WO2017065205A1 - Hydrogen sensor and method for producing same - Google Patents

Hydrogen sensor and method for producing same Download PDF

Info

Publication number
WO2017065205A1
WO2017065205A1 PCT/JP2016/080344 JP2016080344W WO2017065205A1 WO 2017065205 A1 WO2017065205 A1 WO 2017065205A1 JP 2016080344 W JP2016080344 W JP 2016080344W WO 2017065205 A1 WO2017065205 A1 WO 2017065205A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen sensor
hydrogen
film
detection film
metal particles
Prior art date
Application number
PCT/JP2016/080344
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 福井
友則 柿添
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Priority to DE112016004676.6T priority Critical patent/DE112016004676T5/en
Publication of WO2017065205A1 publication Critical patent/WO2017065205A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2

Definitions

  • the present invention relates to a hydrogen sensor that detects hydrogen gas, and particularly to detection of relatively low concentration hydrogen gas leaking from various devices that handle hydrogen gas, such as automobile fuel cells and household fuel cells, or in a device that handles hydrogen gas.
  • the present invention relates to a material suitable for controlling a relatively high concentration of hydrogen gas.
  • the hydrogen sensor described in Patent Document 1 detects hydrogen that has permeated through a protective film based on a change in resistance of a detection film containing a rare earth metal as a main component, and hydrogen detection metal particles are dispersed in the detection film and the ceramic material.
  • the ratio of the resistance to the protective film formed is configured to fall within a predetermined range.
  • the hydrogen sensor described in Patent Document 2 does not have a protective film, and detects hydrogen by the resistance change of the detection film in which metal particles made of Pd are dispersed in a ceramic material made of tantalum nitride (TaN). Yes.
  • a heater is usually formed on the lower surface of the substrate in order to detect hydrogen with sufficient responsiveness.
  • Non-Patent Document 3 discloses evaluation of hydrogen permeation performance of a Pd binary alloy film for the purpose of developing a material having high hydrogen permeation performance. According to Non-Patent Document 3, it has been found that Pd—Ag alloy and Pd—rare earth alloy have higher hydrogen permeation performance than Pd.
  • FIG. 5 is a graph showing the definition of the responsiveness of the hydrogen sensor.
  • 90% response time is defined as 90% response time when the difference between the resistance value when it is constant and the resistance value when hydrogen gas is not sprayed (change in reference resistance value) is 100%. To do.
  • the response of the hydrogen sensor is evaluated based on the length of the 90% response time.
  • FIG. 6 is a graph showing the response time of the hydrogen sensor described in Patent Document 1 with respect to the environmental temperature.
  • TaN was adopted as the protective film because TaN was found to be superior to AlN described as a protective film in Patent Document 1 in the development process.
  • a broken line B1 in FIG. This is because the diffusion of hydrogen in the detection film made of Y becomes rate limiting.
  • FIG. 7 is a graph showing the response time of the hydrogen sensor described in Patent Document 2 with respect to the environmental temperature.
  • Y is not used as a detection film, and as shown by a broken line B2 in FIG. 7, the response is improved as compared with the above structure, but the response is low at a low temperature.
  • the responsiveness is significantly lowered. Details of the examples shown in FIGS. 6 and 7 will be described later as comparative examples.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydrogen sensor that can detect hydrogen with high responsiveness even in a room temperature or low temperature environment, and that can omit a heater, and a method for manufacturing the same.
  • a hydrogen sensor includes an insulating substrate and a metal particle laminated on one surface of the substrate and dispersed in the ceramic matrix and the ceramic matrix. And a pair of electrodes provided on the surface of the detection film at a predetermined distance from each other, wherein the metal particles are selected from Pd and a group of transition metal elements other than Pd It is characterized by comprising an alloy with the above additive elements.
  • hydrogen can be detected with high responsiveness even in an environment of normal temperature or low temperature because the metal particle is a multi-component alloy of the above combination.
  • the heater that is indispensable for the structure of the conventional hydrogen sensor can be omitted.
  • the number of parts required for the control circuit for moving the heater can be reduced, and the manufacturing cost can be reduced.
  • the hydrogen sensor of the present invention is characterized in that the thickness of the detection film is 5 to 80 nm. As described above, when the film thickness is 5 nm or more, the detection film can maintain sufficient durability. In addition, since the film thickness is 80 nm or less, the manufacturing cost can be kept low while ensuring the responsiveness.
  • the hydrogen sensor of the present invention is characterized in that the metal particles are contained in an amount of 50 to 90% by mass in the detection film. Since the content of the metal particles is 50% by mass or more, sufficient responsiveness can be secured, and since the content is 90% by mass or less, the mechanical strength of the detection film can be maintained even when the film thickness is reduced.
  • the hydrogen sensor of the present invention is characterized in that the metal particles contain 5 to 30% by mass of the additive element.
  • the additive element may be one or more elements selected from the group consisting of Ag, Y, Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu. It is a feature. Thereby, the responsiveness of hydrogen detection can be improved.
  • the hydrogen sensor of the present invention is characterized in that the additive element is only one kind. Thereby, it is possible to further increase the responsiveness for hydrogen detection in a room temperature or low temperature environment.
  • the hydrogen sensor of the present invention is characterized in that the additive element is Ag.
  • the additive element is Ag.
  • the ceramic base material is made of AlN x1 (0.5 ⁇ x1 ⁇ 1), AlO x2 (0.8 ⁇ x2 ⁇ 1.5), SiN x3 (0 .7 ⁇ x3 ⁇ 1.3), SiO x4 (1 ⁇ x4 ⁇ 2), TaN x5 (0.5 ⁇ x5 ⁇ 1) and TaO x6 (1 ⁇ x6 ⁇ 2.5). It is characterized by comprising at least one kind.
  • the detection film can detect the hydrogen concentration by a single-layer film that does not have a protective film or the like, and can prevent deterioration in sensor accuracy due to hysteresis characteristics.
  • the hydrogen sensor of the present invention is further characterized in that a buffer layer made of the same kind of material as the ceramic base material is further provided between the substrate and the detection film.
  • the method for producing a hydrogen sensor according to the present invention includes a vapor phase growth method or sputtering for each film forming material for a ceramic base material and a metal particle in an atmosphere of argon gas and nitrogen gas or oxygen gas.
  • a sensing film on the substrate surface by a method, and forming an electrode on the sensing film by vapor deposition or sputtering for a film forming material for an electrode under an argon gas atmosphere
  • Each film forming material for the metal particles is characterized by comprising Pd and one or more additive elements selected from a group of transition metal elements other than Pd.
  • hydrogen can be detected with high responsiveness even in a room temperature or low temperature environment, and a heater that has been conventionally required can be omitted.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a hydrogen sensor 10 of the present invention.
  • the hydrogen sensor 10 includes a substrate 11, a buffer layer 13, a detection film 15, and an electrode 19.
  • a buffer layer 13 made of TaN is formed on the upper surface of the substrate 11, and a detection film 15 is formed on the upper surface of the buffer layer 13.
  • the detection film 15 is a composite material composed of a ceramic base material 16 and metal particles 17 having an axis oriented in the thickness direction of the ceramic base material 16 and dispersed in the ceramic base material.
  • the metal particles 17 are formed in a column shape when at least Pd—Ag is used as a material.
  • a pair of electrodes 19 are provided in parallel with the surface on both ends in contact with only the detection film 15.
  • FIG. 1 schematically shows the configuration, and does not necessarily correspond to the actual size of the hydrogen sensor 10.
  • an insulating plate such as a glass plate, a ceramic plate, or a single crystal plate such as sapphire, zinc oxide (ZnO), or magnesium oxide (MgO) can be used.
  • an expensive sapphire substrate is suitable for securing thermal conductivity from the heater, but the hydrogen sensor 10 does not require a heater, so an inexpensive glass substrate can be used.
  • the heater is not provided on the lower surface of the substrate 11 (the surface opposite to the detection film 15).
  • a buffer layer 13 is preferably formed between the substrate 11 and the detection film 15.
  • the buffer layer 13 is preferably made of the same material as the material of the ceramic base material 16, and is particularly preferably made of TaN. By interposing the buffer layer 13, the film stress caused by the difference in lattice constant between the material of the substrate 11 and the material of the ceramic base material 16 can be alleviated, and the durability of the detection film 15 can be improved.
  • the thickness of the buffer layer 13 is preferably 10 to 200 nm. When the thickness of the buffer layer 13 is less than 10 nm, there is almost no effect on the durability of the detection film 15, and when it exceeds 200 nm, the manufacturing cost is too high.
  • the detection film 15 is provided on the upper surface of the buffer layer 13, is laminated on one surface of the substrate 11, and includes a ceramic base material 16 and columnar metal particles 17 dispersed in the ceramic base material 16.
  • the material of the ceramic base material 16 is AlN x1 (0.5 ⁇ x1 ⁇ 1), AlO x2 (0.8 ⁇ x2 ⁇ 1.5), SiN x3 (0.7 ⁇ x3 ⁇ 1.3), SiO x4 (1 ⁇ x4 ⁇ 2), TaN x5 (0.5 ⁇ x5 ⁇ 1) and TaO x6 (1 ⁇ x6 ⁇ 2.5).
  • the detection film 15 can detect the hydrogen concentration by a single layer film that does not have a protective film or the like, and can prevent a decrease in sensor accuracy due to hysteresis characteristics.
  • TaN is particularly preferably used for the ceramic base material 16.
  • the thickness of the detection film 15 is preferably 5 to 80 nm. When the film thickness is less than 5 nm, the strength of the detection film 15 is insufficient. On the other hand, when the film thickness exceeds 80 nm, the resistance value of the detection film 15 does not change significantly, but the responsiveness decreases as the capacitance of the detection film 15 increases. This leads to an increase in manufacturing costs.
  • the content of the metal particles 17 in the detection film 15 is preferably 50 to 90% by mass. Responsiveness falls that content of the metal particle 17 is less than 50 mass%. On the other hand, if the content exceeds 90% by mass, the mechanical strength of the detection film 15 becomes insufficient when the film thickness is reduced.
  • the axis of the metal particles 17 is oriented in the thickness direction of the ceramic base material 16.
  • the size of the metal particles 17 in the longitudinal direction is 1 to 10 nm.
  • the size of the metal particles 17 in the longitudinal direction is smaller than the thickness of the detection film 15.
  • the size of the metal particles 17 in the width direction is 1 to 5 nm.
  • the metal particles 17 are made of an alloy of Pd and one or more additive elements selected from a group of transition metal elements other than Pd.
  • transition metal elements other than Pd include Ag and rare earth elements.
  • rare earth elements of Ag and rare earth elements include Y, Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Since the metal particles 17 are such a multi-component alloy (preferably a ternary system or less), hydrogen can be detected with high responsiveness even in a room temperature or low temperature environment.
  • the heater that is indispensable for the structure of the conventional hydrogen sensor can be omitted. And the number of parts required for the control circuit for moving the heater can be reduced, and the manufacturing cost can be reduced. In addition, consumption of heater driving power can be suppressed.
  • the metal particles 17 preferably contain 5 to 30% by mass of additive elements.
  • the additive element is only one kind and the hydrogen sensing metal is a binary alloy. Thereby, the responsiveness can be further increased. Further, the additive element is preferably Ag. Thereby, the responsiveness can be further improved. Moreover, since Ag can be easily obtained, manufacturing cost can be reduced.
  • the pair of electrodes 19 are provided on the surface of the detection film 15 at a predetermined distance from each other.
  • a conductive material such as gold, platinum, palladium, titanium, aluminum, copper, or silver can be used. Among these, gold, copper, and platinum are preferable, and gold is more preferable.
  • the thickness of the electrode 19 is preferably 5 to 1000 nm, more preferably 50 to 300 nm. When the thickness is less than 5 nm, it is difficult to form the electrode itself, and when it exceeds 1000 nm, the manufacturing cost tends to increase.
  • FIG. 2 is a graph showing the response time with respect to the environmental temperature for Patent Documents 1 and 2 and the hydrogen sensor of the present invention, respectively.
  • a broken line A1 indicates the responsiveness of the hydrogen sensor 10
  • broken lines B1 and B2 indicate the responsiveness of the hydrogen sensor described in Patent Documents 1 and 2, respectively. Details of the experimental results shown in FIG. 2 will be described later.
  • FIG. 3A is a block diagram showing a hydrogen detection system 100 for a fuel cell vehicle employing the hydrogen sensor 10.
  • FIG. 3B is a block diagram showing a hydrogen detection system 200 for a fuel cell vehicle employing a conventional hydrogen sensor.
  • each part indicated by a broken line is not necessary and is not included in the configuration.
  • the controller does not require a heater driving unit, a microcomputer that controls the heater driving unit, a microcomputer that performs control for transmitting a hydrogen detection signal to the host ECU, and an interface.
  • the hydrogen sensor 10 if the hydrogen sensor 10 is employed, the number of parts required for the heater formation and the control circuit for operating the heater can be reduced, so that the manufacturing cost of the hydrogen detection system 100 can be reduced. Specifically, when the number of parts was measured, it was estimated that the number of parts was reduced from 13 to 3 ( ⁇ 77%) and the number of circuit parts was reduced from 65 to 26 ( ⁇ 60%). Further, in the hydrogen detection system 100, since power consumption for driving the heater is suppressed, the power consumption is lower than that of the conventional system. Specifically, it was estimated that the power consumption would be 1000 mW to 200 mW ( ⁇ 80%).
  • the hydrogen sensor 10 can be manufactured by the following method, for example.
  • the buffer layer 13 is formed on at least one surface of the substrate 11 by vapor deposition or sputtering.
  • the buffer layer 13 is formed by using a known high-frequency magnetron sputtering apparatus with Ta as a target in an atmosphere of argon gas and nitrogen gas.
  • the formation of the buffer layer 13 is not essential.
  • the detection film 15 is formed on the buffer layer 13 by vapor deposition or sputtering.
  • the detection film 15 is formed on the substrate by vapor deposition or sputtering.
  • the detection film 15 is formed by using a known high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas with a hydrogen sensing metal and Ta as targets.
  • the Ta target may be made of Al or Si, and the detection film may be formed in an atmosphere of argon gas and oxygen gas.
  • the detection film 15 formed as a composite material can be formed on the base material or the buffer layer 13 by a method in which TaN and metal particles are simultaneously vapor-grown or sputtered.
  • Ta is used for the ceramic base material 16 and is formed in a mixed gas atmosphere of argon and nitrogen together with Pd as a material for the metal particles 17 and an additive element.
  • the composite target may be sputtered using a composite target in which a chip of Pd and an additive element having a smaller area than the Ta target is placed on the Ta target, and a substrate is attached above the target. Sputtering is performed in a mixed gas atmosphere of argon and nitrogen. In this way, the detection film 15 can be formed.
  • the additive element is one or more additive elements selected from the group consisting of Ag and rare earth elements. In this way, it is possible to manufacture a hydrogen sensor that can detect hydrogen with high responsiveness even in a room temperature or low temperature environment.
  • the responsiveness can be easily improved. Since Ag has a lower reaction activity than rare earth elements, it is easy to produce a Pd—Ag binary alloy.
  • multi-source simultaneous sputtering using a Ta target and a metal particle target is performed in a mixed gas atmosphere.
  • the interfacial energy of the ceramic material and the hydrogen-sensing metal is considered according to the material to be combined.
  • the electrode 19 is formed on the detection film 15 by vapor phase epitaxy or sputtering.
  • the electrode 19 is formed, for example, using a known high-frequency magnetron sputtering apparatus in an argon gas atmosphere with Au as a target.
  • a method for forming the electrode 19 a vapor phase growth method or a sputtering method can be used.
  • Example 1 (Sample preparation) A hydrogen sensor was fabricated using a high frequency sputtering apparatus. First, in the high frequency sputtering apparatus, a glass substrate having a width of 25.4 mm, a length of 25.4 mm, and a thickness of 0.33 mm was used as a substrate, and a metal mask was disposed on the substrate. A Pd—Ag and Ta target was placed, and the inside of the apparatus was depressurized to about 1 ⁇ 10 ⁇ 4 Pa. For the production of metal particles, a target having Pd of 77 mass% and Ag of 23 mass% was used.
  • argon gas and nitrogen gas pressure ratio 40:60 Pa
  • sputtering was performed for 400 seconds at a pressure of 9 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 230 ° C., and an output Ta of 200 W.
  • a buffer layer made of TaN was formed on the substrate.
  • the thickness of the formed buffer layer was 30 nm.
  • argon gas and nitrogen gas (pressure ratio 40:60 Pa) in the apparatus were introduced, and sputtering was performed for 414 seconds at a pressure of 9 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 230 ° C., output Ta: 160 W, Pd—Ag; 70 W. went.
  • a detection film made of TaN—Pd—Ag was formed on the buffer layer.
  • the thickness of the formed detection film was 60 nm.
  • argon gas in the apparatus was introduced, and sputtering was performed for 200 seconds at a pressure of 9 ⁇ 10 ⁇ 1 Pa, a substrate temperature: 130 ° C., and an output Au: 100 W.
  • a hydrogen sensor in which an element electrode made of Au was formed on the detection film was obtained.
  • the thickness of the formed device electrode was 200 nm.
  • Example evaluation Next, the response of the obtained hydrogen sensor to hydrogen gas was investigated. Using this hydrogen sensor element, a gas having a hydrogen concentration of 100% was flowed at a rate of 2 l / min, and the element resistance value was measured. The measurement temperature was ⁇ 30 ° C. to 150 ° C.
  • the response time when the element resistance change amount is 90% is 90% response time with respect to the change amount of the element resistance value when the hydrogen concentration is 0% and the change amount of the element resistance value when the hydrogen concentration is 100%.
  • the correlation between the measured temperature and 90% response time was obtained.
  • FIG. 4B is a graph showing a response time. As shown in FIG. 4B, the 90% response time was within 2 seconds at 25 ° C. to 150 ° C., and the 90% response time was 7 seconds at ⁇ 30 ° C.
  • the metal particles of the detection film are made of Pd—Ag, but are not limited to this.
  • Example preparation After forming the buffer layer under the conditions shown in Example 1, Pd, Ta, and Y are arranged as targets of the high-frequency magnetron sputtering apparatus at the time of forming the detection film, and only argon gas is introduced, and the pressure is 9 ⁇ 10. Sputtering was performed at ⁇ 1 Pa, substrate temperature 230 ° C., output Y; 100 W for 232 seconds. As a result, a detection film made of Y was formed on the buffer layer. The thickness of the formed detection film was 60 nm.
  • argon gas and nitrogen gas (pressure ratio: 40:60 Pa) in the apparatus were introduced, and sputtering was performed for 460 seconds at a pressure of 9 ⁇ 10 ⁇ 1 Pa, a substrate temperature of 230 ° C., an output Ta: 160 W, and Pd: 35 W.
  • a protective film made of TaN—Pd was formed on the detection film.
  • the thickness of the formed protective film was 50 nm.
  • Example evaluation Next, as in Example 1, the response of the hydrogen sensor element to hydrogen gas was investigated. As shown in FIG. 6, the 90% response time was within 2 seconds at 150 ° C., but the 90% response time at 25 ° C. was 1563 seconds.
  • Example preparation (Sample preparation) Among the conditions shown in Example 1, Pd and Ta are arranged as targets of the high-frequency magnetron sputtering apparatus at the time of forming the detection film, and sputtering is changed to 572 seconds with an output Ta; 160 W, Pd; The detection film was formed without changing the conditions. The thickness of the formed detection film was 60 nm.
  • Example evaluation Next, as in Example 1, the responsiveness of the hydrogen sensor element to hydrogen gas was investigated. As shown in FIG. 7, the 90% response time is within 2 seconds at 150 ° C., but the 90% response time at 90 ° C. is 13 seconds, the 90% response time at 25 ° C. is 83 seconds, and the 90% response time at ⁇ 30 ° C. The% response time was 1560 seconds.

Abstract

Provided are: a hydrogen sensor with which hydrogen can be detected with high responsiveness in normal temperature and low temperature environments and from which a heater can be omitted; and a method for producing said hydrogen sensor. This hydrogen sensor is provided with a substrate 11 that has insulation properties, a detection film 15 that is laminated on one surface of the substrate 11 and has a ceramic parent material 16 and metal particles 17 which are dispersed in the ceramic parent material 16, and a pair of electrodes 19 that are provided on the surface of the detection film 15 so as to be separated from each other by a prescribed space, wherein the metal particles 17 comprise an alloy of Pd and at least one type of additive element selected from the group of transition metal elements other than Pd. As such, since the metal particles 17 are a multi-component alloy using the abovementioned combination, hydrogen can be detected with high responsiveness in normal temperature and low temperature environments.

Description

水素センサおよびその製造方法Hydrogen sensor and manufacturing method thereof
 本発明は、水素ガスを検知する水素センサに関し、特に自動車用燃料電池、家庭用燃料電池等の水素ガスを扱う各種装置から漏れる比較的低濃度の水素ガスの検知、または水素ガスを扱う装置内の比較的高濃度の水素ガスの制御等に好適なものに関する。 The present invention relates to a hydrogen sensor that detects hydrogen gas, and particularly to detection of relatively low concentration hydrogen gas leaking from various devices that handle hydrogen gas, such as automobile fuel cells and household fuel cells, or in a device that handles hydrogen gas. The present invention relates to a material suitable for controlling a relatively high concentration of hydrogen gas.
 従来、水素センサとして、水素ガスに触れた検知膜の出力変化を検出する素子が知られている。例えば、特許文献1記載の水素センサは、保護膜を透過した水素を、希土類金属を主成分とする検知膜の抵抗変化により検知しており、検知膜とセラミック材料内に水素感知金属粒子が分散された保護膜との抵抗の比が所定範囲に入るように構成されている。 Conventionally, as a hydrogen sensor, an element for detecting a change in output of a detection film that has come into contact with hydrogen gas is known. For example, the hydrogen sensor described in Patent Document 1 detects hydrogen that has permeated through a protective film based on a change in resistance of a detection film containing a rare earth metal as a main component, and hydrogen detection metal particles are dispersed in the detection film and the ceramic material. The ratio of the resistance to the protective film formed is configured to fall within a predetermined range.
 また、特許文献2記載の水素センサは、保護膜を有さず、窒化タンタル(TaN)からなるセラミック材料内にPdからなる金属粒子が分散された検知膜の抵抗変化により、水素を検知している。いずれの水素センサにおいても、十分な応答性で水素を検知するためには、通常、基板の下面に加熱ヒータが形成される。 Further, the hydrogen sensor described in Patent Document 2 does not have a protective film, and detects hydrogen by the resistance change of the detection film in which metal particles made of Pd are dispersed in a ceramic material made of tantalum nitride (TaN). Yes. In any hydrogen sensor, a heater is usually formed on the lower surface of the substrate in order to detect hydrogen with sufficient responsiveness.
 一方、非特許文献3には、高い水素透過性能を有する材料の開発を目的として、Pd二元系合金膜の水素透過性能の評価が開示されている。非特許文献3によれば、PdよりもPd-Ag合金やPd-希土類合金の方が高い水素透過性能を有することが見出されている。 On the other hand, Non-Patent Document 3 discloses evaluation of hydrogen permeation performance of a Pd binary alloy film for the purpose of developing a material having high hydrogen permeation performance. According to Non-Patent Document 3, it has been found that Pd—Ag alloy and Pd—rare earth alloy have higher hydrogen permeation performance than Pd.
特許第5352049号公報Japanese Patent No. 5352409 特許第5144563号公報Japanese Patent No. 5144563
 上記のように従来の水素センサでは、ヒータを設けて水素検知の応答性を確保している。図5は、水素センサの応答性の定義を示すグラフである。水素ガスを水素センサに吹き付けると水素センサの抵抗値が増加し、ある一定時間の経過後、抵抗値は一定となる。一定となった際の抵抗値と水素ガスを吹き付けていない状態の抵抗値との差(基準抵抗値の変化量)を100%としたとき、90%まで変化した時間を90%応答時間と定義する。通常、この90%応答時間の長短により水素センサの応答性が評価される。 As described above, in the conventional hydrogen sensor, a heater is provided to ensure responsiveness of hydrogen detection. FIG. 5 is a graph showing the definition of the responsiveness of the hydrogen sensor. When hydrogen gas is blown onto the hydrogen sensor, the resistance value of the hydrogen sensor increases, and the resistance value becomes constant after a certain period of time. 90% response time is defined as 90% response time when the difference between the resistance value when it is constant and the resistance value when hydrogen gas is not sprayed (change in reference resistance value) is 100%. To do. Usually, the response of the hydrogen sensor is evaluated based on the length of the 90% response time.
 従来の水素センサとして特許文献1記載の水素センサの応答性を実験により確認した。図6は、環境温度に対する特許文献1記載の水素センサの応答時間を示すグラフである。なお、特許文献1に保護膜として記載されたAlN等より、TaNが優れていることが開発過程にて見出されたため、保護膜には、TaNを採用した。このような構造の水素センサで実験したところ、図6の破線B1に示すように、150℃においては十分な応答性を示すが、25℃では応答性が低下した。Yからなる検知膜での水素の拡散が律速となるためである。 As a conventional hydrogen sensor, the response of the hydrogen sensor described in Patent Document 1 was confirmed by experiments. FIG. 6 is a graph showing the response time of the hydrogen sensor described in Patent Document 1 with respect to the environmental temperature. Note that TaN was adopted as the protective film because TaN was found to be superior to AlN described as a protective film in Patent Document 1 in the development process. As a result of an experiment using a hydrogen sensor having such a structure, as shown by a broken line B1 in FIG. This is because the diffusion of hydrogen in the detection film made of Y becomes rate limiting.
 特許文献2記載の水素センサの応答性も確認した。図7は、環境温度に対する特許文献2記載の水素センサの応答時間を示すグラフである。特許文献2記載の水素センサでは、検知膜としてYを用いておらず、図7の破線B2に示すように、上記構造よりも応答性は向上しているが、低い温度では応答性が低い。以上のように、従来の水素センサでは、ヒータが無ければ著しく応答性が低下する。なお、上記の図6、図7に示す例の詳細は、比較例として後述する。 The responsiveness of the hydrogen sensor described in Patent Document 2 was also confirmed. FIG. 7 is a graph showing the response time of the hydrogen sensor described in Patent Document 2 with respect to the environmental temperature. In the hydrogen sensor described in Patent Document 2, Y is not used as a detection film, and as shown by a broken line B2 in FIG. 7, the response is improved as compared with the above structure, but the response is low at a low temperature. As described above, in the conventional hydrogen sensor, if there is no heater, the responsiveness is significantly lowered. Details of the examples shown in FIGS. 6 and 7 will be described later as comparative examples.
 しかし、ヒータを設けると、ヒータ自体やその制御回路の製造コストが嵩む。特に、ヒータの制御回路は、要する部品の点数が多いため、高コストの要因となる。 However, providing a heater increases the manufacturing cost of the heater itself and its control circuit. In particular, since the heater control circuit requires a large number of parts, it becomes a high cost factor.
 本発明は、このような事情に鑑みてなされたものであり、常温や低温の環境でも高い応答性で水素を検知でき、ヒータを省くことができる水素センサおよびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydrogen sensor that can detect hydrogen with high responsiveness even in a room temperature or low temperature environment, and that can omit a heater, and a method for manufacturing the same. And
 (1)上記の目的を達成するため、本発明の水素センサは、絶縁性を有する基板と、前記基板の一方の面に積層され、セラミック母材および前記セラミック母材内に分散された金属粒子を有する検知膜と、前記検知膜の表面に、互いに所定間隔離れて設けられた一対の電極と、を備え、前記金属粒子は、Pdと、Pd以外の遷移金属の元素群から選択される一種以上の添加元素との合金からなることを特徴としている。 (1) In order to achieve the above object, a hydrogen sensor according to the present invention includes an insulating substrate and a metal particle laminated on one surface of the substrate and dispersed in the ceramic matrix and the ceramic matrix. And a pair of electrodes provided on the surface of the detection film at a predetermined distance from each other, wherein the metal particles are selected from Pd and a group of transition metal elements other than Pd It is characterized by comprising an alloy with the above additive elements.
 このように、金属粒子が上記の組み合わせの多元系合金であることで、常温や低温の環境でも高い応答性で水素を検知できる。その結果、従来の水素センサの構造には欠かせなかったヒータを省くことができる。そして、ヒータを可動させる制御回路に要する部品の点数を削減でき、製造コストを低減できる。また、ヒータの駆動にかかっていた分の電力の消費を抑えることができる。 Thus, hydrogen can be detected with high responsiveness even in an environment of normal temperature or low temperature because the metal particle is a multi-component alloy of the above combination. As a result, the heater that is indispensable for the structure of the conventional hydrogen sensor can be omitted. And the number of parts required for the control circuit for moving the heater can be reduced, and the manufacturing cost can be reduced. In addition, it is possible to suppress power consumption corresponding to the driving of the heater.
 (2)また、本発明の水素センサは、前記検知膜の厚みが、5~80nmであることを特徴としている。このように膜厚が5nm以上であることで検知膜は十分な耐久性を維持できる。また、膜厚が80nm以下であることで応答性を確保しつつ製造コストを低く維持できる。 (2) Further, the hydrogen sensor of the present invention is characterized in that the thickness of the detection film is 5 to 80 nm. As described above, when the film thickness is 5 nm or more, the detection film can maintain sufficient durability. In addition, since the film thickness is 80 nm or less, the manufacturing cost can be kept low while ensuring the responsiveness.
 (3)また、本発明の水素センサは、前記金属粒子が、前記検知膜中に50~90質量%含有されていることを特徴としている。金属粒子の含有量が50質量%以上であるため、十分な応答性を確保でき、90質量%以下であるため、膜厚を薄くした際でも検知膜の機械的強度を維持できる。 (3) The hydrogen sensor of the present invention is characterized in that the metal particles are contained in an amount of 50 to 90% by mass in the detection film. Since the content of the metal particles is 50% by mass or more, sufficient responsiveness can be secured, and since the content is 90% by mass or less, the mechanical strength of the detection film can be maintained even when the film thickness is reduced.
 (4)また、本発明の水素センサは、前記金属粒子が、5~30質量%の前記添加元素を含有することを特徴としている。検知膜内の金属粒子をこのような組成とすることで、常温や低温の環境でも高い応答性で水素を検知できる。 (4) Further, the hydrogen sensor of the present invention is characterized in that the metal particles contain 5 to 30% by mass of the additive element. By setting the metal particles in the detection film to such a composition, it is possible to detect hydrogen with high responsiveness even in a room temperature or low temperature environment.
 (5)また、本発明の水素センサは、前記添加元素が、Ag、Y、Sm、Gd、Tb、Dy、Ho、Er、YbおよびLuの群から選択される一種以上の元素であることを特徴としている。これにより、水素検知の応答性を向上できる。 (5) In the hydrogen sensor according to the present invention, the additive element may be one or more elements selected from the group consisting of Ag, Y, Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu. It is a feature. Thereby, the responsiveness of hydrogen detection can be improved.
 (6)また、本発明の水素センサは、前記添加元素が、一種のみであることを特徴としている。これにより、常温や低温の環境での水素検知についてさらに応答性を高くすることができる。 (6) Further, the hydrogen sensor of the present invention is characterized in that the additive element is only one kind. Thereby, it is possible to further increase the responsiveness for hydrogen detection in a room temperature or low temperature environment.
 (7)また、本発明の水素センサは、前記添加元素が、Agであることを特徴としている。これにより、常温や低温の環境での水素検知についてさらに応答性を高くすることができる。また、Agは容易に入手でき、製造コストを低減できる。 (7) Further, the hydrogen sensor of the present invention is characterized in that the additive element is Ag. Thereby, it is possible to further increase the responsiveness for hydrogen detection in a room temperature or low temperature environment. Moreover, Ag can be easily obtained and manufacturing cost can be reduced.
 (8)また、本発明の水素センサは、前記セラミック母材の材料が、AlNx1(0.5≦x1≦1)、AlOx2(0.8≦x2≦1.5)、SiNx3(0.7≦x3≦1.3)、SiOx4(1≦x4≦2)、TaNx5(0.5≦x5≦1)およびTaOx6(1≦x6≦2.5)からなる群から選択される少なくとも一種で構成されることを特徴としている。この構造により検知膜は、保護膜等を有さない単層膜により、水素濃度の検出が可能であり、ヒステリシス特性によるセンサ精度の低下を防止できる。 (8) In the hydrogen sensor of the present invention, the ceramic base material is made of AlN x1 (0.5 ≦ x1 ≦ 1), AlO x2 (0.8 ≦ x2 ≦ 1.5), SiN x3 (0 .7 ≦ x3 ≦ 1.3), SiO x4 (1 ≦ x4 ≦ 2), TaN x5 (0.5 ≦ x5 ≦ 1) and TaO x6 (1 ≦ x6 ≦ 2.5). It is characterized by comprising at least one kind. With this structure, the detection film can detect the hydrogen concentration by a single-layer film that does not have a protective film or the like, and can prevent deterioration in sensor accuracy due to hysteresis characteristics.
 (9)また、本発明の水素センサは、前記基板と前記検知膜との間に、前記セラミック母材の材料と同種の材料からなるバッファ層を更に備えることを特徴としている。これにより、基板材質とセラミック層の材質との間の格子定数の違いにより生じる膜ストレスを緩和させ、検知膜の耐久性を向上できる。 (9) The hydrogen sensor of the present invention is further characterized in that a buffer layer made of the same kind of material as the ceramic base material is further provided between the substrate and the detection film. Thereby, the film stress caused by the difference in lattice constant between the substrate material and the ceramic layer material can be alleviated, and the durability of the detection film can be improved.
 (10)また、本発明の水素センサの製造方法は、アルゴンガスと窒素ガスまたは酸素ガスとの雰囲気下で、セラミック母材用および金属粒子用の各成膜材料に対し気相成長法またはスパッタリング法により基板面に検知膜を形成する工程と、アルゴンガス雰囲気下で、電極用の成膜材料に対し気相成長法またはスパッタリング法により前記検知膜上に電極を形成する工程と、を含み、前記金属粒子用の各成膜材料は、Pdと、Pd以外の遷移金属の元素群から選択される一種以上の添加元素とからなることを特徴としている。このように、金属粒子が上記の組み合わせの多元系合金で形成されることで、常温や低温の環境でも高い応答性で水素を検知できる水素センサを製造できる。 (10) Further, the method for producing a hydrogen sensor according to the present invention includes a vapor phase growth method or sputtering for each film forming material for a ceramic base material and a metal particle in an atmosphere of argon gas and nitrogen gas or oxygen gas. Forming a sensing film on the substrate surface by a method, and forming an electrode on the sensing film by vapor deposition or sputtering for a film forming material for an electrode under an argon gas atmosphere, Each film forming material for the metal particles is characterized by comprising Pd and one or more additive elements selected from a group of transition metal elements other than Pd. As described above, when the metal particles are formed of the above-described multicomponent alloy, a hydrogen sensor that can detect hydrogen with high responsiveness even in an environment of normal temperature or low temperature can be manufactured.
 本発明によれば、常温や低温の環境でも高い応答性で水素を検知でき、従来必要だったヒータを省くことができる。 According to the present invention, hydrogen can be detected with high responsiveness even in a room temperature or low temperature environment, and a heater that has been conventionally required can be omitted.
本発明の水素センサの概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the hydrogen sensor of this invention. 特許文献1、2記載および本発明の水素センサについて環境温度に対する応答時間を示すグラフである。It is a graph which shows the response time with respect to environmental temperature about patent document 1, 2 description and the hydrogen sensor of this invention. (a)(b)それぞれ本発明および従来の燃料電池車における水素センサおよびその周辺回路を示すブロック図である。(A) (b) It is a block diagram which shows the hydrogen sensor and its peripheral circuit in this invention and the conventional fuel cell vehicle, respectively. 実施例1の応答時間を示すグラフである。3 is a graph showing the response time of Example 1. 水素センサの応答性の定義を示すグラフである。It is a graph which shows the definition of the responsiveness of a hydrogen sensor. 環境温度に対する特許文献1記載の水素センサの応答時間を示すグラフである。It is a graph which shows the response time of the hydrogen sensor of patent document 1 with respect to environmental temperature. 環境温度に対する特許文献2記載の水素センサの応答時間を示すグラフである。It is a graph which shows the response time of the hydrogen sensor of patent document 2 with respect to environmental temperature.
 次に、本発明の実施の形態について、図面を参照しながら説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
 [水素センサ素子の構造]
 図1は、本発明の水素センサ10の概略の構成を示す断面図である。図1に示すように、水素センサ10は、基板11、バッファ層13、検知膜15、電極19を備えている。基板11の上面にはTaNからなるバッファ層13が形成され、バッファ層13の上面には、検知膜15が形成されている。検知膜15は、セラミック母材16と、セラミック母材16の厚さ方向にその軸心を配向させてセラミック母材内に分散された金属粒子17とから構成された複合材料である。金属粒子17は、少なくともPd-Agを材料とするときには柱状に形成される。検知膜15の表面には、検知膜15にのみ接して両端側に1対の電極19が表面に平行に設けられている。なお、図1は模式的に構成を示しており、必ずしも実際の水素センサ10の寸法に対応していない。
[Structure of hydrogen sensor element]
FIG. 1 is a cross-sectional view showing a schematic configuration of a hydrogen sensor 10 of the present invention. As shown in FIG. 1, the hydrogen sensor 10 includes a substrate 11, a buffer layer 13, a detection film 15, and an electrode 19. A buffer layer 13 made of TaN is formed on the upper surface of the substrate 11, and a detection film 15 is formed on the upper surface of the buffer layer 13. The detection film 15 is a composite material composed of a ceramic base material 16 and metal particles 17 having an axis oriented in the thickness direction of the ceramic base material 16 and dispersed in the ceramic base material. The metal particles 17 are formed in a column shape when at least Pd—Ag is used as a material. On the surface of the detection film 15, a pair of electrodes 19 are provided in parallel with the surface on both ends in contact with only the detection film 15. FIG. 1 schematically shows the configuration, and does not necessarily correspond to the actual size of the hydrogen sensor 10.
 (基板)
 基板11には、ガラス板、セラミックス板、またはサファイア、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)等の単結晶板等の絶縁性板を用いることができる。なお、従来は、ヒータからの熱伝導性を確保するために高価なサファイア基板が好適であったが、水素センサ10では、ヒータが不要なため、安価なガラス基板を用いることができる。基板11の下面(検知膜15の反対側の面)に、加熱ヒータは設けられていない。
(substrate)
As the substrate 11, an insulating plate such as a glass plate, a ceramic plate, or a single crystal plate such as sapphire, zinc oxide (ZnO), or magnesium oxide (MgO) can be used. Conventionally, an expensive sapphire substrate is suitable for securing thermal conductivity from the heater, but the hydrogen sensor 10 does not require a heater, so an inexpensive glass substrate can be used. The heater is not provided on the lower surface of the substrate 11 (the surface opposite to the detection film 15).
 (バッファ層)
 基板11と検知膜15の間には、バッファ層13が形成されていることが好ましい。そして、バッファ層13はセラミック母材16の材料と同種の材料からなることが好ましく、特にTaNからなることが好ましい。バッファ層13の介在により、基板11の材質とセラミック母材16の材質との間で格子定数の違いにより生じる膜ストレスを緩和させ、検知膜15の耐久性を向上できる。バッファ層13の厚みは10~200nmであることが好ましい。バッファ層13の厚みが10nm未満であると検知膜15の耐久性への効果が殆どなく、200nmを超えると製造コストがかかりすぎる。
(Buffer layer)
A buffer layer 13 is preferably formed between the substrate 11 and the detection film 15. The buffer layer 13 is preferably made of the same material as the material of the ceramic base material 16, and is particularly preferably made of TaN. By interposing the buffer layer 13, the film stress caused by the difference in lattice constant between the material of the substrate 11 and the material of the ceramic base material 16 can be alleviated, and the durability of the detection film 15 can be improved. The thickness of the buffer layer 13 is preferably 10 to 200 nm. When the thickness of the buffer layer 13 is less than 10 nm, there is almost no effect on the durability of the detection film 15, and when it exceeds 200 nm, the manufacturing cost is too high.
 (検知膜)
 検知膜15は、バッファ層13の上面に設けられることで基板11の一方の面に積層され、セラミック母材16およびセラミック母材16内に分散された柱状の金属粒子17を有する。
(Detection membrane)
The detection film 15 is provided on the upper surface of the buffer layer 13, is laminated on one surface of the substrate 11, and includes a ceramic base material 16 and columnar metal particles 17 dispersed in the ceramic base material 16.
 セラミック母材16の材料は、AlNx1(0.5≦x1≦1)、AlOx2(0.8≦x2≦1.5)、SiNx3(0.7≦x3≦1.3)、SiOx4(1≦x4≦2)、TaNx5(0.5≦x5≦1)およびTaOx6(1≦x6≦2.5)からなる群から選択される少なくとも一種で構成することができる。この構造により検知膜15は、保護膜等を有さない単層膜により、水素濃度の検出が可能であり、ヒステリシス特性によるセンサ精度の低下を防止できる。なお、上記のうちセラミック母材16にはTaNを用いることが特に好ましい。 The material of the ceramic base material 16 is AlN x1 (0.5 ≦ x1 ≦ 1), AlO x2 (0.8 ≦ x2 ≦ 1.5), SiN x3 (0.7 ≦ x3 ≦ 1.3), SiO x4 (1 ≦ x4 ≦ 2), TaN x5 (0.5 ≦ x5 ≦ 1) and TaO x6 (1 ≦ x6 ≦ 2.5). With this structure, the detection film 15 can detect the hydrogen concentration by a single layer film that does not have a protective film or the like, and can prevent a decrease in sensor accuracy due to hysteresis characteristics. Of the above, TaN is particularly preferably used for the ceramic base material 16.
 検知膜15の膜厚は5~80nmが好ましい。膜厚が5nm未満の場合、検知膜15の強度が不足する一方、80nmを超えると、検知膜15の抵抗値自体は大きく変わらないが、検知膜15の容量の増加に伴う応答性の低下、製造コストの上昇等を招く。 The thickness of the detection film 15 is preferably 5 to 80 nm. When the film thickness is less than 5 nm, the strength of the detection film 15 is insufficient. On the other hand, when the film thickness exceeds 80 nm, the resistance value of the detection film 15 does not change significantly, but the responsiveness decreases as the capacitance of the detection film 15 increases. This leads to an increase in manufacturing costs.
 検知膜15中の金属粒子17の含有量は50~90質量%が好ましい。金属粒子17の含有量が50質量%未満であると、応答性が低下する。一方、含有量が90質量%を超えると、膜厚を薄くした際検知膜15の機械的強度が不十分となる。 The content of the metal particles 17 in the detection film 15 is preferably 50 to 90% by mass. Responsiveness falls that content of the metal particle 17 is less than 50 mass%. On the other hand, if the content exceeds 90% by mass, the mechanical strength of the detection film 15 becomes insufficient when the film thickness is reduced.
 金属粒子17の軸心は、セラミック母材16の厚さ方向に配向している。金属粒子17の長手方向の大きさは1~10nmである。なお、金属粒子17の長手方向の大きさは検知膜15の厚さよりも小さい。金属粒子17の幅方向の大きさは1~5nmである。 The axis of the metal particles 17 is oriented in the thickness direction of the ceramic base material 16. The size of the metal particles 17 in the longitudinal direction is 1 to 10 nm. The size of the metal particles 17 in the longitudinal direction is smaller than the thickness of the detection film 15. The size of the metal particles 17 in the width direction is 1 to 5 nm.
 金属粒子17は、Pdと、Pd以外の遷移金属の元素群から選択される一種以上の添加元素との合金からなる。Pd以外の遷移金属の元素としては、Agおよび希土類元素が挙げられる。また、Agおよび希土類元素の希土類元素としては、Y、Sm、Gd、Tb、Dy、Ho、Er、YbおよびLuが挙げられる。金属粒子17がこのような多元系合金(三元系以下が好適)であることで、常温や低温の環境でも高い応答性で水素を検知できる。その結果、従来の水素センサの構造には欠かせなかったヒータを省くことができる。そして、ヒータを可動させる制御回路に要する部品の点数を削減でき、製造コストを低減できる。また、ヒータの駆動電力の消費を抑えることができる。 The metal particles 17 are made of an alloy of Pd and one or more additive elements selected from a group of transition metal elements other than Pd. Examples of transition metal elements other than Pd include Ag and rare earth elements. Examples of rare earth elements of Ag and rare earth elements include Y, Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Since the metal particles 17 are such a multi-component alloy (preferably a ternary system or less), hydrogen can be detected with high responsiveness even in a room temperature or low temperature environment. As a result, the heater that is indispensable for the structure of the conventional hydrogen sensor can be omitted. And the number of parts required for the control circuit for moving the heater can be reduced, and the manufacturing cost can be reduced. In addition, consumption of heater driving power can be suppressed.
 金属粒子17は、5~30質量%の添加元素を含有することが好ましい。検知膜15内の金属粒子をこのような組成とすることで、常温や低温の環境でも高い応答性で水素を検知できる。 The metal particles 17 preferably contain 5 to 30% by mass of additive elements. By making the metal particles in the detection film 15 have such a composition, hydrogen can be detected with high responsiveness even in an environment of normal temperature or low temperature.
 添加元素を、一種のみとし、水素感知金属は二元系合金とすることが好ましい。これにより、さらに応答性を高くすることができる。また、添加元素は、Agであることが好ましい。これにより、さらに応答性を向上できる。また、Agは容易に入手できるため、製造コストを低減できる。 It is preferable that the additive element is only one kind and the hydrogen sensing metal is a binary alloy. Thereby, the responsiveness can be further increased. Further, the additive element is preferably Ag. Thereby, the responsiveness can be further improved. Moreover, since Ag can be easily obtained, manufacturing cost can be reduced.
 (電極)
 一対の電極19は、検知膜15の表面に、互いに所定間隔離れて設けられている。電極19には、金、白金、パラジウム、チタン、アルミニウム、銅、銀等の導電性材料を用いることができる。このうち、金、銅、白金が好ましく、金がより好ましい。電極19の厚みは5~1000nmが好ましく、50~300nmがより好ましい。厚みが5nm未満の場合には電極の形成自体が困難であり、1000nmを超える場合には製造コストが高くなる傾向がある。
(electrode)
The pair of electrodes 19 are provided on the surface of the detection film 15 at a predetermined distance from each other. For the electrode 19, a conductive material such as gold, platinum, palladium, titanium, aluminum, copper, or silver can be used. Among these, gold, copper, and platinum are preferable, and gold is more preferable. The thickness of the electrode 19 is preferably 5 to 1000 nm, more preferably 50 to 300 nm. When the thickness is less than 5 nm, it is difficult to form the electrode itself, and when it exceeds 1000 nm, the manufacturing cost tends to increase.
 (応答性)
 上記のように構成された水素センサ10は、特許文献1、2記載の水素センサと比べて低温環境での応答性に優れている。図2は、それぞれ特許文献1、2記載および本発明の水素センサについて環境温度に対する応答時間を示すグラフである。破線A1は、水素センサ10の応答性、破線B1、B2は、それぞれ特許文献1、2記載の水素センサの応答性を示している。図2に示す実験結果の詳細については後述する。
(responsiveness)
The hydrogen sensor 10 configured as described above is superior in responsiveness in a low temperature environment as compared with the hydrogen sensors described in Patent Documents 1 and 2. FIG. 2 is a graph showing the response time with respect to the environmental temperature for Patent Documents 1 and 2 and the hydrogen sensor of the present invention, respectively. A broken line A1 indicates the responsiveness of the hydrogen sensor 10, and broken lines B1 and B2 indicate the responsiveness of the hydrogen sensor described in Patent Documents 1 and 2, respectively. Details of the experimental results shown in FIG. 2 will be described later.
 [水素検知システムへの応用例]
 次に、水素センサ10を燃料電池車に応用した例を説明する。図3(a)は、水素センサ10を採用した燃料電池車の水素検知システム100を示すブロック図である。図3(b)は、従来の水素センサを採用した燃料電池車の水素検知システム200を示すブロック図である。図3(a)で、破線で示す各部は不要となり、構成に含まれないことを示している。
[Example of application to hydrogen detection system]
Next, an example in which the hydrogen sensor 10 is applied to a fuel cell vehicle will be described. FIG. 3A is a block diagram showing a hydrogen detection system 100 for a fuel cell vehicle employing the hydrogen sensor 10. FIG. 3B is a block diagram showing a hydrogen detection system 200 for a fuel cell vehicle employing a conventional hydrogen sensor. In FIG. 3A, each part indicated by a broken line is not necessary and is not included in the configuration.
 水素検知システム100においては、水素検知システム200に比べて水素センサ10にヒータを設ける必要がない。これに伴い、制御部では、ヒータ駆動部、ヒータ駆動部を制御するマイコン、水素検知信号を上位ECUに伝えるための制御を行うマイコン、インタフェースが不要となる。 In the hydrogen detection system 100, it is not necessary to provide a heater in the hydrogen sensor 10 compared to the hydrogen detection system 200. Accordingly, the controller does not require a heater driving unit, a microcomputer that controls the heater driving unit, a microcomputer that performs control for transmitting a hydrogen detection signal to the host ECU, and an interface.
 このように、水素センサ10を採用すれば、ヒータ形成、ヒータを稼働させる制御回路に要する部品点数を削減できるため、水素検知システム100の製造コストを低減できる。具体的に部品点数を計測したところ、部品点数が13から3(-77%)、回路部品点数が65から26(-60%)に削減されることを試算できた。また、水素検知システム100では、ヒータを駆動させるための電力の消費が抑えられるため、従来のシステムより低消費電力となる。具体的には、消費電力が1000mWから200mW(-80%)となることを試算できた。 Thus, if the hydrogen sensor 10 is employed, the number of parts required for the heater formation and the control circuit for operating the heater can be reduced, so that the manufacturing cost of the hydrogen detection system 100 can be reduced. Specifically, when the number of parts was measured, it was estimated that the number of parts was reduced from 13 to 3 (−77%) and the number of circuit parts was reduced from 65 to 26 (−60%). Further, in the hydrogen detection system 100, since power consumption for driving the heater is suppressed, the power consumption is lower than that of the conventional system. Specifically, it was estimated that the power consumption would be 1000 mW to 200 mW (−80%).
 [水素センサの製造方法]
 水素センサ10は、例えば、以下の方法により製造できる。最初に基板11の少なくとも片面に気相成長法またはスパッタリング法によりバッファ層13を形成させる。バッファ層13の形成は、Taをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で、公知の高周波マグネトロンスパッタリング装置を用いて行う。ただし、バッファ層13の形成は必須ではない。
[Method of manufacturing hydrogen sensor]
The hydrogen sensor 10 can be manufactured by the following method, for example. First, the buffer layer 13 is formed on at least one surface of the substrate 11 by vapor deposition or sputtering. The buffer layer 13 is formed by using a known high-frequency magnetron sputtering apparatus with Ta as a target in an atmosphere of argon gas and nitrogen gas. However, the formation of the buffer layer 13 is not essential.
 次いで、バッファ層13の上に気相成長法またはスパッタリング法により検知膜15を形成させる。バッファ層13を形成させない場合は基板の上に気相成長法またはスパッタリング法により検知膜15を形成する。検知膜15の形成は水素感知金属とTaとをターゲットとして、アルゴンガスと窒素ガスとの雰囲気下で公知の高周波マグネトロンスパッタリング装置を用いて行う。なお、Taのターゲットは、Al、Siで構成されていてもよく、アルゴンガスと酸素ガスとの雰囲気下で検知膜の形成を行ってもよい。 Next, the detection film 15 is formed on the buffer layer 13 by vapor deposition or sputtering. When the buffer layer 13 is not formed, the detection film 15 is formed on the substrate by vapor deposition or sputtering. The detection film 15 is formed by using a known high-frequency magnetron sputtering apparatus in an atmosphere of argon gas and nitrogen gas with a hydrogen sensing metal and Ta as targets. The Ta target may be made of Al or Si, and the detection film may be formed in an atmosphere of argon gas and oxygen gas.
 複合材料として形成される検知膜15は、基材またはバッファ層13の上にTaNと金属粒子を同時に気相成長またはスパッタリングする方法により形成できる。セラミック母材16用にTaを用い、金属粒子17用の材料であるPdおよび添加元素と共にアルゴンと窒素の混合ガス雰囲気下で形成させる。例えば、Taターゲットの上にTaターゲットよりも小面積のPdおよび添加元素のチップを載置した複合ターゲットを用い、ターゲットの上方に基板を取付けた状態で、複合ターゲットをスパッタすればよい。スパッタはアルゴンと窒素の混合ガス雰囲気で行う。このようにして、検知膜15を形成できる。 The detection film 15 formed as a composite material can be formed on the base material or the buffer layer 13 by a method in which TaN and metal particles are simultaneously vapor-grown or sputtered. Ta is used for the ceramic base material 16 and is formed in a mixed gas atmosphere of argon and nitrogen together with Pd as a material for the metal particles 17 and an additive element. For example, the composite target may be sputtered using a composite target in which a chip of Pd and an additive element having a smaller area than the Ta target is placed on the Ta target, and a substrate is attached above the target. Sputtering is performed in a mixed gas atmosphere of argon and nitrogen. In this way, the detection film 15 can be formed.
 添加元素は、Agおよび希土類元素の群から選択される一種以上の添加元素とする。このようにして、常温や低温の環境でも高い応答性で水素を検知できる水素センサを製造できる。添加元素に、Agを用いる場合には容易に応答性を向上できる。Agは、希土類元素より反応活性が低いため、Pd-Agの二元系合金を作製しやすい。 The additive element is one or more additive elements selected from the group consisting of Ag and rare earth elements. In this way, it is possible to manufacture a hydrogen sensor that can detect hydrogen with high responsiveness even in a room temperature or low temperature environment. When Ag is used as the additive element, the responsiveness can be easily improved. Since Ag has a lower reaction activity than rare earth elements, it is easy to produce a Pd—Ag binary alloy.
 また、Taターゲットおよび金属粒子用ターゲットを用いる多元同時スパッタを、混合ガス雰囲気で行う。金属粒子の軸方向を厚さ方向に一致させるには組み合わせる材料に応じてセラミックス材料および水素感知金属の界面エネルギーを考慮する。 Also, multi-source simultaneous sputtering using a Ta target and a metal particle target is performed in a mixed gas atmosphere. In order to make the axial direction of the metal particles coincide with the thickness direction, the interfacial energy of the ceramic material and the hydrogen-sensing metal is considered according to the material to be combined.
 次に、検知膜15上に気相成長法またはスパッタリング法により電極19を形成する。電極19の形成は、例えばAuをターゲットとして、アルゴンガス雰囲気下で公知の高周波マグネトロンスパッタリング装置を用いて行う。電極19の形成方法としては、気相成長法またはスパッタリング法を用いることができる。 Next, the electrode 19 is formed on the detection film 15 by vapor phase epitaxy or sputtering. The electrode 19 is formed, for example, using a known high-frequency magnetron sputtering apparatus in an argon gas atmosphere with Au as a target. As a method for forming the electrode 19, a vapor phase growth method or a sputtering method can be used.
 [実施例1]
 (試料の作製)
 高周波スパッタリング装置を用いて、水素センサを作製した。まず、高周波スパッタリング装置内に、基板として幅25.4mm、長さ25.4mm、厚さ:0.33mmのガラス基板を用い、基板上にメタルマスクを配置した。Pd-AgとTaのターゲットとを配置し、装置内を1×10-4Pa程度まで減圧した。金属粒子の生成用に、Pdが77質量%、Agが23質量%のターゲットを使用した。
[Example 1]
(Sample preparation)
A hydrogen sensor was fabricated using a high frequency sputtering apparatus. First, in the high frequency sputtering apparatus, a glass substrate having a width of 25.4 mm, a length of 25.4 mm, and a thickness of 0.33 mm was used as a substrate, and a metal mask was disposed on the substrate. A Pd—Ag and Ta target was placed, and the inside of the apparatus was depressurized to about 1 × 10 −4 Pa. For the production of metal particles, a target having Pd of 77 mass% and Ag of 23 mass% was used.
 次いで、装置内にアルゴンガスと窒素ガス(圧力比40:60Pa)を導入し、圧力9×10-1Pa、基板温度230℃、出力Ta;200Wでスパッタリングを400秒間行った。その結果、基板上にTaNからなるバッファ層が形成された。形成されたバッファ層の厚みは30nmであった。 Subsequently, argon gas and nitrogen gas (pressure ratio 40:60 Pa) were introduced into the apparatus, and sputtering was performed for 400 seconds at a pressure of 9 × 10 −1 Pa, a substrate temperature of 230 ° C., and an output Ta of 200 W. As a result, a buffer layer made of TaN was formed on the substrate. The thickness of the formed buffer layer was 30 nm.
 次に、装置内のアルゴンガスと窒素ガス(圧力比40:60Pa)を導入し、圧力9×10-1Pa、基板温度230℃、出力Ta;160W、Pd-Ag;70Wでスパッタリングを414秒間行った。その結果、バッファ層の上にTaN-Pd-Agからなる検知膜が形成された。形成された検知膜の厚みは60nmであった。 Next, argon gas and nitrogen gas (pressure ratio 40:60 Pa) in the apparatus were introduced, and sputtering was performed for 414 seconds at a pressure of 9 × 10 −1 Pa, a substrate temperature of 230 ° C., output Ta: 160 W, Pd—Ag; 70 W. went. As a result, a detection film made of TaN—Pd—Ag was formed on the buffer layer. The thickness of the formed detection film was 60 nm.
 また、検知膜の組成をEDXにて分析した結果、Pdが70質量%、Agが10質量%、TaNが20質量%であった。なお、EDX分析を行う際は膜厚を1μmと厚くした試料で測定した。 Further, as a result of analyzing the composition of the detection film by EDX, Pd was 70% by mass, Ag was 10% by mass, and TaN was 20% by mass. In addition, when performing EDX analysis, it measured with the sample which made the film thickness as thick as 1 micrometer.
 その後、装置内のアルゴンガスを導入し、圧力9×10-1Pa、基板温度:130℃、出力Au:100Wでスパッタリングを200秒間行った。その結果、検知膜上にAuからなる素子電極が形成される水素センサを得た。形成された素子電極の厚みは200nmであった。 Thereafter, argon gas in the apparatus was introduced, and sputtering was performed for 200 seconds at a pressure of 9 × 10 −1 Pa, a substrate temperature: 130 ° C., and an output Au: 100 W. As a result, a hydrogen sensor in which an element electrode made of Au was formed on the detection film was obtained. The thickness of the formed device electrode was 200 nm.
 (試料の評価)
 次に、得られた水素センサの水素ガスに対する応答性を調査した。この水素センサ素子を用いて、水素濃度100%のガスを毎分2lで流して、素子抵抗値を測定した。測定温度は-30℃~150℃について行った。
(Sample evaluation)
Next, the response of the obtained hydrogen sensor to hydrogen gas was investigated. Using this hydrogen sensor element, a gas having a hydrogen concentration of 100% was flowed at a rate of 2 l / min, and the element resistance value was measured. The measurement temperature was −30 ° C. to 150 ° C.
 なお、水素濃度0%の際の素子抵抗値と水素濃度100%の際の素子抵抗値の変化量に対して、90%の素子抵抗値変化量となった際の応答時間を90%応答時間と定義し、測定温度と90%応答時間の相関性を得た。図4(b)は、応答時間のグラフを示す図である。図4(b)に示すように、25℃~150℃においては90%応答時間が2秒以内、-30℃においては90%応答時間が7秒となった。上記の例では、検知膜の金属粒子をPd-Agで構成しているが、これに限定されるものではない。 Note that the response time when the element resistance change amount is 90% is 90% response time with respect to the change amount of the element resistance value when the hydrogen concentration is 0% and the change amount of the element resistance value when the hydrogen concentration is 100%. The correlation between the measured temperature and 90% response time was obtained. FIG. 4B is a graph showing a response time. As shown in FIG. 4B, the 90% response time was within 2 seconds at 25 ° C. to 150 ° C., and the 90% response time was 7 seconds at −30 ° C. In the above example, the metal particles of the detection film are made of Pd—Ag, but are not limited to this.
 [比較例1]
 (試料の作製)
 実施例1に示した条件にてバッファ層を形成後、検知膜成膜時における高周波マグネトロンスパッタリング装置のターゲットとしてPdとTaとYとを配置し、アルゴンガスのみを導入して、圧力9×10-1Pa、基板温度230℃、出力Y;100Wでスパッタリングを232秒間行った。その結果、バッファ層の上にYからなる検知膜が形成された。形成された検知膜の厚みは60nmであった。
[Comparative Example 1]
(Sample preparation)
After forming the buffer layer under the conditions shown in Example 1, Pd, Ta, and Y are arranged as targets of the high-frequency magnetron sputtering apparatus at the time of forming the detection film, and only argon gas is introduced, and the pressure is 9 × 10. Sputtering was performed at −1 Pa, substrate temperature 230 ° C., output Y; 100 W for 232 seconds. As a result, a detection film made of Y was formed on the buffer layer. The thickness of the formed detection film was 60 nm.
 次いで、装置内のアルゴンガスと窒素ガス(圧力比40:60Pa)を導入し、圧力9×10-1Pa、基板温度230℃、出力Ta;160W、Pd;35Wでスパッタリングを460秒間行った。その結果、検知膜の上にTaN-Pdからなる保護膜が形成された。形成された保護膜の厚みは50nmであった。 Next, argon gas and nitrogen gas (pressure ratio: 40:60 Pa) in the apparatus were introduced, and sputtering was performed for 460 seconds at a pressure of 9 × 10 −1 Pa, a substrate temperature of 230 ° C., an output Ta: 160 W, and Pd: 35 W. As a result, a protective film made of TaN—Pd was formed on the detection film. The thickness of the formed protective film was 50 nm.
 (試料の評価)
 次に、実施例1と同様に水素センサ素子の水素ガスに対する応答性を調査した。図6に示すように、150℃においては90%応答時間が2秒以内となるが、25℃における90%応答時間は1563秒であった。
(Sample evaluation)
Next, as in Example 1, the response of the hydrogen sensor element to hydrogen gas was investigated. As shown in FIG. 6, the 90% response time was within 2 seconds at 150 ° C., but the 90% response time at 25 ° C. was 1563 seconds.
 [比較例2]
 (試料の作製)
 実施例1に示した条件の内、検知膜成膜時における高周波マグネトロンスパッタリング装置のターゲットとしてPdとTaとを配置し、出力Ta;160W、Pd;38Wでスパッタリングを572秒間に変更し、他の条件は変更せずに検知膜を形成させた。形成させた検知膜の厚みは60nmであった。
[Comparative Example 2]
(Sample preparation)
Among the conditions shown in Example 1, Pd and Ta are arranged as targets of the high-frequency magnetron sputtering apparatus at the time of forming the detection film, and sputtering is changed to 572 seconds with an output Ta; 160 W, Pd; The detection film was formed without changing the conditions. The thickness of the formed detection film was 60 nm.
 また、検知膜の組成をEDXにて分析した結果、Pdが73質量%、TaNが27質量%であった。 Further, as a result of analyzing the composition of the detection film by EDX, Pd was 73 mass% and TaN was 27 mass%.
 (試料の評価)
 次に実施例1と同様に水素センサ素子の水素ガスに対する応答性を調査した。図7に示すように、150℃においては90%応答時間が2秒以内となるが、90℃における90%応答時間は13秒、25℃における90%応答時間は83秒、-30℃における90%応答時間は1560秒であった。
(Sample evaluation)
Next, as in Example 1, the responsiveness of the hydrogen sensor element to hydrogen gas was investigated. As shown in FIG. 7, the 90% response time is within 2 seconds at 150 ° C., but the 90% response time at 90 ° C. is 13 seconds, the 90% response time at 25 ° C. is 83 seconds, and the 90% response time at −30 ° C. The% response time was 1560 seconds.
10 水素センサ
11 基板
13 バッファ層
15 検知膜
16 セラミック母材
17 金属粒子
19 電極
100 水素検知システム
DESCRIPTION OF SYMBOLS 10 Hydrogen sensor 11 Board | substrate 13 Buffer layer 15 Detection film | membrane 16 Ceramic base material 17 Metal particle 19 Electrode 100 Hydrogen detection system

Claims (10)

  1.  絶縁性を有する基板と、
     前記基板の一方の面に積層され、セラミック母材および前記セラミック母材内に分散された金属粒子を有する検知膜と、
     前記検知膜の表面に、互いに所定間隔離れて設けられた一対の電極と、を備え、
     前記金属粒子は、Pdと、Pd以外の遷移金属の元素群から選択される一種以上の添加元素との合金からなることを特徴とする水素センサ。
    An insulating substrate;
    A sensing film having a ceramic matrix and metal particles dispersed in the ceramic matrix, laminated on one side of the substrate;
    A pair of electrodes provided on the surface of the detection film at a predetermined interval from each other,
    The metal particle is made of an alloy of Pd and one or more additive elements selected from a group of transition metal elements other than Pd.
  2.  前記検知膜の厚みは、5~80nmであることを特徴とする請求項1記載の水素センサ。 The hydrogen sensor according to claim 1, wherein the thickness of the detection film is 5 to 80 nm.
  3.  前記金属粒子は、前記検知膜中に50~90質量%含有されていることを特徴とする請求項1または請求項2記載の水素センサ。 3. The hydrogen sensor according to claim 1, wherein the metal particles are contained in the detection film in an amount of 50 to 90% by mass.
  4.  前記金属粒子は、5~30質量%の前記添加元素を含有することを特徴とする請求項1から請求項3のいずれかに記載の水素センサ。 4. The hydrogen sensor according to claim 1, wherein the metal particles contain 5 to 30% by mass of the additive element.
  5.  前記添加元素は、Ag、Y、Sm、Gd、Tb、Dy、Ho、Er、YbおよびLuの群から選択される一種以上の元素であることを特徴とする請求項1から請求項4のいずれかに記載の水素センサ。 5. The element according to claim 1, wherein the additive element is one or more elements selected from the group consisting of Ag, Y, Sm, Gd, Tb, Dy, Ho, Er, Yb, and Lu. The hydrogen sensor according to the above.
  6.  前記添加元素は、一種のみであることを特徴とする請求項1から請求項5のいずれかに記載の水素センサ。 6. The hydrogen sensor according to claim 1, wherein the additive element is only one kind.
  7.  前記添加元素は、Agであることを特徴とする請求項6記載の水素センサ。 The hydrogen sensor according to claim 6, wherein the additive element is Ag.
  8.  前記セラミック母材の材料は、AlNx1(0.5≦x1≦1)、AlOx2(0.8≦x2≦1.5)、SiNx3(0.7≦x3≦1.3)、SiOx4(1≦x4≦2)、TaNx5(0.5≦x5≦1)およびTaOx6(1≦x6≦2.5)からなる群から選択される少なくとも一種で構成されることを特徴とする請求項1から請求項7のいずれかに記載の水素センサ。 The ceramic base material is AlN x1 (0.5 ≦ x1 ≦ 1), AlO x2 (0.8 ≦ x2 ≦ 1.5), SiN x3 (0.7 ≦ x3 ≦ 1.3), SiO x4 (1 ≦ x4 ≦ 2), TaN x5 (0.5 ≦ x5 ≦ 1), and TaO x6 (1 ≦ x6 ≦ 2.5). The hydrogen sensor according to any one of claims 1 to 7.
  9.  前記基板と前記検知膜との間に、前記セラミック母材の材料と同種の材料からなるバッファ層を更に備えることを特徴とする請求項1から請求項8のいずれかに記載の水素センサ。 The hydrogen sensor according to any one of claims 1 to 8, further comprising a buffer layer made of a material similar to the material of the ceramic base material between the substrate and the detection film.
  10.  アルゴンガスと窒素ガスまたは酸素ガスとの雰囲気下で、セラミック母材用および金属粒子用の各成膜材料に対し気相成長法またはスパッタリング法により基板面に検知膜を形成する工程と、
     アルゴンガス雰囲気下で、電極用の成膜材料に対し気相成長法またはスパッタリング法により前記検知膜上に電極を形成する工程と、を含み、
     前記金属粒子用の各成膜材料は、Pdと、Pd以外の遷移金属の元素群から選択される一種以上の添加元素とからなることを特徴とする水素センサの製造方法。
    Forming a detection film on a substrate surface by vapor phase growth or sputtering for each film forming material for a ceramic base material and metal particles in an atmosphere of argon gas and nitrogen gas or oxygen gas;
    Forming an electrode on the detection film by a vapor deposition method or a sputtering method with respect to a film forming material for the electrode under an argon gas atmosphere,
    Each of the film forming materials for the metal particles comprises Pd and one or more additive elements selected from a transition metal element group other than Pd.
PCT/JP2016/080344 2015-10-13 2016-10-13 Hydrogen sensor and method for producing same WO2017065205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016004676.6T DE112016004676T5 (en) 2015-10-13 2016-10-13 Hydrogen sensor and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-202152 2015-10-13
JP2015202152A JP6784486B2 (en) 2015-10-13 2015-10-13 Hydrogen sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2017065205A1 true WO2017065205A1 (en) 2017-04-20

Family

ID=58517251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080344 WO2017065205A1 (en) 2015-10-13 2016-10-13 Hydrogen sensor and method for producing same

Country Status (3)

Country Link
JP (1) JP6784486B2 (en)
DE (1) DE112016004676T5 (en)
WO (1) WO2017065205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650553B (en) * 2017-10-20 2019-02-11 行政院原子能委員會核能硏究所 Gas sensor device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042647A (en) * 1983-08-19 1985-03-06 Japan Atom Energy Res Inst Method and device for measuring concentration of hydrogen in high temperature and high pressure steam
WO2008081921A1 (en) * 2006-12-28 2008-07-10 Mikuni Corporation Hydrogen sensor and method for manufacturing the same
JP2010210468A (en) * 2009-03-11 2010-09-24 Mikuni Corp Hydrogen sensor and method of manufacturing the same
JP2012507037A (en) * 2009-12-29 2012-03-22 インダストリー−アカデミック コーペレイション ファウンデイション, ヨンセイ ユニバーシティ Hydrogen sensor and manufacturing method thereof
JP5352049B2 (en) * 2006-09-28 2013-11-27 株式会社ミクニ Hydrogen sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144563A (en) 1974-10-16 1976-04-16 Ebara Infilco Sentanhaisuiodeino datsusuihoho
JPS5352049A (en) 1976-10-22 1978-05-12 Hitachi Ltd Gate turn-off thyristor equipment
US6596236B2 (en) * 1999-01-15 2003-07-22 Advanced Technology Materials, Inc. Micro-machined thin film sensor arrays for the detection of H2 containing gases, and method of making and using the same
US10197519B2 (en) * 2013-03-15 2019-02-05 H2Scan Corporation Gas sensing systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042647A (en) * 1983-08-19 1985-03-06 Japan Atom Energy Res Inst Method and device for measuring concentration of hydrogen in high temperature and high pressure steam
JP5352049B2 (en) * 2006-09-28 2013-11-27 株式会社ミクニ Hydrogen sensor
WO2008081921A1 (en) * 2006-12-28 2008-07-10 Mikuni Corporation Hydrogen sensor and method for manufacturing the same
JP2010210468A (en) * 2009-03-11 2010-09-24 Mikuni Corp Hydrogen sensor and method of manufacturing the same
JP2012507037A (en) * 2009-12-29 2012-03-22 インダストリー−アカデミック コーペレイション ファウンデイション, ヨンセイ ユニバーシティ Hydrogen sensor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650553B (en) * 2017-10-20 2019-02-11 行政院原子能委員會核能硏究所 Gas sensor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017075802A (en) 2017-04-20
JP6784486B2 (en) 2020-11-11
DE112016004676T5 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US8730002B2 (en) Non-conducting zirconium dioxide
Aubert et al. Iridium interdigital transducers for high-temperature surface acoustic wave applications
JP2002174618A (en) Solid electrolyte gas sensor
JP5847517B2 (en) Hydrogen filling system
US20160299011A1 (en) Temperature Probe and Method for Producing a Temperature Probe
JP4659481B2 (en) Hydrogen sensor and manufacturing method thereof
EP1568991B1 (en) Hydrogen sensor and process for production thereof
JP5352049B2 (en) Hydrogen sensor
JP6530569B2 (en) Thermistor sintered body and thermistor element
WO2020031909A1 (en) Mems type semiconductor gas detection element
EP2098855B1 (en) Hydrogen sensor and method for manufacturing the same
JP2007085816A (en) Oxygen sensor
EP2896962A1 (en) Gas sensor chip
JP2007101477A (en) Thin film gas sensor
WO2017065205A1 (en) Hydrogen sensor and method for producing same
JP4355300B2 (en) Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method
JP5144563B2 (en) Hydrogen sensor and manufacturing method thereof
WO2020090489A1 (en) Thermistor sintered body and temperature sensor element
JPH053895B2 (en)
JP2007064908A (en) Semiconductor type thin film gas sensor
WO2014181525A1 (en) Ptc thermistor member
CN117529655A (en) Oxygen sensor element and method for manufacturing same
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
WO2020090309A1 (en) Thermistor sintered body and temperature sensor element
JP4895741B2 (en) Hydrogen sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004676

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855458

Country of ref document: EP

Kind code of ref document: A1