node X 1 in the search section [X L , X H ] (S221), and then the amount of power generated at the node X 1 is measured at both ends X L and Checking whether the generation amount of X H is relatively larger than the average (S222, S223), changing the node X 1 until it is larger than the average, and finding an arbitrary node having the generation amount relatively larger than the average of the generation amount for both ends of the search section.
  • the search section resetting step (S230) calculates the amount of power generated at the second node, and the amount of power generated for the first node is applied by applying a value obtained during the segment point selection step (S220).
  • the section including the node with the large amount of generation is reset to the search section among the two sections segmented on the basis of the node with the smallest amount of generation. Delete to narrow the search section.
  • the generation amount f (X 1 ) at the first node X 1 is greater than the generation amount f ( ⁇ * ) at the second node ⁇ * . 2nd node ⁇ * and the maximum search point X H Is reset to the search section, and if the generation amount f (X 1 ) at the first node X 1 is less than or equal to the generation amount f ( ⁇ * ) at the second node ⁇ * , the minimum point X L and the first node X Reset between 1 to search section.
  • the first node X 1 is larger than the power generation amount f ( ⁇ *) in the second node to ⁇ * is less than or equal to the first node power generation amount in the X 1 f (X 1) to the second node ⁇ * search If the interval between the minimum point X L and the second node ⁇ * is reset to the search interval, and the amount of generation f (X 1 ) at the first node X 1 is less than or equal to the amount of generation f ( ⁇ * ) at the second node ⁇ * Reset between the first node X 1 and the search section maximum point X H to the search section.
  • step S240 when the number of repetitions of the interval searching steps S220 and S230 reaches N or the degree of approximation of the quadratic function value g ( ⁇ ) reaches the approximation satisfying condition ⁇ , If step S250 is reached, otherwise, the number of repetitions is increased by one and then the section searching steps S220 and S230 are repeatedly performed (S240).
  • the approximate satisfaction of the quadratic function g ( ⁇ ) uses a value at the second node ⁇ * . Specifically, the difference between the quadratic function g ( ⁇ * ) and the generation amount f ( ⁇ * ) is generated. It is assumed that the absolute value of the value divided by ( ⁇ * ) is smaller than the approximate satisfaction condition ⁇ .
  • the remaining nodes belong to the reset search section except for the node selected to reduce the search section in the previous section search step, so that the remaining nodes belong to the first node. It is preferable to set the initial value of the first node in the selection process of S221, S222, and S223, that is, selecting the first node having a generation amount relatively larger than the average of the generation amounts for both end points of the search section.
  • the value obtained by the approximation second function is initially different from the actual power generation amount (a) in a range in which the optimum power generation start difference can be obtained gradually.
  • the difference is reduced (b), and according to the results of three searches, the approximate satisfaction condition ⁇ can be reached to obtain a quadratic function approximated to ignore the difference (c). It is possible to determine the nodal point (the first node or the second node and the one from which power generation is calculated during the search) as the optimal generation start number.
  • the number of generation calculations is four times when the first section search step is performed, and in the subsequent section search step, the amount of power generation for one node is calculated, so that the number of generations is 4+ (number of repetitions-1).
  • the first node has no increase in the number of generation calculations when an appropriate value is designated as an initial value in the first section search step, and the probability that the first node uses the previously used nodes in the second section search step increases the number of generation calculations. Few.
  • FIG. 14 is a flowchart of a maximum power generation search step S200b using a secant method
  • FIG. 15 is a graph showing a search process of a power generation start vehicle using a secant method.
  • the maximum power generation search step (S200b) using the secant method defines the change of power generation for the small change of the power generation start difference by the derivative value of the power generation calculation function at that point, that is, the slope, and the slope is 0. It adopts the method of finding the head start of the power generation. That is, the slope at the X point is defined as (f (X + ⁇ X) -f (X- ⁇ X)) / (2 ⁇ X).
  • the previously set search section [X L , X H ] is set as the initial search section, and the initial search section is initialized so that the slopes of the opposite ends have the values of opposite signs. This condition is also satisfied when resetting at the stage.
  • the preset search section [X L , X H ] is set to decrease after the power generation amount gradually increases, and thus f (X L )> 0 and f '(X H ) ⁇ 0 satisfy this condition. .
  • the convergence condition is set to the minimum allowable value ⁇ for the slope at the node determined within the search section in the process of repeating the section search step described later.
  • Section search step (S220, S230) is a segment selection step of selecting the node X 1 of zero slope under the assumption that the slope is linearly changed with the increase in power generation start difference after calculating the slope of both end points of the search section. (S220), and deletes the section where the end point having a slope of the same sign as the slope of the node X 1 in the both side sections that are partitioned based on the node X 1, and the search interval reset step of resetting the rest period as the search interval ( S230).
  • the interval searching steps S220 and S230 are repeated until the slope at the node X 1 is smaller than the minimum allowable value ⁇ .
  • the selection step (S250) selects the node X 1 in the section search step (S220, S230) that was performed last to satisfy the convergence condition as the optimum power generation start head.
  • the section search steps S220 and S230 will be described.
  • the point X L + ⁇ X and the point X L ⁇ are respectively increased by ⁇ X to the lowest point X L of the search section.
  • the node whose slope becomes zero under the assumption that the slope changes linearly within the search interval (S223).
  • Search interval reset step (S230) is a node that is increased for each ⁇ X to X 1 X 1 + ⁇ point reducing and X X 1 - dividing the difference between the power generation amount calculated from the ⁇ X by 2 ⁇ X at node X 1
  • After obtaining the slope f '(X 1 ) (S231) check the sign of the slope f' (X 1 ) at node X 1 (S232), and if it is less than 0, replace the maximum point of the search section with node X 1 . If it is greater than or equal to 0 (S234), the lowest point of the search section is replaced with the node X 1 (S233). That is, the reset, the both side sections partitioned by (X 1) f 'f in the interval end point having a slope of a sign opposite to the sign of the (X 1) as the search range.
  • the interval is not zero, and the section is deleted and reset, and the search section is reduced and reset, and the section search steps (S220 and S230) are repeatedly executed until the convergence condition is maintained while maintaining the condition that the slope symbols of both ends are different. do.
  • the section search steps S220 and S230 may be configured using the quasi-newton method, but accordingly, the point having zero slope in the initial search section is not reduced.
  • the graph of the change in power generation for the power generation start head is not slow as the distance from the optimum power generation start head is to be found, so the section for finding the optimal power generation head when the pseudo-Newton method is used.
  • the number of iterations of the search step may be large. Therefore, since the number of times of generating the power generation is relatively higher than the method using the secant method, the method using the secant method is preferable.
  • the maximum power generation search step (S200) is configured to sequentially perform the maximum power generation search step using the golden division method, the maximum power generation search step using the second interpolation method, and the maximum power generation search step using the secant method.
  • One of the three optimal power generation start heads obtained by sequentially applying the division method, the second interpolation method, and the secant method may be selected as the optimal power generation start car head.
  • the maximum power generation search step (S200) includes both the maximum power generation search step applying the golden division method, the maximum power generation search step applying the second interpolation method and the maximum power generation search step applying the secant method, but at the input unit You can also make sure that only selected search steps are performed.
  • the maximum displacement search step (S100) is also possible to configure the second interpolation method or the secant method (secant method), the optimal solution to be searched is the value that maximizes the drainage, not the maximum generation amount, Only the difference is that it is a vector component rather than a scalar value, and the interval search step is performed in the same way, and the convergence condition different from the golden division method is applied, so the maximum displacement search step using the quadratic interpolation method and the secant method is applied. The description is omitted.
  • FIG. 16 is a flowchart of another embodiment of the maximum displacement search step S100
  • FIG. 17 is a detailed flowchart of the optimum hydrograph closing water search step S130a shown in FIG. 16, whereby the sea level is a lake level (management level).
  • the sea level is a lake level (management level).
  • the optimal hydrologic closing head to secure the maximum drainage rate while the hydrological opening head is fixed to the hydrological opening head is searched by applying any one of the above-mentioned golden division method, quadratic interpolation method and shunting method within a predetermined search range. .
  • the golden dividing method is applied to search for the optimum hydrological closing head difference, but the second interpolation method or the secant method may be applied.
  • the maximum drainage search step S100 is performed in the order of the initialization step S110a, the optimum hydrological water head search step S120a, the optimum hydrological water head search step S130a, and the output step S140a. .
  • the initializing step (S110a) designates the lake level immediately before the drainage as the management water level as a search initial condition for obtaining the optimum hydrological opening water difference (X o ), and the drainage start time (t o ) according to the change speed (v) above the lake.
  • the function t o s (v), which determines the start time of drainage (t o ), advances the floodgates by a certain amount of time based on the time when the sea level becomes the same as the lake level (management level) when left without opening the floodgate.
  • the sea level change rate v is calculated as the sea level change amount per unit time based on the tide prediction data.
  • the drainage start time is preferably limited to a range from the time when the sea level and the lake level (management water level) become the same, to the point in time up to the time required to open the water gate.
  • the lake level is maintained at the management level, the sea level is gradually lowered, and the water head difference is also reduced, resulting in a time when the sea level becomes the same as the management level. It is to accelerate the time of opening the gate, and to maximize the amount of drainage by opening the gate of the gate completely.
  • the rate of change of the sea level is the speed at which the sea level becomes the same as the management level when it is left without opening the floodgate, and may be set to a time earlier than the time when the sea level becomes the same as the management level for more accuracy. .
  • the optimum hydrological water head searching step (S130a) starts draining at the optimum hydrological water head opening selected in the optimum hydrological water opening head search step (S120a), while varying the hydrological water closing water head within the search period,
  • the calculation is a step of searching for an optimum hydrograph closure head that can secure a maximum drainage amount, and FIG. 17 shows an embodiment to which the golden division method is applied.
  • the search is only a scalar value, not a vector, and the optimal hydro-opening head is selected when the drainage at the node is obtained. Since it is fixed to, the detailed description with reference to FIG. 17 is omitted.
  • an optimal hydrograph closure head difference may be obtained by applying the above-described second interpolation method or the partial line method.
  • the output step (S140a) may select a drainage start time and an optimum hydrologic closing head which are obtained when the optimum hydrological opening head, the optimal hydro closing head, and the optimum hydrological opening head are selected.
  • the maximum amount of water obtained at the time, after the drain on the lake and the drainage completion time is output to be passed to the maximum power generation search step (S200) to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a method for forecasting an optimal operation of innovative single-action-type tidal power generation, the method establishing an operational plan for controlling a water turbine and sluice gates so that the operation is in the order of discharge, wait for power generation, power generation, and wait for discharge with each tidal cycle, wherein the operational plan is established so as to allow the maximum power generation to be obtained for each tidal cycle on the basis of changing tidal elevation data with each tidal cycle, and by establishing the operational plan, the maximum amount of generated power can be obtained while reducing the frequency of calculations for same to the minimum. As such, a section discovery step for selecting a section having the optimal solution is repeatedly executed, the section discovery step setting a nodal point in the discovery section, of the optimal head differential for the start of power generation during power generation and optimal head differential for opening and closing the sluice gates during discharge, which can assure the maximum amount of power generation, and a node selection method which rapidly arrives at the optimal conditions and an accurate section selection method are utilized.

Description

단류식 창조 조력발전 최적운영 예측방법Predictive Method of Optimal Operation of Single-flow Creative Tidal Power Plant
본 발명은 조석주기마다 배수, 발전대기, 발전 및 배수대기의 순서로 운영되도록 수차 및 수문을 제어하는 운영계획을 수립하되, 조석주기마다 변동되는 조위 자료에 근거하여 주석주기마다 최대 발전량을 얻을 수 있도록 운영계획을 수립하며, 운영계획을 수립하는 데 있어서 발전량 산정 횟수를 최소한으로 줄임으로써 최대 발전량을 위한 운영조건을 얻는 데에 소요되는 계산시간을 단축한 단류식 창조 조력발전 최적운영 예측방법에 관한 것이다.The present invention establishes an operation plan for controlling aberration and hydrology so that the tidal cycle is operated in the order of drainage, power generation standby, power generation, and drainage standby, and the maximum generation amount can be obtained for each tin cycle based on the tide data that are varied for each tidal cycle. A method of predicting optimal operation of single-flow creative tidal power generation that shortens the calculation time required to obtain operating conditions for maximum power generation by minimizing the number of generation calculations in establishing an operation plan. will be.
조지식 조력발전은 수차 발전기 및 수문을 설치한 방조제(조력댐)를 조석간만의 차이가 현저한 해안에 축조하여 호수를 조성한 후 조석현상에 따라 발생하는 해수위와 호수위 사이의 수두차(낙차)에 의한 압력차를 이용하여 발전기를 회전시켜 전력을 생산하는 발전방식으로서, 밀물일 때와 썰물일 때에 각각 전력을 생산하는 복류식과, 밀물일 때나 아니면 썰물일 때에 발전하는 단류식으로 분류되고, 또한, 단류식은 밀물일 때만 전력을 생산하는 창조식과 썰물일 때만 전력을 생산하는 낙조식으로 구분한다.In the tidal power generation, a tidal wave (a tidal dam) with a water wheel generator and a hydrologic gate is built on the shore where the difference between tides is significant, creating a lake, and then creating a lake (water drop) between the sea level and the top of the lake. It is a power generation method that generates electric power by rotating the generator by using the pressure difference, it is divided into double flow type to generate power at high tide and low tide, and single flow type to generate power at high tide or low tide, The stream-flow type is divided into a creation type that generates electricity only at high tide and a fallout type that generates electricity only at low tide.
특히, 단류식 창조 조력발전은 밀물일 때에 수두차가 발전운영에 필요한 수두차에 도달하면 해수를 호수로 유입시켜 발전을 시작하고, 해수의 유입에 의해 호수위가 상승하여 발전에 필요한 최소 수두차(최소발전수두차)에 이를 시에 발전을 정지하며, 발전 중에 호수에 유입된 해수를 썰물일 때에 수문을 개방하여 외해로 방류함으로써 호수위를 낮추는 방식으로 운영된다. 이에, 단류식 창조 조력발전은 간석지 확보를 위해 축조한 방조제를 이용하므로, 일반적으로 호수위를 간조위와 평균해면 수위 범위 내로 유지하는 조건이 전제되며, 대표적으로 국내 최초 조력발전소인 시화호 조력발전소가 이에 해당된다.Particularly, in case of tidal current tidal power generation, when the water head reaches the water head needed for power generation operation, it starts to develop by introducing sea water into the lake, and rises above the lake by the inflow of sea water. At the time of reaching the minimum power generation headwater, power generation is stopped, and when the seawater flows into the lake during power generation, it is operated by lowering the top of the lake by opening the water gate and discharging it to the open sea. Therefore, the single-flow creative tidal power generation uses tidal dike to secure the tidal flats, so it is generally assumed that the lake is kept within the range of low tide and average sea level, and Sihwaho tidal power plant, the first tidal power plant in Korea, is a prerequisite. Yes.
도 1은 단류식 창조 조력발전을 위한 수차 및 수문의 가동 시점을 보여주는 그래프로서, 그래프를 참조하면, 해수위와 호수위 사이의 수두차에 따라 수차 및 수문의 가동 시점을 결정한다.1 is a graph showing the operation time of the aberration and hydrology for the single-flow creative tidal power generation. Referring to the graph, the operation time of the aberration and the hydrology is determined according to the water head difference between the sea level and the lake.
도 2는 발전개시수두차의 변화에 따른 발전량의 변화를 예시한 그래프이다.2 is a graph illustrating a change in power generation amount according to a change in power generation start head change.
도 3은 수문개폐수두차(
Figure PCTKR2016011290-appb-I000001
,
Figure PCTKR2016011290-appb-I000002
)에 따라 수문을 개방하고 폐쇄할 시에 나타나는 순시 배수유량의 예시 그래프이다.
3 is a hydrological opening and closing head (
Figure PCTKR2016011290-appb-I000001
,
Figure PCTKR2016011290-appb-I000002
This is an example graph of instantaneous drainage flows when the gate is opened and closed.
외해의 해수위(
Figure PCTKR2016011290-appb-I000003
)는 평균해수위(M.S.L)를 중심으로 대략 하루 2회의 주기성을 갖는 정현파 형태로 변동하고, 만조위 및 간조위가 달의 공전 주기, 지구의 세차운동, 장동현상 등의 다양한 요인에 의해 매 조석주기마다 변동한다.
Sea level of the open sea (
Figure PCTKR2016011290-appb-I000003
) Fluctuates in the form of a sinusoidal wave with a periodicity of approximately twice a day centered on the mean sea level (MSL), and high tide and low tide are produced every tidal cycle due to various factors such as lunar cycles, precession of earth Fluctuates.
방조제로 조성된 호수의 호수위(
Figure PCTKR2016011290-appb-I000004
)는 방조제에 설치된 수차 및 수문을 단류식 창조 조력발전을 위한 운영방식에 따라 개폐함으로써 변동하며, 호수의 수위별 용적량 및 지형에 따라 해수의 유입 특성이 달라지므로, 해수위와의 수두차 및 조지 특성에 의해 매 조석 주기마다 발전량을 최대로 확보하기 위한 운영 방법이 변경될 수 있다. 또한, 수차 발전기의 동작 특성(발전기 효율, 수차 효율, 손실 낙차, 베어링 손실 등)도 발전량에 영향을 준다.
On the lake of the lake
Figure PCTKR2016011290-appb-I000004
) Fluctuates by opening and closing aberrations and hydrographs installed in tidal current according to the operation method for single-flow creative tidal power generation, and because the inflow characteristics of seawater vary depending on the volume and topography of the lake level, May alter the operating method to ensure maximum power generation at each tidal cycle. In addition, the operating characteristics of the aberration generator (generator efficiency, aberration efficiency, loss drop, bearing loss, etc.) also affect the power generation amount.
여기서, 수차를 개폐한다는 의미는 수차를 통한 해수의 흐름을 단속한다는 의미이며, 외해의 해수를 호수로 유입시킬 시에 수차를 가동하여 발전하지만, 호수의 해수를 외해로 배수할 시에도 주어진 시간 내에 배수량을 최대한 늘리기 위해서 발전기를 부무하 상태로 한 후 수차를 통해 배수하기도 하고, 수차를 통한 호수와 외해 사이의 흐름을 차단하기도 하므로, 수차를 개폐한다고 표현하였다.Here, the opening and closing of the aberration means to control the flow of seawater through the aberration, and it is developed by operating the aberration when introducing the seawater of the open sea into the lake, but also within a given time when the seawater of the lake is drained to the open sea. In order to maximize the amount of drainage, the generator is placed in an unloaded state and then drained through aberration.
단류식 창조 조력발전의 운영방식에 의하면, 해수위(
Figure PCTKR2016011290-appb-I000005
)가 호수위(
Figure PCTKR2016011290-appb-I000006
)보다 높을 때에 외해와 호수의 수두차(
Figure PCTKR2016011290-appb-I000007
)에 의한 수압차를 이용하여 수차를 회전시켜 전력을 생산하고, 전력을 생산할 때에 호수로 유입된 해수를 해수위가 호수위보다 낮을 때에 외해로 배수하여 호수를 비워둠으로써 다음 주기에 전력을 생산할 수 있게 하는 방식을 따르며, 구체적으로는 다음과 같이 배수 동작, 발전대기 동작, 발전 동작 및 배수대기 동작으로 이루어지는 일련을 동작을 해수위의 주기에 맞춰 반복한다.
According to the operation method of the single-flow creative tidal power generation,
Figure PCTKR2016011290-appb-I000005
On the lake
Figure PCTKR2016011290-appb-I000006
When higher than the headwaters of the open sea and the lake (
Figure PCTKR2016011290-appb-I000007
To produce electric power by rotating the aberration using the hydraulic pressure difference by) and drain the seawater introduced into the lake at the time of power generation to the open sea when the sea level is lower than the lake to empty the lake so that the power can be produced in the next cycle. In detail, a series consisting of drainage operation, power generation standby operation, power generation operation, and drainage standby operation is repeated according to the period of the sea level as follows.
썰물일 때에 호수위와 해수위가 동일하면 수문 및 수차를 개방하여 호수의 해수를 외해로 배수하고, 이후, 해수위는 조석현상에 따라 간조까지 낮아진 후 상승하고 호수위는 점차 낮아지므로 호수위가 해수위와 동일하게 될 때에 수문 및 수차를 폐쇄한다. 이와 같은 배수 동작에 의해서 호수위를 낮추며, 매 조석주기마다 조석의 크기 및 시간이 변동하므로 수문 및 수차의 개방 및 폐쇄 시점의 해수위도 매 조석주기마다 차이가 있다.At low tide, if the lake and sea level are the same, open the sluice and aberrations to drain the seawater to the open sea.Afterwards, the sea level rises to low tide according to the tidal phenomena. Close water gates and aberrations when done. The drainage operation lowers the lake, and the tidal size and time vary with each tidal cycle, so the sea level at the time of opening and closing the hydrology and aberrations is also different for each tidal cycle.
해수위가 점차 상승하여 호수위보다 높게 되더라도 발전개시수두차(
Figure PCTKR2016011290-appb-I000008
)에 이를 때까지 대기(발전대기)한다.
Even if the sea level rises gradually above the lake,
Figure PCTKR2016011290-appb-I000008
Wait until you reach).
해수위가 상승하여 수두차가 발전개시수두차(
Figure PCTKR2016011290-appb-I000009
)에 이르면 수차를 개방 및 가동시켜 전력을 생산한다. 이때, 호수위는 조석현상에 의해 점차 증가하고 호수위는 수차를 통한 해수의 유입으로 점차 증가하되, 수차를 통한 해수 유입량이 제한적이어서 해수 유입에 의한 호수위 상승속도보다 해수위의 상승속도가 빠르므로 초기에는 수두차(
Figure PCTKR2016011290-appb-I000010
)가 증가한다. 그리고, 만조 이후에는 해수위가 낮아지므로 수두차(
Figure PCTKR2016011290-appb-I000011
)가 작아져서 최소발전수두차(
Figure PCTKR2016011290-appb-I000012
)에 이를 시에 수차를 폐쇄 및 정지동작시켜 전력생산을 중지한다. 그런데, 창조식 조력발전의 경우 최대 호수위를 제한하여 관리하는 것이 일반적이므로, 최소발전수두차(
Figure PCTKR2016011290-appb-I000013
)에 이르기 이전이라도 최대 관리 수위(
Figure PCTKR2016011290-appb-I000014
)에 도달하면 전력생산을 중단하고 수차를 폐쇄하여 해수의 유입을 차단한다. 시화호의 경우 일반적으로 최대 관리수위(
Figure PCTKR2016011290-appb-I000015
)는 EL. -1.00m이다.
As the sea level rises, the head of water develops.
Figure PCTKR2016011290-appb-I000009
) To generate power by opening and running aberrations. At this time, the lake level is gradually increased due to tidal phenomenon, and the lake level is gradually increased due to the inflow of seawater through aberration, but since the seawater inflow through the aberration is limited, the rising speed of the sea level is higher than that of the lake due to seawater inflow. Initially, chicken pox (
Figure PCTKR2016011290-appb-I000010
) Increases. And after high tide, the sea level will be low, so
Figure PCTKR2016011290-appb-I000011
), So the minimum power generation head (
Figure PCTKR2016011290-appb-I000012
In this case, power generation is stopped by closing and stopping the aberration. However, in the case of creative tidal power generation, it is common to limit and manage the maximum lake, so the minimum power generation head (
Figure PCTKR2016011290-appb-I000013
Maximum water level (even before)
Figure PCTKR2016011290-appb-I000014
), Stops generating electricity and closes the aberrations to block the inflow of seawater. In case of Sihwa Lake, the maximum management level is generally
Figure PCTKR2016011290-appb-I000015
) Is EL. -1.00m.
이후, 해수위가 낮아져 호수위와 동일하게 될 때까지 대기(배수대기)한다.Thereafter, the sea level is lowered and waits (drainage) until it becomes the same as on the lake.
*그리고, 해수위와 호수위가 동일하게 될 때에 수문 및 수차를 개방하여 전력을 생산할 시에 호수로 유입된 해수를 외해로 배수한다. 여기서, 수차는 전력생산을 위해 개방하는 것이 아니라 배수를 위한 것이므로 역회전하게 놔둔다. 또한, 시화호 방조제처럼 수문과는 별도로 배수량을 최대한 확보하기 위해 추가 수문(배수갑문)을 시설한 경우, 배수할 시에 추가 수문도 개방한다.* When the sea level and the lake are the same, the water gate and the aberration are opened to produce electric power, and the seawater flowing into the lake is drained to the open sea. Here, the aberration is not for opening for power generation but for drainage, so it is allowed to reverse. In addition, if additional water gates (drainage locks) are installed to ensure maximum drainage, such as the Sihwa Lake embankment, additional water gates are also opened during drainage.
이에 따라, 호수위는 점차 낮아지고, 간조 이후에는 해수위가 높아지게 되어 호수위와 해수위가 동일하게 될 때에 수문 및 수차를 폐쇄한다. 이에, 다음 주기의 발전 동작을 수행할 수 있도록 호수위의 수위를 낮출 수 있다.As a result, the lake level is gradually lowered, and after the low tide, the sea level becomes high, and when the lake level and the sea level become the same, the water gate and the aberration are closed. Thus, the water level on the lake can be lowered to perform the power generation operation of the next cycle.
*그런데, 발전개시수두차를 소정 구간 내에서 예를 들어 0.1m씩 증가시키며 발전개시수두차별 발전량을 산정하면, 도 2에 도시한 바와 같이 발전개시수두차를 증가시킴에 따라 점차 증가한 후 감소하게 되고, 매주기별 조석현상의 변동에 따라 최대 발전량을 생산하게 되는 발전개시수두차도 변동한다. 따라서, 발전개시수두차별 발전량을 모두 얻음으로써 최대 발전량을 확보하기 위한 최적 발전개시수두차를 얻을 수 있었다.* However, when the power generation start head difference is increased by, for example, 0.1 m within a predetermined section, and the generation amount for each power generation start head difference is increased, as shown in FIG. In addition, according to fluctuations in tidal phenomena at each cycle, the difference in the number of start-ups of power generation, which produces the maximum power generation, also fluctuates. Therefore, by obtaining all of the power generation by the start head of the power generation, it was possible to obtain the optimum power generation head to secure the maximum power generation.
또한, 배수할 시에 배수량을 충분히 확보하여야만 발전할 시에 발전량을 최대한으로 높일 수 있으므로, 배수 시점도 해수위 변화에 맞춰 조절하였다.In addition, only when sufficient drainage is secured during drainage, the amount of power generated can be increased to the maximum when power is generated.
이상에서 살펴본 바와 같이 해수위의 주기에 맞춰 발전대기 동작, 발전 동작, 배수대기 동작 및 배수 동작을 수행하여 조력발전을 하게 되는데, 발전량에 영향을 미치는 중요 변수는 상기한 발전개시수두차(
Figure PCTKR2016011290-appb-I000016
)와 배수량이라 하겠다.
As described above, tidal power generation is performed by performing power generation standby operation, power generation operation, drainage standby operation, and drainage operation in accordance with the cycle of seawater level.
Figure PCTKR2016011290-appb-I000016
) And drainage.
그렇지만, 발전개시수두차를 소정간격으로 변동하며 발전개시수두차별 발전량을 산정하는 것은 계산량이 매우 많아서 비효율이다.However, it is inefficient to calculate the amount of power generated by the generation start head fluctuations by varying the power start head difference at a predetermined interval.
또한, 시화호 조력발전소의 예를 들면 수문이 수백 톤(ton)에 이르고, 높이가 12m이고, 수문을 개폐하는 권양기의 권양능력은 0.5m/분이며, 수문을 개방하는 데 소요되는 시간이 적어도 24분 정도 소요되므로, 수문을 개방하는 데 소요되는 시간 동안 수문을 통해 배수되는 수량도 변하게 된다. 수문을 폐쇄할 때에도 개방할 때에 비슷한 시간이 소요된다.In the Sihwa Lake tidal power plant, for example, the floodgate reaches hundreds of tons, the height is 12m, the lifting capacity of the hoisting machine to open and close the gate is 0.5m / min, and the time taken to open the floodgate is at least 24 It takes about a minute, so the amount of water drained through the gate changes over the time it takes to open the gate. Similar time is required to open the gate when it is closed.
이에, 해수위와 호수위가 동일하게 되는 시점에 개방동작을 시키면 배수량을 최대로 확보할 수 없었다.Therefore, when the opening operation is performed at the same time as the sea level and the lake level, the drainage amount cannot be secured to the maximum.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR 10-0920604 B1 2009.09.29.(Patent Document 1) KR 10-0920604 B1 2009.09.29.
[비특허문헌][Non-Patent Documents]
(비특허문헌 1) 단류식 창조발전의 조력발전소 최적화 운영 Model 개발에 관한 연구, 대한전기학회 하계학술대회 논문집 2009. 7., 14-17쪽(Non-Patent Document 1) A Study on the Development of Optimal Operational Model for Single Phase Creative Power Generation, Korean Institute of Electrical Engineers Summer Conference 2009. 7., 14-17
따라서, 본 발명에서 해결하고자 하는 과제는 최적 발전개시수두차를 보다 신속하게 결정하고, 수문의 개폐동작 시점도 최대 발전량을 위해 최대한 배수량을 늘릴 수 있는 시점으로 결정하여서, 조력발전소의 최적운영조건을 제공하는 단류식 창조 조력발전의 최적운영 예측방법에 관한 것이다.Therefore, the problem to be solved in the present invention is to determine the optimum power generation start speed more quickly, and to determine the optimum operating conditions of tidal power plant by determining the time of opening and closing operation of the gate to the maximum drainage amount for the maximum power generation. It provides a method for predicting the optimal operation of a single-phase creative tidal power provided.
상기 과제를 달성하기 위해 본 발명은 발전개시수두차에 대한 탐색구간이 발전개시수두차의 증가에 따라 발전량이 점차 증가한 후 감소하는 범위로 설정되어 있고, 입력부(20)로 입력받는 예측기간에 대해 발전량을 최대로 하는 최적운영 예측결과를 생성하여 출력부(40)로 출력시키는 최적 운영 탐색부(30)에 의해 이루어지는 단류식 창조 조력발전 최적운영 예측방법에 있어서, 입력부(20)를 통해 예측기간을 입력받는 입력단계(S1); 조위 자료에 근거하여 예측 기간에 대한 조위 예측 자료를 생성하는 조위 예측단계(S2); 발전 가능 시기의 조위 예측 자료, 조지 자료 및 배수후 호수위에 근거하여 최적 발전개시수두차를 탐색하는 최대 발전량 탐색단계(S200)를 포함한 최적 운영 탐색단계(S5); 최적 발전개시수두차를 포함한 최적운영 예측결과를 출력하는 출력단계(S7);를 포함하되, In order to achieve the above object, the present invention is set to a range in which the search interval for the power generation start head is gradually increased and then decreases with the increase in the power generation start head, and for the prediction period input to the input unit 20. In the single-flow creative tidal power generation optimal operation prediction method, which is generated by the optimum operation search unit 30 which generates an optimum operation prediction result that maximizes the generation amount and outputs it to the output unit 40, the prediction period through the input unit 20. An input step of receiving an input (S1); A tide prediction step of generating tide prediction data for the prediction period based on the tide data (S2); An optimal operation search step (S5) including a maximum power generation search step (S200) for searching for an optimal power generation start head difference based on the tide prediction data, the George data, and the water level after the drainage time; An output step (S7) for outputting an optimal operation prediction result including an optimum power generation start head difference;
상기 최대 발전량 탐색단계(S200)는 탐색구간을 2개 구간으로 구획하는 절점을 선택하고 절점에서의 발전량을 산정한 후 구획된 구간 중에 최적 발전개시수두차가 속하지 아니한 구간을 발전량의 크기에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 구간 탐색단계(S220, S230); 미리 설정한 수렴조건에 도달할 때까지 상기 구간 탐색단계를 반복하게 하는 수렴조건 확인단계(S240); 미리 설정한 수렴조건에 도달할 시의 탐색구간 내의 한 점을 발전량이 최대인 최적 발전개시수두차로 선정하는 선정단계(S250);를 포함한다.The maximum power generation search step (S200) selects a node that divides the search section into two sections, calculates the amount of power generated at the node, and selects a section that does not belong to the optimum power generation start difference among the divided sections according to the magnitude of the generation amount. A section search step (S220, S230) of deleting and resetting the remaining sections to the search section; A convergence condition checking step (S240) for repeating the interval search step until a preset convergence condition is reached; And a selection step (S250) of selecting one point within the search section when the preset convergence condition is reached as the optimum power generation start number difference with the maximum generation amount.
상기 최적 운영 탐색단계(S5)는 관리 수위로 유지된 호수에 대해 최대 배수량을 확보하기 위한 최적 수문개방수두차 및 최적 수문폐쇄수두차를 배수 가능 시기의 조위 예측 자료, 조지 자료 및 관리 수위에 근거하여 탐색하고, 최대 배수량의 확보에 따른 배수후 호수위를 획득하는 최대 배수량 탐색단계(S100)를 상기 최대 발전량 탐색단계(S200)보다 선행하여서, 상기 최대 발전량 탐색단계(S200)에서 발전량 산출시의 배수후 호수위는 상기 최대 배수량 탐색단계(S100)에서 획득한 배수후 호수위로 한다.The optimal operation exploration step (S5) is based on the tide forecast data, George data and management level of the time when it is possible to drain the optimal hydro-open water head and the optimal hydro-closure water head to secure the maximum drainage for the lake maintained at the management level In order to search, and before the maximum power generation amount search step (S200) to obtain the maximum amount of water search step (S100) to obtain a lake after the drainage in accordance with the secured maximum amount of water, the maximum amount of power generation step (S200) After the drain on the lake is the drain after the lake obtained in the maximum drainage search step (S100).
상기와 같이 이루어지는 본 발명은 최대 발전량을 얻기 위한 최적 발전개시수두차를 탐색함에 있어서, 탐색구간을 2개 구간으로 구획하는 절점을 선택한 후 최적 발전개시수두차가 없는 한쪽 구간을 삭제하는 과정을 반복함으로써, 최적 발전개시수두차가 있는 구간으로 줄여나가며, 이에, 최적 발전개시수두차를 오류 없이 탐색할 수 있고, 절점에서의 발전량만 산정하므로, 계산량이 많은 발전량 산정과정의 반복 횟수를 크게 줄여 신속하게 최적 발전개시수두차를 얻을 수 있다.In the present invention made as described above, in searching for the optimum power generation start heading to obtain the maximum amount of power generation, by selecting a node that divides the search section into two sections, the process of deleting one section without the optimal power generation start heading is repeated. In order to reduce the number of iterations in the calculation process, it is possible to search the optimal power generation start difference without error and to calculate the amount of power generation at the node. It is possible to obtain the head start of power generation.
또한, 본 발명은 황금비율법, 2차 보간법 또는 할선법을 이용하여 절점을 선택하므로, 삭제 구간을 최대한 늘리면서 최적 발전개시수두차가 없는 구간을 선택할 수 있는 절점 선정 방식을 채용함으로써, 탐색구간을 줄여나가기 위한 구간 탐색단계의 수행 횟수를 적게 할 수 있고, 이에, 최적 발전개시수두차를 더욱 신속하게 찾을 수 있다.In addition, since the present invention selects the nodes using the golden ratio method, the second-order interpolation method or the shunting method, by reducing the search period by adopting the node selection method that can select the section without the optimal power generation start difference while increasing the deletion period as much as possible. It is possible to reduce the number of times to perform the section search step for, thus, it is possible to find the optimum power generation start difference more quickly.
또한, 본 발명은 최대 배수량을 확보하기 위한 운영조건을 탐색하여 배수 이후 발전 동작에서 생산하는 발전량을 더욱 크게 얻을 수 있게 하며, 이에, 매 조석주기별 최대 발전량의 확보를 위한 전반적인 조력발전 운영계획을 수립할 수 있다.In addition, the present invention is to search the operating conditions to ensure the maximum drainage to obtain a larger amount of power produced in the power generation operation after the drainage, thereby establishing an overall tidal power operation plan for securing the maximum power generation for each tidal cycle can do.
도 1은 단류식 창조 조력발전을 위한 수차 및 수문의 가동 시점을 보여주는 그래프.1 is a graph showing the operation time of the aberration and the hydrologic for single-flow creative tidal power generation.
도 2는 발전개시수두차의 변화에 따른 발전량의 변화를 예시한 그래프.2 is a graph illustrating a change in power generation amount according to the change in power generation start head.
도 3은 수문개폐수두차에 따라 수문의 개방하고 폐쇄할 시에 나타나는 순시 배수유량의 예시 그래프.Figure 3 is an exemplary graph of the instantaneous drainage flow rate that appears upon opening and closing of the water gate according to the hydrological opening and closing water head.
도 4는 본 발명의 구현을 위한 단류식 창조 조력발전 최적운영 예측시스템의 블록구성도.Figure 4 is a block diagram of a single flow creative tidal power generation optimal operation prediction system for the implementation of the present invention.
도 5은 도 4의 시스템으로 이루어지는 본 발명의 실시예에 따른 단류식 창조 조력발전 최적운영 예측방법의 순서도.5 is a flow chart of a method for predicting optimal operation of single-flow creative tidal power generation according to an embodiment of the present invention comprising the system of FIG. 4.
도 6은 최대 배수량 탐색단계(S100)의 순서도.6 is a flow chart of the maximum displacement search step (S100).
도 7은 특정 수문개폐수두차에 대한 배수량 획득과정의 순서도.7 is a flow chart of the process of obtaining drainage water for the specific hydrological water leakage.
도 8은 황금분할법을 이용한 최대 발전량 탐색단계(S200)의 순서도.8 is a flow chart of the maximum power generation search step (S200) using the golden division method.
도 9는 특정 발전개시수두차에 대한 발전량 획득과정의 순서도.9 is a flow chart of the process of obtaining power generation for a specific power generation start head.
도 10은 황금분할법을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프.10 is a graph showing a process of searching for a power generation start car using a golden division method.
도 11은 최적운영 예측결과의 출력 화면 예시도.11 is an exemplary view showing the output screen of the optimal operation prediction result.
도 12는 2차보간법을 이용한 최대 발전량 탐색단계(S200a)의 순서도.12 is a flow chart of the maximum power generation search step (S200a) using the second interpolation method.
도 13은 2차보간법을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프.FIG. 13 is a graph showing a process of searching for a power generation start head using a quadratic interpolation method. FIG.
도 14는 할선법(secant method)을 이용한 최대 발전량 탐색단계(S200b)의 순서도.14 is a flowchart of a maximum power generation search step S200b using a secant method.
도 15는 할선법(secant method)을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프.FIG. 15 is a graph showing a process of searching for a power generation head car using a secant method. FIG.
도 16은 최대 배수량 탐색단계(S100)를 다른 실시예 순서도.16 is a flowchart of another embodiment of the maximum displacement search step S100.
도 17은 도 16에 도시된 최적 수문폐쇄수두차 탐색단계(S130a)의 세부 순서도.FIG. 17 is a detailed flowchart of the optimum hydrograph closing water searching step (S130a) shown in FIG. 16.
용어를 정의하고 간략하게 설명한다. 여기서 정의하는 용어는 도 1 내지 도 3과 [발명의 배경이 되는 기술]을 참조하며 정의한다.Define and briefly describe terms. The terms defined herein are defined with reference to FIGS. 1 to 3 and [Background Art of the Invention].
해수위(
Figure PCTKR2016011290-appb-I000017
)는 조석현상에 의해 변동하는 외해의 수위이다.
Sea level
Figure PCTKR2016011290-appb-I000017
) Is the level of the open sea, which varies with tides.
호수위(
Figure PCTKR2016011290-appb-I000018
)는 방조제에 의해 형성된 호수의 수위이다.
On the lake
Figure PCTKR2016011290-appb-I000018
) Is the water level in the lake formed by the dike.
수두차(
Figure PCTKR2016011290-appb-I000019
)는
Figure PCTKR2016011290-appb-I000020
=-
Figure PCTKR2016011290-appb-I000022
로 산정되는 해수위와 호수위 사이의 수위차 또는 낙차이다.
Chicken pox (
Figure PCTKR2016011290-appb-I000019
)
Figure PCTKR2016011290-appb-I000020
= -
Figure PCTKR2016011290-appb-I000022
The difference in water level or drop between the sea level and the lake is estimated.
발전개시수두차(
Figure PCTKR2016011290-appb-I000023
)는 호수의 해수를 외해로 배수한 상태에서 밀물일 때에 수차를 개방 및 가동시켜 발전을 개시하는 시점에서 해수위와 호수위 사이의 수두차이다.
Development start head (
Figure PCTKR2016011290-appb-I000023
) Is the head difference between the sea level and the lake at the time of starting power generation by opening and operating the aberration when the tide is drained to the open sea.
관리 수위(
Figure PCTKR2016011290-appb-I000024
)는 발전개시수두차에서 발전을 개시함에 따라 외해의 해수가 호수로 유입될 시에 최대 허용되는 호수위를 의미하며, 관리 수위에 도달하면 수차를 폐쇄하여 발전을 종료하며, 이에, 호수위를 관리 수위로 유지하게 된다.
Administrative water level (
Figure PCTKR2016011290-appb-I000024
) Refers to the maximum allowable lake level when seawater from the open sea enters the lake as power generation starts at the head of the power generation.When the water level reaches the management level, power generation is closed by closing the aberration. It will be maintained at the management level.
최소발전수두차(
Figure PCTKR2016011290-appb-I000025
)는 정지된 수차를 회전시키기 위해 필요로 하는 최소 수두차로서, 발전개시수두차(
Figure PCTKR2016011290-appb-I000026
)는 적어도 최소발전수두차보다 크게 하고, 발전을 시작하여 수두차가 최소발전수두차에 이르면 발전을 종료한다.
Minimum power head
Figure PCTKR2016011290-appb-I000025
) Is the minimum head aberration needed to rotate a stationary aberration.
Figure PCTKR2016011290-appb-I000026
) Is at least greater than the minimum generation head, and starts to develop and ends when the head reaches the minimum generation head.
발전량(E)은 1주기의 조석주기에 대해 발전개시수두차(
Figure PCTKR2016011290-appb-I000027
)에서 수차 발전기를 가동시킨 이후 관리 수위 또는 최소발전수두차에 이를 때까지 생산하는 총 발전량을 의미하며, 통상적으로 1분~10분 범위에서 정한 소정 시간 단위로 수두차에 따른 발전량을 산정하며 누적하는 방식을 채용한다.
The amount of power generated (E) is the number of start-up times of power generation for one tidal cycle (
Figure PCTKR2016011290-appb-I000027
) Refers to the total amount of power produced until the water level generator reaches the management level or the minimum power generation head after operating the aberration generator. Adopt the method.
수문개폐수두차(
Figure PCTKR2016011290-appb-I000028
,
Figure PCTKR2016011290-appb-I000029
)는 배수를 위해 수문(추가 수문이 있을 경우에 추가 수문을 포함)을 개방하기 시작하는 시점의 수두차인 수문개방수두차(
Figure PCTKR2016011290-appb-I000030
)와, 배수를 종료하기 위해 수문을 닫히게 하는 시점의 수두차인 수문폐쇄수두차(
Figure PCTKR2016011290-appb-I000031
)를 포함하며, 수문을 개방 동작시키는 시점과 폐쇄 동작시키는 시점의 수두차이므로 완전 개방에 이르는 시점의 수두차와 완전 폐쇄되는 시점의 수두차와는 수문 가동에 필요한 시간에 의해서 차이가 있다.
Hydrologic opening and closing head (
Figure PCTKR2016011290-appb-I000028
,
Figure PCTKR2016011290-appb-I000029
) Is the hydrocephalus, the hydrocephalus, at the beginning of the opening of the hydrology (including additional hydrology, if any).
Figure PCTKR2016011290-appb-I000030
) And the hydrologic closure head (the head of the head when the gate is closed to terminate drainage)
Figure PCTKR2016011290-appb-I000031
), And the difference between the head difference at the time of opening and closing the gate and the time difference between the head difference at the time of full opening and the time at which the gate is completely closed are different.
배수량은 수문개방수두차(
Figure PCTKR2016011290-appb-I000032
)에서 수문을 열도록 동작시키고 수문폐쇄수두차(
Figure PCTKR2016011290-appb-I000033
)에서 수문을 닫히도록 동작시켰을 시의 총 배수량을 의미하며, 미리 설정한 시간 간격으로 수두차에 따른 배수량을 산정하며 누적하는 방식을 채용한다.
The amount of drainage is the water gate
Figure PCTKR2016011290-appb-I000032
To open the sluice and open the sluice closure (
Figure PCTKR2016011290-appb-I000033
) Is the total drainage when the gate is operated to close the floodgate, and it calculates and accumulates the drainage according to the head difference at a preset time interval.
배수후 호수위는 배수를 마친 상태에서의 호수위로서, 관리 수위는 일반적으로 일정하게 유지하지만, 조석주기별로 조석 간만의 차이가 발생하므로, 배수후 호수위는 조석 주기별로 변동될 수 있다. 한편, 강우량에 의해 관리 수위를 조정하기도 한다.After draining the lake is a drained lake, the management level is generally kept constant, but since the tidal cycle only occurs because of the tidal cycle, the lake after draining can vary by tidal cycle. On the other hand, the management level may be adjusted by rainfall.
탐색구간은 탐색하려는 값의 범위이다.The search section is the range of values to search.
절점은 탐색구간 내에서 정하는 어느 하나의 값으로서, 이 절점에 의해 탐색구간을 양분한다.The node is a value determined within the search section, and the node divides the search section by this node.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 당해 분야에 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described to be easily carried out by those of ordinary skill in the art.
도 4는 본 발명의 구현을 위한 단류식 창조 조력발전 최적운영 예측시스템(10)의 블록구성도이다.4 is a block diagram of a single flow creative tidal power generation optimal operation prediction system 10 for the implementation of the present invention.
본 발명의 실시를 위한 단류식 창조 조력발전 최적운영 예측시스템은 조력발전소 운영상태를 예측하는 데 필요한 자료를 데이터베이스화한 데이터베이스부(10)와, 가동 발전기 대수, 가동 수문 대수 등을 포함한 운영조건과 예측기간을 입력하는 입력부(20)와, 발전량을 최대한 확보하기 위한 최적운영 예측결과를 생성하는 최적 운영 탐색부(30)와, 최적운영 예측결과를 출력하는 출력부(40)를 포함하여 구성된다.The single-flow creative tidal power generation optimal operation prediction system for the implementation of the present invention includes a database unit 10 for databaseing the data necessary to predict the operating state of the tidal power plant, and operating conditions including the number of operating generators, the number of operating hydrologic units, and the like. And an input unit 20 for inputting a prediction period, an optimum operation search unit 30 for generating an optimal operation prediction result for ensuring maximum generation amount, and an output unit 40 for outputting an optimum operation prediction result. .
데이터베이스부(10)에 데이터베이스화한 데이터는 조석현상에 따른 해수위 변화에 대한 정보를 얻기 위한 조위 자료와, 호수위별 호수내 수면적에 대한 정보에 따라 시화호의 용적(또는 체적)과 호수위 사이의 관계를 정립한 조지 자료와, 수차를 통한 통수량 산출 정보 및 발전량 산출 정보를 포함하는 발전기 자료와, 수문을 통한 통수량 산출 정보를 포함하고 추가 수문이 설치된 경우 추가 수문을 통한 배수 통수량 산출 정보도 포함하여 배수량 산출의 근거가 되는 수문 자료와, 호수위 관리 및 배수 시간에 대한 제약조건을 포함하는 제약사항 자료와, 후술하는 각종 탐색구간의 초기화 값을 포함한 초기화 조건을 포함할 수 있다.The data databased in the database unit 10 includes tide data for obtaining information on changes in sea level due to tidal phenomena, and between the volume (or volume) of Lake Sihwa and the lake level according to the information on the surface area of the lake for each lake level. Calculation information for establishing the relationship, generator data including water flow calculation information and power generation calculation information through aberration, and water flow calculation information through water gate, and drainage water flow calculation information through additional water gate when additional water gate is installed In addition, it may include hydrological data on which the drainage calculation is based, constraint data including constraints on the management of the lake and drainage time, and initialization conditions including initialization values of various search sections described below.
여기서, 제약사항 자료는 예를 들면 시기별 관리 수위, 배수 제한 시간대 등일 수 있으며, 제약사항 자료에 따라 관리 수위의 값을 변경하고 배수 제한 시간대에는 배수를 정지하며 배수량을 산정하면 되는 것이므로, 하기의 설명에서는 이를 적용한 실시예를 설명하지 아니하였다. 그리고, 시시각각 변경되는 제약조건인 경우 입력부(20)를 통해 입력하게 하는 것이 좋다.Here, the constraint data may be, for example, time-level management water level, drainage time limit, and the like, and change the value of the management water level according to the constraint data, and stop drainage and calculate the water discharge amount during the drainage time limit. The description does not describe the embodiment to which this is applied. In the case of a constraint that is changed from time to time, the input unit 20 may be inputted.
상기 최적 운영 탐색부(30)는 입력받는 예측기간에 대한 조위를 예측하는 조위 예측부(31)와, 입력부로 입력받는 운영조건 및 데이터베이스화된 초기화 조건을 최대 발전량 탐색 및 최대 배수량 탐색 프로세서에 반영하는 조건 셋팅부(32), 운영조건이 반영된 상태에서 조위 예측 자료, 조지 자료, 초기 수위(관리 수위), 발전기 자료 및 수문 자료에 근거하여 최대 배수량을 확보할 수 있는 최적 수문개폐수두차를 획득하고 결과적으로 최대 배수량도 획득하는 최대 배수량 탐색부(33)와, 운영조건이 반영된 상태에서 조위 예측 자료, 조지 자료, 배수후 호수위 및 발전기 자료에 근거하여 최대 발전량을 확보할 수 있는 최적 발전개시수두차를 획득하고 결과적으로 최대 발전량도 획득하는 최대 발전량 탐색부(34)를 포함하여 구성되며, 최적 발전개시수두차, 최적 수문개폐수두차, 최대 발전량 및 최대 배수량을 포함한 최적운영 예측결과를 출력부(40)를 통해 출력시킨다.The optimum operation search unit 30 reflects the tide prediction unit 31 for predicting the tide for the prediction period received, and the operating conditions and databased initialization conditions inputted to the input unit to the maximum power generation search and the maximum drainage search processor. Acquire the optimal hydrological opening and closing head water to secure the maximum drainage based on the tide prediction data, George data, initial water level (management water level), generator data and hydrologic data under the condition setting unit 32 and the operating conditions As a result, the maximum power discharge search unit 33 which obtains the maximum water discharge, and the optimum power generation start to secure the maximum power generation based on the tide prediction data, the George data, the lake level after the drainage, and the generator data while the operating conditions are reflected. It is configured to include a maximum power generation search unit 34 to obtain the head water and consequently also obtain the maximum power generation, The optimum operating forecasts including enemy sluice opening and closing water head difference, the maximum power generation amount and the maximum displacement is outputted through the output unit 40.
이하, 상기 최적 운영 탐색부(30)에 의해 제어되어 실시되는 단류식 창조 조력발전 최적운영 예측방법을 설명한다.Hereinafter, a method of predicting the optimal operation of the single-flow creative tidal power generation that is controlled and executed by the optimum operation search unit 30 will be described.
도 5은 본 발명의 실시예에 따른 단류식 창조 조력발전 최적운영 예측방법의 순서도이다.5 is a flowchart of a method for predicting optimal operation of single-flow creative tidal power generation according to an embodiment of the present invention.
본 발명의 실시예에 따른 단류식 창조 조력발전 최적운영 예측방법은 입력부(20) 통해 예측기간 및 운영조건을 입력받는 입력단계(S1)와, 데이터베이스화된 조위 자료에 근거하여 예측기간에 대한 조위 예측 자료를 생성하는 조위 예측단계(S2)와, 입력받은 운영조건 및 데이터베이스화된 초기화 조건을 최대 발전량과 최대 배수량의 탐색을 위한 초기화 조건에 반영하는 운영조건 셋팅단계(S3)와, 예측기간 내의 조석주기 횟수(M)를 조위 예측 자료에 근거하여 획득하고 조석주기 횟수를 카운터하기 위한 변수 m을 m=1로 초기화하는 조석주기 카운터 횟수 초기화 단계(S4)와, 최대 배수량 탐색단계(S100) 및 최대 발전량 탐색단계(S200)를 순차적으로 수행하는 최적 운영 탐색단계(S5)와, 최적운영 탐색단계(S5)를 조석주기 횟수(M)만큼 반복 수행하도록 횟수를 체크하여 예측기간 내의 조석 주기별로 수행하게 하는 횟수 체크단계(S6)와, 조석주기별로 획득한 조력발전 최적운영 예측결과를 출력하는 출력단계(S7)를 포함하여 이루어진다.In the single-flow creative tidal power generation optimal operation prediction method according to an embodiment of the present invention, an input step (S1) for receiving a prediction period and an operating condition through the input unit 20, and a tide for the prediction period based on databased tide data. Tide prediction step (S2) for generating the prediction data, operating condition setting step (S3) to reflect the input operating conditions and database-based initialization conditions to the initial conditions for the search for the maximum generation amount and the maximum displacement, and within the prediction period A tidal cycle counter count initialization step (S4) for acquiring the tidal cycle count (M) based on the tide prediction data and initializing the variable m for counting the tidal cycle count to m = 1, a maximum displacement search step (S100), and The optimal operation search step (S5) to sequentially perform the maximum power generation search step (S200) and the number of times to repeat the optimal operation search step (S5) by the number of tidal cycles (M) is checked W and predicted tidal number checking step (S6) to be performed for each cycle in the period, comprises an outputting step (S7) for a tidal power output for optimal operation prediction result obtained by the tidal cycle.
입력단계(S1)에서 입력받는 운영조건은 예측기간의 초기 호수위, 관리 수위, 조력발전소의 운영계획을 수립할 기간인 예측기간, 예측기간 내의 각 조석 주기별로 가동할 수차 발전기 대수 및 수문 대수, 후술하는 탐색 방법의 종류 등을 포함할 수 있다. 시화호 방조제의 경우를 예로 들면, 수차 발전기 대수가 총 10대이고, 주수문이 총 8문이고, 추가 수문이 총 8문이므로, 유지 보수 계획 등의 이유로 가동 대수의 변동이 있으면 이를 반영한다. The operating conditions received in the input stage (S1) are the initial lake level of the forecast period, the management level, the forecast period, which is the period to establish the operation plan of the tidal power plant, the number of aberration generators and hydrologic units to be operated for each tidal cycle within the forecast period, It may include a kind of search method to be described later. Take the case of the Sihwa Lake embankment, for example, a total of 10 aberration generators, a total of eight main gates, and a total of eight additional flood gates, and if there are changes in the number of operations due to maintenance plans, this will be reflected.
입력받는 운영조건은 수차를 가동하여 전력을 생산함에 따라 상승하는 호수위의 최대 허용값인 관리 수위를 포함하지만, 관리 수위는 데이터베이스화하여 후술하는 탐색 방법을 실행할 시에 초기화 조건에 적용되게 하여도 좋다. 한편, 일기예보에 따라 강우가 예상되면 강우에 따른 유입량을 고려하여 관리 수위를 상향 조절할 수 있게 하여도 좋다.The operating conditions received include the management level, which is the maximum allowable value on the lake that rises as power is generated by operating the aberration, but the management level is databased so that it can be applied to the initialization condition when executing the search method described below. good. On the other hand, if the rainfall is expected according to the weather forecast may be able to adjust the management level up in consideration of the inflow amount according to the rainfall.
초기 호수위는 예측기간의 시작점 호수위로서 관리 수위로 입력하거나 아니면 배수후 호수위로 입력할 수 있다. The initial lake level can be entered as the management level as the starting point lake in the forecast period, or it can be entered into the lake after drainage.
초기 호수위를 배수후 호수위로 입력받으면, 최적 운영 탐색단계(S5)에서 첫번째 조석주기에 대해 최대 발전량 탐색단계(S200)만 수행하고, 초기 호수위를 관리 수위로 입력받으면, 최적 운영 탐색단계(S5)에서 첫번째 조석주기에 대해 최대 배수량 탐색단계(S100)와 최대 발전량 탐색단계(S200)를 순차적으로 수행한다. 초기 호수위가 배수후 호수위이든 관리 수위이든 두번째 조석주기부터는 최대 배수량 탐색단계(S100)와 최대 발전량 탐색단계(S200)를 순차적으로 수행한다. 본 발명의 실시예에서는 초기 호수위를 관리 수위로 입력받은 경우를 설명한다. 물론, 예측기간을 하나의 조석주기만 포함되게 할 수도 있다.If the initial lake is received after draining into the lake, the optimal operation search step (S5) performs only the maximum power generation search step (S200) for the first tidal cycle, and if the initial lake is received as the management level, the optimum operation search step ( In S5), the maximum drainage search step S100 and the maximum power generation search step S200 are sequentially performed for the first tidal cycle. From the second tidal cycle, whether the initial lake is on the lake after the drainage or the management water level, the maximum drainage search step S100 and the maximum power generation search step S200 are sequentially performed. In the embodiment of the present invention will be described a case where the initial lake level is received as the management level. Of course, the forecast period can also include only one tidal cycle.
조위 예측단계(S2)는 예측기간에 대해 과거 추정된 조위 자료를 데이터베이스부(10)에서 불러들여 조화분석함으로써 예측기간 내의 조위 예측 자료를 생성한다. 조화분석에 따른 조위 예측 자료의 생성은 본 발명이 속한 기술분야에서 사용하여왔던 기술이므로, 상세설명을 생략한다.In the tide prediction step S2, the tide prediction data in the prediction period is generated by harmonizing analysis of the tide data previously estimated in the prediction period from the database unit 10. Generation of tide prediction data according to the harmonic analysis is a technique that has been used in the technical field to which the present invention belongs, detailed description thereof will be omitted.
운영조건 셋팅단계(S3)는 운영조건에 포함된 수차 발전기 대수, 수문 대수, 관리 수위 및 초기 호수위와, 데이터베이스부(10)로부터 불러들여 얻는 발전기 자료, 수문 자료, 조지 자료 및 초기화 조건과, 조위 예측단계(S2)에서 생성한 조위 예측 자료를 최적운영 탐색단계(S5)에 적용되도록 셋팅한다.The operating condition setting step (S3) includes the aberration generator number, the hydrologic number, the management level and the initial lake level included in the operating condition, the generator data, the hydrologic data, the George data and the initialization condition, and the tide obtained from the database unit 10. The tide prediction data generated in the prediction step S2 is set to be applied to the optimal operation search step S5.
이와 같이 셋팅된 최적운영 탐색단계(S5)는 매 조석주기에 대해 최대 배수량 탐색단계(S100)를 먼저 수행한 후 최대 발전량 탐색단계(S200)를 수행한다.The optimal operation search step S5 set as described above first performs the maximum drainage search step S100 for each tidal cycle and then performs the maximum power generation search step S200.
최대 배수량 탐색단계(S100)에 대해서는 순서도를 도시한 도 6 및 배수량 획득과정을 순서도로 도시한 도 7을 참조하며 상세하게 설명한다.The maximum displacement search step (S100) will be described in detail with reference to FIG. 6 showing a flow chart and FIG. 7 showing a flow chart.
최대 배수량 탐색단계(S100)는 밀물일 때에 발전을 개시한 후 호수위가 관리 수위에 이를 시에 발전을 종료하여 관리 수위로 유지된 호수위를 썰물일 때에 배수하기 시작하여 최대한 낮춤으로써 최대 배수량을 확보하게 할 최적 수문의개폐수두차(최적 수문개방수두차 및 최적 수문폐쇄수두차)를 배수 가능 시기의 조위 예측 자료, 조지 자료, 관리 수위, 수문자료 및 발전기자료(수차자료)에 근거하여 탐색 선정하는 단계이며, 수문개폐수두차의 탐색구간([PL,PH]), 수렴조건, 수문자료, 가동 수문대수, 수차자료 및 가동 수차대수를 적용시키는 초기화단계(S110), 탐색구간을 최적 수문개폐수두차가 있는 구간으로 점차 좁혀가는 구간 탐색단계(S120, S130), 수렴조건을 만족할 때까지 구간 탐색단계(S120, S130)를 반복 수행하게 하는 수렴조건 확인단계(S140), 수렴조건에 도달할 시의 최종 탐색구간에서 최적 수문개폐수두차를 선정하는 선정단계(S150)를 포함한다.In the maximum drainage search step (S100), after the power generation starts at high tide, the lake level reaches the management level, the power generation ends at the low tide, and the drainage starts at the low tide, and the maximum drainage is lowered as much as possible. Exploration of optimal hydrological opening and closing headwaters (optimal hydrological opening headwater and optimal hydrological closing headwater) based on tide forecast data, George data, management level, hydrologic data, and generator data (aberration data) at the time of drainage The initial stage (S110) of applying the search interval ([P L , P H ]), convergence condition, hydrologic data, moving hydrologic number, aberration data and moving aberration number, Section search step (S120, S130) gradually narrowing down to the section with the optimum hydrological opening and closing water difference, convergence condition check step (S140), the number of steps to repeat the search until the convergence condition (S140), the number And a selection step (S150) of selecting an optimum water gate opening and closing water head difference in the final search range at the time it reaches the condition.
수문개폐수두차는 수문개방수두차와 수문폐쇄수두차로 이루어지므로, 상기 초기화단계(S110)에 있어서, 수문개폐수두차 탐색구간 [PL,PH]은 수문개방수두차를 구간 [XoL,XoH] 범위의 x축 성분으로 하고 수문폐쇄수두차를 구간 [XcL,XcH] 범위의 y축 성분으로 하는 벡터값을 갖는 탐색구간으로서, 좌표 평면상의 좌표값으로 표시되는 2 개점(PL=(XoL,XcL), PH=(XoH,XcH)) 사이로 미리 설정하여 둠으로써, 설정된 탐색구간으로 초기화한다. 여기서, 2 개점을 연결하는 선 상을 따라 수문폐쇄수두차를 변경하면 배수량은 점차 증가하다가 최고점에 이룬 후 점차 감소하도록 탐색구간을 넓게 설정하여 둔다. 예를 들어, 수문 및 수차의 개폐 제한 조건을 반영하여 수문개방수두차의 초기 구간 [XoL,XoH]은 [0m, 0.3m]로 하고, 수문폐쇄수두차의 초기 구간[XcL,XcH]은 [-0.3m, 0]으로 할 수 있다. 수문폐쇄수두차의 탐색구간은 부(-)의 부호를 삭제한 [0m,0.3m]으로 사용할 수 있다.Since the hydrological opening and closing head water is composed of the hydrological opening water head and the hydrological closing water head, in the initializing step (S110), the hydrological opening and closing water head search section [P L , P H ] is a section of the hydrological opening water head [X oL , X oH ] is a search interval with a vector value whose x-axis component is in the range and the hydrologic closure water head is a y-axis component in the interval [X cL , X cH ], and is represented by two coordinate points (P L) on the coordinate plane. = (X oL , X cL ), P H = (X oH , X cH )) is set in advance to initialize the set search period. Here, if the hydrologic closure head is changed along the line connecting the two points, the drainage gradually increases, and the search section is set wide so as to gradually decrease after reaching the highest point. For example, the initial section [X oL , X oH ] of the hydrological opening headwater is [0m, 0.3m] to reflect the opening / closing constraints of the hydrology and aberration, and the initial section of the hydrolock closed waterhead [X cL , X cH ] can be [-0.3m, 0]. The search section of the hydrologic closure head can be used as [0m, 0.3m] with the negative sign removed.
수렴조건은 구간 탐색단계(S120, S130)의 최대 수행 횟수(N)로 미리 설정함으로써, 구간 탐색단계(S120, S130)의 수행 횟수를 카운터하기 위한 변수 n을 1로 초기화하여 구간 탐색단계(S120, S130)를 수행할 때마다 카운터하게 한다. The convergence condition is set in advance to the maximum number of executions (N) of the section searching steps (S120, S130), thereby initializing the variable n for counting the number of performing the searching sections (S120, S130) to 1 to search the section (S120). Counter every time S130 is performed.
*본 발명에 따르면, 상기 구간 탐색단계(S120, S130)는 절점에서 배수량을 산정한 후 최적 수문개폐수두차가 속하지 아니한 구간을 절점에서의 배수량에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하며, 반복 수행함에 따라 탐색구간은 점차 좁아지게 되어서 적어도 배수량 차이를 무시할 정도의 최적 수문개폐수두차를 얻을 수 있게 된다.* According to the present invention, the section search step (S120, S130) is to calculate the drainage at the node and then select and delete the section that does not belong to the optimal hydrological opening and closing water gap according to the drainage at the node, and reset the remaining section to the search section In addition, as the repetition is performed, the search section is gradually narrowed, so that an optimal hydrological opening and closing head difference can be obtained at least enough to ignore the difference in displacement.
도 6에 도시한 구체적인 실시예에 따르면, 상기 구간 탐색단계(S120, S130)는 황금분할법을 적용하며, 탐색구간 [PL,PH]의 양끝점 PL 및 PH 에서 각각 미리 설정한 황금비율의 거리로 이격된 절점 P1 및 P2 를 선택하고(S121), 선택된 2개 절점에서 각각 배수량 V△,1 =q(P1) 및 V△,2=q(P2)을 산정 획득하는(S122) 분절점 선정단계(S120)와, 2개 절점에서 산정한 배수량을 비교한 후 (S131) 상대적으로 배수량이 작은 절점과 그 절점과 인접한 일측 끝점(황금비율의 거리에 있는 끝점) 사이로 이루어진 일측 구획 구간을 삭제하여서 상대적으로 배수량이 작은 절점을 기준으로 상대적으로 배수량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는(S132, S133) 탐색구간 재설정단계(S130)로 이루어진다.According to the specific embodiment shown in FIG. 6, the section searching steps S120 and S130 apply a golden division method, and both end points P L of the search section [P L , P H ] are applied. And select nodes P 1 and P 2 spaced apart from each other at a predetermined golden ratio distance at P H (S121), and drainages V Δ, 1 = q (P 1 ) and V Δ, 2 at the selected two nodes, respectively. After comparing the segment point selection step (S120) of calculating and obtaining = q (P 2 ) (S120) and the drainage amount calculated at the two nodes (S131), a node having a relatively small amount of drainage and one end point adjacent to the node ( (S132, S133) a search section resetting step (S132, S133) to reset a section including a node having a large drainage amount based on a node having a small drainage amount by deleting one partition section formed between the end points in the distance of the golden ratio). S130).
즉, P2 에서의 배수량 V△,2 이 P1 에서의 배수량 V△, 1 보다 작으면 P2 를 중심으로 한 구획되는 양측 구간 중에 P1 이 없는 일측 구간 [P2,PH]을 삭제하고 나머지 구간 [PL,P2]을 탐색구간으로 재설정하고(S132), 그렇지 아니하면 구간 [PL,P1]을 삭제하고 나머지 구간 [P1,PH]을 탐색구간으로 재설정한다(S133).That is, remove the displacement V △, 2 the displacement V △, one interval is less than 1 there is no P 1 in the both side sections is a compartment around the P 2 in the P 1 [P 2, P H] in P 2 And reset the remaining section [P L , P 2 ] to the search section (S132), otherwise delete the section [P L , P 1 ] and reset the remaining section [P 1 , P H ] to the search section ( S133).
황금분할(golden section)은 유클리드 기하학에서 선 분절을 불균등한 두 부분으로 나눌 때에 전체 선분절에 대한 큰 부분의 선분절의 비율이 큰 선분절에 대한 작은 선분절에 대한 비율과 동일하게 한 분할로서, 피보나치(Fibonacci) 수열 Fn 의 무한대 비로 표현하여 아래와 같이 수학식 1로 표현된다.The golden section is a division in Euclidean geometry where the ratio of the large segment to the total segment is equal to the ratio of the small segment to the large segment when the segment is divided into two uneven parts. , Fibonacci sequence F n It is represented by Equation 1 as expressed by the infinity ratio of.
Figure PCTKR2016011290-appb-M000001
Figure PCTKR2016011290-appb-M000001
그리고, 초기 탐색구간은 L0=[XL,XH], 총 시험 수는 n으로 표기하고, 아래의 수학식 2와 같이 말단부에서 중간값 거리를 산정하여, 본 발명에서 사용하는 황금비율 τ를 정의하였다.In addition, the initial search interval is represented by L 0 = [X L , X H ], the total number of tests is represented by n, and the golden ratio τ used in the present invention is calculated by calculating the median distance at the end as shown in Equation 2 below. Defined.
Figure PCTKR2016011290-appb-M000002
Figure PCTKR2016011290-appb-M000002
그리고, 분절점 선정단계(S120)에서는 탐색구간의 길이에 황금비율 τ를 곱셉하여 황금비율에 따른 끝점과의 거리값 L을 얻고, 양끝점에서 각각 거리값 L만큼 이격된 절점을 얻는다. 이때, 1개의 절점은 탐색구간 최소점 PL에서 0.382L0만큼 이격되고, 다른 1개의 절점은 탐색구간 최대점 PH에서 0.382L0만큼 이격되지만 구간 최소점 PL에서는 0.618L0만큼 이격된다.In the segment selection step (S120), the length of the search section is multiplied by the golden ratio τ to obtain a distance value L from the end point according to the golden ratio, and a node spaced apart by the distance value L from each end point. In this case, one node is spaced from 0 as much as the navigation 0.382L interval minima P L, the other one is a node search interval maximum points spaced apart by 0 from 0.382L 0.618L P H, but are spaced in the interval 0 as the minimum point P L .
이와 같이 황금비율을 적용하여 탐색구간을 n회 줄여나가면 최종 불확도는 아래의 수학식 3으로 정의할 수 있으며, 실제 시뮬레이션한 결과, 최적 수문개폐수두차가 있는 구간으로 찾아감을 확인할 수 있었다.In this way, if the search period is reduced n times by applying the golden ratio, the final uncertainty can be defined by Equation 3 below. As a result of the actual simulation, it was found that the optimal hydrological opening and closing head was found.
Figure PCTKR2016011290-appb-M000003
Figure PCTKR2016011290-appb-M000003
한편, 상기 분절점 선정단계(S120)에서 각 절점에 대한 배수량 획득과정은 도 7에 도시되어 있다. On the other hand, the drainage acquisition process for each node in the segment selection step (S120) is shown in FIG.
수문개방수두차 Xo 와 수문폐쇄수두차 Xc 에 따른 배수량 V 는 관리 수위(
Figure PCTKR2016011290-appb-I000034
)에서 배수하여 얻게 되므로, 먼저, 호수 용적량(V), 호수위(
Figure PCTKR2016011290-appb-I000035
), 수두차(
Figure PCTKR2016011290-appb-I000036
), 시간(t) 및 배수량(V)를 각각 관리수위에서의 호수 용적량, 관리수위(
Figure PCTKR2016011290-appb-I000037
), 수문개방수두차(Xo), 수문개방수두차에 이를 때의 시간(to) 및 "0"으로 초기화한다(S11).
The discharge volume V according to the hydro-open water head X o and the hydro-closed water head X c is the management level (
Figure PCTKR2016011290-appb-I000034
), So first, the volume of the lake (V),
Figure PCTKR2016011290-appb-I000035
), Chicken pox (
Figure PCTKR2016011290-appb-I000036
), Time (t) and drainage volume (V ), respectively,
Figure PCTKR2016011290-appb-I000037
), The time when the water gate is open (X o ), the time (t o ) when reaching the water gate, and "0" (S11).
다음으로, 수두차(
Figure PCTKR2016011290-appb-I000038
)에 따른 순시 배수유량(Q)를 산정한 후(S12), 미리 설정한 △t 동안 순시 배수유량(Q)으로 배수할 시에 호수 용적량의 변화량을 반영하여 △t 후의 호수 용적량을 V=V-Q△t로 수정하고 배수량을 V=V+Q△t 로 적산한다(S13). 여기서, 가동 수문 대수 및 수문 자료에 근거하여 산정하며, 수차를 통한 배수도 이루어지게 할 시에는 수차를 통한 배수도 포함하여 산정한다. 통상적으로 순시 배수유량은 수문 및 수차의 개방시에 나타나는 배수량 변화로부터 얻는 데이터를 사용하거나 아니면 수두차의 함수로 정의하여 사용할 수 있고, 통수 면적의 변화에 따른 배수량 변화로부터 얻는 데이터를 활용하여 수문의 개폐 중 및 폐쇄 중의 순시 배수유량도 산정 가능하다.
Next, the chicken pox (
Figure PCTKR2016011290-appb-I000038
After calculating the instantaneous drainage flow rate Q according to (S12) (S12), the volumetric volume of the lake after Δt is calculated by reflecting the change in the lake volume when draining the instantaneous drainage flow rate Q for a preset Δt. Corrected by Δt and integrating the drainage by = + QΔt (S13). Here, the calculation is based on the number of movable hydrologic and hydrologic data, and when the drainage is made through aberration, the drainage is also included. In general, the instantaneous drainage can be used by using the data obtained from the change in the discharge of water and the aberration, or as a function of water head difference. Instantaneous drainage during opening and closing can also be estimated.
다음으로, 시간 경과 t=t+△t를 반영한 후에(S14) 나타나는 호수위(
Figure PCTKR2016011290-appb-I000039
)를 조지 자료에 근거하여 산정하고, 조위 예측 자료에 근거하여 해수위(
Figure PCTKR2016011290-appb-I000040
)를 예측하고, 수두차(
Figure PCTKR2016011290-appb-I000041
)를 산정한다.
Next, after reflecting the time elapsed t = t + Δt (S14),
Figure PCTKR2016011290-appb-I000039
) Is calculated based on the George data, and the sea level (
Figure PCTKR2016011290-appb-I000040
), The head pox (
Figure PCTKR2016011290-appb-I000041
Calculate).
다음으로, 수두차(
Figure PCTKR2016011290-appb-I000042
)가 수문폐쇄수두차 Xc 인지를 체크하여(S16) 수문폐쇄수두차 Xc 이면 수문 폐쇄동작을 가동시켜서 이후부터 순시 배수유량을 산정할 시에는 수문을 폐쇄하는 동안 변화되는 순시 배수유량을 반영하게 한다.
Next, the chicken pox (
Figure PCTKR2016011290-appb-I000042
) Is reflected instantaneous drain flow rate is changed during closing the sluice when estimating the instantaneous drain flow since by operating the gates closed head difference by checking whether the X c (S16) water gate closure head when the car X c sluice closing operation Let's do it.
다음으로, 수문 폐쇄가 완료되는지를 체크하여(S18) 수문이 폐쇄되기 이전까지 상기한 순시 배수유량(Q) 산정(S12)부터 수문폐쇄수두차 Xc 여부 판단(S16)까지의 과정을 반복하게 한다. 여기서, 수문 폐쇄가 완료되면, 최종적으로 얻는 배수량(V), 배수후 호수위(
Figure PCTKR2016011290-appb-I000043
), 배수후 호수 용적량(V), 배수 완료 시간(t), 배수 개시 시간(수문개방수두차일 때의 초기 시간 t0)을 출력하고, 배수량 획득과정(S122)을 종료한다.
Next, it is checked whether the floodgate closure is completed (S18), and the process from the above instantaneous drainage flow rate (Q) calculation (S12) to the hydrologic closure head X c determination (S16) until the floodgate is closed is repeated. do. Here, when the hydrological closure is completed, the final drainage amount (V ), after the drainage on the lake (
Figure PCTKR2016011290-appb-I000043
), The volume of the lake after the drainage (V), the drainage completion time (t), the drainage start time (initial time t 0 at the time of the hydrological opening head difference) and outputs the drainage acquisition process (S122).
초기 수문개방수두차에서 수문을 개방하기 시작하는 시점부터 완전 개방한 시점까지는 소정의 시간이 걸리므로, 이때에는 수두차의 영향 이외에도 수문을 통한 통수 단면적의 변화도 영향을 주므로 이에 맞는 순시 배수유량을 적용하고, 수문폐쇄수두차에 이르러 수문을 폐쇄할 시에도 수문을 완전 폐쇄하는 데까지 소요되는 시간을 감안하여 통수 단면적의 변화에 맞는 순시 배수유량을 적용한다.It takes a certain time from the beginning of opening the gate to the full opening in the initial hydrological opening, so in addition to the influence of the head, the change in the cross-sectional area of the passage through the gate also affects the instantaneous drainage. In addition, the instantaneous drainage flow rate corresponding to the change in the cross-sectional area of the water supply is applied considering the time taken to completely close the floodgate, even when the floodgate is closed due to the flood closure head.
이와 같이, 배수량 획득과정을 포함한 분절점 선정단계(S120)와 탐색구간 재설정단계(S130)를 수렴조검(N회 반복)에 이를 때까지 반복한 후 마지막 단계인 선정단계(S150)에서는 매우 좁은 구간으로 수렴시킨 탐색구간 내에서 어느 한 값을 최적 수문개폐수두차로 선정하고 최적 수문개폐수두차를 적용할 시의 배수량, 배수후 호수위, 배수후 호수 용적량, 배수 완료 시간 및 배수 개시 시간을 최종 결과로 출력한다.As described above, the segment point selection step including the drainage acquisition process (S120) and the search section resetting step (S130) are repeated until convergence check (N repetition), and then the final step, the selection step (S150), is a very narrow section. The final result of drainage, post-drainage lake volume, after-drainage lake volume, drainage completion time, and drainage start time were selected as the optimal hydrological opening / closing head difference within the search interval converged by Will output
여기서, 최종 탐색구간의 양 끝점에 대한 배수량, 배수후 호수위, 배수후 호수 용적량, 배수 완료 시간 및 배수 개시 시간은 배수량 획득과정(S122)에서 얻어지게 되므로, 최종 탐색구간의 양 끝점 중에 배수량이 큰 쪽을 최적 수문개폐수두차로 선정하면 된다.Here, since the drainage amount for both end points of the last search section, the after-drain lake, the after-drain lake volume, the drainage completion time and the drainage start time are obtained in the drainage acquisition process (S122), the drainage amount at both end points of the final search section. Larger ones may be selected as the optimal hydrological opening and closing head.
이와 같이 최대 배수량 탐색단계(S100)에서 얻은 최적 수문개폐수두차, 최대 배수량, 배수후 호수위, 배수후 호수 용적량, 배수 개시 시간 및 배수 완료 시간은 다음 단계인 최대 발전량 탐색단계(S200)에 넘겨져서, 배수 이후 밀물일 때에 발전을 개시하는 초기조건에 반영된다.In this way, the optimum hydrologic opening and closing head water, the maximum drainage amount, the drainage lake top, the drainage lake volume, the drainage start time and the drainage completion time obtained in the maximum drainage search step (S100) are transferred to the next generation maximum power generation search step (S200). It is then reflected in the initial conditions to start generating when there is high water after draining.
도 8에 도시한 최대 발전량 탐색단계(S200)는 황금분할법을 이용하여 최적 발전개시수두차(
Figure PCTKR2016011290-appb-I000044
)를 획득하며, 도 9에는 발전량 획득과정의 순서도가 도시되어 있고, 도 10에는 황금분할법을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프가 도시되어 있다.
In the maximum power generation step (S200) shown in FIG. 8, the optimal power generation start number difference using the golden division method (
Figure PCTKR2016011290-appb-I000044
9 is a flow chart of a power generation acquisition process, and FIG. 10 is a graph showing a search process of a power generation start vehicle using a golden division method.
상기 최대 발전량 탐색단계(S200)는 발전개시수두차에 대한 탐색구간 [XL,XH]이 발전개시수두차의 증가에 따라 발전량이 점차 증가한 후 감소하는 범위로 설정되어 있어서 설정된 구간으로 초기화하고 미리 설정된 반복 횟수 N을 카운터하기 위한 변수 n을 1로 초기화하는 초기화단계(S210), 탐색구간을 2개 구간으로 구획하는 절점을 선택하고 절점에서의 발전량을 산정한 후 구획된 구간 중에 최적 발전개시수두차가 속하지 아니한 구간을 절점에서의 발전량에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 구간 탐색단계(S220, S230), 상기 구간 탐색단계를 반복수행할 때마다 카운터 변수 n을 1씩 증가시켜 수렴조건 N에 도달할 때까지 상기 구간 탐색단계를 반복하게 하여 탐색구간을 좁혀가게 하는 수렴조건 확인단계(S240), 및 수렴조건에 도달할 시의 탐색구간에서 최적 발전개시수두차를 선정하는 선정단계(S250)를 포함한다. In the maximum power generation search step (S200), the search section [X L , X H ] for the power generation start head difference is set to a range in which the power generation amount gradually increases and then decreases as the power generation start head difference increases. An initialization step of initializing the variable n for countering the preset repetition number N to 1 (S210), selecting a node that divides the search section into two sections, calculating the amount of power generated at the node, and then starting optimal generation among the partitioned sections. Section search step (S220, S230) to select and delete the section that does not belong to the head difference according to the amount of power generation at the node, and reset the remaining section to the search section, each time the counter variable n is repeated by 1 Convergence condition confirmation step (S240), which narrows the search section by increasing the interval search step until it reaches the convergence condition N, and convergence tank In the search interval the time is reached and a selection step (S250) of selecting an optimum power generation start water head difference.
상기 초기화단계(S210)에서 초기화하는 탐색구간 [XL,XH]은 적어도 최소발전수두차보다 큰 값을 최소값으로 하고 정격수두차(발전기의 정격운전을 위한 수두차)나 아니면 경험상 발생하는 최대수두차를 최대값으로 한 범위로 할 수 있으며, 시화호의 경우에 대략 [2m, 6m]로 설정하여 초기화단계에 사용하게 할 수 있다.The search section [X L , X H ] initialized in the initialization step (S210) is at least a value larger than the minimum generation head difference, the minimum value and the maximum head generated in the rated head (the head for the rated operation of the generator) or experience The head head difference can be set to the maximum value, and in the case of the sihwaho lake, it can be set to approximately [2m, 6m] to be used in the initialization step.
상기 구간 탐색단계(S220, S230)는 황금분할법을 이용하여 탐색구간을 좁혀가며, 구체적으로 설명하면, 탐색구간 [XL,XH]의 양끝점 XL 및 XH 에서 각각 상기 수학식2의 황금비율 τ의 거리 L=τ(XH-XL)만큼 이격된 2개의 절점 X1=XL+L 및 X2=XH-L을 선택하고(S221), 선택한 2개 절점에서 발전량 E1=f(X1) 및 E2=f(X2)을 산정하는(S222) 분절점 선정단계(S220)와, 2개 절점에서 산정한 발전량을 비교한 후(S231) 상대적으로 발전량이 작은 절점과 그 절점과 인접한 일측 끝점(즉 황금비율 τ의 거리로 인접한 끝점) 사이로 이루어진 일측 구획 구간을 삭제하여서, 상대적으로 발전량이 작은 절점을 기준으로 상대적으로 발전량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는(S232, S233) 탐색구간 재설정단계(S230)를 포함한다.In the section searching step (S220, S230), the search section is narrowed using the golden division method, and in detail, the end points X L and X H of the search section [X L , X H ] Select two nodes X 1 = X L + L and X 2 = X H -L spaced apart by the distance L = τ (X H -X L ) of the golden ratio τ of Equation 2 (S221), After comparing the power generation amount calculated at the two nodes with the segment selection step (S220) of calculating the power generation E 1 = f (X 1 ) and E 2 = f (X 2 ) (S222) at the selected two nodes (S222) S231) A node having a relatively large amount of power generation is deleted by deleting a section having one of a relatively small amount of power generation and a node that is adjacent to the end point (that is, an end point adjacent to the distance of the golden ratio τ). And a search section resetting step S230 for resetting the section including the search section to the search section (S232 and S233).
즉, X2 에서의 발전량 E2 이 X1 에서의 발전량 E1 보다 작으면 X2 를 기준으로 구획된 양측 구간 중에 X1 이 없는 일측 구간 [X2 ,XH]을 삭제하고 나머지 구간 [XL ,X2]을 탐색구간으로 재설정하고, X1 에서의 발전량 E1 이 X2 에서의 발전량 E2 보다 작거나 같으면 X1 를 기준으로 구획된 양측 구간 중에 X2 이 없는 일측 구간 [XL ,X1]을 삭제하고 나머지 구간 [X1 ,XH]을 탐색구간으로 재설정한다.That is, if the power generation amount E 2 at the X 2 is smaller than the power generation amount E 1 in X 1 in the both side sections compartment relative to the X 2 X 1 deletes the one side region [X 2, X H] free, and the remaining period [X L, to reset the X 2] as the search range, and the power generation amount E 1 in X 1 without X 2 in less than the power generation amount E 2 at the X 2 or equal to the both side sections compartment based on the X 1 side sections [X L Delete, X 1 ] and reset the remaining sections [X 1 , X H ] to the search sections.
상기 분절점 선정단계(S220)에서 절점으로 선택한 발전개시수두차 X에 대한 발전량 E=f(X)의 획득(S222)은 도 9에 도시한 방법으로 이루어진다. 발전량 획득과정은 하기의 초기화(S21)가 결정된 경우에 선행기술문헌에 개시된 방법에 따르면 되므로, 초기화(S21) 이후의 과정에 대해서는 간략하게 설명한다.Acquisition (S222) of the generation amount E = f (X) for the power generation start head X selected as the node in the segment point selection step (S220) is made by the method shown in FIG. The process of acquiring power generation may be performed according to the method disclosed in the prior art document when the following initialization S21 is determined. Therefore, the process after the initialization S21 will be briefly described.
먼저, 배수 후 상태의 호수 용적량 V 및 호수위
Figure PCTKR2016011290-appb-I000045
를 상기 최대 배수량 탐색단계(S100)에서 최적 수문개폐수두차에 따라 배수한 이후의 배수후 호수 용적량 및 배수후 호수위로 초기화하고, 수두차
Figure PCTKR2016011290-appb-I000046
를 절점 X로 초기화하고, 발전량을 0으로 초기화하며, 배수 이후 발전 가능 시기의 조위 예측 자료 및 배수후 호수위에 근거하여 시간 t를 수두차가 발전개시수두차 X에 이르는 시간 t0 로 초기화한다(S21). 여기서, 발전을 종료하는 조건인 최소발전수두차
Figure PCTKR2016011290-appb-I000047
및 관리 수위
Figure PCTKR2016011290-appb-I000048
는 미리 설정된 값이거나 아니면 입력부로 입력받은 값이다. 그리고, 운영조건으로 입력된 발전기 가동 대수도 순시 유입유량 및 발전량 산정에 반영되게 한다.
First, the volume of the lake V after draining and on the lake
Figure PCTKR2016011290-appb-I000045
In the maximum drainage search step (S100) after initializing the water volume after the drainage and drainage after the drainage according to the optimal hydrological opening and closing water head, the water head difference
Figure PCTKR2016011290-appb-I000046
Is initialized to node X, power generation is initialized to 0, and the time t is initialized to the time t 0 from the head difference to the start generation head X, based on the tide prediction data at the time of power generation after drainage and the lake level after drainage (S21). ). Here, the minimum power generation head, which is a condition to end the power generation
Figure PCTKR2016011290-appb-I000047
And management
Figure PCTKR2016011290-appb-I000048
Is the preset value or the value input to the input unit. In addition, the number of generators operated as operating conditions is also reflected in the instantaneous inflow flow rate and power generation amount calculation.
다음으로, 수두차
Figure PCTKR2016011290-appb-I000049
에 따른 순시 유입유량 Q를 산정하고(S22), 해수가 순시 유입유량 Q으로 유입될 시의 전력 P를 △t동안 산출하여 △t동안의 발전량 △E을 획득한 후(S23), 획득한 △t동안의 발전량 △E을 발전량 E에 적산한다(S24). 여기서, 전력 P는 발전기효율 η, 해수밀도 ρ, 중력가속도 g, 순시 유입유량 Q 및 수두차
Figure PCTKR2016011290-appb-I000050
의 곱으로 계산할 수 있다.
Next, chicken pox
Figure PCTKR2016011290-appb-I000049
Calculate the instantaneous inflow flow rate Q according to (S22), calculate the power P when seawater flows into the instantaneous inflow flow rate Q for Δt, obtain power generation amount ΔE for Δt (S23), and then obtain △ The generation amount ΔE during t is integrated into the generation amount E (S24). Where power P is generator efficiency η, seawater density ρ, gravitational acceleration g, instantaneous inflow flow Q, and head head differential
Figure PCTKR2016011290-appb-I000050
Can be calculated as the product of.
다음으로, 시간 t를 △t 이후의 시간 t=t+△t으로 변경하고(S25), 변경한 시간에서의 호수 용적량 V을 산정하고(S26), 수두차
Figure PCTKR2016011290-appb-I000051
을 산정한다(S27). 여기서, 호수 용적량 V는 순시 유입유량 Q로 △t동안 유입된 유량을 적산하면 되고, 수두차
Figure PCTKR2016011290-appb-I000052
은 용적량 변화에 따른 호수위를 조지자료에 근거하여 얻은 후 조위 예측 자료에 따른 해수위와 호수위 사이의 낙차로 얻는다.
Next, time t is changed to time t = t + Δt after Δt (S25), the lake volume amount V at the changed time is calculated (S26), and the head head difference
Figure PCTKR2016011290-appb-I000051
Calculate the (S27). Here, the lake volume amount V may be integrated with the flow rate introduced during Δt as the instantaneous inflow flow rate Q.
Figure PCTKR2016011290-appb-I000052
Is obtained based on the George data based on the change in volume, and then obtained as a drop between the sea level and the lake level according to the tide prediction data.
다음으로, 변경한 시간 t에서 호수위가 관리 수위
Figure PCTKR2016011290-appb-I000053
이상이거나 또는 수두차가 최소발전수두차
Figure PCTKR2016011290-appb-I000054
보다 작으면 출력단계(S29)로 넘어가고, 그렇지 아니하면 순시 유입유량 Q를 산정하는 단계(S22)로 돌아간다.
Next, the lake level manages the water level at the changed time t
Figure PCTKR2016011290-appb-I000053
Is greater than or equal to the minimum head
Figure PCTKR2016011290-appb-I000054
If smaller, the flow goes to the output step S29, and if not, the flow returns to the step S22 for calculating the instantaneous inflow flow rate Q.
즉, 발전개시수두차가 발생한 시점부터 발전 종료 조건에 이르는 시점까지 △t 간격으로 분할하여 각 간격마다 순시 유입유량의 변화를 반영한 발전량을 산정하고 누적하며, 이에 1 조석주기 동안 얻을 수 있는 발전량을 획득할 수 있다.In other words, the generation amount reflecting the change of instantaneous inflow flow is calculated and accumulated in each interval by △ t interval from the time when the generation start head difference occurs to the end of the generation condition, to obtain the generation amount that can be obtained during one tidal cycle can do.
그리고, 출력단계(S29)에서는 총 누적한 발전량, 발전 개시 시간 및 발전 종료 시간을 출력한다.In the output step S29, the total accumulated power generation amount, power generation start time and power generation end time are output.
이와 같이, 절점에 대한 발전량을 산출하면서 수행하는 구간 탐색단계(S220, S230)는 수렴조건 N회만큼 반복하여 최적 발전개시수두차가 있는 위치로 탐색구간이 좁혀진 후, 출력단계(S250)에서 최종 좁혀진 탐색구간 내에서 최적 발전개시수두차를 선정한다. 최적 발전개시수두차를 선정하였으므로, 최적 발전개시수두차에서의 발전량 산출과정에서 얻은 최대 발전량, 발전 개시 시간 및 발전 종료 시간도 선정할 수 있게 된다.As described above, the section searching steps (S220, S230) performed while calculating the amount of power generation for the nodes are repeated by N times of convergence conditions, and the search section is narrowed to the position having the optimum power generation start difference, and then finally narrowed in the output step (S250). The optimum power generation head difference is selected within the search section. Since the optimum power generation start head has been selected, the maximum power generation, power generation start time and power generation end time obtained during the calculation of power generation at the optimum power generation start head can be selected.
이때의 선정은 최종 탐색구간의 양끝점에 대한 발전량이 구간 탐색단계(S220, S230)의 반복 과정에서 얻어진 상태이므로, 상대적으로 큰 발전량을 갖는 어느 한 끝점을 최적 발전개시수두차로 선정하고, 이 끝점에서 발전량을 최대 발전량으로 선정한다.In this case, since the amount of power generation at both end points of the final search section is obtained during the repetition of the section search steps (S220 and S230), one end point having a relatively large amount of power generation is selected as the optimum power generation start head, and this end point Selects the maximum amount of generation in.
이와 같이 최적 발전개시수두차를 탐색하는 과정을 종래기술과 대비하면 다음과 같다.As compared with the prior art, the process of searching for the optimum power generation start head is as follows.
도 2에 도시한 바와 같이 전수 탐색하는 종래기술에 따르면, 발전개시수두차의 초기 탐색구간 [2m, 6m]에 대해 어느 정도 정밀도를 갖는 발전량 그래프를 얻기 위해서 0.1m간격으로 발전량을 산정하여 발전량 그래프를 얻으려면 총 41회의 발전량을 산정하여야 하며, 정확도를 높이기 위해서는 0.1m보다는 더욱 작은 간격으로 발전개시수두차를 선정하여 발전개시수두차별 발전량을 산정해야 하므로, 발전량 산정 횟수가 크게 증가한다.According to the prior art of all the search as shown in Fig. 2, the amount of power generation by calculating the amount of power generation at intervals of 0.1m to obtain a power generation graph with a certain precision for the initial search interval [2m, 6m] of the power generation start vehicle In order to obtain the power generation, a total of 41 generations should be calculated, and in order to increase the accuracy, the number of generations should be greatly increased since power generation by the generation start heading should be calculated at intervals smaller than 0.1m.
그렇지만, 본 발명에 따르면 도 10에 도시한 바와 같이, 탐색구간을 좁혀가기 위해 선택한 절점에서만 발전량을 산정하면 되므로, 발전량 산정 횟수를 크게 줄일 수 있다.However, according to the present invention, as shown in Fig. 10, since the power generation amount needs to be calculated only at the node selected in order to narrow the search section, the number of power generation amount calculation can be greatly reduced.
더욱이, 수학식2에 의한 황금비율
Figure PCTKR2016011290-appb-I000055
을 적용함으로써, 탐색구간 내에 선정한 2개의 절점 X1 , X2 중에 발전량이 상대적으로 큰 절점이 다음 탐색구간(즉, 축소시킨 탐색구간)에서 선정할 2개 절점 중에 어느 하나가 되므로, 초기 탐색구간에서만 2개 절점에 대해 발전량을 산정하고, 이후 탐색구간에서는 2개 절점 중에 어느 하나의 절점에 대해서만 발전량을 산정하면 된다.
Moreover, the golden ratio by equation (2)
Figure PCTKR2016011290-appb-I000055
By applying, the node whose relatively large amount of power is generated among the two nodes X 1 and X 2 selected in the search section becomes one of two nodes to be selected in the next search section (that is, the reduced search section). The amount of power generation is to be calculated for two nodes only, and the amount of power generation for only one of the two nodes is to be calculated in the subsequent search section.
예를 들어, 구간 탐색단계(S220, S230)를 도 10에 도시한 바와 같이 10회 반복하더라도 11회, 즉, (반복 횟수)+1 만큼만 발전량을 산정하면 되므로, 종래기술에 비해 발전량 산정 횟수를 크게 줄일 수 있다. For example, even if the section search steps S220 and S230 are repeated 10 times, as shown in FIG. 10, the power generation amount needs to be calculated only 11 times, that is, the number of repetitions +1. Can be greatly reduced.
더불어, 초기 탐색구간을 균등하게 분할한 지점 중에 발전량이 최대인 어느 하나를 선택하는 것이 아니라, 최대 발전량을 얻을 수 있는 지점을 찾아가므로, 더욱 정확한 결과를 얻을 수 있다.In addition, instead of selecting one of the points where the initial search section is equally divided, the power generation amount is not selected, but the point where the maximum power generation amount can be obtained is more accurate, thereby obtaining more accurate results.
상기한 바와 같이 최대 배수량 탐색단계(S100) 및 최대 발전량 탐색단계(S200)를 순차적으로 수행하는 최적 운영 탐색단계(S5)는 예측기간 내의 각 조석주기별로 수행되며, 조석주기별 수행한 최적 운영 탐색단계(S5)의 결과물이 출력단계(S7)에서 취합되어 출력된다.As described above, the optimum operation search step S5 for sequentially performing the maximum drainage search step S100 and the maximum power generation search step S200 is performed for each tidal cycle within the prediction period, and the optimal operational search step performed for each tidal cycle. The result of S5 is collected and output in the output step S7.
여기서, 조석주기별 결과물은 배수에 대한 결과물로서 최대 배수량, 최적 수문개폐수두차, 배수후 호수위, 배수후 호수 용적량, 배수 개시 시간 및 배수 완료 시간을 포함하고, 발전에 대한 결과물로서 최대 발전량, 최적 발전개시수두차, 발전 개시 시간 및 발전 종료 시간을 포함할 수 있다.Here, the result of each tidal cycle includes the maximum drainage, the optimal hydrologic opening and closing, the drainage lake top, the drainage lake volume, the drainage start time and the drainage completion time as the result of the drainage, and the maximum power generation, the optimum as the result of the power generation. It may include the power generation start head, the power generation start time and the power generation end time.
결과물의 출력에 대한 예시로서, 도 11을 참조하면, 배수하기 이전의 호수위를 초기값으로 한 15회 조석주기에 대한 최적운영 예측결과가 그래프로 도시되어 있다. 이에 따르면, 각 조석주기별 조위 예측 자료를 그래프로 표시하고, 그 위에 배수, 발전대기, 발전 및 배수대기가 이루어지는 시점, 및 호수위의 변화를 표시한 것이며, 이에, 최적운영을 위한 일정을 한눈에 쉽게 알아볼 수 있다. 하지만, 도 11에 예시한 최적운영 예측결과 이외에도 다양한 형태의 결과물로 가공하여 출력하여도 좋다.As an example of the output of the result, referring to FIG. 11, a graph showing an optimal operation prediction result for 15 tidal cycles with initial values on the lake before draining is shown. According to this, the tide forecast data for each tidal cycle is displayed in a graph, and the drainage, power generation waiting, power generation and drainage waiting time, and changes on the lake are displayed, and thus, the schedule for optimal operation at a glance. It is easy to recognize. However, in addition to the optimal operation prediction result illustrated in FIG. 11, the result may be processed into various types of outputs.
이하, 최대 발전량 탐색단계(S200)의 다른 실시예를 설명한다.Hereinafter, another embodiment of the maximum power generation amount search step S200 will be described.
도 12는 2차보간법을 이용한 최대 발전량 탐색단계(S200a)의 순서도이고, 도 13은 2차보간법을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프이다.12 is a flowchart of the maximum power generation search step S200a using the second interpolation method, and FIG. 13 is a graph showing a process of searching for a power generation start head difference using the second interpolation method.
2차보간법을 이용한 최대 발전량 탐색단계(S200a)는 상기한 황금분할법을 이용한 최대 발전량 탐색단계(S200)와 마찬가지로 초기화단계(S210), 구간 탐색단계(S220, S230), 수렴조건 확인단계(S240) 및 선정단계(S250)로 이루어지지만, 2차보간법을 이용하므로, 구간 탐색단계(S220, S230)에 차이가 있고, 수렴조건에도 차이가 있으며, 이하 차이점을 중심으로 설명한다.The maximum power generation search step (S200a) using the second interpolation method is similar to the maximum power generation search step (S200) using the golden division method, the initialization step (S210), the section search step (S220, S230), the convergence condition checking step (S240). And the selection step (S250), but because the second interpolation method is used, there is a difference in the interval search step (S220, S230), there is also a difference in convergence conditions, will be described below with respect to the difference.
수렴조건은 구간 탐색단계(S220, S230)의 반복횟수 N과, 후술하는 2차함수의 근사화 만족 조건 ε으로 미리 설정된다.The convergence condition is set in advance by the iteration number N of the interval search steps S220 and S230 and the approximate satisfaction condition ε of the secondary function described later.
구간 탐색단계(S220, S230)에서 분절점 선정단계(S220)는 탐색구간 [XL,XH]에서 임의의 절점 X1 을 선택한 후(S221) 절점 X1 에서의 발전량이 양끝점 XL 및 XH 의 발전량 평균보다 상대적으로 큰 지를 확인하여(S222, S223) 평균보다 크게 될 때까지 절점 X1 을 바꾸며, 탐색구간 양끝점에 대한 발전량의 평균보다 상대적으로 큰 발전량을 갖는 임의의 절점을 찾았을 시에 그 절점을 제1 절점 X1으로 선택하고, 이후, 양끝점과 제1 절점을 함수의 변수 값으로 하고 그 변수에 따른 발전량을 함수값으로 하는 2차함수식을 찾고 그 2차함수식의 최대값에 대응되는 절점을 제1 절점의 근사화된 제2 절점 λ* 으로 취급하기 위해 2차함수식의 계수로부터 얻는다(S224).In the section search step (S220, S230), the segment selection step (S220) selects a random node X 1 in the search section [X L , X H ] (S221), and then the amount of power generated at the node X 1 is measured at both ends X L and Checking whether the generation amount of X H is relatively larger than the average (S222, S223), changing the node X 1 until it is larger than the average, and finding an arbitrary node having the generation amount relatively larger than the average of the generation amount for both ends of the search section. Select the node as the first node X 1 at, and then find the quadratic equation where both endpoints and the first node are the variable values of the function and the amount of power generated by the variable as the function value. A node corresponding to the maximum value is obtained from the coefficient of the quadratic function in order to treat it as an approximated second node λ * of the first node (S224).
즉, 변수 λ에 대한 2차함수 g(λ)=a+bλ+cλ2 가 탐색구간 양끝점에 대한 발전량과 제1 절점에 대한 발전량을 지나가는 곡선이 되도록 하여, 탐색구간에 대한 발전량을 2차함수로 근사화한다. 그리고, 제1,2 절점의 차이로서 근사화정도를 알 수 있게 된다.That is, the quadratic function g (λ) = a + bλ + cλ 2 for the variable λ is a curve passing through the power generation amount at both end points of the search section and the power generation amount at the first node. Approximation with functions The degree of approximation can be known as the difference between the first and second nodes.
구간 탐색단계(S220, S230)에서 탐색구간 재설정단계(S230)는 제2 절점에서의 발전량을 산정하고, 제1 절점에 대한 발전량은 분절점 선정단계(S220)의 수행중에 얻은 값을 적용하여서, 제1,2 절점 중에 상대적으로 발전량이 작은 절점을 기준으로 구획된 양측 구간 중에 상대적으로 발전량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하며, 이에, 상대적으로 발전량이 작은 절점으로 구획된 일측 구간을 삭제하여, 탐색구간을 좁힌다.In the section search step (S220, S230), the search section resetting step (S230) calculates the amount of power generated at the second node, and the amount of power generated for the first node is applied by applying a value obtained during the segment point selection step (S220). Among the first and second nodes, the section including the node with the large amount of generation is reset to the search section among the two sections segmented on the basis of the node with the smallest amount of generation. Delete to narrow the search section.
구체적으로 설명하면, 제1 절점 X1 이 제2 절점 λ* 보다 큰 경우에, 제1 절점 X1 에서의 발전량 f(X1)이 제2 절점 λ* 에서의 발전량 f(λ* )보다 크면 제2 절점 λ* 과 탐색구간 최대점 XH 사이를 탐색구간으로 재설정하고, 제1 절점 X1 에서의 발전량 f(X1)이 제2 절점 λ* 에서의 발전량 f(λ* )보다 작거나 같으면 탐색구간 최소점 XL 과 제1 절점 X1 사이를 탐색구간으로 재설정한다.Specifically, when the first node X 1 is greater than the second node λ * , the generation amount f (X 1 ) at the first node X 1 is greater than the generation amount f (λ * ) at the second node λ * . 2nd node λ * and the maximum search point X H Is reset to the search section, and if the generation amount f (X 1 ) at the first node X 1 is less than or equal to the generation amount f (λ * ) at the second node λ * , the minimum point X L and the first node X Reset between 1 to search section.
그렇지만, 제1 절점 X1 이 제2 절점 λ* 보다 작거나 같은 경우에, 제1 절점 X1 에서의 발전량 f(X1)이 제2 절점 λ* 에서의 발전량 f(λ* )보다 크면 탐색구간 최소점 XL 과 제2 절점 λ* 사이를 탐색구간으로 재설정하고, 제1 절점 X1 에서의 발전량 f(X1)이 제2 절점 λ* 에서의 발전량 f(λ* )보다 작거나 같으면 제1 절점 X1 과 탐색구간 최대점 XH 사이를 탐색구간으로 재설정한다.However, the first node X 1 is larger than the power generation amount f (λ *) in the second node to λ * is less than or equal to the first node power generation amount in the X 1 f (X 1) to the second node λ * search If the interval between the minimum point X L and the second node λ * is reset to the search interval, and the amount of generation f (X 1 ) at the first node X 1 is less than or equal to the amount of generation f (λ * ) at the second node λ * Reset between the first node X 1 and the search section maximum point X H to the search section.
다음으로, 수렴조건 확인단계(S240)는 구간 탐색단계(S220, S230)의 반복횟수가 N에 이르거나 또는 2차함수값 g(λ)의 근사화 정도가 근사화 만족 조건 ε에 이르면, 다음의 선정단계(S250)로 넘어가고, 그렇지 아니하면 반복횟수를 1 증가 시킨 후 구간 탐색단계(S220, S230)을 반복 수행하게 한다(S240).Next, in the converging condition checking step S240, when the number of repetitions of the interval searching steps S220 and S230 reaches N or the degree of approximation of the quadratic function value g (λ) reaches the approximation satisfying condition ε, If step S250 is reached, otherwise, the number of repetitions is increased by one and then the section searching steps S220 and S230 are repeatedly performed (S240).
여기서, 2차함수 g(λ)의 근사화 만족은 제2 절점 λ*에서의 값을 이용하며, 구체적으로 설명하면 2차함수값 g(λ*)과 발전량 f(λ*) 간 차이를 발전량 f(λ*)으로 나눈 값의 절대값이 근사화 만족 조건 ε보다 작은 때로 한다.Here, the approximate satisfaction of the quadratic function g (λ) uses a value at the second node λ * . Specifically, the difference between the quadratic function g (λ * ) and the generation amount f (λ * ) is generated. It is assumed that the absolute value of the value divided by (λ * ) is smaller than the approximate satisfaction condition ε.
한편, 구간 탐색단계(S220, S230)를 반복 수행할 시에 이전 구간 탐색단계에서 탐색구간을 축소하기 위해 선택한 절점을 제외하고 나머지 절점이 재설정한 탐색구간에 속하게 되므로, 그 나머지 절점을 제1 절점의 선택과정(S221, S222, S223), 즉, 탐색구간 양끝점에 대한 발전량의 평균보다 상대적으로 큰 발전량을 갖는 제1 절점의 선택과정에서 제1 절점의 초기값으로 하는 것이 좋다.Meanwhile, when the section search steps S220 and S230 are repeatedly performed, the remaining nodes belong to the reset search section except for the node selected to reduce the search section in the previous section search step, so that the remaining nodes belong to the first node. It is preferable to set the initial value of the first node in the selection process of S221, S222, and S223, that is, selecting the first node having a generation amount relatively larger than the average of the generation amounts for both end points of the search section.
이와 같이 2차 보간법을 이용한 경우, 도 13에 예시한 바와 같이 초기에는 근사화 2차함수로 얻는 값이 실제 발전량과 차이가 있으나(a) 점차 최대 발전량을 얻을 수 있는 최적 발전개시수두차가 있는 범위로 탐색구간을 축소시키면서 그 차이가 줄어들게 되고(b), 3회 탐색한 결과에 따르면 근사화 만족 조건 ε에 이르러 그 차이를 무시할 정도로 근사화된 2차함수를 얻을 수 있으며(c), 이때의 탐색구간 내에 있는 절점(제1 절점이거나 아니면 제2 절점이 되며 탐색과정에서 발전량을 산정한 절점)을 최적 발전개시수두차로 결정할 수 있게 된다.In the case of using the second interpolation method as shown in FIG. 13, the value obtained by the approximation second function is initially different from the actual power generation amount (a) in a range in which the optimum power generation start difference can be obtained gradually. As the search period is reduced, the difference is reduced (b), and according to the results of three searches, the approximate satisfaction condition ε can be reached to obtain a quadratic function approximated to ignore the difference (c). It is possible to determine the nodal point (the first node or the second node and the one from which power generation is calculated during the search) as the optimal generation start number.
또한, 발전량 산정 횟수는 첫번째회 구간 탐색단계를 수행할 시에 4회이고, 이후 반복하는 구간 탐색단계에서는 하나의 절점에 대한 발전량을 산정하면 되므로, 4+(반복 횟수-1) 회가 된다. 한편, 제1 절점은 첫번째회 구간 탐색단계에서 적절한 값을 초기 값으로 지정하면 발전량 산정 횟수의 증가가 없고, 두번째회 구간 탐색단계에서도 이전 사용한 절점을 사용하므로 발전량 산정 횟수의 증가 요인이 될 확률은 거의 없다.In addition, the number of generation calculations is four times when the first section search step is performed, and in the subsequent section search step, the amount of power generation for one node is calculated, so that the number of generations is 4+ (number of repetitions-1). On the other hand, the first node has no increase in the number of generation calculations when an appropriate value is designated as an initial value in the first section search step, and the probability that the first node uses the previously used nodes in the second section search step increases the number of generation calculations. Few.
도 14는 할선법(secant method)을 이용한 최대 발전량 탐색단계(S200b)의 순서도이고, 도 15는 할선법(secant method)법을 이용한 발전개시수두차의 탐색과정을 보여주는 그래프이다.FIG. 14 is a flowchart of a maximum power generation search step S200b using a secant method, and FIG. 15 is a graph showing a search process of a power generation start vehicle using a secant method.
할선법(secant method)을 이용한 최대 발전량 탐색단계(S200b)는 발전개시수두차의 미소 변화에 대한 발전량의 변화를 그 점에서의 발전량 산정함수의 도함수값, 즉, 기울기로 정의하여, 기울기가 0인 발전개시수두차를 찾는 방식을 채용한다. 즉, X점에서의 기울기는 (f(X+△X)-f(X-△X))/(2△X)로 정의한다.The maximum power generation search step (S200b) using the secant method defines the change of power generation for the small change of the power generation start difference by the derivative value of the power generation calculation function at that point, that is, the slope, and the slope is 0. It adopts the method of finding the head start of the power generation. That is, the slope at the X point is defined as (f (X + ΔX) -f (X-ΔX)) / (2ΔX).
이를 위해서, 초기화 단계(S210)에서는 미리 설정한 탐색구간 [XL,XH]을 초기 탐색구간으로 하되, 양끝점에서 기울기가 상호 반대 부호의 값을 갖도록 초기 탐색구간을 초기화하고, 이후 구간 탐색단계에서 재설정할 시에도 이 조건을 만족하게 한다. 상기한 바와 같이 미리 설정한 탐색구간 [XL,XH]은 발전량이 점차 증가한 후 감소하게 설정하므로, f(XL)>0 이고 f'(XH)<0이 되어 이 조건을 만족한다. To this end, in the initializing step (S210), the previously set search section [X L , X H ] is set as the initial search section, and the initial search section is initialized so that the slopes of the opposite ends have the values of opposite signs. This condition is also satisfied when resetting at the stage. As described above, the preset search section [X L , X H ] is set to decrease after the power generation amount gradually increases, and thus f (X L )> 0 and f '(X H ) <0 satisfy this condition. .
그리고, 수렴조건은 후술하는 구간 탐색단계를 반복하는 과정에서 탐색구간 내에서 정한 절점에서의 기울기에 대한 최소 허용값 ε으로 설정하였다.The convergence condition is set to the minimum allowable value ε for the slope at the node determined within the search section in the process of repeating the section search step described later.
구간 탐색단계(S220, S230)는 탐색구간 양끝점의 기울기를 산정한 후 기울기가 발전개시수두차의 증가에 따라 선형적으로 변동한다는 가정하에 기울기가 0인 절점 X1 을 선택하는 분절점 선정단계(S220)와, 절점 X1 을 기준으로 구획되는 양측 구간 중에 절점 X1 에서의 기울기와 동일한 부호의 기울기를 갖는 끝점이 있는 구간을 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 탐색구간 재설정단계(S230)로 이루어진다.Section search step (S220, S230) is a segment selection step of selecting the node X 1 of zero slope under the assumption that the slope is linearly changed with the increase in power generation start difference after calculating the slope of both end points of the search section. (S220), and deletes the section where the end point having a slope of the same sign as the slope of the node X 1 in the both side sections that are partitioned based on the node X 1, and the search interval reset step of resetting the rest period as the search interval ( S230).
그리고, 수렴조건 확인단계(S240)에서는 절점 X1 에서의 기울기가 최소 허용값 ε보다 작을 때까지 상기 구간 탐색단계(S220, S230)를 반복시킨다.In the convergence condition checking step S240, the interval searching steps S220 and S230 are repeated until the slope at the node X 1 is smaller than the minimum allowable value ε.
선정단계(S250)는 수렴조건을 만족하여 마지막 번째로 수행한 구간 탐색단계(S220, S230)에서의 절점 X1 을 최적 발전개시수두차로 선정한다.The selection step (S250) selects the node X 1 in the section search step (S220, S230) that was performed last to satisfy the convergence condition as the optimum power generation start head.
구간 탐색단계(S220, S230)에 대해 보다 상세하게 설명하면, 분절점 선정단계(S220)는 탐색구간의 최저점 XL에 각각 △X를 증가시킨 점 XL+△X과 감소시킨 점 XL-△X에서 산정한 발전량의 차이를 2△X로 나누어 최저점 XL 에서의 기울기 f'(XL)를 얻고(S221), 탐색구간의 최대점 XH에 각각 △X를 증가시킨 점 XH+△X과 감소시킨 점 XH-△X에서 산정한 발전량의 차이를 2△X로 나누어 최대점 XH 에서의 기울기 f'(XH)를 얻은 후(S222), 탐색구간 내에서 기울기가 직선적으로 변한다는 가정하에 기울기가 0이되는 절점
Figure PCTKR2016011290-appb-I000056
을 얻는다(S223).
More specifically, the section search steps S220 and S230 will be described. In the segment point selecting step S220, the point X L + ΔX and the point X L − are respectively increased by ΔX to the lowest point X L of the search section. The difference between the amount of power calculated by △ X divided by 2 △ X and the lowest point X L Inclination f 'gained (X L) (S221), the search interval maximum dot is increased for each △ X to X H X H + △ point reducing and X X H in - of a power generation amount calculated from the △ X differences Divide by 2 △ X to maximize the point X H After obtaining the slope f '(X H ) at (S222), the node whose slope becomes zero under the assumption that the slope changes linearly within the search interval.
Figure PCTKR2016011290-appb-I000056
(S223).
탐색구간 재설정단계(S230)는 절점 X1에 각각 △X를 증가시킨 점 X1+△X과 감소시킨 점 X1-△X에서 산정한 발전량의 차이를 2△X로 나누어 절점 X1 에서의 기울기 f'(X1)를 얻은 후(S231), 절점 X1 에서의 기울기 f'(X1)의 부호를 확인하여(S232), 0보다 작으면 탐색구간의 최대점을 절점 X1 으로 대체하고(S234) 0보다 크거나 같으면 탐색구간의 최저점을 절점 X1 으로 대체한다(S233). 즉, f'(X1)을 기준으로 구획되는 양측 구간 중에 f'(X1)의 부호와 반대 부호의 기울기를 갖는 끝점이 있는 구간을 탐색구간으로 재설정한다.Search interval reset step (S230) is a node that is increased for each △ X to X 1 X 1 + △ point reducing and X X 1 - dividing the difference between the power generation amount calculated from the △ X by 2 △ X at node X 1 After obtaining the slope f '(X 1 ) (S231), check the sign of the slope f' (X 1 ) at node X 1 (S232), and if it is less than 0, replace the maximum point of the search section with node X 1 . If it is greater than or equal to 0 (S234), the lowest point of the search section is replaced with the node X 1 (S233). That is, the reset, the both side sections partitioned by (X 1) f 'f in the interval end point having a slope of a sign opposite to the sign of the (X 1) as the search range.
이에, 기울기가 0이 있지 아니한 구간을 삭제하며 탐색구간을 축소 재설정하고, 양끝점의 기울기 부호를 상이하게 하는 조건은 유지하면서 수렴조건에 이를때까지 구간 탐색단계(S220, S230)을 반복실행하게 된다.Thus, the interval is not zero, and the section is deleted and reset, and the search section is reduced and reset, and the section search steps (S220 and S230) are repeatedly executed until the convergence condition is maintained while maintaining the condition that the slope symbols of both ends are different. do.
또한, 도 15에 예시한 바와 같이 구간 탐색단계(S220, S230)를 반복 수행할수록 기울기가 0인 점으로 신속하게 찾아가고, 8회 반복만으로도 수렴조건을 만족할만한 결과를 얻을 수 있음을 확인할 수 있다. 한편, 기울기를 사용하므로, 1개 절점에 대해 2회 발전량을 산정해야 하지만, 종래기술처럼 전수 탐색하는 방법에 비해서는 발전량 산정 횟수를 크게 줄일 수 있고, 정확성도 더욱 높일 수 있음을 알 수 있다.In addition, as illustrated in FIG. 15, it can be seen that as the interval search steps S220 and S230 are repeatedly performed, the slope is quickly moved to the point of zero, and the result that satisfies the convergence condition can be obtained with only eight iterations. . On the other hand, since the slope is used, the amount of power generation should be calculated twice for one node, but it can be seen that the number of generation amount calculation can be greatly reduced and the accuracy can be further increased as compared to the method of searching for electricity as in the prior art.
도함수를 이용한 방법으로서 유사-뉴튼법(Quasi-Newton Method)을 이용하여 구간 탐색단계(S220, S230)를 구성할 수 있으나, 이에 따르면 탐색구간을 줄이는 것이 아니라 초기 탐색구간에서 기울기가 0인 점을 따라 추적한다. 그런데, 실제에 있어서 발전개시수두차에 대한 발전량의 변화 그래프는 찾으려는 최적 발전개시수두차에서 멀어질수록 완만하지 아니하여서, 유사-뉴튼법을 사용하는 경우 최적 발전개시수두차를 찾아가기 위한 구간 탐색단계의 반복 수행횟수가 크게 될 수 있다. 이에, 상기한 할선법(secant method)을 이용한 방법보다는 상대적으로 발전량의 산정횟수가 많으므로, 할선법을 이용한 방법이 바람직하다.As a method using the derivative, the section search steps S220 and S230 may be configured using the quasi-newton method, but accordingly, the point having zero slope in the initial search section is not reduced. To follow along. However, in practice, the graph of the change in power generation for the power generation start head is not slow as the distance from the optimum power generation start head is to be found, so the section for finding the optimal power generation head when the pseudo-Newton method is used. The number of iterations of the search step may be large. Therefore, since the number of times of generating the power generation is relatively higher than the method using the secant method, the method using the secant method is preferable.
한편, 최대 발전량 탐색단계(S200)는 황금분할법을 적용한 최대 발전량 탐색단계, 2차보간법을 적용한 최대 발전량 탐색단계 및 할선법(secant method)을 적용한 최대 발전량 탐색단계를 순차적으로 수행하게 구성하여서, 황금분할법, 2차보간법 및 할선법(secant method)을 순차 적용하여 얻는 3개의 최적 발전개시수두차 중에 발전량이 최대인 어느 하나를 최종적으로 최적 발전개시수두차로 선정하게 할 수 있다.Meanwhile, the maximum power generation search step (S200) is configured to sequentially perform the maximum power generation search step using the golden division method, the maximum power generation search step using the second interpolation method, and the maximum power generation search step using the secant method. One of the three optimal power generation start heads obtained by sequentially applying the division method, the second interpolation method, and the secant method may be selected as the optimal power generation start car head.
다른 한편으로, 최대 발전량 탐색단계(S200)는 황금분할법을 적용한 최대 발전량 탐색단계, 2차보간법을 적용한 최대 발전량 탐색단계 및 할선법(secant method)을 적용한 최대 발전량 탐색단계를 모두 포함하되, 입력부에서 지정 선택한 탐색단계만 수행하게 할 수도 있다.On the other hand, the maximum power generation search step (S200) includes both the maximum power generation search step applying the golden division method, the maximum power generation search step applying the second interpolation method and the maximum power generation search step applying the secant method, but at the input unit You can also make sure that only selected search steps are performed.
또 다른 한편으로, 최대 배수량 탐색단계(S100)도 2차보간법이나 아니면 할선법(secant method)을 적용한 구성이 가능하며, 탐색하려는 최적해가 발전량을 최대로 하는 것이 아니라 배수량을 최대로 하는 값이고, 스칼라 값이 아니라 벡터 성분이라는 차이가 있을 뿐, 구간 탐색단계는 동일하게 이루어지고, 황금분할법을 적용한 것과는 다른 수렴조건을 적용하면 되므로, 2차보간법 및 할선법(secant method)을 적용한 최대 배수량 탐색단계에 대해서는 설명을 생략한다. On the other hand, the maximum displacement search step (S100) is also possible to configure the second interpolation method or the secant method (secant method), the optimal solution to be searched is the value that maximizes the drainage, not the maximum generation amount, Only the difference is that it is a vector component rather than a scalar value, and the interval search step is performed in the same way, and the convergence condition different from the golden division method is applied, so the maximum displacement search step using the quadratic interpolation method and the secant method is applied. The description is omitted.
도 16은 최대 배수량 탐색단계(S100)의 다른 실시예 순서도이고, 도 17은 도 16에 도시된 최적 수문폐쇄수두차 탐색단계(S130a)의 세부 순서도이며, 이에 따르면 해수위가 호수위(관리수위)와 동일하게 되는 시점이나 아니면 근접한 시점에서의 호수위 변화 속도를 조위 예측 자료로부터 획득한 후 호수위 변화 속도가 빠를수록 수문 개방 시간을 앞당기게 하여 최적 수문개방수두차를 결정하고, 이후, 결정한 최적 수문개방수두차를 수문개방수두차로 고정시킨 상태에서 최대 배수량을 확보하기 위한 최적 수문폐쇄수두차를 미리 지정된 탐색구간 내에서 상기한 황금분할법, 2차보간법 및 할선법 중에 어느 하나를 적용하여 탐색한다. FIG. 16 is a flowchart of another embodiment of the maximum displacement search step S100, and FIG. 17 is a detailed flowchart of the optimum hydrograph closing water search step S130a shown in FIG. 16, whereby the sea level is a lake level (management level). After obtaining the change rate on the lake at or near the point of time from the tide prediction data, the faster the change speed on the lake is, the faster the gate opening time is to determine the optimal hydrological opening head, and then the determined optimal The optimal hydrologic closing head to secure the maximum drainage rate while the hydrological opening head is fixed to the hydrological opening head is searched by applying any one of the above-mentioned golden division method, quadratic interpolation method and shunting method within a predetermined search range. .
도 16 및 도 17에 도시한 실시예에 따르면 황금분할법을 적용하여 최적 수문폐쇄수두차를 탐색하지만, 2차보간법이나 아니면 할선법을 적용할 수도 있다.According to the embodiment shown in Figs. 16 and 17, the golden dividing method is applied to search for the optimum hydrological closing head difference, but the second interpolation method or the secant method may be applied.
도 16을 참조하면 최대 배수량 탐색단계(S100)는 초기화 단계(S110a), 최적 수문개방수두차 탐색단계(S120a), 최적 수문폐쇄수두차 탐색단계(S130a) 및 출력단계(S140a)의 순서로 이루어진다.Referring to FIG. 16, the maximum drainage search step S100 is performed in the order of the initialization step S110a, the optimum hydrological water head search step S120a, the optimum hydrological water head search step S130a, and the output step S140a. .
상기 초기화 단계(S110a)는 최적 수문개방수두차(Xo)를 얻기 위한 탐색 초기조건으로서 배수 직전의 호수위를 관리 수위로 지정하고 호수위 변화 속도(v)에 따라 배수 개시 시간(to)을 결정하는 함수 to=s(v)를 미리 설정한 함수로 지정하며, 최적 수문폐쇄수두차(Xc)를 얻기 위한 탐색 초기조건으로서 수문폐쇄수두차의 탐색구간([XcL,XcH])을 미리 설정한 탐색구간으로 지정하고 후술하는 구간 탐색단계의 최대 수행 횟수(N)를 수렴조건으로 하여 수행 횟수의 카운터 변수 n을 n=1로 초기화한다.The initializing step (S110a) designates the lake level immediately before the drainage as the management water level as a search initial condition for obtaining the optimum hydrological opening water difference (X o ), and the drainage start time (t o ) according to the change speed (v) above the lake. The function t o = s (v) is determined as a preset function, and the search interval of the hydrologic closure head ([X cL , X cH ) is used as the initial condition for the search to obtain the optimal hydrograph closure (X c ). ]) Is specified as a preset search section, and the counter variable n of the number of executions is initialized to n = 1 using the maximum number of executions (N) of the section search step described later as a convergence condition.
여기서, 배수 개시 시간(to)을 결정하는 함수 to=s(v)는 수문을 열지 않고 놔둘시에 해수위가 호수위(관리수위)와 동일하게 되는 시점을 기준으로 얼마큼 시간을 앞당겨 수문을 열 것인지를 정하는 함수로서, 배수를 개시하는 시점의 해수위 변화 속도(v)가 클수록 배수 개시 시간(to)을 호수위가 관리 수위와 동일하게 되는 시점보다 크게 앞서게 정하는 미리 설정된 관계식으로 이루어진다. Here, the function t o = s (v), which determines the start time of drainage (t o ), advances the floodgates by a certain amount of time based on the time when the sea level becomes the same as the lake level (management level) when left without opening the floodgate. As a function of determining whether to open, the larger the sea level change rate v at the start of drainage, the greater the drainage start time t o is set up in advance than the point at which the lake level becomes equal to the management level.
그리고, 해수위 변화 속도(v)는 조위 예측 자료에 근거하여 단위 시간당 해수위 변화량으로 산출한다.The sea level change rate v is calculated as the sea level change amount per unit time based on the tide prediction data.
구체적인 실시예로서, 상기 함수 to=s(v)는 배수 개시 시간의 앞당김 시간간격을 해수위 변화 속도에 비례하게 정하는 함수로 이루어질 수 있다. As a specific embodiment, the function t o = s (v) may be a function of determining an advance time interval of the drainage start time in proportion to the rate of change of the sea level.
여기서, 배수 개시 시간은 해수위와 호수위(관리 수위)가 동일하게 되는 시점부터 수문을 여는 데 소요되는 시간만큼 앞선 시점까지의 범위로 제한하는 것이 좋다.Here, the drainage start time is preferably limited to a range from the time when the sea level and the lake level (management water level) become the same, to the point in time up to the time required to open the water gate.
상기 최적 수문개방수두차 탐색단계(S120a)는 상기한 바와 같이 초기화 단계를 수행한 이후, 조위 예측 자료에 근거하여 호수위가 관리 수위인 호수위와 동일하게 되는 시점을 탐색하고, 탐색된 시점의 해수위 변화 속도를 산출하는 단계(S121a); 산출하여 얻는 해수위 변화 속도를 상기 함수 to=s(v)에 대입하여 배수 개시 시간을 획득하는 단계(S122a); 및 배수 개시 시간일 때의 수두차를 조위 예측 자료에 따라 획득하여 최적 수문개방수두차로 선택하는 단계(S123a);의 순서로 이루어진다.In the optimum hydrological open water head search step (S120a), after performing the initialization step as described above, based on the tide prediction data, the lake level is searched for the same time as the lake level which is the management level, and the sea level at the found time point Calculating a change rate (S121a); Obtaining a drainage start time by substituting the calculated sea level change rate into the function t o = s (v) (S122a); And acquiring the head head difference at the time of the drainage start time according to the tide prediction data and selecting the head head head as the optimal hydrograph opening head difference (S123a).
즉, 발전 모드를 마침에 따라 호수위는 관리 수위로 유지되고, 해수위는 점차 낮아져 수두차도 감소하여 해수위가 관리 수위와 동일하게 되는 시점이 발생하는 데, 이 시점에서 해수위 변화 속도가 클수록 배수 개시 시간(수문을 개방 동작시키는 시점)을 더욱 크게 앞당기며, 이에, 수문을 완전히 열리는 시점도 앞당겨 배수량을 최대한 확보하는 것이다.In other words, as the power generation mode is completed, the lake level is maintained at the management level, the sea level is gradually lowered, and the water head difference is also reduced, resulting in a time when the sea level becomes the same as the management level. It is to accelerate the time of opening the gate, and to maximize the amount of drainage by opening the gate of the gate completely.
여기서, 해수위 변화 속도는 수문을 열지 아니하고 놔둘 시에 해수위가 관리 수위와 동일하게 되는 시점의 속도로서, 더욱 정확성을 기하기 위해서 해수위가 관리 수위와 동일하게 되는 시점보다 소정시간 앞당긴 시점으로 정하여도 된다.Here, the rate of change of the sea level is the speed at which the sea level becomes the same as the management level when it is left without opening the floodgate, and may be set to a time earlier than the time when the sea level becomes the same as the management level for more accuracy. .
상기 최적 수문폐쇄수두차 탐색단계(S130a)는 상기 최적 수문개방수두차 탐색단계(S120a)에서 선택한 최적 수문개방수두차에서 배수를 시작하되, 수문폐쇄수두차를 상기 탐색구간 내에서 가변하며 배수량을 산출함으로써 최대 배수량을 확보할 수 있는 최적 수문폐쇄수두차를 탐색하는 단계이며, 도 17에는 황금분할법을 적용한 실시예가 도시되어 있다.The optimum hydrological water head searching step (S130a) starts draining at the optimum hydrological water head opening selected in the optimum hydrological water opening head search step (S120a), while varying the hydrological water closing water head within the search period, The calculation is a step of searching for an optimum hydrograph closure head that can secure a maximum drainage amount, and FIG. 17 shows an embodiment to which the golden division method is applied.
도 17을 참조하면, 도 7을 참조하며 설명한 황금분할법과 마찬가지로, 분절점 선정단계(S131a, 132a, S133a)와 탐색구간 재설정단계(S134a, S135a)로 이루어지는 구간 탐색단계, 수렴조건에 도달할 때까지 구간 탐색단계를 반복하게 하는 수렴조건 확인단계(S136a), 수렴조건에 도달할 시의 탐색구간에서 최적값을 선정하는 선정단계(S137a)의 순서로 이루어진다.Referring to FIG. 17, similarly to the golden division method described with reference to FIG. 7, when a segment search step consisting of segment selection steps S131a, 132a and S133a and search section reset steps S134a and S135a is reached, a convergence condition is reached. Convergence condition checking step (S136a) to repeat the interval search step until, and the selection step (S137a) for selecting the optimal value in the search section when the convergence condition is reached.
차이점은 앞서 최적 수문개방수두차를 선정한 이후 최적 수문폐쇄수두차만 탐색하는 것이므로 탐색구간이 벡터값이 아니라 스칼라값이라는 것이고, 절점에서의 배수량을 획득할 시에 최적 수문개방수두차를 선정된 값으로 고정시킨다는 것이므로, 도 17을 참조한 상세설명은 생략한다. The difference is that after selecting the optimal hydro-opening head, the search is only a scalar value, not a vector, and the optimal hydro-opening head is selected when the drainage at the node is obtained. Since it is fixed to, the detailed description with reference to FIG. 17 is omitted.
한편, 도 17에는 황금분할법을 적용한 실시예만 도시되어 있으나, 상기한 2차보간법이나 아니면 할선법을 적용하여 최적 수문폐쇄수두차를 얻을 수도 있다.Meanwhile, although only an embodiment to which the golden division method is applied is shown in FIG. 17, an optimal hydrograph closure head difference may be obtained by applying the above-described second interpolation method or the partial line method.
상기 출력단계(S140a)는 도 6을 참조하며 설명한 바와 마찬가지로 최적 수문개방수두차, 최적 수문폐쇄수두차, 최적 수문개방수두차를 선정할 시에 얻는 배수 개시 시간, 최적 수문폐쇄수두차를 선정할 시에 얻는 최대 배수량, 배수후 호수위 및 배수 완료 시간을 출력하여 최대 발전량 탐색단계(S200)로 넘겨 사용되게 한다.As described above with reference to FIG. 6, the output step (S140a) may select a drainage start time and an optimum hydrologic closing head which are obtained when the optimum hydrological opening head, the optimal hydro closing head, and the optimum hydrological opening head are selected. The maximum amount of water obtained at the time, after the drain on the lake and the drainage completion time is output to be passed to the maximum power generation search step (S200) to be used.
이와 같이, 최적 수문개방수두차를 조위 예측 자료 및 해수위 변화 속도에 근거하여 얻은 후 최적 수문폐쇄수두차를 얻음으로써, 2개의 변수에 대한 해를 얻는 도 6에 도시한 실시예보다는 계산량을 줄이면서 정확한 해를 얻을 수 있게 된다.Thus, by obtaining the optimum hydrological water head difference based on the tide prediction data and the rate of change of the sea level, and then obtaining the optimum hydrological water closing head difference, while reducing the calculation amount compared to the embodiment shown in FIG. The correct solution can be obtained.
이상에서 본 발명의 기술적 사상을 예시하기 위해 구체적인 실시 예로 도시하고 설명하였으나, 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용에만 국한되지 않고, 여러가지 변형이 본 발명의 범위를 벗어나지 않는 한도 내에서 실시될 수 있다. 따라서, 그와 같은 변형도 본 발명의 범위에 속하는 것으로 간주해야 하며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.Although illustrated and described in the specific embodiments to illustrate the technical spirit of the present invention, the present invention is not limited to the same configuration and operation as the specific embodiment as described above, within the limits that various modifications do not depart from the scope of the invention It can be carried out in. Therefore, such modifications should also be regarded as belonging to the scope of the present invention, and the scope of the present invention should be determined by the claims below.
[부호의 설명][Description of the code]
10 : 데이터베이스부10: database part
20 : 입력부20: input unit
30 : 최적 운영 탐색부30: optimal operation navigation unit
31 : 조위 예측부 32 : 조건 셋팅부  31: tide prediction unit 32: condition setting unit
33 : 최대 배수량 탐색부 34 : 최대 발전량 탐색부  33: maximum displacement search unit 34: maximum power generation search unit
40 : 출력부40: output unit

Claims (12)

  1. 발전개시수두차에 대한 탐색구간이 발전개시수두차의 증가에 따라 발전량이 점차 증가한 후 감소하는 범위로 설정되어 있고, 입력부(20)로 입력받는 예측기간에 대해 발전량을 최대로 하는 최적운영 예측결과를 생성하여 출력부(40)로 출력시키는 최적 운영 탐색부(30)에 의해 이루어지는 단류식 창조 조력발전 최적운영 예측방법에 있어서, The search section for the power generation start head is set to a range in which the generation amount gradually increases and decreases as the power generation start head increases, and the optimal operation prediction result maximizes the generation amount for the prediction period inputted by the input unit 20. In the single-flow creative tidal power generation optimal operation prediction method made by the optimum operation search unit 30 to generate and output to the output unit 40,
    최적 운영 탐색부(30)가 입력부(20)를 통해 예측기간을 입력받는 입력단계(S1); An input step (S1) in which the optimal operation search unit 30 receives a prediction period through the input unit 20;
    최적 운영 탐색부(30)가 조위 자료에 근거하여 예측 기간에 대한 조위 예측 자료를 생성하는 조위 예측단계(S2); A tide prediction step (S2) of the optimal operation search unit 30 generating tide prediction data for the prediction period based on the tide data;
    최적 운영 탐색부(30)가 발전 가능 시기의 조위 예측 자료, 조지 자료 및 배수후 호수위에 근거하여 발전량이 최대가 되는 최적 발전개시수두차를 탐색하는 최대 발전량 탐색단계(S200)를 포함한 최적 운영 탐색단계(S5); Optimal operation search including the maximum power generation search step (S200) for the optimal operation search unit 30 to search for the optimal power generation start head difference that the maximum amount of power generation based on the tide prediction data, the George data, and the water level after the drainage. Step S5;
    최적 운영 탐색부(30)가 최적 발전개시수두차를 포함한 최적운영 예측결과를 출력하는 출력단계(S7);An output step S7 of the optimum operation search unit 30 outputting an optimum operation prediction result including an optimum power generation start head difference;
    를 포함하되, Including,
    상기 최대 발전량 탐색단계(S200)는 The maximum power generation step (S200)
    탐색구간을 2개 구간으로 구획하는 절점을 선택하고 절점에서의 발전량을 산정한 후 구획된 구간 중에 최적 발전개시수두차가 속하지 아니한 구간을 발전량의 크기에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 구간 탐색단계(S220, S230); Select the node that divides the search section into two sections, calculate the amount of power generated at the node, and select and delete the sections that do not belong to the optimum power generation start difference among the divided sections according to the size of the generation, and then delete the remaining sections as the search sections. A section search step (S220, S230) for resetting;
    미리 설정한 수렴조건에 도달할 때까지 상기 구간 탐색단계를 반복하게 하는 수렴조건 확인단계(S240); A convergence condition checking step (S240) for repeating the interval search step until a preset convergence condition is reached;
    미리 설정한 수렴조건에 도달할 시의 탐색구간 내의 한 점을 발전량이 최대인 최적 발전개시수두차로 선정하는 선정단계(S250);A selection step (S250) of selecting one point within a search section when a preset convergence condition is reached as an optimum power generation start number difference having a maximum amount of power generation;
    를 포함하는 단류식 창조 조력발전 최적운영 예측방법.Single-flow creative tidal power generation optimal operating method comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 구간 탐색단계(S220, S230)는 The section searching step (S220, S230) is
    탐색구간의 양끝점에서 각각 미리 설정한 황금비율의 거리로 이격된 절점을 선택하여, 선택된 2개 절점에서의 발전량을 획득한 후, 상대적으로 발전량이 작은 절점을 기준으로 상대적으로 발전량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하여서, 상대적으로 발전량이 작은 절점으로 구획된 일측 구간을 삭제하는 황금분할법으로 이루어지는 단류식 창조 조력발전 최적운영 예측방법.Select nodes separated from each end of the search section by the distance of the predetermined golden ratio, obtain power generation from the two selected nodes, and then select nodes with relatively high power generation. A method for predicting optimal operation of single-flow creative tidal power generation, which consists of a golden division method that deletes one section partitioned by a node with a relatively small amount of power generation by resetting the included section to a search section.
  3. 제 2항에 있어서, The method of claim 2,
    상기 황금비율은
    Figure PCTKR2016011290-appb-I000057
    로 하는 단류식 창조 조력발전 최적운영 예측방법.
    The golden ratio is
    Figure PCTKR2016011290-appb-I000057
    Optimal operation prediction method of single-flow creative tidal power generation
  4. 제 1항에 있어서,The method of claim 1,
    상기 구간 탐색단계(S220, S230)는 The section searching step (S220, S230) is
    탐색구간 양끝점에 대한 발전량의 평균보다 상대적으로 큰 발전량을 갖는 제1 절점을 선택하고, 탐색구간 양끝점에 대한 발전량과 제1 절점에 대한 발전량을 나타내는 2차함수의 최대값에 대응되는 절점을 제2 절점으로 하여 제1,2 절점에의 발전량을 산정한 후, 제1,2 절점 중에 상대적으로 발전량이 작은 절점을 기준으로 상대적으로 발전량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하여서, 상대적으로 발전량이 작은 절점으로 구획된 일측 구간을 삭제하는 2차보간법으로 이루어지는 단류식 창조 조력발전 최적운영 예측방법.Select the first node with the generation amount relatively larger than the average of the generation amount for both ends of the search section, and select the node corresponding to the maximum value of the second function that represents the generation amount for both end points and the generation amount for the first node. After calculating the amount of power generation to the first and second nodes as the second node, the section including the node with the higher generation amount is reset to the search section based on the node with the smaller generation amount among the first and second nodes. Optimal operation forecasting method for single-flow creative tidal power generation consisting of a second interpolation method that deletes one section divided into nodes with small power generation.
  5. 제 1항에 있어서,The method of claim 1,
    상기 구간 탐색단계(S220, S230)는 The section searching step (S220, S230) is
    발전개시수두차의 미소 변화에 따른 발전량의 변화로 기울기를 획득하는 방식을 이용하며, 탐색구간 양끝점의 기울기를 산정한 후 기울기가 발전개시수두차의 증가에 따라 선형적으로 변동한다는 가정하에 기울기가 0인 절점을 선택하고, 절점을 기준으로 한 양측 구간 중에 절점에서의 기울기와 동일한 부호의 기울기를 갖는 끝점이 있는 구간을 삭제하고, 다른 구간을 탐색구간으로 재설정하는 할선법(secant method)으로 이루어지는 단류식 창조 조력발전 최적운영 예측방법.The slope is obtained by changing the amount of power generated by the small change in the starting head of the power generation.After calculating the slope of both ends of the search section, the slope is assumed to change linearly with the increase in the starting head of the power generation. Is a secant method that selects a node with 0, deletes a section with an endpoint with the same sign slope as the slope at the node, and resets another section to the search section. Optimal operation prediction method of single-flow creative tidal power generation.
  6. 제 1항 내지 제 5항 중에 어느 하나의 항에 있어서,The method according to any one of claims 1 to 5,
    상기 최적 운영 탐색단계(S5)는 The optimal operation search step (S5)
    관리 수위로 유지된 호수에 대해 최대 배수량을 확보하기 위한 최적 수문개방수두차 및 최적 수문폐쇄수두차를 배수 가능 시기의 조위 예측 자료, 조지 자료 및 관리 수위에 근거하여 탐색하고, 최대 배수량의 확보에 따른 배수후 호수위를 획득하는 최대 배수량 탐색단계(S100)를 상기 최대 발전량 탐색단계(S200)보다 선행하여서, In order to secure the maximum drainage, search for the optimal hydrological opening and the optimal hydrologic closing head to secure the maximum drainage for the lake maintained at the management level based on the tide forecast data, the George data, and the management level at the time of drainage. Prior to the maximum amount of water search step (S100) to obtain a lake after the drain according to the maximum power generation step (S200),
    상기 최대 발전량 탐색단계(S200)에서 발전량 산출시의 배수후 호수위는 상기 최대 배수량 탐색단계(S100)에서 획득한 배수후 호수위로 하는 단류식 창조 조력발전 최적운영 예측방법.Single-flow creative tidal power generation optimal prediction method of the after-drainage lake at the time of calculating the amount of power generation in the maximum power generation step (S200) is the after-drainage lake obtained in the maximum drainage step (S100).
  7. 제 6항에 있어서The method of claim 6
    상기 최대 배수량 탐색단계(S100)는 The maximum displacement search step (S100) is
    호수위가 관리 수위와 동일하게 되는 시점의 해수위 변화 속도를 시간당 해수위 변화량으로 산출한 후, 호수위가 관리 수위와 동일하게 되는 시점보다 앞선 배수 개시 시간을 해수위 변화 속도가 클수록 크게 앞서게 정하는 미리 설정된 관계식을 이용하여 해수위 변화 속도에 따른 배수 개시 시간을 정하고, 정한 배수 개시 시간에서의 수두차를 최적 수문개방수두차로 선택하는 최적 수문개방수두차 탐색단계(S120a); Preset relational equation that calculates the sea level change rate at the time when the lake level becomes the management level as the sea level change amount per hour, and then sets the drainage start time earlier than the time when the lake level becomes the management level. Determining the drainage start time according to the seawater level change rate, and selecting an optimum headgate opening head at the selected drainage start time as an optimal hydrograph opening headway (S120a);
    최적 수문개방수두차에서 배수를 시작하되, 수문폐쇄수두차를 미리 정한 탐색구간 내에서 가변하며 배수량을 산출하여 최대 배수량을 확보할 수 있는 최적 수문폐쇄수두차를 탐색하는 최적 수문폐쇄수두차 탐색단계(S130a);The optimal hydrological closure head search step is to start the drainage at the optimal hydrological opening head, and to vary the hydrological closure head within a predetermined search interval, and to find the optimal hydrological closure head to secure the maximum drainage by calculating the displacement. (S130a);
    를 포함하는 단류식 창조 조력발전 최적운영 예측방법.Single-flow creative tidal power generation optimal operating method comprising a.
  8. 제 7항에 있어서The method of claim 7,
    상기 최적 수문개방수두차 탐색단계(S120a)에서 배수 개시 시간의 앞당김 시간간격은 해수위 변화 속도에 비례하게 하는 단류식 창조 조력발전 최적운영 예측방법.In step (S120a) of the optimum hydrological opening water head shift step advance time interval of the drainage start time is a single-flow type tidal power generation optimal operation prediction method in proportion to the rate of change in sea level.
  9. 제 7항에 있어서The method of claim 7,
    상기 최적 수문폐쇄수두차 탐색단계(S130a)는 The optimum hydrological water closing head search step (S130a) is
    미리 설정한 수문폐쇄수두차의 탐색구간을 2개 구간으로 나누는 절점을 선택하고 절점에서의 배수량을 산정한 후 최적 수문폐쇄수두차가 속하지 아니한 구간을 배수량에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 구간 탐색단계; Select a node that divides the pre-set hydrologic closing head into two sections, calculate the drainage at the node, then select and delete the section that does not belong to the optimal hydrological closing head according to the displacement, and delete the remaining sections. A section search step of resetting to a value;
    미리 설정한 수렴조건에 도달할 때까지 상기 구간 탐색단계를 반복하게 하는 수렴조건 확인단계; A convergence condition checking step of repeating the section search step until a preset convergence condition is reached;
    미리 설정한 수렴조건에 도달할 시의 탐색구간에서 최적 수문폐쇄수두차를 선정하는 선정단계;A selection step of selecting an optimal hydrograph closure headway in a search section when a preset convergence condition is reached;
    를 포함하는 단류식 창조 조력발전 최적운영 예측방법.Single-flow creative tidal power generation optimal operating method comprising a.
  10. 제 9항에 있어서,The method of claim 9,
    상기 구간 탐색단계는 The section searching step
    수문폐쇄수두차에 대한 탐색구간의 양끝점에서 각각 미리 설정한 황금비율의 거리로 이격된 절점을 선택하여, 선택된 2개 절점에서의 배수량을 획득한 후, 상대적으로 배수량이 작은 절점을 기준으로 구획된 구간 중에 상대적으로 배수량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는 황금분할법, Select nodes that are spaced apart from each other by a predetermined golden ratio distance from both ends of the search section for hydrologic closure headwater, obtain the drainage from the two selected nodes, and divide them based on the nodes with relatively small drainage. Golden division method that resets the section including the node with large drainage among the selected sections to the search section,
    수문폐쇄수두차의 탐색구간 양끝점에 대한 배수량의 평균보다 상대적으로 큰 배수량을 갖는 제1 절점을 선택하고, 탐색구간 양끝점에 대한 배수량과 제1 절점에 대한 배수량을 나타내는 2차함수의 최대값에 대응되는 절점을 제2 절점으로 하여 제1,2 절점에서의 배수량을 획득한 후, 제1,2 절점 중에 상대적으로 배수량이 작은 절점을 기준으로 구획된 양측 구간 중에 상대적으로 배수량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는 2차보간법, 및 Select the first node that has a larger displacement than the mean of the discharges at both ends of the search zone of the hydrologic closure head, and the maximum of the second function that represents the displacement at both ends of the search zone and the discharge at the first node. After obtaining the drainage amount from the first and second nodes using the node corresponding to the second node, the node with the larger drainage rate is determined among the two sections divided by the node with the smaller drainage amount among the first and second nodes. Quadratic interpolation to reset the included section to the search section, and
    수문폐쇄수두차의 미소 변화에 따른 배수량의 변화로 기울기를 획득하는 방식을 이용하며, 탐색구간 양끝점의 기울기를 산정한 후 기울기가 수문폐쇄수두차의 증가에 따라 선형적으로 변동한다는 가정하에 기울기가 0인 절점을 선택하고, 절점을 기준으로 한 양측 구간 중에 절점에서의 기울기와 다른 부호의 기술을 갖는 끝점이 있는 구간을 탐색구간으로 재설정하는 할선법(secant method) The slope is obtained by changing the drainage amount according to the small change of the hydrologic closure head, and the slope is calculated on the assumption that the slope changes linearly with the increase of the hydrological closure head. A secant method that selects a node with 0 and resets a section with endpoints with a description of the sign different from the slope at the node among the two sections based on the node.
    중에 어느 하나로 이루어지는 단류식 창조 조력발전 최적운영 예측방법.Optimal operation prediction method of single-flow creative tidal power generation which consists of any one of them.
  11. 제 6항에 있어서The method of claim 6
    상기 최대 배수량 탐색단계(S100)는 The maximum displacement search step (S100) is
    수문개방수두차를 x축 성분으로 하고 수문폐쇄수두차를 y축 성분으로 하여 벡터값을 갖는 수문개폐수두차의 탐색구간을 좌표 평면상의 2개점 사이로 미리 설정한 상태에서, 탐색구간을 2개 구간으로 나누는 절점을 선택하고 절점에서의 배수량을 산정한 후 최적 수문개폐수두차가 속하지 아니한 구간을 절점에서의 배수량에 따라 선정하여 삭제하고, 나머지 구간을 탐색구간으로 재설정하는 구간 탐색단계(S120, S130); The search section is divided into two sections, with the search section of the hydrology gate head having a vector value set as the x-axis component and the hydrograph closure head as the y-axis component between two points on the coordinate plane. Section search step (S120, S130) that selects a node to be divided by the node, calculates the drainage amount at the node, selects and deletes the section that does not belong to the optimal hydrological opening / closing water difference, and resets the remaining section to the search section (S120, S130) ;
    미리 설정한 수렴조건에 도달할 때까지 상기 구간 탐색단계를 반복하게 하는 수렴조건 확인단계(S140); A convergence condition checking step S140 of repeating the section searching step until a preset convergence condition is reached;
    미리 설정한 수렴조건에 도달할 시의 탐색구간에서 최적 수문개폐수두차를 선정하는 선정단계(S150);A selection step (S150) of selecting an optimum hydrological opening / closing head difference in a search section when a preset convergence condition is reached;
    를 포함하는 단류식 창조 조력발전 최적운영 예측방법.Single-flow creative tidal power generation optimal operating method comprising a.
  12. 제 11항에 있어서The method of claim 11
    상기 구간 탐색단계(S120, S130)는 The section searching step (S120, S130) is
    탐색구간의 양끝점에서 각각 미리 설정한 황금비율의 거리로 이격된 절점을 선택하여, 선택된 2개 절점에서의 배수량을 획득한 후, 상대적으로 배수량이 작은 절점을 기준으로 구획된 양측 구간 중에 상대적으로 배수량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는 황금분할법, Select nodes that are spaced apart from each other by the distance of the pre-set golden ratio, and obtain the drainage from the two selected nodes. Golden division method to reset the section including the node with large drainage amount to the search section,
    탐색구간 양끝점에 대한 배수량의 평균보다 상대적으로 큰 배수량을 갖는 제1 절점을 선택하고, 탐색구간 양끝점에 대한 배수량과 제1 절점에 대한 배수량을 나타내는 2차함수의 최대값에 대응되는 절점을 제2 절점으로 하여 제1,2 절점에서의 배수량을 산정한 후, 제1,2 절점 중에 상대적으로 배수량이 작은 절점을 기준으로 구획된 양측 구간 중에 상대적으로 배수량이 큰 절점을 포함한 구간을 탐색구간으로 재설정하는 2차보간법, 및 Select the first node that has a larger displacement than the average of the drains at both ends of the search section, and select the node corresponding to the maximum value of the second function representing the drainage at both ends of the search section and the drainage at the first node. After estimating the drainage amount at the 1st and 2nd nodes as the 2nd node, the section including the node with the larger drainage amount among the both sections partitioned based on the node with the smaller drainage amount among the 1st and 2nd nodes Quadratic interpolation, reset to
    수문개폐수두차의 미소 변화에 따른 배수량의 변화로 기울기를 획득하는 방식을 이용하며, 탐색구간 양끝점의 기울기를 산정한 후 기울기가 수문개폐수두차의 증가에 따라 선형적으로 변동한다는 가정하에 기울기가 0인 절점을 선택하고, 절점을 기준으로 한 양측 구간 중에 절점에서의 기울기와 동일한 부호의 기울기를 갖는 끝점이 있는 구간을 삭제하고, 다른 구간을 탐색구간으로 재설정하는 할선법(secant method) The slope is obtained by changing the drainage amount according to the small change of the hydrologic gate, and the slope is calculated under the assumption that the slope changes linearly with the increase of the hydrological gate. A secant method that selects a node with 0, deletes a section with endpoints with the same sign slope as the slope at the node, and resets another section to the search section.
    중에 어느 하나로 이루어지는 단류식 창조 조력발전 최적운영 예측방법.Optimal operation prediction method of single-flow creative tidal power generation which consists of any one of them.
PCT/KR2016/011290 2015-10-14 2016-10-10 Method for forecasting optimal operation of innovative single-action-type tidal power generation WO2017065463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1807817.0A GB2560122B (en) 2015-10-14 2016-10-10 Method for forecasting optimal operation of single-action-type flood generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150143612A KR101792190B1 (en) 2015-10-14 2015-10-14 Optimal operating plan prediction method for tidal generation of single action rising tide
KR10-2015-0143612 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017065463A1 true WO2017065463A1 (en) 2017-04-20

Family

ID=58517319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011290 WO2017065463A1 (en) 2015-10-14 2016-10-10 Method for forecasting optimal operation of innovative single-action-type tidal power generation

Country Status (3)

Country Link
KR (1) KR101792190B1 (en)
GB (1) GB2560122B (en)
WO (1) WO2017065463A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871893A (en) * 2019-02-18 2019-06-11 清华大学 The behavior prediction method and apparatus generated are kept based on circulation time domain
CN110454322A (en) * 2019-07-24 2019-11-15 华自科技股份有限公司 Based on the water turbine governing control method of multivariable dynamic matrix, apparatus and system
CN114839943A (en) * 2022-07-04 2022-08-02 国能大渡河流域水电开发有限公司 Cascade power station gate control strategy generation and rolling optimization method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102609276B1 (en) 2021-09-10 2023-12-04 한국수자원공사 Automatic operation system and method for sluice of single action tidal power generation using real-time tide level estimation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116344A (en) * 2005-05-09 2006-11-15 주식회사 삼안 Generation control system of a tidal power station and method controlling thereof
KR20080091066A (en) * 2008-09-18 2008-10-09 현대엔지니어링 주식회사 Tidal power plant simulating method and computer readable recording medium storing program performing the method
KR20090019079A (en) * 2007-08-20 2009-02-25 주식회사 삼안 Generation control system of a tidal power station and method controlling thereof
KR20140042208A (en) * 2012-09-28 2014-04-07 오민환 Tidal power generation system and its operation control method connected with condition prediction system and power generation control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060116344A (en) * 2005-05-09 2006-11-15 주식회사 삼안 Generation control system of a tidal power station and method controlling thereof
KR20090019079A (en) * 2007-08-20 2009-02-25 주식회사 삼안 Generation control system of a tidal power station and method controlling thereof
KR20080091066A (en) * 2008-09-18 2008-10-09 현대엔지니어링 주식회사 Tidal power plant simulating method and computer readable recording medium storing program performing the method
KR20140042208A (en) * 2012-09-28 2014-04-07 오민환 Tidal power generation system and its operation control method connected with condition prediction system and power generation control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI, DEUNG-HO ET AL.: "A Study on Development of Optimization Model for Single Action Tidal Power Station", JOURNAL OF FLUID MACHINERY RESEARCH AND DEVELOPMENT, December 2009 (2009-12-01), pages 443 - 448 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871893A (en) * 2019-02-18 2019-06-11 清华大学 The behavior prediction method and apparatus generated are kept based on circulation time domain
CN109871893B (en) * 2019-02-18 2020-10-16 清华大学 Behavior prediction method and device based on cyclic time domain retention generation
CN110454322A (en) * 2019-07-24 2019-11-15 华自科技股份有限公司 Based on the water turbine governing control method of multivariable dynamic matrix, apparatus and system
CN110454322B (en) * 2019-07-24 2021-06-04 华自科技股份有限公司 Water turbine speed regulation control method, device and system based on multivariable dynamic matrix
CN114839943A (en) * 2022-07-04 2022-08-02 国能大渡河流域水电开发有限公司 Cascade power station gate control strategy generation and rolling optimization method and system
CN114839943B (en) * 2022-07-04 2022-10-25 国能大渡河流域水电开发有限公司 Cascade power station gate control strategy generation and rolling optimization method and system

Also Published As

Publication number Publication date
KR20170043925A (en) 2017-04-24
KR101792190B1 (en) 2017-10-31
GB201807817D0 (en) 2018-06-27
GB2560122A (en) 2018-08-29
GB2560122B (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2017065463A1 (en) Method for forecasting optimal operation of innovative single-action-type tidal power generation
Kraus et al. Numerical model of the shoreline change at Oarai Beach
EP1787172A1 (en) System for controlling hydroelectric power plants
JP2007205001A (en) Discharge forecasting apparatus
JP2006266072A (en) Rainwater drain support system and method, its control system and method
JP4030372B2 (en) River water level prediction device
JP4102131B2 (en) Predictive model system
CN103339702A (en) Power switch device operation time prediction equipment and method
JP7206916B2 (en) Overflow control device and overflow control method
KR100920604B1 (en) Generation control system of a tidal power station and method controlling thereof
SasiKiran et al. UKF based estimation approach for DVR control to compensate voltage swell in distribution systems
JP4146053B2 (en) Flow prediction method in dam or river
JP2000055703A (en) Estimation method for flow rate in dam
Duong et al. River discharge projection in Indochina Peninsula under a changing climate using the MRI-AGCM3. 2S dataset
KR20230037815A (en) Automatic operation system and method for sluice of single action tidal power generation using real-time tide level estimation method
TWI310428B (en) Rainwater draining support system, and rainwater draining support method
Lin et al. Sediment research for the Three Gorges Project on the Yangtze River since 1993
JP2021095711A (en) Rainwater inflow amount prediction apparatus, rainwater inflow amount prediction method, computer program, rainwater pump control system, and rainwater pump station system
Ramond et al. Direct adaptive predictive control of an hydro-electric plant
Restrepo Posada et al. Automatic parameter estimation of a large conceptual rainfall-runoff model: a maximum likelihood approach
Owusu-Mireku et al. Robustness of the Closest Unstable Equilibrium Point Along a PV Curve
JP2006070543A (en) Stormwater drainage control system
WO2024018754A1 (en) Water-level forecasting device, water-level forecasting method, and water-level forecasting program
Zhang et al. Parameter estimation of nonlinear Muskingum model with variable exponent using adaptive genetic algorithm
Rahman et al. Local scour at sloped-wall spur-dike-like structures in alluvial rivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201807817

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20161010

WWE Wipo information: entry into national phase

Ref document number: 1807817.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 16855680

Country of ref document: EP

Kind code of ref document: A1