WO2017061559A1 - Blood-vessel-wall strengthening drug, method for strengthening blood vessel wall, and vasoganglion-formation suppressing drug - Google Patents

Blood-vessel-wall strengthening drug, method for strengthening blood vessel wall, and vasoganglion-formation suppressing drug Download PDF

Info

Publication number
WO2017061559A1
WO2017061559A1 PCT/JP2016/079830 JP2016079830W WO2017061559A1 WO 2017061559 A1 WO2017061559 A1 WO 2017061559A1 JP 2016079830 W JP2016079830 W JP 2016079830W WO 2017061559 A1 WO2017061559 A1 WO 2017061559A1
Authority
WO
WIPO (PCT)
Prior art keywords
burdock
vascular
blood
arctigenin
extract
Prior art date
Application number
PCT/JP2016/079830
Other languages
French (fr)
Japanese (ja)
Inventor
江角 浩安
一哉 土原
博史 藤井
雅之 山口
孝則 川島
健太 村田
与茂田 敏
殖幹 千葉
Original Assignee
クラシエ製薬株式会社
国立研究開発法人国立がん研究センター
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラシエ製薬株式会社, 国立研究開発法人国立がん研究センター, 学校法人東京理科大学 filed Critical クラシエ製薬株式会社
Priority to JP2017544227A priority Critical patent/JP6773665B2/en
Publication of WO2017061559A1 publication Critical patent/WO2017061559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/63Oleaceae (Olive family), e.g. jasmine, lilac or ash tree
    • A61K36/634Forsythia

Definitions

  • the present invention relates to a vascular wall reinforcing agent and a vascular network for reconstituting normal blood flow in a tissue by suppressing the formation of an abnormal vascular network that randomly grows and reinforcing immature and fragile blood vessels.
  • the present invention relates to a formation inhibitor and a blood vessel normalizing agent.
  • Angiogenesis is a process in which blood vessels are newly formed from existing blood vessels to build a blood vessel network.
  • the formation of mature blood vessels is mainly caused by the stabilization of the blood vessel structure by adhesion of blood vessel wall cells such as pericite or vascular smooth muscle cells to the vascular endothelial cells that cover the inner lumen of the blood vessel.
  • blood vessel wall cells such as pericite or vascular smooth muscle cells
  • vascular endothelial cells that cover the inner lumen of the blood vessel.
  • vascular wall cells line vascular endothelial cells and the vascular structure is stabilized.
  • hypoxia and strong inflammatory stimuli the new blood vessel rapidly expands from the existing blood vessel, resulting in an immature decline in strength. Blood vessel formation is induced.
  • angiogenesis is physiologically related to the development of body tissues in the early stages of pregnancy (placentation and fetal development), wound healing processes (after surgery and injury), and formation of collateral circulation around the ischemic site ( It is known to play an important role in myocardial infarction, obstructive arteriosclerosis, and the like.
  • abnormalities in angiogenesis cause various diseases such as cardiovascular diseases, skin diseases, and malignant tumors.
  • tumor tissue forms a disordered vascular network as the tissue grows rapidly, and the blood vessels themselves are fragile and frequently bleed, creating a highly stressed environment, creating a chronic hypoxic environment and a low hypoxic environment. Nutritional status is caused. Cancer cells that survived in such harsh environments have been reported to have higher malignancy and resistance to treatment.
  • VEGF vascular endothelial growth factor
  • Bevacizumab anti-VEGF antibody targeting VEGF improves blood flow by inhibiting the formation of disordered vascular networks, which will improve the delivery of anticancer drugs to cancer tissues
  • the effect of the anti-VEGF antibody is temporary, and mature tumor blood vessels regress with time, and the tumor tissue becomes hypoxic. Moreover, when the dose is increased, side effects based on the damage of normal vascular endothelial cells are enhanced. Therefore, it is difficult to adjust an appropriate administration period and dosage for the combined use of an anti-VEGF antibody (bevacizumab) and an anticancer agent (Non-patent Document 2).
  • APJ (7-transmembrane G protein coupled receptor) as a drug delivery system.
  • this method does not deliver the drug to the mature blood vessels of normal tissues, but to the blood vessels of the tumor tissue containing mature blood vessels, and increases hypoxia and hypotrophic areas.
  • Patent Document 1 There is a possibility of further enhancing treatment resistance.
  • tissue cells are placed under chronic hypoxia and nutritional conditions such as myocardial infarction, cerebral infarction and diabetic blood flow disorder.
  • myocardial infarction cerebral infarction
  • diabetic blood flow disorder a tissue that causes cerebral hemorrhage, thrombus formation and infarct recurrence, as well as diseases such as diabetic retinopathy and neovascular glaucoma.
  • Chronic inflammation may also induce ectopic and unregulated angiogenesis due to the delivery of immune cells to tissues, causing causes such as wet age-related macular degeneration, rheumatoid arthritis and psoriasis It also becomes.
  • Such disordered angiogenesis is also thought to exacerbate inflammation itself.
  • SASP seenescence-associated secretory phenotype
  • inflammatory cytokines such as IL-1 ⁇ , IL-6 and IL-8, vascular endothelial growth factor (VEGF) and the like are secreted.
  • SASP vascular endothelial growth factor
  • SASP causes chronic inflammation, but in the lesion area, intracellular energy consumption accompanying cell proliferation and hypermetabolism causes a hypoxic environment.
  • This hypoxic environment is thought to contribute to the worsening of the disease state.
  • hypoxia occurs in tissue, the adhesion between vascular endothelial cells and connective tissue, extracellular matrix and basement membrane is weakened, and vascular endothelial cells can move easily. This causes branching and elongation of new blood vessels, causing (vascular remodeling) vascular damage.
  • DAMPs cytotoxicity-related molecular patterns
  • Aged blood vessels are formed from immature blood vessels, and blood circulation is poor due to increased interstitial pressure due to leakage of blood components. Therefore, vicious cycles where chronic diseases further progress due to persistent hypoxia and nutrition of tissues. It is thought that is causing. It is considered that a blood vessel normalizing agent having an effect of enhancing the strength of blood vessels and maintaining a blood vessel network can exert an effect on chronic diseases associated with aging due to aging.
  • an abnormal vascular network that grows randomly can cause various diseases as described above.
  • the blood vessels are immature and fragile, and a circulatory insufficiency creates a special microenvironment of hypoxia and nutrition that can affect the delivery of therapeutic agents. It has become a big problem. Therefore, development of a method for suppressing the formation of abnormal blood vessel networks, strengthening the blood vessel wall, and normalizing abnormal blood vessels is required.
  • An object of the present invention is to provide a drug and a method capable of normalizing abnormal blood vessels.
  • the present inventors have found that when a gobo cow extract containing arctigenin is administered to a mouse transplanted with human pancreatic cancer cells, which is a model of abnormal angiogenesis, the blood flow state in the tumor tissue is improved. Furthermore, the present inventors have found that administration of burdock extract containing arctigenin significantly reduces the hypoxic region in the tumor, increases the number of cells in the growth phase, and increases the number of pericite-coated blood vessels. Furthermore, the present inventors have found that administration of a gobo cow extract containing arctigenin forms a normal vascular network without the blood vessels inside the tumor being randomly packed, meandering, or entangled with adjacent blood vessels. It was. From these results, the present inventors have found that arctigenin has an action of strengthening the blood vessel wall, suppressing abnormal vascular network formation, and normalizing abnormal blood vessels, and completed the present invention.
  • the present invention provides a vascular wall reinforcing agent for increasing blood vessels covered with vascular wall cells, which contains archigenin as an active ingredient.
  • the present invention provides the above-mentioned vascular wall reinforcing agent, wherein arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  • the present invention also provides a vascular network formation inhibitor comprising archigenin as an active ingredient.
  • the present invention also provides the vascular network formation inhibitor, wherein arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  • the present invention also provides a method for strengthening a blood vessel wall, comprising the step of ingesting architigenin and / or arctiin into a subject in need of strengthening the blood vessel wall.
  • the present invention provides a method for reinforcing the above-mentioned blood vessel wall, wherein arctigenin and / or arcticin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  • the present invention also provides a method for suppressing vascular network formation, comprising the step of ingesting archigenin and / or arctiin into a subject in need of suppression of vascular network formation.
  • the present invention provides a method for suppressing the formation of the above vascular network, wherein arctigenin and / or arcuin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  • the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention improve the blood flow state by normalizing abnormal blood vessels, prevent and improve various diseases caused by abnormal blood vessels, and Can contribute to treatment.
  • the figure which shows the blood-flow state in the tumor after administering the arguchigenin-rich burdock extract The figure which shows the ratio (%) of the positive area
  • the present invention provides a vascular wall strengthening agent containing arctigenin as an active ingredient.
  • the blood vessel wall reinforcing agent of the present invention reinforces the blood vessel wall by increasing blood vessels covered with blood vessel wall cells.
  • the vascular wall reinforcing agent of the present invention can enhance the vascular wall and improve the vascular strength by increasing the frequency with which newly formed blood vessels or existing immature blood vessels are covered with vascular wall cells.
  • the vascular wall reinforcing agent of the present invention can suppress the formation of abnormal vascular network by reinforcing the vascular wall, and can be used as a vascular network formation inhibitor.
  • the vascular network formation inhibitor of the present invention can induce a significant decrease in the sprouting of the first random microvascular that creates an abnormal vascular network.
  • the vascular wall reinforcing agent and vascular network formation inhibitor of the present invention can normalize blood vessels by reinforcing the vascular wall and suppressing the formation of abnormal vascular networks. Therefore, the vascular wall reinforcing agent and vascular network formation inhibitor of the present invention can be used as a vascular normalizing agent.
  • blood vessel wall cells include pericytes (pericytes) and smooth muscle cells.
  • pressing vascular network formation refers to reducing the vascular network, particularly abnormal vascular network, and reducing the first random microvascular sprouting that creates an abnormal vascular network. Including that.
  • normalizing a blood vessel means normalizing or maturing an abnormal blood vessel or blood vessel network to form a normal blood vessel or blood vessel network.
  • abnormal blood vessel or “immature blood vessel” refers to an immature and fragile blood vessel that is not covered with blood vessel wall cells, a deformed blood vessel, a blood vessel that is excessively and abnormally meandering, and an adjacent blood vessel. Blood vessels, blood vessels with excessive branching, and blood vessels that do not circulate because the end of the blood vessel is not connected to other blood vessels.
  • abnormal vascular network or “disordered vascular network” refers to a vascular network including the above-described abnormal blood vessels, a dense and complicated vascular network, and adjacent blood vessels.
  • normal blood vessel or “mature blood vessel” refers to a blood vessel that is connected without interruption, a blood vessel that is covered with vascular wall cells, a blood vessel that is not excessively meandered or branched, and other ends.
  • normal vascular network refers to a vascular network composed of the above-described normal blood vessels, a vascular network having a regular and hierarchical structure (hierarchy), a vascular network that spreads uniformly without being dense, and a terminal network refers to a vascular network that is connected to each other and circulates sufficiently.
  • the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are used for complex branched and disordered vascular network caused by abnormal meandering or excessive vascular sprouting caused by ischemic or inflammatory conditions. Inhibits formation or reinforces immature and fragile blood vessels formed in this state into blood vessels that maintain normal strength.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention suppress the formation of an abnormal vascular network and strengthen the vascular wall, thereby finally having a normal circulatory function. Can be formed.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can improve the blood flow state of the tissue and reduce the hypoxic region by normalizing the blood vessels. Further, the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention suppress the formation of disordered vascular network, and have normal strength coated with vascular wall cells from immature blood vessels. By maturation into blood vessels, increase in vascular permeability (including suppression of bleeding tendency) is suppressed, and normal blood flow in the tissue can be reconstructed by preparing the vascular network.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can improve the repair and development of damaged tissue by improving the blood flow state, Delivery of therapeutic agents can be improved.
  • improving the blood flow state improves the delivery of immune cells that exclude diseased cells and pathogens to the diseased tissue. be able to.
  • cancer it is known that a hypoxic environment triggers a change in the cell state called epithelial-mesenchymal transformation in cancer cells, which changes into cells with high therapeutic resistance. By improving the above, malignant transformation of such cancer tissue can be suppressed.
  • improvement in the sensitivity of radiation therapy can be expected by improving the oxygen state of the tumor.
  • Arctinigenin used in the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may be derived from a plant containing archigenin. Plants containing arctigenin are not particularly limited. Thistle, Ayoko Forsythia, Ginkgo biloba, Forsythia, Sylar Forsythia, Sesame, Momijigaigao, Shinchiku Himehagi, Datura Kizura, Teika Kazura, Mine Teika Kazura, Hime Teika Kazura, Tokyo Oyster Crane, Otari Kazura , Oats, spelled wheat, soft wheat, Mexican cypress and kaya. Of these, burdock, burdock, burdock sprout, young burdock, and forsythia are preferred because of their high arctigenin content. Arctigenin may be contained as an extract from these plants.
  • a burdock extract obtained using a method for producing a burdock extract described later can be used. Therefore, productivity at the time of manufacture can be improved, and a vascular wall reinforcing agent, a vascular network formation inhibitor, and a vascular normalizing agent can be prepared inexpensively and easily. Moreover, also when using plants other than burdock, it is possible to easily obtain an extract containing arctigenin by using the production method described later.
  • the burdock contains about 7% arctiin, which is classified as a lignan glycoside, and about 0.6% arctigenin, which is an aglycon of arctiin. Since the method for producing a burdock extract to be described later can significantly increase the content of arctigenin relative to arctiin, the extract obtained by this production method contains a high content of arctigenin. Therefore, if the extract obtained by the method for producing this burdock extract is used, compared with the conventional burdock extract, the vascular wall strengthening agent, the vascular network formation inhibitor and the vascular normalizing agent which have superior effects can do.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may further contain alktiin.
  • Arctiin may be derived from a plant containing arctiin, and may be derived from, for example, burdock, forsythia, or forsythia.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are contained in this burdock extract by containing an extract from a plant containing arctigenin, for example, a burdock extract obtained from burdock.
  • the alktiin may be further contained.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may contain archigenin and archtiin so that the weight ratio of archigenin / arctiin is 0.7 or more.
  • the weight ratio of archigenin / arctiin is not particularly limited, but may be 1.3 or less.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may contain a burdock extract containing 3% or more archigenin.
  • a burdock extract can be obtained by a method for producing a burdock extract described later.
  • the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention contain a burdock extract obtained by a method for producing a burdock extract described later, the conventional burdock extract is contained. Higher vascular normalization effect.
  • the extract powder obtained by the method for producing a burdock extract described later can be used as it is.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can further contain optional components.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are pharmaceutically acceptable bases, carriers, excipients, binders, disintegrants, lubricants, coloring agents, and the like. Can be provided.
  • Examples of carriers and excipients used for vascular wall strengthening agents, vascular network formation inhibitors and vascular normalizing agents include lactose, glucose, sucrose, mannitol, dextrin, potato starch, corn starch, calcium carbonate, calcium phosphate, sulfuric acid Includes calcium and crystalline cellulose.
  • binder examples include starch, gelatin, syrup, tragacanth gum, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like.
  • disintegrant examples include starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium hydrogen carbonate, sodium alginate, sodium carboxymethylcellulose, and carboxymethylcellulose calcium.
  • examples of lubricants include magnesium stearate, hydrogenated vegetable oil, talc and macrogol.
  • the colorant any colorant allowed to be added to a pharmaceutical product can be used.
  • a vascular wall reinforcing agent, a vascular network formation inhibitor and a vascular normalizing agent are sucrose, gelatin, purified shellac, gelatin, glycerin, sorbitol, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, It may be coated with one or more layers of cellulose phthalate acetate, hydroxypropyl methylcellulose phthalate, methyl methacrylate, methacrylic acid polymer, and the like.
  • a pH regulator, a buffer, a stabilizer, a solubilizer, and the like may be added to the blood vessel wall reinforcing agent, the blood vessel network formation inhibitor, and the blood vessel normalizing agent as necessary.
  • vascular wall reinforcing agent can be provided as a preparation of any form.
  • vascular wall strengthening agents, vascular network formation inhibitors and vascular normalizing agents are capsules including tablets, troches, pills, powders and soft capsules such as sugar-coated tablets, buccal tablets, coated tablets and chewable tablets as oral preparations.
  • Syrups including granules, suspensions, emulsions, dry syrups, and liquids such as elixirs.
  • vascular wall reinforcing agents, vascular network formation inhibitors and vascular normalizing agents are for parenteral administration, intravenous injection, subcutaneous injection, intraperitoneal injection, intramuscular injection, transdermal administration, nasal administration, transpulmonary administration. It can be a preparation for administration such as administration, enteral administration, buccal administration and transmucosal administration. For example, it can be an injection, a transdermal absorption tape, an aerosol, a suppository and the like.
  • an extract from a plant or the like since the extract has a peculiar taste, it can be used as a preparation for masking the extract or a film coating agent coated with a coating agent. .
  • vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be administered to, for example, mammals.
  • Mammals include, for example, humans, mice, rats, rabbits, cats, dogs, cows, horses and monkeys.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can contain archigenin so that the daily dose is 10 to 2000 mg per adult. Further, archigenin is not particularly limited, but may be administered 1 to 7 days a week. For example, arctigenin may be administered daily or 5 or 6 times a week.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may be administered in combination with any drug.
  • An arbitrary drug is, for example, a drug for preventing, ameliorating or treating any disease, for example, an anticancer drug.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention normalize the blood vessels at the site to be treated, thereby enhancing the drug delivery of the drugs administered in combination to the site to be treated. be able to.
  • the immature blood vessels are normalized by the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention to improve the blood flow state, it is considered that the combined drugs are more effective.
  • Test Examples 5 to 8 to be described later when architigenin and an existing anticancer agent are administered in combination, the inhibition of ulcer formation is enhanced and the tumor growth is suppressed, compared with the case where the anticancer agent is administered alone, It has been shown to reduce the intratumoral ratio and prolong survival.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can increase the drug delivery by normalizing the blood vessels and enhance the effect of the drug.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention take the form of, for example, pharmaceuticals, foods for patients, health foods, functional foods, foods for specified health use, dietary supplements and supplements. be able to.
  • the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention also have an indication that it has the effect of strengthening the vascular wall, an indication that it has the effect of suppressing vascular network formation, and normalizes the blood vessel. It may be in the form of a functionally labeled food with a label indicating that there is an effect of the effect.
  • the present invention also provides a food composition for reinforcing a blood vessel wall, which contains arctigenin as an active ingredient and increases blood vessels covered with blood vessel wall cells.
  • the present invention also provides a food composition for inhibiting vascular network formation, which contains arctigenin as an active ingredient.
  • the present invention also provides a food composition for normalizing blood vessels, which contains arctigenin as an active ingredient.
  • the food composition for strengthening blood vessel wall, the food composition for suppressing vascular network formation, and the food composition for normalizing blood vessel according to the present invention are configured in the same manner as the above-described vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent. can do.
  • the “food composition” includes not only general foods and drinks but also foods for patients, health foods, functional foods, foods for specified health use, dietary supplements and supplements.
  • Common foods and drinks include, for example, various beverages, various foods, processed foods, liquid foods (soups, etc.), seasonings, energy drinks, and confectionery.
  • the “processed food” refers to a product obtained by processing and / or cooking natural ingredients (animals, plants, etc.), such as processed meat products, processed vegetable products, processed fruit products, frozen foods, Includes retort foods, canned foods, bottled foods and instant foods.
  • the food composition of the present invention may be a food with an indication that the blood vessel wall is strengthened, an indication that the vascular network formation is suppressed, or an indication that the blood vessels are normalized.
  • the food composition of the present invention may be provided in a form enclosed in a bag, a container or the like.
  • the bags and containers used in the present invention can be any bags and containers normally used for food.
  • the present invention also provides a method for strengthening a blood vessel wall, which includes the step of ingesting archigenin and / or arctiin into a subject in need of strengthening the blood vessel wall.
  • the present invention also provides a method for inhibiting vascular network formation, comprising the step of ingesting archigenin and / or arctiin to a subject in need of inhibition of vascular network formation.
  • the present invention also provides a method of normalizing a blood vessel, comprising the step of ingesting archigenin and / or arctiin into a subject in need of blood vessel normalization.
  • the subjects to which the method of the present invention is applied include mammals such as humans, mice, rats, rabbits, cats, dogs, cows, horses and monkeys.
  • Subjects who need vascular wall reinforcement, subjects who need to suppress vascular network formation, and subjects who need normalization of blood vessels are those who develop abnormal angiogenesis and abnormal angiogenesis Such as a subject suffering from a disease considered to be.
  • Target diseases include, for example, cancer, cardiovascular diseases, various diseases with chronic inflammation, such as diabetic complications (nephropathy, retinopathy, neurosis), age-related macular degeneration, and neovascular glaucoma Inflammatory bowel disease (IBD) such as internal neovascular disease, ulcerative colitis and Crohn's disease, atherosclerosis, endometriosis, arteriosclerosis, psoriasis, brain and myocardial infarction, chronic kidney disease, non-alcoholic Examples include steatohepatitis, Alzheimer's disease, Parkinson's disease, obesity and lifestyle-related diseases, and skin photoaging.
  • IBD neovascular glaucoma Inflammatory bowel disease
  • IBD neovascular glaucoma Inflammatory bowel disease
  • IBD neovascular glaucoma Inflammatory bowel disease
  • IBD neovascular glaucoma Inflammatory bowel disease
  • IBD neovascular disease
  • Arctiin is a precursor of arctigenin and is known to be metabolized in vivo to become arctigenin. In the method of the present invention, only one of arctigenin or arcutin may be ingested, or both arctigenin and arcuinin may be ingested.
  • arctigenin and / or arctiin may be derived from a plant containing arctigenin and / or arctiin, and may be derived from, for example, burdock, burdock, burdock sprout, young burdock and forsythia. Further, arctigenin and / or arctiin may be ingested as a burdock extract obtained using a method for producing a burdock extract described later. Moreover, you may be made to ingest arbitrary components with archigenin and / or archtiin.
  • Optional ingredients include, for example, pharmaceutically acceptable bases, carriers, excipients, binders, disintegrants, lubricants, colorants, and the like.
  • Arctigenin and / or arctiin may be taken orally or parenterally (injection, application, patch, suppository, eye drops, nasal drop, inhalant, mouthwash, sublingual absorbent, implant, etc.) Good.
  • archigenin and / or archtiin may be ingested so that the daily intake is 10 to 2000 mg per adult.
  • archigenin and / or archtiin is not particularly limited, but may be ingested 1 to 7 days a week.
  • archigenin and / or archtiin may be taken daily or 5 or 6 times a week.
  • the method of the present invention includes an embodiment in which archigenin and / or archtiin is ingested not only pharmaceutically but also non-pharmaceutically.
  • the method of the present invention includes embodiments in which archigenin and / or archtiin is ingested by a subject in the form of a food for a sick person, a health food, a functional food, a food for specified health use, a dietary supplement, and a supplement.
  • the burdock extract suitable for the present invention is produced through a herbal medicine cutting process, an extraction process (enzyme conversion process and extraction process using an organic solvent), a solid-liquid separation process, a concentration process, and a drying process.
  • the raw burdock In the crude drug cutting process, the raw burdock is cut into a size suitable for extraction. Herbal medicines that are raw materials have various sizes, shapes, and hardness such as various parts of plants, minerals, and animals, and cutting according to their characteristics is necessary.
  • the burdock can be cut using any means known to those skilled in the art. For example, a commercially available cutting machine can be used.
  • the activity of ⁇ -glucosidase which is an enzyme inherent in the burdock, is measured in advance, and a suitable burdock can be selected.
  • a suitable burdock can be selected.
  • p-nitrophenyl- ⁇ -D-glucopyranoside C12H15NO8: molecular weight 301.25
  • SIGMA-ALDRICH SIGMA-ALDRICH
  • a burdock having a ⁇ -glucosidase activity inherent in the burdock for example, 0.4 U / g or more, preferably 1 U / g or more can be used.
  • 0.4 U / g hydrolysis becomes insufficient, the weight ratio of archigenin decreases, and a desired burdock extract cannot be obtained efficiently.
  • a burdock cut to an arbitrary particle size can be used. It is considered that the smaller the particle size of the cut burdock, the more the enzyme conversion is promoted and the extract yield is increased. On the other hand, if the particle size is too small, the enzyme conversion may be too fast, making process control difficult, and hindering accurate solid-liquid separation in subsequent steps.
  • the burdock is cut to a particle size of 9.5 mm or less, for example, through a 9.5 mm sieve.
  • the particle size of the burdock passes through the whole 9.5 mm sieve, for example, 60 to 100% is distributed on the 0.85 mm sieve. It is desirable to cut so that 65 to 80% is distributed on a screen of mm.
  • extraction process is the most important process in terms of quality in the crude drug extract powder manufacturing process. This extraction step determines the quality of the herbal extract powder.
  • extraction is carried out in two stages, an enzyme conversion step and an extraction step using an organic solvent.
  • the enzyme conversion step is an important step in the method for producing a burdock extract suitable for the present invention.
  • the enzyme conversion step is a step of converting arctiin contained in burdock into argtigenin by ⁇ -glucosidase, which is an enzyme inherent in burdock.
  • the burdock cut material prepared in the above step is maintained at an appropriate temperature to cause ⁇ -glucosidase to act, thereby causing the reaction from arctiin to arctigenin.
  • an arbitrary solution such as water is added to the cut burdock and stirred at a temperature of about 30 ° C., so that the burdock can be maintained at an arbitrary temperature.
  • the cut burdock is kept at a temperature around 30 ° C., for example, at a temperature between 20 and 50 ° C.
  • a temperature around 30 ° C.
  • hydrolysis becomes insufficient
  • the weight ratio of arctigenin decreases, and a desired burdock extract cannot be efficiently obtained.
  • the temperature is higher than 50 ° C.
  • the enzyme is deactivated, the weight ratio of archigenin decreases, and a desired burdock extract cannot be efficiently obtained.
  • the holding time is not particularly limited as long as it is held at the above temperature, and for example, it can be held for about 30 minutes.
  • the temperature between 20 ° C. and 50 ° C., regardless of the holding time, an appropriate amount of arctiin can be enzymatically converted to arctigenin, and a burdock extract suitable for the present invention can be obtained.
  • the extraction step with an organic solvent is a step of extracting arctigenin and arctiin from burdock using any appropriate organic solvent. That is, it is a step of extracting a burdock extract by adding an appropriate solvent in a state where the content of archigenin is increased by the enzyme conversion step.
  • a suitable solvent is added to the burdock extract, and the burdock extract is extracted by heating and stirring for a suitable time.
  • the burdock extract can be extracted using any extraction method known to those skilled in the art, such as heating reflux, drip extraction, immersion extraction, or pressure extraction.
  • arctigenin is sparingly soluble in water
  • the yield of arctigenin can be improved by adding an organic solvent.
  • Any organic solvent can be used as the organic solvent.
  • alcohols such as methanol, ethanol and propanol, and acetone can be used.
  • ethanol it is preferable to use ethanol as the organic solvent in the method for producing a burdock extract suitable for the present invention.
  • the heating and stirring can be performed at an arbitrary temperature.
  • a temperature of 80 ° C. or higher, for example, 80 to 90 is used. Hold at a temperature between ° C.
  • the time for heating and stirring is not particularly limited as long as heating and stirring is performed at the above temperature. By stirring and heating for about 30 minutes, for example, 30 to 60 minutes, architigenin and arctiin can be extracted from burdock into the solvent. .
  • the yield of arctigenin and arcthiin increases as the heating and stirring time increases. However, if the heating and stirring time is long, a lot of unnecessary oils and fats are dissolved, and the load of the concentration process is increased. Therefore, what is necessary is just to determine the time of heat stirring suitably according to a condition.
  • the yield of arctigenin and arctiin increases as the amount of ethanol increases, so that the solubility of arctigenin and arctiin increases.
  • the burdock extract can be simultaneously sterilized and sterilized by heating and stirring in this step.
  • Solid-liquid separation process is a step of separating the burdock that has been extracted from the extract.
  • Solid-liquid separation can be performed using any method known to those skilled in the art. Examples of the solid-liquid separation method include a filtration method, a sedimentation method, and a centrifugal separation method. Industrially, a centrifugal separation method is desirable.
  • the concentration step is a step of removing the solvent from the burdock extract prior to drying. Removal of the solvent from the burdock extract can be performed using any method known to those skilled in the art. However, it is preferable that the extract from the burdock obtained by the above process is not exposed to a higher temperature for a longer time. For example, by using the vacuum concentration method, it is possible to concentrate the burdock extract without being exposed to a high temperature for a long time.
  • the concentration of the burdock extract can be concentrated to a concentration at which a burdock extract having a desired concentration can be obtained. For example, it is desirable to concentrate to the extent that drying can be appropriately performed in the following drying process. In addition, when the burdock extract is dried into a powder formulation in the following steps, it is desirable to concentrate to a concentration at which appropriate formulation characteristics can be obtained.
  • dextrin can be added to the burdock extract obtained in this concentration step in order to prevent arctigenin and arctiin from adhering to the production apparatus.
  • the amount of dextrin added is preferably about 15 to 30% with respect to the solid content of the concentrate, for example.
  • Drying process It is a step of finishing the burdock extract obtained by the above step into a powder form. Drying can be performed using any method known to those skilled in the art. For example, freeze drying and spray drying are known as drying methods. The former is generally used at the laboratory level and the latter is used at the mass production level.
  • burdock extract containing a high content of arctigenin can be obtained.
  • This method for producing burdock extract must include a step of performing enzyme conversion at a temperature of 20 ° C. to 50 ° C., but does not need to include all of the other steps.
  • the above-described production process makes it possible to obtain a burdock extract with a high concentration of arctigenin at low cost and in a simple manner. Therefore, by using the burdock extract obtained by this method, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be produced inexpensively and easily.
  • the arguchigenin concentration of the burdock extract obtained by the above production process is high, it is one of the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent compared with the case of using the conventional burdock extract.
  • the total amount per day can be reduced. Therefore, the burden on the patient can be reduced.
  • Example 1 A burdock extract containing arctigenin was prepared by the following method.
  • the burdock (enzyme activity: 7.82 U / g) was cut and the whole 9.5 mm sieve was passed through a 0.85 mm sieve to confirm that 75% remained.
  • Test Example 1 As an abnormal blood vessel model, a mouse transplanted with tumor cells was used. To functionally analyze the changes in the tumor microenvironment caused by repeated administration of arguchigenin-containing gobobull extract, the blood flow in the tumor was evaluated.
  • mice 1 ⁇ 10 6 cells / 200 ⁇ l of human pancreatic cancer cell Suit2 was transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan). On the 21st day of transplantation, the transplanted mice were divided into 4 groups: (a) untreated group, (b) gobo cow extract administered group, (c) bevacizumab administered group, and (d) gemcitabine administered group, and treatment was continued for 4 weeks. did. As for the burdock extract, mice were fed with 0.5% (w / w) of the burdock extract of Example 1 in the diet.
  • arctigenin is administered at 15 to 25 mg / animal / day.
  • Bevacizumab was administered intraperitoneally at a dose of 5 mg / kg once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion.
  • Gemcitabine was intraperitoneally administered 100 mg / kg twice a week using a gemcitabine preparation for infusion (Eli Lilly and Company).
  • tumor size The mean tumor size in each group 4 weeks after the start of treatment was (a) 228 mm 2 in the untreated group, (b) 189 mm 2 in the gobobull extract administration group, (c) 56 mm 2 in the bevacizumab administration group, and (d) The gemcitabine administration group was 68 mm 2 .
  • FIG. 1 is a graph showing the average value of the signal intensity every 30 seconds when the signal intensity at 0 seconds after gadolinium DTPA intravenous injection is taken as 100.
  • An increase in the signal intensity of gadolinium DTPA within the tumor tissue means uptake of gadolinium DTPA into the tumor tissue.
  • the degree of uptake of gadolinium DTPA into the tumor tissue is an indicator of the blood flow state in the tumor tissue.
  • the poor blood flow region of the tumor tissue may be reduced by the administration of archigenin-containing burdock extract and the rich blood flow region may remain.
  • arctigenin is administered at 60 to 100 mg / animal / day.
  • Bevacizumab was administered intraperitoneally at a dose of 5 mg / kg once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion.
  • Gemcitabine was intraperitoneally administered 100 mg / kg twice a week using a gemcitabine preparation for infusion (Eli Lilly and Company).
  • Tumor size Mean tumor size of each group after treatment after 4 weeks, (a) untreated group 1851mm 2, (b) Goboushiekisu administered group 1035 mm 2, (c) bevacizumab group 911 mm 2, and (d) The gemcitabine administration group was 949 mm 2 .
  • Pimonidazole is a 2-nitroimidazole compound that is reduced under strong hypoxia with an oxygen partial pressure of 10 mmHg or less, and binds to intracellular proteins to form adducts. It is an oxygen probe.
  • BrdU is a thymidine analog and is incorporated into newly synthesized DNA in the S phase of the cell cycle. Since BrdU-labeled DNA can be detected with an anti-BrdU antibody, the anti-BrdU antibody is a proliferating cell detection tool that performs DNA replication.
  • the blood can flow without leaking because the outside of the blood vessel is lined with perisite.
  • An angiogenesis inhibitor typified by bevacizumab is considered to be able to enhance the effect of the anticancer agent used in combination by lowering the proportion of blood vessels not covered with perisite.
  • the percentage (%) of the positive area of pimonidazole in the tumor after each treatment is shown in FIG.
  • the percentage of positive tumor pimonidazole areas was 40% in the untreated group, 18% in the bevacizumab group, 19% in the gobobull extract group, and 30% in the gemcitabine group. From this result, it became clear that the hypoxic region was remarkably reduced by bevacizumab treatment and gobobull extract treatment. This is thought to be due to the normalization of blood vessels.
  • Fig. 3 shows the ratio (%) of BrdU positive cells in the tumor after each treatment.
  • the percentage (%) of BrdU positive cells in the tumor was 7% in the untreated group, 15% in the bevacizumab group, 11% in the gobobull extract group, and 6% in the gemcitabine group. From this result, it was clarified that the number of proliferating cells was increased by the treatment with bevacizumab and the treatment of gobo-bovine extract. This is thought to be due to the normalization of blood vessels.
  • Figure 4 shows the percentage (%) of pericyte-coated blood vessels within each tumor after each treatment.
  • the percentage of perisite was determined by dividing the CD31 and ⁇ SMA double positive area by the CD31 positive area.
  • the percentage of pericyte-coated blood vessels was 23.3% in the untreated group and 35.2% in the burdock extract group. Therefore, it is suggested that administration of burdock extract normalized blood vessels and increased pericyte-coated blood vessels.
  • arctigenin can be used as a vascular wall strengthening agent to increase blood vessels covered with vascular wall cells such as pericytes.
  • arctigenin normalized the blood vessels in the tumor tissue.
  • normalization of blood vessels provides an environment in which drugs can be easily delivered. Therefore, it is suggested that by administering the anticancer agent together with archigenin, drug delivery of the anticancer agent to the tumor tissue is enhanced, and as a result, the efficacy of the anticancer agent is enhanced.
  • mice Human pancreatic cancer cells Miapaca-2 (ATCC CRL 1420) 5 ⁇ 10 6 Cells / 200 ⁇ l were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan), and the tumor size was about 200 mm 3 The mice were selected and treated. The prepared transplanted mice were divided into an untreated group and a burdock extract administration group, and the treatment was continued for 4 weeks. The burdock extract administration group was orally administered 750 mg / kg extract containing 10% arctigenin 5 times a week.
  • Test Example 4 In order to analyze the pharmacokinetic changes of anticancer drugs in tumors due to repeated administration of argotigenin-containing gobobull extract, blood and intratumor CPT-11 concentrations were evaluated.
  • mice Human pancreatic cancer cells Miapaca-2 (ATCC CRL 1420) 5 ⁇ 10 6 Cells / 200 ⁇ l were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan), and the tumor size was about 200 mm 3 The mice were selected and treated. The prepared transplanted mice were divided into an untreated group and a burdock extract administration group, and the treatment was continued for 4 weeks. The burdock extract administration group was orally administered 750 mg / kg extract containing 10% arctigenin 5 times a week.
  • campto intravenous infusion (Yakult) was intraperitoneally administered to the untreated group and the burdock extract group, and the tumor and blood were collected under deep anesthesia 30 minutes, 1 hour, and 3 hours, respectively. did.
  • the collected blood was centrifuged at 1200 ⁇ g for 20 minutes at 4 ° C. to collect plasma. 200 ⁇ L of plasma was collected, an equal volume of acetonitrile was added, and centrifugation was performed at 12,000 rpm, 4 ° C. for 10 minutes.
  • FIG. 6 shows the concentrations of CPT-11 in blood and in the tumor at each time after intravenous administration of campto instillation to each treatment group.
  • the CPT-11 blood concentration in each time zone of the untreated group and the burdock extract administration group did not change clearly in either group.
  • the CPT-11 concentration in the tumor did not change in both groups after 30 minutes and 1 hour, but the tumor CPT-11 concentration 3 hours after administration was 4 ⁇ g / g tumor in the untreated group. 8.7 ⁇ g / g tumor was observed in the arctigenin treatment group.
  • Human colon cancer cells LS174T (ATCC CL-188) 5 ⁇ 10 5 cells / 200 ⁇ l were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan). On the 14th day after transplantation, the transplanted mice were divided into 4 groups: (a) untreated group, (b) gobo cow extract administered group, (c) bevacizumab administered group, and (d) gobo cow extract and bevacizumab combined administration group. The treatment was continued for 5 weeks.
  • the burdock extract administration group was orally administered 250 mg / kg of an extract containing 10% architigenin five times a week.
  • 5 mg / kg was administered intraperitoneally once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion.
  • FIG. 7 shows the ratio (%) of mice that produced ulcers in the tumors in each treatment group.
  • the 50% ulcer formation rate was 8 days in the untreated group, 20 days in the gobo-bovine extract administration group, 10 days in the bevacizumab administration group, and 24 days in the combination administration group. Therefore, in the burdock extract administration group and the combination administration group, an inhibitory effect on ulcer formation in the tumor was observed compared with the untreated group and the bevacizumab administration group. In the bevacizumab administration group, the effect of suppressing ulcer formation was observed compared to the untreated group, but it was transient. This effect is thought to be due to the angiogenesis inhibitory action of bevacizumab.
  • mice to be treated There are four groups of mice to be treated: (a) untreated group, (b) gemcitabine administration group, (c) burdock extract administration group, and (d) burdock extract and gemcitabine administration group (combination administration group)
  • the treatment was continued for 4 weeks.
  • the burdock extract the burdock extract of Example 1 250 mg / kg (25 mg / kg or more as archigenin) was orally administered every day (5 times a week).
  • Gemcitabine was administered intraperitoneally twice weekly at 150 mg / kg using an infusion gemcitabine preparation (Eli Lilly).
  • tumor weight After the treatment test, the tumor weight was measured for each administration group. As a result, the tumor weight after the treatment test was 2.05 g in the untreated group, 1.24 g in the gemcitabine administration group, 0.98 g in the burdock extract administration group, and 0.82 g in the combination administration group. Therefore, in all of the gemcitabine administration group, the burdock extract administration group and the combination administration group, suppression of tumor weight of about 40 to 60% was observed as compared with the untreated group.
  • burdock extract and gemcitabine suppresses tumor growth. This is presumably because gemcitabine became easier to act on tumors due to normalization of blood vessels by burdock extract. Therefore, it was shown that the combination agent of burdock bovine extract and gemcitabine has significantly higher anticancer activity than expected from the effect when each of these is administered alone.
  • Example 7 The 5-year survival rate after diagnosis of pancreatic cancer is less than 5% in 2013, and the average survival time is only 4-6 months. This is an extremely low value compared to other cancers, and effective measures are required.
  • Example 6 described above the combined treatment of architigenin-rich burdock extract and gemcitabine for the pancreatic tumor transplantation model showed a tendency to suppress tumor growth compared to single agent treatment. Therefore, a model of orthotopic transplantation of pancreatic cancer to mouse pancreas was created as a model closer to the actual lesion, and the effect of combined treatment with gemcitabine and gobo-bovine extract on the survival rate was evaluated.
  • mice The transplanted mice were divided into 7 mice each in 4 groups: an untreated group, a burdock extract-administered group, a gemcitabine-administered group, and a group administered with these, and treatment was continued until all the mice died.
  • the burdock extract administration group orally administered 250 mg / kg of an extract containing 10% arctigenin five times a week.
  • the gemcitabine administration group 150 mg / kg was administered intraperitoneally twice a week using an infusion gemcitabine preparation (Eli Lilly and Company).
  • the change in survival rate (%) of each treatment group is shown in the upper graph of FIG.
  • Median survival (MST) was 65 days in the untreated group (Non treat), 86 days (32.3% increase) in the gemcitabine group (Gemcitabine), and 88 days (35.4% increase) in the gobobull extract group (GBS-01) ), 117 days (80% increase) in combination treatment.
  • MST Median survival
  • the gobo-bovine extract administration group and the gemcitabine administration group showed substantially the same life-prolonging effect as compared with the untreated group.
  • the combination administration group using these drugs in combination showed a significant life-prolonging effect compared to the untreated group and the single administration group. Therefore, it has been shown that the combined use of an anticancer drug and archigenin can greatly increase the survival rate even in pancreatic cancer, whose survival time is difficult to progress.
  • Test Example 8 Using a pancreatic cancer transplantation model, treatment with various existing anticancer agents, archigenin-rich burdock extract and combinations thereof was performed, and changes in tumor size were evaluated.
  • Miapaca-2 (ATCC CRL 1420) of human pancreatic cancer cells 5 ⁇ 10 6 Cells / 200 ⁇ l are transplanted subcutaneously into the armpit of BALB / cAJc1-nu / nu mice (Claire Japan), raised for about 2 weeks, then about 100 mm 3 Alternatively, mice having a size of about 600 mm 3 were used as treatment target mice.
  • the prepared transplanted mice are divided into untreated groups, existing anticancer drug administration groups that are various anti-cancer components, burdock extract administration groups, and these combination administration groups, and each group has 5 to 6 tumors.
  • the treatment was continued for about 4 weeks.
  • existing anticancer agents carboplatin (CBDCA, Bristol-Myers, 60 mg / kg once abdominal administration), doxorubicin (Doxorubicin, Kyowa Hakko, 10 mg / kg abdominal administration twice a week), oxaliplatin (Oxaliplatin, Yakult, 8 mg) / kg once a week), Everolimus (Everolimus, Novartis, 5 mg / kg orally 5 times a week), Bortezomib (Bortezomib, Janssen Pharma, 1 mg / kg twice a week), Irinotecan, Yakult , 25 mg / kg twice a week by intraperitoneal administration) and hydroxychloroquine (Sanophy, 100 mg
  • Figure 10 shows the change in tumor size in each treatment group.
  • carboplatin and oxaliplatin are 2.3 to 2.1 times (P ⁇ 0.05) compared to single drug and 1.8 to 1.9 times (P ⁇ 0.05) compared to single drug.
  • P ⁇ 0.05 2.3 to 2.1 times
  • P ⁇ 0.05 2.3 to 2.1 times
  • P ⁇ 0.05 1.8 to 1.9 times
  • P ⁇ 0.05 1.9 times
  • the tumor size was reduced 2.1 times (P ⁇ 0.05) compared to the burdock bovine extract alone and 1.5 times the tumor size compared to the anticancer agent alone.
  • doxorubicin the tumor size was reduced by about 1.4 times compared to the gobo-bovine extract alone and 1.5 times (P ⁇ 0.05) compared with the anticancer agent alone.
  • Everolimus showed a 2.1-fold reduction in tumor size (P> 0.05) compared to the burdock extract alone and a 1.4-fold reduction in tumor size compared to the anticancer agent alone.
  • Bortezomib was found to have a 1.8-fold (P ⁇ 0.05) reduction in tumor size compared to the gobo-bovine extract alone and 1.4-fold compared to the anticancer agent alone.
  • Hydrochloroquine a therapeutic agent for malaria and autoimmune diseases, showed a 1.9-fold decrease in tumor size compared to single-drug bovine extract and 2.5-fold (P ⁇ 0.05) compared to single anticancer agent.
  • argotigenin-rich burdock extract is a drug that can be expected to have a strong antitumor effect when combined with existing anticancer drugs having various medicinal mechanisms.
  • the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be used for the prevention, treatment and improvement of various diseases caused by abnormal blood vessel formation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The purpose of the present invention is to provide drugs and a method with which it is possible to normalize abnormal blood vessels. The present inventors have found that arctigenin has a normalizing effect on abnormal blood vessels on the basis of findings that administering an Arctium lappa extract containing arctigenin to an abnormal-blood-vessel formation model increased the amount of pericyte-covered blood vessels, caused formation of a normal vasoganglion, improved the blood-flow state, and considerably decreased the area of low-oxygen regions. A blood-vessel-wall strengthening drug, a vasoganglion-formation suppressing drug, and a blood-vessel normalizing drug according to the present invention contain arctigenin as an active ingredient.

Description

血管壁強化剤、血管壁を強化する方法および血管網形成抑制剤Vessel wall reinforcing agent, method for reinforcing vessel wall, and vessel network formation inhibitor
 本発明は、無秩序に伸長する異常な血管網の形成を抑制し、また、未熟で壊れやすい血管を補強することで、組織の正常な血流を再構成させるための血管壁強化剤、血管網形成抑制剤および血管正常化剤に関する。 The present invention relates to a vascular wall reinforcing agent and a vascular network for reconstituting normal blood flow in a tissue by suppressing the formation of an abnormal vascular network that randomly grows and reinforcing immature and fragile blood vessels. The present invention relates to a formation inhibitor and a blood vessel normalizing agent.
 血管新生は、既存の血管から新たに血管が形成されて血管網を構築する過程をいう。成熟した血管の形成は、主に血管の内腔を一層に覆う血管内皮細胞にペリサイトあるいは血管平滑筋細胞といった血管壁細胞が接着して、血管構造が安定化することによりもたらされる。一般的に正酸素状態では、血管壁細胞が血管内皮細胞を裏打ちして血管構造が安定化している。しかし、低酸素や強い炎症刺激等、種々の血流内外の環境因子の変化に応じて組織で血管が必要になると、新しい血管が既存の血管から急激に伸長することで、強度が低下した未熟な血管の形成が誘導される。 Angiogenesis is a process in which blood vessels are newly formed from existing blood vessels to build a blood vessel network. The formation of mature blood vessels is mainly caused by the stabilization of the blood vessel structure by adhesion of blood vessel wall cells such as pericite or vascular smooth muscle cells to the vascular endothelial cells that cover the inner lumen of the blood vessel. Generally, in a normoxic state, vascular wall cells line vascular endothelial cells and the vascular structure is stabilized. However, when a blood vessel is needed in a tissue in response to changes in environmental factors inside and outside the bloodstream, such as hypoxia and strong inflammatory stimuli, the new blood vessel rapidly expands from the existing blood vessel, resulting in an immature decline in strength. Blood vessel formation is induced.
 正常な血管新生は、生理的には妊娠初期の体組織の発達(胎盤形成や胎児の発生過程)、創傷治癒過程(手術後やケガ)および虚血部位周囲での側副血行路の形成(心筋梗塞や閉塞性動脈硬化症など)などにおいて、重要な役割を担っていることが知られている。一方で血管新生の異常は、循環器疾患や皮膚疾患および悪性腫瘍など様々な疾患の原因となる。たとえば腫瘍組織では、組織の急激な増大に伴って無秩序な血管網の形成がなされ、また血管自体も脆く出血を頻繁に繰り返すため、高度なストレス環境が作り出され、慢性的な低酸素環境や低栄養状態が引き起こされる。そのような厳しい環境下で生き延びた癌細胞は、より高い悪性度と治療抵抗性を持つようになると報告されている。 Normal angiogenesis is physiologically related to the development of body tissues in the early stages of pregnancy (placentation and fetal development), wound healing processes (after surgery and injury), and formation of collateral circulation around the ischemic site ( It is known to play an important role in myocardial infarction, obstructive arteriosclerosis, and the like. On the other hand, abnormalities in angiogenesis cause various diseases such as cardiovascular diseases, skin diseases, and malignant tumors. For example, tumor tissue forms a disordered vascular network as the tissue grows rapidly, and the blood vessels themselves are fragile and frequently bleed, creating a highly stressed environment, creating a chronic hypoxic environment and a low hypoxic environment. Nutritional status is caused. Cancer cells that survived in such harsh environments have been reported to have higher malignancy and resistance to treatment.
 このように未熟な腫瘍血管を持つ癌組織では、血管は新生されるが循環不全のため、低酸素状態が持続する。低酸素状態において癌細胞の浸潤および転移能は亢進し、さらに未熟な腫瘍血管は癌細胞が血管内に侵入する経路を与え、癌転移は助長される。 In such a cancer tissue having immature tumor blood vessels, blood vessels are born but hypoxia persists due to circulatory failure. In the hypoxic state, the invasion and metastasis ability of cancer cells is enhanced, and immature tumor blood vessels provide a path for cancer cells to enter the blood vessels, thereby promoting cancer metastasis.
 腫瘍組織の循環不全は低酸素および低栄養になるだけではなく、抗癌剤の腫瘍組織への送達性にも影響を生じることが指摘されている。そのため、抗癌剤を腫瘍組織へ送達するためのシステムや組成物が提案されている。たとえば、血管新生を促進する作用を持った血管内皮増殖因子(VEGF(vascular endothelial growth factor))は、低酸素で誘導される。このVEGFを標的にした抗VEGF抗体(ベバシズマブ)は、無秩序な血管網の形成を抑制することで血流を改善し、そのことが抗癌剤の癌組織への送達性を改善するであろうと指摘されている(非特許文献1)。しかし、抗VEGF抗体(ベバシズマブ)の効果は一時的であり、時間の経過とともに成熟した腫瘍血管も退縮して腫瘍組織が低酸素状態になる。また、投与量を増加した場合には、正常な血管内皮細胞の傷害に基づく副作用が増強する。したがって、抗VEGF抗体(ベバシズマブ)と抗癌剤とを併用するための適切な投与期間と投与量の調整が難しい(非特許文献2)。 It has been pointed out that circulatory insufficiency of tumor tissues not only results in hypoxia and nutrition, but also affects the delivery of anticancer drugs to tumor tissues. Therefore, systems and compositions for delivering anticancer agents to tumor tissues have been proposed. For example, vascular endothelial growth factor (VEGF), which has an action of promoting angiogenesis, is induced by hypoxia. It has been pointed out that this anti-VEGF antibody (bevacizumab) targeting VEGF improves blood flow by inhibiting the formation of disordered vascular networks, which will improve the delivery of anticancer drugs to cancer tissues (Non-Patent Document 1). However, the effect of the anti-VEGF antibody (bevacizumab) is temporary, and mature tumor blood vessels regress with time, and the tumor tissue becomes hypoxic. Moreover, when the dose is increased, side effects based on the damage of normal vascular endothelial cells are enhanced. Therefore, it is difficult to adjust an appropriate administration period and dosage for the combined use of an anti-VEGF antibody (bevacizumab) and an anticancer agent (Non-patent Document 2).
 また、薬物送達システムとして、APJ(7回膜貫通型G蛋白共役受容体)を標的とする方法が開示されている。しかし、この方法は、正常組織の成熟血管には薬物を送達させず、成熟した血管を含む腫瘍組織の血管に薬物送達させるものであり、低酸素および低栄養領域を増加させるため、癌においては治療抵抗性をさらに高める可能性がある(特許文献1)。 Also, a method for targeting APJ (7-transmembrane G protein coupled receptor) as a drug delivery system is disclosed. However, this method does not deliver the drug to the mature blood vessels of normal tissues, but to the blood vessels of the tumor tissue containing mature blood vessels, and increases hypoxia and hypotrophic areas. There is a possibility of further enhancing treatment resistance (Patent Document 1).
 また、癌以外でも、心筋梗塞、脳梗塞および糖尿病性の血流障害などでは、組織細胞は慢性的な低酸素および低栄養条件に置かれる。このような組織では、組織を回復させるため急激な血管新生を行うことが知られており、未熟で壊れやすい血管が形成される。そのため、脳出血、血栓の形成および梗塞の再発の原因、ならびに糖尿病性網膜症および新血管性緑内障などの疾患の原因となると考えられている。また、慢性的な炎症では、免疫細胞の組織への送達のために異所性に無秩序な血管新生が誘導されることがあり、滲出型加齢黄班変性、慢性関節リウマチおよび乾癬などの原因ともなる。また、このような無秩序な血管新生は、炎症自体も増悪させると考えられている。 In addition to cancer, tissue cells are placed under chronic hypoxia and nutritional conditions such as myocardial infarction, cerebral infarction and diabetic blood flow disorder. In such a tissue, it is known that rapid angiogenesis is performed to recover the tissue, and an immature and fragile blood vessel is formed. Therefore, it is thought to cause cerebral hemorrhage, thrombus formation and infarct recurrence, as well as diseases such as diabetic retinopathy and neovascular glaucoma. Chronic inflammation may also induce ectopic and unregulated angiogenesis due to the delivery of immune cells to tissues, causing causes such as wet age-related macular degeneration, rheumatoid arthritis and psoriasis It also becomes. Such disordered angiogenesis is also thought to exacerbate inflammation itself.
 近年の研究から、細胞老化に伴うSASP(細胞老化関連分泌現象、senescence-associated secretory phenotype)が、加齢に伴う慢性炎症の本態である可能性が指摘されてきた。これは、老化とともに体組織に蓄積する老化細胞が炎症亢進に寄与するという考えである。この細胞老化の副作用として、発がんの促進や慢性炎症疾患が引き起こされる可能性があると考えられる。加齢に伴うDNA損傷、活性酸素種の蓄積およびテロメアの短縮などによりp53、RASおよびp16INK4aシグナル経路が活性化され、細胞老化が誘導される。その結果、IL-1β、IL-6およびIL-8などの炎症性サイトカインや血管内皮細胞増殖因子(VEGF)などが分泌される。これがSASPであり、これにより周辺細胞のさらなる細胞老化、慢性炎症が蔓延し、老年症候群を経て最終的に個体の死に至ると考えられるようになってきた。 From recent studies, it has been pointed out that SASP (senescence-associated secretory phenotype) associated with cellular aging may be the true form of chronic inflammation associated with aging. This is the idea that senescent cells that accumulate in body tissues with aging contribute to increased inflammation. As side effects of this cellular aging, it is considered that carcinogenesis may be accelerated and chronic inflammatory diseases may be caused. DNA damage associated with aging, accumulation of reactive oxygen species and shortening of telomeres activate p53, RAS and p16 INK4a signaling pathways and induce cellular senescence. As a result, inflammatory cytokines such as IL-1β, IL-6 and IL-8, vascular endothelial growth factor (VEGF) and the like are secreted. This is SASP, and this has led to the spread of further cellular aging and chronic inflammation of surrounding cells, and it is thought that it will eventually lead to death of the individual through geriatric syndrome.
 このようにSASPは慢性炎症を引き起こすが、病変局所では細胞の増殖及び代謝亢進に伴う細胞内のエネルギー消費が低酸素環境を引き起こす。この低酸素環境が病態増悪の一因になると考えられる。組織に低酸素状態が生じると、血管内皮細胞と結合組織、細胞外マトリックスおよび基底膜との接着が弱くなり、血管内皮細胞は容易に移動できるようになる。これにより、新しい血管の分枝と伸長が起こり、(血管リモデリング)血管障害を引き起こす。細胞障害の結果、種々の細胞内物質が放出され、これら細胞障害関連分子パターン(DAMPs)が、その受容体を介して炎症応答を惹起し、血管の細胞老化を引き起こす。老化した血管は未熟な血管より形成されており、血液成分の漏出による間質圧上昇と相まって血液循環が不良であり、そのため組織の低酸素および低栄養が持続するため慢性疾患がさらに進行する悪循環を引き起こしていると考えられる。このような加齢による血管老化に伴う慢性疾患に対しても、血管の強度の増強や血管網の整備効果をもつ血管正常化剤が効果を発揮し得ると考えられる。 As described above, SASP causes chronic inflammation, but in the lesion area, intracellular energy consumption accompanying cell proliferation and hypermetabolism causes a hypoxic environment. This hypoxic environment is thought to contribute to the worsening of the disease state. When hypoxia occurs in tissue, the adhesion between vascular endothelial cells and connective tissue, extracellular matrix and basement membrane is weakened, and vascular endothelial cells can move easily. This causes branching and elongation of new blood vessels, causing (vascular remodeling) vascular damage. As a result of cytotoxicity, various intracellular substances are released, and these cytotoxicity-related molecular patterns (DAMPs) elicit inflammatory responses via their receptors, causing vascular cellular senescence. Aged blood vessels are formed from immature blood vessels, and blood circulation is poor due to increased interstitial pressure due to leakage of blood components. Therefore, vicious cycles where chronic diseases further progress due to persistent hypoxia and nutrition of tissues. It is thought that is causing. It is considered that a blood vessel normalizing agent having an effect of enhancing the strength of blood vessels and maintaining a blood vessel network can exert an effect on chronic diseases associated with aging due to aging.
 このような癌、糖尿病、炎症性疾患(加齢に伴う炎症を含む)および循環器疾患を予防および治療するために、異常な血管を正常化させる方法の開発が望まれる。また、他にも、潰瘍性大腸炎およびクローン病などの炎症性腸疾患(IBD)、アテローム性動脈硬化並びに子宮内膜症など、未熟な血管形成が重要な寄与要因であると考えられている疾患は数多く存在する。したがって、異常な血管を成熟した正常な血管網へ整える方法の開発は、これらの疾患の予防、治療および改善に大きな貢献をもたらすと考えられる。 Development of a method for normalizing abnormal blood vessels is desired in order to prevent and treat such cancer, diabetes, inflammatory diseases (including inflammation associated with aging) and cardiovascular diseases. In addition, immature angiogenesis, such as ulcerative colitis and inflammatory bowel diseases such as Crohn's disease (IBD), atherosclerosis and endometriosis, is considered to be an important contributing factor. There are many diseases. Therefore, the development of a method for arranging abnormal blood vessels into a mature normal blood vessel network is considered to make a great contribution to the prevention, treatment and improvement of these diseases.
国際公開第2012/102363号International Publication No.2012 / 102363
 無秩序に伸長する異常な血管網の形成は、上述したように種々の疾患の要因となり得る。また、異常な血管網を持つ組織では、血管が未熟で壊れやすいため、循環不全に陥ることにより低酸素および低栄養という特殊な微小環境がつくられ、治療薬の送達性に影響を与えることが大きな問題となっている。したがって、異常な血管網の形成を抑制し、血管壁を強化し、異常な血管を正常化させる方法の開発が求められている。 The formation of an abnormal vascular network that grows randomly can cause various diseases as described above. In addition, in tissues with abnormal vascular networks, the blood vessels are immature and fragile, and a circulatory insufficiency creates a special microenvironment of hypoxia and nutrition that can affect the delivery of therapeutic agents. It has become a big problem. Therefore, development of a method for suppressing the formation of abnormal blood vessel networks, strengthening the blood vessel wall, and normalizing abnormal blood vessels is required.
 本発明は、異常な血管を正常化させることができる薬剤および方法を提供することを目的とする。 An object of the present invention is to provide a drug and a method capable of normalizing abnormal blood vessels.
 本発明者らは、異常な血管形成のモデルであるヒト膵臓癌細胞を移植したマウスに、アルクチゲニンを含むゴボウシエキスを投与したところ、腫瘍組織内の血流状態を改善することを見出した。また、アルクチゲニンを含むゴボウシエキスを投与することにより、腫瘍内の低酸素領域が顕著に低下すること、増殖期にある細胞が増加していること、およびペリサイト被覆血管が増加したことを見出した。さらに、本発明者らは、アルクチゲニンを含むゴボウシエキスの投与によって、腫瘍内部の血管が無秩序に密集したり蛇行したり隣接する血管と絡み合ったりすることなく、正常な血管網が形成されることを見出した。これらの結果から、本発明者らは、アルクチゲニンが血管壁を強化し、異常な血管網形成を抑制し、異常な血管を正常化させる作用を有することを見出し、本発明を完成させた。 The present inventors have found that when a gobo cow extract containing arctigenin is administered to a mouse transplanted with human pancreatic cancer cells, which is a model of abnormal angiogenesis, the blood flow state in the tumor tissue is improved. Furthermore, the present inventors have found that administration of burdock extract containing arctigenin significantly reduces the hypoxic region in the tumor, increases the number of cells in the growth phase, and increases the number of pericite-coated blood vessels. Furthermore, the present inventors have found that administration of a gobo cow extract containing arctigenin forms a normal vascular network without the blood vessels inside the tumor being randomly packed, meandering, or entangled with adjacent blood vessels. It was. From these results, the present inventors have found that arctigenin has an action of strengthening the blood vessel wall, suppressing abnormal vascular network formation, and normalizing abnormal blood vessels, and completed the present invention.
 すなわち、本発明は、アルクチゲニンを有効成分として含有する、血管壁細胞により被覆された血管を増加させる血管壁強化剤を提供する。 That is, the present invention provides a vascular wall reinforcing agent for increasing blood vessels covered with vascular wall cells, which contains archigenin as an active ingredient.
 また、本発明は、アルクチゲニンが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、上記血管壁強化剤を提供する。 In addition, the present invention provides the above-mentioned vascular wall reinforcing agent, wherein arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
 また、本発明は、アルクチゲニンを有効成分として含有する、血管網形成抑制剤を提供する。 The present invention also provides a vascular network formation inhibitor comprising archigenin as an active ingredient.
 また、本発明は、アルクチゲニンが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、上記血管網形成抑制剤を提供する。 The present invention also provides the vascular network formation inhibitor, wherein arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
 また、本発明は、血管壁の強化を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管壁を強化する方法を提供する。 The present invention also provides a method for strengthening a blood vessel wall, comprising the step of ingesting architigenin and / or arctiin into a subject in need of strengthening the blood vessel wall.
 また、本発明は、アルクチゲニンおよび/またはアルクチインが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、上記血管壁を強化する方法を提供する。 In addition, the present invention provides a method for reinforcing the above-mentioned blood vessel wall, wherein arctigenin and / or arcticin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
 また、本発明は、血管網形成の抑制を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管網形成を抑制する方法を提供する。 The present invention also provides a method for suppressing vascular network formation, comprising the step of ingesting archigenin and / or arctiin into a subject in need of suppression of vascular network formation.
 また、本発明は、アルクチゲニンおよび/またはアルクチインが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、上記血管網形成を抑制する方法を提供する。 In addition, the present invention provides a method for suppressing the formation of the above vascular network, wherein arctigenin and / or arcuin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、異常な血管を正常化させることにより血流状態を改善し、異常な血管に起因する各種の疾患の予防、改善および治療に寄与することができる。 The vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention improve the blood flow state by normalizing abnormal blood vessels, prevent and improve various diseases caused by abnormal blood vessels, and Can contribute to treatment.
アルクチゲニン高含有ゴボウシエキスを投与した後の腫瘍内の血流状態を示す図。The figure which shows the blood-flow state in the tumor after administering the arguchigenin-rich burdock extract. アルクチゲニン高含有ゴボウシエキスを投与した後の腫瘍内ピモニダゾールの陽性領域の割合(%)を示す図。The figure which shows the ratio (%) of the positive area | region of the pimonidazole in a tumor after administering an arctivenin high content gobo cow extract. アルクチゲニン高含有ゴボウシエキスを投与した後の腫瘍内BrdU陽性細胞の割合(%)を示す図。The figure which shows the ratio (%) of an intratumoral BrdU positive cell after administering the architigenin-rich burdock extract. アルクチゲニン高含有ゴボウシエキスを投与した後の腫瘍内ペリサイト被覆血管の割合(%)を示す図。The figure which shows the ratio (%) of the pericyte covering blood vessel in a tumor after administering architigenin-rich burdock extract. アルクチゲニン高含有ゴボウシエキスを投与した後の腫瘍血管構造を示す図。The figure which shows the tumor blood-vessel structure after administering archigenin-rich burdock extract. アルクチゲニン高含有ゴボウシエキスを投与した後の血中および腫瘍内のCPT-11の濃度を示す図。The figure which shows the density | concentration of CPT-11 in the blood after administration of the arguchigenin-rich burdock extract. アルクチゲニン高含有ゴボウシエキスとベバシズマブとを併用投与した後の腫瘍内潰瘍組織の出現頻度を示す図。The figure which shows the appearance frequency of the ulcer tissue in a tumor after administering together with an arctiggenin-rich burdock extract and bevacizumab. アルクチゲニン高含有ゴボウシエキスとベバシズマブとを併用投与した後の生存率を示す図。The figure which shows the survival rate after administering together with the arguchigenin high content gobo cow extract and bevacizumab. アルクチゲニン高含有ゴボウシエキスとゲムシタビンとを膵臓癌同所移植マウスに併用投与した後の生存率を示す図。The figure which shows the survival rate after administering together arcticogenin high content gobo cow extract and gemcitabine to a pancreatic cancer orthotopic transplant mouse | mouth. 膵臓癌モデルに対する既存化学療法剤、アルクチゲニン高含有ゴボウシエキスおよびこれらの併用による腫瘍サイズの変動を示す図。The figure which shows the fluctuation | variation of the tumor size by the existing chemotherapeutic agent with respect to a pancreatic cancer model, an arguchigenin-rich burdock extract, and these combination.
 本発明は、アルクチゲニンを有効成分として含有する、血管壁強化剤を提供する。本発明の血管壁強化剤は、血管壁細胞により被覆された血管を増加させることにより血管壁を強化する。本発明の血管壁強化剤は、新たに形成される血管または既存の未熟な血管が血管壁細胞によって被覆される頻度を高めることで血管壁を強化し、血管強度を改善することができる。また、本発明の血管壁強化剤は、血管壁を強化することによって、異常な血管網の形成を抑制することができ、血管網形成抑制剤として用いることができる。本発明の血管網形成抑制剤は、異常な血管網を作り出す最初のランダムな微小血管の発芽(スプラウト)の顕著な減少を誘導することができる。 The present invention provides a vascular wall strengthening agent containing arctigenin as an active ingredient. The blood vessel wall reinforcing agent of the present invention reinforces the blood vessel wall by increasing blood vessels covered with blood vessel wall cells. The vascular wall reinforcing agent of the present invention can enhance the vascular wall and improve the vascular strength by increasing the frequency with which newly formed blood vessels or existing immature blood vessels are covered with vascular wall cells. Moreover, the vascular wall reinforcing agent of the present invention can suppress the formation of abnormal vascular network by reinforcing the vascular wall, and can be used as a vascular network formation inhibitor. The vascular network formation inhibitor of the present invention can induce a significant decrease in the sprouting of the first random microvascular that creates an abnormal vascular network.
 また、本発明の血管壁強化剤および血管網形成抑制剤は、血管壁を強化し、また異常な血管網の形成を抑制することによって、血管を正常化させることができる。したがって、本発明の血管壁強化剤および血管網形成抑制剤は、血管正常化剤として用いることができる。 Also, the vascular wall reinforcing agent and vascular network formation inhibitor of the present invention can normalize blood vessels by reinforcing the vascular wall and suppressing the formation of abnormal vascular networks. Therefore, the vascular wall reinforcing agent and vascular network formation inhibitor of the present invention can be used as a vascular normalizing agent.
 本明細書において「血管壁を強化する」とは、血管壁細胞により被覆された血管を増加させることをいう。本明細書において「血管壁細胞」には、ペリサイト(周皮細胞)および平滑筋細胞などが含まれる。本明細書において「血管網形成を抑制する」とは、血管網、特に異常な血管網を減少させることをいい、異常な血管網を作り出す最初のランダムな微小血管の発芽(スプラウト)を減少させることをも含む。 In the present specification, “strengthening the blood vessel wall” means increasing blood vessels covered with blood vessel wall cells. In the present specification, “blood vessel wall cells” include pericytes (pericytes) and smooth muscle cells. As used herein, “suppressing vascular network formation” refers to reducing the vascular network, particularly abnormal vascular network, and reducing the first random microvascular sprouting that creates an abnormal vascular network. Including that.
 本明細書において「血管を正常化させる」とは、異常な血管あるいは血管網を正常化あるいは成熟化させ、正常な血管あるいは血管網を形成させることをいう。本明細書において「異常な血管」または「未熟な血管」とは、血管壁細胞により被覆されていない未熟で脆い血管、奇形血管、過度で異常に蛇行している血管、隣接する血管と絡み合っている血管、過度な枝分かれがある血管および血管の末端が他の血管と接続されておらず循環しない血管などをいう。また、本明細書において「異常な血管網」あるいは「無秩序な血管網」とは、上述した異常な血管を含む血管網、密集して複雑に入り組んでいる血管網、隣接する血管が絡み合っている血管網および血管同士が接続されておらず循環しない血管網などをいう。本明細書において「正常な血管」または「成熟した血管」とは、途中で途切れずにつながっている血管、血管壁細胞によって被覆された血管、過度に蛇行や枝分かれしていない血管および末端が他の血管と接続されており十分に循環する血管などをいう。本明細書において「正常な血管網」とは、上述した正常な血管からなる血管網、規則的で、階層構造(ヒエラルキー)を持った血管網、密集せず均一に広がっている血管網および末端が互いに接続されており十分に循環する血管網などをいう。 In the present specification, “normalizing a blood vessel” means normalizing or maturing an abnormal blood vessel or blood vessel network to form a normal blood vessel or blood vessel network. In the present specification, “abnormal blood vessel” or “immature blood vessel” refers to an immature and fragile blood vessel that is not covered with blood vessel wall cells, a deformed blood vessel, a blood vessel that is excessively and abnormally meandering, and an adjacent blood vessel. Blood vessels, blood vessels with excessive branching, and blood vessels that do not circulate because the end of the blood vessel is not connected to other blood vessels. In the present specification, the term “abnormal vascular network” or “disordered vascular network” refers to a vascular network including the above-described abnormal blood vessels, a dense and complicated vascular network, and adjacent blood vessels. A blood vessel network and a blood vessel network in which blood vessels are not connected and do not circulate. As used herein, “normal blood vessel” or “mature blood vessel” refers to a blood vessel that is connected without interruption, a blood vessel that is covered with vascular wall cells, a blood vessel that is not excessively meandered or branched, and other ends. A blood vessel that is connected to other blood vessels and circulates sufficiently. In the present specification, the term “normal vascular network” refers to a vascular network composed of the above-described normal blood vessels, a vascular network having a regular and hierarchical structure (hierarchy), a vascular network that spreads uniformly without being dense, and a terminal network Refers to a vascular network that is connected to each other and circulates sufficiently.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、虚血性状態または炎症状態によって引き起こされる、異常な蛇行や過度の血管発芽に起因する複雑に枝分かれした無秩序な血管網の形成を抑制し、または、この状態で形成される未熟で壊れやすい血管を、正常な強度を維持した血管へ補強する。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、異常な血管網の形成を抑制するとともに血管壁を強化することにより、最終的に正常な循環機能を持った血管網を形成させることができる。 The vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are used for complex branched and disordered vascular network caused by abnormal meandering or excessive vascular sprouting caused by ischemic or inflammatory conditions. Inhibits formation or reinforces immature and fragile blood vessels formed in this state into blood vessels that maintain normal strength. The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention suppress the formation of an abnormal vascular network and strengthen the vascular wall, thereby finally having a normal circulatory function. Can be formed.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、血管を正常化させることにより、組織の血流状態を改善し、低酸素領域を減少させることができる。また、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、無秩序な血管網の形成を抑制し、また未熟な血管から、血管壁細胞で被覆された正常な強度を持つ血管へと成熟させることで、血管透過性の亢進(出血傾向の抑制を含める)を抑制し、また血管網を整えることで、組織の正常な血流を再構成させることができる。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can improve the blood flow state of the tissue and reduce the hypoxic region by normalizing the blood vessels. Further, the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention suppress the formation of disordered vascular network, and have normal strength coated with vascular wall cells from immature blood vessels. By maturation into blood vessels, increase in vascular permeability (including suppression of bleeding tendency) is suppressed, and normal blood flow in the tissue can be reconstructed by preparing the vascular network.
 また、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、血流状態を改善することによって、損傷組織の修復や発達を改善することができ、また治療対象組織への治療薬の送達性を向上させることができる。さらに、異常な血管網が形成されている原因が腫瘍や感染組織であった場合、血流状態を改善することによって、病変細胞や病原体を排除する免疫細胞の病変組織への送達性も改善することができる。また癌においては、低酸素環境が引き金となり、癌細胞に上皮間葉形質転換と呼ばれる細胞状態の変化が起こり、高い治療耐性を持った細胞へ変化することが知られているが、血流状態を改善することによって、このようながん組織の悪性化を抑制することができる。また腫瘍の酸素状態が改善されることによって、放射線療法の感度の改善も期待することができる。 Further, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can improve the repair and development of damaged tissue by improving the blood flow state, Delivery of therapeutic agents can be improved. In addition, when the cause of abnormal vascular network formation is a tumor or infected tissue, improving the blood flow state improves the delivery of immune cells that exclude diseased cells and pathogens to the diseased tissue. be able to. In cancer, it is known that a hypoxic environment triggers a change in the cell state called epithelial-mesenchymal transformation in cancer cells, which changes into cells with high therapeutic resistance. By improving the above, malignant transformation of such cancer tissue can be suppressed. Moreover, improvement in the sensitivity of radiation therapy can be expected by improving the oxygen state of the tumor.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤に用いるアルクチゲニンは、アルクチゲニンを含有する植物由来であってもよい。アルクチゲニンを含有する植物は、特に限定されないが、たとえばゴボウ、ゴボウスプラウト、ゴボウの葉、ゴボウの根茎、ゴボウシ、若ゴボウ、ベニバナ、ヤグルマギク、アメリカオニアザミ、サントリソウ(ギバナアザミ)、カルドン、ゴロツキアザミ、アニウロコアザミ、アイノコレンギョウ、チョウセンレンギョウ、レンギョウ、シナレンギョウ、ゴマ、モミジヒルガオ、シンチクヒメハギ、チョウセンテイカカズラ、テイカカズラ、ムニンテイカカズラ、ヒメテイカカズラ、トウキョウチクトウ、ケテイカカズラ、リョウカオウ、オオケタデ、ヤマザクラ、シロイヌナズナ、アマランス、クルミ、エンバク、スペルタコムギ、軟質コムギ、メキシコイトスギおよびカヤなどを含む。なかでも、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウおよびレンギョウは、アルクチゲニン含有量が高いため好ましい。アルクチゲニンは、これらの植物からの抽出物として含有されてもよい。 Arctinigenin used in the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may be derived from a plant containing archigenin. Plants containing arctigenin are not particularly limited. Thistle, Ayoko Forsythia, Ginkgo biloba, Forsythia, Sylar Forsythia, Sesame, Momijigaigao, Shinchiku Himehagi, Datura Kizura, Teika Kazura, Mine Teika Kazura, Hime Teika Kazura, Tokyo Oyster Crane, Otari Kazura , Oats, spelled wheat, soft wheat, Mexican cypress and kaya. Of these, burdock, burdock, burdock sprout, young burdock, and forsythia are preferred because of their high arctigenin content. Arctigenin may be contained as an extract from these plants.
 本発明において、アルクチゲニンがゴボウシ由来である場合には、後述するゴボウシ抽出物の製造方法を用いて得られるゴボウシ抽出物を用いることができる。そのため、製造時の生産性を向上させることができ、安価にかつ簡便に血管壁強化剤、血管網形成抑制剤および血管正常化剤を調製することができる。また、ゴボウシ以外の植物を用いる場合にも、後述する製造方法を利用することにより、アルクチゲニンを含有する抽出物を容易に得ることが可能である。 In the present invention, when arctigenin is derived from burdock, a burdock extract obtained using a method for producing a burdock extract described later can be used. Therefore, productivity at the time of manufacture can be improved, and a vascular wall reinforcing agent, a vascular network formation inhibitor, and a vascular normalizing agent can be prepared inexpensively and easily. Moreover, also when using plants other than burdock, it is possible to easily obtain an extract containing arctigenin by using the production method described later.
 ゴボウシは、リグナン配糖体に分類されるアルクチインを約7%含み、かつアルクチインのアグリコンであるアルクチゲニンを約0.6%含む。後述するゴボウシ抽出物の製造方法は、アルクチインに対するアルクチゲニンの含有量を大幅に高めることができるため、この製造方法によって得られる抽出物は、アルクチゲニンを高含量で含有する。したがって、このゴボウシ抽出物の製造方法によって得られる抽出物を使用すれば、従来のゴボウシ抽出物と比較して、優れた効果を有する血管壁強化剤、血管網形成抑制剤および血管正常化剤とすることができる。 The burdock contains about 7% arctiin, which is classified as a lignan glycoside, and about 0.6% arctigenin, which is an aglycon of arctiin. Since the method for producing a burdock extract to be described later can significantly increase the content of arctigenin relative to arctiin, the extract obtained by this production method contains a high content of arctigenin. Therefore, if the extract obtained by the method for producing this burdock extract is used, compared with the conventional burdock extract, the vascular wall strengthening agent, the vascular network formation inhibitor and the vascular normalizing agent which have superior effects can do.
 また、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、さらにアルクチインを含有してもよい。アルクチインは、アルクチインを含有する植物由来であってもよく、たとえばゴボウシ、レンギョウまたはシナレンギョウ由来であってもよい。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、アルクチゲニンを含有する植物からの抽出物、たとえばゴボウシから得たゴボウシ抽出物を含有することにより、このゴボウシ抽出物に含まれるアルクチインをさらに含有してもよい。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may further contain alktiin. Arctiin may be derived from a plant containing arctiin, and may be derived from, for example, burdock, forsythia, or forsythia. The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are contained in this burdock extract by containing an extract from a plant containing arctigenin, for example, a burdock extract obtained from burdock. The alktiin may be further contained.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、アルクチゲニンおよびアルクチインを、アルクチゲニン/アルクチインの重量比が0.7以上となるように含有してもよい。アルクチゲニン/アルクチインの重量比は、特に限定されないが、1.3以下であってもよい。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、アルクチゲニンおよびアルクチインを、アルクチゲニン/アルクチイン=0.7~1.3の重量比にて含有する植物の抽出物、たとえばゴボウシ抽出物を含有してもよい。また、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、アルクチゲニンを3%以上含有するゴボウシ抽出物を含有してもよい。このようなゴボウシ抽出物は、後述するゴボウシ抽出物の製造方法により得ることができる。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、後述するゴボウシ抽出物の製造方法により得られたゴボウシ抽出物を含有することにより、従来のゴボウシ抽出物を含有する場合よりも高い血管正常化効果を提供することができる。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may contain archigenin and archtiin so that the weight ratio of archigenin / arctiin is 0.7 or more. The weight ratio of archigenin / arctiin is not particularly limited, but may be 1.3 or less. The vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention comprise an extract of a plant containing archigenin and archtiin in a weight ratio of archigenin / arctiin = 0.7 to 1.3, for example, burdock extract May be. In addition, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may contain a burdock extract containing 3% or more archigenin. Such a burdock extract can be obtained by a method for producing a burdock extract described later. When the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention contain a burdock extract obtained by a method for producing a burdock extract described later, the conventional burdock extract is contained. Higher vascular normalization effect.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、後述するゴボウシ抽出物の製造方法によって得られた抽出物粉末を、そのままの形で使用することもできる。 For the vascular wall reinforcing agent, vascular network formation inhibitor, and vascular normalizing agent of the present invention, the extract powder obtained by the method for producing a burdock extract described later can be used as it is.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、さらに任意の成分を含むことができる。たとえば、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、薬学的に許容される基剤、担体、賦形剤、結合剤、崩壊剤、滑沢剤および着色剤などを含む形態にて提供することができる。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can further contain optional components. For example, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention are pharmaceutically acceptable bases, carriers, excipients, binders, disintegrants, lubricants, coloring agents, and the like. Can be provided.
 血管壁強化剤、血管網形成抑制剤および血管正常化剤に使用する担体および賦形剤の例には、乳糖、ブドウ糖、白糖、マンニトール、デキストリン、馬鈴薯デンプン、トウモロコシデンプン、炭酸カルシウム、リン酸カルシウム、硫酸カルシウムおよび結晶セルロースなどを含む。 Examples of carriers and excipients used for vascular wall strengthening agents, vascular network formation inhibitors and vascular normalizing agents include lactose, glucose, sucrose, mannitol, dextrin, potato starch, corn starch, calcium carbonate, calcium phosphate, sulfuric acid Includes calcium and crystalline cellulose.
 また、結合剤の例には、デンプン、ゼラチン、シロップ、トラガントゴム、ポリビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロースおよびカルボキシメチルセルロースなどを含む。 Examples of the binder include starch, gelatin, syrup, tragacanth gum, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like.
 また、崩壊剤の例には、デンプン、寒天、ゼラチン末、結晶セルロース、炭酸カルシウム、炭酸水素ナトリウム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウムおよびカルボキシメチルセルロースカルシウムなどを含む。 Examples of the disintegrant include starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium hydrogen carbonate, sodium alginate, sodium carboxymethylcellulose, and carboxymethylcellulose calcium.
 また、滑沢剤の例には、ステアリン酸マグネシウム、水素添加植物油、タルクおよびマクロゴールなどを含む。また、着色剤は、医薬品に添加することが許容されている任意の着色剤を使用することができる。 Also, examples of lubricants include magnesium stearate, hydrogenated vegetable oil, talc and macrogol. As the colorant, any colorant allowed to be added to a pharmaceutical product can be used.
 また、血管壁強化剤、血管網形成抑制剤および血管正常化剤は、必要に応じて、白糖、ゼラチン、精製セラック、ゼラチン、グリセリン、ソルビトール、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、フタル酸セルロースアセテート、ヒドロキシプロピルメチルセルロースフタレート、メチルメタクリレートおよびメタアクリル酸重合体などで一層以上の層で被膜してもよい。 In addition, a vascular wall reinforcing agent, a vascular network formation inhibitor and a vascular normalizing agent are sucrose, gelatin, purified shellac, gelatin, glycerin, sorbitol, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, It may be coated with one or more layers of cellulose phthalate acetate, hydroxypropyl methylcellulose phthalate, methyl methacrylate, methacrylic acid polymer, and the like.
 また、血管壁強化剤、血管網形成抑制剤および血管正常化剤は、必要に応じて、pH調節剤、緩衝剤、安定化剤および可溶化剤などが添加されてもよい。 In addition, a pH regulator, a buffer, a stabilizer, a solubilizer, and the like may be added to the blood vessel wall reinforcing agent, the blood vessel network formation inhibitor, and the blood vessel normalizing agent as necessary.
 また、血管壁強化剤、血管網形成抑制剤および血管正常化剤は、任意の形態の製剤として提供することができる。たとえば、血管壁強化剤、血管網形成抑制剤および血管正常化剤は、経口投与製剤として、糖衣錠、バッカル錠、コーティング錠およびチュアブル錠等の錠剤、トローチ剤、丸剤、散剤およびソフトカプセルを含むカプセル剤、顆粒剤、懸濁剤、乳剤、ドライシロップを含むシロップ剤、ならびにエリキシル剤等の液剤であることができる。 Also, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent can be provided as a preparation of any form. For example, vascular wall strengthening agents, vascular network formation inhibitors and vascular normalizing agents are capsules including tablets, troches, pills, powders and soft capsules such as sugar-coated tablets, buccal tablets, coated tablets and chewable tablets as oral preparations. , Syrups including granules, suspensions, emulsions, dry syrups, and liquids such as elixirs.
 また、血管壁強化剤、血管網形成抑制剤および血管正常化剤は、非経口投与のために、静脈注射、皮下注射、腹腔内注射、筋肉内注射、経皮投与、経鼻投与、経肺投与、経腸投与、口腔内投与および経粘膜投与などの投与のための製剤であることができる。たとえば、注射剤、経皮吸収テープ、エアゾール剤および坐剤などであることができる。また、植物等からの抽出物を使用する場合には、抽出物が特有のえぐみを有することから、抽出物をマスキングする製剤としたり、被覆剤で被覆するフィルムコート剤としたりすることができる。 In addition, vascular wall reinforcing agents, vascular network formation inhibitors and vascular normalizing agents are for parenteral administration, intravenous injection, subcutaneous injection, intraperitoneal injection, intramuscular injection, transdermal administration, nasal administration, transpulmonary administration. It can be a preparation for administration such as administration, enteral administration, buccal administration and transmucosal administration. For example, it can be an injection, a transdermal absorption tape, an aerosol, a suppository and the like. In addition, when an extract from a plant or the like is used, since the extract has a peculiar taste, it can be used as a preparation for masking the extract or a film coating agent coated with a coating agent. .
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、たとえば哺乳動物に対して投与することができる。哺乳動物には、たとえばヒト、マウス、ラット、ウサギ、ネコ、イヌ、ウシ、ウマおよびサルなどが含まれる。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be administered to, for example, mammals. Mammals include, for example, humans, mice, rats, rabbits, cats, dogs, cows, horses and monkeys.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、アルクチゲニンを1日あたりの投与量が成人一人あたり10~2000mgとなるように含むことができる。また、アルクチゲニンは、特に限定されないが、週1~7日投与されてもよい。たとえば、アルクチゲニンは、連日または週5もしくは6回投与されてもよい。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can contain archigenin so that the daily dose is 10 to 2000 mg per adult. Further, archigenin is not particularly limited, but may be administered 1 to 7 days a week. For example, arctigenin may be administered daily or 5 or 6 times a week.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、任意の薬剤と併用して投与されてもよい。任意の薬剤とは、たとえば任意の疾病を予防、改善または治療するための薬剤であり、たとえば抗癌剤である。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、治療対象部位の血管を正常化させることにより、併用して投与される薬剤の治療対象部位への薬剤送達を増強させることができる。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention may be administered in combination with any drug. An arbitrary drug is, for example, a drug for preventing, ameliorating or treating any disease, for example, an anticancer drug. The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention normalize the blood vessels at the site to be treated, thereby enhancing the drug delivery of the drugs administered in combination to the site to be treated. be able to.
 たとえば腫瘍や慢性炎症などのように、未熟な血管が多く形成されるような環境においては、循環不全になりやすく、薬剤の送達性が悪くなり、薬剤が効きにくくなると考えられている。したがって、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤によって未熟な血管を正常化して血流状態を改善させれば、併用される薬剤が効きやすくなると考えられる。後述する試験例5~8において、アルクチゲニンと既存の抗癌剤とを併用投与した場合には、抗癌剤を単独で投与した場合よりも、潰瘍形成の阻害を増強し、腫瘍増大を抑制し、癌幹細胞の腫瘍内比率を減少させ、および生存期間を延長させることが示された。このように、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、血管を正常化させることによって薬剤の送達性を高め、薬剤による効果を高めることができる。 For example, in an environment where many immature blood vessels are formed, such as tumors and chronic inflammation, it is considered that circulatory insufficiency is likely to occur, drug delivery becomes poor, and the drug is less effective. Therefore, if the immature blood vessels are normalized by the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention to improve the blood flow state, it is considered that the combined drugs are more effective. In Test Examples 5 to 8 to be described later, when architigenin and an existing anticancer agent are administered in combination, the inhibition of ulcer formation is enhanced and the tumor growth is suppressed, compared with the case where the anticancer agent is administered alone, It has been shown to reduce the intratumoral ratio and prolong survival. As described above, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can increase the drug delivery by normalizing the blood vessels and enhance the effect of the drug.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、たとえば医薬品、病者用食品、健康食品、機能性食品、特定保健用食品、栄養補助食品およびサプリメントなどの形態をとることができる。本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤はまた、血管壁を強化させる効果がある旨の表示、血管網形成を抑制する効果がある旨の表示および血管を正常化させる効果がある旨の表示などを付した機能性表示食品の形態であってもよい。 The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention take the form of, for example, pharmaceuticals, foods for patients, health foods, functional foods, foods for specified health use, dietary supplements and supplements. be able to. The vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent of the present invention also have an indication that it has the effect of strengthening the vascular wall, an indication that it has the effect of suppressing vascular network formation, and normalizes the blood vessel. It may be in the form of a functionally labeled food with a label indicating that there is an effect of the effect.
 本発明はまた、アルクチゲニンを有効成分として含有する、血管壁細胞により被覆された血管を増加させる血管壁強化用食品組成物を提供する。本発明はまた、アルクチゲニンを有効成分として含有する、血管網形成抑制用食品組成物を提供する。本発明はまた、アルクチゲニンを有効成分として含有する、血管正常化用食品組成物を提供する。本発明の血管壁強化用食品組成物、血管網形成抑制用食品組成物および血管正常化用食品組成物は、上述した血管壁強化剤、血管網形成抑制剤および血管正常化剤と同様に構成することができる。 The present invention also provides a food composition for reinforcing a blood vessel wall, which contains arctigenin as an active ingredient and increases blood vessels covered with blood vessel wall cells. The present invention also provides a food composition for inhibiting vascular network formation, which contains arctigenin as an active ingredient. The present invention also provides a food composition for normalizing blood vessels, which contains arctigenin as an active ingredient. The food composition for strengthening blood vessel wall, the food composition for suppressing vascular network formation, and the food composition for normalizing blood vessel according to the present invention are configured in the same manner as the above-described vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent. can do.
 本明細書において「食品組成物」には、一般的な飲食品だけでなく、病者用食品、健康食品、機能性食品、特定保健用食品、栄養補助食品およびサプリメントなどが含まれる。一般的な飲食品には、たとえば各種飲料、各種食品、加工食品、液状食品(スープ等)、調味料、栄養ドリンクおよび菓子類などが含まれる。本明細書において「加工食品」とは、天然の食材(動物および植物など)に対し加工および/または調理を施したものをいい、たとえば肉加工品、野菜加工品、果実加工品、冷凍食品、レトルト食品、缶詰食品、瓶詰食品およびインスタント食品などが含まれる。本発明の食品組成物は、血管壁を強化する旨の表示、血管網形成を抑制する旨の表示または血管を正常化する旨の表示を付した食品であってもよい。また、本発明の食品組成物は、袋および容器等に封入された形態で提供されてもよい。本発明において使用する袋および容器は、食品に通常使用される任意の袋および容器であることができる。 In the present specification, the “food composition” includes not only general foods and drinks but also foods for patients, health foods, functional foods, foods for specified health use, dietary supplements and supplements. Common foods and drinks include, for example, various beverages, various foods, processed foods, liquid foods (soups, etc.), seasonings, energy drinks, and confectionery. In the present specification, the “processed food” refers to a product obtained by processing and / or cooking natural ingredients (animals, plants, etc.), such as processed meat products, processed vegetable products, processed fruit products, frozen foods, Includes retort foods, canned foods, bottled foods and instant foods. The food composition of the present invention may be a food with an indication that the blood vessel wall is strengthened, an indication that the vascular network formation is suppressed, or an indication that the blood vessels are normalized. Moreover, the food composition of the present invention may be provided in a form enclosed in a bag, a container or the like. The bags and containers used in the present invention can be any bags and containers normally used for food.
 本発明はまた、血管壁の強化を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管壁を強化する方法を提供する。本発明はまた、血管網形成の抑制を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管網形成を抑制する方法を提供する。本発明はまた、血管の正常化を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管を正常化させる方法を提供する。 The present invention also provides a method for strengthening a blood vessel wall, which includes the step of ingesting archigenin and / or arctiin into a subject in need of strengthening the blood vessel wall. The present invention also provides a method for inhibiting vascular network formation, comprising the step of ingesting archigenin and / or arctiin to a subject in need of inhibition of vascular network formation. The present invention also provides a method of normalizing a blood vessel, comprising the step of ingesting archigenin and / or arctiin into a subject in need of blood vessel normalization.
 本発明の方法が適用される対象には、ヒト、マウス、ラット、ウサギ、ネコ、イヌ、ウシ、ウマおよびサルなどの哺乳動物が含まれる。血管壁の強化を必要とする対象、血管網形成の抑制を必要とする対象および血管の正常化を必要とする対象とは、異常な血管形成を発症している対象および異常な血管形成が要因となっていると考えられる疾患を患う対象などである。対象となる疾患には、たとえば癌、循環器疾患、慢性炎症を伴う各種疾患、例えば、糖尿病合併症(腎症、網膜症、神経症)、加齢性黄斑変性および新血管性緑内障などの眼内新生血管性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患(IBD)、アテローム性動脈硬化、子宮内膜症、動脈硬化、乾癬、脳および心筋梗塞、慢性腎臓病、非アルコール性脂肪性肝炎、アルツハイマー病、パーキンソン病、肥満および生活習慣病、並びに皮膚光老化などが含まれる。 The subjects to which the method of the present invention is applied include mammals such as humans, mice, rats, rabbits, cats, dogs, cows, horses and monkeys. Subjects who need vascular wall reinforcement, subjects who need to suppress vascular network formation, and subjects who need normalization of blood vessels are those who develop abnormal angiogenesis and abnormal angiogenesis Such as a subject suffering from a disease considered to be. Target diseases include, for example, cancer, cardiovascular diseases, various diseases with chronic inflammation, such as diabetic complications (nephropathy, retinopathy, neurosis), age-related macular degeneration, and neovascular glaucoma Inflammatory bowel disease (IBD) such as internal neovascular disease, ulcerative colitis and Crohn's disease, atherosclerosis, endometriosis, arteriosclerosis, psoriasis, brain and myocardial infarction, chronic kidney disease, non-alcoholic Examples include steatohepatitis, Alzheimer's disease, Parkinson's disease, obesity and lifestyle-related diseases, and skin photoaging.
 アルクチインは、アルクチゲニンの前駆体であり、生体内で代謝されてアルクチゲニンになることが知られている。本発明の方法では、アルクチゲニンまたはアルクチインの一方のみを摂取させてもよいし、アルクチゲニンおよびアルクチインの両方を摂取させてもよい。 Arctiin is a precursor of arctigenin and is known to be metabolized in vivo to become arctigenin. In the method of the present invention, only one of arctigenin or arcutin may be ingested, or both arctigenin and arcuinin may be ingested.
 本発明の方法において、アルクチゲニンおよび/またはアルクチインは、アルクチゲニンおよび/またはアルクチインを含有する植物由来であってもよく、たとえばゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウおよびレンギョウ由来であってもよい。また、アルクチゲニンおよび/またはアルクチインは、後述するゴボウシ抽出物の製造方法を用いて得られるゴボウシ抽出物として摂取させてもよい。また、アルクチゲニンおよび/またはアルクチインとともに、さらに任意の成分を摂取させてもよい。任意の成分には、たとえば薬学的に許容される基剤、担体、賦形剤、結合剤、崩壊剤、滑沢剤および着色剤などが含まれる。 In the method of the present invention, arctigenin and / or arctiin may be derived from a plant containing arctigenin and / or arctiin, and may be derived from, for example, burdock, burdock, burdock sprout, young burdock and forsythia. Further, arctigenin and / or arctiin may be ingested as a burdock extract obtained using a method for producing a burdock extract described later. Moreover, you may be made to ingest arbitrary components with archigenin and / or archtiin. Optional ingredients include, for example, pharmaceutically acceptable bases, carriers, excipients, binders, disintegrants, lubricants, colorants, and the like.
 アルクチゲニンおよび/またはアルクチインは、経口または非経口(注射剤、塗布剤、貼付剤、座薬、点眼薬、点鼻薬、吸入剤、含嗽剤、舌下吸収剤およびインプラント剤など)にて摂取させてもよい。また、アルクチゲニンおよび/またはアルクチインは、1日あたりの摂取量が成人一人あたり10~2000mgとなるように摂取させてもよい。また、アルクチゲニンおよび/またはアルクチインは、特に限定されないが、週1~7日摂取させてもよい。たとえば、アルクチゲニンおよび/またはアルクチインは、連日または週5もしくは6回摂取させてもよい。 Arctigenin and / or arctiin may be taken orally or parenterally (injection, application, patch, suppository, eye drops, nasal drop, inhalant, mouthwash, sublingual absorbent, implant, etc.) Good. In addition, archigenin and / or archtiin may be ingested so that the daily intake is 10 to 2000 mg per adult. Further, archigenin and / or archtiin is not particularly limited, but may be ingested 1 to 7 days a week. For example, archigenin and / or archtiin may be taken daily or 5 or 6 times a week.
 本発明の方法は、アルクチゲニンおよび/またはアルクチインを医薬的だけでなく非医薬的に摂取させる態様を含む。たとえば、本発明の方法は、アルクチゲニンおよび/またはアルクチインを、病者用食品、健康食品、機能性食品、特定保健用食品、栄養補助食品およびサプリメントなどの形態で対象に摂取させる態様を含む。 The method of the present invention includes an embodiment in which archigenin and / or archtiin is ingested not only pharmaceutically but also non-pharmaceutically. For example, the method of the present invention includes embodiments in which archigenin and / or archtiin is ingested by a subject in the form of a food for a sick person, a health food, a functional food, a food for specified health use, a dietary supplement, and a supplement.
 〔ゴボウシ抽出物の製造方法〕
 本発明に適したゴボウシ抽出物は、生薬切裁工程、抽出工程(酵素変換工程および有機溶媒による抽出工程)、固液分離工程、濃縮工程および乾燥工程を経て製造される。
[Production method of burdock extract]
The burdock extract suitable for the present invention is produced through a herbal medicine cutting process, an extraction process (enzyme conversion process and extraction process using an organic solvent), a solid-liquid separation process, a concentration process, and a drying process.
 (生薬切裁工程)
 生薬切裁工程では、原料とするゴボウシを抽出に適した大きさに切裁する。原料となる生薬は、植物の様々な部位や鉱物、動物など種々の大きさ、形状、固さがあり、その特質に応じた切裁が必要となる。ゴボウシは、当業者に公知の任意の手段を使用して切裁することができる。たとえば、市販の切裁機を使用することができる。
(Herbal medicine cutting process)
In the crude drug cutting process, the raw burdock is cut into a size suitable for extraction. Herbal medicines that are raw materials have various sizes, shapes, and hardness such as various parts of plants, minerals, and animals, and cutting according to their characteristics is necessary. The burdock can be cut using any means known to those skilled in the art. For example, a commercially available cutting machine can be used.
 本発明に適したゴボウシ抽出物の製造方法では、ゴボウシに内在する酵素であるβ-グルコシダーゼの活性を事前に測定し、適したゴボウシを選択することができる。β-グルコシダーゼの活性を測定する方法としては、たとえばp-ニトロフェニル-β-D-グルコピラノシド(C12H15NO8:分子量301.25)(SIGMA-ALDRICH社製)を基質として、ゴボウシ粉砕品を作用させることで生成するp-ニトロフェノールを400nmの吸光度の変化を測定することにより、酵素活性を測定できる。酵素活性を表す単位として1分間に1マイクロモルのp-ニトロフェノールを生成する酵素量を1単位(U)として表すことができる。 In the method for producing a burdock extract suitable for the present invention, the activity of β-glucosidase, which is an enzyme inherent in the burdock, is measured in advance, and a suitable burdock can be selected. As a method for measuring the activity of β-glucosidase, for example, p-nitrophenyl-β-D-glucopyranoside (C12H15NO8: molecular weight 301.25) (manufactured by SIGMA-ALDRICH) is used as a substrate, and it is generated by acting a burdock product. By measuring the change in absorbance of p-nitrophenol at 400 nm, the enzyme activity can be measured. The amount of enzyme that produces 1 micromole of p-nitrophenol per minute can be expressed as 1 unit (U).
 本発明に適したゴボウシ抽出物を得るためには、ゴボウシに内在するβ-グルコシダーゼの活性が、たとえば0.4U/g以上、好ましくは1U/g以上のゴボウシを用いることができる。0.4U/g未満の場合は、加水分解が不十分となり、アルクチゲニンの重量比が下がり、所望のゴボウシ抽出物を効率的に得られなくなる。 In order to obtain a burdock extract suitable for the present invention, a burdock having a β-glucosidase activity inherent in the burdock, for example, 0.4 U / g or more, preferably 1 U / g or more can be used. When it is less than 0.4 U / g, hydrolysis becomes insufficient, the weight ratio of archigenin decreases, and a desired burdock extract cannot be obtained efficiently.
 また、本発明に適したゴボウシ抽出物の製造方法では、任意の粒径に切裁されたゴボウシを使用することができる。切裁されたゴボウシの粒径が小さいほど酵素変換が促進され、抽出物収率も上昇すると考えられる。その反面、粒径が小さすぎると、酵素変換が速過ぎてプロセス管理が困難になったり、後の工程において正確な固液分離に支障が生じたりすることがある。 Moreover, in the method for producing a burdock extract suitable for the present invention, a burdock cut to an arbitrary particle size can be used. It is considered that the smaller the particle size of the cut burdock, the more the enzyme conversion is promoted and the extract yield is increased. On the other hand, if the particle size is too small, the enzyme conversion may be too fast, making process control difficult, and hindering accurate solid-liquid separation in subsequent steps.
 本発明に適したゴボウシ抽出物を得るためには、以下の実施例に示したように、ゴボウシは、9.5mm以下の粒径に、たとえば9.5mmの篩を全通するように切裁される。また、本発明に適したゴボウシ抽出物を得るためには、ゴボウシの粒径が、9.5mm篩を全量通過し、たとえば0.85mmの篩に60~100%が分布するように、さらに好ましくは0.85mmの篩に65~80%が分布するように切裁されることが望ましい。 In order to obtain a burdock extract suitable for the present invention, as shown in the examples below, the burdock is cut to a particle size of 9.5 mm or less, for example, through a 9.5 mm sieve. . Further, in order to obtain a burdock extract suitable for the present invention, it is more preferable that the particle size of the burdock passes through the whole 9.5 mm sieve, for example, 60 to 100% is distributed on the 0.85 mm sieve. It is desirable to cut so that 65 to 80% is distributed on a screen of mm.
 (抽出工程)
 抽出工程は、生薬抽出物粉末製造工程中で、品質上最も重要な工程である。この抽出工程により、生薬抽出物粉末の品質が決まる。本発明に適したゴボウシ抽出物の製造方法では、ゴボウシ抽出物を抽出するために、酵素変換工程と有機溶媒による抽出工程の2段階に分けて抽出を行う。
(Extraction process)
The extraction process is the most important process in terms of quality in the crude drug extract powder manufacturing process. This extraction step determines the quality of the herbal extract powder. In the method for producing a burdock extract suitable for the present invention, in order to extract the burdock extract, extraction is carried out in two stages, an enzyme conversion step and an extraction step using an organic solvent.
 (酵素変換工程)
 酵素変換工程は、本発明に適したゴボウシ抽出物の製造方法において重要な工程である。酵素変換工程は、ゴボウシに内在する酵素であるβ-グルコシダーゼにより、ゴボウシに含まれているアルクチインをアルクチゲニンに酵素変換する工程である。
(Enzyme conversion process)
The enzyme conversion step is an important step in the method for producing a burdock extract suitable for the present invention. The enzyme conversion step is a step of converting arctiin contained in burdock into argtigenin by β-glucosidase, which is an enzyme inherent in burdock.
 具体的には、上記工程で準備したゴボウシ切裁物を、適切な温度に保持することによりβ-グルコシダーゼを作用させて、アルクチインからアルクチゲニンへの反応を進行させる。たとえば、切裁したゴボウシに水などの任意の溶液を加えて、30℃付近の温度にて攪拌することなどにより、ゴボウシを任意の温度に保持することができる。 Specifically, the burdock cut material prepared in the above step is maintained at an appropriate temperature to cause β-glucosidase to act, thereby causing the reaction from arctiin to arctigenin. For example, an arbitrary solution such as water is added to the cut burdock and stirred at a temperature of about 30 ° C., so that the burdock can be maintained at an arbitrary temperature.
 本発明に適したゴボウシ抽出物を得るためには、切裁したゴボウシを30℃付近の温度、たとえば20~50℃の間の温度に保持する。20℃未満の場合は、加水分解が不十分となり、アルクチゲニンの重量比が下がり、所望のゴボウシ抽出物を効率的に得られなくなる。一方、50℃より高温の場合は、酵素が失活し、アルクチゲニンの重量比が下がり、所望のゴボウシ抽出物を効率的に得られなくなる。 In order to obtain a burdock extract suitable for the present invention, the cut burdock is kept at a temperature around 30 ° C., for example, at a temperature between 20 and 50 ° C. When the temperature is lower than 20 ° C., hydrolysis becomes insufficient, the weight ratio of arctigenin decreases, and a desired burdock extract cannot be efficiently obtained. On the other hand, when the temperature is higher than 50 ° C., the enzyme is deactivated, the weight ratio of archigenin decreases, and a desired burdock extract cannot be efficiently obtained.
 また、保持時間は、上記温度において保持する限り特に限定されず、たとえば約30分保持させることができる。20~50℃の間に保持することにより、保持時間にかかわらず、適切な量のアルクチインがアルクチゲニンに酵素変換され、本発明に適したゴボウシ抽出物を得ることができる。 Further, the holding time is not particularly limited as long as it is held at the above temperature, and for example, it can be held for about 30 minutes. By maintaining the temperature between 20 ° C. and 50 ° C., regardless of the holding time, an appropriate amount of arctiin can be enzymatically converted to arctigenin, and a burdock extract suitable for the present invention can be obtained.
 (有機溶媒による抽出工程)
 有機溶媒による抽出工程は、任意の適切な有機溶媒を使用して、ゴボウシからアルクチゲニンおよびアルクチインを抽出する工程である。すなわち、上記の酵素変換工程によりアルクチゲニンが高含量となった状態で、適切な溶媒を添加して、ゴボウシ抽出物を抽出する工程である。たとえば、ゴボウシ抽出物に適切な溶媒を添加して、適切な時間加熱攪拌してゴボウシ抽出物を抽出する。また、加熱攪拌以外にも、加熱還流、ドリップ式抽出、浸漬式抽出または加圧式抽出法などの当業者に公知の任意の抽出法を使用して、ゴボウシ抽出物を抽出することができる。
(Extraction process with organic solvent)
The extraction step with an organic solvent is a step of extracting arctigenin and arctiin from burdock using any appropriate organic solvent. That is, it is a step of extracting a burdock extract by adding an appropriate solvent in a state where the content of archigenin is increased by the enzyme conversion step. For example, a suitable solvent is added to the burdock extract, and the burdock extract is extracted by heating and stirring for a suitable time. In addition to heating and stirring, the burdock extract can be extracted using any extraction method known to those skilled in the art, such as heating reflux, drip extraction, immersion extraction, or pressure extraction.
 アルクチゲニンは水難溶性であることから、有機溶媒を添加することにより、アルクチゲニンの収率を向上させることができる。有機溶媒は、任意の有機溶媒を使用することができる。たとえば、メタノール、エタノールおよびプロパノールなどのアルコール、並びにアセトンを使用することができる。安全性の面を考慮すると、本発明に適したゴボウシ抽出物の製造方法では、有機溶媒としてエタノールを使用することが好ましい。 Since arctigenin is sparingly soluble in water, the yield of arctigenin can be improved by adding an organic solvent. Any organic solvent can be used as the organic solvent. For example, alcohols such as methanol, ethanol and propanol, and acetone can be used. In view of safety, it is preferable to use ethanol as the organic solvent in the method for producing a burdock extract suitable for the present invention.
 加熱攪拌によってゴボウシ抽出物を抽出する場合、加熱攪拌は、任意の温度にて行うことができるが、本発明に適したゴボウシ抽出物を得るためには、80℃以上の温度、たとえば80~90℃の間の温度に保持する。また、加熱攪拌する時間は、上記温度において加熱攪拌する限り、特に限定されず、約30分間、たとえば30~60分間加熱攪拌することにより、溶媒中にゴボウシからアルクチゲニンおよびアルクチインを抽出させることができる。 When the burdock extract is extracted by heating and stirring, the heating and stirring can be performed at an arbitrary temperature. However, in order to obtain a burdock extract suitable for the present invention, a temperature of 80 ° C. or higher, for example, 80 to 90 is used. Hold at a temperature between ° C. In addition, the time for heating and stirring is not particularly limited as long as heating and stirring is performed at the above temperature. By stirring and heating for about 30 minutes, for example, 30 to 60 minutes, architigenin and arctiin can be extracted from burdock into the solvent. .
 アルクチゲニンおよびアルクチインの收率は、加熱攪拌の時間が長いほど向上する。しかし、加熱攪拌の時間が長いと、不要な油脂類が多く溶け出し、濃縮工程の負荷が大きくなってしまう。したがって、加熱攪拌の時間は、状況に応じて適宜決定すればよい。 The yield of arctigenin and arcthiin increases as the heating and stirring time increases. However, if the heating and stirring time is long, a lot of unnecessary oils and fats are dissolved, and the load of the concentration process is increased. Therefore, what is necessary is just to determine the time of heat stirring suitably according to a condition.
 また、アルクチゲニンおよびアルクチインの收率は、エタノール量が多いほどアルクチゲニンおよびアルクチインの溶解度が高くなるため、収率も向上する。しかし、エタノール量が多いと、不要な油脂類も多く溶け出し、濃縮工程の負荷が大きくなってしまう。したがって、投入量は、状況に応じて適宜決定すればよい。なおこの工程での加熱攪拌により、同時にゴボウシ抽出物を滅菌および殺菌することができる。 Further, the yield of arctigenin and arctiin increases as the amount of ethanol increases, so that the solubility of arctigenin and arctiin increases. However, if the amount of ethanol is large, a lot of unnecessary fats and oils are dissolved, and the load of the concentration process is increased. Therefore, the input amount may be appropriately determined according to the situation. In addition, the burdock extract can be simultaneously sterilized and sterilized by heating and stirring in this step.
 (固液分離工程)
 固液分離工程は、抽出の終わったゴボウシを抽出液から分離する工程である。固液分離は、当業者に公知の任意の方法を使用して行うことができる。固液分離法には、たとえば濾過法、沈降法および遠心分離法などがある。工業的には、遠心分離法が望ましい。
(Solid-liquid separation process)
The solid-liquid separation step is a step of separating the burdock that has been extracted from the extract. Solid-liquid separation can be performed using any method known to those skilled in the art. Examples of the solid-liquid separation method include a filtration method, a sedimentation method, and a centrifugal separation method. Industrially, a centrifugal separation method is desirable.
 (濃縮工程)
 濃縮工程は、乾燥に先立ちゴボウシ抽出液から溶媒を除去する工程である。ゴボウシ抽出液からの溶媒の除去は、当業者に公知の任意の方法を使用して行うことができる。しかし、上記工程によって得られたゴボウシからの抽出液が、さらに高温に長時間曝されることがないようにすることが好ましい。たとえば、減圧濃縮法を使用することにより、高温に長時間曝されることなく、ゴボウシ抽出液を濃縮することができる。
(Concentration process)
The concentration step is a step of removing the solvent from the burdock extract prior to drying. Removal of the solvent from the burdock extract can be performed using any method known to those skilled in the art. However, it is preferable that the extract from the burdock obtained by the above process is not exposed to a higher temperature for a longer time. For example, by using the vacuum concentration method, it is possible to concentrate the burdock extract without being exposed to a high temperature for a long time.
 ゴボウシ抽出液の濃縮は、所望の濃度のゴボウシ抽出物が得ることができる濃度まで濃縮することができる。たとえば、以下の乾燥工程において乾燥を適正に行うことができる程度まで濃縮することが望ましい。また、以下の工程においてゴボウシ抽出物を乾燥させて粉末製剤にした場合に、適切な製剤特性が得られる濃度まで濃縮を行うことが望ましい。 The concentration of the burdock extract can be concentrated to a concentration at which a burdock extract having a desired concentration can be obtained. For example, it is desirable to concentrate to the extent that drying can be appropriately performed in the following drying process. In addition, when the burdock extract is dried into a powder formulation in the following steps, it is desirable to concentrate to a concentration at which appropriate formulation characteristics can be obtained.
 アルクチゲニンおよびアルクチインは、水難溶性であるため、アルクチゲニンおよびアルクチインが以下の乾燥工程における製造装置内に付着する量が多く、最終的な収率が大幅に低下する。そこで、製造装置にアルクチゲニンおよびアルクチインが付着するのを防止するために、この濃縮工程で得られたゴボウシ抽出液にデキストリンを添加することができる。デキストリンの添加量は、たとえば濃縮液の固形分に対して15~30%程度が望ましい。 Since arctigenin and arctiin are sparingly soluble in water, the amount of arctigenin and arctiin adhering to the production apparatus in the following drying process is large, and the final yield is greatly reduced. Therefore, dextrin can be added to the burdock extract obtained in this concentration step in order to prevent arctigenin and arctiin from adhering to the production apparatus. The amount of dextrin added is preferably about 15 to 30% with respect to the solid content of the concentrate, for example.
 (乾燥工程)
 上記工程によって得られたゴボウシ抽出物を粉末状に仕上げる工程である。乾燥は、当業者に公知の任意の方法を使用して行うことができる。たとえば、乾燥法として、凍結乾燥および噴霧乾燥などが知られているが、実験室レベルであれば前者、量産レベルであれば後者を用いるのが一般的である。
(Drying process)
It is a step of finishing the burdock extract obtained by the above step into a powder form. Drying can be performed using any method known to those skilled in the art. For example, freeze drying and spray drying are known as drying methods. The former is generally used at the laboratory level and the latter is used at the mass production level.
 以上の製造工程により、アルクチゲニンを高含量にて含有するゴボウシ抽出物を得ることができる。このゴボウシ抽出物の製造方法は、20℃~50℃の温度で酵素変換を行う工程を含まなければならないが、その他の工程の全てを含む必要はない。 By the above manufacturing process, a burdock extract containing a high content of arctigenin can be obtained. This method for producing burdock extract must include a step of performing enzyme conversion at a temperature of 20 ° C. to 50 ° C., but does not need to include all of the other steps.
 また、以上の製造工程により、アルクチゲニンの濃度が高いゴボウシ抽出物を、安価にかつ簡便に得ることができる。したがって、この方法により得られたゴボウシ抽出物を用いることによって、本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤を安価にかつ簡便に製造することができる。 In addition, the above-described production process makes it possible to obtain a burdock extract with a high concentration of arctigenin at low cost and in a simple manner. Therefore, by using the burdock extract obtained by this method, the vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be produced inexpensively and easily.
 また、以上の製造工程により得られるゴボウシ抽出物のアルクチゲニン濃度が高いため、従来のゴボウシ抽出物を用いた場合と比較して、血管壁強化剤、血管網形成抑制剤および血管正常化剤の1日当たりの全体量を少なくすることができる。したがって、患者の負担を軽減させることができる。 In addition, since the arguchigenin concentration of the burdock extract obtained by the above production process is high, it is one of the vascular wall strengthening agent, vascular network formation inhibitor and vascular normalizing agent compared with the case of using the conventional burdock extract. The total amount per day can be reduced. Therefore, the burden on the patient can be reduced.
 〔実施例1〕
 以下の方法により、アルクチゲニンを含有するゴボウシエキスを調製した。
Example 1
A burdock extract containing arctigenin was prepared by the following method.
 ゴボウシ(酵素活性7.82U/g)を切裁し、9.5mmの篩を全通するものをさらに0.85mmの篩に通し、75%が残ることを確認した。このゴボウシ細切80kgを30~32℃に保温した水560Lに加えて30分間攪拌した後、エタノール253Lを加えて85℃に昇温し、さらに40分間加熱還流した。この液を遠心分離し、得られた抽出液を得た。この操作を2回繰り返して得られた抽出液を合わせて、減圧濃縮し、抽出物固形分に対してデキストリン25%を加えて、噴霧乾燥した。アルクチゲニンおよびアルクチイン含量は、それぞれ6.4%および7.2%であり、アルクチゲニン/アルクチイン(重量比)=0.89のゴボウシ抽出物粉末(デキストリン25%含有)が得られた。 The burdock (enzyme activity: 7.82 U / g) was cut and the whole 9.5 mm sieve was passed through a 0.85 mm sieve to confirm that 75% remained. 80 kg of this burdock slice was added to 560 L of water kept at 30 to 32 ° C. and stirred for 30 minutes, and then 253 L of ethanol was added, the temperature was raised to 85 ° C., and the mixture was further heated to reflux for 40 minutes. This liquid was centrifuged to obtain the resulting extract. Extracts obtained by repeating this operation twice were combined, concentrated under reduced pressure, and 25% dextrin was added to the extract solids, followed by spray drying. Arctigenin and arcthiin contents were 6.4% and 7.2%, respectively, and burdock extract powder (containing 25% dextrin) having an arctigenin / arctiin (weight ratio) = 0.89 was obtained.
 〔試験例1〕
 異常な血管のモデルとして、腫瘍細胞を移植したマウスを用いた。アルクチゲニン含有ゴボウシエキス反復投与による腫瘍内微小環境変化を機能学的に解析するため、腫瘍内の血流を評価した。
[Test Example 1]
As an abnormal blood vessel model, a mouse transplanted with tumor cells was used. To functionally analyze the changes in the tumor microenvironment caused by repeated administration of arguchigenin-containing gobobull extract, the blood flow in the tumor was evaluated.
 ヒト膵臓癌細胞Suit2の1×106 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の皮下に移植した。移植21日目に、移植マウスを、(a)未治療群、(b)ゴボウシエキス投与群、(c)ベバシズマブ投与群、および(d)ゲムシタビン投与群の4つの群に分け、4週間治療を継続した。ゴボウシエキスは、実施例1のゴボウシエキスを餌に0.5%(w/w)配合したものをマウスに与えた。マウスの一日の餌の摂取量を3~5gとして計算すると、アルクチゲニンは、15~25mg/匹/日投与されたことになる。ベバシズマブは、アバスチン点滴静注用100mg/4ml(中外製薬)を使用して、5mg/kgを週1回、腹腔内投与した。ゲムシタビンは、点滴用ゲムシタビン製剤(イーライリリー社)を使用して、100mg/kgを週2回、腹腔内投与した。 1 × 10 6 cells / 200 μl of human pancreatic cancer cell Suit2 was transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan). On the 21st day of transplantation, the transplanted mice were divided into 4 groups: (a) untreated group, (b) gobo cow extract administered group, (c) bevacizumab administered group, and (d) gemcitabine administered group, and treatment was continued for 4 weeks. did. As for the burdock extract, mice were fed with 0.5% (w / w) of the burdock extract of Example 1 in the diet. When the daily food intake of the mouse is calculated as 3 to 5 g, arctigenin is administered at 15 to 25 mg / animal / day. Bevacizumab was administered intraperitoneally at a dose of 5 mg / kg once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion. Gemcitabine was intraperitoneally administered 100 mg / kg twice a week using a gemcitabine preparation for infusion (Eli Lilly and Company).
 (腫瘍サイズ)
 治療開始4週間後の各群の平均腫瘍サイズは、(a)未治療群が228mm2、(b)ゴボウシエキス投与群が189 mm2、(c)ベバシズマブ投与群が56 mm2、および(d)ゲムシタビン投与群が68 mm2であった。
(Tumor size)
The mean tumor size in each group 4 weeks after the start of treatment was (a) 228 mm 2 in the untreated group, (b) 189 mm 2 in the gobobull extract administration group, (c) 56 mm 2 in the bevacizumab administration group, and (d) The gemcitabine administration group was 68 mm 2 .
 (腫瘍組織におけるガドリニウムDTPAの取り込み)
 治療開始4週間後に、各群のマウス腫瘍組織におけるガドリニウムDTPAの取り込みを評価した。ガドリニウムDTPAを急速静注した後120秒まで、9.4テスラMRI装置(BIOSPEC 94/20USR)を用いて、腫瘍のダイナミック造影T1強調画像(時間分解能1.8-5.3秒)を撮影した。この画像から、腫瘍組織内のガドリニウムDTPAのシグナル強度を測定した。図1は、ガドリニウムDTPA静注後0秒のシグナル強度を100としたときの、30秒ごとのシグナル強度の平均値を示すグラフである。腫瘍組織内のガドリニウムDTPAのシグナル強度の増加は、腫瘍組織内へのガドリニウムDTPAの取り込みを意味する。腫瘍組織内へのガドリニウムDTPAの取り込みの度合いは、腫瘍組織内の血流状態の指標となる。
(Incorporation of gadolinium DTPA in tumor tissue)
Four weeks after the start of treatment, uptake of gadolinium DTPA in each group of mouse tumor tissues was evaluated. Using a 9.4 Tesla MRI system (BIOSPEC 94 / 20USR), a dynamic contrast T1-weighted image of the tumor (time resolution 1.8-5.3 seconds) was taken up to 120 seconds after rapid intravenous injection of gadolinium DTPA. From this image, the signal intensity of gadolinium DTPA in the tumor tissue was measured. FIG. 1 is a graph showing the average value of the signal intensity every 30 seconds when the signal intensity at 0 seconds after gadolinium DTPA intravenous injection is taken as 100. An increase in the signal intensity of gadolinium DTPA within the tumor tissue means uptake of gadolinium DTPA into the tumor tissue. The degree of uptake of gadolinium DTPA into the tumor tissue is an indicator of the blood flow state in the tumor tissue.
 (腫瘍内微小環境変化の機能学的解析)
 図1に示すように、ガドリニウムDTPA静注後90~120秒において、アルクチゲニン含有ゴボウシエキス投与群における治療後の腫瘍組織中心部のシグナル強度は、118.1 ± 13.7%まで増加した。一方、未治療群では、90~120秒において102.6 ± 3.4%であり、増加しなかった。したがって、ゴボウシエキス投与群では、未治療群と比較して血流が良い傾向であった(P <0.05, t-test)。また、抗腫瘍効果が見られたゲムシタビン治療群では、未治療群と同様に腫瘍組織中心部のシグナル強度が増加していなかった(図示せず)。一方、血管新生阻害作用を持つベバシズマブ治療群では、シグナル強度が増加する傾向にあった(図示せず)。
(Functional analysis of changes in tumor microenvironment)
As shown in FIG. 1, in 90 to 120 seconds after intravenous injection of gadolinium DTPA, the signal intensity at the center of the tumor tissue after treatment in the group administered with argotigenin-containing burdock extract increased to 118.1 ± 13.7%. On the other hand, in the untreated group, it was 102.6 ± 3.4% in 90 to 120 seconds, and did not increase. Therefore, the blood flow tended to be better in the burdock extract administration group than in the untreated group (P <0.05, t-test). Moreover, in the gemcitabine treatment group in which the antitumor effect was observed, the signal intensity at the center of the tumor tissue did not increase as in the untreated group (not shown). On the other hand, in the bevacizumab treatment group having angiogenesis inhibitory action, the signal intensity tended to increase (not shown).
 以上の結果から、アルクチゲニン含有ゴボウシエキスの投与により腫瘍組織の乏血流領域が縮小し、富血流領域が残存する可能性が示唆された。 From the above results, it was suggested that the poor blood flow region of the tumor tissue may be reduced by the administration of archigenin-containing burdock extract and the rich blood flow region may remain.
 〔試験例2〕
 アルクチゲニン含有ゴボウシエキスの反復投与による腫瘍内微小環境変化を病理学的に解析するため、低酸素領域(Pimonidazole)および細胞増殖(BrdU)を免疫染色法で評価した。また、腫瘍内血管のうち、ペリサイトで覆われている血管の割合をCD31およびαSMAの二重免疫染色法により評価した。
[Test Example 2]
In order to analyze pathologically the changes in the tumor microenvironment due to repeated administration of argotigenin-containing gobo-bovine extract, hypoxia (Pimonidazole) and cell proliferation (BrdU) were evaluated by immunostaining. In addition, the ratio of blood vessels covered with perisite among blood vessels in the tumor was evaluated by double immunostaining of CD31 and αSMA.
 ヒト膵臓癌細胞のMiapaca-2(ATCC CRL 1420) 5×106 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の皮下に移植した。移植16日目に、移植マウスを、(a)未治療群、(b)ゴボウシエキス投与群、(c)ベバシズマブ投与群、および(d)ゲムシタビン投与群の4つの群に分け、4週間治療を継続した。ゴボウシエキス投与群は、ゴボウシエキスを2.0%(w/w)配合した餌をマウスに与えた。マウスの餌の一日摂取量を3~5gとして計算すると、アルクチゲニンは、60~100mg/匹/日投与されたことになる。ベバシズマブは、アバスチン点滴静注用100mg/4ml(中外製薬)を使用して、5mg/kgを週1回、腹腔内投与した。ゲムシタビンは、点滴用ゲムシタビン製剤(イーライリリー社)を使用して、100mg/kgを週2回、腹腔内投与した。 Human pancreatic cancer cells Miapaca-2 (ATCC CRL 1420) 5 × 10 6 Cells / 200 μl were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan). On the 16th day after transplantation, the transplanted mice were divided into 4 groups: (a) untreated group, (b) gobo cow extract administered group, (c) bevacizumab administered group, and (d) gemcitabine administered group, and treatment was continued for 4 weeks. did. The burdock extract administration group gave mice a diet containing 2.0% (w / w) of burdock extract. When the daily intake of the mouse food is calculated to be 3 to 5 g, arctigenin is administered at 60 to 100 mg / animal / day. Bevacizumab was administered intraperitoneally at a dose of 5 mg / kg once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion. Gemcitabine was intraperitoneally administered 100 mg / kg twice a week using a gemcitabine preparation for infusion (Eli Lilly and Company).
(腫瘍サイズ)
 治療開始4週間後の各群の平均腫瘍サイズは、(a)未治療群が1851mm2、(b)ゴボウシエキス投与群が1035 mm2、(c)ベバシズマブ投与群が911 mm2、および(d)ゲムシタビン投与群が949 mm2であった。
(Tumor size)
Mean tumor size of each group after treatment after 4 weeks, (a) untreated group 1851mm 2, (b) Goboushiekisu administered group 1035 mm 2, (c) bevacizumab group 911 mm 2, and (d) The gemcitabine administration group was 949 mm 2 .
(治療開始4週間後の、腫瘍内微小環境変化の病理学的解析)
 治療開始4週間後に、BrdU(Sigma-Aldrich)20mg/mLを100μL、ピモニダゾール(pimonidazole)16mg/mLを100μL、それぞれ腹腔内投与し1時間後に腫瘍を採取した。採取した各群の腫瘍切片において、腫瘍内微小環境変化を病理学的に解析するため、低酸素領域(ピモニダゾール)および細胞増殖(BrdU)を免疫染色で評価した。また、腫瘍内血管のうち、ペリサイトで覆われている血管の割合をCD31およびαSMAの二重免疫染色法により評価した。
(Pathological analysis of changes in tumor microenvironment 4 weeks after treatment)
Four weeks after the start of treatment, 100 μL of BrdU (Sigma-Aldrich) 20 mg / mL and 100 μL of pimonidazole 16 mg / mL were administered intraperitoneally, and tumors were collected 1 hour later. In the collected tumor sections of each group, the hypoxic region (pimonidazole) and cell proliferation (BrdU) were evaluated by immunostaining in order to pathologically analyze changes in the tumor microenvironment. In addition, the ratio of blood vessels covered with perisite among blood vessels in the tumor was evaluated by double immunostaining of CD31 and αSMA.
 ピモニダゾールは2-ニトロイミダゾール系の化合物で,酸素分圧10mmHg以下の強い低酸素下で還元され,細胞内タンパク質などと結合し,付加体を形成する性質をもち、現在、最も汎用されている低酸素プローブである。 Pimonidazole is a 2-nitroimidazole compound that is reduced under strong hypoxia with an oxygen partial pressure of 10 mmHg or less, and binds to intracellular proteins to form adducts. It is an oxygen probe.
 BrdUはチミジンアナログであり、細胞周期のS期において新たに合成されたDNAに取り込まれる。BrdUでラベル化されたDNAは、抗BrdU抗体で検出することができるため、抗BrdU抗体はDNA複製を行う増殖細胞の検出ツールとなる。 BrdU is a thymidine analog and is incorporated into newly synthesized DNA in the S phase of the cell cycle. Since BrdU-labeled DNA can be detected with an anti-BrdU antibody, the anti-BrdU antibody is a proliferating cell detection tool that performs DNA replication.
 ペリサイトによる血管外部の裏打ちが行われることにより、血液は漏出することなく流れる事が出来る。しかしながら、腫瘍内部の血管では、内皮細胞でのみ構成された虚弱な血管が多く形成されるため、血液が漏出し腫瘍内部への抗癌剤の送達が阻害されている。ベバシズマブに代表される血管新生阻害剤は、ペリサイトが覆われていない血管の割合を下げることにより、併用される抗癌剤の効果を高められると考えられる。 The blood can flow without leaking because the outside of the blood vessel is lined with perisite. However, since many weak blood vessels composed only of endothelial cells are formed in the blood vessels inside the tumor, blood leaks and the delivery of the anticancer drug into the tumor is inhibited. An angiogenesis inhibitor typified by bevacizumab is considered to be able to enhance the effect of the anticancer agent used in combination by lowering the proportion of blood vessels not covered with perisite.
 (治療後の腫瘍内微小環境の変化)
 各治療後の腫瘍内ピモニダゾールの陽性領域の割合(%)を図2に示す。腫瘍内ピモニダゾールの陽性領域の割合(%)は、未治療群で40%、ベバシズマブ投与群で18%、ゴボウシエキス投与群で19%、ゲムシタビン投与群で30%であった。この結果から、ベバシズマブ治療およびゴボウシエキス治療によって低酸素領域が顕著に低下することが明らかになった。これは、血管が正常化したことによると考えられる。
(Changes in the tumor microenvironment after treatment)
The percentage (%) of the positive area of pimonidazole in the tumor after each treatment is shown in FIG. The percentage of positive tumor pimonidazole areas was 40% in the untreated group, 18% in the bevacizumab group, 19% in the gobobull extract group, and 30% in the gemcitabine group. From this result, it became clear that the hypoxic region was remarkably reduced by bevacizumab treatment and gobobull extract treatment. This is thought to be due to the normalization of blood vessels.
 各治療後の腫瘍内BrdU陽性細胞の割合(%)を図3に示す。腫瘍内BrdU陽性細胞の割合(%)は、未治療群で7%、ベバシズマブ投与群で15%、ゴボウシエキス投与群で11%、ゲムシタビン投与群で6%であった。この結果から、ベバシズマブ治療およびゴボウシエキス治療によって増殖細胞が増加していることが明らかになった。これは、血管が正常化したことによると考えられる。 Fig. 3 shows the ratio (%) of BrdU positive cells in the tumor after each treatment. The percentage (%) of BrdU positive cells in the tumor was 7% in the untreated group, 15% in the bevacizumab group, 11% in the gobobull extract group, and 6% in the gemcitabine group. From this result, it was clarified that the number of proliferating cells was increased by the treatment with bevacizumab and the treatment of gobo-bovine extract. This is thought to be due to the normalization of blood vessels.
 各治療後の腫瘍内ペリサイト被覆血管の割合(%)を図4に示す。ペリサイトの割合は、CD31およびαSMA二重陽性面積をCD31陽性面積で割ることによって求めた。ペリサイト被覆血管の割合は、未治療群で23.3%、ゴボウシエキス投与群で35.2%となった。したがって、ゴボウシエキス投与によって血管が正常化し、ペリサイト被覆血管が増加したことが示唆される。この結果は、アルクチゲニンが、ペリサイトなどの血管壁細胞により被覆された血管を増加させる血管壁強化剤として用いることができることを示す。 Figure 4 shows the percentage (%) of pericyte-coated blood vessels within each tumor after each treatment. The percentage of perisite was determined by dividing the CD31 and αSMA double positive area by the CD31 positive area. The percentage of pericyte-coated blood vessels was 23.3% in the untreated group and 35.2% in the burdock extract group. Therefore, it is suggested that administration of burdock extract normalized blood vessels and increased pericyte-coated blood vessels. This result indicates that arctigenin can be used as a vascular wall strengthening agent to increase blood vessels covered with vascular wall cells such as pericytes.
 したがって、アルクチゲニンを投与することにより、腫瘍組織内の血管が正常化したことが示唆される。また、血管が正常化することにより、薬剤が送達されやすい環境が整うことが示唆される。そのため、抗癌剤をアルクチゲニンと併用投与することにより、抗癌剤の腫瘍組織への薬剤送達が増強され、その結果、抗癌剤の薬効が増強されることが示唆される。 Therefore, it is suggested that administration of arctigenin normalized the blood vessels in the tumor tissue. In addition, it is suggested that normalization of blood vessels provides an environment in which drugs can be easily delivered. Therefore, it is suggested that by administering the anticancer agent together with archigenin, drug delivery of the anticancer agent to the tumor tissue is enhanced, and as a result, the efficacy of the anticancer agent is enhanced.
 〔試験例3〕
 血管鋳型法を用いて、アルクチゲニン含有ゴボウシエキスの反復投与による腫瘍内血管構造の変化を検討した。
[Test Example 3]
Using the vascular template method, changes in the vascular structure in the tumor by repeated administration of argotigenin-containing burdock extract were examined.
 ヒト膵臓癌細胞のMiapaca-2(ATCC CRL 1420) 5×106 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の皮下に移植し、腫瘍サイズが約200mm3になったものを選別し、治療対象マウスとした。作製した移植マウスを、未治療群およびゴボウシエキス投与群に分け、4週間治療を継続した。ゴボウシエキス投与群は、アルクチゲニンを10%配合したエキス750mg/kgを週5回、経口投与した。 Human pancreatic cancer cells Miapaca-2 (ATCC CRL 1420) 5 × 10 6 Cells / 200 μl were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan), and the tumor size was about 200 mm 3 The mice were selected and treated. The prepared transplanted mice were divided into an untreated group and a burdock extract administration group, and the treatment was continued for 4 weeks. The burdock extract administration group was orally administered 750 mg / kg extract containing 10% arctigenin 5 times a week.
 (血管鋳型の作成)
 治療開始4週間後、マウスを深麻酔後、開胸し、心臓より生理食塩水をかん流し、血液を除去した。血液除去後、加速剤(Ladd research industry)を加えた40%メタクリル酸メチル(日新EM株式会社)を含むMercox(Ladd research industry)10mLを心臓からかん流した。その後、マウスを60℃の温水中に、60分浸水させ樹脂の硬化を行った。腫瘍を切り離し、20%NaOHで組織を腐食させ血管鋳型標本を取り出し、走査型電子顕微鏡を用いて、腫瘍内血管の構造変化を検討した。
(Create blood vessel mold)
Four weeks after the start of treatment, the mouse was deeply anesthetized, and then thoracotomy was performed, and saline was perfused from the heart to remove blood. After the blood was removed, 10 mL of Mercox (Ladd research industry) containing 40% methyl methacrylate (Nisshin EM Co., Ltd.) with an accelerator (Ladd research industry) added was perfused from the heart. Thereafter, the mice were immersed in warm water at 60 ° C. for 60 minutes to cure the resin. The tumor was cut off, the tissue was corroded with 20% NaOH, the blood vessel template specimen was taken out, and the structural change of the blood vessel in the tumor was examined using a scanning electron microscope.
 (治療後の腫瘍血管構造の変化)
 各治療後の腫瘍内部の血管を図5に示す。未治療群の腫瘍では、血管は密集し、複雑に入り組んだ構造を形成しており、また血管の末端部分においても蛇行し隣接する血管と絡み合うような構造をしていた。一方で、アルクチゲニン含有ゴボウシエキス治療を行った腫瘍では、未治療群で見られたような血管の密集した構造は見られず、また血管の末端部分においても、血管の蛇行も少なく、隣接する血管と絡み合う構造は見られなかった。したがって、アルクチゲニン含有ゴボウシエキス投与によって血管が正常化し、正常な血管網が形成されたことが示唆される。この結果は、アルクチゲニンが、血管網、特に異常な血管網の形成を抑制する血管網形成抑制剤として用いることができることを示す。
(Changes in tumor vasculature after treatment)
The blood vessels inside the tumor after each treatment are shown in FIG. In the untreated group of tumors, the blood vessels were dense and formed a complicated structure, and the end portions of the blood vessels also meandered and entangled with adjacent blood vessels. On the other hand, in the tumor treated with architigenin-containing burdock extract, the dense structure of blood vessels as seen in the untreated group was not seen, and there was little meandering of the blood vessels at the end part of the blood vessels. No intertwined structure was found. Therefore, it is suggested that the blood vessels were normalized by administration of the architigenin-containing burdock extract and a normal vascular network was formed. This result indicates that arctigenin can be used as a vascular network formation inhibitor that suppresses the formation of vascular networks, particularly abnormal vascular networks.
 〔試験例4〕
 アルクチゲニン含有ゴボウシエキスの反復投与による、腫瘍内における抗癌剤の薬物動態変化を解析するため、血中および腫瘍内CPT-11濃度を評価した。
(Test Example 4)
In order to analyze the pharmacokinetic changes of anticancer drugs in tumors due to repeated administration of argotigenin-containing gobobull extract, blood and intratumor CPT-11 concentrations were evaluated.
 ヒト膵臓癌細胞のMiapaca-2(ATCC CRL 1420) 5×106 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の皮下に移植し、腫瘍サイズが約200mm3になったものを選別し、治療対象マウスとした。作製した移植マウスを、未治療群およびゴボウシエキス投与群に分け、4週間治療を継続した。ゴボウシエキス投与群は、アルクチゲニンを10%配合したエキス750mg/kgを週5回、経口投与した。 Human pancreatic cancer cells Miapaca-2 (ATCC CRL 1420) 5 × 10 6 Cells / 200 μl were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan), and the tumor size was about 200 mm 3 The mice were selected and treated. The prepared transplanted mice were divided into an untreated group and a burdock extract administration group, and the treatment was continued for 4 weeks. The burdock extract administration group was orally administered 750 mg / kg extract containing 10% arctigenin 5 times a week.
 治療開始4週間後、未治療群およびゴボウシエキス投与群に、カンプト点滴静注(ヤクルト)50mg/kgを腹腔内投与し、それぞれ30分、1時間、3時間後に深麻酔下で腫瘍および血液を回収した。回収した血液は、1200×g、20分、4℃の遠心分離を行い、血漿を回収した。血漿200μLを採取し、アセトニトリルを等量加え、12,000rpm、4℃、10分間の遠心分離を行った。腫瘍は、回収後100mg程度を測りとり、100mg/200μL MilliQでホモジナイズし、アセトニトリル300μLを加え、12,000rpm、4℃、10分間の遠心分離を行った。各々上清を回収し、10μLずつ注入して、HPLC分析を行った。標品については、CPT-11は10mgを5mLのメタノールに溶解し、10μLずつ注入して、HPLC分析を行った。 Four weeks after the start of treatment, 50 mg / kg of campto intravenous infusion (Yakult) was intraperitoneally administered to the untreated group and the burdock extract group, and the tumor and blood were collected under deep anesthesia 30 minutes, 1 hour, and 3 hours, respectively. did. The collected blood was centrifuged at 1200 × g for 20 minutes at 4 ° C. to collect plasma. 200 μL of plasma was collected, an equal volume of acetonitrile was added, and centrifugation was performed at 12,000 rpm, 4 ° C. for 10 minutes. About 100 mg of the tumor was measured after collection, homogenized with 100 mg / 200 μL MilliQ, added with 300 μL of acetonitrile, and centrifuged at 12,000 rpm at 4 ° C. for 10 minutes. Each supernatant was collected and 10 μL was injected and subjected to HPLC analysis. For the sample, 10 mg of CPT-11 was dissolved in 5 mL of methanol, and 10 μL each was injected to perform HPLC analysis.
 (治療後の血中および腫瘍内抗癌剤の薬物動態の変化)
 各治療群へのカンプト点滴静注投与後の各時間における、血中および腫瘍内のCPT-11の濃度を図6に示した。未治療群およびゴボウシエキス投与群の各時間帯におけるCPT-11血中濃度は、両群に明らかな変化は認められなかった。一方で、腫瘍内におけるCPT-11濃度は、30分、1時間後で両群に変化は認められないが、投与3時間後の腫瘍内CPT-11濃度は、未治療群で4μg/g tumor、アルクチゲニン治療群で8.7μg/g tumorとなった。アルクチゲニン治療により、血中CPT-11濃度に影響を与えることなく、腫瘍内CPT-11の濃度を上昇させることが出来ることが明らかとなった。
 〔試験例5〕
 腫瘍が増大する過程においては、増大した腫瘍組織全体にわたって栄養や酸素が血管を通して供給されていなければならない。しかしながら、多くの腫瘍においては、未熟な血管形成のため、これらが十分に供給されておらず、部分的な組織壊死を起こし、組織が潰瘍状になる部位が発生すると考えられている。そこで、前述のゴボウシエキスの血管正常化効果を組織状態から検証するため、それぞれの治療後の腫瘍組織における潰瘍形成を観察した。
(Changes in pharmacokinetics of anticancer drugs in blood and tumor after treatment)
FIG. 6 shows the concentrations of CPT-11 in blood and in the tumor at each time after intravenous administration of campto instillation to each treatment group. The CPT-11 blood concentration in each time zone of the untreated group and the burdock extract administration group did not change clearly in either group. On the other hand, the CPT-11 concentration in the tumor did not change in both groups after 30 minutes and 1 hour, but the tumor CPT-11 concentration 3 hours after administration was 4 μg / g tumor in the untreated group. 8.7 μg / g tumor was observed in the arctigenin treatment group. It has been clarified that treatment with arctigenin can increase the concentration of CPT-11 in the tumor without affecting the blood CPT-11 concentration.
(Test Example 5)
In the process of tumor growth, nutrients and oxygen must be supplied through blood vessels throughout the enlarged tumor tissue. However, in many tumors, they are not sufficiently supplied due to immature blood vessel formation, and partial tissue necrosis is caused, and it is considered that a site where the tissue becomes ulcerous is generated. Therefore, in order to verify the blood vessel normalization effect of the above-mentioned burdock extract from the tissue state, ulcer formation in the tumor tissue after each treatment was observed.
 ヒト大腸癌細胞のLS174T (ATCC CL-188) 5×105 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の皮下に移植した。移植14日目に、移植マウスを、(a)未治療群、(b)ゴボウシエキスの投与群、(c)ベバシズマブの投与群、および(d)ゴボウシエキスとベバシズマブの併用投与群の4つの群に分け、5週間治療を継続した。ゴボウシエキス投与群は、アルクチゲニンを10%配合したエキス250mg/kgを週5回、経口投与した。ベバシズマブ投与群は、アバスチン点滴静注用100mg/4ml(中外製薬)を使用して、5mg/kgを週1回、腹腔内投与した。 Human colon cancer cells LS174T (ATCC CL-188) 5 × 10 5 cells / 200 μl were transplanted subcutaneously into BALB / cAJc1-nu / nu mice (Claire Japan). On the 14th day after transplantation, the transplanted mice were divided into 4 groups: (a) untreated group, (b) gobo cow extract administered group, (c) bevacizumab administered group, and (d) gobo cow extract and bevacizumab combined administration group. The treatment was continued for 5 weeks. The burdock extract administration group was orally administered 250 mg / kg of an extract containing 10% architigenin five times a week. In the bevacizumab administration group, 5 mg / kg was administered intraperitoneally once a week using 100 mg / 4 ml (Chugai Pharmaceutical) for intravenous infusion.
 各治療群における腫瘍に潰瘍を生じたマウスの比率(%)を図7に示す。50%潰瘍形成率は、未治療群が8日、ゴボウシエキス投与群が20日、ベバシズマブ投与群が10日、併用投与群が24日であった。したがって、ゴボウシエキス投与群および併用投与群では、未治療群およびベバシズマブ投与群と比較して、腫瘍における潰瘍形成の抑制効果が認められた。ベバシズマブ投与群では、未治療群と比較して潰瘍形成の抑制効果が認められたが、一過性であった。この効果は、ベバシズマブの持つ血管新生阻害作用による効果と考えられる。一方、ベバシズマブに加えてゴボウシエキスを併用投与した場合、潰瘍形成の阻害が増強された。これは、ベバシズマブ単剤での腫瘍に対する血流改善効果に対して、ゴボウシエキス治療による血管正常化効果による血流改善効果が、併用増強されたためであると考えられる。このように、アルクチゲニンとの併用投与により、血管正常化によって低酸素および低栄養状態にある領域を顕著に縮小することができるため、癌の悪性化を抑制することが期待される。 FIG. 7 shows the ratio (%) of mice that produced ulcers in the tumors in each treatment group. The 50% ulcer formation rate was 8 days in the untreated group, 20 days in the gobo-bovine extract administration group, 10 days in the bevacizumab administration group, and 24 days in the combination administration group. Therefore, in the burdock extract administration group and the combination administration group, an inhibitory effect on ulcer formation in the tumor was observed compared with the untreated group and the bevacizumab administration group. In the bevacizumab administration group, the effect of suppressing ulcer formation was observed compared to the untreated group, but it was transient. This effect is thought to be due to the angiogenesis inhibitory action of bevacizumab. On the other hand, when a gobo cow extract was administered in combination with bevacizumab, inhibition of ulcer formation was enhanced. This is considered to be because the blood flow improving effect by the blood vessel normalizing effect by the treatment with gobo cow extract was enhanced in combination with the blood flow improving effect on the tumor with bevacizumab alone. Thus, the combined administration with arctigenin can remarkably reduce the hypoxia and hypotrophic regions due to blood vessel normalization, and is expected to suppress cancer malignancy.
 (併用による延命効果)
 上述した治療を5週間継続した後に、治療を中止し、生存期間の追跡を実施した。各群における生存率を図8に示す。50%生存期間は、図8に示すように未治療群が103日、ゴボウシエキス投与群が114日、ベバシズマブ投与群が107日、併用投与群が137日であった。したがって、併用投与群では、未治療群および単独投与群と比較して、それぞれ33%および20-28%の生存期間延長効果が認められた。
(Life extension effect by combined use)
After the above treatment was continued for 5 weeks, the treatment was stopped and the survival was followed. The survival rate in each group is shown in FIG. As shown in FIG. 8, the 50% survival period was 103 days for the untreated group, 114 days for the burdock extract administration group, 107 days for the bevacizumab administration group, and 137 days for the combination administration group. Therefore, the combined administration group showed 33% and 20-28% survival-prolonging effects as compared to the untreated group and the single administration group, respectively.
 〔試験例6〕
 ゴボウシエキスおよびゲムシタビンの併用投与による抗腫瘍効果を評価した。
(Test Example 6)
The antitumor effect of combined administration of burdock extract and gemcitabine was evaluated.
 ヒト膵臓癌細胞Miapaca-2(ATCC CRL 1420) 5×106 Cells/200μlを、BALB/cAJcl nu/nuマウス(日本クレア)の脇下皮下に移植し、腫瘍サイズが約100mm3になったものを選別し、治療対象マウスとした。 Human pancreatic cancer cell Miapaca-2 (ATCC CRL 1420) 5 × 10 6 Cells / 200μl transplanted under the armpit of a BALB / cAJcl nu / nu mouse (CLEA Japan), resulting in a tumor size of approximately 100mm 3 Were selected and treated as mice to be treated.
 治療対象マウスを、(a)未治療群、(b)ゲムシタビン投与群、(c)ゴボウシエキス投与群、並びに(d)ゴボウシエキスおよびゲムシタビンを併用して投与する群(併用投与群)、の4つの群に分け、4週間治療を継続した。ゴボウシエキスは、実施例1のゴボウシエキス250mg/kg(アルクチゲニンとして25mg/kg以上)を連日(週5回)、経口投与した。ゲムシタビンは、点滴用ゲムシタビン製剤(イーライリリー社)を使用して、150mg/kgを週2回、腹腔内投与した。 There are four groups of mice to be treated: (a) untreated group, (b) gemcitabine administration group, (c) burdock extract administration group, and (d) burdock extract and gemcitabine administration group (combination administration group) The treatment was continued for 4 weeks. As for the burdock extract, the burdock extract of Example 1 250 mg / kg (25 mg / kg or more as archigenin) was orally administered every day (5 times a week). Gemcitabine was administered intraperitoneally twice weekly at 150 mg / kg using an infusion gemcitabine preparation (Eli Lilly).
 (腫瘍重量)
 治療試験後、各投与群について腫瘍重量を測定した。その結果、治療試験後の腫瘍重量は、未治療群では2.05g、ゲムシタビン投与群では1.24g、ゴボウシエキス投与群では0.98g、および併用投与群では0.82gであった。したがって、ゲムシタビン投与群、ゴボウシエキス投与群および併用投与群のいずれにおいても、未治療群と比較して、40~60%程度の腫瘍重量の抑制が認められた。
(Tumor weight)
After the treatment test, the tumor weight was measured for each administration group. As a result, the tumor weight after the treatment test was 2.05 g in the untreated group, 1.24 g in the gemcitabine administration group, 0.98 g in the burdock extract administration group, and 0.82 g in the combination administration group. Therefore, in all of the gemcitabine administration group, the burdock extract administration group and the combination administration group, suppression of tumor weight of about 40 to 60% was observed as compared with the untreated group.
 この結果から、ゴボウシエキスおよびゲムシタビンを併用することによって、腫瘍増大を抑制させることが示された。これは、ゴボウシエキスにより血管が正常化することによってゲムシタビンが腫瘍に作用しやすくなったからと考えられる。したがって、ゴボウシエキスおよびゲムシタビンの併用剤は、これらをそれぞれ単独で投与したときの効果から予想されるより顕著に高い抗癌活性を有することが示された。 From these results, it was shown that the combined use of burdock extract and gemcitabine suppresses tumor growth. This is presumably because gemcitabine became easier to act on tumors due to normalization of blood vessels by burdock extract. Therefore, it was shown that the combination agent of burdock bovine extract and gemcitabine has significantly higher anticancer activity than expected from the effect when each of these is administered alone.
 〔試験例7〕
 膵臓癌の診断後の5年生存率は2013年時点で5%を切っており、またその平均生存時間は、4-6ヶ月に止まっている。これは他の癌に比べて極端に低い数値であり、有効な対策が求められている。上述した実施例6において、膵臓腫瘍移植モデルに対するアルクチゲニン高含有ゴボウシエキスとゲムシタビンとの併用治療により、単剤治療に比べて腫瘍の増大抑制傾向が認められた。そこで、より実際の病巣に近いモデルとして、マウス膵臓への膵臓癌同所移植モデルを作製し、ゲムシタビンおよびゴボウシエキスによる併用治療が生存率に与える影響を評価した。
(Test Example 7)
The 5-year survival rate after diagnosis of pancreatic cancer is less than 5% in 2013, and the average survival time is only 4-6 months. This is an extremely low value compared to other cancers, and effective measures are required. In Example 6 described above, the combined treatment of architigenin-rich burdock extract and gemcitabine for the pancreatic tumor transplantation model showed a tendency to suppress tumor growth compared to single agent treatment. Therefore, a model of orthotopic transplantation of pancreatic cancer to mouse pancreas was created as a model closer to the actual lesion, and the effect of combined treatment with gemcitabine and gobo-bovine extract on the survival rate was evaluated.
 ヒト膵臓癌細胞Miapaca-2細胞を5×106cells/50μlにて高濃度マトリゲル溶液(BD bioscience)に懸濁した。8週齢、メスのBALB/cAJcl-nu/nu(日本クレア)を麻酔下に開腹し、上記細胞懸濁液を膵臓組織へ注入および固化させた後、縫合および閉腹した。 Human pancreatic cancer cells Miapaca-2 cells were suspended in high-concentration Matrigel solution (BD bioscience) at 5 × 10 6 cells / 50 μl. An 8-week-old female BALB / cAJcl-nu / nu (Claire Japan) was opened under anesthesia, the cell suspension was injected into the pancreatic tissue and solidified, and then sutured and closed.
 移植後のマウスを、未治療群、ゴボウシエキス投与群、ゲムシタビン投与群、およびこれらを併用投与する群の4群各7匹に分け、マウスがすべて死亡するまで治療を継続した。ゴボウシエキス投与群は、アルクチゲニン10%配合エキス250mg/kgを週5回、経口投与した。ゲムシタビン投与群は、点滴用ゲムシタビン製剤(イーライリリー社)を使用して、150mg/kgを週2回、腹腔内投与した。 The transplanted mice were divided into 7 mice each in 4 groups: an untreated group, a burdock extract-administered group, a gemcitabine-administered group, and a group administered with these, and treatment was continued until all the mice died. The burdock extract administration group orally administered 250 mg / kg of an extract containing 10% arctigenin five times a week. In the gemcitabine administration group, 150 mg / kg was administered intraperitoneally twice a week using an infusion gemcitabine preparation (Eli Lilly and Company).
 (生存率の解析)
 生存率は、Kaplan-Mayer法を使って生存率曲線および生存率中央値MSTを計算および描出することにより算出した(GraphPad-PRISM 6.2, MDF社)。有意差は、Logrank(Mantel-COX)およびGehan-Breslow-Wilcoxon検定で評価した。
(Analysis of survival rate)
Survival was calculated by calculating and rendering survival curves and median survival MST using the Kaplan-Mayer method (GraphPad-PRISM 6.2, MDF). Significant differences were evaluated by Logrank (Mantel-COX) and Gehan-Breslow-Wilcoxon tests.
 各治療群の生存率(%)の変化を図9の上のグラフに示す。生存期間中央値(MST)は、未治療群(Non treat)では65日、ゲムシタビン投与群(Gemcitabine)では86日(32.3%伸び)、ゴボウシエキス投与群(GBS-01)では88日(35.4%伸び)、併用治療(Combination)では117日(80%伸び)であった。また、有意差は、Gehan-Breslow-Wilcoxon検定およびLog-RANK(Mantel-Cox)検定のどちらを用いた場合でも、治療群と未治療群との間に有意差が見られた。 The change in survival rate (%) of each treatment group is shown in the upper graph of FIG. Median survival (MST) was 65 days in the untreated group (Non treat), 86 days (32.3% increase) in the gemcitabine group (Gemcitabine), and 88 days (35.4% increase) in the gobobull extract group (GBS-01) ), 117 days (80% increase) in combination treatment. Moreover, a significant difference was observed between the treated group and the untreated group regardless of whether the Gehan-Breslow-Wilcoxon test or the Log-RANK (Mantel-Cox) test was used.
 この結果、膵臓癌同所移植モデルにおいては、図9に示すように、未治療群と比較して、ゴボウシエキス投与群とゲムシタビン投与群は、ほぼ同程度の延命効果を示した。一方、これらの薬剤を併用した併用投与群では、未治療群および単独投与群と比較して顕著な延命効果を示した。したがって、抗癌剤とアルクチゲニンとを併用投与することにより、生存期間を進展することが困難な膵臓癌においても、大きく生存率を伸ばすことができることが示された。 As a result, in the pancreatic cancer orthotopic transplantation model, as shown in FIG. 9, the gobo-bovine extract administration group and the gemcitabine administration group showed substantially the same life-prolonging effect as compared with the untreated group. On the other hand, the combination administration group using these drugs in combination showed a significant life-prolonging effect compared to the untreated group and the single administration group. Therefore, it has been shown that the combined use of an anticancer drug and archigenin can greatly increase the survival rate even in pancreatic cancer, whose survival time is difficult to progress.
 〔試験例8〕
 膵臓癌移植モデルを用いて、既存の各種抗癌剤、アルクチゲニン高含有ゴボウシエキスおよびこれらの組み合わせによる治療を行い、腫瘍サイズの変動を評価した。
(Test Example 8)
Using a pancreatic cancer transplantation model, treatment with various existing anticancer agents, archigenin-rich burdock extract and combinations thereof was performed, and changes in tumor size were evaluated.
 ヒト膵臓癌細胞のMiapaca-2(ATCC CRL 1420) 5×106 Cells/200μlをBALB/cAJc1-nu/nuマウス(日本クレア)の脇下皮下に移植し、約2週間飼育後、約100mm3または約600mm3程度のサイズになったものを、治療対象マウスとした。 Miapaca-2 (ATCC CRL 1420) of human pancreatic cancer cells 5 × 10 6 Cells / 200 μl are transplanted subcutaneously into the armpit of BALB / cAJc1-nu / nu mice (Claire Japan), raised for about 2 weeks, then about 100 mm 3 Alternatively, mice having a size of about 600 mm 3 were used as treatment target mice.
 作製した移植マウスを、未治療群、各種の抗癌作用を有する成分である既存抗癌剤投与群、ゴボウシエキス投与群およびこれらの併用投与群の各群に分け、各群の5~6腫瘍に対して、約4週間程度にわたって治療を継続した。既存抗癌剤としては、カルボプラチン(CBDCA、Bristol-Myers、60mg/kgを週1回腹腔投与)、ドキソルビシン(Doxorubicin、協和発酵、10mg/kgを週2回腹腔投与)、オキサリプラチン(Oxaliplatin、ヤクルト、8mg/kgを週1回腹腔投与)、エベロリムス(Everolimus、ノバルティス、5mg/kgを週5回経口投与)、ボルテゾミブ(Bortezomib、ヤンセンファーマ、1mg/kgを週2回腹腔投与)、イリノテカン(Irinotecan、ヤクルト、25mg/kgを週2回腹腔投与)およびヒドロキシクロロキン(Hydroxychloroquine、サノフィー、100mg/kgを週5回腹腔投与)を用いた。ゴボウシエキスは、アルクチゲニン10%配合エキス750mg/kgを週5回、経口投与した。 The prepared transplanted mice are divided into untreated groups, existing anticancer drug administration groups that are various anti-cancer components, burdock extract administration groups, and these combination administration groups, and each group has 5 to 6 tumors. The treatment was continued for about 4 weeks. As existing anticancer agents, carboplatin (CBDCA, Bristol-Myers, 60 mg / kg once abdominal administration), doxorubicin (Doxorubicin, Kyowa Hakko, 10 mg / kg abdominal administration twice a week), oxaliplatin (Oxaliplatin, Yakult, 8 mg) / kg once a week), Everolimus (Everolimus, Novartis, 5 mg / kg orally 5 times a week), Bortezomib (Bortezomib, Janssen Pharma, 1 mg / kg twice a week), Irinotecan, Yakult , 25 mg / kg twice a week by intraperitoneal administration) and hydroxychloroquine (Sanophy, 100 mg / kg by intraperitoneal administration five times a week). As for the burdock cow extract, 750 mg / kg of an extract containing 10% arctigenin was orally administered 5 times a week.
 (腫瘍サイズの測定)
 治療開始後、3-4日毎に、マウスを保定して精密デジタルノギスで腫瘍の長径(L)、短径(W)および高さ(H)を測定し、腫瘍サイズ= 4/3 * pi * L/2 * H/2 * W/2 (pi=3.14)の式を用いてサイズを求めた。また、高さが測定できない場合は、簡易的に、腫瘍サイズ = 4/3 * pi * L/2 * (W/2)2を使用した。
(Tumor size measurement)
Every 3-4 days after the start of treatment, the mice are held and the major axis (L), minor axis (W) and height (H) of the tumor are measured with precision digital calipers, and the tumor size = 4/3 * pi * The size was calculated using the formula L / 2 * H / 2 * W / 2 (pi = 3.14). In addition, when the height could not be measured, tumor size = 4/3 * pi * L / 2 * (W / 2) 2 was simply used.
 各治療群の腫瘍サイズの変動を図10に示す。既存抗癌剤とゴボウシエキスとの併用治療の結果、カルボプラチンおよびオキサリプラチンでは、ゴボウシエキス単剤に比較して2.3~2.1倍(P<0.05)および抗癌剤単剤に比較して1.8~1.9倍(P<0.05)の腫瘍サイズの低下が認められた。また、イリノテカンでは、ゴボウシエキス単剤に比較して2.1倍(P<0.05)および抗癌剤単剤に比較して1.5倍の腫瘍サイズの低下が認められた。ドキソルビシンでは、ゴボウシエキス単剤に比較して1.4倍および抗癌剤単剤に比較して1.5倍(P<0.05)程度の腫瘍サイズの低下が認められた。エベロリムスでは、ゴボウシエキス単剤に比較して2.1倍(P>0.05)および抗癌剤単剤に比較して1.4倍の腫瘍サイズの低下が認められた。ボルテゾミブでは、ゴボウシエキス単剤に比較して1.8倍(P<0.05)および抗癌剤単剤に比較して1.4倍の腫瘍サイズの低下が認められた。マラリアや自己免疫疾患などの治療薬であるハイドロキクロロキンでは、ゴボウシエキス単剤に比較して1.9倍および抗癌剤単剤に比較して2.5倍(P<0.05)の腫瘍サイズの低下が認められた。 Figure 10 shows the change in tumor size in each treatment group. As a result of combined treatment with existing anticancer drugs and burdock extract, carboplatin and oxaliplatin are 2.3 to 2.1 times (P <0.05) compared to single drug and 1.8 to 1.9 times (P <0.05) compared to single drug. A decrease in tumor size was observed. In addition, with irinotecan, the tumor size was reduced 2.1 times (P <0.05) compared to the burdock bovine extract alone and 1.5 times the tumor size compared to the anticancer agent alone. In doxorubicin, the tumor size was reduced by about 1.4 times compared to the gobo-bovine extract alone and 1.5 times (P <0.05) compared with the anticancer agent alone. Everolimus showed a 2.1-fold reduction in tumor size (P> 0.05) compared to the burdock extract alone and a 1.4-fold reduction in tumor size compared to the anticancer agent alone. Bortezomib was found to have a 1.8-fold (P <0.05) reduction in tumor size compared to the gobo-bovine extract alone and 1.4-fold compared to the anticancer agent alone. Hydrochloroquine, a therapeutic agent for malaria and autoimmune diseases, showed a 1.9-fold decrease in tumor size compared to single-drug bovine extract and 2.5-fold (P <0.05) compared to single anticancer agent.
 以上の結果から、アルクチゲニン高含有ゴボウシエキスは、様々な薬効機序を持った既存の抗癌剤と組み合わせることで、強い抗腫瘍効果を期待できる薬剤であることが示された。 From the above results, it was shown that argotigenin-rich burdock extract is a drug that can be expected to have a strong antitumor effect when combined with existing anticancer drugs having various medicinal mechanisms.
 本発明の血管壁強化剤、血管網形成抑制剤および血管正常化剤は、異常な血管の形成に起因する各種の疾患の予防、治療および改善に利用可能である。

 
The vascular wall reinforcing agent, vascular network formation inhibitor and vascular normalizing agent of the present invention can be used for the prevention, treatment and improvement of various diseases caused by abnormal blood vessel formation.

Claims (8)

  1.  アルクチゲニンを有効成分として含有する、血管壁細胞により被覆された血管を増加させる血管壁強化剤。 A blood vessel wall reinforcing agent containing archigenin as an active ingredient to increase blood vessels covered with blood vessel wall cells.
  2.  前記アルクチゲニンが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、請求項1に記載の血管壁強化剤。 2. The vascular wall reinforcing agent according to claim 1, wherein the arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  3.  アルクチゲニンを有効成分として含有する、血管網形成抑制剤。 Vascular network formation inhibitor containing arctigenin as an active ingredient.
  4.  前記アルクチゲニンが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、請求項3に記載の血管網形成抑制剤。 4. The vascular network formation inhibitor according to claim 3, wherein the arctigenin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  5.  血管壁の強化を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管壁を強化する方法。 A method for strengthening a blood vessel wall, comprising a step of ingesting arctigenin and / or arctiin to a subject that needs to strengthen the blood vessel wall.
  6.  前記アルクチゲニンおよび/またはアルクチインが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、請求項5に記載の血管壁を強化する方法。 6. The method for reinforcing a blood vessel wall according to claim 5, wherein the arctigenin and / or arcticin is derived from burdock, burdock, burdock sprout, young burdock or forsythia.
  7.  血管網形成の抑制を必要とする対象にアルクチゲニンおよび/またはアルクチインを摂取させる工程を含む、血管網形成を抑制する方法。 A method for suppressing vascular network formation, comprising a step of ingesting archigenin and / or arctiin into a subject that needs to suppress vascular network formation.
  8.  前記アルクチゲニンおよび/またはアルクチインが、ゴボウ、ゴボウシ、ゴボウスプラウト、若ゴボウまたはレンギョウ由来である、請求項7に記載の血管網形成を抑制する方法。
     

     
    8. The method of suppressing vascular network formation according to claim 7, wherein the arctigenin and / or arcutin is derived from burdock, burdock, burdock sprout, juvenile burdock or forsythia.


PCT/JP2016/079830 2015-10-09 2016-10-06 Blood-vessel-wall strengthening drug, method for strengthening blood vessel wall, and vasoganglion-formation suppressing drug WO2017061559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017544227A JP6773665B2 (en) 2015-10-09 2016-10-06 Vascular wall strengthening agent, method of strengthening blood vessel wall and vascular network inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201419 2015-10-09
JP2015201419 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061559A1 true WO2017061559A1 (en) 2017-04-13

Family

ID=58487889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079830 WO2017061559A1 (en) 2015-10-09 2016-10-06 Blood-vessel-wall strengthening drug, method for strengthening blood vessel wall, and vasoganglion-formation suppressing drug

Country Status (2)

Country Link
JP (1) JP6773665B2 (en)
WO (1) WO2017061559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554133B2 (en) 2017-03-16 2023-01-17 Kracie Holdings, Ltd. Bile acid synthesis promoter, composition for promoting bile acid synthesis and food composition for promoting bile acid synthesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146734A1 (en) * 2012-03-26 2013-10-03 クラシエ製薬株式会社 Anticancer agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146734A1 (en) * 2012-03-26 2013-10-03 クラシエ製薬株式会社 Anticancer agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AWALE,S. ET AL.: "Identification of Arctigenin as an Antitumor Agent Having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation", CANCER RES., vol. 66, no. 3, pages 1751 - 1757, XP009179519, ISSN: 1538-7445 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554133B2 (en) 2017-03-16 2023-01-17 Kracie Holdings, Ltd. Bile acid synthesis promoter, composition for promoting bile acid synthesis and food composition for promoting bile acid synthesis

Also Published As

Publication number Publication date
JP6773665B2 (en) 2020-10-21
JPWO2017061559A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
CN107684559B (en) Gold cluster-containing substance and preparation method and application thereof
US20070031332A1 (en) Angiogenic agents from plant extracts, gallic acid, and derivatives
KR20090020285A (en) A fraction of melissa leaf extract and a composition comprising the same
JP5677717B2 (en) Hemodynamic improver
Park et al. Berberine for appetite suppressant and prevention of obesity
US20110039796A1 (en) Natural Composition for Anti-Angiogenesis and Anti-Obesity
JP2005154432A (en) Treated material of acerola containing polyphenol and/or vitamin c
KR20100042414A (en) Composition for enhancing blood circulation containing the extract or fraction of prunus mume as an active ingredient
JP6371400B2 (en) How to use Hana Natsume, How to use Hana Jujube Extract and How to Use Drug Mixture
WO2017061559A1 (en) Blood-vessel-wall strengthening drug, method for strengthening blood vessel wall, and vasoganglion-formation suppressing drug
WO2013058605A1 (en) Pharmaceutical composition comprising fluoxetine as an active ingredient, for preventing or treating blood-brain barrier disorders
US9907852B2 (en) Anticancer agent and side-effect-alleviating agent
US11185553B2 (en) Pharmaceutical composition for preventing or treating ischemic-reperfusion injury comprising bile acids
TWI776450B (en) Uses of 3-n-butylphthalide in promoting fat browning and preventing or treating fatty liver and liver diseases related thereto
US9072762B2 (en) Natural composition to decrease effects of a high fat diet
WO2014174703A1 (en) Angiogenesis inhibitor comprising ethanol extract of saw palmetto fruit or red pigment, cosmetic, medicine, crystallized red pigment, composition, food and methods for producing same
KR102239066B1 (en) Composition for preventing, ameliorating or treating metabolic diseases comprising mixture of plant extract as effective component
TWI689312B (en) Fermentation product of mung bean hull and uses of the same
KR20130022394A (en) Composition for treatment of pancreatic cancer and functional food comprising extract of caryophylli cortex
KR100817932B1 (en) Parmaceutical Composition for Preventing Restenosis Comprising Berbamine as Active Ingredient
JP2016079163A (en) Composition for treating tumor, and production method thereof
KR20140104090A (en) A pharmaceutical composition for treating and preventing fatty liver diseases containing curcumin as an active ingredient
CN110051671B (en) Application of purslane amide E in preparation of medicine for treating ischemic heart disease
Hyun-Jung et al. Berberine for Appetite Suppressant and Prevention of Obesity
JP5519894B2 (en) Vascular endothelium-derived hyperpolarizing factor enhancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853711

Country of ref document: EP

Kind code of ref document: A1