WO2017063986A1 - A cryptographic device and an encoding device - Google Patents
A cryptographic device and an encoding device Download PDFInfo
- Publication number
- WO2017063986A1 WO2017063986A1 PCT/EP2016/074166 EP2016074166W WO2017063986A1 WO 2017063986 A1 WO2017063986 A1 WO 2017063986A1 EP 2016074166 W EP2016074166 W EP 2016074166W WO 2017063986 A1 WO2017063986 A1 WO 2017063986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shares
- input message
- encoded
- variable
- cryptographic
- Prior art date
Links
- 238000013507 mapping Methods 0.000 claims abstract description 30
- 230000006870 function Effects 0.000 claims description 92
- 238000000034 method Methods 0.000 claims description 39
- 238000004590 computer program Methods 0.000 claims description 25
- 238000005315 distribution function Methods 0.000 claims description 14
- 230000001419 dependent effect Effects 0.000 abstract description 11
- 230000015654 memory Effects 0.000 description 12
- 238000013478 data encryption standard Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/002—Countermeasures against attacks on cryptographic mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
- H04L9/0625—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation with splitting of the data block into left and right halves, e.g. Feistel based algorithms, DES, FEAL, IDEA or KASUMI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/085—Secret sharing or secret splitting, e.g. threshold schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/34—Encoding or coding, e.g. Huffman coding or error correction
Definitions
- the invention relates to a cryptographic device, an encoding device, a cryptographic method, an encoding method, a computer program and a computer readable medium.
- a side-channel attack is an attack based on information gained from the physical implementation of a cryptosystem rather than only on analysis of the cryptographic algorithm and/or brute force.
- a particular strong side-channel is the so-called white-box attack model.
- white-box attack model an attacker has full access to the internals of an algorithm during its execution. In particular, the attacker can observer variables and may even modify the data during execution. Protecting secret information such as secret keys is particularly hard in the white-box model.
- a cryptographic device arranged to compute a key dependent cryptographic function or an input message.
- the cryptographic device comprises a data store arranged to store multiple variables on which the cryptographic device acts to compute the cryptographic function, a variable being distributed over multiple shares and represented in the data store as multiple encoded shares, an encoded share being an encoding of a share together with a state, the multiple states corresponding to the same variable having a relationship with the input message so that there exists an injective mapping from the input message to the multiple states,
- a table store storing multiple look-up tables, a look-up table taking as input one or more encoded shares of one or more variables, the multiple look-up tables together forming a table network implementing the cryptographic function,
- control unit configured to apply the cryptographic function to the input message by applying the multiple look-up tables to the variables represented in the data store.
- a possible attack on an implementation of a cryptographic function is a collision attack.
- the attacker tries to find two different input messages such that some internal variable has the same value for both of them. Such an occurrence may give information on the key.
- the encoded shares represent both the shares of the variable and of the multiple states. Because there is an injective mapping from the input message to the multiple states, there cannot be two different input messages so that the corresponding two sets of multiple states are the same. As the states are part of the encoded shares, there cannot be two different input messages so that the corresponding encoded shares are the same. Accordingly, collision attacks on the encoded shares are avoided. The resulting cryptographic device is more resilient against attack under the white-box model.
- the cryptographic device also provides a protection mechanism against differential power analysis. While random encodings disable successful statistical analysis on relations between different occurring values, they may still allow successful statistics on collisions. As the latter are prevented, the statistical analysis used by differential power analysis type attacks is disturbed.
- the table store stores a multiplication table network for multiplying a first variable distributed over a first multiple of shares and represented in the data store as a first multiple of encoded shares, and a second variable distributed over a second multiple of shares represented in the data store as a second multiple of encoded shares, the multiplication table network acting on the first and second multiple of encoded shares obtaining a third multiple of encoded shares representing the product of the first and second variable, the multiplication table network comprising one or more cross-product table sub-networks for computing the product of a first share of the first multiple shares and a second share of the second multiple of shares, the cross-product table sub-networks computing the sum of the product of the first share and the second share from the
- computation on variables can be transformed into computation on encoded shares.
- two variables represented as encoded shares may be multiplied.
- the cross products are required, that is the product of a share of a first variable (e.g. represented as x l ) and a share of the second variable (e.g. represented as y ).
- a source of randomness may be used. The inventors have found that random number generators are easily identified and circumvented in software, thus nullifying this obfuscation. This problem may be avoided by using a randomization function from the input message.
- randomization function from the input message may be fixed in the cryptographic device.
- the randomization function may be determined when the cryptographic device is created, in case of a software implementation at compile time of the software. As the randomization function is fixed, it cannot easily be identified within the other table networks. If the same input is used twice the randomization function will produce the same results; so this function does not stand out in the table network.
- Encoding the input message may be done by a computer external to the cryptographic device.
- the input message may represent content that is created to be decrypted at the cryptographic device.
- the input message may be received by the cryptographic device in the form of multiple sets of encoded shares.
- the encoding may also be done at the cryptographic device, e.g., to protect exposing the key through a collision attack.
- An encoding device for encoding an input message for use with a cryptographic device as in Claim 1.
- the encoding device comprises
- a receiving unit for receiving the input message, the input message comprising multiple input parts
- an encoding unit arranged to, for each part of the input message distribute the part of the input message into multiple shares by applying multiple distribution functions to the input message to obtain the multiple shares, wherein a combining function applied to the distribution functions equals the part of the input message apply an injective mapping from the input message to obtain multiple states, the number of multiple shares and multiple states being the same
- the encoding device may, but need not, be comprised in the cryptographic device.
- the cryptographic and encoding devices are electronic devices.
- they may be a mobile electronic device, such as a phone or a tablet.
- They may be a set-top box, computer, media player, television, and the like.
- the method of cryptographic processing and encoding described herein may be applied in a wide range of practical applications.
- Such practical applications include digital content management, secure banking, access control, protection of electronic storage, and the like.
- a method according to the invention may be implemented on a computer as a computer implemented method, or in dedicated hardware, or in a combination of both.
- Executable code for a method according to the invention may be stored on a computer program product.
- Examples of computer program products include memory devices, optical storage devices, integrated circuits, servers, online software, etc.
- the computer program product comprises non-transitory program code means stored on a computer readable medium for performing a method according to the invention when said program product is executed on a computer.
- the computer program comprises computer program code means adapted to perform all the steps of a method according to the invention when the computer program is run on a computer.
- the computer program is embodied on a computer readable medium.
- Another aspect of the invention provides a method of making the computer program available for downloading. This aspect is used when the computer program is uploaded into, e.g., Apple's App Store, Google's Play Store, or Microsoft's Windows Store, and when the computer program is available for downloading from such a store.
- Figure 1 schematically illustrates an example of encoding a variable
- Figure 2 schematically shows an example of an embodiment of a cryptographic device
- Figure 3 schematically shows an example of an embodiment of an encoding device
- Figure 4a schematically shows an example of an embodiment of a table network
- Figure 4b schematically shows an example of an embodiment of a table network
- Figure 5 a schematically shows a flow chart for a cryptographic method
- Figure 5b schematically shows a flow chart for an encoding method
- Figure 6 schematically shows a flow chart for the DES block cipher
- Figure 7a schematically shows a computer readable medium having a writable part comprising a computer program according to an embodiment
- Figure 7b schematically shows a representation of a processor system according to an embodiment.
- FIG. 2 schematically shows an example of an embodiment of a cryptographic device 200. Possible embodiments of aspects of cryptographic device 200 are illustrated with reference to figures 1-4.
- Cryptographic device 200 is arranged to compute a key K dependent cryptographic function for an input message M.
- the cryptographic function may be denoted as f K .
- the result of the computation is an output message f K ⁇ M) .
- the key need not be an explicit input of the function, but may also be embedded therein, e.g., using partial evaluation.
- Internal variables which have the same value for different input message may be revealed using a side channel. For example, by probing the hardware on which the computation runs. Collision attacks are particularly powerful if the cryptographic function is executed in software, since an attacker may more easily verify if some internal variable has the same value or not. An attacker may be able to take full control over the software that runs on a computing device, e.g., a smartphone or a desktop computer, etc.
- the key dependent cryptographic function may for example be a block cipher for encrypting or decrypting the input message M.
- Other examples include key-ed hashes, message authentication functions, stream ciphers, and the like.
- a block cipher is given in Figure 6.
- the block cipher receives a block cipher input 605 on which a sequence of block cipher rounds acts; in the case of DES there are 16 rounds, for triple DES 48.
- the first block cipher round acts on the block cipher input 605, each one of the next rounds acts on the output of the previous rounds.
- a round function is applied to part of the previous round's output.
- the block cipher input has a data size, in case of DES of 64 bits.
- Each block cipher round modifies its block cipher round input to produce a block cipher round output. All block cipher round input and output have the same data size.
- the Data Encryption Standard describes a keyed block encoding of a 64-bit block. The key is officially 64 bits, but only 56 bits thereof are actually used in the encryption on which the round keys K to K 16 depend. Note that much of the intermediate data depends on both the input message and the key, which may be exploited in the manner described above.
- the output of an S-box is vulnerable to a collision attack (S-boxes are not separately shown in figure 6).
- the variables that represent the output of the round function (shown in figure 6 as 'f ) are vulnerable to a collision attack.
- a simultaneous collision on the shares w j will still lead to a collision for w which leaks the same amount of information.
- a collision may be become rarer, they are not eliminated.
- the inventors have realized there is a significant additional problem.
- a software implementation one might be inclined to use a pseudo-random number generator (RNG) to create some of the shares of w, but this is not advisable.
- RNG pseudo-random number generator
- An attacker may be able to remove the randomness by replacing the output of the RNG by a non-random value. Even if a software implementation makes a call to a true random number generator this may be intercepted. In principle this attack could also be carried out on a hardware implementation, although this will be considerably harder.
- a random number source may be recognized easily in software by executing the software multiple times on the same input. Divergent execution indicates a random number generator. Such analysis of a software program may also be automated.
- Figure 1 illustrates a way to encode a variable w which can eliminate collisions for that variable.
- Figure 1 shows a variable 1 10, w and illustrates how w may be encoded for use in a cryptographic device such as cryptographic device 200 such that collision on w are avoided.
- bit size of w is distributed over multiple shares w j .
- bit size of w is k.
- bit size of the share w j equals the bit size of w.
- this sum uses the XOR function to sum, however other choices are possible.
- the sum may use the arithmetical addition modulo 2 k .
- the combining function may be the XOR or arithmetic addition referred to above.
- the combining function has the property that that the mapping from any single share (w fc ) to the variable (w), obtained by fixing the values of the other shares (w°, w fc_1 , w k+1 , w n_1 ) is a bijection. That is, the function
- d(w°, ... , w k ⁇ 1 , w k , w k+1 , ... , w n_1 ) is a bijection; the elements w j denoting a fixed value. This property ensures that no subset of shares gives information on w.
- d may be any linear combination of the shares w in which the coefficients ⁇ ,- are odd; the sum using arithmetical addition modulo 2 k .
- the combining function may be polynomial.
- an encoding is bijective, as long as it is invertible with respect to w j , that is, with knowledge of Encj and x j the share w j can be recovered. Nevertheless, in embodiments the encodings Encj are bijective. The latter being a more practical choice in an implementation and simplifies analysis. Once it has been decided which variables will be encoded with which encodings at which point, the tables may be simply adapted to take the encoding into account.
- Figure 1 shows that share 121 and state 131 are encoded though encoding 161 into an encoded share 141. Also share 122 and state 132 are encoded though encoding 162 into an encoded share 142; share 123 and state 133 are encoded though encoding 163 into an encoded share 143.
- Note we will refer to the states and shares which are encoded together to represent a variable w, as corresponding to that variable.
- encoded shares 141, 142, and 143 Multiple encoded shares are the result, of which are shown encoded shares 141, 142, and 143.
- Variable w is represented in cryptographic device 200 as multiple encoded shares. Neither the un-encoded shares 121-123 nor the states 131-133 should occur in the cryptographic device.
- the inventors realized that by choosing the states in a special way collisions on w may be avoided. That is there are no two different input messages M and M' such that the all encoded shares 141-143 are the same.
- ⁇ may be chosen to be bijective, as this more stringent condition implies injectivity.
- Figure 1 shows how multiple states 131-133 depend on input message 100, M, and the injective map ⁇ , 152.
- n denotes the number of state
- I is the bit size of a state.
- the number of shares is also n.
- a total bit size of the multiple states s j corresponding to the same variable w is at least as large as the bit size of the input message M.
- the encodings Encj are chosen, e.g., at random, from the bijective functions 3 ⁇ 4 fc x 1 2 l ⁇ 3 ⁇ 4 fc+i -
- the bit size of the states need not equals the bit size of the shares.
- the mapping 152 does not need to be explicit in the implementation of the cryptographic function for most or all variables. For example, once an encoded variable has the required injective relationship with the input message, operations performed on the share parts w j of an encoded variable may simultaneously perform redundant operations on the state parts that preserve the injective relationship. As the computations are done in the encoded domain the computations on the states cannot be separated from the computations on the shares.
- first and second variables w 1 and w 2 are both encoded as indicated above as multiple encoded shares x , and x , ... , ⁇ '1 .
- the variable w 3 is represented as encoded shares ⁇ °, ... , ⁇ '1 .
- the states encoded in x$, ... , ⁇ '1 are equal to the states encoded in x , or in x , ... , ⁇ '1 .
- the operation may be implemented as a table network for performing the operation, which in turn may be a subnetwork of the table network implementing the cryptographic function.
- the redundant operations may be bijective operations.
- the bijective functions may be chosen randomly, e.g., at compile time.
- the states may be obtained as an injective function of the input message.
- Initial variables e.g., those that are directly obtained from the input message, may be received by cryptographic device 200 in the correct encoded form.
- device 200 may comprise an encoding device as described below.
- variable w ensures that there cannot be a collision on the encoded value during the execution of the cryptographic function. Accordingly, no collision attack is possible at this point. If all variables that depend on the input message as well as on the key are encoded in this way throughout the computation of the cryptographic function, then collisions may be entirely avoided. Moreover, the system is simple, efficient, provable, and elegant.
- Cryptographic device 200 comprises a data store 220 arranged to store multiple variables on which the cryptographic device acts to compute the cryptographic function.
- a variable 240 is represented in data store 220 as multiple encoded shares. Shown are encoded shares 241, 242, and 243. The variable is both distributed over multiple shares, and each share is encoded together with a state. There exists an injective mapping ( ⁇ ) from the input message (M) to the multiple states, as explained with reference to figure 1.
- Cryptographic device 200 comprises a table store 230 storing multiple look-up tables. Shown in figure 2 are look-up tables 231, 232 and 233. At least some of the look-up tables take as input one or more encoded shares of one or more variables. In an embodiment, a look-up table takes as input at least one encoded share from two different variables. The multiple look-up tables together form a table network implementing the cryptographic function.
- Table networks are known from white-box cryptography per se. See for example, "White-box cryptography and an AES implementation", by Chow et al.
- An example of a table network 420 is shown in figure 4a, in this case a table network for computing cross-products.
- a table network receives one or more inputs, e.g. inputs 410, and produces one or more outputs, e.g. outputs 430.
- inputs e.g. inputs 410
- outputs e.g. outputs 430.
- table network 420 multiple look-up tables are shown; shown are tables 421-421.
- Tables take inputs directly from inputs 410 and/or the outputs of other tables.
- a table may take a single input, two inputs, or more than two inputs.
- Carlet does not discuss collision attacks or encoding with states.
- the paper is further referred to as Carlet.
- Carlet does not prevent a collision on a variable encoded as multiple shares.
- the function S may be any internal step of the computation of the cryptographic function, e.g., an addition, a multiplication, an S-box, etc.
- S may be any internal step of the computation of the cryptographic function, e.g., an addition, a multiplication, an S-box, etc.
- S has a single input w. Multiple states can be handled analogously. We will also first ignore states, later we will show how states can be added. If w is represented by n shares w 0 , ... , w n _ , then we want to represent S(w) by n shares as well, in order to give the resulting variable the same protection as w. This is possible, for any function by making use of the following facts.
- the value S(w), like w, is also a k-bit number.
- the k-bit numbers can be considered to be elements of the finite Galois field T 2 k, and the function S as a function on T k . All functions in finite fields are polynomials, thus, for any function S on T 2 k, there exist coefficients c 0 , ... , c 2 3 ⁇ 4_ 1 such that for any w it holds that
- the random number for r i:i is obtained by selecting compile time a randomization function R t j from the input message M to T 2 k, and setting r ii ⁇ - R t j (M).
- compile time Only when the table network is constructed, referred to as compile time, is a source of randomness needed. It is noted that Carlet relies on randomness during execution time. This opens Carlet up to manipulation of the random number source during execution. In particular, the random number generator may be intercepted and replaced with constant values.
- a cross-product table sub-network may compute r i . These tables compute the two cross products and Xjy t .
- the randomization function R t j to compute for computing ri j is implemented as a table network taking the input messages as input. This avoids the need for a random number source during execution.
- the shares 3 ⁇ 4 now represent the product of X and Y.
- the polynomial representation for S may be expressed as operation on the shares.
- the operation on the shares in turn may be
- FIG. 4a A possible table network 420 to compute r is illustrated in figure 4a. Tables 421-424 cooperate to compute r jX . The inputs to table network 420 are shown are reference 410. The output of table network 420 is shown at reference 430.
- tables 421 and 422 may be arranged to multiply their inputs, whereas tables 423 and 424 may be arranged to add their inputs. Note that each of the tables may use different encodings.
- FIG. 4b schematically shows an example of an embodiment of a multiplication table network 440.
- Multiplication table network 440 is arranged to multiplying a variable X represented in data store 220 as a first multiple of encoded shares (V), and a second variable Y represented in the data store 220 as a second multiple of encoded shares (y j ).
- the multiplication table network acts on the first and second multiple of encoded shares (x J , y ) and obtains a third multiple of encoded shares (z ) representing the product of the first and second variable.
- Multiplication table network 440 may be part of the table network for computing the cryptographic function.
- Multiplication table network 440 may comprise cross-product table subnetworks to compute cross products, xiy ⁇ .
- cross products are computed in pairs x t y ⁇ + x j y ⁇
- multiplication table network 440 may comprise table network 420.
- Multiplication table network 440 may also comprise a table network 450 to compute one or more randomization functions R ii ⁇ .
- table network 450 depends on input message 1 10. This dependence has been indicated with a dashed line to indicate that the dependence may be obtained through an intermediate, e.g., variables stored in data store 220.
- Table network 440 may obtain its inputs and store its outputs in data store 220.
- a table acting on shares may be transformed to a table acting on encoded shares.
- the functions s and t obtain the state and share from x respectively.
- a table T for t(x) be defined.
- End r(tQe)), P(sQi )) defines a table for x that implements the table T for the share part of x and a function P for the state part.
- the function P is redundant and may be chosen when creating the table network, e.g., at compile time. For example, P may be the identity function. Similar constructions are possible for multiple inputs.
- the encoding Enc used here is also called the input encoding.
- the encoding Enc' is called the output encoding.
- the input and output encodings of a table need not be the same, as long as the output encoding used for the output of a table is the same as the input encoding of a next table which used said output as an input.
- the data store 220 and table store 230 may be an electronic memory. They may be two parts of the same memory.
- the table store 230 may be non-volatile storage.
- the data store 220 may be volatile storage.
- Cryptographic unit 200 comprises a control unit 210 configured to apply the cryptographic functions to the input message by applying the multiple look-up tables to the variables represented in the data store.
- the table store 230 may comprise instructions that indicate the order in which the tables are to be applied to which variables.
- Cryptographic unit 200 may comprise a network interface 250.
- Network interface 250 may be arranged to receive encoded data over a computer network.
- cryptographic device 200 may receive encrypted data, e.g., encrypted content, which is decrypted by cryptographic device 200.
- the input received over network interface 250 may be represented as encoded shares, e.g., as described above. This is not necessary as the encoding may be done inside of device 200.
- Figure 3 illustrates an example of an encoding device 300.
- Encoding device 300 is arranged to encode an input message M for use with a cryptographic device as in Claim 1.
- Encoding device 300 comprises a receiving unit for receiving the input message M.
- the multiple parts may be nibles or bytes.
- the bit size of the parts are between 4 and 8 (inclusive).
- the message M may be a concatenation of the message parts.
- Encoding device 300 comprises an encoding unit 320 that performs the encoding.
- Encoding unit 320 encodes each part of the input message M seperately. So for each part mi of the input message M, the encoding unit performs the following:
- the distribution functions may be chosen as hj - ⁇ , ⁇ - rnj for i ⁇ j and h - ⁇ t ⁇ J m t .
- the addition is an XOR.
- all but one of the distribution functions for a give part may be chosen randomly and the last may be computed as a correction term, e.g., the projection function of M to minus the other distribution functions.
- the encoding unit 320 also applies an injective mapping ⁇ t from the input message M to obtain multiple states s , the number of multiple shares and multiple states being the same.
- the s m ⁇ ; this choice clearly guarantees that the input message M is encoded in the states.
- the concatenation of all shares is an injective map on the input message M.
- each share of the multiple shares is encoded together with a corresponding state of the multiple states, obtaining multiple encoded shares x ⁇ representing the part
- the part m i is encoded in multiple encoded shares xj such that the entire input message is encoded as part of the states in the encoded shares.
- the table network implementing the cryptographic function is arranged to preserve the relationship between the input message and the states of encoded shares that correspond to a variable. Since a collision on a set of encoded variable implies a collision on the state, this means that a collision with different input messages is impossible.
- the injective mapping ⁇ used to map M to states in the encoding unit may be composed of multiple smaller bijective functions.
- the injective mapping ⁇ t may comprise multiple state functions g ⁇ .
- the devices 200 and 300 each comprise a microprocessor (not shown in figures 1 -4) which executes appropriate software stored at the device 200 and the 3000; for example, that software may have been downloaded and/or stored in a
- the devices 200 and 3000 may, in whole or in part, be implemented in programmable logic, e.g., as field-programmable gate array (FPGA).
- FPGA field-programmable gate array
- Devices 200 and 300 may be implemented, in whole or in part, as a so-called application-specific integrated circuit (ASIC), i.e. an integrated circuit (IC) customized for their particular use.
- ASIC application-specific integrated circuit
- the circuits may be implemented in CMOS, e.g., using a hardware description language such as Verilog, VHDL etc.
- device 200 comprises a data store circuit and a table store circuit, e.g., electronic memories, and a control unit circuit.
- the circuits implement the corresponding units described herein.
- the circuits may be a processor circuit and storage circuit, the processor circuit executing instructions represented electronically in the storage circuits.
- the circuits may also be, FPGA, ASIC or the like.
- the system may comprise additional circuits, e.g., a network interface circuit, etc.
- FIG. 5a shows a flowchart that illustrates a cryptographic method 500 arranged to compute f K (M) a key if -dependent cryptographic function / for an input message M.
- Cryptographic method 500 comprises
- Figure 5b shows a flowcharts that illustrates an encoding method 550 for encoding an input message M for use with a cryptographic device as in Claim 1, the encoding method comprising
- Method 550 has several options how to distribute the work for each part of the input message. For example, method 550 may first compute shares for all parts, then compute states for all parts and finally do encoding for all parts. However, method 550 may also compute shares, states, and encoding for one part at a time. Other combinations are possible.
- steps 570 and 580 may be executed, at least partially, in parallel.
- a given step may not have finished completely before a next step is started.
- a method according to the invention may be executed using software, which comprises instructions for causing a processor system to perform method 500 or 550.
- Software may only include those steps taken by a particular sub-entity of the system.
- the software may be stored in a suitable storage medium, such as a hard disk, a floppy, a memory, an optical disc, etc.
- the software may be sent as a signal along a wire, or wireless, or using a data network, e.g., the Internet.
- the software may be made available for download and/or for remote usage on a server.
- a method according to the invention may be executed using a bit stream arranged to configure programmable logic, e.g., a field-programmable gate array (FPGA), to perform the method.
- FPGA field-programmable gate array
- the invention also extends to computer programs, particularly computer programs on or in a carrier, adapted for putting the invention into practice.
- the program may be in the form of source code, object code, a code intermediate source, and object code such as partially compiled form, or in any other form suitable for use in the implementation of the method according to the invention.
- An embodiment relating to a computer program product comprises computer executable instructions corresponding to each of the processing steps of at least one of the methods set forth. These instructions may be subdivided into subroutines and/or be stored in one or more files that may be linked statically or dynamically.
- Another embodiment relating to a computer program product comprises computer executable instructions corresponding to each of the means of at least one of the systems and/or products set forth.
- Figure 7a shows a computer readable medium 1000 having a writable part 1010 comprising a computer program 1020, the computer program 1020 comprising instructions for causing a processor system to perform a cryptographic method or an encoding method, according to an embodiment.
- the computer program 1020 may be embodied on the computer readable medium 1000 as physical marks or by means of magnetization of the computer readable medium 1000. However, any other suitable embodiment is conceivable as well.
- the computer readable medium 1000 is shown here as an optical disc, the computer readable medium 1000 may be any suitable computer readable medium, such as a hard disk, solid state memory, flash memory, etc., and may be non-recordable or recordable.
- the computer program 1020 comprises instructions for causing a processor system to perform said a cryptographic method or an encoding method, according to an embodiment.
- FIG. 7b shows in a schematic representation of a processor system 1 140 according to an embodiment.
- the processor system comprises one or more integrated circuits 1 1 10.
- the architecture of the one or more integrated circuits 1 1 10 is schematically shown in Figure 7b.
- Circuit 1 1 10 comprises a processing unit 1 120, e.g., a CPU, for running computer program components to execute a method according to an embodiment and/or implement its modules or units.
- Circuit 1 1 10 comprises a memory 1 122 for storing programming code, data, etc. Part of memory 1 122 may be read-only.
- Circuit 1 1 10 may comprise a
- Circuit 1 1 10 may comprise a dedicated integrated circuit 1 124 for performing part or all of the processing defined in the method.
- Processor 1120, memory 1 122, dedicated IC 1 124 and communication element 1 126 may be connected to each other via an interconnect 1 130, say a bus.
- the processor system 1 1 10 may be arranged for contact and/or contact-less communication, using an antenna and/or connectors, respectively.
- any reference signs placed between parentheses shall not be construed as limiting the claim.
- Use of the verb "comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim.
- the article "a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
- the invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
- references in parentheses refer to reference signs in drawings of embodiments or to formulas of embodiments, thus increasing the intelligibility of the claim. These references shall not be construed as limiting the claim.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Storage Device Security (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16778408.1A EP3363142B1 (en) | 2015-10-12 | 2016-10-10 | A cryptographic device and an encoding device |
BR112018007132A BR112018007132A2 (en) | 2015-10-12 | 2016-10-10 | willing encryption device, encoding device, arranged cryptographic method, encoding method for encoding an input message, computer program, and computer readable media |
RU2018117496A RU2692419C1 (en) | 2015-10-12 | 2016-10-10 | Cryptographic device and coding device |
US15/767,210 US10567158B2 (en) | 2015-10-12 | 2016-10-10 | Cryptographic device and an encoding device |
CN201680059492.9A CN108141352B (en) | 2015-10-12 | 2016-10-10 | Cryptographic apparatus, method, apparatus and computer readable medium, and encoding apparatus, method, apparatus and computer readable medium |
JP2018518641A JP6517436B2 (en) | 2015-10-12 | 2016-10-10 | Encryption device and encoding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2015599 | 2015-10-12 | ||
NL2015599A NL2015599B1 (en) | 2015-10-12 | 2015-10-12 | A cryptographic device and an encoding device. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017063986A1 true WO2017063986A1 (en) | 2017-04-20 |
Family
ID=55697415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/074166 WO2017063986A1 (en) | 2015-10-12 | 2016-10-10 | A cryptographic device and an encoding device |
Country Status (9)
Country | Link |
---|---|
US (1) | US10567158B2 (en) |
EP (1) | EP3363142B1 (en) |
JP (1) | JP6517436B2 (en) |
CN (1) | CN108141352B (en) |
BR (1) | BR112018007132A2 (en) |
NL (1) | NL2015599B1 (en) |
RU (1) | RU2692419C1 (en) |
TR (1) | TR201905769T4 (en) |
WO (1) | WO2017063986A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3407529A1 (en) * | 2017-05-24 | 2018-11-28 | Koninklijke Philips N.V. | Cryptographic device and method |
EP3451214A1 (en) | 2017-09-05 | 2019-03-06 | Koninklijke Philips N.V. | Computing device with computer program bounded thereto |
CN109661792A (en) * | 2017-06-09 | 2019-04-19 | 皇家飞利浦有限公司 | Calculate the device and method of block cipher |
EP3664359A1 (en) * | 2018-12-07 | 2020-06-10 | Koninklijke Philips N.V. | A computation device using shared shares |
EP3664356A1 (en) * | 2018-12-07 | 2020-06-10 | Koninklijke Philips N.V. | White-box computations using shares as randomizing inputs |
CN111480140A (en) * | 2017-11-10 | 2020-07-31 | 皇家飞利浦有限公司 | Computing device and method |
US11070358B2 (en) | 2015-12-15 | 2021-07-20 | Koninklijke Philips N.V. | Computation device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010102960A1 (en) * | 2009-03-10 | 2010-09-16 | Irdeto B.V. | White-box cryptographic system with input dependent encodings |
WO2014095772A1 (en) * | 2012-12-21 | 2014-06-26 | Koninklijke Philips N.V. | Computing device comprising a table network |
WO2015082212A1 (en) * | 2013-12-05 | 2015-06-11 | Koninklijke Philips N.V. | A computing device for iterative application of table networks |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1281254A4 (en) * | 2000-04-20 | 2003-06-04 | Noel D Matchett | Cryptographic system for data encryption standard |
JP2003296250A (en) | 2002-03-29 | 2003-10-17 | Fuji Xerox Co Ltd | Mailing list server and mail transmission method thereof |
US20050152539A1 (en) * | 2004-01-12 | 2005-07-14 | Brickell Ernie F. | Method of protecting cryptographic operations from side channel attacks |
FR2871969B1 (en) | 2004-06-18 | 2006-12-01 | Sagem | METHOD AND DEVICE FOR PERFORMING A CRYPTOGRAPHIC CALCULATION |
RU2302085C1 (en) | 2005-11-16 | 2007-06-27 | Институт физики твердого тела РАН | Method for encoding and transferring cryptographic keys |
CN102047220B (en) * | 2008-05-23 | 2014-12-17 | 爱迪德加拿大公司 | System and method for generating white-box implementations of software applications |
US8379727B2 (en) * | 2008-09-26 | 2013-02-19 | General Instrument Corporation | Method and apparatus for scalable motion estimation |
US8744071B2 (en) * | 2009-04-20 | 2014-06-03 | Cleversafe, Inc. | Dispersed data storage system data encryption and encoding |
US10447474B2 (en) * | 2009-04-20 | 2019-10-15 | Pure Storage, Inc. | Dispersed data storage system data decoding and decryption |
US8862879B2 (en) * | 2009-10-13 | 2014-10-14 | Sergio Demian LERNER | Method and apparatus for efficient and secure creating, transferring, and revealing of messages over a network |
WO2011080487A1 (en) * | 2009-12-30 | 2011-07-07 | France Telecom | Method for generating a look-up table for a cryptographic white box |
KR20140051163A (en) * | 2011-03-31 | 2014-04-30 | 이르데토 비.브이. | Method and system for protecting execution of cryptographic hash functions |
CN104380244B (en) * | 2012-11-07 | 2018-05-25 | 皇家飞利浦有限公司 | Store for calculate function look-up table computing device |
CN104854814A (en) | 2012-12-21 | 2015-08-19 | 皇家飞利浦有限公司 | Key sharing network device and configuration thereof |
CN103561005B (en) * | 2013-10-24 | 2016-05-25 | 桂林电子科技大学 | Secret based on mapping geometric properties is shared method |
US10628592B2 (en) * | 2014-11-25 | 2020-04-21 | Institut Mines-Telecom | Methods for recovering secret data of a cryptographic device and for evaluating the security of such a device |
EP3238113B1 (en) * | 2014-12-22 | 2018-09-26 | Koninklijke Philips N.V. | Hiding of a program execution |
US10372886B2 (en) * | 2015-05-05 | 2019-08-06 | Nxp B.V. | Protecting the input/output of modular encoded white-box RSA/ECC |
CN212520589U (en) | 2020-07-06 | 2021-02-12 | 江西省鸽鸽食品有限公司 | Rubbing device for flour product fermentation |
-
2015
- 2015-10-12 NL NL2015599A patent/NL2015599B1/en active
-
2016
- 2016-10-10 BR BR112018007132A patent/BR112018007132A2/en not_active Application Discontinuation
- 2016-10-10 CN CN201680059492.9A patent/CN108141352B/en active Active
- 2016-10-10 EP EP16778408.1A patent/EP3363142B1/en active Active
- 2016-10-10 RU RU2018117496A patent/RU2692419C1/en active
- 2016-10-10 TR TR2019/05769T patent/TR201905769T4/en unknown
- 2016-10-10 WO PCT/EP2016/074166 patent/WO2017063986A1/en active Application Filing
- 2016-10-10 JP JP2018518641A patent/JP6517436B2/en active Active
- 2016-10-10 US US15/767,210 patent/US10567158B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010102960A1 (en) * | 2009-03-10 | 2010-09-16 | Irdeto B.V. | White-box cryptographic system with input dependent encodings |
WO2014095772A1 (en) * | 2012-12-21 | 2014-06-26 | Koninklijke Philips N.V. | Computing device comprising a table network |
WO2015082212A1 (en) * | 2013-12-05 | 2015-06-11 | Koninklijke Philips N.V. | A computing device for iterative application of table networks |
Non-Patent Citations (2)
Title |
---|
CHOW S ET AL: "WHITE-BOX CRYPTOGRAPHY AND AN AES IMPLEMENTATION", SELECTED AREAS IN CRYPTOGRAPHY : 9TH ANNUAL INTERNATIONAL WORKSHOP ; REVISED PAPERS / SAC 2002, ST. JOHN'S, NEWFOUNDLAND, CANADA, AUGUST 15 - 16, 2002; [LECTURE NOTES IN COMPUTER SCIENCE ; 2595], SPRINGER VERLAG, BERLIN (DE), vol. 2595, 15 August 2002 (2002-08-15), pages 250 - 270, XP002521155, ISBN: 978-3-540-00622-0 * |
GOUBIN L ET AL: "DES AND DIFFERENTIAL POWER ANALYSIS THE DUPLICATION METHOD", CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS. 1ST INTERNATIONAL WORKSHOP, CHES'99. WORCESTER, MA, AUG. 12 - 13, 1999 PROCEEDINGS; [LECTURE NOTES IN COMPUTER SCIENCE], BERLIN : SPRINGER, DE, vol. 1717, 12 August 1999 (1999-08-12), pages 158 - 172, XP000952192, ISBN: 978-3-540-66646-2 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11070358B2 (en) | 2015-12-15 | 2021-07-20 | Koninklijke Philips N.V. | Computation device and method |
JP2020529034A (en) * | 2017-05-24 | 2020-10-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Cryptographic devices and methods |
EP3407528A1 (en) * | 2017-05-24 | 2018-11-28 | Koninklijke Philips N.V. | Cryptographic device and method |
WO2018215487A1 (en) | 2017-05-24 | 2018-11-29 | Koninklijke Philips N.V. | Cryptographic device and method |
WO2019025046A1 (en) | 2017-05-24 | 2019-02-07 | Koninklijke Philips N.V. | Cryptographic device and method |
US11818245B2 (en) | 2017-05-24 | 2023-11-14 | Koninklijke Philips N.V. | Cryptographic device and method |
EP3407529A1 (en) * | 2017-05-24 | 2018-11-28 | Koninklijke Philips N.V. | Cryptographic device and method |
US11368282B2 (en) | 2017-05-24 | 2022-06-21 | Koninklijke Philips N.V. | Cryptographic device and method |
JP7065888B6 (en) | 2017-05-24 | 2022-06-07 | コーニンクレッカ フィリップス エヌ ヴェ | Cryptographic devices and methods |
JP7065888B2 (en) | 2017-05-24 | 2022-05-12 | コーニンクレッカ フィリップス エヌ ヴェ | Cryptographic devices and methods |
US11310030B2 (en) | 2017-05-24 | 2022-04-19 | Koninklijke Philips N.V. | Cryptographic device and method |
CN109661792A (en) * | 2017-06-09 | 2019-04-19 | 皇家飞利浦有限公司 | Calculate the device and method of block cipher |
EP3451214A1 (en) | 2017-09-05 | 2019-03-06 | Koninklijke Philips N.V. | Computing device with computer program bounded thereto |
CN111480140A (en) * | 2017-11-10 | 2020-07-31 | 皇家飞利浦有限公司 | Computing device and method |
CN111480140B (en) * | 2017-11-10 | 2024-05-28 | 皇家飞利浦有限公司 | Computing device and method |
WO2020114999A1 (en) * | 2018-12-07 | 2020-06-11 | Koninklijke Philips N.V. | A computation device using shared shares |
WO2020115297A1 (en) * | 2018-12-07 | 2020-06-11 | Koninklijke Philips N.V. | White-box computations using shares as randomizing inputs |
EP3664356A1 (en) * | 2018-12-07 | 2020-06-10 | Koninklijke Philips N.V. | White-box computations using shares as randomizing inputs |
EP3664359A1 (en) * | 2018-12-07 | 2020-06-10 | Koninklijke Philips N.V. | A computation device using shared shares |
US12052348B2 (en) | 2018-12-07 | 2024-07-30 | Koninklijke Philips N.V. | Computation device using shared shares |
Also Published As
Publication number | Publication date |
---|---|
US10567158B2 (en) | 2020-02-18 |
TR201905769T4 (en) | 2019-05-21 |
US20190074959A1 (en) | 2019-03-07 |
EP3363142A1 (en) | 2018-08-22 |
CN108141352A (en) | 2018-06-08 |
BR112018007132A2 (en) | 2018-11-06 |
EP3363142B1 (en) | 2019-02-27 |
RU2692419C1 (en) | 2019-06-24 |
JP6517436B2 (en) | 2019-05-22 |
JP2018537704A (en) | 2018-12-20 |
CN108141352B (en) | 2020-08-25 |
NL2015599B1 (en) | 2017-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12101415B2 (en) | Method of RSA signature or decryption protected using a homomorphic encryption | |
EP3363142B1 (en) | A cryptographic device and an encoding device | |
JP6517438B2 (en) | Cryptographic device to calculate target block cipher | |
US10790962B2 (en) | Device and method to compute a block cipher | |
CN105359450B (en) | Tamper resistant cryptographic algorithm implementation | |
EP3169017B1 (en) | Split-and-merge approach to protect against dfa attacks | |
US11290272B2 (en) | Elliptic curve point multiplication device and method in a white-box context | |
US11063743B2 (en) | Method of RSA signature of decryption protected using assymetric multiplicative splitting | |
EP3125462A1 (en) | Balanced encoding of intermediate values within a white-box implementation | |
US9565018B2 (en) | Protecting cryptographic operations using conjugacy class functions | |
EP3477889B1 (en) | Using white-box in a leakage-resilient primitive | |
EP3391583B1 (en) | A computation device and method | |
WO2020173662A1 (en) | Method secured against side-channel attacks with a new masking scheme protecting linear operations of a cryptographic algorithm | |
EP2940920A2 (en) | Security patch without changing the key |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16778408 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018518641 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018007132 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018117496 Country of ref document: RU Ref document number: 2016778408 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112018007132 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180409 |