WO2017061598A1 - Binder composition for forming casting mold, sand composition for forming casting mold, and method for producing casting mold - Google Patents

Binder composition for forming casting mold, sand composition for forming casting mold, and method for producing casting mold Download PDF

Info

Publication number
WO2017061598A1
WO2017061598A1 PCT/JP2016/079952 JP2016079952W WO2017061598A1 WO 2017061598 A1 WO2017061598 A1 WO 2017061598A1 JP 2016079952 W JP2016079952 W JP 2016079952W WO 2017061598 A1 WO2017061598 A1 WO 2017061598A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
mold
content
binder composition
composition
Prior art date
Application number
PCT/JP2016/079952
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 永井
毅 飯塚
大 原澤
Original Assignee
群栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群栄化学工業株式会社 filed Critical 群栄化学工業株式会社
Publication of WO2017061598A1 publication Critical patent/WO2017061598A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins

Definitions

  • the present invention relates to a binder composition for mold making, a sand composition for mold making, and a method for producing a mold.
  • This application claims priority based on Japanese Patent Application No. 2015-201185 for which it applied to Japan on October 9, 2015, and uses the content here.
  • a self-hardening mold is known as one of casting molds.
  • the self-hardening mold is a fire-resistant granular material such as silica sand, which is prepared by adding and kneading a binder mainly composed of an acid curable resin and a curing agent such as xylene sulfonic acid, and then kneading the obtained kneaded sand. It is manufactured by filling the mold and curing the binder.
  • the acid curable resin is a resin (furan resin) generally made of furfuryl alcohol, urea, phenol, formaldehyde or the like as a main raw material, and is polycondensed while being dehydrated with an acid and cured.
  • a mold furan mold
  • the cured product is hard and is less sexual (see Non-Patent Document 1).
  • the “nullness” is the performance that can cope with the shrinkage when the molten metal (molten metal) poured into the mold solidifies, that is, the flexibility of the mold that can be deformed as the molten metal shrinks.
  • a method for preventing hot cracking a method using phosphoric acid as a curing agent for curing an acid curable resin has been proposed.
  • phosphoric acid used as the curing agent, the mold strength at high temperatures is lower than when xylene sulfonic acid or the like is used.
  • the mold strength is lowered, the disintegration property due to thermal deterioration is increased, so that the contraction stress when the molten metal poured into the mold solidifies can be attenuated by the mold collapse.
  • a mold using an alkali phenol resin is superior in flexibility (i.e., better) than a furan mold, and casting defects such as insertion defects and sand bites are less likely to occur.
  • a mold using an alkali phenol resin has a lower mold strength at room temperature and a lower sand regeneration rate than a furan mold.
  • different types of resin are attached to the sand collected from each mold, so it can be recycled together. It can't be done and it takes time. In the case where both cast iron and cast steel are produced in one factory, it is usually reasonable to unify them into furan molds. Therefore, there is a need for furan molds that are superior in nature.
  • the present invention has been made in view of the above circumstances, and is capable of producing a mold having superior properties while maintaining normal temperature strength, a mold forming binder composition, a mold forming sand composition, and a mold manufacturing method.
  • the purpose is to provide.
  • a binder composition for mold making containing furfuryl alcohol and plant-derived phenols [2] The binder composition for mold making according to [1], further containing a reaction product of urea and aldehydes. [3] The plant-derived phenol is at least one selected from the group consisting of cashew nut shell liquid, cardanol, curdall, 2-methyl curdal and anacardic acid, according to [1] or [2] Binder composition for mold making. [4] The mold forming binder composition according to [2], wherein the aldehyde is at least one selected from the group consisting of formaldehyde, glyoxal, and furfural.
  • [6] A mold molding sand composition comprising the mold molding binder composition according to any one of [1] to [5], a refractory granular material, and a curing agent.
  • a mold-forming binder composition a mold-forming sand composition, and a method for producing a mold, which can produce a mold having superior properties while maintaining normal temperature strength.
  • the “mold” is formed by using a sand mold molding composition containing the binder composition for mold molding of the present invention.
  • Binder composition for mold making The binder composition for mold making of the present invention (hereinafter, also simply referred to as “binder composition”) is used as a binder in producing a mold, and furfuryl alcohol, Contains plant-derived phenols. It is preferable that the binder composition further contains a reaction product of urea and aldehydes.
  • Plant-derived phenols include cashew nut shell liquid (CNSL), cardanol, curdall, 2-methyl curdal, anacardic acid, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • CNSL preferably used in the present invention include industrial CNSL obtained by heating natural CNSL, distilled CNSL obtained by distilling and purifying natural CNSL, or industrial CNSL. Distilled and refined CNSL is particularly suitable as a phenol derived from plants because it contains fewer impurities and has a higher abundance ratio of cardanol and curdle than industrial CNSL obtained only by heating natural CNSL. Further, it is more preferable to use at least one kind of cardanol, curdle and 2-methyl curdle obtained by further purifying distilled purified CNSL and removing impurities as plant-derived phenols.
  • reaction product of urea and aldehydes When the binder composition further contains a reaction product of urea and aldehydes, the room temperature strength of the mold is further improved.
  • aldehydes include formaldehyde, glyoxal, and furfural. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, formaldehyde is preferable in that the curing of the binder composition proceeds sufficiently.
  • reaction product of urea and aldehydes examples include methylolated urea which is an adduct of urea and aldehydes, and methyleneated urea which is a condensate of methylolated urea.
  • methylolated urea which is an adduct of urea and aldehydes
  • methyleneated urea which is a condensate of methylolated urea.
  • the ratio of each methylolated urea in the mixture varies depending on the ratio of urea and formaldehyde, it cannot be said unconditionally, but the main component is methylolated urea having one or two methylol groups in one molecule. is there. As the number of methylol groups in one molecule increases, the generation rate decreases due to steric hindrance.
  • the main component means 50% by mass or more in 100% by mass of the mixture.
  • “in 100% by mass” means “relative to the total mass”.
  • “in 100% by mass of the mixture” means “relative to the total mass of the mixture”, that is, “when the total mass of the mixture is 100% by mass”.
  • methylolated urea When the reaction system is changed from basic to acidic in the state in which methylolated urea is generated, methylolated urea is condensed with each other as shown below to generate methyleneated urea.
  • a portion other than the methylol group of methylolated urea is described as “R” or “R ′”.
  • the binder composition may contain components (arbitrary components) other than the components described above.
  • optional components include condensates of furfuryl alcohol and aldehydes, silane coupling agents, formaldehyde reducing agents, and water.
  • the condensate of furfuryl alcohol and aldehydes can be obtained by reacting furfuryl alcohol and formaldehyde under acidic conditions. At this time, it is preferable to use 0.1 to 1 mol of aldehyde per 1 mol of furfuryl alcohol. If the amount of aldehyde used is 0.1 mol or more, it becomes a condensate with a low degree of polymerization, so that the pot life can be easily set. If it is 1 mol or less, the condensate has a high degree of polymerization, so the strength of the template. Will increase.
  • aldehydes include formaldehyde, glyoxal, and furfural. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the binder composition contains a silane coupling agent
  • the strength of the mold is further improved.
  • the silane coupling agent include N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane.
  • the formaldehyde reducing agent is for reducing formaldehyde that is generated when molten metal is poured into a mold.
  • formaldehyde reducing agents include urea, resorcinol, pyrogallol and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Water is water derived from condensed water generated when synthesizing reaction products of urea and aldehydes, water supplied by aqueous raw materials (for example, formalin, etc.), and all water added separately as necessary. Is included.
  • the content of each component in 100% by mass of the binder composition is as follows.
  • the content of furfuryl alcohol is preferably 60 to 99% by mass, and 65 to 95% by mass in 100% by mass of the binder composition. % Is more preferable, and 70 to 90% by mass is more preferable. If the content of furfuryl alcohol is 60% by mass or more, the pot life can be easily set. On the other hand, if the content of furfuryl alcohol is 99% by mass or less, the initial strength of the mold is further improved.
  • the binder composition contains a reaction product of urea and aldehydes
  • the total content of furfuryl alcohol and the reaction product is 60 to 99% by mass in 100% by mass of the binder composition. % Is preferable, 65 to 95% by mass is more preferable, and 70 to 90% by mass is further preferable.
  • the total content of furfuryl alcohol and the reaction product is 60% by mass or more, the initial strength of the mold is further improved. On the other hand, if the total content of furfuryl alcohol and the reaction product is 99% by mass or less, the final strength of the mold is further improved.
  • the content of the reaction product of urea and aldehydes is preferably 2 to 50% by mass, more preferably 3 to 45% by mass, and further preferably 5 to 40% by mass in 100% by mass of the binder composition. preferable.
  • the content of the reaction product is 2% by mass or more, the initial strength of the mold is further improved.
  • the content of the reaction product is 50% by mass or less, the final strength of the mold is further improved.
  • the nitrogen atom content derived from urea or the like is preferably 0.1 to 6% by mass, more preferably 0.1 to 4.5% by mass in 100% by mass of the binder composition.
  • the nitrogen atom content affects the initial strength and final strength of the template.
  • the initial strength of the template tends to increase as the nitrogen atom content decreases, and the final template strength increases as the nitrogen atom content increases. The strength tends to increase. Therefore, it is preferable to appropriately adjust the nitrogen atom content as necessary. If the nitrogen atom content is within the above range, a template having an excellent balance between the initial strength and the final strength can be easily obtained.
  • the content of plant-derived phenols is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass in 100% by mass of the binder composition. If the content of plant-derived phenols is within the above range, a template having better properties can be obtained. Moreover, the mold strength at high temperatures can be maintained well.
  • the binder composition contains a reaction product of urea and aldehydes
  • the total content of furfuryl alcohol, plant-derived phenols and the reaction product is 100% by mass of the binder composition.
  • 65 to 100% by mass is preferable, 80 to 99.5% by mass is more preferable, and 90 to 99.0% by mass is further preferable.
  • the total content of furfuryl alcohol, plant-derived phenols and the reaction product is 65% by mass or more, the initial strength of the mold is further improved.
  • the total content of furfuryl alcohol, plant-derived phenols, and the reaction product is 100% by mass or less, the properties of the template are further improved.
  • the content of the condensate of furfuryl alcohol and aldehydes is preferably 10 to 30% by mass and more preferably 15 to 25% by mass in 100% by mass of the binder composition.
  • the content of the condensate of furfuryl alcohol and aldehydes is 10% by mass or more, the initial strength of the mold is further improved.
  • the content of the condensate of furfuryl alcohol and aldehydes is 30% by mass or less, the final strength of the mold is further improved.
  • the content of the silane coupling agent is preferably 0.01 to 3% by mass and more preferably 0.1 to 1% by mass in 100% by mass of the binder composition. If the content of the silane coupling agent is 0.01% by mass or more, the strength of the mold is further improved, and if it is 3% by mass or less, a significant cost increase can be suppressed.
  • the content of the formaldehyde reducing agent is preferably 0.1 to 3% by mass, more preferably 0.5 to 1% by mass in 100% by mass of the binder composition. If the content of the formaldehyde reducing agent is 0.1% by mass or more, generation of formaldehyde during pouring can be sufficiently reduced, and if it is 3% by mass or less, a significant cost increase can be suppressed.
  • the content of water is preferably 1 to 25% by mass and more preferably 3 to 15% by mass in 100% by mass of the binder composition. If the water content is 1% by mass or more, the strength of the mold is further improved, and if it is 25% by mass or less, a significant cost increase can be suppressed.
  • the binder composition can be obtained, for example, by mixing furfuryl alcohol, plant-derived phenols, and optional components as necessary. Plant-derived phenols that have been reacted with aldehydes in advance can also be used. However, in this case, the viscosity of the binder composition tends to increase due to the resinization of plant-derived phenols, and the binder composition and the refractory granular material described below are kneaded. May be difficult. Therefore, when the viscosity of the binder composition increases, it is preferable to adjust the viscosity by adding water or the like.
  • the binder composition contains a reaction product of urea and aldehydes
  • a reaction product of urea and aldehydes for example, it can be obtained in a state in which the reaction product of urea and aldehydes is dissolved in furfuryl alcohol, as follows.
  • furfuryl alcohol, urea, and aldehydes are mixed, and an aqueous solution of a basic catalyst (for example, sodium hydroxide, potassium hydroxide, etc.) is added to adjust the pH of the mixture to 9-10.
  • the mixture is heated to react urea with aldehydes (first addition reaction) to obtain, for example, the above-mentioned adduct of urea and aldehydes (methylolated urea).
  • the molar ratio of urea to aldehydes is preferably 1.5 to 2.0.
  • an acidic catalyst for example, hydrochloric acid, sulfuric acid, etc.
  • the pH of the reaction solution is adjusted to 2 to 4
  • the condensation reaction of methylolated urea proceeds, for example, the condensation of methylolated urea described above.
  • Product methyleneated urea
  • an aqueous solution of a basic catalyst eg, sodium hydroxide, potassium hydroxide, etc.
  • the reason for the addition reaction in two stages is as follows. That is, if the proportion of the methyleneated urea in the furfuryl alcohol increases, it may precipitate. When methylolated urea and methyleneated urea are present in an appropriate ratio in furfuryl alcohol, the state in which methyleneated urea is dissolved in furfuryl alcohol can be maintained. Therefore, as described above, it is preferable to perform a second addition reaction after the condensation reaction to produce methylolated urea. Most of the furfuryl alcohol exists in a free state in the reaction solution, but a part of the furfuryl alcohol may react with the aldehyde in the reaction of urea with the aldehyde.
  • Methylolated urea and methyleneated urea are obtained in a state dissolved in furfuryl alcohol.
  • plant-derived phenols and optional components as necessary are added to obtain a binder composition.
  • the reaction product of urea and aldehydes may be reacted with urea and aldehydes in the absence of furfuryl alcohol and then mixed with furfuryl alcohol or the like.
  • the binder composition of the present invention described above contains furfuryl alcohol and plant-derived phenols.
  • Plant-derived phenols have a hydrocarbon group (long-chain hydrocarbon group) having 15 carbon atoms in the molecule. It is considered that this long-chain hydrocarbon group becomes a template for the following reasons and can impart more sex. That is, when the binder composition is cured by the action of a curing agent in the production of a mold, a three-dimensional network crosslinked structure of furfuryl alcohol is formed, and this three-dimensional network crosslinked structure has a long-chain hydrocarbon group. Plant-derived phenols are taken up. As a result, it is possible to obtain a mold having superior properties while maintaining the normal temperature strength. In addition, since plant-derived phenols having a long-chain hydrocarbon group are incorporated into the three-dimensional network cross-linked structure, the heat resistance of the mold is improved, so that the mold strength at high temperatures can be maintained well.
  • the binder composition of the present invention By using the binder composition of the present invention, a mold having better properties can be obtained, so that the contraction stress when the molten metal poured into the mold solidifies can be attenuated without relying on the disintegration property of the mold. . Therefore, it is not necessary to increase the mold disintegration more than necessary, and it is not necessary to reduce the mold strength at high temperatures. Moreover, since the casting_mold
  • One aspect of the present invention is a binder composition for mold making that contains furfuryl alcohol and plant-derived phenols and does not contain a reaction product of urea and aldehydes.
  • Another aspect of the present invention contains furfuryl alcohol and plant-derived phenols, does not contain a reaction product of urea and aldehydes, and in 100% by mass of the binder composition for mold making,
  • a mold forming binder composition having a furfuryl alcohol content of 60 to 99% by mass and a plant-derived phenol content of 1 to 40% by mass.
  • Another aspect of the present invention is a mold-forming binder composition containing furfuryl alcohol, plant-derived phenols, and a silane coupling agent, not containing a reaction product of urea and aldehydes.
  • the content of furfuryl alcohol is 60 to 99% by mass
  • the content of plant-derived phenols is 1 to 40% by mass
  • the content of the silane coupling agent is 0.01 to It is a binder composition for mold making which is 3 mass% (however, the total content of furfuryl alcohol, plant-derived phenols, and silane coupling agent does not exceed 100 mass%).
  • Another aspect of the present invention is that it contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, and water, does not contain a reaction product of urea and aldehydes, and is used for mold making.
  • the content of furfuryl alcohol is 60 to 99% by mass
  • the content of plant-derived phenols is 1 to 40% by mass
  • the content of the silane coupling agent is 0. 0.01 to 3% by mass
  • water content is 1 to 25% by mass (however, the total content of furfuryl alcohol, plant-derived phenols, silane coupling agent, and water is 100% by mass)
  • Another aspect of the present invention contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, water, a condensate of furfuryl alcohol and aldehydes, and urea and aldehydes.
  • the reaction product is not contained, and the content of furfuryl alcohol is 60 to 99% by mass and the content of plant-derived phenols is 1 to 40% by mass in 100% by mass of the binder composition for mold making.
  • the content of the silane coupling agent is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, and the content of the condensate is 10 to 30% by mass (however, The total amount of furyl alcohol, plant-derived phenols, silane coupling agent, water, and the content of the condensate does not exceed 100% by mass).
  • Another aspect of the present invention contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, water, a condensate of furfuryl alcohol and aldehydes, and a formaldehyde reducing agent, and urea.
  • the content of furfuryl alcohol is 60 to 99% by mass in 100% by mass of the binder composition for mold making, and the content of plant-derived phenols is not contained. 1 to 40% by mass, the content of the silane coupling agent is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, and the content of the condensate is 10 to 30% by mass.
  • the content of the formaldehyde reducing agent is 0.1 to 3% by mass (provided that furfuryl alcohol, plant-derived phenols, silane coupling agent, water, the condensate, and formaldehyde Total content of dehydroaripiprazole reducing agent is binder composition for mold formation which is not exceeding) 100 mass%.
  • One aspect of the present invention is a binder composition for mold making containing furfuryl alcohol, plant-derived phenols, and a reaction product of urea and aldehydes.
  • Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol.
  • the reaction product in a total amount of 60 to 99% by mass, and the content of plant-derived phenols is 1 to 40% by mass.
  • Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol.
  • the reaction product content is 60 to 99% by mass
  • the content of plant-derived phenols is 1 to 40% by mass
  • the content of the reaction product is 2 to 50% by mass. It is a binder composition for mold making.
  • Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol.
  • reaction product content is 60 to 99% by mass
  • the content of plant-derived phenols is 1 to 40% by mass
  • the content of the reaction product is 2 to 50% by mass.
  • Another aspect of the present invention is a mold-forming binder composition 100 mass containing furfuryl alcohol, plant-derived phenols, a reaction product of urea and aldehydes, and a silane coupling agent.
  • the total content of furfuryl alcohol and the reaction product is 60 to 99% by mass
  • the content of plant-derived phenols is 1 to 40% by mass
  • the nitrogen atom content is 0.1 to 6% by mass
  • the content of the silane coupling agent is 0.01 to 3% by mass (but furfuryl alcohol and plant-derived)
  • the total amount of phenols, the reaction product, and the silane coupling agent does not exceed 100% by mass).
  • Another aspect of the present invention is a binder composition for mold making, comprising furfuryl alcohol, plant-derived phenols, a reaction product of urea and aldehydes, a silane coupling agent, and water.
  • the total content of furfuryl alcohol and the reaction product in 100% by mass of the product is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the reaction product
  • the content of is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, the content of the silane coupling agent is 0.01 to 3% by mass, and the content of water is Mold making of 1 to 25% by mass (however, the total content of furfuryl alcohol, plant-derived phenols, the reaction product, silane coupling agent, and water does not exceed 100% by mass) It is a binder composition for use.
  • Another aspect of the present invention is a condensate of furfuryl alcohol, plant-derived phenols, reaction product of urea and aldehydes, silane coupling agent, water, furfuryl alcohol and aldehydes.
  • the total content of furfuryl alcohol and the reaction product in 60% by mass of the binder composition for mold making is 60 to 99% by mass, and the content of plant-derived phenols is 1 to 40% by mass, the reaction product content is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, and the silane coupling agent content is 0.01%.
  • Another aspect of the present invention is a condensate of furfuryl alcohol, plant-derived phenols, reaction product of urea and aldehydes, silane coupling agent, water, furfuryl alcohol and aldehydes.
  • the total content of furfuryl alcohol and the reaction product is 60 to 99% by mass, and the plant-derived phenol
  • the content of the reaction product is 1 to 40% by mass, the content of the reaction product is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, and the content of the silane coupling agent
  • the amount is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, the content of the condensate is 10 to 30% by mass, and the content of the formaldehyde reducing agent is 0.1%.
  • Sand composition for mold making contains the above-described binder composition of the present invention, a refractory granular material, and a curing agent.
  • ⁇ Fireproof granular material As the refractory granular material, conventionally known materials such as silica sand, chromite sand, zircon sand, olivine sand, alumina sand, mullite sand, and synthetic mullite sand can be used. Moreover, the thing which collect
  • sulfonic acid compounds such as xylene sulfonic acid, phosphoric acid compounds, and sulfuric acid can be used. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, a sulfonic acid compound is preferable in that the normal temperature strength and heat resistance of the template are further increased.
  • the mixing ratio of the refractory granular material, the binder composition and the curing agent in the sand composition can be set as appropriate, but the binder composition is 0.3 to 2 parts by mass with respect to 100 parts by mass of the refractory granular material.
  • the amount is preferably 0.5 to 1.5 parts by mass.
  • the curing agent is preferably 0.045 to 1.2 parts by mass, and more preferably 0.075 to 0.9 parts by mass with respect to 100 parts by mass of the refractory granular material. With such a mixing ratio, it is easy to obtain a mold having sufficient strength.
  • the content of plant-derived phenols in 100% by mass of the sand composition is preferably 0.003 to 0.8% by mass, and more preferably 0.005 to 0.6% by mass. .
  • a mold having higher properties and heat resistance can be obtained.
  • a sand composition is obtained by mixing a binder composition, a refractory granular material, and a curing agent.
  • the mixing method is not particularly limited as long as it is a general mixing method, and examples thereof include a method using a stirrer.
  • the sand composition of the present invention described above contains the above-described binder composition of the present invention, a mold having superior properties can be obtained while maintaining normal temperature strength. Moreover, since the casting
  • One aspect of the present invention includes a binder for mold making, a refractory granular material, and a curing agent, and a binder composition for mold making with respect to 100 parts by weight of the refractory granular material.
  • the sand composition for mold making has a product content of 0.3 to 2 parts by mass and a hardener content of 0.045 to 1.2 parts by mass.
  • Another aspect of the present invention includes the above-mentioned binder for mold making, a refractory granular material, and a curing agent, and a binder composition for mold making with respect to 100 parts by mass of the refractory granular material.
  • the content of the product is 0.3 to 2 parts by mass, the content of the curing agent is 0.045 to 1.2 parts by mass, and 100% by mass of the mold molding sand composition contains plant-derived phenols.
  • a sand composition for mold making having a content of 0.003 to 0.8% by mass.
  • Mold manufacturing method As a method for producing a mold from the sand composition of the present invention, a self-hardening mold making method can be employed. That is, when the sand composition of the present invention is filled in a predetermined mold for mold making, the binder composition in the sand composition is cured by the action of the curing agent. As a result, a template can be obtained.
  • the method for producing a mold of the present invention includes a step of filling a mold for producing a mold with the sand composition of the present invention and curing the binder composition contained in the sand composition.
  • the mold obtained by the present invention is superior in quality while maintaining the normal temperature strength. Moreover, since the mold obtained by the present invention is also excellent in heat resistance, casting defects such as insertion defects and sand biting can be suppressed.
  • test pieces (molds) obtained in the examples and comparative examples were measured by the following methods.
  • the water content of the acid curable resin was determined by the moisture test method for chemical products of JIS K 0068.
  • the nitrogen atom content was determined by the titration method of the factory wastewater test method of JIS K 0102.
  • the compressive strength (mold strength) of the test pieces obtained in each Example and Comparative Example is obtained by using a tabletop pressure tester (manufactured by Takachiho Machinery Co., Ltd.) according to the testing method for foundry sand of JIS Z 2601. It was measured.
  • test piece obtained in each of the examples and comparative examples was evaluated according to “Mold Production Technology” (Foundation Materials Center, January 20, 1995, p411 to 412). Based on the “hot strain test”, evaluation was performed as follows using the hot strain tester 10 shown in FIG. The size of the test piece was 25.4 mm ⁇ 6.35 mm ⁇ 114.3 mm. As shown in FIG. 1, one end in the longitudinal direction of the test piece 12 was clamped and fixed by the clamp 11, and a 30 g weight 13 was placed on the upper surface of the other end side of the test piece 12. Next, the central portion of the lower surface of the test piece 12 was heated to 800 ° C. with the electric heater 14.
  • test piece 12 When the test piece 12 is heated, the test piece 12 bends upward due to thermal expansion, but thereafter, the upward bending is stopped by the weight 13 and begins to bend downward, eventually breaking.
  • the displacement of the test piece 12 after 3 minutes from the start of heating was measured with a laser displacement meter 15. It means that the larger the displacement, the better the nature.
  • Example 1 ⁇ Preparation of binder composition>
  • a thermometer 827.1 parts by mass of furfuryl alcohol
  • 24.18 parts by mass of urea 24.18 parts by mass of urea
  • 33.9 parts by mass of paraformaldehyde 92% by mass 827.1 parts by mass of furfuryl alcohol
  • 33.9 parts by mass of paraformaldehyde 92% by mass 827.1 parts by mass of furfuryl alcohol
  • 33.9 parts by mass of paraformaldehyde 92% by mass 827.1 parts by mass of furfuryl alcohol
  • 33.9 parts by mass of paraformaldehyde 92% by mass 33.9 parts by mass of paraformaldehyde 92% by mass
  • 15% by mass water An aqueous sodium oxide solution (2.0 parts by mass) was added and reacted at 80 ° C. for 1 hour (first addition reaction).
  • 10 parts by mass of hydrochloric acid 3.0 parts by mass
  • the content of furfuryl alcohol in 100% by mass of the obtained binder composition is 81.9% by mass
  • the content of the reaction product of urea and paraformaldehyde is 6.9% by mass
  • the content of distilled and purified CNSL was 10.0% by mass
  • the content of the silane coupling agent was 0.2% by mass
  • the content of water was 1.0% by mass.
  • the nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • ⁇ Manufacture of sand composition 100 parts by weight of silica sand (manufactured by Mitsubishi Corporation Building Materials Co., Ltd., free mantle new sand) contains 1 part by weight of the previously obtained binder composition and a curing agent (35% by weight of xylenesulfonic acid and 6% by weight of sulfuric acid) 0.4 mass part) was added and kneaded with a Shinagawa universal stirrer (manufactured by Shinagawa Kogyo Co., Ltd., MIXER) to obtain a sand composition.
  • silica sand manufactured by Mitsubishi Corporation Building Materials Co., Ltd., free mantle new sand
  • a curing agent 35% by weight of xylenesulfonic acid and 6% by weight of sulfuric acid
  • test pieces 1 A portion of the obtained sand composition is immediately filled into a test piece preparation wooden mold in which a cylindrical mold having an inner diameter of 50 mm and a height of 50 mm is formed under conditions of a temperature of 25 ° C. and a humidity of 40%, and is cured.
  • the test piece was taken out after 1 hour from the start of curing (molding time 1 hour).
  • the compressive strength and bulk density after 1 hour, 3 hours, and 24 hours passed from the start of hardening were measured. The results are shown in Table 1.
  • Example 2 A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 726.1 parts by mass and the amount of distilled and purified CNSL was changed to 202 parts by mass. A sand composition and a test piece were produced using the binder composition, and various measurements were performed. The results are shown in Table 1. The content of furfuryl alcohol in 100% by mass of the obtained binder composition is 71.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass. Yes, the content of distilled and purified CNSL was 20.0% by mass, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • Example 3 A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 625.1 parts by mass and the amount of distilled and purified CNSL was changed to 303 parts by mass. A sand composition and a test piece were produced using the binder composition, and various measurements were performed. The results are shown in Table 1. The content of furfuryl alcohol in the obtained binder composition 100% by mass is 61.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass. Yes, the content of distilled and purified CNSL was 30.0% by mass, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • Example 4 The amount of furfuryl alcohol was changed to 625.1 parts by mass, and instead of distillation-purified CNSL, industrial CNSL (made by Tohoku Chemical Co., Ltd., trade name “CNSL (industrial)”, nonvolatile content at 125 ° C. 99.0
  • the binder was the same as in Example 1 except that 303 parts by mass of the monomer and 80% by mass of the monomer in the nonvolatile content (cardanol ratio 82% by mass, curdle ratio 18% by mass with respect to the whole monomer) were used.
  • a composition was prepared, a sand composition and a test piece were produced using the obtained binder composition, and various measurements were performed, and the results are shown in Table 1.
  • the content of furfuryl alcohol in the obtained binder composition 100% by mass is 61.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass.
  • the content of industrial CNSL was 30.0% by mass
  • the content of silane coupling agent was 0.2% by mass
  • the content of water was 1.0% by mass.
  • the nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • Comparative Example 1 A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 928.1 parts by mass and distilled purified CNSL was not used. A sand composition and a test piece were produced using this, and various measurements were performed. The results are shown in Table 1. In addition, content of furfuryl alcohol in 100 mass% of obtained binder compositions is 91.9 mass%, and content of the reaction product of urea and paraformaldehyde is 6.9 mass%. Yes, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • Comparative Example 2 A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 928.1 parts by mass and no distillation-purified CNSL was used. In 100% by mass of the obtained binder composition, the content of furfuryl alcohol is 91.9% by mass, the content of the reaction product of urea and paraformaldehyde is 6.9% by mass, The content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
  • Example 1 Except for using the obtained binder composition and using 0.4 parts by weight of a 56% strength aqueous solution containing 51% by weight phosphoric acid and 5% by weight sulfuric acid as a curing agent, the same as in Example 1. A sand composition and a test piece were manufactured, and various measurements were performed. The results are shown in Table 1.
  • “Comparative Example 3” In a four-necked flask equipped with a thermometer, a condenser, and a stirrer, 235.3 parts by mass of phenol, 106.2 parts by mass of 48% by mass aqueous sodium hydroxide, and 87.5 parts by mass of 48% by mass aqueous potassium hydroxide And 242.9 parts by mass of water were added, 300 parts by mass of 50% by mass formalin was added dropwise over about 1 hour and reacted at an internal temperature of 90 ° C.
  • silane coupling agent N— 10 parts by mass of ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane
  • a silane coupling agent N— 10 parts by mass of ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane
  • a curing agent triethylene glycol diacetate
  • the mixture was kneaded with a Shinagawa universal agitator (manufactured by Shinagawa Kogyo Co., Ltd., MIXER) to obtain a sand composition.
  • a test piece was produced in the same manner as in Example 1 except that the obtained sand composition was used, and various measurements were performed. The results are shown in Table 1.
  • the test pieces obtained in Examples 1 to 4 had high room temperature strength.
  • the test pieces obtained in Examples 1 to 4 could be displaced without cracking even when heated, and were more excellent in properties.
  • the mold obtained using the binder composition of the present invention is easy to handle at room temperature and effective in preventing hot cracks during pouring, sand biting defects and insertion defects. It was confirmed that this was an excellent mold.
  • the test piece obtained in Comparative Example 1 had a high normal temperature strength, the amount of displacement when heated was small, and the properties were inferior. Such a lower-quality mold causes a hot crack during pouring.
  • the test piece obtained in Comparative Example 2 had lower room temperature strength than the test pieces obtained in Examples 1 to 4.
  • test piece obtained in Comparative Example 2 is considered to be less prone to hot cracking, but it is inferior in heat resistance. It is thought that it becomes a factor which induces a sand biting defect and insertion defect at the time of hot water.
  • the test piece obtained in Comparative Example 3 using an alkali phenol resin as a binder was displaced without cracking the mold at a high temperature, and the test piece obtained in each example had the same degree of properties as the test piece. Had. However, the room temperature strength was particularly low.
  • Example 5" 898 parts by mass of furfuryl alcohol, 100 parts by mass of distilled and purified CNSL, and 2 parts by mass of a silane coupling agent (N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane) are mixed to obtain 1000 parts by mass of a binder composition. Got a part.
  • the content of furfuryl alcohol in the obtained binder composition 100% by mass is 89.8% by mass
  • the content of distilled purified CNSL is 10.0% by mass
  • the content of the silane coupling agent The amount was 0.2% by mass.
  • the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
  • Example 6 798 parts by mass of furfuryl alcohol, 200 parts by mass of distilled purified CNSL, and 2 parts by mass of a silane coupling agent (N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane) are mixed, and a binder composition of 1000 parts by mass is mixed. Got a part.
  • the content of furfuryl alcohol is 79.8 mass%
  • the content of distilled purified CNSL is 20.0 mass%
  • the content of the silane coupling agent The amount was 0.2% by mass.
  • the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
  • Example 7 698 parts by weight of furfuryl alcohol, 300 parts by weight of distilled and purified CNSL, and 2 parts by weight of a silane coupling agent (N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane) are mixed, and the binder composition is 1000 parts by weight. Got a part.
  • the content of furfuryl alcohol in the obtained binder composition 100% by mass is 69.8% by mass
  • the content of distilled purified CNSL is 30.0% by mass
  • the content of the silane coupling agent The amount was 0.2% by mass.
  • the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
  • “Comparative Example 4” 998 parts by mass of furfuryl alcohol and 2 parts by mass of a silane coupling agent (N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane) were mixed to obtain 1000 parts by mass of a binder composition.
  • the content of furfuryl alcohol in 100% by mass of the obtained binder composition was 99.8% by mass, and the content of the silane coupling agent was 0.2% by mass.
  • the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
  • the test pieces obtained in Examples 5 to 7 and the test piece obtained in Comparative Example 4 had the same room temperature strength. However, the test pieces obtained in Examples 5 to 7 could be displaced without cracking even when heated, and were superior in quality. However, the test piece obtained in Comparative Example 4 had a displacement amount when heated. Was smaller and was inferior in nature. From these results, the mold obtained using the binder composition of the present invention is easy to handle at room temperature and effective in preventing hot cracks during pouring, sand biting defects and insertion defects. It was confirmed that this was an excellent mold. On the other hand, as in Comparative Example 4, a mold having a lower property becomes a factor that induces a hot crack during pouring.
  • binder composition for mold making of the present invention it is possible to produce a mold having superior properties while maintaining normal temperature strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

This binder composition for forming a casting mold contains furfuryl alcohol and a plant-derived phenol. A sand composition for forming a casting mold according to the present invention contains the binder composition for forming a casting mold, a refractory particulate material and a curing agent. A method for producing a casting mold according to the present invention comprises a step wherein a mold for forming a casting mold is filled with the sand composition for forming a casting mold and the binder composition for forming a casting mold contained in the sand composition for forming a casting mold is cured.

Description

鋳型造型用粘結剤組成物、鋳型造型用砂組成物、及び鋳型の製造方法Binder composition for mold making, sand composition for mold making, and method for producing mold
 本発明は、鋳型造型用粘結剤組成物、鋳型造型用砂組成物、及び鋳型の製造方法に関する。
 本願は、2015年10月9日に、日本に出願された特願2015-201185号、に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a binder composition for mold making, a sand composition for mold making, and a method for producing a mold.
This application claims priority based on Japanese Patent Application No. 2015-201185 for which it applied to Japan on October 9, 2015, and uses the content here.
 従来、鋳造用鋳型の一つとして自硬性鋳型が知られている。自硬性鋳型とは、珪砂等の耐火性粒状材料に、酸硬化性樹脂を主成分とした粘結剤と、キシレンスルホン酸等の硬化剤とを添加、混練した後、得られた混練砂を型に充填し、粘結剤を硬化させる方法で製造されているものである。 Conventionally, a self-hardening mold is known as one of casting molds. The self-hardening mold is a fire-resistant granular material such as silica sand, which is prepared by adding and kneading a binder mainly composed of an acid curable resin and a curing agent such as xylene sulfonic acid, and then kneading the obtained kneaded sand. It is manufactured by filling the mold and curing the binder.
 酸硬化性樹脂は、一般的にフルフリルアルコール、尿素、フェノール、ホルムアルデヒド等を主原料としている樹脂(フラン樹脂)であり、酸により脱水反応しながら重縮合し、硬化するものである。このようなフラン樹脂を用いて製造された鋳型(フラン鋳型)は高強度であるものの、硬化物が硬く、なりより性に乏しいという欠点を有している(非特許文献1参照)。
 ここで、「なりより性」とは、鋳型に注湯された溶融金属(溶湯)が凝固する際の収縮に対応できる性能、すなわち溶湯の収縮に伴い変形できる鋳型の柔軟性のことである。
The acid curable resin is a resin (furan resin) generally made of furfuryl alcohol, urea, phenol, formaldehyde or the like as a main raw material, and is polycondensed while being dehydrated with an acid and cured. Although a mold (furan mold) produced using such a furan resin has high strength, it has a drawback that the cured product is hard and is less sexual (see Non-Patent Document 1).
Here, the “nullness” is the performance that can cope with the shrinkage when the molten metal (molten metal) poured into the mold solidifies, that is, the flexibility of the mold that can be deformed as the molten metal shrinks.
 鋳型に注湯された溶融金属が凝固する際、なりより性に優れた鋳型であれば、収縮応力を減衰させることが可能である。
 しかし、なりより性に乏しい鋳型は、収縮応力を減衰させることが困難であり、熱間亀裂と呼ばれる鋳造欠陥を誘発しやすい。特に、凝固収縮の大きい鋳物である鋳鋼(例えば薄肉鋳鋼)を鋳造する際は、熱間亀裂が発生しやすい。
When the molten metal poured into the mold is solidified, the contraction stress can be attenuated if the mold is more excellent in nature.
However, molds that are less prone are difficult to attenuate shrinkage stress and are prone to casting defects called hot cracks. In particular, when casting a cast steel (for example, a thin cast steel) having a large solidification shrinkage, a hot crack is likely to occur.
 熱間亀裂を防止する方法として、酸硬化性樹脂を硬化させる硬化剤に燐酸を使用する方法が提案されている。硬化剤として燐酸を使用すると、キシレンスルホン酸等を使用した場合に比べて、高温時の鋳型強度が低くなる。鋳型強度が低くなると熱劣化による崩壊性が高まるため、鋳型に注湯された溶融金属が凝固する際の収縮応力を鋳型の崩壊により減衰させることができる。 As a method for preventing hot cracking, a method using phosphoric acid as a curing agent for curing an acid curable resin has been proposed. When phosphoric acid is used as the curing agent, the mold strength at high temperatures is lower than when xylene sulfonic acid or the like is used. When the mold strength is lowered, the disintegration property due to thermal deterioration is increased, so that the contraction stress when the molten metal poured into the mold solidifies can be attenuated by the mold collapse.
 しかしながら、硬化剤として燐酸を用いた方法では、鋳型の耐熱性が低下してしまう。そのため、鋳型への溶融金属の侵入を誘発させる頻度が高まり、差し込み欠陥(鋳型内に溶融金属が入り込むこと)、砂噛み(鋳物内に鋳型砂が入り込むこと)等の新たな鋳造欠陥を誘発することとなり、改善が求められている。 However, in the method using phosphoric acid as a curing agent, the heat resistance of the mold is lowered. As a result, the frequency of inducing molten metal intrusion into the mold is increased, and new casting defects such as insertion defects (melt metal enters the mold) and sand biting (mold sand enters the casting) are induced. Therefore, improvement is required.
 近年、フラン樹脂に代えて、アルカリフェノール樹脂を用いた鋳型も提案されている。アルカリフェノール樹脂を用いた鋳型は、フラン鋳型に比べて柔軟性(なりより性)に優れ、しかも差し込み欠陥や砂噛み等の鋳造欠陥も起こりにくい。
 しかし、アルカリフェノール樹脂を用いた鋳型は、フラン鋳型に比べて常温時の鋳型の強度が低く、砂の再生率も低い。また、1つの工場内にてアルカリフェノール樹脂を用いた鋳型とフラン鋳型とを使用する場合、各鋳型から回収した砂には異なる種類の樹脂が付着しているため、一緒に再生処理することができず、手間がかかってしまう。また、1つの工場内にて鋳鉄と鋳鋼の両方を生産するような場合には、通常、フラン鋳型に統一することが合理的とされている。
 よって、なりより性に優れるフラン鋳型が求められている。
In recent years, a mold using an alkali phenol resin instead of a furan resin has been proposed. A mold using an alkali phenol resin is superior in flexibility (i.e., better) than a furan mold, and casting defects such as insertion defects and sand bites are less likely to occur.
However, a mold using an alkali phenol resin has a lower mold strength at room temperature and a lower sand regeneration rate than a furan mold. In addition, when using a mold using an alkali phenol resin and a furan mold in one factory, different types of resin are attached to the sand collected from each mold, so it can be recycled together. It can't be done and it takes time. In the case where both cast iron and cast steel are produced in one factory, it is usually reasonable to unify them into furan molds.
Therefore, there is a need for furan molds that are superior in nature.
 本発明は上記事情を鑑みてなされたもので、常温強度を維持しつつ、なりより性に優れる鋳型を製造できる鋳型造型用粘結剤組成物、鋳型造型用砂組成物、及び鋳型の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of producing a mold having superior properties while maintaining normal temperature strength, a mold forming binder composition, a mold forming sand composition, and a mold manufacturing method. The purpose is to provide.
 本発明は以下の態様を有する。
[1]フルフリルアルコールと、植物由来のフェノール類とを含有する、鋳型造型用粘結剤組成物。
[2]尿素とアルデヒド類との反応生成物をさらに含有する、[1]に記載の鋳型造型用粘結剤組成物。
[3]前記植物由来のフェノール類は、カシューナット殻液、カルダノール、カードル、2-メチルカードル及びアナカルド酸からなる群より選ばれる1種以上である、[1]又は[2]に記載の鋳型造型用粘結剤組成物。
[4]前記アルデヒド類は、ホルムアルデヒド、グリオキザール及びフルフラールからなる群より選ばれる1種以上である、[2]に記載の鋳型造型用粘結剤組成物。
[5]当該鋳型造型用粘結剤組成物100質量%中、前記植物由来のフェノール類の含有量が1~40質量%である、[1]~[4]のいずれか1つに記載の鋳型造型用粘結剤組成物。
[6][1]~[5]のいずれか1つに記載の鋳型造型用粘結剤組成物と、耐火性粒状材料と、硬化剤とを含有する、鋳型造型用砂組成物。
[7][6]に記載の鋳型造型用砂組成物を鋳型製造用の型に充填し、前記鋳型造型用砂組成物に含まれる鋳型造型用粘結剤組成物を硬化させる、鋳型の製造方法。
The present invention has the following aspects.
[1] A binder composition for mold making containing furfuryl alcohol and plant-derived phenols.
[2] The binder composition for mold making according to [1], further containing a reaction product of urea and aldehydes.
[3] The plant-derived phenol is at least one selected from the group consisting of cashew nut shell liquid, cardanol, curdall, 2-methyl curdal and anacardic acid, according to [1] or [2] Binder composition for mold making.
[4] The mold forming binder composition according to [2], wherein the aldehyde is at least one selected from the group consisting of formaldehyde, glyoxal, and furfural.
[5] The composition according to any one of [1] to [4], wherein a content of the plant-derived phenol is 1 to 40% by mass in 100% by mass of the binder composition for mold making. Binder composition for mold making.
[6] A mold molding sand composition comprising the mold molding binder composition according to any one of [1] to [5], a refractory granular material, and a curing agent.
[7] Manufacture of a mold, wherein the mold molding sand composition according to [6] is filled in a mold for mold production, and the mold molding binder composition contained in the mold molding sand composition is cured. Method.
 本発明によれば、常温強度を維持しつつ、なりより性に優れる鋳型を製造できる鋳型造型用粘結剤組成物、鋳型造型用砂組成物、及び鋳型の製造方法を提供できる。 According to the present invention, it is possible to provide a mold-forming binder composition, a mold-forming sand composition, and a method for producing a mold, which can produce a mold having superior properties while maintaining normal temperature strength.
なりより性の評価に用いた熱間ひずみ試験機を示す概略構成図である。It is a schematic block diagram which shows the hot strain testing machine used for the evaluation of nature.
 以下の明細書において、「鋳型」とは、本発明の鋳型造型用粘結剤組成物を含む鋳型造型用砂組成物を用いて造型してなるものである。 In the following description, the “mold” is formed by using a sand mold molding composition containing the binder composition for mold molding of the present invention.
「鋳型造型用粘結剤組成物」
 本発明の鋳型造型用粘結剤組成物(以下、単に「粘結剤組成物」ともいう。)は、鋳型を製造する際の粘結剤として使用されるものであり、フルフリルアルコールと、植物由来のフェノール類とを含有する。粘結剤組成物は、尿素とアルデヒド類との反応生成物をさらに含有することが好ましい。
"Binder composition for mold making"
The binder composition for mold making of the present invention (hereinafter, also simply referred to as “binder composition”) is used as a binder in producing a mold, and furfuryl alcohol, Contains plant-derived phenols. It is preferable that the binder composition further contains a reaction product of urea and aldehydes.
<植物由来のフェノール類>
 植物由来のフェノール類としては、カシューナット殻液(CNSL)、カルダノール、カードル、2-メチルカードル、アナカルド酸などが挙げられる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。本発明に好ましく使用されるCNSLとしては、天然のCNSLに加熱処理を施した工業用CNSL、天然のCNSL又は工業用CNSLを蒸留精製した蒸留精製CNSLが挙げられる。蒸留精製CNSLは、天然のCNSLに加熱処理を施したのみの工業用CNSLに比べて不純物が少なく、カルダノール及びカードルの存在比率が高いことから、植物由来のフェノール類として特に好適である。また、蒸留精製CNSLをさらに精製し、不純物を取り除いたカルダノール、カードル及び2-メチルカードルの少なくとも1種を植物由来のフェノール類として用いることもより好ましい。
<Phenols derived from plants>
Plant-derived phenols include cashew nut shell liquid (CNSL), cardanol, curdall, 2-methyl curdal, anacardic acid, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Examples of the CNSL preferably used in the present invention include industrial CNSL obtained by heating natural CNSL, distilled CNSL obtained by distilling and purifying natural CNSL, or industrial CNSL. Distilled and refined CNSL is particularly suitable as a phenol derived from plants because it contains fewer impurities and has a higher abundance ratio of cardanol and curdle than industrial CNSL obtained only by heating natural CNSL. Further, it is more preferable to use at least one kind of cardanol, curdle and 2-methyl curdle obtained by further purifying distilled purified CNSL and removing impurities as plant-derived phenols.
<尿素とアルデヒド類との反応生成物>
 粘結剤組成物が尿素とアルデヒド類との反応生成物をさらに含有することで、鋳型の常温強度がより向上する。
 アルデヒド類としては、ホルムアルデヒド、グリオキザール、フルフラールなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、粘結剤組成物の硬化が充分に進行する点で、ホルムアルデヒドが好ましい。
<Reaction product of urea and aldehydes>
When the binder composition further contains a reaction product of urea and aldehydes, the room temperature strength of the mold is further improved.
Examples of aldehydes include formaldehyde, glyoxal, and furfural. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, formaldehyde is preferable in that the curing of the binder composition proceeds sufficiently.
 尿素とアルデヒド類との反応生成物としては、尿素とアルデヒド類との付加物であるメチロール化尿素、メチロール化尿素の縮合物であるメチレン化尿素などが挙げられる。
 ここで、前記付加物及び縮合物の一例について、アルデヒド類がホルムアルデヒドの場合を例にとり、以下に説明する。
Examples of the reaction product of urea and aldehydes include methylolated urea which is an adduct of urea and aldehydes, and methyleneated urea which is a condensate of methylolated urea.
Here, an example of the adduct and the condensate will be described below by taking the case where the aldehyde is formaldehyde as an example.
 塩基性触媒の存在下で尿素とホルムアルデヒドとを反応させると、以下に示すように尿素にホルムアルデヒドが付加して、メチロール基(-CHOH)を1分子内に1~3個有するメチロール化尿素の混合物が生成する。 When urea and formaldehyde are reacted in the presence of a basic catalyst, formaldehyde is added to urea as shown below, and methylolated urea having 1 to 3 methylol groups (—CH 2 OH) in one molecule A mixture of
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 混合物中の各メチロール化尿素の割合は、尿素とホルムアルデヒドとの割合に応じて変化するため一概にはいえないが、メチロール基を1分子内に1つ又は2つ有するメチロール化尿素が主成分である。1分子中のメチロール基の数が増えるほど、立体障害により生成割合は減少する。
 ここで、主成分とは、混合物100質量%中、50質量%以上を意味する。
 また、本発明において、「100質量%中」とは、「総質量に対して」という意味である。例えば、「混合物100質量%中」とは、「混合物の総質量に対して」すなわち「混合物の総質量を100質量%としたとき」という意味である。
Although the ratio of each methylolated urea in the mixture varies depending on the ratio of urea and formaldehyde, it cannot be said unconditionally, but the main component is methylolated urea having one or two methylol groups in one molecule. is there. As the number of methylol groups in one molecule increases, the generation rate decreases due to steric hindrance.
Here, the main component means 50% by mass or more in 100% by mass of the mixture.
In the present invention, “in 100% by mass” means “relative to the total mass”. For example, “in 100% by mass of the mixture” means “relative to the total mass of the mixture”, that is, “when the total mass of the mixture is 100% by mass”.
 メチロール化尿素が生成した状態で、反応系を塩基性から酸性に変更すると、以下に示すようにメチロール化尿素同士が縮合して、メチレン化尿素が生成する。
 なお、下記式においては、化学式を簡略化するため、メチロール化尿素のメチロール基以外の部分を「R」又は「R’」と記す。
When the reaction system is changed from basic to acidic in the state in which methylolated urea is generated, methylolated urea is condensed with each other as shown below to generate methyleneated urea.
In the following formula, in order to simplify the chemical formula, a portion other than the methylol group of methylolated urea is described as “R” or “R ′”.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記の尿素とホルムアルデヒドとの反応は、フルフリルアルコール中で行うことができ、詳しくは後述する。 The above reaction between urea and formaldehyde can be performed in furfuryl alcohol, which will be described in detail later.
<任意成分>
 粘結剤組成物は、上述した成分以外の成分(任意成分)を含有してもよい。
 任意成分としては、フルフリルアルコールとアルデヒド類との縮合物、シランカップリング剤、ホルムアルデヒド低減剤、水などが挙げられる。
<Optional component>
The binder composition may contain components (arbitrary components) other than the components described above.
Examples of optional components include condensates of furfuryl alcohol and aldehydes, silane coupling agents, formaldehyde reducing agents, and water.
 フルフリルアルコールとアルデヒド類との縮合物は、酸性下でフルフリルアルコールとホルムアルデヒドとを反応させることで得られる。このとき、フルフリルアルコール1モルに対して、アルデヒド類を0.1~1モル使用することが好ましい。アルデヒド類の使用量が、0.1モル以上であれば重合度の低い縮合物となるため可使時間設定が容易となり、1モル以下であれば重合度の高い縮合物となるため鋳型の強度がより高まる。
 アルデヒド類としては、ホルムアルデヒド、グリオキザール、フルフラールなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The condensate of furfuryl alcohol and aldehydes can be obtained by reacting furfuryl alcohol and formaldehyde under acidic conditions. At this time, it is preferable to use 0.1 to 1 mol of aldehyde per 1 mol of furfuryl alcohol. If the amount of aldehyde used is 0.1 mol or more, it becomes a condensate with a low degree of polymerization, so that the pot life can be easily set. If it is 1 mol or less, the condensate has a high degree of polymerization, so the strength of the template. Will increase.
Examples of aldehydes include formaldehyde, glyoxal, and furfural. These may be used individually by 1 type and may be used in combination of 2 or more type.
 粘結剤組成物がシランカップリング剤を含有すれば、鋳型の強度がさらに向上する。
 シランカップリング剤としては、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシランなどが挙げられる。
If the binder composition contains a silane coupling agent, the strength of the mold is further improved.
Examples of the silane coupling agent include N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane.
 ホルムアルデヒド低減剤は、鋳型に溶融金属を注湯する際に発生するホルムアルデヒドを低減するためのものである。
 ホルムアルデヒド低減剤としては、尿素、レゾルシノール、ピロガロールなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The formaldehyde reducing agent is for reducing formaldehyde that is generated when molten metal is poured into a mold.
Examples of formaldehyde reducing agents include urea, resorcinol, pyrogallol and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
 水は、尿素とアルデヒド類との反応生成物を合成する際に生じる縮合水由来の水、水溶液状の原料(例えばホルマリンなど)によって供給される水、必要に応じて別途添加される水の全てが含まれる。 Water is water derived from condensed water generated when synthesizing reaction products of urea and aldehydes, water supplied by aqueous raw materials (for example, formalin, etc.), and all water added separately as necessary. Is included.
<含有量>
 粘結剤組成物100質量%中の各成分の含有量は以下の通りである。
 粘結剤組成物が尿素とアルデヒド類との反応生成物を含有しない場合、フルフリルアルコールの含有量は、粘結剤組成物100質量%中、60~99質量%が好ましく、65~95質量%がより好ましく、70~90質量%がさらに好ましい。フルフリルアルコールの含有量が60質量%以上であれば、可使時間の設定が容易となる。一方、フルフリルアルコールの含有量が99質量%以下であれば、鋳型の初期強度がより向上する。
<Content>
The content of each component in 100% by mass of the binder composition is as follows.
When the binder composition does not contain a reaction product of urea and aldehydes, the content of furfuryl alcohol is preferably 60 to 99% by mass, and 65 to 95% by mass in 100% by mass of the binder composition. % Is more preferable, and 70 to 90% by mass is more preferable. If the content of furfuryl alcohol is 60% by mass or more, the pot life can be easily set. On the other hand, if the content of furfuryl alcohol is 99% by mass or less, the initial strength of the mold is further improved.
 粘結剤組成物が尿素とアルデヒド類との反応生成物を含有する場合、フルフリルアルコールと前記反応生成物との含有量の合計は、粘結剤組成物100質量%中、60~99質量%が好ましく、65~95質量%がより好ましく、70~90質量%がさらに好ましい。フルフリルアルコールと前記反応生成物との含有量の合計が60質量%以上であれば、鋳型の初期強度がより向上する。一方、フルフリルアルコールと前記反応生成物との含有量の合計が99質量%以下であれば、鋳型の最終強度がより向上する。 When the binder composition contains a reaction product of urea and aldehydes, the total content of furfuryl alcohol and the reaction product is 60 to 99% by mass in 100% by mass of the binder composition. % Is preferable, 65 to 95% by mass is more preferable, and 70 to 90% by mass is further preferable. When the total content of furfuryl alcohol and the reaction product is 60% by mass or more, the initial strength of the mold is further improved. On the other hand, if the total content of furfuryl alcohol and the reaction product is 99% by mass or less, the final strength of the mold is further improved.
 また、尿素とアルデヒド類との反応生成物の含有量は、粘結剤組成物100質量%中、2~50質量%が好ましく、3~45質量%がより好ましく、5~40質量%がさらに好ましい。前記反応生成物の含有量が2質量%以上であれば、鋳型の初期強度がより向上する。一方、前記反応生成物の含有量が50質量%以下であれば、鋳型の最終強度がより向上する。 The content of the reaction product of urea and aldehydes is preferably 2 to 50% by mass, more preferably 3 to 45% by mass, and further preferably 5 to 40% by mass in 100% by mass of the binder composition. preferable. When the content of the reaction product is 2% by mass or more, the initial strength of the mold is further improved. On the other hand, if the content of the reaction product is 50% by mass or less, the final strength of the mold is further improved.
 また、尿素等を由来とする窒素原子含有量は、粘結剤組成物100質量%中、0.1~6質量%が好ましく、0.1~4.5質量%がより好ましい。
 窒素原子含有量は鋳型の初期強度及び最終強度に影響を与えるものであり、窒素原子含有量が少なくなるにつれて鋳型の初期強度は高くなる傾向にあり、窒素原子含有量が多くなるにつれて鋳型の最終強度は高くなる傾向にある。
 よって、必要に応じて窒素原子含有量を適宜調整することが好ましく、窒素原子含有量が上記範囲以内であれば、初期強度と最終強度のバランスに優れた鋳型が得られやすくなる。
The nitrogen atom content derived from urea or the like is preferably 0.1 to 6% by mass, more preferably 0.1 to 4.5% by mass in 100% by mass of the binder composition.
The nitrogen atom content affects the initial strength and final strength of the template. The initial strength of the template tends to increase as the nitrogen atom content decreases, and the final template strength increases as the nitrogen atom content increases. The strength tends to increase.
Therefore, it is preferable to appropriately adjust the nitrogen atom content as necessary. If the nitrogen atom content is within the above range, a template having an excellent balance between the initial strength and the final strength can be easily obtained.
 植物由来のフェノール類の含有量は、粘結剤組成物100質量%中、1~40質量%が好ましく、5~35質量%がより好ましく、10~30質量%がさらに好ましい。植物由来のフェノール類の含有量が上記範囲内であれば、なりより性に優れた鋳型が得られる。しかも、高温時の鋳型強度も良好に維持できる。 The content of plant-derived phenols is preferably 1 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass in 100% by mass of the binder composition. If the content of plant-derived phenols is within the above range, a template having better properties can be obtained. Moreover, the mold strength at high temperatures can be maintained well.
 粘結剤組成物が尿素とアルデヒド類との反応生成物を含有する場合、フルフリルアルコールと植物由来のフェノール類と前記反応生成物との含有量の合計は、粘結剤組成物100質量%中、65~100質量%が好ましく、80~99.5質量%がより好ましく、90~99.0質量%がさらに好ましい。フルフリルアルコールと植物由来のフェノール類と前記反応生成物との含有量の合計が65質量%以上であれば、鋳型の初期強度がより向上する。一方、フルフリルアルコールと植物由来のフェノール類と前記反応生成物との含有量の合計が100質量%以下であれば、鋳型のなりより性がより向上する。 When the binder composition contains a reaction product of urea and aldehydes, the total content of furfuryl alcohol, plant-derived phenols and the reaction product is 100% by mass of the binder composition. Among them, 65 to 100% by mass is preferable, 80 to 99.5% by mass is more preferable, and 90 to 99.0% by mass is further preferable. When the total content of furfuryl alcohol, plant-derived phenols and the reaction product is 65% by mass or more, the initial strength of the mold is further improved. On the other hand, if the total content of furfuryl alcohol, plant-derived phenols, and the reaction product is 100% by mass or less, the properties of the template are further improved.
 フルフリルアルコールとアルデヒド類との縮合物の含有量は、粘結剤組成物100質量%中、10~30質量%が好ましく、15~25質量%がより好ましい。フルフリルアルコールとアルデヒド類との縮合物の含有量が10質量%以上であれば、鋳型の初期強度がより向上する。一方、フルフリルアルコールとアルデヒド類との縮合物の含有量が30質量%以下であれば、鋳型の最終強度がより向上する。 The content of the condensate of furfuryl alcohol and aldehydes is preferably 10 to 30% by mass and more preferably 15 to 25% by mass in 100% by mass of the binder composition. When the content of the condensate of furfuryl alcohol and aldehydes is 10% by mass or more, the initial strength of the mold is further improved. On the other hand, if the content of the condensate of furfuryl alcohol and aldehydes is 30% by mass or less, the final strength of the mold is further improved.
 シランカップリング剤の含有量は、粘結剤組成物100質量%中、0.01~3質量%が好ましく、0.1~1質量%がより好ましい。シランカップリング剤の含有量が、0.01質量%以上であれば鋳型の強度がより向上し、3質量%以下であれば大幅なコスト上昇を抑えることができる。 The content of the silane coupling agent is preferably 0.01 to 3% by mass and more preferably 0.1 to 1% by mass in 100% by mass of the binder composition. If the content of the silane coupling agent is 0.01% by mass or more, the strength of the mold is further improved, and if it is 3% by mass or less, a significant cost increase can be suppressed.
 ホルムアルデヒド低減剤の含有量は、粘結剤組成物100質量%中、0.1~3質量%が好ましく、0.5~1質量%がより好ましい。ホルムアルデヒド低減剤の含有量が、0.1質量%以上であれば注湯時にホルムアルデヒドの発生を充分に低減でき、3質量%以下であれば大幅なコスト上昇を抑えることができる。 The content of the formaldehyde reducing agent is preferably 0.1 to 3% by mass, more preferably 0.5 to 1% by mass in 100% by mass of the binder composition. If the content of the formaldehyde reducing agent is 0.1% by mass or more, generation of formaldehyde during pouring can be sufficiently reduced, and if it is 3% by mass or less, a significant cost increase can be suppressed.
 水の含有量は、粘結剤組成物100質量%中、1~25質量%が好ましく、3~15質量%がより好ましい。水の含有量が、1質量%以上であれば鋳型の強度がより向上し、25質量%以下であれば大幅なコスト上昇を抑えることができる。 The content of water is preferably 1 to 25% by mass and more preferably 3 to 15% by mass in 100% by mass of the binder composition. If the water content is 1% by mass or more, the strength of the mold is further improved, and if it is 25% by mass or less, a significant cost increase can be suppressed.
<粘結剤組成物の製造方法>
 粘結剤組成物は、例えばフルフリルアルコールと植物由来のフェノール類と、必要に応じて任意成分とを混合することで得られる。
 植物由来のフェノール類は、予めアルデヒド類と反応させたものを使用することも可能である。ただし、この場合は、植物由来のフェノール類の樹脂化により高粘性となる傾向にあり、粘結剤組成物の粘度が上昇し、粘結剤組成物と後述する耐火性粒状材料とを混練しにくくなるおそれがある。よって、粘結剤組成物の粘度が上昇する場合は、水などを添加して粘度を調整することが好ましい。
<Method for producing binder composition>
The binder composition can be obtained, for example, by mixing furfuryl alcohol, plant-derived phenols, and optional components as necessary.
Plant-derived phenols that have been reacted with aldehydes in advance can also be used. However, in this case, the viscosity of the binder composition tends to increase due to the resinization of plant-derived phenols, and the binder composition and the refractory granular material described below are kneaded. May be difficult. Therefore, when the viscosity of the binder composition increases, it is preferable to adjust the viscosity by adding water or the like.
 また、粘結剤組成物が尿素とアルデヒド類との反応生成物を含有する場合、例えば以下のようにして製造すると、フルフリルアルコールに尿素とアルデヒド類との反応生成物が溶解した状態で得られるので好ましい。
 まず、フルフリルアルコールと尿素とアルデヒド類とを混合し、塩基性触媒(例えば、水酸化ナトリウム、水酸化カリウム等)の水溶液を添加して、混合物のpHを9~10に調整する。混合物を昇温して尿素とアルデヒド類とを反応させ(第1の付加反応)、例えば上述した尿素とアルデヒド類との付加物(メチロール化尿素)を得る。尿素とアルデヒド類との比率(アルデヒド類/尿素)は、モル比で1.5~2.0が好ましい。
 引き続き、反応液に酸性触媒(例えば、塩酸、硫酸等)を添加して、反応液のpHを2~4に調整し、メチロール化尿素の縮合反応を進行させ、例えば上述したメチロール化尿素の縮合物(メチレン化尿素)を得る。
 再度、反応液に塩基性触媒(例えば、水酸化ナトリウム、水酸化カリウム等)の水溶液を添加して、反応液のpHを9~10に調整し、さらに尿素を添加する。第1の付加反応では尿素に対して過剰のアルデヒド類を使用するため、反応液中には遊離のアルデヒド類が存在する。再度反応液のpHをアルカリ性とし、尿素をさらに添加することで、この遊離のアルデヒド類と尿素とが反応し(第2の付加反応)、尿素とアルデヒド類との付加物(メチロール化尿素)が得られる。
In addition, when the binder composition contains a reaction product of urea and aldehydes, for example, it can be obtained in a state in which the reaction product of urea and aldehydes is dissolved in furfuryl alcohol, as follows. This is preferable.
First, furfuryl alcohol, urea, and aldehydes are mixed, and an aqueous solution of a basic catalyst (for example, sodium hydroxide, potassium hydroxide, etc.) is added to adjust the pH of the mixture to 9-10. The mixture is heated to react urea with aldehydes (first addition reaction) to obtain, for example, the above-mentioned adduct of urea and aldehydes (methylolated urea). The molar ratio of urea to aldehydes (aldehydes / urea) is preferably 1.5 to 2.0.
Subsequently, an acidic catalyst (for example, hydrochloric acid, sulfuric acid, etc.) is added to the reaction solution, the pH of the reaction solution is adjusted to 2 to 4, and the condensation reaction of methylolated urea proceeds, for example, the condensation of methylolated urea described above. Product (methyleneated urea) is obtained.
Again, an aqueous solution of a basic catalyst (eg, sodium hydroxide, potassium hydroxide, etc.) is added to the reaction solution to adjust the pH of the reaction solution to 9-10, and urea is further added. In the first addition reaction, an excess of aldehydes is used with respect to urea, so that there are free aldehydes in the reaction solution. When the pH of the reaction solution is made alkaline again and urea is further added, the free aldehydes react with urea (second addition reaction), and the adduct of urea and aldehydes (methylolated urea) is produced. can get.
 このように2段階で付加反応させる理由は以下の通りである。
 すなわち、メチレン化尿素はフルフリルアルコール中に占める割合が多くなると、沈殿することがある。メチロール化尿素とメチレン化尿素とが、フルフリルアルコール中で適度な割合で存在していると、メチレン化尿素がフルフリルアルコール中で溶解した状態を維持できる。よって、上述したように、縮合反応の後に第2の付加反応を行い、メチロール化尿素を生成することが好ましい。
 フルフリルアルコールの大部分は反応液中で遊離した状態で存在しているが、フルフリルアルコールの一部は尿素とアルデヒド類との反応において、アルデヒド類と反応してもよい。
The reason for the addition reaction in two stages is as follows.
That is, if the proportion of the methyleneated urea in the furfuryl alcohol increases, it may precipitate. When methylolated urea and methyleneated urea are present in an appropriate ratio in furfuryl alcohol, the state in which methyleneated urea is dissolved in furfuryl alcohol can be maintained. Therefore, as described above, it is preferable to perform a second addition reaction after the condensation reaction to produce methylolated urea.
Most of the furfuryl alcohol exists in a free state in the reaction solution, but a part of the furfuryl alcohol may react with the aldehyde in the reaction of urea with the aldehyde.
 メチロール化尿素とメチレン化尿素とはフルフリルアルコールに溶解した状態で得られる。これに、植物由来のフェノール類と、必要に応じて任意成分とを添加し、粘結剤組成物を得る。
 なお、尿素とアルデヒド類との反応生成物は、フルフリルアルコールの非存在下で尿素とアルデヒド類とを反応させ、後からフルフリルアルコール等と混合してもよい。
Methylolated urea and methyleneated urea are obtained in a state dissolved in furfuryl alcohol. To this, plant-derived phenols and optional components as necessary are added to obtain a binder composition.
The reaction product of urea and aldehydes may be reacted with urea and aldehydes in the absence of furfuryl alcohol and then mixed with furfuryl alcohol or the like.
<作用効果>
 以上説明した本発明の粘結剤組成物は、フルフリルアルコールと植物由来のフェノール類とを含有する。植物由来のフェノール類は、分子内に炭素数が15の炭化水素基(長鎖の炭化水素基)を有する。この長鎖の炭化水素基により、以下の理由により鋳型になりより性を付与することができると考えられる。
 すなわち、鋳型の製造において硬化剤の作用により粘結剤組成物が硬化すると、フルフリルアルコールの三次元網目架橋構造が形成されるが、この三次元網目架橋構造に長鎖の炭化水素基を有する植物由来のフェノール類が取り込まれる。その結果、常温強度を維持しつつ、なりより性に優れる鋳型が得られる。しかも、三次元網目架橋構造に長鎖の炭化水素基を有する植物由来のフェノール類が取り込まれることで、鋳型の耐熱性も向上するので、高温時の鋳型強度も良好に維持できる。
<Effect>
The binder composition of the present invention described above contains furfuryl alcohol and plant-derived phenols. Plant-derived phenols have a hydrocarbon group (long-chain hydrocarbon group) having 15 carbon atoms in the molecule. It is considered that this long-chain hydrocarbon group becomes a template for the following reasons and can impart more sex.
That is, when the binder composition is cured by the action of a curing agent in the production of a mold, a three-dimensional network crosslinked structure of furfuryl alcohol is formed, and this three-dimensional network crosslinked structure has a long-chain hydrocarbon group. Plant-derived phenols are taken up. As a result, it is possible to obtain a mold having superior properties while maintaining the normal temperature strength. In addition, since plant-derived phenols having a long-chain hydrocarbon group are incorporated into the three-dimensional network cross-linked structure, the heat resistance of the mold is improved, so that the mold strength at high temperatures can be maintained well.
 本発明の粘結剤組成物を用いれば、なりより性に優れる鋳型が得られるので、鋳型の崩壊性に頼らなくても鋳型に注湯された溶融金属が凝固する際の収縮応力を減衰できる。よって、必要以上に鋳型の崩壊性を高める必要がなく、高温時の鋳型強度を低下させる必要もない。
 また、本発明の粘結剤組成物を用いれば、耐熱性に優れた鋳型が得られるので、差し込み欠陥や砂噛み等の鋳造欠陥も抑制できる。
By using the binder composition of the present invention, a mold having better properties can be obtained, so that the contraction stress when the molten metal poured into the mold solidifies can be attenuated without relying on the disintegration property of the mold. . Therefore, it is not necessary to increase the mold disintegration more than necessary, and it is not necessary to reduce the mold strength at high temperatures.
Moreover, since the casting_mold | template excellent in heat resistance is obtained if the binder composition of this invention is used, casting defects, such as an insertion defect and sand biting, can also be suppressed.
 本発明の1つの側面は、フルフリルアルコールと、植物由来のフェノール類とを含有し、尿素とアルデヒド類との反応生成物を含有しない鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類とを含有し、尿素とアルデヒド類との反応生成物を含有せず、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールの含有量が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤とを含有し、尿素とアルデヒド類との反応生成物を含有せず、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールの含有量が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、シランカップリング剤の含有量が0.01~3質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水とを含有し、尿素とアルデヒド類との反応生成物を含有せず、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールの含有量が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水と、フルフリルアルコールとアルデヒド類との縮合物とを含有し、尿素とアルデヒド類との反応生成物を含有せず、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールの含有量が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%であり、前記縮合物の含有量が10~30質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水と、前記縮合物の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水と、フルフリルアルコールとアルデヒド類との縮合物と、ホルムアルデヒド低減剤とを含有し、尿素とアルデヒド類との反応生成物を含有せず、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールの含有量が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%であり、前記縮合物の含有量が10~30質量%であり、ホルムアルデヒド低減剤の含有量が0.1~3質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、シランカップリング剤と、水と、前記縮合物と、ホルムアルデヒド低減剤との含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
One aspect of the present invention is a binder composition for mold making that contains furfuryl alcohol and plant-derived phenols and does not contain a reaction product of urea and aldehydes.
Another aspect of the present invention contains furfuryl alcohol and plant-derived phenols, does not contain a reaction product of urea and aldehydes, and in 100% by mass of the binder composition for mold making, A mold forming binder composition having a furfuryl alcohol content of 60 to 99% by mass and a plant-derived phenol content of 1 to 40% by mass.
Another aspect of the present invention is a mold-forming binder composition containing furfuryl alcohol, plant-derived phenols, and a silane coupling agent, not containing a reaction product of urea and aldehydes. In 100% by mass of the product, the content of furfuryl alcohol is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the content of the silane coupling agent is 0.01 to It is a binder composition for mold making which is 3 mass% (however, the total content of furfuryl alcohol, plant-derived phenols, and silane coupling agent does not exceed 100 mass%).
Another aspect of the present invention is that it contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, and water, does not contain a reaction product of urea and aldehydes, and is used for mold making. In 100% by mass of the binder composition, the content of furfuryl alcohol is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the content of the silane coupling agent is 0. 0.01 to 3% by mass and water content is 1 to 25% by mass (however, the total content of furfuryl alcohol, plant-derived phenols, silane coupling agent, and water is 100% by mass) Is a binder composition for mold making.
Another aspect of the present invention contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, water, a condensate of furfuryl alcohol and aldehydes, and urea and aldehydes. The reaction product is not contained, and the content of furfuryl alcohol is 60 to 99% by mass and the content of plant-derived phenols is 1 to 40% by mass in 100% by mass of the binder composition for mold making. The content of the silane coupling agent is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, and the content of the condensate is 10 to 30% by mass (however, The total amount of furyl alcohol, plant-derived phenols, silane coupling agent, water, and the content of the condensate does not exceed 100% by mass).
Another aspect of the present invention contains furfuryl alcohol, plant-derived phenols, a silane coupling agent, water, a condensate of furfuryl alcohol and aldehydes, and a formaldehyde reducing agent, and urea. The content of furfuryl alcohol is 60 to 99% by mass in 100% by mass of the binder composition for mold making, and the content of plant-derived phenols is not contained. 1 to 40% by mass, the content of the silane coupling agent is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, and the content of the condensate is 10 to 30% by mass. The content of the formaldehyde reducing agent is 0.1 to 3% by mass (provided that furfuryl alcohol, plant-derived phenols, silane coupling agent, water, the condensate, and formaldehyde Total content of dehydroaripiprazole reducing agent is binder composition for mold formation which is not exceeding) 100 mass%.
 本発明の1つの側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物とを含有する鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%であり、窒素原子含有量が0.1~6質量%である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物と、シランカップリング剤とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%であり、窒素原子含有量が0.1~6質量%であり、シランカップリング剤の含有量が0.01~3質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、前記反応生成物と、シランカップリング剤の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物と、シランカップリング剤と、水とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%であり、窒素原子含有量が0.1~6質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、前記反応生成物と、シランカップリング剤と、水の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物と、シランカップリング剤と、水と、フルフリルアルコールとアルデヒド類との縮合物とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%であり、窒素原子含有量が0.1~6質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%であり、前記縮合物の含有量が10~30質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、前記反応生成物と、シランカップリング剤と、水と、前記縮合物の含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
 本発明の別の側面は、フルフリルアルコールと、植物由来のフェノール類と、尿素とアルデヒド類との反応生成物と、シランカップリング剤と、水と、フルフリルアルコールとアルデヒド類との縮合物と、ホルムアルデヒド低減剤とを含有し、鋳型造型用粘結剤組成物100質量%中、フルフリルアルコールと前記反応生成物との含有量の合計が60~99質量%であり、植物由来のフェノール類の含有量が1~40質量%であり、前記反応生成物の含有量が2~50質量%であり、窒素原子含有量が0.1~6質量%であり、シランカップリング剤の含有量が0.01~3質量%であり、水の含有量が1~25質量%であり、前記縮合物の含有量が10~30質量%であり、ホルムアルデヒド低減剤の含有量が0.1~3質量%(ただし、フルフリルアルコールと、植物由来のフェノール類と、前記反応生成物と、シランカップリング剤と、水と、前記縮合物と、ホルムアルデヒド低減剤との含有量の合計が100質量%を超えない)である鋳型造型用粘結剤組成物である。
One aspect of the present invention is a binder composition for mold making containing furfuryl alcohol, plant-derived phenols, and a reaction product of urea and aldehydes.
Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol. And the reaction product in a total amount of 60 to 99% by mass, and the content of plant-derived phenols is 1 to 40% by mass.
Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol. And the reaction product content is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the content of the reaction product is 2 to 50% by mass. It is a binder composition for mold making.
Another aspect of the present invention includes furfuryl alcohol, a phenol derived from a plant, a reaction product of urea and aldehydes, and 100% by mass of a binder composition for mold making, furfuryl alcohol. And the reaction product content is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the content of the reaction product is 2 to 50% by mass. And a mold forming binder composition having a nitrogen atom content of 0.1 to 6% by mass.
Another aspect of the present invention is a mold-forming binder composition 100 mass containing furfuryl alcohol, plant-derived phenols, a reaction product of urea and aldehydes, and a silane coupling agent. %, The total content of furfuryl alcohol and the reaction product is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the content of the reaction product Is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, and the content of the silane coupling agent is 0.01 to 3% by mass (but furfuryl alcohol and plant-derived) The total amount of phenols, the reaction product, and the silane coupling agent does not exceed 100% by mass).
Another aspect of the present invention is a binder composition for mold making, comprising furfuryl alcohol, plant-derived phenols, a reaction product of urea and aldehydes, a silane coupling agent, and water. The total content of furfuryl alcohol and the reaction product in 100% by mass of the product is 60 to 99% by mass, the content of plant-derived phenols is 1 to 40% by mass, and the reaction product The content of is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, the content of the silane coupling agent is 0.01 to 3% by mass, and the content of water is Mold making of 1 to 25% by mass (however, the total content of furfuryl alcohol, plant-derived phenols, the reaction product, silane coupling agent, and water does not exceed 100% by mass) It is a binder composition for use.
Another aspect of the present invention is a condensate of furfuryl alcohol, plant-derived phenols, reaction product of urea and aldehydes, silane coupling agent, water, furfuryl alcohol and aldehydes. The total content of furfuryl alcohol and the reaction product in 60% by mass of the binder composition for mold making is 60 to 99% by mass, and the content of plant-derived phenols is 1 to 40% by mass, the reaction product content is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, and the silane coupling agent content is 0.01%. 3% by mass, water content 1-25% by mass, condensate content 10-30% by mass (however, furfuryl alcohol, plant-derived phenols, and reaction product) And silane coupling And grayed agent, water and a total binder composition for mold formation which is not exceeding) 100 mass% of the content of the condensate.
Another aspect of the present invention is a condensate of furfuryl alcohol, plant-derived phenols, reaction product of urea and aldehydes, silane coupling agent, water, furfuryl alcohol and aldehydes. And 100% by mass of the binder composition for mold making, the total content of furfuryl alcohol and the reaction product is 60 to 99% by mass, and the plant-derived phenol The content of the reaction product is 1 to 40% by mass, the content of the reaction product is 2 to 50% by mass, the nitrogen atom content is 0.1 to 6% by mass, and the content of the silane coupling agent The amount is 0.01 to 3% by mass, the content of water is 1 to 25% by mass, the content of the condensate is 10 to 30% by mass, and the content of the formaldehyde reducing agent is 0.1%. ~ 3% by mass (however, The total content of rufuryl alcohol, plant-derived phenols, the reaction product, the silane coupling agent, water, the condensate, and the formaldehyde reducing agent does not exceed 100% by mass). It is a certain binder composition for mold making.
「鋳型造型用砂組成物」
 本発明の鋳型造型用砂組成物(以下、単に「砂組成物」ともいう。)は、上述した本発明の粘結剤組成物と、耐火性粒状材料と、硬化剤とを含有する。
"Sand composition for mold making"
The mold molding sand composition of the present invention (hereinafter also simply referred to as “sand composition”) contains the above-described binder composition of the present invention, a refractory granular material, and a curing agent.
<耐火性粒状材料>
 耐火性粒状材料としては、珪砂、クロマイト砂、ジルコン砂、オリビン砂、アルミナ砂、ムライト砂、合成ムライト砂等の従来公知のものを使用できる。また、使用済みの耐火性粒状材料を回収したもの(回収砂)や再生処理をしたもの(再生砂)なども使用できる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。特に耐火性を要求される部分には、クロマイト砂、ジルコン砂、アルミナ砂が好ましい。
<Fireproof granular material>
As the refractory granular material, conventionally known materials such as silica sand, chromite sand, zircon sand, olivine sand, alumina sand, mullite sand, and synthetic mullite sand can be used. Moreover, the thing which collect | recovered used refractory granular materials (collected sand), the thing which regenerated (regenerated sand), etc. can be used. These may be used individually by 1 type and may be used in combination of 2 or more type. In particular, chromite sand, zircon sand, and alumina sand are preferred for portions that require fire resistance.
<硬化剤>
 硬化剤としては、キシレンスルホン酸等のスルホン酸系化合物、燐酸系化合物、硫酸など、従来公知のものを使用できる。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、鋳型の常温強度や耐熱性がより高まる点で、スルホン酸系化合物が好ましい。
<Curing agent>
As the curing agent, conventionally known ones such as sulfonic acid compounds such as xylene sulfonic acid, phosphoric acid compounds, and sulfuric acid can be used. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, a sulfonic acid compound is preferable in that the normal temperature strength and heat resistance of the template are further increased.
<含有量>
 砂組成物における耐火性粒状材料と粘結剤組成物と硬化剤との混合比率は適宜設定できるが、耐火性粒状材料100質量部に対し、粘結剤組成物が0.3~2質量部であることが好ましく、0.5~1.5質量部であることがより好ましい。また、耐火性粒状材料100質量部に対し、硬化剤が0.045~1.2質量部であることが好ましく、0.075~0.9質量部であることがより好ましい。このような混合比率であると、充分な強度の鋳型が得られやすい。
<Content>
The mixing ratio of the refractory granular material, the binder composition and the curing agent in the sand composition can be set as appropriate, but the binder composition is 0.3 to 2 parts by mass with respect to 100 parts by mass of the refractory granular material. The amount is preferably 0.5 to 1.5 parts by mass. Further, the curing agent is preferably 0.045 to 1.2 parts by mass, and more preferably 0.075 to 0.9 parts by mass with respect to 100 parts by mass of the refractory granular material. With such a mixing ratio, it is easy to obtain a mold having sufficient strength.
 また、砂組成物100質量%中の植物由来のフェノール類の含有量は、0.003~0.8質量%であることが好ましく、0.005~0.6質量%であることがより好ましい。砂組成物中の植物由来のフェノール類の含有量が上記範囲内であれば、なりより性及び耐熱性がより高い鋳型が得られる。 The content of plant-derived phenols in 100% by mass of the sand composition is preferably 0.003 to 0.8% by mass, and more preferably 0.005 to 0.6% by mass. . When the content of plant-derived phenols in the sand composition is within the above range, a mold having higher properties and heat resistance can be obtained.
<砂組成物の製造方法>
 砂組成物は、粘結剤組成物と耐火性粒状材料と硬化剤とを混合することで得られる。
 混合方法としては、一般的な混合方法であれば特に限定はなく、例えば攪拌機などを用いる方法などが挙げられる。
<The manufacturing method of a sand composition>
A sand composition is obtained by mixing a binder composition, a refractory granular material, and a curing agent.
The mixing method is not particularly limited as long as it is a general mixing method, and examples thereof include a method using a stirrer.
<作用効果>
 以上説明した本発明の砂組成物は、上述した本発明の粘結剤組成物を含有するので、常温強度を維持しつつ、なりより性に優れる鋳型が得られる。
 また、本発明の砂組成物を用いれば、耐熱性に優れた鋳型が得られるので、差し込み欠陥や砂噛み等の鋳造欠陥も抑制できる。
<Effect>
Since the sand composition of the present invention described above contains the above-described binder composition of the present invention, a mold having superior properties can be obtained while maintaining normal temperature strength.
Moreover, since the casting | molding excellent in heat resistance is obtained if the sand composition of this invention is used, casting defects, such as an insertion defect and sand biting, can also be suppressed.
 本発明の1つの側面は、前記鋳型造型用粘結剤組成物と、耐火性粒状材料と、硬化剤とを含有し、耐火性粒状材料100質量部に対して、鋳型造型用粘結剤組成物の含有量が0.3~2質量部であり、硬化剤の含有量が0.045~1.2質量部である鋳型造型用砂組成物である。
 本発明の別の側面は、前記鋳型造型用粘結剤組成物と、耐火性粒状材料と、硬化剤とを含有し、耐火性粒状材料100質量部に対して、鋳型造型用粘結剤組成物の含有量が0.3~2質量部であり、硬化剤の含有量が0.045~1.2質量部であり、鋳型造型用砂組成物100質量%中、植物由来のフェノール類の含有量が0.003~0.8質量%である鋳型造型用砂組成物である。
One aspect of the present invention includes a binder for mold making, a refractory granular material, and a curing agent, and a binder composition for mold making with respect to 100 parts by weight of the refractory granular material. The sand composition for mold making has a product content of 0.3 to 2 parts by mass and a hardener content of 0.045 to 1.2 parts by mass.
Another aspect of the present invention includes the above-mentioned binder for mold making, a refractory granular material, and a curing agent, and a binder composition for mold making with respect to 100 parts by mass of the refractory granular material. The content of the product is 0.3 to 2 parts by mass, the content of the curing agent is 0.045 to 1.2 parts by mass, and 100% by mass of the mold molding sand composition contains plant-derived phenols. A sand composition for mold making having a content of 0.003 to 0.8% by mass.
「鋳型の製造方法」
 本発明の砂組成物から鋳型を製造する方法としては、自硬性鋳型造型法を採用することができる。すなわち、本発明の砂組成物を鋳型造型用の所定の型に充填すると、砂組成物中の粘結剤組成物が硬化剤の作用により硬化する。その結果、鋳型を得ることができる。
 本発明の鋳型の製造方法は、本発明の砂組成物を鋳型製造用の型に充填し、前記砂組成物に含まれる粘結剤組成物を硬化させる工程を有する。
"Mold manufacturing method"
As a method for producing a mold from the sand composition of the present invention, a self-hardening mold making method can be employed. That is, when the sand composition of the present invention is filled in a predetermined mold for mold making, the binder composition in the sand composition is cured by the action of the curing agent. As a result, a template can be obtained.
The method for producing a mold of the present invention includes a step of filling a mold for producing a mold with the sand composition of the present invention and curing the binder composition contained in the sand composition.
 本発明により得られる鋳型は、常温強度を維持しつつ、なりより性に優れる。しかも、本発明により得られる鋳型は耐熱性にも優れるので、差し込み欠陥や砂噛み等の鋳造欠陥も抑制できる。 The mold obtained by the present invention is superior in quality while maintaining the normal temperature strength. Moreover, since the mold obtained by the present invention is also excellent in heat resistance, casting defects such as insertion defects and sand biting can be suppressed.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、各実施例及び比較例で得られたテストピース(鋳型)の各物性の測定は以下の方法で行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The physical properties of the test pieces (molds) obtained in the examples and comparative examples were measured by the following methods.
(水の含有量の測定)
 酸硬化性樹脂の水の含有量は、JIS K 0068の化学製品の水分試験方法によって求めた。
(Measurement of water content)
The water content of the acid curable resin was determined by the moisture test method for chemical products of JIS K 0068.
(窒素原子含有量の測定)
 窒素原子含有量は、JIS K 0102の工場排水試験方法の滴定法によって求めた。
(Measurement of nitrogen atom content)
The nitrogen atom content was determined by the titration method of the factory wastewater test method of JIS K 0102.
(圧縮強度の測定)
 各実施例及び比較例で得られたテストピースの圧縮強度(鋳型強度)は、JIS Z 2601の鋳物砂の試験方法に準じて、卓上抗圧力試験機(高千穂機械株式会社製)を用いることで測定した。
(Measurement of compressive strength)
The compressive strength (mold strength) of the test pieces obtained in each Example and Comparative Example is obtained by using a tabletop pressure tester (manufactured by Takachiho Machinery Co., Ltd.) according to the testing method for foundry sand of JIS Z 2601. It was measured.
(嵩密度の測定)
 各実施例及び比較例で得られたテストピースの嵩密度は、下記一般式(I)により求めた。質量測定に用いた電子天秤には、METTLER PM 4000(日本シイベルヘグナー株式会社製)を用いた。
 なお、嵩密度は木型に略同質量の砂組成物が充填されたことを確認するために測定している。
 テストピースの嵩密度(g/cm)=テストピースの質量(g)/テストピースの体積(cm)・・・(I)
(Measurement of bulk density)
The bulk density of the test pieces obtained in each Example and Comparative Example was determined by the following general formula (I). METLER PM 4000 (manufactured by Nippon Shibel Hegner Co., Ltd.) was used as the electronic balance used for mass measurement.
In addition, the bulk density is measured in order to confirm that the sand composition having substantially the same mass is filled in the wooden mold.
Test piece bulk density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 ) (I)
(なりより性の評価)
 各実施例及び比較例で得られたテストピースのなりより性は、「鋳型の生産技術」(財団法人素形材センター、平成7年1月20日、p411~412)に記載の「鋳型の熱間ひずみ試験」に準拠し、図1に示す熱間ひずみ試験機10を用いて以下のようにして評価した。
 テストピースの大きさは、25.4mm×6.35mm×114.3mmとした。
 図1に示すように、クランプ11でテストピース12の長手方向の一端を挟持して固定し、テストピース12の他端側の上面に30gの重り13を載せた。
 次いで、テストピース12の下面の中心部を電気ヒーター14で800℃に加熱した。テストピース12を加熱すると、熱膨張によりテストピース12は上方向に曲がるが、その後、重り13により上方向の曲がりは止まり、下方向に曲がり始め最終的に破断する。
 加熱開始から3分経過した後のテストピース12の変位量をレーザー変位計15で測定した。変位量が大きいほど、なりより性に優れることを意味する。
(Evaluation of gender more)
The test piece obtained in each of the examples and comparative examples was evaluated according to “Mold Production Technology” (Foundation Materials Center, January 20, 1995, p411 to 412). Based on the “hot strain test”, evaluation was performed as follows using the hot strain tester 10 shown in FIG.
The size of the test piece was 25.4 mm × 6.35 mm × 114.3 mm.
As shown in FIG. 1, one end in the longitudinal direction of the test piece 12 was clamped and fixed by the clamp 11, and a 30 g weight 13 was placed on the upper surface of the other end side of the test piece 12.
Next, the central portion of the lower surface of the test piece 12 was heated to 800 ° C. with the electric heater 14. When the test piece 12 is heated, the test piece 12 bends upward due to thermal expansion, but thereafter, the upward bending is stopped by the weight 13 and begins to bend downward, eventually breaking.
The displacement of the test piece 12 after 3 minutes from the start of heating was measured with a laser displacement meter 15. It means that the larger the displacement, the better the nature.
「実施例1」
<粘結剤組成物の調製>
 温度計、冷却器及び攪拌機を備えた4つ口フラスコに、フルフリルアルコール827.1質量部と、尿素24.18質量部と、92質量%パラホルムアルデヒド33.9質量部と、15質量%水酸化ナトリウム水溶液2.0質量部とを投入し、80℃で1時間反応させた(第1の付加反応)。その後、10質量%塩酸3.0質量部添加して、さらに3時間反応させた(縮合反応)。その後、15質量%水酸化ナトリウム水溶液2.0質量部と、尿素14.82質量部とを添加して、さらに30分間反応させて(第2の付加反応)、反応混合物を得た。得られた反応混合物に、市販の蒸留精製CNSL(東北化工株式会社製、商品名「LB-7000」、125℃での不揮発分99.5質量%、この不揮発分中のモノマー比率100質量%(モノマー全体に対する、カルダノール比率90質量%、カードル比率10質量%))101質量部と、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)2質量部とを添加し、粘結剤組成物1010質量部を得た。
 得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は81.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、蒸留精製CNSLの含有量は10.0質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
"Example 1"
<Preparation of binder composition>
In a four-necked flask equipped with a thermometer, a condenser, and a stirrer, 827.1 parts by mass of furfuryl alcohol, 24.18 parts by mass of urea, 33.9 parts by mass of paraformaldehyde 92% by mass, and 15% by mass water An aqueous sodium oxide solution (2.0 parts by mass) was added and reacted at 80 ° C. for 1 hour (first addition reaction). Thereafter, 10 parts by mass of hydrochloric acid (3.0 parts by mass) was added, and the mixture was further reacted for 3 hours (condensation reaction). Thereafter, 2.0 parts by mass of a 15% by mass aqueous sodium hydroxide solution and 14.82 parts by mass of urea were added and further reacted for 30 minutes (second addition reaction) to obtain a reaction mixture. To the obtained reaction mixture, commercially available distilled purified CNSL (trade name “LB-7000”, manufactured by Tohoku Chemical Co., Ltd., nonvolatile content of 99.5% by mass at 125 ° C., monomer ratio in the nonvolatile content of 100% by mass ( Cardanol ratio 90% by mass, curdle ratio 10% by mass))) 101 parts by mass and silane coupling agent (N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane) 2 parts by mass, The binder composition 1010 parts by mass was obtained.
The content of furfuryl alcohol in 100% by mass of the obtained binder composition is 81.9% by mass, the content of the reaction product of urea and paraformaldehyde is 6.9% by mass, The content of distilled and purified CNSL was 10.0% by mass, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
<砂組成物の製造>
 珪砂(三菱商事建材株式会社製、フリーマントル新砂)100質量部に、先に得られた粘結剤組成物1質量部と、硬化剤(キシレンスルホン酸35質量%と硫酸6質量%とを含有する濃度41質量%水溶液)0.4質量部とを添加し、品川式万能攪拌機(株式会社品川工業所製、MIXER)で混練して、砂組成物を得た。
<Manufacture of sand composition>
100 parts by weight of silica sand (manufactured by Mitsubishi Corporation Building Materials Co., Ltd., free mantle new sand) contains 1 part by weight of the previously obtained binder composition and a curing agent (35% by weight of xylenesulfonic acid and 6% by weight of sulfuric acid) 0.4 mass part) was added and kneaded with a Shinagawa universal stirrer (manufactured by Shinagawa Kogyo Co., Ltd., MIXER) to obtain a sand composition.
<テストピースの製造1>
 得られた砂組成物の一部を、直ちに温度25℃、湿度40%の条件下、内径50mm、高さ50mmの円柱状の型が形成されたテストピース作製用木型に充填して硬化させ、硬化開始から1時間経過後にテストピースを取り出した(抜型時間1時間)。
 得られたテストピースについて、硬化開始から1時間、3時間及び24時間経過後の圧縮強度と嵩密度を測定した。結果を表1に示す。
<Manufacture of test pieces 1>
A portion of the obtained sand composition is immediately filled into a test piece preparation wooden mold in which a cylindrical mold having an inner diameter of 50 mm and a height of 50 mm is formed under conditions of a temperature of 25 ° C. and a humidity of 40%, and is cured. The test piece was taken out after 1 hour from the start of curing (molding time 1 hour).
About the obtained test piece, the compressive strength and bulk density after 1 hour, 3 hours, and 24 hours passed from the start of hardening were measured. The results are shown in Table 1.
<テストピースの製造2>
 得られた砂組成物の一部を、直ちに温度25℃、湿度40%の条件下、縦内径25.4mm、横内径6.35mm、高さ114.3mmの直方体状の型が形成されたテストピース作製用金型に充填して硬化させ、硬化開始から24時間経過後にテストピースを取り出した(抜型時間24時間)。
 得られたテストピースについて、なりより性を評価した。結果を表1に示す。
<Manufacture of test pieces 2>
A test in which a part of the obtained sand composition was immediately formed into a rectangular parallelepiped mold having a longitudinal inner diameter of 25.4 mm, a lateral inner diameter of 6.35 mm, and a height of 114.3 mm under the conditions of a temperature of 25 ° C. and a humidity of 40%. The mold for making the piece was filled and cured, and the test piece was taken out after the lapse of 24 hours from the start of curing (24 hours of mold removal time).
About the obtained test piece, the nature was evaluated more or less. The results are shown in Table 1.
「実施例2」
 フルフリルアルコールの量を726.1質量部に変更し、蒸留精製CNSLの量を202質量部に変更した以外は、実施例1と同様にして粘結剤組成物を調製し、得られた粘結剤組成物を用いて砂組成物及びテストピースを製造し、各種測定を行った。結果を表1に示す。
 なお、得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は71.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、蒸留精製CNSLの含有量は20.0質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
"Example 2"
A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 726.1 parts by mass and the amount of distilled and purified CNSL was changed to 202 parts by mass. A sand composition and a test piece were produced using the binder composition, and various measurements were performed. The results are shown in Table 1.
The content of furfuryl alcohol in 100% by mass of the obtained binder composition is 71.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass. Yes, the content of distilled and purified CNSL was 20.0% by mass, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
「実施例3」
 フルフリルアルコールの量を625.1質量部に変更し、蒸留精製CNSLの量を303質量部に変更した以外は、実施例1と同様にして粘結剤組成物を調製し、得られた粘結剤組成物を用いて砂組成物及びテストピースを製造し、各種測定を行った。結果を表1に示す。
 なお、得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は61.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、蒸留精製CNSLの含有量は30.0質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
"Example 3"
A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 625.1 parts by mass and the amount of distilled and purified CNSL was changed to 303 parts by mass. A sand composition and a test piece were produced using the binder composition, and various measurements were performed. The results are shown in Table 1.
The content of furfuryl alcohol in the obtained binder composition 100% by mass is 61.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass. Yes, the content of distilled and purified CNSL was 30.0% by mass, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
「実施例4」
 フルフリルアルコールの量を625.1質量部に変更し、蒸留精製CNSLに代えて工業用CNSL(東北化工株式会社製、商品名「CNSL(工業用)」、125℃での不揮発分99.0質量%、この不揮発分中のモノマー比率80質量%(モノマー全体に対する、カルダノール比率82質量%、カードル比率18質量%、)303質量部を用いた以外は、実施例1と同様にして粘結剤組成物を調製し、得られた粘結剤組成物を用いて砂組成物及びテストピースを製造し、各種測定を行った。結果を表1に示す。
 なお、得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は61.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、工業用CNSLの含有量は30.0質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
Example 4
The amount of furfuryl alcohol was changed to 625.1 parts by mass, and instead of distillation-purified CNSL, industrial CNSL (made by Tohoku Chemical Co., Ltd., trade name “CNSL (industrial)”, nonvolatile content at 125 ° C. 99.0 The binder was the same as in Example 1 except that 303 parts by mass of the monomer and 80% by mass of the monomer in the nonvolatile content (cardanol ratio 82% by mass, curdle ratio 18% by mass with respect to the whole monomer) were used. A composition was prepared, a sand composition and a test piece were produced using the obtained binder composition, and various measurements were performed, and the results are shown in Table 1.
The content of furfuryl alcohol in the obtained binder composition 100% by mass is 61.9% by mass, and the content of the reaction product of urea and paraformaldehyde is 6.9% by mass. Yes, the content of industrial CNSL was 30.0% by mass, the content of silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
「比較例1」
 フルフリルアルコールの量を928.1質量部に変更し、蒸留精製CNSLを用いなかった以外は、実施例1と同様にして粘結剤組成物を調製し、得られた粘結剤組成物を用いて砂組成物及びテストピースを製造し、各種測定を行った。結果を表1に示す。
 なお、得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は91.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
"Comparative Example 1"
A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 928.1 parts by mass and distilled purified CNSL was not used. A sand composition and a test piece were produced using this, and various measurements were performed. The results are shown in Table 1.
In addition, content of furfuryl alcohol in 100 mass% of obtained binder compositions is 91.9 mass%, and content of the reaction product of urea and paraformaldehyde is 6.9 mass%. Yes, the content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
「比較例2」
 フルフリルアルコールの量を928.1質量部に変更し、蒸留精製CNSLを用いなかった以外は、実施例1と同様にして粘結剤組成物を調製した。得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は91.9質量%であり、尿素とパラホルムアルデヒドとの反応生成物の含有量は6.9質量%であり、シランカップリング剤の含有量は0.2質量%であり、水の含有量は1.0質量%であった。また、粘結剤組成物100質量%中の窒素原子含有量は、1.8質量%であった。
 得られた粘結剤組成物を用い、硬化剤として燐酸51質量%と硫酸5質量%とを含有する濃度56質量%水溶液0.4質量部を用いた以外は、実施例1と同様にして砂組成物及びテストピースを製造し、各種測定を行った。結果を表1に示す。
"Comparative Example 2"
A binder composition was prepared in the same manner as in Example 1 except that the amount of furfuryl alcohol was changed to 928.1 parts by mass and no distillation-purified CNSL was used. In 100% by mass of the obtained binder composition, the content of furfuryl alcohol is 91.9% by mass, the content of the reaction product of urea and paraformaldehyde is 6.9% by mass, The content of the silane coupling agent was 0.2% by mass, and the content of water was 1.0% by mass. The nitrogen atom content in 100% by mass of the binder composition was 1.8% by mass.
Except for using the obtained binder composition and using 0.4 parts by weight of a 56% strength aqueous solution containing 51% by weight phosphoric acid and 5% by weight sulfuric acid as a curing agent, the same as in Example 1. A sand composition and a test piece were manufactured, and various measurements were performed. The results are shown in Table 1.
「比較例3」
 温度計、冷却器及び攪拌機を備えた4つ口フラスコに、フェノール235.3質量部と、48質量%水酸化ナトリウム水溶液106.2質量部と、48質量%水酸化カリウム水溶液87.5質量部と、水242.9質量部とを投入し、これに50質量%ホルマリン300質量部を約1時間かけて滴下し、内温90℃で3時間反応させた後、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)10質量部添加し、アルカリフェノール樹脂981.9質量部を得た。
 珪砂(三菱商事建材株式会社製、フリーマントル新砂)100質量部に、先に得られたアルカリフェノール樹脂1.5質量部と、硬化剤(トリエチレングリコールジアセテート)0.3質量部とを添加し、品川式万能攪拌機(株式会社品川工業所製、MIXER)で混練して、砂組成物を得た。
 得られた砂組成物を用いた以外は、実施例1と同様にしてテストピースを製造し、各種測定を行った。結果を表1に示す。
“Comparative Example 3”
In a four-necked flask equipped with a thermometer, a condenser, and a stirrer, 235.3 parts by mass of phenol, 106.2 parts by mass of 48% by mass aqueous sodium hydroxide, and 87.5 parts by mass of 48% by mass aqueous potassium hydroxide And 242.9 parts by mass of water were added, 300 parts by mass of 50% by mass formalin was added dropwise over about 1 hour and reacted at an internal temperature of 90 ° C. for 3 hours, and then a silane coupling agent (N— 10 parts by mass of β (aminoethyl) γ-aminopropylmethyldimethoxysilane) was added to obtain 981.9 parts by mass of an alkali phenol resin.
Add 100 parts by mass of silica sand (Mitsubishi Corporation Building Materials Co., Ltd., Freemantle Shinsuna), 1.5 parts by mass of the previously obtained alkali phenol resin and 0.3 parts by mass of a curing agent (triethylene glycol diacetate) The mixture was kneaded with a Shinagawa universal agitator (manufactured by Shinagawa Kogyo Co., Ltd., MIXER) to obtain a sand composition.
A test piece was produced in the same manner as in Example 1 except that the obtained sand composition was used, and various measurements were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、実施例1~4で得られたテストピースは、常温強度が高かった。また、実施例1~4で得られたテストピースは、加熱しても割れることなく変位でき、なりより性にも優れていた。これらの結果より、本発明の粘結剤組成物を用いて得られる鋳型は、常温時の取り扱いが容易であり、注湯時の熱間亀裂の防止、砂噛み欠陥及び差し込み欠陥の防止に有効であり、優れた鋳型であることが確認された。
 対して、比較例1で得られたテストピースは、常温強度は高いものの、加熱した際の変位量が小さく、なりより性に劣っていた。このような、なりより性の低い鋳型は、注湯時の熱間亀裂を誘発する要因となる。
 比較例2で得られたテストピースは、実施例1~4で得られたテストピースに比べて常温強度が低かった。また、なりより性の評価において試験中にテストピースが折れたことから、比較例2で得られたテストピースは、熱間亀裂は発生しにくいものと考えられるが、耐熱性に劣るため、注湯時に砂噛み欠陥や差し込み欠陥を誘発する要因となるものと考えられる。
 粘結剤としてアルカリフェノール樹脂を用いた比較例3で得られたテストピースは、高温時に鋳型が割れることなく変位しており、各実施例で得られたテストピースと同程度のなりより性を有していた。しかし、常温強度が特に低かった。
From the results shown in Table 1, the test pieces obtained in Examples 1 to 4 had high room temperature strength. In addition, the test pieces obtained in Examples 1 to 4 could be displaced without cracking even when heated, and were more excellent in properties. From these results, the mold obtained using the binder composition of the present invention is easy to handle at room temperature and effective in preventing hot cracks during pouring, sand biting defects and insertion defects. It was confirmed that this was an excellent mold.
On the other hand, although the test piece obtained in Comparative Example 1 had a high normal temperature strength, the amount of displacement when heated was small, and the properties were inferior. Such a lower-quality mold causes a hot crack during pouring.
The test piece obtained in Comparative Example 2 had lower room temperature strength than the test pieces obtained in Examples 1 to 4. In addition, since the test piece was broken during the test in the evaluation of the nature, the test piece obtained in Comparative Example 2 is considered to be less prone to hot cracking, but it is inferior in heat resistance. It is thought that it becomes a factor which induces a sand biting defect and insertion defect at the time of hot water.
The test piece obtained in Comparative Example 3 using an alkali phenol resin as a binder was displaced without cracking the mold at a high temperature, and the test piece obtained in each example had the same degree of properties as the test piece. Had. However, the room temperature strength was particularly low.
「実施例5」
 フルフリルアルコール898質量部と、蒸留精製CNSL100質量部と、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)2質量部とを混合し、粘結剤組成物1000質量部を得た。得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は89.8質量%であり、蒸留精製CNSLの含有量は10.0質量%であり、シランカップリング剤の含有量は0.2質量%であった。
 得られた粘結剤組成物を用いた以外は、実施例1と同様にして砂組成物及びテストピースを製造し、各種測定を行った。結果を表2に示す。
"Example 5"
898 parts by mass of furfuryl alcohol, 100 parts by mass of distilled and purified CNSL, and 2 parts by mass of a silane coupling agent (N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane) are mixed to obtain 1000 parts by mass of a binder composition. Got a part. The content of furfuryl alcohol in the obtained binder composition 100% by mass is 89.8% by mass, the content of distilled purified CNSL is 10.0% by mass, and the content of the silane coupling agent The amount was 0.2% by mass.
Except having used the obtained binder composition, the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
「実施例6」
 フルフリルアルコール798質量部と、蒸留精製CNSL200質量部と、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)2質量部とを混合し、粘結剤組成物1000質量部を得た。得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は79.8質量%であり、蒸留精製CNSLの含有量は20.0質量%であり、シランカップリング剤の含有量は0.2質量%であった。
 得られた粘結剤組成物を用いた以外は、実施例1と同様にして砂組成物及びテストピースを製造し、各種測定を行った。結果を表2に示す。
"Example 6"
798 parts by mass of furfuryl alcohol, 200 parts by mass of distilled purified CNSL, and 2 parts by mass of a silane coupling agent (N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane) are mixed, and a binder composition of 1000 parts by mass is mixed. Got a part. In 100 mass% of the obtained binder composition, the content of furfuryl alcohol is 79.8 mass%, the content of distilled purified CNSL is 20.0 mass%, and the content of the silane coupling agent The amount was 0.2% by mass.
Except having used the obtained binder composition, the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
「実施例7」
 フルフリルアルコール698質量部と、蒸留精製CNSL300質量部と、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)2質量部とを混合し、粘結剤組成物1000質量部を得た。得られた粘結剤組成物100質量%中の、フルフリルアルコールの含有量は69.8質量%であり、蒸留精製CNSLの含有量は30.0質量%であり、シランカップリング剤の含有量は0.2質量%であった。
 得られた粘結剤組成物を用いた以外は、実施例1と同様にして砂組成物及びテストピースを製造し、各種測定を行った。結果を表2に示す。
"Example 7"
698 parts by weight of furfuryl alcohol, 300 parts by weight of distilled and purified CNSL, and 2 parts by weight of a silane coupling agent (N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane) are mixed, and the binder composition is 1000 parts by weight. Got a part. The content of furfuryl alcohol in the obtained binder composition 100% by mass is 69.8% by mass, the content of distilled purified CNSL is 30.0% by mass, and the content of the silane coupling agent The amount was 0.2% by mass.
Except having used the obtained binder composition, the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
「比較例4」
 フルフリルアルコール998質量部と、シランカップリング剤(N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン)2質量部とを混合し、粘結剤組成物1000質量部を得た。得られた粘結剤組成物100質量%中のフルフリルアルコールの含有量は99.8質量%であり、シランカップリング剤の含有量は0.2質量%であった。
 得られた粘結剤組成物を用いた以外は、実施例1と同様にして砂組成物及びテストピースを製造し、各種測定を行った。結果を表2に示す。
“Comparative Example 4”
998 parts by mass of furfuryl alcohol and 2 parts by mass of a silane coupling agent (N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane) were mixed to obtain 1000 parts by mass of a binder composition. The content of furfuryl alcohol in 100% by mass of the obtained binder composition was 99.8% by mass, and the content of the silane coupling agent was 0.2% by mass.
Except having used the obtained binder composition, the sand composition and the test piece were manufactured similarly to Example 1, and various measurements were performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2の結果より、実施例5~7で得られたテストピース及び比較例4で得られたテストピースは、常温強度が同程度であった。
 しかし、実施例5~7で得られたテストピースは加熱しても割れることなく変位でき、なりより性にも優れていたが、比較例4で得られたテストピースは加熱した際の変位量が小さく、なりより性に劣っていた。
 これらの結果より、本発明の粘結剤組成物を用いて得られる鋳型は、常温時の取り扱いが容易であり、注湯時の熱間亀裂の防止、砂噛み欠陥及び差し込み欠陥の防止に有効であり、優れた鋳型であることが確認された。
 一方、比較例4のように、なりより性の低い鋳型は、注湯時の熱間亀裂を誘発する要因となる。
From the results shown in Table 2, the test pieces obtained in Examples 5 to 7 and the test piece obtained in Comparative Example 4 had the same room temperature strength.
However, the test pieces obtained in Examples 5 to 7 could be displaced without cracking even when heated, and were superior in quality. However, the test piece obtained in Comparative Example 4 had a displacement amount when heated. Was smaller and was inferior in nature.
From these results, the mold obtained using the binder composition of the present invention is easy to handle at room temperature and effective in preventing hot cracks during pouring, sand biting defects and insertion defects. It was confirmed that this was an excellent mold.
On the other hand, as in Comparative Example 4, a mold having a lower property becomes a factor that induces a hot crack during pouring.
 本発明の鋳型造型用粘結剤組成物を用いれば、常温強度を維持しつつ、なりより性に優れる鋳型を製造できる。 If the binder composition for mold making of the present invention is used, it is possible to produce a mold having superior properties while maintaining normal temperature strength.
 10 熱間ひずみ試験機
 11 クランプ
 12 テストピース
 13 重り
 14 電気ヒーター
 15 レーザー変位計
10 Hot strain tester 11 Clamp 12 Test piece 13 Weight 14 Electric heater 15 Laser displacement meter

Claims (7)

  1.  フルフリルアルコールと、植物由来のフェノール類とを含有する、鋳型造型用粘結剤組成物。 A binder composition for mold making containing furfuryl alcohol and plant-derived phenols.
  2.  尿素とアルデヒド類との反応生成物をさらに含有する、請求項1に記載の鋳型造型用粘結剤組成物。 The binder composition for mold making according to claim 1, further comprising a reaction product of urea and aldehydes.
  3.  前記植物由来のフェノール類は、カシューナット殻液、カルダノール、カードル、2-メチルカードル及びアナカルド酸からなる群より選ばれる1種以上である、請求項1又は2に記載の鋳型造型用粘結剤組成物。 The caking for mold making according to claim 1 or 2, wherein the plant-derived phenol is at least one selected from the group consisting of cashew nut shell liquid, cardanol, curdle, 2-methyl curdal and anacardic acid. Agent composition.
  4.  前記アルデヒド類は、ホルムアルデヒド、グリオキザール及びフルフラールからなる群より選ばれる1種以上である、請求項2に記載の鋳型造型用粘結剤組成物。 3. The binder composition for mold making according to claim 2, wherein the aldehyde is at least one selected from the group consisting of formaldehyde, glyoxal and furfural.
  5.  当該鋳型造型用粘結剤組成物100質量%中、前記植物由来のフェノール類の含有量が1~40質量%である、請求項1~4のいずれか一項に記載の鋳型造型用粘結剤組成物。 The caking for mold making according to any one of claims 1 to 4, wherein a content of the plant-derived phenols is 1 to 40% by mass in 100% by mass of the binder composition for mold making. Agent composition.
  6.  請求項1~5のいずれか一項に記載の鋳型造型用粘結剤組成物と、耐火性粒状材料と、硬化剤とを含有する、鋳型造型用砂組成物。 A sand composition for mold making, comprising the binder composition for mold making according to any one of claims 1 to 5, a refractory granular material, and a curing agent.
  7.  請求項6に記載の鋳型造型用砂組成物を鋳型製造用の型に充填し、前記鋳型造型用砂組成物に含まれる鋳型造型用粘結剤組成物を硬化させる、鋳型の製造方法。 A method for producing a mold, wherein the mold making sand composition according to claim 6 is filled in a mold for producing a mold, and the mold forming binder composition contained in the mold making sand composition is cured.
PCT/JP2016/079952 2015-10-09 2016-10-07 Binder composition for forming casting mold, sand composition for forming casting mold, and method for producing casting mold WO2017061598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201185 2015-10-09
JP2015201185A JP6330242B2 (en) 2015-10-09 2015-10-09 How to give sex to molds

Publications (1)

Publication Number Publication Date
WO2017061598A1 true WO2017061598A1 (en) 2017-04-13

Family

ID=58487919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079952 WO2017061598A1 (en) 2015-10-09 2016-10-07 Binder composition for forming casting mold, sand composition for forming casting mold, and method for producing casting mold

Country Status (2)

Country Link
JP (1) JP6330242B2 (en)
WO (1) WO2017061598A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122628A (en) * 1978-03-16 1979-09-22 Hitachi Chemical Co Ltd Coking agent for selff hardening casting mold
JPH0857577A (en) * 1994-08-19 1996-03-05 Kao Corp Binder composition for production of casting mold and production of casting mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122628A (en) * 1978-03-16 1979-09-22 Hitachi Chemical Co Ltd Coking agent for selff hardening casting mold
JPH0857577A (en) * 1994-08-19 1996-03-05 Kao Corp Binder composition for production of casting mold and production of casting mold

Also Published As

Publication number Publication date
JP2017070992A (en) 2017-04-13
JP6330242B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
CN104245183A (en) Curing agent composition for use in producing mold, use thereof, preparation method therefor, and process for producing mold
JP2010029905A (en) Binder composition for mold making and method for producing mold using the binder composition for mold making
JP2017533295A (en) Two-component binder system for polyurethane cold box process
JPH0798893B2 (en) Phenolic resin composition
JP5089935B2 (en) Furan resin composition for mold production
KR101444047B1 (en) Binder composition for mold molding
JP6097135B2 (en) Binder composition for mold making
JP6062715B2 (en) Binder composition for mold making
WO2017061598A1 (en) Binder composition for forming casting mold, sand composition for forming casting mold, and method for producing casting mold
CN107150103B (en) Mold molding set, mold molding sand composition, and method for producing same
CN105273151A (en) Modified phenolic furan resin and binder adopting same
JP5119276B2 (en) Method for producing self-hardening mold molding sand composition and mold production method
JP5250300B2 (en) Mold manufacturing method
JP2004352950A (en) Curable composition and casting sand composition and casting mold using the same
JP7266394B2 (en) Binder composition, sand composition and mold manufacturing method
JPH0947840A (en) Mold forming composition
JP7168337B2 (en) Binder composition for mold making, sand composition for mold making, and method for producing mold
JP2019072759A (en) Sand composition, method for producing the same, and method for producing casting mold
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JPS6119330B2 (en)
KR20190025687A (en) Aqueous alkaline binder compositions for curing with carbon dioxide gas and uses thereof, corresponding molding mixtures for producing cast shapes, corresponding cast shapes and production methods of cast shapes
WO2022254503A1 (en) Method for producing adhesive resin for molding
JPS6116213B2 (en)
JP6277545B2 (en) Curing agent composition for acid curable resin
JPH06297072A (en) Binder composition for production of casting mold, sand composition for production of casting mold and production of casting mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853749

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853749

Country of ref document: EP

Kind code of ref document: A1