WO2017063322A1 - 时间同步方法、主时间同步装置、通信系统及存储介质 - Google Patents

时间同步方法、主时间同步装置、通信系统及存储介质 Download PDF

Info

Publication number
WO2017063322A1
WO2017063322A1 PCT/CN2016/073638 CN2016073638W WO2017063322A1 WO 2017063322 A1 WO2017063322 A1 WO 2017063322A1 CN 2016073638 W CN2016073638 W CN 2016073638W WO 2017063322 A1 WO2017063322 A1 WO 2017063322A1
Authority
WO
WIPO (PCT)
Prior art keywords
time synchronization
frame number
time
frame
base station
Prior art date
Application number
PCT/CN2016/073638
Other languages
English (en)
French (fr)
Inventor
罗丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017063322A1 publication Critical patent/WO2017063322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to the field of communications, and in particular, to a time synchronization method, a master time synchronization device, a communication system, and a computer storage medium.
  • FIG. 1 An application scenario in which a base station uses a wireless repeater is shown in FIG. 1.
  • the base station (BS, Base Station, including wireless base systems and various forms of base stations) has no physical transmission channel between the core networks, and the communication between the core network (Evolved Packet Core, EPC) passes through a host base station (Donor eNodeB) and a Wireless Relay (Wireless Relay) device to complete.
  • EPC Evolved Packet Core
  • Donor eNodeB host base station
  • Wireless Relay Wireless Relay
  • the Time Division Long Term Evolution (TD-LTE) system requires frame synchronization of the entire network.
  • the existing technology in the industry is to directly connect the base station to the clock reference source, including the Global Navigation Satellite System (GNSS, Global).
  • GNSS Global Navigation Satellite System
  • Navigation Satellite System including GPS in the United States, China's Beidou and GLONASS in Russia, and Galieo in Europe, etc.
  • Clock source Precision Time Synchronization (PTP) clock source or Network Listening (NWL).
  • PTP Precision Time Synchronization
  • NWL Network Listening
  • the cost of GNSS is high, and the laying conditions are strict.
  • the GNSS antenna system cannot be deployed.
  • IP Internet Protocol
  • the base station using the wireless repeater cannot directly use the PTP synchronization; but to implement the frame synchronization by using the air interface synchronization, the base station BS is required to directly receive the wireless data of the host base station, but the base station BS of FIG. 1 cannot directly acquire the host base station. It is obvious that wireless data cannot be synchronized using air interface synchronization. It can be seen that the existing GNSS synchronization method has the problems of high deployment cost and poor versatility.
  • the embodiments of the present invention are expected to provide a time synchronization method, a master time synchronization device, a communication system, and a computer storage medium, and at least solve the problem that the existing GNSS synchronization mode has high deployment cost and poor versatility.
  • an embodiment of the present invention provides a master time synchronization device, where the device includes:
  • An air interface synchronization module configured to synchronize local frame information with frame information of a host base station
  • a time conversion module configured to convert the synchronized frame information to obtain a PTP time and then perform timing
  • the synchronization service module is configured to obtain the current PTP time from the time conversion module and add the time synchronization message to the slave base station to be synchronized for time synchronization.
  • the air interface synchronization module includes a local frame header frame number generation submodule, a frame acquisition submodule, a baseband processing submodule, and a synchronization processing submodule;
  • the local frame header frame number generation submodule is configured to generate a local frame header and a frame number
  • the frame acquisition submodule is configured to acquire a frame header and a frame number from a host base station
  • the baseband processing submodule is configured to compare the local frame header and the frame number with the frame header and the frame number of the host base station, and send the comparison result to the clock processing submodule;
  • the synchronization processing sub-module is configured to adjust a local frame header and a frame number according to the comparison result, so that the local frame header and the frame number are respectively synchronized with the frame header and the frame number of the host base station.
  • the time conversion module includes a frame search submodule, a clock processing submodule, and a PTP time counting submodule;
  • the frame search sub-module is configured to select, according to a frame number synchronized by the synchronization processing sub-module, a frame number generated by the local frame header frame number generation sub-module as a target frame number;
  • the clock processing submodule is configured to convert the target frame number into a PTP time, and set the PTP time counting submodule, and use a frame header of the target frame number as a P pulse. The beginning of the second.
  • the frame search sub-module selects a frame number generated by the local frame header frame number generation sub-module as the target frame number, including:
  • a frame number randomly selected from the frame number generated after the selection of the local frame header frame generation sub-module is randomly selected as the target frame number.
  • the synchronization service module includes a PTP protocol submodule and a time synchronization submodule;
  • the PTP protocol sub-module is configured to determine whether the packet currently sent to the slave base station to be synchronized is a time synchronization packet
  • the time synchronization sub-module is configured to send the time synchronization message to the slave base station to be synchronized after the time conversion module obtains the current PTP time and inserts the time synchronization message.
  • the present invention also provides a communication system including a slave base station to be synchronized, a base station, and a master time synchronization device as described above;
  • the master time synchronization device is configured to synchronize the local frame information with the frame information of the host base station, convert the synchronized frame information to obtain a PTP time, perform timing, and deliver the current frame to the slave base station.
  • the time synchronization message of the PTP time performs time synchronization on the slave base station;
  • the slave base station is configured to receive the time synchronization message, extract the PTP time from the time synchronization message, and perform synchronization processing on the local time according to the extracted PTP time.
  • the method further includes a PTP transmission device disposed between the slave base station and the master time synchronization device; the PTP transmission device configured to receive from the master time The time synchronization message of the inter-synchronization device is forwarded to the slave base station for time synchronization.
  • the PTP transmission device is a boundary clock device supporting PTP or a transparent clock device supporting PTP.
  • the primary time synchronization device is a wireless repeater or base station.
  • the present invention also provides a time synchronization method, including:
  • the master time synchronization device synchronizes the local frame information with the frame information of the host base station
  • the master time synchronization device converts the synchronized frame information to obtain a PTP time and then counts the time;
  • the master time synchronization device sends a time synchronization message including the current PTP time to the slave base station to be synchronized to perform time synchronization on the slave base station.
  • the primary time synchronization device synchronizes local frame information with frame information of the host base station, including:
  • the main time synchronization device locally generates a frame header and a frame number
  • the main time synchronization device acquires a frame header and a frame number of the host base station
  • the main time synchronization device compares the locally generated frame header and frame number with the frame header and frame number of the host base station, respectively, and completes synchronization according to the comparison result.
  • the primary time synchronization device starts timing after converting the obtained PTP time according to the synchronized frame information, and includes:
  • the main time synchronization device takes a frame number after synchronization as a reference, and selects a local frame number generated later as the target frame number;
  • the frame header of the target frame number is taken as the start of 1 pulse second of the PTP.
  • selecting a frame number generated later as the target frame number includes:
  • a frame number randomly selected from the frame number generated later is randomly selected as the target frame number.
  • the primary time synchronization device sends a time synchronization message including the current PTP time to the secondary base station, including:
  • Determining whether the packet currently sent to the slave base station to be synchronized is a time synchronization packet; if yes, the current PTP time is inserted into the time synchronization message and sent to the slave base station to be synchronized.
  • Embodiments of the present invention provide a computer storage medium in which a computer program is stored, the computer program for performing the time synchronization method described above.
  • the main time synchronization device synchronizes the local frame information with the frame information of the host base station through the air interface synchronization module, and then synchronizes the frame.
  • the primary time synchronization device obtains the local current PTP time and inserts the time synchronization message and sends the time synchronization message to the secondary base station to be synchronized; after receiving the data from the base station, the time synchronization message is received according to the time.
  • the PTP time in the completion time synchronization.
  • the technical solution in the embodiment of the present invention can directly use the primary time synchronization device connected to the host base station to synchronize the frame information through the air interface synchronization, and then convert the PTP time to the PTP clock synchronization service for the secondary base station to be synchronized after the PTP time is changed.
  • the extra antenna feed is saved, which saves the deployment cost, and is applicable to the scenario that the slave base station to be synchronized cannot directly receive the wireless data from the base station, thereby improving the versatility of the synchronization.
  • 1 is a schematic diagram of a network architecture with a wireless repeater
  • FIG. 2 is a flowchart of a time synchronization method according to Embodiment 1 of the present invention.
  • FIG. 3 is a flow chart of the frame information synchronization process of FIG. 2;
  • FIG. 4 is a flow chart of the process of converting the PTP time in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a primary time synchronization apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of the hollow port synchronization module of FIG. 5;
  • FIG. 7 is a schematic structural diagram of a time conversion module in FIG. 5;
  • FIG. 8 is a schematic structural diagram of a synchronization service module in FIG. 5;
  • FIG. 9 is a schematic structural diagram of a slave base station according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic structural diagram 1 of a communication system according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram 2 of a communication system according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram 3 of a communication system according to Embodiment 3 of the present invention.
  • the invention utilizes a master time synchronization device with air interface synchronization function and capable of communicating with a host base station, first realizing synchronization of local frame information with host station frame information, then converting local frame information into PTP time, and treating the synchronization based on the PTP time.
  • the synchronization is completed from the base station.
  • antenna feeder wiring which can save cost, and is suitable for a scenario in which the base station cannot directly receive wireless data from the base station, and the versatility is better.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the time synchronization method provided in this embodiment mainly includes the following steps:
  • Step 201 The primary time synchronization device synchronizes the local frame information with the frame information of the host base station.
  • Step 202 The main time synchronization device converts the synchronized frame information to obtain a PTP time and then counts the time;
  • Step 203 The primary time synchronization device sends a time synchronization message including the current PTP time to the slave base station to be synchronized to perform time synchronization on the slave base station.
  • the primary time synchronization device in this embodiment can synchronize the local frame information with the frame information of the host base station by using the air interface synchronization function. It should be understood that the primary time synchronization device may be A wireless repeater with air interface synchronization or a base station with air interface synchronization.
  • the frame information in this embodiment may include a frame header and a frame number.
  • the process of synchronizing the local frame information with the frame information of the host base station by the primary time synchronization device in the above step 201 is shown in FIG. 3, and includes:
  • Step 301 The primary time synchronization device locally generates a frame header and a frame number.
  • Step 302 The primary time synchronization device acquires a frame header and a frame number of the host base station.
  • Step 303 The primary time synchronization device compares the locally generated frame header and frame number with the frame header and frame number of the host base station, and completes synchronization according to the comparison result.
  • the deviation between the local frame header and the frame header of the host base station may be compared first, and then the position of the local frame header is adjusted to synchronize with the frame header of the host base station, and then the frame number of the host base station is calculated, and The local frame number is compared with the host frame number, and the local frame number is adjusted to synchronize with the host frame number.
  • the process of starting the timing after the PTP time is converted by the primary time synchronization device according to the synchronized frame information, as shown in FIG. 4, includes:
  • Step 401 The primary time synchronization device uses the frame number after synchronization as a reference, and selects a local frame number generated later as the target frame number Fn;
  • Step 402 The main time synchronization device converts the obtained target frame number Fn into a PTP time to perform a PTP timing setting, and specifically sets a second bit of the PTP timing;
  • Step 403 The main time synchronization device takes the frame header of the obtained target frame number as the start of the PPP 1PPS (English name is Pulse Per Second, the Chinese name is pulse seconds); and at this time, the nanosecond position of the PTP time can also be Cleared.
  • PPP 1PPS American name is Pulse Per Second, the Chinese name is pulse seconds
  • the process of converting the obtained target frame number Fn into the PTP time in the above step 402 is: the target frame number is divided by 100 as the GPS time, since the starting point of the GPS time and the PTP time is different, and 315964819 is the PTP time. That is, Fn/100+315964819 gives the converted PTP time.
  • the manner of selecting the target frame number in the above step 401 can be theoretically set arbitrarily. According to the above conversion formula, a frame number which is an integer multiple of 100 which is generated later can be preferably used as the target frame number.
  • selection manners may also be adopted, for example, selecting the next frame number generated later as the target frame number, or randomly selecting a frame number from the frame number generated later as the target frame number by using a random selection manner.
  • the selected frame number is not an integer multiple of 100
  • the selected target frame number may be delivered in a non-standard protocol format.
  • the primary time synchronization device delivers the time synchronization message including the current PTP time to the secondary base station, including:
  • the packet is sent to the slave base station to be synchronized, and the current PTP time is inserted into the time synchronization message.
  • the base station calculates the deviation between the local end and the PTP time in the time synchronization message, and adjusts the local PTP counting module to synchronize the local end with the main time synchronization device, thereby ensuring the master time.
  • the synchronization device frame number synchronization since the frame number of the primary time synchronization device is synchronized with the frame number of the host base station, ensures synchronization of the frame number between the base station and the donor base station.
  • the selected target frame number Fn be an integer multiple of 100.
  • the initial GPS time is Fn/100.
  • the PTP time of the primary time synchronization device is synchronized from the base station, that is, the time from the base station and the primary time synchronization device is Fn/100+N seconds.
  • the frame number on the master time synchronization device is of the formula (1), and the frame number on the slave base station is the equation (2).
  • the frame number of the primary time synchronization device after the base station is synchronized with the air interface is synchronized, thereby ensuring synchronization with the frame number of the host base station.
  • the cost of the antenna feeder wiring is saved, and the base station synchronization problem in the case where the GNSS antenna feeder cable cannot be laid when the base station uses the wireless relay is solved without adding any hardware cost.
  • the embodiment of the invention further describes a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing as shown in FIG. 2 or The time synchronization method shown in FIG. 3 or FIG.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a master time synchronization device, which may be a wireless repeater with air interface synchronization function or a base station with air interface synchronization function. Referring to FIG. 5, it includes:
  • the air interface synchronization module 1 is configured to synchronize local frame information with frame information of the host base station;
  • the time conversion module 2 is configured to convert the synchronized frame information to obtain a PTP time and then perform timing;
  • the synchronization service module 3 is configured to obtain the current PTP time join time synchronization message from the time conversion module 2 and send the time synchronization message to the slave base station to be synchronized for time synchronization.
  • the primary time synchronization device in this embodiment can synchronize the local frame information with the frame information of the host base station by using the air interface synchronization function.
  • the air interface synchronization module 1 includes a local frame header frame number generation sub-module 11, a frame acquisition sub-module 12, a baseband processing sub-module 13, and a synchronization processing sub-module 14;
  • the local frame header frame number generation sub-module 11 is configured to generate a local frame header and a frame number
  • the frame acquisition sub-module 12 is configured to obtain a frame header and a frame number from the host base station, which may be specifically implemented by using a radio frequency module;
  • the baseband processing sub-module 13 is configured to compare the local frame header and the frame number with the frame header and the frame number of the host base station, and send the comparison result to the clock processing sub-module;
  • the synchronization processing sub-module 14 is configured to adjust the local frame header and the frame number according to the comparison result, so that the local frame header and the frame number are respectively synchronized with the frame header and the frame number of the host base station.
  • the baseband processing sub-module 13 may first compare the deviation between the local frame header and the frame header of the host base station, and then the synchronization processing sub-module 14 adjusts the position of the local frame header by register setting to achieve synchronization with the frame header of the host base station, and then baseband processing.
  • the sub-module 13 calculates the frame number of the host base station, and the present The ground frame number is compared with the host frame number, and the synchronization processing sub-module 14 synchronizes with the host frame number by adjusting the local frame number through the register setting.
  • the time conversion module 2 includes a frame search sub-module 21, a clock processing sub-module 22, and a PTP time counting sub-module 23;
  • the frame search sub-module 21 is configured to select a frame number generated by the local frame header frame number sub-module 11 as the target frame number Fn based on the frame number synchronized by the synchronization processing sub-module 14;
  • the clock processing sub-module 22 is configured to convert the target frame number Fn into a PTP time to set the PTP time counting sub-module 23, and set the frame header of the target frame number Fn as the start of the PPP 1PPS.
  • the process of converting the obtained target frame number Fn into the PTP time by the clock processing sub-module 22 is: the clock processing sub-module 22 divides the target frame number Fn by 100 to obtain the GPS time, since the starting point of the GPS time and the PTP time is different, and then Plus 315964819 is the PTP time. That is, Fn/100+315964819 gives the converted PTP time.
  • the manner in which the target frame number is selected in the frame search sub-module 21 can be theoretically set arbitrarily. According to the above conversion formula, a frame number which is an integer multiple of 100 which is generated later can be preferably used as the target frame number.
  • selection manners may also be adopted, for example, selecting the next frame number generated later as the target frame number, or randomly selecting a frame number from the frame number generated later as the target frame number by using a random selection manner.
  • the selected frame number is not an integer multiple of 100
  • the selected target frame number may be delivered to the clock processing sub-module 22 in a non-standard protocol format.
  • the synchronization processing sub-module 14 may be part of the clock processing sub-module 22, that is, the multiplexing clock processing sub-module 22 may realize synchronization of the frame header and the frame number.
  • the synchronization service module 3 in this embodiment includes a PTP protocol sub-module 31 and a time synchronization sub-module 32;
  • the PTP protocol sub-module 31 is configured to determine whether the packet currently sent to the secondary base station to be synchronized is a time synchronization message (that is, an event message);
  • the time synchronization sub-module 32 is configured to send the current PTP time insertion time synchronization message from the time conversion module 2 to the slave base station to be synchronized, when the PTP protocol sub-module determines that the message is YES.
  • the PTP time can be inserted into the time synchronization packet by time stamping.
  • the time stamping method varies according to the hardware environment. The specific setting can be flexibly selected according to actual requirements.
  • the time synchronization sub-module 32 is further configured to receive whether the packet from the base station or other intermediate transmission device is an event packet (PTP packet), and if yes, obtain the current PTP time from the time conversion module 2 and insert the packet into the packet. Specifically, it can also be inserted by time stamping;
  • PTP packet event packet
  • the PTP protocol sub-module 31 is further configured to parse the packet sent by the time synchronization sub-module 32, and find that it is an event packet, and extract a corresponding receiving timestamp therefrom; the receiving timestamp can be used to determine the sender that sends the packet. Is it synchronized with the local end?
  • the slave base station in this embodiment includes a phase locked loop 4, a clock recovery algorithm module 5, and a PTP counting module 6; the phase locked loop 4 is configured to lock the phase; and the clock recovery algorithm module 5 is configured to receive the time.
  • the deviation between the local end and the PTP time in the time synchronization message is calculated, and the local PTP counting module 6 is adjusted to synchronize the local end with the main time synchronization device, thereby ensuring synchronization with the main time synchronization device frame number. Since the frame number of the primary time synchronization device is synchronized with the frame number of the host base station, synchronization of the frame number between the base station and the donor base station is ensured.
  • the air interface synchronization module 1, the time conversion module 2, and the synchronization service module 3 can be processed by a central processing unit (CPU, Central Processing Unit), a microprocessor (MPU, digital processor unit), and a digital signal in a base station. (DSP, Digital Signal Processor) or Field Programmable Gate Array (FPGA).
  • CPU Central Processing Unit
  • MPU microprocessor
  • FPGA Field Programmable Gate Array
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present embodiment provides a communication system.
  • the slave base station 1001, the host base station 1002, and the master time synchronization device 1003 to be synchronized the master time synchronization device in this embodiment may be a wireless repeater. It can also be a base station with air interface synchronization.
  • the master time synchronization device 1003 is configured to synchronize the local frame information with the frame information of the host base station 1002, convert the synchronized frame information to obtain a PTP time, and then time the time to deliver the current PTP time to the slave base station 1001. Synchronizing the message pair to perform time synchronization from the base station 1001;
  • the time synchronization message is received from the base station 1001, the PTP time is extracted from the time synchronization message, and the local time is synchronized according to the extracted PTP time.
  • the communication system shown in FIG. 10 further includes a PTP transmission device 1004 disposed between the slave base station 1001 and the master time synchronization device 1003 on the basis of FIG. 10; the PTP transmission device 1004 and the slave base station and the master.
  • the transmission medium between the time synchronization devices 1003 can make five types of network cables or optical fibers.
  • the PTP transmission device 1004 is configured to receive the time synchronization message from the primary time synchronization device 1003 and forward it to the secondary base station 1001 for time synchronization.
  • PTP transmission device 1004 When there is a PTP transmission device 1004, there may be multiple slave base stations 1001, and the PTP transmission device 1004 performs forwarding, so that multiple slave base stations can be synchronized with the master time synchronization device, and can support longer distance transmission. Of course, there may be only one slave base station 1001.
  • the PTP transmission device 1004 in this embodiment may be a Boundary Clock device supporting PTP or a Transparent Clock device supporting PTP; please refer to the communication system shown in FIG. 12, PTP transmission.
  • the device 1004 is a PTP-enabled boundary clock device 10041 having a synchronous clock receiving module 100411 and a PTP synchronization service module 100412.
  • the synchronous clock receiving module 100411 is configured to synchronize the clock of the primary time synchronization device 1003 and then provide the clock through the PTP synchronization service module 100412.
  • a clock synchronization service is provided from the base station 1001.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, Or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps:
  • the foregoing storage medium includes: a removable storage device, a read-only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.
  • the primary time synchronization device synchronizes the local frame information with the frame information of the host base station through the air interface synchronization module, and then converts the synchronized frame information to obtain a PTP time and then counts the time;
  • the synchronization device obtains the local PTP time insertion time synchronization message and sends it to the slave base station to be synchronized; after receiving the base station, the time synchronization is completed according to the PTP time in the time synchronization message; thus, no additional antenna feed is needed.
  • the wiring saves the deployment cost, and is applicable to a scenario in which the slave base station to be synchronized cannot directly receive the wireless data from the base station, thereby improving the versatility of the synchronization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种时间同步方法、主时间同步装置、通信系统及计算机存储介质,其中,所述时间同步方法包括:主时间同步装置通过空口同步模块将本地的帧信息与宿主基站的帧信息进行同步,然后将同步后的帧信息进行转换得到PTP时间后进行计时;在同步时,主时间同步装置获取本地当前的PTP时间插入时间同步报文后发给待同步的从基站;从基站接收到后则根据该时间同步报文中的PTP时间完成时间同步。

Description

时间同步方法、主时间同步装置、通信系统及存储介质 技术领域
本发明涉及通信领域,具体涉及一种时间同步方法、主时间同步装置、通信系统及计算机存储介质。
背景技术
基站使用无线中继器的一种应用场景如图1所示。基站(BS,Base Station,包括无线各制式和各种形态的基站)到核心网间无物理传输通道,与核心网(Evolved Packet Core,EPC)间的通信通过一个宿主基站(Donor eNodeB)和一个无线中继(Wireless Relay)器设备来完成。
分时长期演进(TD-LTE,Time Division Long Term Evolution)系统要求全网帧同步,要实现帧同步,业界现有的技术是给基站直接接时钟参考源,包括全球导航卫星系统(GNSS,Global Navigation Satellite System,包括美国的GPS、中国的北斗和俄罗斯的GLONASS和欧洲的Galieo等)时钟源、精确时间同步(PTP,Precision Time Protocol)时钟源或者空口同步(NWL,Network Listening)等。但是GNSS铺设成本高,并且铺设条件严格,有些场景不能或者无法铺设GNSS天馈系统;例如,要使用PTP实现帧同步,要求传输网为网络协议(IP,Internet Protocol)网络,并且全网都支持PTP,显然使用无线中继器的基站无法直接使用PTP同步;而要使用空口同步实现帧同步,则要求基站BS能直接接收宿主基站的无线数据,但如图1的基站BS无法直接获取宿主基站的无线数据显然也无法使用空口同步实现帧同步。可见,现有GNSS同步方式存在部署成本高,通用性差的问题。
发明内容
有鉴于此,本发明实施例期望提供一种时间同步方法、主时间同步装置、通信系统及计算机存储介质,至少解决现有GNSS同步方式存在部署成本高,通用性差的问题。
为解决上述技术问题,本发明实施例提供一种主时间同步装置,所述装置包括:
空口同步模块,配置为将本地的帧信息与宿主基站的帧信息进行同步;
时间转换模块,配置为将同步后的帧信息进行转换得到PTP时间后进行计时;
同步服务模块,配置为从时间转换模块获取当前的PTP时间加入时间同步报文下发给待同步的从基站进行时间同步。
在本发明的一种实施例中,所述空口同步模块包括本地帧头帧号产生子模块、帧获取子模块、基带处理子模块、同步处理子模块;其中,
所述本地帧头帧号产生子模块,配置为产生本地帧头、帧号;
所述帧获取子模块,配置为从宿主基站获取帧头、帧号;
所述基带处理子模块,配置为分别将本地的帧头、帧号与宿主基站的帧头、帧号进行比较,将比较结果发给时钟处理子模块;
所述同步处理子模块,配置为根据所述比较结果分别调整本地帧头、帧号,使本地帧头、帧号分别与所述宿主基站的帧头、帧号同步。
在本发明的一种实施例中,所述时间转换模块包括帧查找子模块、时钟处理子模块和PTP时间计数子模块;其中,
所述帧查找子模块,配置为以所述同步处理子模块同步后的帧号为基准,选取所述本地帧头帧号产生子模块后面产生的一个帧号作为目标帧号;
所述时钟处理子模块,配置为将所述目标帧号换算成PTP时间对所述PTP时间计数子模块进行设置,并将所述目标帧号的帧头作为PTP的1脉 冲秒的起始。
在本发明的一种实施例中,所述帧查找子模块选取所述本地帧头帧号产生子模块后面产生的一个帧号作为目标帧号包括:
选取所述本地帧头帧号产生子模块产生的下一个帧号作为目标帧号;
或,选取所述本地帧头帧号产生子模块产生的一个为100的整数倍的帧号为目标帧号;
或,采用随机选取的方式从选取所述本地帧头帧号产生子模块后面产生的帧号中随机选择一个帧号作为目标帧号。
在本发明的一种实施例中,所述同步服务模块包括PTP协议子模块和时间同步子模块;其中,
所述PTP协议子模块,配置为判断当前下发给所述待同步的从基站的报文是否是时间同步报文;
所述时间同步子模块,配置为在所述PTP协议子模块判断为是时,从所述时间转换模块获取当前的PTP时间插入所述时间同步报文后发给所述待同步的从基站。
为了解决上述问题,本发明还提供了一种通信系统,包括待同步的从基站、宿主基站以及如上所述的主时间同步装置;
所述主时间同步装置,配置为将本地的帧信息与所述宿主基站的帧信息进行同步,将同步后的帧信息进行转换得到PTP时间后进行计时,向所述从基站下发包含当前的PTP时间的时间同步报文对所述从基站进行时间同步;
所述从基站,配置为接收所述时间同步报文,从所述时间同步报文中提取所述PTP时间,根据提取的PTP时间对本地时间进行同步处理。
在本发明的一种实施例中,还包括设置于所述从基站和所述主时间同步装置之间的PTP传输装置;所述PTP传输装置配置为接收来自所述主时 间同步装置的所述时间同步报文,并转发给所述从基站进行时间同步。
在本发明的一种实施例中,所述PTP传输装置为支持PTP的边界时钟装置或支持PTP的透明时钟装置。
在本发明的一种实施例中,所述主时间同步装置为无线中继器或基站。
为了解决上述问题,本发明还提供了一种时间同步方法,包括:
主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步;
所述主时间同步装置将同步后的帧信息进行转换得到PTP时间后进行计时;
所述主时间同步装置向待同步的从基站下发包含当前的PTP时间的时间同步报文对所述从基站进行时间同步。
在本发明的一种实施例中,所述主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步,包括:
主时间同步装置本地产生帧头和帧号;
主时间同步装置获取宿主基站的帧头和帧号;
主时间同步装置分别将本地产生的帧头和帧号与宿主基站的帧头和帧号进行比较,根据比较结果完成同步。
在本发明的一种实施例中,所述主时间同步装置根据同步后的帧信息转换得到的PTP时间后开始计时,包括:
主时间同步装置以同步后的帧号为基准,选取后面产生的一个本地帧号作为目标帧号;
将所述目标帧号换算成PTP时间进行PTP计时设置;
将所述目标帧号的帧头作为PTP的1脉冲秒的起始。
在本发明的一种实施例中,选取后面产生的一个帧号作为目标帧号,包括:
选取后面产生的下一个帧号作为目标帧号;
或,选取后面产生的一个为100的整数倍的帧号为目标帧号;
或,采用随机选取的方式从后面产生的帧号中随机选择一个帧号作为目标帧号。
在本发明的一种实施例中,所述主时间同步装置向所述从基站下发包含当前的PTP时间的时间同步报文,包括:
判断当前下发给所述待同步的从基站的报文是否是时间同步报文;如是,获取当前的PTP时间插入所述时间同步报文后发给所述待同步的从基站。
本发明实施例提供了一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行以上所述的时间同步方法。
本发明实施例提供的时间同步方法、主时间同步装置、通信系统及计算机存储介质,主时间同步装置通过空口同步模块将本地的帧信息与宿主基站的帧信息进行同步,然后将同步后的帧信息进行转换得到PTP时间后进行计时;在同步时,主时间同步装置获取本地当前的PTP时间插入时间同步报文后发给待同步的从基站;从基站接收到后则根据该时间同步报文中的PTP时间完成时间同步。可见,本发明实施例所述技术方案可直接利用与宿主基站连接的主时间同步装置通过空口同步实现帧信息同步后,转换成PTP时间后为待同步的从基站提供PTP时钟同步服务,不需要额外进行天馈布线,节约了部署成本,且适用于待同步的从基站不能直接从宿主基站接收无线数据的场景,提升了同步的通用性。
附图说明
图1为带有无线中继器的网络构架示意图;
图2为本发明实施例一提供的时间同步方法流程图;
图3为图2中帧信息同步过程的流程图;
图4为图2中转换得到PTP时间过程的流程图;
图5为本发明实施例二提供的主时间同步装置结构示意图;
图6为图5中空口同步模块结构示意图;
图7为图5中时间转换模块结构示意图;
图8为图5中同步服务模块结构示意图;
图9为本发明实施例二提供的从基站结构示意图;
图10为本发明实施例三提供的通信系统结构示意图一;
图11为本发明实施例三提供的通信系统结构示意图二;
图12为本发明实施例三提供的通信系统结构示意图三。
具体实施方式
本发明利用具有空口同步功能且能与宿主基站进行通信的主时间同步装置,先实现本地帧信息与宿主基站帧信息的同步,然后将本地帧信息转换成PTP时间,并基于该PTP时间对待同步的从基站完成同步。不需要额外进行天馈布线,可节约成本,且由其适用于从基站不能直接从宿主基站接收无线数据的场景,通用性更好。下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
请参见图2所示,本实施例中提供的时间同步方法主要包括以下步骤:
步骤201:主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步;
步骤202:主时间同步装置将同步后的帧信息进行转换得到PTP时间后进行计时;
步骤203:主时间同步装置向待同步的从基站下发包含当前的PTP时间的时间同步报文对从基站进行时间同步。
本实施例中的主时间同步装置可利用空口同步功能实现将本地帧信息与宿主基站的帧信息进行同步。应当理解的是,该主时间同步装置可以是 具有空口同步功能的无线中继器或者具有空口同步功能的基站。
本实施例中的帧信息可包含帧头和帧号,上述步骤201中主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步的过程请参见图3所示,包括:
步骤301:主时间同步装置本地产生帧头和帧号;
步骤302:主时间同步装置获取宿主基站的帧头和帧号;
步骤303:主时间同步装置分别将本地产生的帧头和帧号与宿主基站的帧头和帧号进行比较,根据比较结果完成同步。在一具体子实施例中,可先比较本地帧头与宿主基站的帧头的偏差,然后通过调整本地帧头的位置实现与宿主基站帧头的同步,然后计算出宿主基站的帧号,将本地帧号与宿主的帧号进行比较,调整本地帧号实现与宿主帧号进行同步。
实现帧头和帧号的同步后,上述步骤202主时间同步装置根据同步后的帧信息转换得到的PTP时间后开始计时的过程请参见图4所示,包括:
步骤401:主时间同步装置以同步后的帧号为基准,选取后面产生的一个本地帧号作为目标帧号Fn;
步骤402:主时间同步装置将得到的目标帧号Fn换算成PTP时间进行PTP计时设置,具体可对PTP计时的秒位进行设置;
步骤403:主时间同步装置将得到的目标帧号的帧头作为PTP的1PPS(英文全称为Pulse Per Second,中文名称为脉冲秒)的起始;且此时还可将PTP时间的纳秒位清零。
上述步骤402中根据得到的目标帧号Fn换算成PTP时间的过程为:目标帧号除以100为GPS时间,由于GPS时间和PTP时间的起始点不一样,再加上315964819即为PTP时间。也即Fn/100+315964819即得到转换后的PTP时间。上述步骤401中选择目标帧号的方式理论上可以随意设置,根据上述转换公式可优选后面产生的一个为100的整数倍的帧号为目标帧号。 当然,也可采用其他的选择方式,例如选取后面产生的下一个帧号作为目标帧号,或,采用随机选取的方式从后面产生的帧号中随机选择一个帧号作为目标帧号。当选择的帧号不是100的整数倍时,可将选择的目标帧号采用非标准协议的格式进行传递。
上述步骤203中,主时间同步装置向从基站下发包含当前的PTP时间的时间同步报文,包括:
判断当前下发给待同步的从基站的报文是否是时间同步报文;如是,获取当前的PTP时间插入时间同步报文后发给待同步的从基站。从基站收到该时间同步报文后,计算本端与该时间同步报文中的PTP时间之间的偏差,调整本端PTP计数模块使得本端与主时间同步装置同步,进而保证与主时间同步装置帧号同步,由于主时间同步装置的帧号是与宿主基站的帧号同步的,因此保证了从基站与宿主基站之间帧号的同步。下面以一个示例进行说明。设选择的目标帧号Fn为100的整数倍。则起始的GPS时间为Fn/100,假设过了N秒后,从基站同步了主时间同步装置的PTP时间,即从基站和主时间同步装置设备的时间都为Fn/100+N秒,主时间同步装置设备上的帧号为式(1),从基站上的帧号为式(2)。
Fn'=(Fn+N×100)%1024       (1)
Fn"=[(Fn/100+N)×100)]%1024      (2)
Fn"=Fn'        (3)
所以,按照本实施例提供的方案从基站一直和空口同步后的主时间同步装置帧号同步,进而保证与宿主基站的帧号同步。与现有技术相比,节约了天馈布线成本,在不增加任何硬件成本的条件下,解决了基站使用无线中继时,无法铺设GNSS天馈线缆情况下的基站同步问题。
本发明实施例还记载了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述如图2、或 图3、或图4所示的时间同步方法。
实施例二:
本实施例提供了一种主时间同步装置,该主时间同步装置可以是具有空口同步功能的无线中继器或者具有空口同步功能的基站,请参见图5所示,其包括:
空口同步模块1,配置为将本地的帧信息与宿主基站的帧信息进行同步;
时间转换模块2,配置为将同步后的帧信息进行转换得到PTP时间后进行计时;
同步服务模块3,配置为从时间转换模块2获取当前的PTP时间加入时间同步报文下发给待同步的从基站进行时间同步。
本实施例中的主时间同步装置可利用空口同步功能实现将本地帧信息与宿主基站的帧信息进行同步。请参见图6所示,空口同步模块1包括本地帧头帧号产生子模块11、帧获取子模块12、基带处理子模块13、同步处理子模块14;
本地帧头帧号产生子模块11配置为产生本地帧头、帧号;
帧获取子模块12配置为从宿主基站获取帧头、帧号,其具体可通过射频模块实现;
基带处理子模块13配置为分别将本地的帧头、帧号与宿主基站的帧头、帧号进行比较,将比较结果发给时钟处理子模块;
同步处理子模块14配置为根据比较结果分别调整本地帧头、帧号,使本地帧头、帧号分别与宿主基站的帧头、帧号同步。
具体的,基带处理子模块13可先比较本地帧头与宿主基站的帧头的偏差,然后同步处理子模块14通过寄存器设置调整本地帧头的位置实现与宿主基站帧头的同步,然后基带处理子模块13计算出宿主基站的帧号,将本 地帧号与宿主的帧号进行比较,同步处理子模块14通过寄存器设置调整本地帧号实现与宿主帧号进行同步。
请参见图7所示,时间转换模块2包括帧查找子模块21、时钟处理子模块22和PTP时间计数子模块23;
帧查找子模块21,配置为以同步处理子模块14同步后的帧号为基准,选取本地帧头帧号产生子模块11后面产生的一个帧号作为目标帧号Fn;
时钟处理子模块22,配置为将目标帧号Fn换算成PTP时间对PTP时间计数子模块23进行设置,并将目标帧号Fn的帧头作为PTP的1PPS的起始。
时钟处理子模块22根据得到的目标帧号Fn换算成PTP时间的过程为:时钟处理子模块22将目标帧号Fn除以100得到GPS时间,由于GPS时间和PTP时间的起始点不一样,再加上315964819即为PTP时间。也即Fn/100+315964819即得到转换后的PTP时间。帧查找子模块21中选择目标帧号的方式理论上可以随意设置,根据上述转换公式可优选后面产生的一个为100的整数倍的帧号为目标帧号。当然,也可采用其他的选择方式,例如选取后面产生的下一个帧号作为目标帧号,或,采用随机选取的方式从后面产生的帧号中随机选择一个帧号作为目标帧号。当选择的帧号不是100的整数倍时,可将选择的目标帧号采用非标准协议的格式传递给时钟处理子模块22。
本实施例中,同步处理子模块14可为时钟处理子模块22的一部分,也即可复用时钟处理子模块22实现帧头和帧号的同步。
请参见图8所示,本实施例中的同步服务模块3包括PTP协议子模块31和时间同步子模块32;
PTP协议子模块31,配置为判断当前下发给待同步的从基站的报文是否是时间同步报文(也即事件报文);
时间同步子模块32,配置为在PTP协议子模块判断为是时,从时间转换模块2获取当前的PTP时间插入时间同步报文后发给待同步的从基站。具体可通过打时间戳的方式将PTP时间插入该时间同步报文,打时间戳的方式根据硬件环境不同而有差异,具体可根据实际需求灵活选择设置;
时间同步子模块32,还配置为接收来自从基站或其他中间传输设备的报文是否是事件报文(PTP报文),如果是,从时间转换模块2获取当前的PTP时间插入该报文中,具体可也通过打时间戳的方式插入;
PTP协议子模块31还配置为对时间同步子模块32发送的报文进行解析,发现是事件报文,则从中提取相应的接收时间戳;该接收时间戳可用于判断发送该报文的发送方与本端是否同步。
请参见图9所示,本实施例中的从基站包括锁相环4、时钟恢复算法模块5和PTP计数模块6;锁相环4配置为锁定相位;时钟恢复算法模块5配置为收到时间同步报文后,计算本端与该时间同步报文中的PTP时间之间的偏差,调整本端PTP计数模块6使得本端与主时间同步装置同步,进而保证与主时间同步装置帧号同步,由于主时间同步装置的帧号是与宿主基站的帧号同步的,因此保证了从基站与宿主基站之间帧号的同步。
实际应用中,所述空口同步模块1、时间转换模块2、同步服务模块3均可由基站中的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Micro Processor Unit)、数字信号处理器(DSP,Digital Signal Processor)或现场可编程门阵列(FPGA,Field Programmable Gate Array)等实现。
实施例三:
本实施例提供了一种通信系统,请参见图10所示,待同步的从基站1001、宿主基站1002以及主时间同步装置1003,该实施例中的主时间同步装置可为无线中继器,也可以为具有空口同步功能的基站。
主时间同步装置1003配置为将本地的帧信息与宿主基站1002的帧信息进行同步,将同步后的帧信息进行转换得到PTP时间后进行计时,向从基站1001下发包含当前的PTP时间的时间同步报文对从基站1001进行时间同步;
从基站1001接收时间同步报文,从时间同步报文中提取PTP时间,根据提取的PTP时间对本地时间进行同步处理。
请参见图11所示,该图所示的通信系统在图10的基础上还包括设置于从基站1001和主时间同步装置1003之间的PTP传输装置1004;PTP传输装置1004与从基站和主时间同步装置1003之间的传输介质可以使五类网线或者光纤等。PTP传输装置1004配置为接收来自主时间同步装置1003的时间同步报文,并转发给从基站1001进行时间同步。当存在PTP传输装置1004时,从基站1001可以有多个,通过PTP传输装置1004进行转发,这样就可以实现多个从基站与主时间同步装置同步,且可支持较远距离传输。当然,从基站1001也可以仅有一个。
应当理解的是,本实施例中的PTP传输装置1004可以是支持PTP的边界时钟(Boundary Clock)装置或支持PTP的透明时钟(Transparent Clock)装置;请参见图12所示的通信系统,PTP传输装置1004为支持PTP的边界时钟装置10041,其具有同步时钟接收模块100411和PTP同步服务模块100412;同步时钟接收模块100411配置为先同步主时间同步装置1003的时钟,然后通过PTP同步服务模块100412给从基站1001提供时钟同步服务。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统, 或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不 能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
本发明实施例中,主时间同步装置通过空口同步模块将本地的帧信息与宿主基站的帧信息进行同步,然后将同步后的帧信息进行转换得到PTP时间后进行计时;在同步时,主时间同步装置获取本地当前的PTP时间插入时间同步报文后发给待同步的从基站;从基站接收到后则根据该时间同步报文中的PTP时间完成时间同步;如此,不需要额外进行天馈布线,节约了部署成本,且适用于待同步的从基站不能直接从宿主基站接收无线数据的场景,提升了同步的通用性。

Claims (15)

  1. 一种主时间同步装置,所述装置包括:
    空口同步模块,配置为将本地的帧信息与宿主基站的帧信息进行同步;
    时间转换模块,配置为将同步后的帧信息进行转换得到PTP时间后进行计时;
    同步服务模块,配置为从时间转换模块获取当前的PTP时间加入时间同步报文下发给待同步的从基站进行时间同步。
  2. 如权利要求1所述的主时间同步装置,其中,所述空口同步模块包括本地帧头帧号产生子模块、帧获取子模块、基带处理子模块、同步处理子模块;
    所述本地帧头帧号产生子模块,配置为产生本地帧头、帧号;
    所述帧获取子模块,配置为从宿主基站获取帧头、帧号;
    所述基带处理子模块,配置为分别将本地的帧头、帧号与宿主基站的帧头、帧号进行比较,将比较结果发给时钟处理子模块;
    所述同步处理子模块,配置为根据所述比较结果分别调整本地帧头、帧号,使本地帧头、帧号分别与所述宿主基站的帧头、帧号同步。
  3. 如权利要求2所述的主时间同步装置,其中,所述时间转换模块包括帧查找子模块、时钟处理子模块和PTP时间计数子模块;
    所述帧查找子模块,配置为以所述同步处理子模块同步后的帧号为基准,选取所述本地帧头帧号产生子模块后面产生的一个帧号作为目标帧号;
    所述时钟处理子模块,配置为将所述目标帧号换算成PTP时间对所述PTP时间计数子模块进行设置,并将所述目标帧号的帧头作为PTP的1脉冲秒的起始。
  4. 如权利要求3所述的主时间同步装置,其中,所述帧查找子模块选取所述本地帧头帧号产生子模块后面产生的一个帧号作为目标帧号包括:
    选取所述本地帧头帧号产生子模块产生的下一个帧号作为目标帧号;
    或,选取所述本地帧头帧号产生子模块产生的一个为100的整数倍的帧号为目标帧号;
    或,采用随机选取的方式从选取所述本地帧头帧号产生子模块后面产生的帧号中随机选择一个帧号作为目标帧号。
  5. 如权利要求1至4任一项所述的主时间同步装置,其中,所述同步服务模块包括PTP协议子模块和时间同步子模块;
    所述PTP协议子模块,配置为判断当前下发给所述待同步的从基站的报文是否是时间同步报文;
    所述时间同步子模块,配置为在所述PTP协议子模块判断为是时,从所述时间转换模块获取当前的PTP时间插入所述时间同步报文后发给所述待同步的从基站。
  6. 一种通信系统,所述系统包括待同步的从基站、宿主基站以及如权利要求1至5任一项所述的主时间同步装置;
    所述主时间同步装置,配置为将本地的帧信息与所述宿主基站的帧信息进行同步,将同步后的帧信息进行转换得到PTP时间后进行计时,向所述从基站下发包含当前的PTP时间的时间同步报文对所述从基站进行时间同步;
    所述从基站,配置为接收所述时间同步报文,从所述时间同步报文中提取所述PTP时间,根据提取的PTP时间对本地时间进行同步处理。
  7. 如权利要求6所述的通信系统,其中,还包括设置于所述从基站和所述主时间同步装置之间的PTP传输装置;所述PTP传输装置配置为接收来自所述主时间同步装置的所述时间同步报文,并转发给所述从基站进行时间同步。
  8. 如权利要求7所述的通信系统,其中,所述PTP传输装置为支持 PTP的边界时钟装置或支持PTP的透明时钟装置。
  9. 如权利要求6至8任一项所述的通信系统,其中,所述主时间同步装置为无线中继器或基站。
  10. 一种时间同步方法,所述方法包括:
    主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步;
    所述主时间同步装置将同步后的帧信息进行转换得到PTP时间后进行计时;
    所述主时间同步装置向待同步的从基站下发包含当前的PTP时间的时间同步报文对所述从基站进行时间同步。
  11. 如权利要求10所述的时间同步方法,其中,所述主时间同步装置将本地的帧信息与宿主基站的帧信息进行同步包括:
    主时间同步装置本地产生帧头和帧号;
    主时间同步装置获取宿主基站的帧头和帧号;
    主时间同步装置分别将本地产生的帧头和帧号与宿主基站的帧头和帧号进行比较,根据比较结果完成同步。
  12. 如权利要求11所述的时间同步方法,其中,所述主时间同步装置根据同步后的帧信息转换得到的PTP时间后开始计时包括:
    主时间同步装置以同步后的帧号为基准,选取后面产生的一个本地帧号作为目标帧号;
    将所述目标帧号换算成PTP时间进行PTP计时设置;
    将所述目标帧号的帧头作为PTP的1脉冲秒的起始。
  13. 如权利要求12所述的时间同步方法,其中,选取后面产生的一个帧号作为目标帧号包括:
    选取后面产生的下一个帧号作为目标帧号;
    或,选取后面产生的一个为100的整数倍的帧号为目标帧号;
    或,采用随机选取的方式从后面产生的帧号中随机选择一个帧号作为目标帧号。
  14. 如权利要求10至13任一项所述的时间同步方法,其中,所述主时间同步装置向所述从基站下发包含当前的PTP时间的时间同步报文包括:
    判断当前下发给所述待同步的从基站的报文是否是时间同步报文;如是,获取当前的PTP时间插入所述时间同步报文后发给所述待同步的从基站。
  15. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求10至14任一项所述的方法。
PCT/CN2016/073638 2015-10-15 2016-02-05 时间同步方法、主时间同步装置、通信系统及存储介质 WO2017063322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510666040.4 2015-10-15
CN201510666040.4A CN106604383B (zh) 2015-10-15 2015-10-15 时间同步方法、主时间同步装置及通信系统

Publications (1)

Publication Number Publication Date
WO2017063322A1 true WO2017063322A1 (zh) 2017-04-20

Family

ID=58517051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073638 WO2017063322A1 (zh) 2015-10-15 2016-02-05 时间同步方法、主时间同步装置、通信系统及存储介质

Country Status (2)

Country Link
CN (1) CN106604383B (zh)
WO (1) WO2017063322A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966339A (zh) * 2018-07-20 2018-12-07 京信通信系统(中国)有限公司 基站时钟同步方法、装置、设备及计算机可读存储介质
WO2019125863A1 (en) * 2017-12-19 2019-06-27 Qualcomm Incorporated Time synchronization for wireless communications
WO2019243669A1 (en) * 2018-06-21 2019-12-26 Nokia Technologies Oy Time-synchronized radio bearer for supporting precision timing protocol (ptp) based time sensitive network (tsn) applications

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109068384A (zh) * 2018-08-23 2018-12-21 平安科技(深圳)有限公司 一种时间同步方法及系统
CN112616182B (zh) * 2020-12-11 2022-03-22 几维通信技术(深圳)有限公司 基于通信模块的基站同步方法
CN116056200A (zh) * 2021-10-28 2023-05-02 上海华为技术有限公司 站间时间同步的方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615949A (zh) * 2008-06-27 2009-12-30 中国移动通信集团上海有限公司 实现毫微微蜂窝基站时钟同步的方法、系统及设备
US20120275501A1 (en) * 2011-04-27 2012-11-01 Sergiu Rotenstein Pluggable synchronization clocks, networks, systems and methods related thereto
CN104581923A (zh) * 2013-10-25 2015-04-29 上海无线通信研究中心 通过无线链路传输精确时间信息的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6775242B2 (en) * 2001-07-09 2004-08-10 Qualcomm Incorporated Method and apparatus for time-aligning transmissions from multiple base stations in a CDMA communication system
CN102025480A (zh) * 2009-09-14 2011-04-20 中兴通讯股份有限公司 在级联基站中实现边界时钟的方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615949A (zh) * 2008-06-27 2009-12-30 中国移动通信集团上海有限公司 实现毫微微蜂窝基站时钟同步的方法、系统及设备
US20120275501A1 (en) * 2011-04-27 2012-11-01 Sergiu Rotenstein Pluggable synchronization clocks, networks, systems and methods related thereto
CN104581923A (zh) * 2013-10-25 2015-04-29 上海无线通信研究中心 通过无线链路传输精确时间信息的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125863A1 (en) * 2017-12-19 2019-06-27 Qualcomm Incorporated Time synchronization for wireless communications
US11233594B2 (en) 2017-12-19 2022-01-25 Qualcomm Incorporated Time synchronization for wireless communications
TWI770325B (zh) * 2017-12-19 2022-07-11 美商高通公司 用於無線通訊的時間同步
WO2019243669A1 (en) * 2018-06-21 2019-12-26 Nokia Technologies Oy Time-synchronized radio bearer for supporting precision timing protocol (ptp) based time sensitive network (tsn) applications
US11974238B2 (en) 2018-06-21 2024-04-30 Nokia Technologies Oy Time-synchronized radio bearer for supporting precision timing protocol (PTP) based time sensitive network (TSN) applications
CN108966339A (zh) * 2018-07-20 2018-12-07 京信通信系统(中国)有限公司 基站时钟同步方法、装置、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN106604383B (zh) 2020-10-13
CN106604383A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2017063322A1 (zh) 时间同步方法、主时间同步装置、通信系统及存储介质
US20210160803A1 (en) Clock Synchronisation Between Devices Using Message Timestamps
WO2016078310A1 (zh) 时钟同步方法、装置、级联基站系统和存储介质
JP4853625B2 (ja) 伝搬遅延時間測定方法、同期方法、及び無線lanシステム
EP3180876B1 (en) Method and apparatus for synchronising a plurality of distributed devices with a network
EP2139166A3 (en) method and device for time synchronization in a TDMA multi-hop wireless network
US9226266B2 (en) Method for determining delay parameters for user data flow synchronization for eMBMS
JP6384697B2 (ja) 同期方法、同期装置、および基地局
KR20210032988A (ko) 수신기들로의 협정 세계시의 일방향 시간 전송을 위한 브로드캐스트 물리적 계층의 이용
JP2010226460A (ja) 無線基地局装置及びその同期方法
US11576133B2 (en) Timing synchronization of 5G V2X sidelink transmissions
WO2012065334A1 (zh) 在时分复用网络中实现时间同步的方法、设备和系统
CN109891960B (zh) 无线设备、无线设备处理方法和存储器
CN107404754A (zh) 一种轨道交通行业lte基站间时钟同步方法和系统
JP2009049591A (ja) 移動体通信システム
CN111294134B (zh) 授时方法、装置及电子设备
WO2015089848A1 (zh) 精确时钟协议同步方法和节点
KR101481542B1 (ko) 단말간 직접 통신 시스템에서의 타이밍 동기화 장치, 방법 및 시스템
JP2007053627A (ja) 無線通信システム
CN102342051A (zh) 用于通过经由至少一个时间分发协议分开传输第一和第二数据来同步时钟的方法和相关的系统及模块
WO2016065642A1 (zh) 一种同步装置及方法
JP5302051B2 (ja) 無線基地局、無線制御装置及び無線装置
JP6363906B2 (ja) 同期信号変換装置
CN111294133B (zh) 授时信令的传输及接收方法、装置及电子设备
JP6049535B2 (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854712

Country of ref document: EP

Kind code of ref document: A1