WO2017061457A1 - Switch element - Google Patents

Switch element Download PDF

Info

Publication number
WO2017061457A1
WO2017061457A1 PCT/JP2016/079598 JP2016079598W WO2017061457A1 WO 2017061457 A1 WO2017061457 A1 WO 2017061457A1 JP 2016079598 W JP2016079598 W JP 2016079598W WO 2017061457 A1 WO2017061457 A1 WO 2017061457A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
switch element
housing
insulating material
conductor
Prior art date
Application number
PCT/JP2016/079598
Other languages
French (fr)
Japanese (ja)
Inventor
裕治 古内
吉弘 米田
幸市 向
和征 榊原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2017061457A1 publication Critical patent/WO2017061457A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal fluid pressure, liquid level or liquid displacement, e.g. Buchholz relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a switch element that opens or short-circuits an electric circuit in response to liquid intrusion.
  • a battery pack In recent years, lithium ion secondary batteries have been adopted in many mobile phones, notebook PCs, and the like. Lithium ion secondary batteries have a high energy density, so in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. In this case, the battery pack has a function of shutting off input / output of the battery pack.
  • the positive / negative electrode insulation fitting portion of the battery corrodes due to water wetting, the pressure inside the battery leaks, and there is a risk of causing a fire accident without the safety valve functioning properly.
  • Attaching a sticker that detects wet traces against water wetting and issuing a warning does not limit the use of the battery, so migration due to water on the circuit board There is a risk of circuit malfunction due to (insulation deterioration) or a short circuit. Moreover, there is a possibility that the same defect as described above may occur even when the electrolyte leaks due to battery abnormality.
  • a sensor that detects a liquid such as water is provided, and a protection circuit is activated by a signal transmitted from the sensor that detects water wetting.
  • a water leak sensor has been proposed that includes a detection unit composed of a pair of electrodes arranged opposite to each other on an insulating substrate (see, for example, Patent Document 2).
  • this water leak sensor when the electrodes of the detection unit become wet, a signal is input to the control circuit due to leakage between the terminal units, and the operation of the device is controlled.
  • this water wetting sensor has an operating condition for the inflow of liquid to the detection unit. It is also necessary to ensure the reliability as a sensor by preventing malfunctions except in a wet state where it is not necessary to operate the circuit.
  • the present invention has been proposed in view of such a conventional situation, and provides a switching element that can safely open or short an electric circuit against an abnormality such as water wetting or leakage from a battery.
  • the purpose is to do.
  • a switching element includes one or more conductors connected to an external circuit, a reaction unit that conducts or blocks the conductor by contact with liquid, A housing in which a reaction part is built, and the housing is provided with an introduction port for introducing a liquid into the reaction part.
  • the housing is provided with an inlet for introducing the liquid to the reaction portion, so that when the liquid becomes wet, the liquid is efficiently taken into the housing and held in the reaction portion, and the conductor is turned on or off. Can be made.
  • FIG. 1 is a conceptual diagram of a switch element to which the present invention is applied.
  • FIG. 2 is a perspective view schematically showing the fuse element before electrolytic corrosion.
  • FIG. 3 is a perspective view showing a fuse element connected as a positive electrode and an electrode connected as a negative electrode.
  • FIG. 4 is a perspective view schematically showing the fuse element after electrolytic corrosion.
  • FIG. 5A is a perspective view showing a reaction part of a fuse element and an electrode each having a through hole
  • FIG. 5B shows a reaction part formed using the fuse element and an electrode having a through hole. It is a perspective view shown.
  • FIG. 6 is a perspective view showing a reaction portion provided with a separator between the fuse element and the electrode.
  • FIG. 7 is a perspective view showing a configuration example of a reaction unit in which a plurality of fuse elements are arranged in parallel at predetermined intervals and electrodes are arranged between the fuse elements.
  • FIG. 8 shows a configuration example of a reaction unit in which a plurality of fuse elements are arranged in parallel at a predetermined interval, and the number of electrodes is one more than the number of fuse elements, and the reaction elements are superimposed on both sides of each fuse element.
  • 9A and 9B are perspective views showing a casing of the switch element, in which FIG. 9A shows a state in which an introduction port is formed on the top surface, FIG. 9B shows a state in which a plurality of introduction ports are formed on the top surface, and FIG.
  • FIG. 10 is a perspective view showing a switch element using a cylindrical casing.
  • FIG. 11 is a perspective view showing a switch element using a housing in which a discharge port is formed.
  • FIG. 12 is a cross-sectional view showing a switch element in which a discharge port is provided at the same height as the position where the reaction part is provided.
  • FIG. 13 is a cross-sectional view showing a switch element using a housing in which a slit-shaped inlet and a slit-shaped outlet are formed.
  • FIG. 14A and 14B are diagrams showing a switch element using a casing in which an introduction groove is formed, in which FIG. 14A is a cross-sectional view and FIG. 14B is an external perspective view.
  • 15A and 15B are diagrams showing a switch element using a casing in which a plurality of introduction ports and introduction grooves are formed, where FIG. 15A is a cross-sectional view and FIG. 15B is an external perspective view.
  • FIG. 16A is a cross-sectional view showing a switch element using a casing in which an introduction groove that gradually narrows down inside the reaction portion is provided, and FIG. 16B shows a water-soluble structure in the introduction groove. It is sectional drawing which shows the switch element sealed with the insulating material.
  • FIG. 16A is a cross-sectional view and FIG. 14B is an external perspective view.
  • 15A and 15B are diagrams showing a switch element using a casing in which a plurality of introduction ports and introduction grooves are formed, where FIG. 15
  • FIG. 17 is a perspective view showing a switch element using a housing in which an introduction port is formed at a height corresponding to the position of the conductor and the reaction part.
  • FIG. 18 is a cross-sectional view showing a switch element using a casing in which a water repellent treatment part is formed in a place other than the reaction part.
  • FIG. 19 is a cross-sectional view showing a switch element provided with a storage unit that stores liquid at a position corresponding to the reaction unit.
  • FIG. 20 is a perspective view showing a switch element using a casing whose introduction port is sealed with a water-soluble insulating material.
  • FIG. 21 is a diagram showing a configuration example of a reaction unit in which a fuse element and an electrode are disposed adjacent to each other, the fuse element and the electrode are face-to-face in the reaction unit, and the interval is relatively narrowed.
  • ) Is a perspective view
  • (B) is a plan view
  • (C) is a cross-sectional view.
  • FIG. 22 is a diagram illustrating a configuration example of the reaction unit in which the fuse element and the electrode are arranged adjacent to each other, the electrode tip is linearly opposed to the fuse element in the reaction unit, and the interval is relatively narrowed.
  • (A) is a perspective view
  • (B) is a cross-sectional view.
  • FIG. 23 is a perspective view showing a reaction portion in which a fuse element and an electrode are opposed to each other on a plurality of surfaces.
  • FIG. 23A shows a configuration in which a curved portion surrounding both sides of the electrode and the bottom surface is formed on the fuse element.
  • (B) shows a configuration in which a bent portion is formed on the fuse element so as to surround the both sides of the electrode and the bottom surface.
  • FIG. 24 is a perspective view showing a configuration example of a reaction portion in which a coat layer made of a liquid-soluble material is formed on one surface facing an electrode fuse element.
  • FIG. 25 is an exploded perspective view of a switch element in which a water repellent treatment part is provided in a place other than the reaction part and its vicinity of the insulating substrate, and a water-absorbing heat generating material is provided in the vicinity of the reaction part.
  • FIG. 26 is a diagram illustrating a switch element using a stranded wire as a conductor.
  • FIG. 27 is a cross-sectional view showing a switch element using sponge metal as a conductor.
  • FIG. 28A is an external perspective view showing an aggregate of conductive particles coated with a liquid-soluble material
  • FIG. 28B shows a switch element using the aggregate shown in FIG. It is sectional drawing shown.
  • FIG. 29 is an external perspective view showing an example in which a cylindrical outer conductor and an inner conductor made of a conductive material are used as a conductor.
  • FIG. 30A is a cross-sectional view showing a state in which an insulating coat layer made of a liquid-soluble material is formed on the inner surface of the outer conductor
  • FIG. 30B shows an insulation made of a liquid-soluble material on the outer surface of the inner conductor. It is sectional drawing which shows the state in which the coat layer was formed.
  • FIG. 31 is a cross-sectional view showing a state where an insulating film made of a liquid-soluble material is interposed between the outer conductor and the inner conductor.
  • FIG. 32 is a cross-sectional view showing a switch element using a pair of metal terminal pieces as a conductor.
  • FIG. 33 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation. A state in which the pair of metal terminal pieces are separated as the material expands in contact with the liquid is shown.
  • FIG. 34 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation.
  • FIG. 35 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation. A state in which the pair of metal terminal pieces are separated by the material being in contact with the liquid to be melted or softened is shown.
  • 36A and 36B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 36A shows a state before the liquid has entered, and FIG.
  • FIG. 37 is an external perspective view of the switch element shown in FIG. 38A and 38B are cross-sectional views showing a switch element in which a pair of metal terminal pieces serving as conductors are connected via conductive particles, where FIG. 38A shows a state before liquid intrusion and FIG. 38B shows liquid intrusion. Shown later.
  • 39A and 39B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 39A shows a state before the liquid enters, and FIG. 39B shows a state after the liquid enters. Shows the state.
  • FIG. 40A and 40B are cross-sectional views showing a switch element having a tapered introduction groove, where FIG. 40A shows a state before the liquid has entered, and FIG. 40B shows a state after the liquid has entered.
  • FIG. 41 is a diagram showing a switch element using a sheet-like insulating material that expands by contact with a liquid
  • FIG. 41 (A) is a plan view showing an upper half of a housing provided with the sheet-like insulating material.
  • (B) is a top view which shows the lower half of the housing
  • 42 is a cross-sectional view of the switch element shown in FIG.
  • FIG. 41 in which (A) shows a state before the liquid has entered, and (B) shows a state after the liquid has entered.
  • 43A and 43B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 43A shows a state before the liquid has entered, and FIG. 43B shows a state after the liquid has entered. Shows the state.
  • FIG. 44 is a perspective view showing a switch element to which a pair of external connection electrodes serving as conductors are connected via conductive particles arranged in a lattice pattern.
  • FIG. 45 is a diagram showing a switch element in which conductive particles are aggregated by a conductive material in contact with a liquid in the switch element shown in FIG.
  • FIG. 3 is a perspective view showing the inside of the housing.
  • 46 is a cross-sectional view of the switch element shown in FIG.
  • FIG. 47 is a perspective view showing a switch element to which a pair of external connection electrodes serving as conductors are connected via conductive particles arranged in a linear form, (A) is a state before liquid intrusion, ( B) shows the state after the liquid has entered.
  • 48A and 48B are diagrams showing a switch element using a lead terminal as a conductor, wherein FIG. 48A is an external perspective view, and FIG. 48B is an exploded perspective view. 49 is a perspective view showing the inside of the switch element shown in FIG. 48.
  • FIG. 49A shows a state before the liquid enters
  • FIG. 49B shows a state after the liquid enters
  • 50A and 50B are perspective views showing the switch element that conducts between the opened lead terminals.
  • FIG. 50A shows a state before the liquid enters
  • FIG. 50B shows a state after the liquid enters
  • 51A and 51B are perspective views showing a switch element that conducts between the opened lead terminals.
  • FIG. 51A is an external perspective view
  • FIG. 51B is an exploded perspective view.
  • 52 is a perspective view showing the inside of the switch element shown in FIG. 51, in which (A) shows a state before the liquid enters, and (B) shows a state after the liquid enters.
  • FIG. 51A is an external perspective view
  • FIG. 51B is an exploded perspective view
  • 52 is a perspective view showing the inside of the switch element shown in FIG. 51, in which (A) shows a state before the liquid enters, and (B) shows a state after the liquid enters.
  • FIG. 53 is a perspective view showing another switch element that conducts between the opened lead terminals, (A) is an external perspective view, and (B) is an exploded perspective view.
  • 54A and 54B are perspective views showing the inside of the switch element shown in FIG. 53, where FIG. 54A shows a state before the liquid has entered, and FIG. 54B shows a state after the liquid has entered.
  • FIG. 55 is a perspective view showing a switch element that forms a conductive layer on a side surface of an insulating material and breaks off both ends of the conductive layer when the insulating material in contact with the liquid expands.
  • FIG. The state before entering, (B) shows the state after entering the liquid.
  • 56 is a cross-sectional view of the switch element shown in FIG. 55, where FIG.
  • FIGS. 57A and 57B are perspective views of a switch element in which a conductive layer is formed of a conductive wire that spirals around the side surface of an insulating material.
  • FIG. 57A shows a state before the liquid has entered, and FIG. Shows the state after entering.
  • FIG. 58 is a perspective view of a switch element to which a disconnected conductive layer formed on a side surface of an insulating material is connected by expansion of the insulating material in contact with the liquid, and FIG. (B) shows the state after the liquid has entered.
  • FIG. 59 is a cross-sectional view of the switch element shown in FIG.
  • FIG. 60 is a diagram showing a schematic configuration of a switch element using a conductor made of a thermistor.
  • 61 is an exploded perspective view showing a configuration example of the switch element shown in FIG.
  • the switch element to which the present invention is applied is incorporated in an external circuit such as a battery circuit or an alarm circuit, and when a wet state such as submergence or liquid leakage occurs, the battery circuit is shut off or the alarm circuit or protection circuit is turned on. Is to do.
  • the switch element 1 includes one or a plurality of conductors 2 connected to an external circuit, a reaction unit 3 that conducts or cuts off the conductors 2 by contact with a liquid, and a reaction unit 3
  • the housing 4 is provided with an introduction port 5 that guides the liquid to the reaction unit 3.
  • the conductor 2 is connected to a terminal portion provided in an external circuit in which the switch element 1 is incorporated.
  • a patterned electrode or a metal formed on an insulating substrate built in the casing 4 of the switch element 1 Terminals, lead terminals, fuse elements, and the like can be used.
  • the conductor 2 may be configured by a plurality of electrodes formed on the insulating substrate and fuse elements and lead wires connected across the plurality of electrodes.
  • the switch element 1 can be connected to a terminal portion of an external circuit by connecting the connection end of the conductor 2 to the outside of the housing 4 or by connecting to an external connection terminal (not shown). Further, the switch element 1 is electrically connected or opened in the normal state, and when the liquid comes into contact with the reaction part 3, the conduction state is opened by the action of the reaction part 3, or the open state is made conductive.
  • reaction part The reaction unit 3 irreversibly conducts or cuts off the conductor 2 by contact with the liquid that has entered the housing 4, and the form of the conductor 2 and the switch element 1 block or open the external circuit. There are various configurations depending on the purpose.
  • a flat plate-like fuse element 11 that is connected to an external circuit in a normal state and is opened when it becomes wet is used and has a smaller ionization tendency than the fuse element 11.
  • the reaction part 3 is formed by disposing the electrode 12 made of metal so as to face one surface of the central part of the fuse element 11 will be described.
  • This reaction unit 3 causes the fuse element 11 to galvanize when liquid is present between the fuse element 11 and the electrode 12 when the fuse element 11 and the electrode 12 are arranged close to each other, in the event of an abnormality such as water wetting or leakage from the battery. As a result, the electrical resistance increases and the rated current value decreases, so that the electrical circuit can be safely opened by self-interruption by the energization current to the fuse element 11.
  • the fuse element 11 and the electrode 12 are close to each other so that water can enter, and the distance is preferably 0.01 mm to 10 mm.
  • the distance to the electrode 12 is more preferably 0.01 to 1 mm.
  • the fuse element 11 has a predetermined rated current value and blows when a current exceeding the rated current value is energized.
  • the fuse element 11 is preferably composed mainly of any one selected from aluminum, iron, nickel, tin, and lead.
  • the main component refers to a component that is 50 wt% or more based on the total mass of the material.
  • the electrode 12 is disposed to face one surface of the central portion of the fuse element 11. Note that the electrode 12 may be disposed opposite to both surfaces of the center portion of the fuse element 11 so that the amount of the material that is electrically eroded by the fuse element 11 is increased.
  • the electrode 12 is made of a metal having a smaller ionization tendency than the fuse element, and it is preferable that any one selected from gold, platinum, silver, copper and palladium is a main component.
  • the fuse element 11 made of a base metal is ionized (corroded) as a positive electrode, and the fuse element 11 is thinned or a pinhole is generated.
  • the conductor resistance of the fuse element 11 increases, and the rated current value can be decreased.
  • the fuse element 11 is connected as a positive electrode and the electrode 12 is connected as a negative electrode. Thereby, the electrolytic corrosion reaction can be promoted, and the rated current value of the fuse element 11 can be quickly reduced.
  • the switch element 1 is composed of a fuse element 11 connected in series to a DC power source as a positive electrode and a metal that is arranged close to the fuse element 11 and has a lower ionization tendency than the fuse element 11 and is connected as a negative electrode.
  • a cutoff circuit including the electrode 12 is configured.
  • the switch element 1 includes a first terminal and a second terminal for energizing the fuse element 11, and a third terminal connecting the electrode 12 as a negative electrode, and the first terminal and the second terminal. Are connected in series to the positive current path, and the third terminal is connected to the negative electrode or grounded.
  • FIG. 3 and 4 are perspective views schematically showing fuse elements before and after electrolytic corrosion, respectively.
  • the fuse element 11 before electrolytic corrosion maintains a short shape.
  • the fuse element 11 made of a base metal is ionized (corroded) as a positive electrode as shown in FIG. May occur.
  • the conductor resistance of the fuse element 11 increases, and the rated current value decreases.
  • heat and electrolyte between the fuse element 11 and the electrode 12 may evaporate due to heat generation due to an increase in the conductor resistance, the rated current value is reduced, so that the self-current due to the energizing current to the fuse element 11 decreases. It can be shut off and the external circuit can be opened safely.
  • the reaction part 3 may provide one or several through-holes, a recessed part, or a convex part in one or both of the fuse element 11 and the electrode 12.
  • FIG. FIGS. 5A and 5B are perspective views showing the conductor 2 and the reaction part 3 in which the through-hole 13 is formed in the fuse element 11 and the electrode 12 as an example.
  • the switch element 1 can preferentially introduce and hold the liquid that has flowed into the housing 4 into the reaction unit 3, and the amount of liquid retained by the through-hole 13 increases the fuse element.
  • the contact area between the electrode 11 and the electrode 12 is increased, and the electroerosion action of the fuse element 11 can be promoted.
  • the melt sectional area is reduced by forming the through hole 13 in the fuse element 11, the fuse element 11 can be blown more quickly.
  • the switch element 1 can preferentially introduce and hold the liquid that has flowed into the housing 4 into the reaction portion 3. By increasing the amount of liquid retained, the contact area between the fuse element 11 and the electrode 12 increases, and the electrolytic corrosion action of the fuse element 11 can be promoted.
  • a separator 14 is preferably provided between the fuse element 11 and the electrode 12.
  • the separator 14 preferably has a mesh shape or a porous shape. Thereby, the separator 14 can secure liquid collecting properties and water retention properties that collect and hold liquid such as water and electrolytic solution between the fuse element 11 and the electrode 12.
  • the separator 14 is preferably made of an insulator. Thereby, the separator 14 can suppress a direct short circuit between the fuse element 11 and the electrode 12.
  • the separator preferably carries an electrolyte such as NaCl.
  • an electrolyte such as NaCl.
  • the separator 14 may have liquid solubility that dissolves in a liquid such as water or an electrolytic solution.
  • the separator 14 preferably has an insulating property in addition to the liquid solubility. Accordingly, the separator 14 ensures a clearance between the fuse element 11 and the electrode 12 before the liquid enters, prevents a short circuit, dissolves when the liquid enters, and allows more liquid to be removed from the fuse element 11. It can introduce
  • liquid-soluble materials include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid. In addition, since the property which does not melt
  • the liquid-soluble material includes ABS, polyacrylonitrile, polyvinylidene fluoride, or Saturated polyesters such as PET, PTT, and PEN can be used. Since these liquid-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate may decrease as the switch element 1. Therefore, when priority is given to the reaction rate, it is preferable to adjust the polymerization degree and use it.
  • the separator 14 disposed between the fuse element 11 and the electrode 12 may be a water-absorbing or hygroscopic insulator. Further, an insulator made of sol, gel, or solid may be disposed between the fuse element 11 and the electrode 12 so that conductivity is exhibited by the liquid. Further, when an electrolyte made of sol or gel enters between the fuse element 11 and the electrode 12, the electroerosion action of the fuse element 11 may be exhibited.
  • the conductor 2 and the reaction unit 3 are not limited to the configuration example described above.
  • a plurality of fuse elements to be the conductors 2 are arranged in parallel and electrodes are arranged between the fuse elements. 3 may be formed.
  • FIG. 7 a plurality of fuse elements 11 formed in a flat plate shape as the conductor 2 are arranged in a superimposed manner at predetermined intervals in parallel, and electrodes 12 formed in a flat plate shape are arranged between the fuse elements 11. It is a perspective view which shows the structural example of the reaction part 3 formed by these.
  • the reaction part 3 has a laminated structure in which the fuse elements 11 and the electrodes 12 are alternately laminated three by three. Each fuse element 11 is connected in parallel, and each electrode 12 is also connected in parallel.
  • the conductor 2 and the reaction unit 3 include a plurality of plate-shaped fuse elements 11 that are arranged in parallel at a predetermined interval, and the plate-shaped electrodes 12 are fused.
  • One more than the number of the elements 11 may be arranged between the fuse elements 11 and may be overlapped on both sides of each fuse element 11.
  • the reaction unit 3 can further promote the electric corrosion of the fuse element 11 by interposing a liquid between both surfaces of the fuse element 11 and the electrode 12 by making the electrodes 12 face the both surfaces of each fuse element 11. .
  • reaction part 3 may provide the 1 or several through-hole 13 mentioned above, the recessed part, or the convex part in one or both of the fuse element 11 and the electrode 12 in the laminated structure shown in FIG. 7, FIG. .
  • the reaction unit 3 may arrange the separator 14 described above between the fuse element 11 and the electrode 12 in the stacked structure shown in FIGS. Thereby, while suppressing the direct short circuit between the fuse element 11 and the electrode 12, the retainability of water and electrolyte solution can be ensured.
  • the separator 14 may be a mesh or a porous material, or an insulating material. Further, the separator 14 may carry an electrolyte such as NaCl to improve the electric conductivity of water or an electrolytic solution and promote electric corrosion. Further, as described above, the separator 14 may be a water-absorbing or hygroscopic insulator.
  • an insulator made of sol, gel, or solid may be disposed between the fuse element 11 and the electrode 12 so that conductivity is exhibited by the liquid. Further, when an electrolyte made of sol or gel enters between the fuse element 11 and the electrode 12, the electroerosion action of the fuse element 11 may be exhibited.
  • the conductor 2 and the reaction unit 3 can adopt various forms as described above. Other embodiments of the conductor 2 and the reaction unit 3 will be described in detail later.
  • the casing 4 of the switch element 1 can be formed of an insulating member such as various engineering plastics and ceramics.
  • the switch element 1 is provided with a housing 4 to protect the conductor 2 and the reaction part 3 from mechanical disturbances received from the outside, and the fuse element used as the conductor 2 is accompanied by the occurrence of arc discharge. When fusing, it is possible to prevent the molten metal from being scattered around.
  • the housing 4 is provided with an introduction port 5 that guides the liquid to the reaction unit 3.
  • the switch element 1 irreversibly conducts or blocks the conductor 2 when the liquid flows into the reaction unit 3 through the introduction port 5 provided in the housing 4.
  • the housing 4 is composed of a polyhedron, for example, as shown in FIG. 9A, and one introduction port 5 is provided on one surface.
  • the introduction port 5 is preferably provided on the top surface 4a opposite to the mounting surface of the housing 4.
  • the housing 4 may have the introduction port 5 formed on a surface other than the top surface 4a, for example, the side surface 4b. Further, as shown in FIG.
  • the housing 4 may have a plurality of inlets 5 formed on the top surface 4a or a plurality of inlets 5 formed on the side surface 4b.
  • the housing 4 can make it easier to introduce the liquid into the reaction unit 3 by providing a plurality of inlets 5.
  • casing 4 consists of a polyhedron, as shown, for example in FIG.9 (C), You may provide the inlet 5 in several surfaces, for example, the top
  • FIG. 10 is an external perspective view of the switch element 1 in which the casing 4 is formed in a cylindrical shape and a plurality of inlets 5 are formed over the entire circumference.
  • the introduction port 5 can be formed without being influenced by the surface and angle according to the arrangement of the switch element 1, the liquid intrusion route, and the like.
  • the switch element 1 shown in FIG. 10 is formed such that the conductor 2 protrudes from the outer peripheral surface of the housing 4.
  • FIG. 11 is an external perspective view showing the switch element 1 in which the introduction port 5 is formed in the top surface 4a of the polyhedral casing 4 and the discharge port 6 for discharging the liquid is formed in the side surface 4b.
  • the discharge port 6 By forming the discharge port 6, a large amount of liquid enters the housing 4, whereby the conductor 2 and the reaction unit 3 are cooled, and the electric corrosion action and self-heating of the fuse element 11 are inhibited. It is possible to prevent the operation of the portion 3, the opening of the conductive state of the conductor 2, or the situation where the open state of conduction is inhibited.
  • discharge port 6 is preferably formed smaller than the introduction port 5. By making the discharge port 6 relatively small, it is possible to prevent the liquid that has entered the housing 4 from being excessively discharged and prevent the action of the reaction unit 3 and the opening or conduction of the conductor 2 from being delayed. it can.
  • the discharge port is provided at the same height as the position where the reaction part 3 of the housing 4 is provided, or above the position where the reaction part 3 is provided.
  • the discharge port 6 is connected to the reaction part 3 on the side surface 4b of the housing 4. It is preferable to be provided at the same height as or above the provided position. As a result, the liquid that has entered the housing 4 is drained from the reaction portion 3 and remains in the reaction portion 3, so that the action of the reaction portion 3 is ensured and the liquid in the housing 4 is retained.
  • the conductor 2 and the reaction part 3 are cooled by the liquid that has entered a large amount, and the action of the reaction part 3 such as the erosion action and self-heating of the fuse element 11 is inhibited, or the conduction state of the conductor 2 is released, or It is possible to prevent a situation where conduction in the open state is hindered.
  • the shape of the inlet 5 for introducing the liquid and the outlet 6 for discharging the liquid are not particularly limited, such as circular and rectangular. Moreover, you may form the inlet 5 and the discharge port 6 in slit shape, as shown in FIG. By forming the inlet 5 in a slit shape, the liquid can be introduced more extensively, and the reaction section 3 can be reacted quickly to open or conduct the conductor 2. Further, by forming the discharge port 6 in a slit shape, excess liquid that has entered the housing 4 can be quickly drained, and the action of the reaction unit 3, the opening of the conductor 2, or the progress of conduction is delayed. Can be prevented.
  • the housing 4 may be provided with a slit-like introduction port 5 on the top surface 4 a and an introduction groove 7 for guiding the liquid to the reaction unit 3.
  • the introduction groove 7 extends from the introduction port 5 in which the groove wall 7a is formed in the top surface 4a to the vicinity of the reaction section 3.
  • the case 4 can prevent the liquid that has entered the introduction port 5 from escaping into the case 4 and delaying the opening or conduction of the conductor 2 by the reaction unit 3.
  • the housing 4 may extend the introduction groove 7 to the side surface 4b and be continuous with the discharge port 6 formed on the side surface 4b. As a result, the housing 4 can efficiently guide the liquid that has entered from the inlet 5 to the reaction unit 3 and drain the excess liquid efficiently from the outlet 6.
  • a plurality of introduction grooves 7 may be formed. By forming a plurality of introduction grooves 7, the liquid can be guided over the entire width of the reaction section 3.
  • the introduction groove 7 may be gradually narrowed from the opening of the introduction port 5 facing the top surface 4a to the inside where the reaction unit 3 is provided. By narrowing the introduction groove 7 as it approaches the reaction unit 3, the liquid that has entered from the opening of the introduction port 5 can be efficiently guided to the reaction unit 3 by capillary action.
  • the switch element 1 may form the introduction port 5 or the introduction port 5 and the introduction groove 7 in the housing 4 according to the positions of the conductor 2 and the reaction unit 3.
  • the switch element 1 includes a plurality of fuse elements 11 and electrodes 12 stacked in parallel as in the configuration example of the conductor 2 and the reaction unit 3 shown in FIG. 7, for example, and the positions of the fuse elements 11 and electrodes 12 on the side surface 4b.
  • the same number of introduction ports 5 as the fuse elements 11 or the same number of introduction ports 5 and introduction grooves 7 as the fuse elements 11 may be formed at the same intervals as the fuse elements 11.
  • the switch element 1 can efficiently guide a large amount of liquid from the introduction port 5 to the conductor 2 and the reaction unit 3.
  • the reaction of the part 3 can be performed efficiently, and conduction or opening of the conductor 2 can be promoted.
  • the switch element 1 may perform water repellent treatment at a place other than the reaction unit 3 to guide the liquid to the reaction unit 3.
  • the switch element 1 may form the water repellent treatment portion 16 in which the water repellent treatment is performed on the introduction port 5 or the groove wall 7 a of the introduction port 5 and the introduction groove 7.
  • the water repellent treatment part 16 can be formed by a known method such as application of a fluorine coating agent, solder paste coating, or the like.
  • the switch element 1 can efficiently guide the liquid that has entered through the introduction port 5 to the reaction unit 3.
  • a malfunction is not caused because a small amount of liquid is repelled and not entered into the housing 4 except in a wet state where the switch element 1 should be operated. It is possible to prevent and secure the reliability as a sensor.
  • the switch element 1 may perform a water repellent treatment on the inner wall of the housing 4. Also by applying a water repellent treatment to the inner wall of the housing 4, the liquid that has entered the housing 4 can be efficiently guided to the reaction unit 3, and the reaction unit 3 can be operated quickly.
  • the switch element 1 may be provided with a storage portion 8 for storing the liquid that has entered the housing 4.
  • the storage unit 8 is formed in a concave shape so as to surround the periphery of the reaction unit 3 and is formed integrally with the housing 4 or can be formed by arranging a concave member on the bottom surface of the housing 4.
  • the switch element 1 stores the liquid in the storage unit 8, thereby filling the periphery of the reaction unit 3 with the liquid.
  • the switch element 1 can make the reaction part 3 react efficiently even if the amount of liquid that has entered the housing 4 is small. For this reason, the switch element 1 can form the discharge port 6 below the reaction part 3 to discharge excess liquid.
  • the switch element 1 shown in FIG. 19 is configured to bend the conductor 2 and pass it through the storage portion 8, and connect both ends of the conductor 2 to the external connection electrode 10 facing the bottom surface of the housing 4. ing.
  • the switch element 1 may be closed by sticking a sheet body formed of a water-soluble sealing material 9 that dissolves the introduction port 5 with a liquid to the top surface 4a. Further, as shown in FIG. 16B, the switch element 1 may close the introduction groove 7 with a water-soluble sealing material 9 that dissolves with a liquid.
  • the water-soluble sealing material 9 include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid.
  • the water-soluble sealing material 9 includes ABS, polyacrylonitrile, Polyvinylidene fluoride or saturated polyester such as PET, PTT, PEN, or the like can be used. Since these water-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate may decrease as the switch element 1. Therefore, when priority is given to the reaction rate, it is preferable to adjust the polymerization degree.
  • the switch element 1 can adopt various forms for the conductor 2 and the reaction unit 3.
  • the structural example of the conductor 2 and the reaction part 3 is demonstrated.
  • the conductor 2 and the reaction unit 3 according to the present invention are not limited to the configurations described below, and various changes can be made without departing from the scope of the present invention.
  • the interval in the vicinity region of the fuse element 11 and the electrode 12 constituting the reaction unit 3 may be narrower than the interval in other regions.
  • the switch element 1 uses a rectangular plate-like fuse element 11 as the conductor 2, and a substantially plate-like electrode 12 is disposed adjacent to the inside of the housing 4. At the same time, the fuse element 11 and the electrode 12 are overlapped in the reaction section 3 so that the distance is relatively narrowed.
  • the electrode 12 has an overlapping portion 12b that protrudes on the fuse element 11 at a substantially central portion in the longitudinal direction.
  • the fuse element 11 and the overlapping portion 12 b of the electrode 12 face each other and are disposed close to each other, thereby forming a reaction portion 3 that collects liquid and causes the fuse element 11 to erode.
  • the overlapping portion 12b is supported by a support portion 15 provided in the housing 4 or the like so as to face the fuse element 11 and has a predetermined interval at which liquid can enter and hold.
  • the distance between the fuse element 11 and the overlapping portion 12b is preferably 0.01 mm to 10 mm.
  • the distance between the fuse element 11 and the overlapping portion 12b is 0.01 to 1 mm.
  • the switch element 1 has the fuse element 11 and the electrode 12 disposed adjacent to each other, and the tip portion 12c of the electrode 12 is bent and supported by the support portion 15.
  • the tip 12c may be linearly opposed to the surface of the fuse element 11 at a predetermined interval.
  • the switch element 1 uses a substantially rectangular plate-like fuse element 11 as the conductor 2, and constitutes the reaction section 3 by arranging a substantially rod-shaped electrode 12 in the vicinity thereof.
  • the fuse element 11 may be opposed to a plurality of surfaces of the electrode 12 by forming a curved portion 11c that is curved so as to surround both the side surfaces and the bottom surface of the electrode 12.
  • the switch element 1 is formed by forming a bent portion 11d in the fuse element 11 that is bent in a rectangular shape so as to surround the three sides of the electrode 12 and both sides.
  • the fuse element 11 and the electrode 12 may be opposed to each other on a plurality of surfaces.
  • the curved portion 11c or the bent portion 11d of the fuse element 11 and the electrode 12 are opposed to each other with a predetermined narrowed space, so that liquid can enter and be held.
  • the fuse element 11 and the electrode 12 are opposed to each other on a plurality of surfaces, so that the switch element 1 has an area for holding a liquid as compared with the configuration facing the one surface, and the fuse element 11 can be further promoted by fusing by electric corrosion.
  • the reaction part 3 may be opposed to the electrode 12 in a plurality of surfaces by forming a curved part or a bent part surrounding the three surfaces of the both sides and bottom of the fuse element 11.
  • the switch element 1 may coat
  • the switch element 1 has a substantially rectangular plate-shaped fuse element 11 and a substantially rectangular plate-shaped electrode 12 opposed to each other, and a surface of the electrode 12 facing the fuse element 11 made of a liquid-soluble material.
  • a coat layer 17 is formed.
  • the switch element 1 ensures a clearance between the fuse element 11 and the electrode 12 in a state before the liquid enters, prevents a short circuit, dissolves when the liquid enters, and allows more liquid to be discharged. Can be introduced between the electrode 12 and the electrode 12 to promote the galvanic action.
  • liquid-soluble material constituting the coating layer 17 the same material as the separator 14 formed using the liquid-soluble material described above can be used.
  • the coat layer 17 made of a liquid-soluble material may be formed on one surface side facing the electrode 12 of the fuse element 11, or may be formed on the surfaces facing the fuse element 11 and the electrode 12, respectively.
  • the switch element 1 may be provided with a water repellent region at a place other than the reaction part 3 or a place other than the reaction part 3 and its vicinity.
  • the switch element 1 makes the substantially rectangular plate-like fuse element 11 and the substantially rectangular plate-like electrode 12 face each other, and the fuse element 11 and the electrode 12 are arranged in the housing 4. It is mounted on the insulating substrate 20 provided.
  • the water repellent treatment portion 18 is a region excluding the reaction portion 3 where the fuse element 11 and the electrode 12 of the insulating substrate 20 are close to each other and the vicinity thereof.
  • the water repellent portion 18 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
  • the switch element 1 can guide the liquid that has entered the insulating substrate 20 to the reaction portion 3 that is a non-water-repellent region and the vicinity thereof, and can promote fusing due to electric corrosion of the fuse element 11.
  • the switch element 1 may be provided with a water-absorbing heat generating material 19 in the vicinity of the reaction unit 3.
  • a water-absorbing heat generating material 19 in the vicinity of the reaction unit 3.
  • the switch element 1 generates heat by absorbing water in a vicinity region where heat is transferred to the reaction unit 3.
  • the material 19 to be placed is arranged.
  • quick lime can be used as the water absorption heat generating material 19.
  • the switch element 1 is provided with a water-repellent treatment part 18 in a region excluding the reaction part 3 and its vicinity of the insulating substrate 20 and a water-absorbing heat generating material 19 is arranged in the vicinity of the reaction part 3.
  • a water-repellent treatment part 18 in a region excluding the reaction part 3 and its vicinity of the insulating substrate 20
  • a water-absorbing heat generating material 19 is arranged in the vicinity of the reaction part 3.
  • either the water repellent portion 18 or the water absorbing heat generating material 19 may be provided.
  • the switch element 1 uses a known conductive member such as a lead wire or sponge metal as the conductor 2 and covers the conductor 2 as the reaction portion 3 so as to insulate from the external circuit and come into contact with the liquid.
  • a liquid-soluble material 23 that dissolves and electrically connects the conductor 2 and the external circuit may be used.
  • the switch element 1 is insulated from an external circuit by covering the conductor 2 with a liquid-soluble material 23 constituting the reaction part 3 in a normal state.
  • a liquid-soluble material 23 constituting the reaction part 3 in a normal state.
  • a stranded wire 22 in which a pair of conductive wires 21 ⁇ / b> A and 21 ⁇ / b> B connected to an external circuit is twisted can be used.
  • the conducting wires 21A and 21B are insulated from each other by being covered with the liquid-soluble material 23, respectively.
  • the conducting wire 21A is connected to one free end of the energizing path of the external circuit connected to the switch element 1, and the conducting wire 21B is connected to the other free end of the energizing path. As a result, the external circuit is normally opened.
  • the reaction unit 3 is for irreversibly conducting the conductor 2 by coming into contact with a liquid, and includes a liquid-soluble material 23 that covers the conductor 2.
  • the liquid-soluble material 23 can be any material that has insulating properties and dissolves when in contact with a liquid.
  • natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, polyvinyl Examples thereof include synthetic polymers such as alcohol. They are dissolved by contact with the liquid.
  • swells will become strong when it becomes high molecular weight, it is preferable to adjust and use a polymerization degree.
  • a water-soluble solid material such as sugar cubes is used as the liquid-soluble material, it dissolves by contact with the liquid.
  • liquid-soluble material 23 in the case of a switch element that operates in response to an electrolyte leakage assuming an electrolyte such as ethylene carbonate filled in a battery cell as a liquid, ABS, polyacrylonitrile, polyvinylidene fluoride are used as the liquid-soluble material 23.
  • an electrolyte such as ethylene carbonate filled in a battery cell as a liquid
  • ABS, polyacrylonitrile, polyvinylidene fluoride are used as the liquid-soluble material 23.
  • saturated polyesters such as PET, PTT, and PEN can be used. Since these liquid-soluble materials 23 also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 1 may decrease. Therefore, when giving priority to the reaction rate, it is preferable to adjust the polymerization degree. .
  • the liquid-soluble material 23 covering the conductor 2 constitutes the reaction unit 3 in the housing 4.
  • the liquid-soluble material 23 is dissolved by the liquid that has entered the housing 4 in the event of an abnormality such as water wetting or leakage from the battery, and the conductor 2 and the open end of the external circuit are brought into contact with each other.
  • the circuit can be energized.
  • the reaction unit 3 covers the pair of conductive wires 21A and 21B described above with the liquid-soluble material 23, and normally insulates to open the external circuit. And the reaction part 3 connects a pair of conducting wire 21A, 21B because the liquid which infiltrated in the housing
  • the switch element 1 may use a sponge metal 24 as the conductor 2.
  • the sponge metal 24 is covered with the liquid-soluble material 23 and is provided on the housing 4 and mounted between the pair of external connection terminals 25a and 25b connected to the open end of the external circuit.
  • the external connection terminals 25 a and 25 b are formed by, for example, metal terminals provided in the housing 4 or electrode patterns formed on the housing 4 or an insulating substrate provided in the housing 4.
  • the sponge metal 24 is mounted on the external connection terminals 25a and 25b via the liquid-soluble material 23 covering the surface, so that the external circuit is normally opened.
  • the switch element 1 has a sponge metal 24 and an external connection terminal 25a when the liquid that has entered the housing 4 contacts and dissolves the liquid-soluble material 23 in the event of an abnormality such as water wetting or leakage from the battery. , 25b can be connected to energize the external circuit.
  • a woven or non-woven fabric using conductive fibers a porous body such as a metal mesh, or a metal sheet such as a metal foil is covered with a liquid-soluble material 23. You may let them.
  • the switch element 1 may use an aggregate 28 of conductive particles 27 covered with a liquid-soluble material 23 as the conductor 2.
  • the aggregate 28 maintains a substantially sheet shape or a substantially film shape by the liquid-soluble material 23 that coats the individual conductive particles 27, and as shown in FIG. 28 (B), the metal provided in the housing 4 It is mounted across the terminals and the external connection terminals 25a and 25b formed by the electrode pattern formed on the casing 4 or an insulating substrate disposed in the casing 4.
  • the switch element 1 is configured such that the aggregate 28 of the conductive particles 27 is mounted on the external connection terminals 25a and 25b via the liquid-soluble material 23 covering the surface, so that the external circuit is normally opened. ing.
  • the switch element 1 is in an abnormal state such as water wetting or leakage from the battery, the liquid that has entered the housing 4 comes into contact with the liquid-soluble material 23 and dissolves, so that the external connection terminals 25a and 25b are spread over. Both terminals can be connected via the continuous conductive particles 27, whereby an external circuit can be energized.
  • the switch element 1 uses, as the conductor 2, a cylindrical outer conductor 30 made of a conductive material and an inner conductor 31 made of a conductive material provided inside the outer conductor 30. May be.
  • the external conductor 30 is connected to one open end of the external circuit, and the internal conductor 31 is connected to the other open end of the external circuit.
  • the outer conductor 30 is, for example, a cylindrical conductor, and one or a plurality of openings 30a into which liquid enters the outer peripheral surface are formed.
  • the outer conductor 30 may have any shape other than a cylindrical shape as long as the inner conductor 31 can be accommodated.
  • the inner conductor 31 may take any form disposed inside the outer conductor 30, and may be a prismatic shape, a sheet winding shape, a block shape or the like in addition to the columnar shape shown in FIG.
  • the inner conductor 31 is movably held inside the outer conductor 30.
  • an insulating coat layer 30b is formed on the inner surface of the outer conductor 30 with the liquid-soluble material 23, so that the outer conductor 30 and the inner conductor 31 are normally insulated from each other.
  • the external circuit is opened.
  • the liquid that has entered the housing 4 enters the opening 30 a of the external conductor 30 and comes into contact with the liquid-soluble material 23 when there is an abnormality such as water wetting or liquid leakage from the battery.
  • the insulating coat layer 30b is dissolved, and the external conductor 30 and the internal conductor 31 are electrically connected to each other, whereby the external circuit can be energized.
  • the switch element 1 may form the insulating coat layer 31a by applying the liquid-soluble material 23 to the outer surface of the inner conductor 31.
  • the insulating coat layer 31a is dissolved by coming into contact with the liquid that has entered through the opening 30a of the external conductor 30, and the external conductor 30 and the internal conductor 31 can be electrically connected.
  • the switch element 1 may have an insulating film 32 made of a liquid-soluble material 23 interposed between the outer conductor 30 and the inner conductor 31.
  • the insulating film 32 has a size and shape that shields at least the inner conductor 31 from the inner surface of the outer conductor 30, and insulates the outer conductor 30 from the inner conductor 31 in a normal state.
  • the insulating film 32 is dissolved by contact with the liquid that has entered through the housing 4 and the opening 30a of the external conductor 30 in the event of an abnormality such as water wetting or leakage from the battery, and the external conductor 30 and the internal conductor
  • the conductor 31 can be electrically connected.
  • the switch element 1 uses a pair of lead wires, metal terminal pieces, and the like that are respectively connected to an external circuit as the conductor 2, and changes its state by contacting the liquid as the reaction unit 3.
  • An insulating material 40 that opens or conducts an external circuit by irreversibly connecting or separating 2 may be used.
  • the insulating material 40 any material that has insulating properties and changes its state such as expansion, contraction, softening, dissolution, and aggregation when in contact with a liquid can be used, and the pair of conductors 2 can be connected or separated. It is possible to select an optimum material from the state change required according to the method of the method, the shape of the pair of conductors 2 and the housing 4, and the like.
  • the candidate insulating material 40 examples include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These are contracted or dissolved by contact with a liquid, and when they have a high molecular weight, they do not dissolve and expand. In addition, when a water-soluble solid material such as sugar cubes is used as the insulating material 40, the insulating material 40 is dissolved or reduced in volume by contact with the liquid.
  • insulating material 40 ABS, polyacrylonitrile, polyvinylidene fluoride, or Saturated polyesters such as PET, PTT, and PEN can be used. Since these insulating materials 40 also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 1 may decrease. Therefore, when priority is given to the reaction rate, it is preferable to adjust the degree of polymerization.
  • FIG. 32 is a cross-sectional view showing an example of a switch element including a pair of conductors 2 and a reaction unit 3.
  • first and second metal terminal pieces 41 and 42 are used as the pair of conductors 2.
  • the first and second metal terminal pieces 41 and 42 are respectively connected to external connection electrodes 43a and 43b provided in the housing 4 and have contact portions 41a and 42a that are in contact with each other.
  • the contact part 41a is urged so as to contact from above the contact part 42a.
  • the external connection electrode 43a is connected to one open end of the external circuit, and the external connection electrode 43b is connected to the other open end of the external circuit. Thereby, the external circuit is electrically connected through the first and second metal terminal pieces 41 and 42 in a normal state.
  • a reaction part 3 having an insulating material 40 that changes its state when it comes into contact with a liquid is disposed below the first metal terminal piece 41.
  • the reaction part 3 of the switch element 1 uses an insulating material 40 that expands when it comes into contact with a liquid.
  • the switch element 1 has a first insulating material 40 disposed below the first metal terminal piece 41 and the first state before the liquid enters the housing 4.
  • the contact portion 41a of the metal terminal piece 41 is brought into contact with the contact portion 42a of the second metal terminal piece 42, thereby energizing the external circuit.
  • the switch element 1 makes the insulating material 40 of the reaction unit 3 come into contact with the liquid as shown in FIG. And the first metal terminal piece 41 is pushed up. Thereby, the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted
  • the switch element 1 always uses the insulating material 40 that contracts or dissolves by contact with the liquid to always separate the first and second metal terminal pieces 41 and 42, and the insulating material 40 contracts or dissolves to change the first.
  • the first and second metal terminal pieces 41 and 42 may be connected.
  • the first and second metal terminal pieces 41 and 42 are always urged in the direction of contact, and the insulating material 40 is disposed below the first metal terminal piece 41, so that In a state before the liquid enters, the contact portion 41 a of the first metal terminal piece 41 is separated from the contact portion 42 a of the second metal terminal piece 42.
  • the insulating material 40 contracts or dissolves, whereby the first and second metal terminal pieces 41 and 42 are elastically restored, and the contact portions 41 a and 42 a are brought into contact with each other.
  • the first metal terminal piece 41 is biased in a direction in which the contact portion 41a is always separated from the contact portion 42a of the second metal terminal piece 42, and in the normal state, the insulating material 40 You may make it contact with the 2nd metal terminal piece 42 by pressing.
  • the insulating material 40 is made of a material that contracts, dissolves, softens, etc. when it comes into contact with a liquid, and is disposed above the first metal terminal piece 41.
  • the switch element 1 has a contact portion when the first metal terminal piece 41 is pressed against the insulating material 40 in a state before the liquid enters the housing 4. 41a is in contact with the contact portion 42a of the second metal terminal piece 42 to energize the external circuit.
  • the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG. Due to shrinkage, dissolution, softening, or the like, and changes to a property that cannot resist the internal stress of the first metal terminal piece 41, and the first metal terminal piece 41 is elastically restored in a direction away from the second metal terminal piece 42. To do. Thereby, the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted
  • the switch element 1 may connect the 1st, 2nd metal terminal pieces 41 and 42 which are spaced apart using the insulating material 40 which expand
  • the insulating material 40 is disposed on the upper part of the first metal terminal piece 41.
  • the first and second metal terminal pieces 41 and 42 are always urged in the direction of separating, and in a state before the liquid enters the housing 4, the contact portions 41 a of the first metal terminal piece 41. Is spaced from the contact portion 42a of the second metal terminal piece 42.
  • the insulating material 40 expands, whereby the first metal terminal piece 41 is pressed by the insulating material 40, and the contact portion 41 a becomes the contact portion 42 a of the second metal terminal piece 42. Touched.
  • the first metal terminal piece 41 is urged in a direction in which the contact portion 41a is separated from the contact portion 42a of the second metal terminal piece 42, and in a normal state by the insulating material 40. You may make it fix in the state contacted with the 2nd metal terminal piece 42.
  • FIG. The insulating material 40 is made of a material that has adhesiveness in a normal state and dissolves when in contact with a liquid, and fixes the contact portions 41a and 42a of the first and second metal terminal pieces 41 and 42 to each other.
  • the switch element 1 has a contact portion by fixing the first metal terminal piece 41 to the insulating material 40 in a state before the liquid enters the housing 4. 41a is in contact with the contact portion 42a of the second metal terminal piece 42 to energize the external circuit.
  • the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG.
  • the first metal terminal piece 41 elastically recovers in a direction away from the second metal terminal piece 42, such as melting or softening.
  • the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted
  • the switch element to which the present invention is applied connects a pair of conductors 2 via the conductive particles 45, and causes the reaction unit 3 to pass the conductive particles 45 The conductive path may be blocked.
  • the switch element 1 shown in FIG. 36 and FIG. 37 has a casing 4 in which one or a plurality of liquid inlets 5 are formed.
  • the introduction port 5 of the body 4 is provided on the opened inner wall, and conductive particles 45 are fixed and arranged on the insulating material 40.
  • the housing 4 is formed in a cylindrical shape, and lead wires 46 and 47 serving as a pair of conductors 2 are led out from both ends.
  • the introduction port 5 may be formed in a substantially central portion where the lead wires 46 and 47 are not provided, and may be formed in a slit shape over the circumferential direction of the housing 4.
  • the switch element 1 is electrically connected by separating the lead wires 46 and 47 in the housing 4 and continuing the conductive particles 45 fixed to the insulating material 40 between the lead wires 46 and 47. .
  • An introduction port 5 is formed on the array of the conductive particles 45.
  • the lead wires 46 and 47 to be a pair of conductors 2 are drawn out from the housing 4 and connected to the connection ends of the external circuits.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 is formed from the conductive particles 45 in which the lead wires 46 and 47 are fixed to the insulating material 40 as shown in FIG. It is conducted through the conductive path to energize the external circuit.
  • the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG.
  • the conductive particles 45 arranged by the morphological displacement such as dissolution and contraction are aggregated, and the conductive path formed by the arrangement of the conductive particles 45 is blocked.
  • the lead wires 46 and 47 are disconnected, and the external circuit is shut off.
  • the switch element 1 may use, as the pair of conductors 2, external connection electrodes composed of metal terminal pieces supported in the housing 4 or electrode patterns formed on an insulating substrate.
  • the switch element 1 shown in FIG. 38 is provided with a pair of metal terminal pieces 48 and 49 connected by conductive particles 45 as a pair of conductors 2.
  • the metal terminal pieces 48 and 49 are connected to external connection electrodes 50 and 51 facing outward from the mounting surface of the housing 4, respectively.
  • the surface on which the external connection electrodes 50 and 51 are exposed becomes a mounting surface on the external circuit board, and the electrodes formed in the external circuit and the external connection electrodes 50 and 51 are connected.
  • the casing 4 is provided with an introduction port 5 at a substantially central portion of the top surface where the metal terminal pieces 48 and 49 are not provided, and an insulating material 40 that dissolves by contact with the liquid is formed on the inner side of the top surface.
  • the conductive particles 45 are adhered.
  • the switch element 1 has the metal terminal pieces 48 and 49 separated from each other in the housing 4, and the conductive particles 45 fixed to the insulating material 40 have the metal terminal pieces 48. , 49 are connected by being continuous.
  • An introduction port 5 is formed on the array of the conductive particles 45.
  • a space 52 in which the conductive particles 45 dropped from the array are accommodated is provided below the introduction port 5 .
  • the insulating material 40 melts, and the conductive particles 45 fall into the space 52.
  • the conductive path formed by the arrangement of the conductive particles 45 is blocked, and the space between the metal terminal pieces 48 and 49 is blocked.
  • the introduction port 5 of the housing 4 may be provided with the introduction groove 7 that is filled with the insulating material 40 and faces the portion where the conductive particles 53 are arranged.
  • the switch element 1 shown in FIGS. 39A and 39B includes a housing 4 in which an introduction port 5 that is opened in a slit shape is formed on one surface, and an introduction groove that extends from the introduction port 5 into the housing 4. 7, lead wires 55 and 56 to be a pair of conductors 2 that are arranged apart from each other in the housing 4, and conductivity that is continuous by being arranged in the housing 4 to conduct the lead wires 55 and 56.
  • the particle 53 and the insulating material 40 filled in the introduction groove 7 and expanded by touching the liquid to block the arrangement of the conductive particles 53 are provided.
  • the switch element 1 is opposed to the groove wall 7 a of the introduction groove 7 extending to the vicinity of the arrangement of the conductive particles 53.
  • the insulating material 40 expands to press the array of the conductive particles 53, and the expanded insulating material 40 dissipates into the housing 4. Without this, the arrangement of the conductive particles 53 can be reliably blocked by the insulating material 40.
  • a space 57 in which the conductive particles 53 are pushed out is formed on the opposite side of the introduction groove 7 across the array of the conductive particles 53.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 is conducted through a conductive path including conductive particles 53 in which lead wires 55 and 56 are arranged and fixed in the casing 4. The external circuit is energized.
  • the switch element 1 Insulates the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG.
  • the material 40 comes into contact with the material 40, the material expands, and the conductive particles 53 are pushed out toward the space 57 to block the conductive path. As a result, the lead wires 55 and 56 are disconnected, and the external circuit is shut off.
  • the switch element 1 can use a known conductor such as a metal terminal piece in addition to the lead wires 55 and 56 as the pair of conductors 2.
  • the switch element 1 may close the introduction port 5 by disposing a mesh member 58 having a mesh smaller than the expanded insulating material 40 on the surface of the housing 4. As a result, the switch element 1 contacts the liquid that has entered the introduction groove 7 from the opening of the introduction port 5 and expands from the introduction port 5 that is blocked by the mesh member 58 when expanded. It expands toward the inside of the housing 4 without being expanded or discharged outside the body, and the conductive particles 53 can be reliably pushed out toward the space 57 and the space between the lead wires 55 and 56 can be blocked.
  • the introduction groove 7 may be formed in a tapered shape that gradually widens from the opening of the introduction port 5 to the inside where the conductive particles 53 are arranged. .
  • the insulating material 40 filled in the introduction groove 7 comes into contact with the liquid that has entered from the introduction port 5, as shown in FIG. This makes it easier to expand, expands toward the inside of the wide housing 4 when expanded, reliably pushes the conductive particles 53 toward the space 57, and blocks between the lead wires 55 and 56. Can do.
  • the switch element 1 is formed so that the introduction groove 7 is widened from the opening of the introduction port 5 to the inside of the housing 4, so that a small amount of liquid that does not actuate the switch element 1 is contained in the introduction groove 7. Can be prevented, and the reliability as a sensor can be secured.
  • the casing 4 may be made of ceramic.
  • casing 4 is improved and the housing
  • FIG. Note that the switch element 1 may be improved in strength by ceramic coating the casing 4 in addition to the casing 4 being made of ceramic.
  • the switch element 1 can take in a liquid more easily by using a porous material as a ceramic used for the housing
  • the switch element 1 may have a sheet-like insulating material 40 disposed between the inlet 5 and the arrangement of the conductive particles 53.
  • the switch element 1 shown in FIGS. 41 and 42 includes a housing 4 in which an introduction port 5 opened in a slit shape on one surface, an introduction groove 7 extending from the introduction port 5 into the housing, and a housing Metal terminal pieces 60 and 61 to be a pair of conductors 2 spaced apart in 4, and conductive particles 53 that are arranged in the housing 4 to be continuous and make the metal terminal pieces 60 and 61 conductive. And a sheet body 62 of an insulating material 40 that is disposed between the introduction port 5 and the array of the conductive particles 53 and expands when the liquid is touched to block the array of the conductive particles 53.
  • the housing 4 is formed by attaching a pair of upper and lower halves 4c and 4d.
  • a slit-like introduction port 5 and an introduction groove 7 are formed, and a sheet body 62 of an insulating material 40 that expands by coming into contact with a liquid is attached to the inner surface side to be associated with the lower half 4d.
  • metal terminal pieces 60 and 61 and conductive particles 53 are disposed, and on the side opposite to the upper half 4c of the metal terminal pieces 60 and 61, there is a space 63 in which the conductive particles 53 are pushed out. Is formed.
  • the metal terminal pieces 60 and 61 are provided so as to be separated from each other, and are electrically connected via the conductive particles 53 arranged in the housing.
  • the sheet body 62 of the insulating material 40 is disposed between the inlet 5 and the array of the conductive particles 53 by the upper and lower halves 4 c and 4 d being brought together.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 is electrically connected via a conductive path made of conductive particles 53 in which the metal terminal pieces 60 and 61 are arranged and fixed in the casing 4. The external circuit is energized.
  • the switch element 1 causes the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG.
  • the insulating material 40 expands, and the conductive particles 53 are pushed out from between the metal terminal pieces 60, 61 toward the space 63 to block the conductive path. Thereby, between the metal terminal pieces 60 and 61 is cut
  • the metal terminal pieces 60 and 61 are formed in a comb-teeth shape, and the comb-teeth portions 60a and 61a project over the space 63 and engage with each other in a non-contact manner.
  • the conductive particles 53 may be arranged between the comb tooth portions 60a and 61a.
  • the introduction port 5 and the introduction groove 7 formed in a slit shape are preferably formed along the conductive particles 53 arranged between the comb-tooth portions 60a and 61a.
  • the switch element to which the present invention is applied may cause the pair of conductors 2 to conduct by extruding the conductive particles 65 filled in the introduction groove 7.
  • the switch element 1 shown in FIG. 43 includes a housing 4 in which an introduction port 5 is formed on one side, an introduction groove 7 extending from the introduction port 5 into the housing, and conductive particles filled in the introduction groove 7.
  • the introduction groove 7 is filled with an insulating material 40 that expands when touching the liquid on the introduction port 5 side, and is filled with conductive particles 65 on the space 66 side.
  • the space 66 is continuous with the introduction groove 7, and as shown in FIG. 43A, the array of conductive particles 69 connected to one end of the lead wires 67 and 68 is provided separately from each other.
  • the space 66 has such a height that the conductive particles 65 can be arranged in a single layer, and is arranged so as to be continuous when the conductive particles 65 are pushed out.
  • This switch element 1 shuts off the external circuit by separating the arrangement of the lead wires 67 and 68 and the conductive particles 69 before the liquid enters the casing 4.
  • the switch element 1 is insulated from the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG.
  • the contact with the material 40 causes the insulating material 40 to expand, and the conductive particles 65 are pushed out into the space 66.
  • the conductive particles 65 are continuous with the arrangement of the conductive particles 69 continuous with the lead wires 67 and 68, a conductive path is formed between the lead wires 67 and 68, and the external circuit is conducted.
  • the switch element 1 shown in FIG. 43 has lead wires 67 and 68 extending below the introduction groove 7 so that the lead wires 67 and 68 are electrically conductive.
  • the particles 65 may be brought into direct contact and conducted.
  • the introduction groove 7 may be formed in a tapered shape that widens toward the inside of the housing 4, and the mesh is smaller than the particle size of the expanded insulating material 40. You may make it obstruct
  • the switch element 1 is expanded and discharged from the introduction port 5 to the outside of the housing.
  • the conductive particle 65 expands toward the inside of the housing 4 and reliably pushes the conductive particles 65 to the space 66 side, and the lead wires 67 and 68 can be electrically connected.
  • the introduction port 5 may be closed by the sheet body 70 of the insulating material 40 that dissolves by contact with the liquid.
  • the switch element 1 can prevent a small amount of liquid that does not operate the switch element 1 from entering the inlet 5, and can also ensure the reliability of the sensor.
  • the switch element 1 may close the inlet 5 by applying the insulating material 40, filling the inlet 5, and the like. The switch element 1 can adjust the penetration of the liquid into the introduction port 5 that is the operating condition by adjusting the thickness and components of the insulating material 40.
  • the switch element to which the present invention is applied arranges the conductive particles 71 in a lattice shape, and cuts the arrangement of the conductive particles 71 in accordance with the state change of the insulating material 40, thereby separating the pair of conductors 2 from each other. May be blocked.
  • the switch element 1 shown in FIG. 44 has a housing 4 in which a plurality of inlets 5 into which liquid enters is formed in a lattice shape, and the housing 4 expands, contracts, or dissolves by contact with the liquid.
  • the insulating material 40 is provided over the entire surface of the housing 4, and the conductive particles 71 are fixed and arranged by the insulating material 40.
  • the housing 4 is provided with external connection electrodes 72 and 73, which are a pair of conductors 2, spaced apart in the vicinity of opposite corners of the housing 4 and face the upper and lower surfaces of the housing 4. .
  • the conductive particles 71 are fixed and arranged in a lattice pattern by the insulating material 40 in close contact with the adjacent conductive particles 71, thereby forming a conductive path between the external connection electrodes 72 and 73.
  • , 73 are made conductive.
  • the switch element 1 is provided with a fixing portion 74 for restricting the movement of the conductive particles 71 in the housing 4.
  • the fixing portion 74 is to secure the insulation between the external connection electrodes 72 and 73 by restricting the movement of the conductive particles 71 when the state change of the insulating material 40 occurs, and is formed of an insulating material. For example, a plurality of cross-shaped standing walls are provided at predetermined intervals.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 has a conductive property in which a space between the external connection electrodes 72 and 73 provided separately is fixed and arranged in a lattice pattern by the insulating material 40. The external circuit is made conductive by being continued through the particles 71.
  • the switch element 1 causes a change in state due to the intruded liquid coming into contact with the insulating material 40, The conductive paths of the conductive particles 71 arranged in the shape are blocked. For example, as shown in FIG.
  • the switch element 1 when the insulating material 40 contracts due to contact with the liquid, the switch element 1 aggregates the conductive particles 71 fixed to the contracted portion, thereby causing the conductive particles 71 to conduct. The path is blocked. Therefore, the switch element 1 can shut off the external circuit by opening between the external connection electrodes 72 and 73.
  • the introduction ports 5 are formed in a lattice shape on one surface of the housing 4, and the insulating material 40 is provided over the entire surface of the housing 4 so that the conductive particles 71 are arranged in a lattice shape.
  • the insulating material 40 at a location corresponding to the location A where the liquid has entered causes a change in state, and the conductive particles 71 agglomerate.
  • the free movement of the conductive particles 71 is restricted by the fixing portion 74. A new conductive path can be prevented from being formed by contact with the arrayed particles, and insulation can be ensured.
  • the switch element 1 since the insulating material 40 at a location corresponding to the liquid intrusion location A undergoes a state change and the conductive path by the conductive particles 71 is cut off, the switch element 1 has a liquid at any location of the housing 4. Even if it enters, the intrusion location can be detected.
  • the switch element 1 arranges the conductive particles 71 in a linear form and cuts off the arrangement of the conductive particles 71 in accordance with a change in the state of the insulating material 40, thereby cutting off the connection between the external connection electrodes 72 and 73. Also good.
  • the switch element 1 shown in FIG. 47 has a casing 4 in which a plurality of inlets 5 into which liquid enters is formed in a lattice shape, and the casing 4 expands, contracts, or dissolves by contact with the liquid.
  • the insulating material 40 is provided over the entire surface of the housing 4, and the conductive particles 71 are fixed and arranged by the insulating material 40.
  • the external connection electrodes 72 and 73 are provided in the casing 4 so as to be separated in the vicinity of opposite corners of the casing 4 and face the upper and lower surfaces of the casing 4.
  • the conductive particles 71 fixed and arranged by the insulating material 40 are linearly arranged to form a conductive path between the external connection electrodes 72 and 73, and the external connection electrodes 72 and 73 are made conductive.
  • the switch elements 1 are preferably arranged over a wide range over the entire surface of the housing 4 by arranging the conductive particles 71 so as to meander.
  • the switch element 1 is provided with a plurality of the above-described fixing portions 74 that restrict the movement of the conductive particles 71 in the housing 4 at a predetermined interval.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 has an insulating material 40 between the external connection electrodes 72, 73 provided apart as shown in FIG.
  • the external circuit is made conductive by being continued through the conductive particles 71 fixed and arranged in a line.
  • the switch element 1 causes a change in state due to the intruded liquid coming into contact with the insulating material 40, The conductive paths of the conductive particles 71 arranged in the shape are blocked. As shown in FIG.
  • the switch element 1 when the insulating material 40 contracts due to contact with the liquid, the switch element 1 aggregates the conductive particles 71 fixed to the contracted portion, and thereby the conductive particles 71. Is interrupted. Therefore, the switch element 1 can shut off the external circuit by opening between the external connection electrodes 72 and 73.
  • the introduction port 5 is formed in a lattice shape on one surface of the housing 4, and the conductive particles 71 arranged in a linear shape are provided over the entire surface of the housing 4, thereby
  • the insulating material 40 at a location corresponding to the intrusion location changes its state, and the conductive particles 71 at the location aggregate.
  • the switch element 1 since the free movement of the conductive particles 71 is restricted by the fixing portion 74, a new conductive path is formed when the aggregate of the conductive particles 71 contacts other array particles. Can be prevented, and insulation can be ensured.
  • the switch element 1 since the insulating material 40 at a location corresponding to the liquid intrusion location A undergoes a state change and the conductive path by the conductive particles 71 is cut off, the switch element 1 has a liquid at any location of the housing 4. Even if it enters, the intrusion location can be detected.
  • the switch element to which the present invention is applied uses the lead terminals 82 and 83 as the pair of conductors 2 and is electrically connected or opened via the conductive particles 81 fixed to the insulating material. You may make it open
  • lead terminals 82 and 83 arranged over the inside and outside of the housing 4 are used as a pair of conductors 2.
  • the lead terminals 82 and 83 are fixed in a state of being separated from each other in the casing 4 and are electrically connected via conductive particles 81 filled in the casing 4.
  • the housing 4 is formed with one or a plurality of inlets 5 through which liquid enters.
  • an insulating material 40 that contracts or dissolves by contact with a liquid and conductive particles 81 fixed by the insulating material 40 are disposed.
  • the conductive particles 81 are filled and arranged between the lead terminals 82 and 83 that are spaced apart by being fixed at a predetermined position by the insulating material 40 filled in the housing 4.
  • the switch element 1 makes the lead terminals 82 and 83 conductive.
  • the switch element 1 In the state before the liquid enters the casing 4, the switch element 1 is fixed and arranged with the insulating material 40 between the lead terminals 82 and 83 provided apart as shown in FIG. 48.
  • the external circuit is made conductive by being continued through the conductive particles 81.
  • FIG. 49 (A) when the liquid enters the casing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, or the like, as shown in FIG.
  • the infiltrated liquid comes into contact with the insulating material 40 to contract or dissolve, and the conductive particles 81 arranged between the lead terminals 82 and 83 are aggregated.
  • the switch element 1 can shut off the external circuit by opening the lead terminals 82 and 83.
  • the switch element 1 may conduct between the opened lead terminals 82 and 83 by using the insulating material 40 that expands, contracts, or dissolves by contact with the liquid.
  • the switch element 1 shown in FIG. 50A is fixed in a state where the conductive particles 81 are aggregated in a region other than between the lead terminals 82 and 83 by the insulating material 40, and the lead terminals 82 and 83 are normally opened. Yes.
  • the switch element 1 expands, contracts, or dissolves when the liquid enters the housing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, etc.
  • the conductive particles 81 that have been aggregated and fixed in a region other than between the lead terminals 82 and 83 are diffused into the housing 4.
  • FIG. 50B in the switch element 1, a large number of conductive particles 81 enter between the lead terminals 82 and 83, and a conductive path of the conductive particles 81 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 82 and 83.
  • the introduction port 5 of the housing 4 may be formed according to the aggregation position of the conductive particles 91.
  • 51 uses the lead terminals 92 and 93 as a pair of conductors 2 and conducts between the lead terminals 92 and 93 that are open via the conductive particles 91, similarly to the switch element 1. To do.
  • the lead terminals 92 and 93 are separated from each other in the housing 4, and the conductive particles 91 are aggregated in a region other than between the lead terminals 92 and 93 by the insulating material 40 that dissolves by contact with the liquid.
  • the lead terminals 92 and 93 are open in a normal state.
  • the casing 4 of the switch element 1 has a slit-like inlet 5 through which liquid enters.
  • the introduction port 5 is formed in a slit shape at a position corresponding to the aggregation position of the conductive particles 91 between the lead terminals 92 and 93.
  • the lead terminals 92 and 93 are opposed to each other in the housing 4 and supported at a predetermined interval, and the conductive particles 91 are supported by the water-soluble insulating material 40 on the lead terminals 92 and 93. In addition, they are agglomerated and fixed at positions facing each other across these gaps. As shown in FIG.
  • the switch element 1 is formed with a slit-shaped inlet 5 that intersects the gap between the lead terminals 92 and 93 in the housing 4.
  • the insulating material 40 is entirely filled in the housing 4 and aggregates and fixes the conductive particles 91 at predetermined positions.
  • the switch element 1 when the liquid enters the casing 4 from the inlet 5 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 enters the gap between the lead terminals 92 and 93.
  • the insulating material 40 is dissolved around the center.
  • the conductive particles 91 are positively aggregated between the lead terminals 92 and 93, and a conductive path of the conductive particles 91 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 92 and 93.
  • the switch element 1 includes lead terminals 92 and 93 in which conductive particles 91 are supported in the housing 4 so as to face each other at a predetermined interval.
  • the inlet 5 may be formed in a slit shape in the same direction as the lead terminals 92 and 93 in the gap between the lead terminals 92 and 93 while being agglomerated and fixed to the side.
  • the switch element 1 becomes intruded when liquid enters the casing 4 from the inlet 5 due to water wetting or leakage from the battery.
  • the insulating material 40 is dissolved around the gap between the lead terminals 92 and 93.
  • the conductive particles 91 are positively aggregated between the lead terminals 92 and 93, and a conductive path of the conductive particles 91 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 92 and 93.
  • both ends of the conductive layer may be cut off by forming a conductive layer on the side surface of the insulating material and expanding the insulating material in contact with the liquid.
  • the switch element 1 shown in FIGS. 55 and 56 includes a housing 4 in which one or a plurality of introduction ports 5 into which a liquid enters is formed, and a reaction unit that is provided in the housing 4 and expands by contact with the liquid. 3 and an insulating material 103 that is connected to an external circuit at both ends, and a conductive layer 104 that forms the conductor 2 covered on the side surface of the insulating material 103. When the insulating material 103 that has come into contact expands, both ends of the conductive layer 104 are cut off.
  • the housing 4 is formed in a cylindrical shape, for example, and an insulating material 103 is accommodated therein.
  • the housing 4 has a plurality of liquid inlets 5 penetrating into the housing 4.
  • the insulating material 103 accommodated in the housing 4 is a material that expands when in contact with a liquid, and can be formed using the same material as the insulating material 40 described above.
  • the insulating material 103 is formed in a columnar shape, for example, and the conductive layer 104 is formed on the outer peripheral surface.
  • the conductive layer 104 can be formed of a known material used as a conductive material such as solder, and can be formed by a known method such as conductive plating or printing.
  • the conductive layer 104 is connected to external connection electrode materials 105 and 106 such as a pair of lead wires, and the external connection electrode materials 105 and 106 are connected to connection electrodes of the external circuit, thereby energizing the external circuit. Configure part of the path.
  • the switch element 1 is connected via the conductive layer 104 as shown in FIGS. 55A and 56A before the liquid enters the housing 4 through the inlet 5.
  • the external circuit is made conductive by connecting the paired external connection electrode members 105 and 106.
  • the switch element 1 has an insulating material 103 as shown in FIGS. 55 (B) and 56 (B). Is expanded by contact with the liquid that has entered, and the conductive layer 104 formed around the insulating material 103 is broken. Thereby, the switch element 1 can cut off the external circuit by cutting the pair of external connection electrode materials 105 and 106 connected via the conductive layer 104.
  • the conductive layer 104 may be formed in a solid shape around the insulating material 103, or a linear conductive pattern may be formed so as to spiral around the insulating material 103. Also good.
  • the conductive layer 104 may be formed of a conductive wire 107 such as a wire that spirals around the side surface of the insulating material 103.
  • the switch element 1 can be easily formed by winding the conductive layer 104 in a spiral shape with the conductive wire 107, and when the insulating material 103 expands as shown in FIG. However, if a part of the wire 107 is disconnected, the conductive path can be reliably interrupted.
  • the insulating material 103 may be formed in a hollow cylindrical shape, and the conductive layer 104 may be formed on the inner peripheral surface. Also in this case, the insulating material 103 expands in contact with the liquid, whereby the conductive layer 104 formed on the inner peripheral surface is cut and the conductive path can be blocked.
  • the conductive layer is formed on the side surface of the insulating material, and the insulating material in contact with the liquid expands to connect both ends of the conductive layer that have been disconnected.
  • the switch element 1 shown in FIG. 58 and FIG. 59 is disposed along a hollow housing 4 in which one or a plurality of introduction ports 5 into which liquid enters and the inner wall of the housing 4 are formed, and is in contact with the liquid.
  • the cylindrical insulating material 113 that constitutes the reaction part 3 that expands by this, and the linear conductive layer 114 that constitutes the conductor 2 that circulates around the inner peripheral surface of the insulating material 113 while both ends are connected to an external circuit. And have.
  • the housing 4 has, for example, a cylindrical shape, and an insulating material 113 is accommodated along the inner wall.
  • the housing 4 has a slit-shaped inlet 5 formed therein.
  • the insulating material 113 accommodated in the housing 4 is a material that expands when in contact with a liquid, and can be formed using the same material as the insulating material 40 described above.
  • the insulating material 113 has, for example, a cylindrical shape similar to that of the housing 4, and a linear conductive layer 114 is spirally wound around the inner peripheral surface.
  • the conductive layer 114 can be formed of a known material used as a conductive material such as solder, and can be formed by a known method such as conductive plating or printing.
  • the conductive layer 114 is connected to external connection electrode materials 115 and 116 such as a pair of lead wires, and the external connection electrode materials 115 and 116 are connected to connection electrodes of the external circuit, thereby energizing the external circuit. Configure part of the path.
  • the insulating material 113 and the conductive layer 114 are formed with a slit 117 continuous with the introduction port 5, and the conductive layer 114 has an external connection electrode material 115 formed by the slit 117. , 116 are disconnected at both ends. Thereby, the switch element 1 interrupts the external circuit by disconnecting the conductive layer 114 in a state before the liquid enters the housing 4 through the introduction port 5.
  • the switch element 1 When the liquid enters the introduction port 5 and the slit 117 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 enters the insulating material 113 as shown in FIGS. 58 (B) and 59 (B). By contacting the liquid, the liquid expands along the inner peripheral surface of the housing 4 and the slit 117 is closed. As a result, the switch element 1 is connected to the conductive layer 114 formed around the insulating material 113 to form a conductive path, and can conduct an external circuit disconnected by the slit 117.
  • the switch element 1 may use a conductive wire material as the conductive layer 114 in addition to a conductive pattern, or may mix and use a conductive pattern and a conductive wire material.
  • one end or both ends of the disconnected portion of the conductive layer 114 that is disconnected by the slit 117 and connected as the insulating material 113 is expanded may be formed using a metal terminal to improve connectivity.
  • the switch element 1 to which the present invention is applied is disposed in the vicinity of the reaction unit 3 that generates heat when it is in contact with the liquid and the reaction unit 3, and the electrical resistance value decreases as the temperature rises.
  • the reaction unit 3 can be configured by using, for example, quick lime that generates heat by reacting with water.
  • the reaction unit 3 is arranged and held on an insulating substrate 121.
  • the reaction unit 3 and the thermistor 120 are thermally connected by being arranged close to each other, and the thermistor 120 is heated by the heat of the reaction unit 3.
  • the thermistor 120 is formed on the insulating substrate 121, and both ends thereof are connected to the first and second external connection electrodes 122 and 123.
  • the thermistor 120 is connected to the energization path of the external circuit via the first and second external connection electrodes 122 and 123, and the energization of the external circuit is always regulated by a high electric resistance.
  • an NTC (negative temperature coefficient) thermistor or a CTR (critical temperature resistor) thermistor can be preferably used. Then, when the switching element 1 generates heat due to the reaction unit 3 coming into contact with the liquid, the electrical resistance value of the thermistor 120 is decreased, and thereby the external circuit can be energized.
  • the housing 4 is formed by a cover member 124 that covers the insulating substrate 121.
  • the cover member 124 is formed with an introduction port 5 that guides the liquid to the reaction unit 3.
  • the switch element 1 is disposed so that the reaction unit 3 and the thermistor 120 overlap each other.
  • the thermistor 120 is placed on a quicklime placed on an insulating substrate. Thereby, the reaction part 3 and the thermistor 120 are thermally connected closely, and the reaction part 3 generates heat, so that the electrical resistance value of the thermistor 120 can be quickly reduced.
  • the switch element 1 may be provided with a water repellent treatment part 125 at a place other than the reaction part 3 or a place other than the reaction part 3 and its vicinity.
  • a water repellent treatment part 125 is provided in an exposed region of the surface 121 a of the insulating substrate 121 excluding the reaction part 3 and the thermistor 120.
  • the water-repellent treatment part 125 can be formed by a known method such as application of a fluorine-based coating agent or solder paste coating.
  • the switch element 1 can guide the liquid on the insulating substrate 121 to the reaction part 3 which is a non-water-repellent region, and accelerates the heating of the thermistor 120 to quickly reduce the electrical resistance value of the thermistor 120. Can do.

Abstract

This switch element safely opens or short-circuits an electric circuit in response to abnormalities such as wetting with water or leakage from a battery. This switch element is provided with one or multiple conductors 2 which are connected to an external circuit, a reaction unit 3 which, by contacting a liquid, conducts or blocks electricity through the conductor 2, and a casing 4 which houses the reaction unit 3. The casing 4 has an introduction port 5 for guiding a liquid onto the reaction unit 3.

Description

スイッチ素子Switch element
 本発明は、液体の浸入に応じて電気回路を開放又は短絡させるスイッチ素子に関する。本出願は、日本国において2015年10月7日に出願された日本出願番号特願2015-199817を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a switch element that opens or short-circuits an electric circuit in response to liquid intrusion. This application claims priority based on Japanese Patent Application No. 2015-199817 filed on Oct. 7, 2015 in Japan. This application is incorporated herein by reference. Is done.
 近年、携帯電話、ノートPC等の多くにリチウムイオン二次電池が採用されている。リチウムイオン二次電池は、エネルギー密度が高いため、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの入出力を遮断する機能を有している。しかしながら、水濡れにより電池の正極/負極絶縁嵌合部が腐食した場合、電池内部の圧力がリークし、安全弁が正しく機能せずに発火事故に繋がるリスクがある。 In recent years, lithium ion secondary batteries have been adopted in many mobile phones, notebook PCs, and the like. Lithium ion secondary batteries have a high energy density, so in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. In this case, the battery pack has a function of shutting off input / output of the battery pack. However, when the positive / negative electrode insulation fitting portion of the battery corrodes due to water wetting, the pressure inside the battery leaks, and there is a risk of causing a fire accident without the safety valve functioning properly.
特開平11-144695号公報JP-A-11-144695 特開2000-162081号公報JP 2000-162081 A
 水濡れに対して濡れた形跡を検知するシールを添付し、警告を発するものがある(例えば、特許文献1参照)が、電池の使用を制限するものではないため、回路基板の水濡れによるマイグレーション(絶縁劣化)やショートによる回路誤動作が発生する虞がある。また、電池の異常に伴う電解液の漏れに対しても、上記と同等の不具合が発生する虞がある。 Attaching a sticker that detects wet traces against water wetting and issuing a warning (see, for example, Patent Document 1) does not limit the use of the battery, so migration due to water on the circuit board There is a risk of circuit malfunction due to (insulation deterioration) or a short circuit. Moreover, there is a possibility that the same defect as described above may occur even when the electrolyte leaks due to battery abnormality.
 また、電子機器の水濡れ対策としては、水等の液体を検知するセンサーを設け、水濡れを検知した当該センサーから発信される信号によって保護回路を作動させるものも用いられている。例えば、絶縁基板上に所定間隔をおいて対向配置された一対の電極からなる検知部を備える水漏れセンサーが提案されている(例えば、特許文献2参照)。この水漏れセンサーは、検知部の電極間が水濡れ状態になると、端子部間がリークすることで制御回路に信号が入力され、機器の動作が制御される。すなわち、この水濡れセンサーは、検知部への液体の流入が作動条件となっているため、水濡れ状態が起きたときには、積極的に検知部へ液体を流入させる構成が望まれる一方で、制御回路を作動させる必要のない水濡れ状態以外では、誤作動させないようにし、センサーとしての信頼性を確保する必要もある。 Also, as a countermeasure against water wetting of electronic equipment, a sensor that detects a liquid such as water is provided, and a protection circuit is activated by a signal transmitted from the sensor that detects water wetting. For example, a water leak sensor has been proposed that includes a detection unit composed of a pair of electrodes arranged opposite to each other on an insulating substrate (see, for example, Patent Document 2). In this water leak sensor, when the electrodes of the detection unit become wet, a signal is input to the control circuit due to leakage between the terminal units, and the operation of the device is controlled. In other words, this water wetting sensor has an operating condition for the inflow of liquid to the detection unit. It is also necessary to ensure the reliability as a sensor by preventing malfunctions except in a wet state where it is not necessary to operate the circuit.
 本発明は、このような従来の実情に鑑みて提案されたものであり、水濡れや電池からの液漏れ等の異常に対し、安全に電気回路を開放又は短絡させることができるスイッチ素子を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and provides a switching element that can safely open or short an electric circuit against an abnormality such as water wetting or leakage from a battery. The purpose is to do.
 上述した課題を解決するために、本発明に係るスイッチ素子は、外部回路に接続される1又は複数の導電体と、液体と接触することにより上記導電体を導通又は遮断する反応部と、上記反応部が内蔵された筐体とを有し、上記筐体には、上記反応部に液体を導く導入口が設けられているものである。 In order to solve the above-described problem, a switching element according to the present invention includes one or more conductors connected to an external circuit, a reaction unit that conducts or blocks the conductor by contact with liquid, A housing in which a reaction part is built, and the housing is provided with an introduction port for introducing a liquid into the reaction part.
 本発明によれば、筐体に反応部に液体を導く導入口が設けられることにより、水濡れ状態になると効率的に液体を筐体内に取り込むとともに反応部に保持し、導電体を導通又は遮断させることができる。 According to the present invention, the housing is provided with an inlet for introducing the liquid to the reaction portion, so that when the liquid becomes wet, the liquid is efficiently taken into the housing and held in the reaction portion, and the conductor is turned on or off. Can be made.
図1は、本発明が適用されたスイッチ素子の概念図である。FIG. 1 is a conceptual diagram of a switch element to which the present invention is applied. 図2は、電蝕前のヒューズエレメントを模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the fuse element before electrolytic corrosion. 図3は、正極として接続されたヒューズエレメント及び負極として接続された電極を示す斜視図である。FIG. 3 is a perspective view showing a fuse element connected as a positive electrode and an electrode connected as a negative electrode. 図4は、電蝕後のヒューズエレメントを模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing the fuse element after electrolytic corrosion. 図5(A)はそれぞれ貫通孔を形成したヒューズエレメント及び電極の反応部を示す斜視図であり、図5(B)は貫通孔を形成したヒューズエレメント及び電極を用いて形成された反応部を示す斜視図である。FIG. 5A is a perspective view showing a reaction part of a fuse element and an electrode each having a through hole, and FIG. 5B shows a reaction part formed using the fuse element and an electrode having a through hole. It is a perspective view shown. 図6は、ヒューズエレメントと電極との間にセパレータを備えた反応部を示す斜視図である。FIG. 6 is a perspective view showing a reaction portion provided with a separator between the fuse element and the electrode. 図7は、ヒューズエレメントが複数並列に所定間隔で重畳配置されるとともに、各ヒューズエレメントの間に電極が配置された反応部の構成例を示す斜視図である。FIG. 7 is a perspective view showing a configuration example of a reaction unit in which a plurality of fuse elements are arranged in parallel at predetermined intervals and electrodes are arranged between the fuse elements. 図8は、ヒューズエレメントが複数並列に所定間隔で重畳配置するとともに、電極をヒューズエレメントの数よりも1つ多くし、各ヒューズエレメントの両面に対向して重畳させた反応部の構成例を示す斜視図である。FIG. 8 shows a configuration example of a reaction unit in which a plurality of fuse elements are arranged in parallel at a predetermined interval, and the number of electrodes is one more than the number of fuse elements, and the reaction elements are superimposed on both sides of each fuse element. It is a perspective view. 図9は、スイッチ素子の筐体を示す斜視図であり、(A)は天面に導入口が形成された状態、(B)は天面に複数の導入口が形成された状態、(C)は天面及び側面に導入口が形成された状態、(D)は天面及び側面に複数の導入口が形成された状態を示す。9A and 9B are perspective views showing a casing of the switch element, in which FIG. 9A shows a state in which an introduction port is formed on the top surface, FIG. 9B shows a state in which a plurality of introduction ports are formed on the top surface, and FIG. ) Shows a state where inlets are formed on the top and side surfaces, and (D) shows a state where a plurality of inlets are formed on the top and side surfaces. 図10は、円筒状の筐体を用いたスイッチ素子を示す斜視図である。FIG. 10 is a perspective view showing a switch element using a cylindrical casing. 図11は、排出口が形成された筐体を用いたスイッチ素子を示す斜視図である。FIG. 11 is a perspective view showing a switch element using a housing in which a discharge port is formed. 図12は、反応部が設けられた位置と同じ高さに排出口が設けられたスイッチ素子を示す断面図である。FIG. 12 is a cross-sectional view showing a switch element in which a discharge port is provided at the same height as the position where the reaction part is provided. 図13は、スリット状の導入口及びスリット状の排出口が形成された筐体を用いたスイッチ素子を示す断面図である。FIG. 13 is a cross-sectional view showing a switch element using a housing in which a slit-shaped inlet and a slit-shaped outlet are formed. 図14は、導入溝が形成された筐体を用いたスイッチ素子を示す図であり、(A)は断面図、(B)は外観斜視図である。14A and 14B are diagrams showing a switch element using a casing in which an introduction groove is formed, in which FIG. 14A is a cross-sectional view and FIG. 14B is an external perspective view. 図15は、複数の導入口及び導入溝が形成された筐体を用いたスイッチ素子を示す図であり、(A)は断面図、(B)は外観斜視図である。15A and 15B are diagrams showing a switch element using a casing in which a plurality of introduction ports and introduction grooves are formed, where FIG. 15A is a cross-sectional view and FIG. 15B is an external perspective view. 図16(A)は反応部が設けられた内部にかけて漸次狭小化する導入溝が形成された筐体を用いたスイッチ素子を示す断面図であり、図16(B)は導入溝内を水溶性の絶縁材料で封止したスイッチ素子を示す断面図である。FIG. 16A is a cross-sectional view showing a switch element using a casing in which an introduction groove that gradually narrows down inside the reaction portion is provided, and FIG. 16B shows a water-soluble structure in the introduction groove. It is sectional drawing which shows the switch element sealed with the insulating material. 図17は、導電体及び反応部の位置に応じた高さに導入口を形成した筐体を用いたスイッチ素子を示す斜視図である。FIG. 17 is a perspective view showing a switch element using a housing in which an introduction port is formed at a height corresponding to the position of the conductor and the reaction part. 図18は、反応部以外の場所に撥水処理部を形成した筐体を用いたスイッチ素子を示す断面図である。FIG. 18 is a cross-sectional view showing a switch element using a casing in which a water repellent treatment part is formed in a place other than the reaction part. 図19は、反応部に応じた位置に液体を貯留する貯留部を設けたスイッチ素子を示す断面図である。FIG. 19 is a cross-sectional view showing a switch element provided with a storage unit that stores liquid at a position corresponding to the reaction unit. 図20は、導入口を水溶性の絶縁材料でシールした筐体を用いたスイッチ素子を示す斜視図である。FIG. 20 is a perspective view showing a switch element using a casing whose introduction port is sealed with a water-soluble insulating material. 図21は、ヒューズエレメントと電極とを隣接配置するとともに、反応部においてヒューズエレメントと電極とを面対向させ、間隔が相対的に狭小化された反応部の構成例を示す図であり、(A)は斜視図、(B)は平面図、(C)は断面図である。FIG. 21 is a diagram showing a configuration example of a reaction unit in which a fuse element and an electrode are disposed adjacent to each other, the fuse element and the electrode are face-to-face in the reaction unit, and the interval is relatively narrowed. ) Is a perspective view, (B) is a plan view, and (C) is a cross-sectional view. 図22は、ヒューズエレメントと電極とを隣接配置するとともに、反応部においてヒューズエレメント上に電極先端を線状に対向させ、間隔が相対的に狭小化された反応部の構成例を示す図であり、(A)は斜視図、(B)は断面図である。FIG. 22 is a diagram illustrating a configuration example of the reaction unit in which the fuse element and the electrode are arranged adjacent to each other, the electrode tip is linearly opposed to the fuse element in the reaction unit, and the interval is relatively narrowed. , (A) is a perspective view, (B) is a cross-sectional view. 図23は、ヒューズエレメントと電極とを複数面で対向させた反応部を示す斜視図であり、(A)はヒューズエレメントに電極の両側面及び底面の3面を囲む湾曲部を形成した構成を示し、(B)はヒューズエレメントに電極の両側面及び底面の3面を囲む屈曲部を形成した構成を示す。FIG. 23 is a perspective view showing a reaction portion in which a fuse element and an electrode are opposed to each other on a plurality of surfaces. FIG. 23A shows a configuration in which a curved portion surrounding both sides of the electrode and the bottom surface is formed on the fuse element. (B) shows a configuration in which a bent portion is formed on the fuse element so as to surround the both sides of the electrode and the bottom surface. 図24は、電極のヒューズエレメントと対向する一面に液溶性材料からなるコート層が形成された反応部の構成例を示す斜視図である。FIG. 24 is a perspective view showing a configuration example of a reaction portion in which a coat layer made of a liquid-soluble material is formed on one surface facing an electrode fuse element. 図25は、絶縁基板の反応部及びその近傍以外の場所に撥水処理部を設け、反応部の近傍に吸水発熱材を設けたスイッチ素子の分解斜視図である。FIG. 25 is an exploded perspective view of a switch element in which a water repellent treatment part is provided in a place other than the reaction part and its vicinity of the insulating substrate, and a water-absorbing heat generating material is provided in the vicinity of the reaction part. 図26は、導電体として撚り線を用いたスイッチ素子を示す図である。FIG. 26 is a diagram illustrating a switch element using a stranded wire as a conductor. 図27は、導電体としてスポンジメタルを用いたスイッチ素子を示す断面図である。FIG. 27 is a cross-sectional view showing a switch element using sponge metal as a conductor. 図28(A)は液溶解性材料によって被覆された導電性粒子の凝集体を示す外観斜視図であり、図28(B)は導電体として(A)に示す凝集体を用いたスイッチ素子を示す断面図である。FIG. 28A is an external perspective view showing an aggregate of conductive particles coated with a liquid-soluble material, and FIG. 28B shows a switch element using the aggregate shown in FIG. It is sectional drawing shown. 図29は、導電体として導電材料からなる筒状の外部導体及び内部導体を用いた例を示す外観斜視図である。FIG. 29 is an external perspective view showing an example in which a cylindrical outer conductor and an inner conductor made of a conductive material are used as a conductor. 図30(A)は外部導体の内面に液溶解性材料からなる絶縁コート層が形成された状態を示す断面図であり、図30(B)は内部導体の外面に液溶解性材料からなる絶縁コート層が形成された状態を示す断面図である。FIG. 30A is a cross-sectional view showing a state in which an insulating coat layer made of a liquid-soluble material is formed on the inner surface of the outer conductor, and FIG. 30B shows an insulation made of a liquid-soluble material on the outer surface of the inner conductor. It is sectional drawing which shows the state in which the coat layer was formed. 図31は、外部導体と内部導体との間に、液溶解性材料からなる絶縁フィルムが介在されている状態を示す断面図である。FIG. 31 is a cross-sectional view showing a state where an insulating film made of a liquid-soluble material is interposed between the outer conductor and the inner conductor. 図32は、導電体として一対の金属端子片を用いたスイッチ素子を示す断面図である。FIG. 32 is a cross-sectional view showing a switch element using a pair of metal terminal pieces as a conductor. 図33は、一対の金属端子片の接続又は離間状態を示す図であり、(A)は絶縁材料が液体と接触する前で一対の金属端子片が接触している状態、(B)は絶縁材料が液体と接触して膨張することにより一対の金属端子片が離間された状態を示す。FIG. 33 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation. A state in which the pair of metal terminal pieces are separated as the material expands in contact with the liquid is shown. 図34は、一対の金属端子片の接続又は離間状態を示す図であり、(A)は絶縁材料が液体と接触する前で一対の金属端子片が接触している状態、(B)は絶縁材料が液体と接触して収縮、溶解、軟化等することにより一対の金属端子片が離間された状態を示す。FIG. 34 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation. A state in which the pair of metal terminal pieces are separated from each other when the material comes into contact with the liquid and contracts, dissolves, softens, or the like. 図35は、一対の金属端子片の接続又は離間状態を示す図であり、(A)は絶縁材料が液体と接触する前で一対の金属端子片が接触している状態、(B)は絶縁材料が液体と接触して溶解、軟化等することにより一対の金属端子片が離間された状態を示す。FIG. 35 is a diagram showing a connection or separation state of a pair of metal terminal pieces, (A) is a state in which the pair of metal terminal pieces are in contact before the insulating material is in contact with the liquid, and (B) is an insulation. A state in which the pair of metal terminal pieces are separated by the material being in contact with the liquid to be melted or softened is shown. 図36は、導電性粒子を介して導電体となる一対のリード線が接続されたスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。36A and 36B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 36A shows a state before the liquid has entered, and FIG. 36B shows a state after the liquid has entered. Shows the state. 図37は、図36に示すスイッチ素子の外観斜視図である。FIG. 37 is an external perspective view of the switch element shown in FIG. 図38は、導電性粒子を介して導電体となる一対の金属端子片が接続されたスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。38A and 38B are cross-sectional views showing a switch element in which a pair of metal terminal pieces serving as conductors are connected via conductive particles, where FIG. 38A shows a state before liquid intrusion and FIG. 38B shows liquid intrusion. Shown later. 図39は、導電性粒子を介して導電体となる一対のリード線が接続されたスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。39A and 39B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 39A shows a state before the liquid enters, and FIG. 39B shows a state after the liquid enters. Shows the state. 図40は、テーパ状の導入溝を形成したスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。40A and 40B are cross-sectional views showing a switch element having a tapered introduction groove, where FIG. 40A shows a state before the liquid has entered, and FIG. 40B shows a state after the liquid has entered. 図41は、液体と接触することにより膨張するシート状の絶縁材料を用いたスイッチ素子を示す図であり、(A)はシート状の絶縁材料が設けられた筐体の上ハーフを示す平面図であり、(B)は導電体となる金属端子片及び導電性粒子が設けられた筐体の下ハーフを示す平面図である。FIG. 41 is a diagram showing a switch element using a sheet-like insulating material that expands by contact with a liquid, and FIG. 41 (A) is a plan view showing an upper half of a housing provided with the sheet-like insulating material. (B) is a top view which shows the lower half of the housing | casing in which the metal terminal piece used as a conductor and the electroconductive particle were provided. 図42は、図41に示すスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。42 is a cross-sectional view of the switch element shown in FIG. 41, in which (A) shows a state before the liquid has entered, and (B) shows a state after the liquid has entered. 図43は、導電性粒子を介して導電体となる一対のリード線が接続されるスイッチ素子を示す断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。43A and 43B are cross-sectional views showing a switch element to which a pair of lead wires serving as conductors are connected via conductive particles, where FIG. 43A shows a state before the liquid has entered, and FIG. 43B shows a state after the liquid has entered. Shows the state. 図44は、格子状に配列された導電性粒子を介して導電体となる一対の外部接続電極が接続されたスイッチ素子を示す斜視図である。FIG. 44 is a perspective view showing a switch element to which a pair of external connection electrodes serving as conductors are connected via conductive particles arranged in a lattice pattern. 図45は、図44に示すスイッチ素子において液体と接触した導電材料によって導電性粒子が凝集し、導電パスが遮断されたスイッチ素子を示す図であり、(A)は外観斜視図、(B)は筐体内部を示す斜視図である。FIG. 45 is a diagram showing a switch element in which conductive particles are aggregated by a conductive material in contact with a liquid in the switch element shown in FIG. 44 and the conductive path is cut off, (A) is an external perspective view, and (B). FIG. 3 is a perspective view showing the inside of the housing. 図46は、図45に示すスイッチ素子の断面図である。46 is a cross-sectional view of the switch element shown in FIG. 図47は、線状に配列された導電性粒子を介して導電体となる一対の外部接続電極が接続されたスイッチ素子を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。FIG. 47 is a perspective view showing a switch element to which a pair of external connection electrodes serving as conductors are connected via conductive particles arranged in a linear form, (A) is a state before liquid intrusion, ( B) shows the state after the liquid has entered. 図48は、導電体としてリード端子を用いたスイッチ素子を示す図であり、(A)は外観斜視図、(B)は分解斜視図である。48A and 48B are diagrams showing a switch element using a lead terminal as a conductor, wherein FIG. 48A is an external perspective view, and FIG. 48B is an exploded perspective view. 図49は、図48に示すスイッチ素子の内部を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。49 is a perspective view showing the inside of the switch element shown in FIG. 48. FIG. 49A shows a state before the liquid enters, and FIG. 49B shows a state after the liquid enters. 図50は、開放されていたリード端子間を導通させるスイッチ素子を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。50A and 50B are perspective views showing the switch element that conducts between the opened lead terminals. FIG. 50A shows a state before the liquid enters, and FIG. 50B shows a state after the liquid enters. 図51は、開放されていたリード端子間を導通させるスイッチ素子を示す斜視図であり、(A)は外観斜視図、(B)は分解斜視図である。51A and 51B are perspective views showing a switch element that conducts between the opened lead terminals. FIG. 51A is an external perspective view, and FIG. 51B is an exploded perspective view. 図52は、図51に示すスイッチ素子の内部を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。52 is a perspective view showing the inside of the switch element shown in FIG. 51, in which (A) shows a state before the liquid enters, and (B) shows a state after the liquid enters. 図53は、開放されていたリード端子間を導通させる他のスイッチ素子を示す斜視図であり、(A)は外観斜視図、(B)は分解斜視図である。FIG. 53 is a perspective view showing another switch element that conducts between the opened lead terminals, (A) is an external perspective view, and (B) is an exploded perspective view. 図54は、図53に示すスイッチ素子の内部を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。54A and 54B are perspective views showing the inside of the switch element shown in FIG. 53, where FIG. 54A shows a state before the liquid has entered, and FIG. 54B shows a state after the liquid has entered. 図55は、絶縁材料の側面に導電層を形成するとともに、液体と接触した絶縁材料が膨張することにより、導電層の両端を断絶するスイッチ素子を示す斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。FIG. 55 is a perspective view showing a switch element that forms a conductive layer on a side surface of an insulating material and breaks off both ends of the conductive layer when the insulating material in contact with the liquid expands. FIG. The state before entering, (B) shows the state after entering the liquid. 図56は、図55に示すスイッチ素子の断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。56 is a cross-sectional view of the switch element shown in FIG. 55, where FIG. 56 (A) shows a state before the liquid has entered, and FIG. 56 (B) shows a state after the liquid has entered. 図57は、導電層を絶縁材料の側面を螺旋状に周回する導電性を有する線材で構成したスイッチ素子の斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。FIGS. 57A and 57B are perspective views of a switch element in which a conductive layer is formed of a conductive wire that spirals around the side surface of an insulating material. FIG. 57A shows a state before the liquid has entered, and FIG. Shows the state after entering. 図58は、絶縁材料の側面に形成された断絶されていた導電層が、液体と接触した絶縁材料が膨張することにより接続されるスイッチ素子の斜視図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。FIG. 58 is a perspective view of a switch element to which a disconnected conductive layer formed on a side surface of an insulating material is connected by expansion of the insulating material in contact with the liquid, and FIG. (B) shows the state after the liquid has entered. 図59は、図58に示すスイッチ素子の断面図であり、(A)は液体の浸入前の状態、(B)は液体の浸入後の状態を示す。FIG. 59 is a cross-sectional view of the switch element shown in FIG. 58, where (A) shows a state before entering the liquid and (B) shows a state after entering the liquid. 図60は、サーミスタからなる導電体を用いたスイッチ素子の概略構成を示す図である。FIG. 60 is a diagram showing a schematic configuration of a switch element using a conductor made of a thermistor. 図61は、図60に示すスイッチ素子の構成例を示す分解斜視図である。61 is an exploded perspective view showing a configuration example of the switch element shown in FIG.
 以下、本発明が適用されたスイッチ素子について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, the switch element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 本発明が適用されたスイッチ素子は、バッテリ回路、警報回路等の外部回路に組み込まれ、水没や液漏れ等の水濡れ状態が生じた場合に、バッテリ回路の遮断や警報回路や保護回路の導通を行うものである。図1に示すように、スイッチ素子1は、外部回路に接続される1又は複数の導電体2と、液体と接触することにより導電体2を導通又は遮断する反応部3と、反応部3が内蔵された筐体4とを有し、筐体4には、反応部3に液体を導く導入口5が設けられているものである。 The switch element to which the present invention is applied is incorporated in an external circuit such as a battery circuit or an alarm circuit, and when a wet state such as submergence or liquid leakage occurs, the battery circuit is shut off or the alarm circuit or protection circuit is turned on. Is to do. As shown in FIG. 1, the switch element 1 includes one or a plurality of conductors 2 connected to an external circuit, a reaction unit 3 that conducts or cuts off the conductors 2 by contact with a liquid, and a reaction unit 3 The housing 4 is provided with an introduction port 5 that guides the liquid to the reaction unit 3.
 [導電体]
 導電体2は、スイッチ素子1の組み込まれる外部回路に設けられた端子部と接続されるものであり、例えばスイッチ素子1の筐体4内に内蔵された絶縁基板に形成されたパターン電極や金属端子、リード端子、ヒューズエレメント等を用いることができる。また、導電体2は、絶縁基板に形成された複数の電極と、複数の電極間にわたって接続されているヒューズエレメントやリード線によって構成されてもよい。
[conductor]
The conductor 2 is connected to a terminal portion provided in an external circuit in which the switch element 1 is incorporated. For example, a patterned electrode or a metal formed on an insulating substrate built in the casing 4 of the switch element 1 Terminals, lead terminals, fuse elements, and the like can be used. The conductor 2 may be configured by a plurality of electrodes formed on the insulating substrate and fuse elements and lead wires connected across the plurality of electrodes.
 スイッチ素子1は、導電体2の接続端が、筐体4の外部に引き出され、あるいは図示しない外部接続端子と接続されることにより、外部回路の端子部と接続可能とされている。また、スイッチ素子1は、導電体2が常態において導通あるいは開放されており、反応部3に液体が接触することにより、当該反応部3の作用によって導通状態が開放され、あるいは開放状態が導通される。 The switch element 1 can be connected to a terminal portion of an external circuit by connecting the connection end of the conductor 2 to the outside of the housing 4 or by connecting to an external connection terminal (not shown). Further, the switch element 1 is electrically connected or opened in the normal state, and when the liquid comes into contact with the reaction part 3, the conduction state is opened by the action of the reaction part 3, or the open state is made conductive. The
 [反応部]
 反応部3は、筐体4内に浸入した液体と接触することにより導電体2を不可逆的に導通又は遮断するものであり、導電体2の形態やスイッチ素子1が外部回路の遮断又は開放のいずれを目的とするかによって様々な構成を有する。
[Reaction part]
The reaction unit 3 irreversibly conducts or cuts off the conductor 2 by contact with the liquid that has entered the housing 4, and the form of the conductor 2 and the switch element 1 block or open the external circuit. There are various configurations depending on the purpose.
 以下では、図2に示すように、導電体2の一例として、常態において外部回路を接続し、水濡れ状態になると開放させる平板状のヒューズエレメント11を用い、ヒューズエレメント11よりもイオン化傾向の小さい金属からなる電極12を、ヒューズエレメント11の中心部の一面に対向して配置することにより反応部3を形成した場合について説明する。 In the following, as illustrated in FIG. 2, as an example of the conductor 2, a flat plate-like fuse element 11 that is connected to an external circuit in a normal state and is opened when it becomes wet is used and has a smaller ionization tendency than the fuse element 11. The case where the reaction part 3 is formed by disposing the electrode 12 made of metal so as to face one surface of the central part of the fuse element 11 will be described.
 この反応部3は、ヒューズエレメント11と電極12とが互いに近接配置されることにより、水濡れや電池からの液漏れ等の異常時に、その間に液体が存在するとヒューズエレメント11を電蝕させる。これにより、電気抵抗が上昇し、定格電流値が低下するため、ヒューズエレメント11への通電電流により自己遮断し、安全に電気回路を開放させることができる。 This reaction unit 3 causes the fuse element 11 to galvanize when liquid is present between the fuse element 11 and the electrode 12 when the fuse element 11 and the electrode 12 are arranged close to each other, in the event of an abnormality such as water wetting or leakage from the battery. As a result, the electrical resistance increases and the rated current value decreases, so that the electrical circuit can be safely opened by self-interruption by the energization current to the fuse element 11.
 ヒューズエレメント11と電極12とは、水が浸入可能なように近接しており、その距離は、0.01mm~10mmであることが好ましい。また、ヒューズエレメント11と電極12間の距離が小さい方が、電界強度が大きく電蝕作用が強いため、また、毛細管現象によってヒューズエレメント11と電極12との間に水を導入しやすいため、より効率的に電気回路を開放させるためには、電極12との距離を0.01~1mmとすることがより好ましい。 The fuse element 11 and the electrode 12 are close to each other so that water can enter, and the distance is preferably 0.01 mm to 10 mm. In addition, the smaller the distance between the fuse element 11 and the electrode 12, the greater the electric field strength and the stronger the electric erosion action. In addition, it is easier to introduce water between the fuse element 11 and the electrode 12 by capillary action. In order to efficiently open the electric circuit, the distance to the electrode 12 is more preferably 0.01 to 1 mm.
 ヒューズエレメント11は、所定の定格電流値を有し、定格電流値を超える電流が通電されると溶断する。ヒューズエレメント11は、アルミニウム、鉄、ニッケル、錫、鉛から選択されるいずれか1種を主成分とすることが好ましい。なお、本明細書において、主成分とは、材料全質量を基準として、50wt%以上である成分をいう。 The fuse element 11 has a predetermined rated current value and blows when a current exceeding the rated current value is energized. The fuse element 11 is preferably composed mainly of any one selected from aluminum, iron, nickel, tin, and lead. In the present specification, the main component refers to a component that is 50 wt% or more based on the total mass of the material.
 電極12は、ヒューズエレメント11の中心部の一面に対向して配置される。なお、電極12は、ヒューズエレメント11の電蝕する物質量が大きくなるように、ヒューズエレメント11の中心部の両面に対向して配置してもよい。 The electrode 12 is disposed to face one surface of the central portion of the fuse element 11. Note that the electrode 12 may be disposed opposite to both surfaces of the center portion of the fuse element 11 so that the amount of the material that is electrically eroded by the fuse element 11 is increased.
 また、電極12は、ヒューズエレメントよりもイオン化傾向の小さい金属からなり、金、白金、銀、銅、パラジウムから選択されるいずれか1種を主成分とすることが好ましい。これにより、ヒューズエレメント11と電極12との間に水が浸入した場合、卑な金属からなるヒューズエレメント11が正極となってイオン化(腐食)し、ヒューズエレメント11が細ったり、ピンホールが発生したりしてヒューズエレメント11の導体抵抗が上昇し、定格電流値を低下させることができる。 Further, the electrode 12 is made of a metal having a smaller ionization tendency than the fuse element, and it is preferable that any one selected from gold, platinum, silver, copper and palladium is a main component. Thereby, when water permeates between the fuse element 11 and the electrode 12, the fuse element 11 made of a base metal is ionized (corroded) as a positive electrode, and the fuse element 11 is thinned or a pinhole is generated. As a result, the conductor resistance of the fuse element 11 increases, and the rated current value can be decreased.
 また、図3、図4に示すように、ヒューズエレメント11は、正極として接続され、電極12は、負極として接続されることが好ましい。これにより、電蝕反応を促進することができ、ヒューズエレメント11の定格電流値を早く低下させることができる。 3 and 4, it is preferable that the fuse element 11 is connected as a positive electrode and the electrode 12 is connected as a negative electrode. Thereby, the electrolytic corrosion reaction can be promoted, and the rated current value of the fuse element 11 can be quickly reduced.
 すなわち、スイッチ素子1は、直流電源に正極として直列接続されてなるヒューズエレメント11と、ヒューズエレメント11に近接して配置され、ヒューズエレメント11よりもイオン化傾向の小さい金属からなり、負極として接続されてなる電極12とを備える遮断回路を構成する。また、スイッチ素子1は、ヒューズエレメント11に通電するための第1の端子及び第2の端子と、電極12を負極として接続する第3の端子とを備え、第1の端子及び第2の端子を正極の通電経路に直列接続し、第3の端子を負極に接続し又は接地する。 That is, the switch element 1 is composed of a fuse element 11 connected in series to a DC power source as a positive electrode and a metal that is arranged close to the fuse element 11 and has a lower ionization tendency than the fuse element 11 and is connected as a negative electrode. A cutoff circuit including the electrode 12 is configured. In addition, the switch element 1 includes a first terminal and a second terminal for energizing the fuse element 11, and a third terminal connecting the electrode 12 as a negative electrode, and the first terminal and the second terminal. Are connected in series to the positive current path, and the third terminal is connected to the negative electrode or grounded.
 図3及び図4は、それぞれ電蝕前及び電蝕後のヒューズエレメントを模式的に示す斜視図である。図3に示すように、電蝕前のヒューズエレメント11は、短形形状を保っている。ヒューズエレメント11と電極12との間に水が浸入した場合、図4に示すように卑な金属からなるヒューズエレメント11が正極となってイオン化(腐食)し、ヒューズエレメント11が細ったり、ピンホールが発生したりする。このため、ヒューズエレメント11の導体抵抗が上昇し、定格電流値が低下する。導体抵抗の上昇に伴う発熱により、ヒューズエレメント11と電極12との間の水や電解液が蒸発することがあるが、定格電流値が低下しているため、ヒューズエレメント11への通電電流により自己遮断し、安全に外部回路を開放させることができる。 3 and 4 are perspective views schematically showing fuse elements before and after electrolytic corrosion, respectively. As shown in FIG. 3, the fuse element 11 before electrolytic corrosion maintains a short shape. When water intrudes between the fuse element 11 and the electrode 12, the fuse element 11 made of a base metal is ionized (corroded) as a positive electrode as shown in FIG. May occur. For this reason, the conductor resistance of the fuse element 11 increases, and the rated current value decreases. Although heat and electrolyte between the fuse element 11 and the electrode 12 may evaporate due to heat generation due to an increase in the conductor resistance, the rated current value is reduced, so that the self-current due to the energizing current to the fuse element 11 decreases. It can be shut off and the external circuit can be opened safely.
 [貫通孔・凹部・凸部]
 また、反応部3は、ヒューズエレメント11と電極12との一方又は両方に、1又は複数の貫通孔、凹部又は凸部を設けてもよい。図5(A)(B)は、一例として、ヒューズエレメント11と、電極12とに貫通孔13を形成した導電体2及び反応部3を示す斜視図である。これにより、スイッチ素子1は、筐体4内に流入した液体を優先的に反応部3に導入、保持しやすくすることができ、また、貫通孔13によって液体の保持量が増えることによりヒューズエレメント11と電極12との接触面積が増大し、ヒューズエレメント11の電蝕作用を促進させることができる。さらに、ヒューズエレメント11に貫通孔13を形成することにより溶断面積が減少するため、より速やかに溶断させることができる。
[Through hole / recess / projection]
Moreover, the reaction part 3 may provide one or several through-holes, a recessed part, or a convex part in one or both of the fuse element 11 and the electrode 12. FIG. FIGS. 5A and 5B are perspective views showing the conductor 2 and the reaction part 3 in which the through-hole 13 is formed in the fuse element 11 and the electrode 12 as an example. As a result, the switch element 1 can preferentially introduce and hold the liquid that has flowed into the housing 4 into the reaction unit 3, and the amount of liquid retained by the through-hole 13 increases the fuse element. The contact area between the electrode 11 and the electrode 12 is increased, and the electroerosion action of the fuse element 11 can be promoted. Furthermore, since the melt sectional area is reduced by forming the through hole 13 in the fuse element 11, the fuse element 11 can be blown more quickly.
 凹部又は凸部を設けた場合も同様に、スイッチ素子1は、筐体4内に流入した液体を優先的に反応部3に導入、保持しやすくすることができ、また、凹部又は凸部によって液体の保持量が増えることによりヒューズエレメント11と電極12との接触面積が増大し、ヒューズエレメント11の電蝕作用を促進させることができる。 Similarly, in the case where a concave portion or a convex portion is provided, the switch element 1 can preferentially introduce and hold the liquid that has flowed into the housing 4 into the reaction portion 3. By increasing the amount of liquid retained, the contact area between the fuse element 11 and the electrode 12 increases, and the electrolytic corrosion action of the fuse element 11 can be promoted.
 [セパレータ]
 また、図6に示すように、ヒューズエレメント11と電極12との間にセパレータ14を備えることが好ましい。また、セパレータ14は、メッシュ状、多孔質状を有することが好ましい。これにより、セパレータ14は、ヒューズエレメント11と電極12との間に水や電解液等の液体を集め、保持する集液性、保水性を確保することができる。また、セパレータ14は、絶縁体からなることが好ましい。これにより、セパレータ14は、ヒューズエレメント11と電極12との間の直接短絡を抑制することができる。
[Separator]
In addition, as shown in FIG. 6, a separator 14 is preferably provided between the fuse element 11 and the electrode 12. The separator 14 preferably has a mesh shape or a porous shape. Thereby, the separator 14 can secure liquid collecting properties and water retention properties that collect and hold liquid such as water and electrolytic solution between the fuse element 11 and the electrode 12. The separator 14 is preferably made of an insulator. Thereby, the separator 14 can suppress a direct short circuit between the fuse element 11 and the electrode 12.
 また、セパレータは、NaCl等の電解質を担持することが好ましい。これにより、水や電解液の電気伝導度を向上し、電蝕を促進させることができる。 Also, the separator preferably carries an electrolyte such as NaCl. Thereby, the electrical conductivity of water and electrolyte solution can be improved, and electric corrosion can be promoted.
 さらに、セパレータ14は、水や電解液等の液体に溶解する液溶性を有していてもよい。この場合、セパレータ14は、液溶性に加え絶縁性を有することが好ましい。これにより、セパレータ14は、液体の浸入前の状態においてはヒューズエレメント11と電極12とのクリアランスを確保し、短絡を防止するとともに、液体の浸入時には溶解し、より多くの液体をヒューズエレメント11と電極12との間に導入させ電蝕作用を促進させることができる。 Furthermore, the separator 14 may have liquid solubility that dissolves in a liquid such as water or an electrolytic solution. In this case, the separator 14 preferably has an insulating property in addition to the liquid solubility. Accordingly, the separator 14 ensures a clearance between the fuse element 11 and the electrode 12 before the liquid enters, prevents a short circuit, dissolves when the liquid enters, and allows more liquid to be removed from the fuse element 11. It can introduce | transduce between the electrodes 12, and can accelerate | stimulate an electrolytic corrosion effect | action.
 液溶性を有する材料としては、例えば、寒天,ゼラチンなどの天然ポリマー、セルロース,でんぷんなどの半合成ポリマー、ポリビニルアルコールなどの合成ポリマー等が挙げられる。これらは、液体と接触することにより収縮あるいは溶解する。なお、高分子量になると溶解せず膨張する性質が強くなるため、重合度を調整して用いることが好ましい。また、液溶性材料として角砂糖のような水溶性の固形物を用いた場合、液体と接触することにより溶解、あるいは体積が減少する。 Examples of liquid-soluble materials include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid. In addition, since the property which does not melt | dissolve but expand | swells will become strong when it becomes high molecular weight, it is preferable to adjust and use a polymerization degree. In addition, when a water-soluble solid material such as sugar cubes is used as the liquid-soluble material, dissolution or volume is reduced by contact with the liquid.
 また、液体としてバッテリセルに充填されたエチレンカーボネート等の電解液を想定し、電解液漏れに対応して作動するスイッチ素子の場合、液溶性材料としては、ABS、ポリアクリロニトリル、ポリフッ化ビニリデン、あるいはPET、PTT、PEN等の飽和ポリエステルなどを用いることができる。これらの液溶性材料も、高分子量になると溶解速度が落ち、スイッチ素子1として反応速度が低下する場合もあるため、反応速度を優先する場合は、重合度を調整して用いることが好ましい。 In addition, in the case of a switch element that operates in response to an electrolyte leakage, assuming an electrolyte such as ethylene carbonate filled in the battery cell as a liquid, the liquid-soluble material includes ABS, polyacrylonitrile, polyvinylidene fluoride, or Saturated polyesters such as PET, PTT, and PEN can be used. Since these liquid-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate may decrease as the switch element 1. Therefore, when priority is given to the reaction rate, it is preferable to adjust the polymerization degree and use it.
 また、ヒューズエレメント11と電極12との間に配置されるセパレータ14は、吸水性又は吸湿性の絶縁物であってもよい。また、ヒューズエレメント11と電極12との間に、ゾル、ゲル、又は固体からなる絶縁物を配置し、液体により導電性が発現するようにしてもよい。また、ヒューズエレメント11と電極12との間に、ゾル又はゲルからなる電解質が浸入したときに、ヒューズエレメント11の電蝕作用を発揮するようにしてもよい。 Further, the separator 14 disposed between the fuse element 11 and the electrode 12 may be a water-absorbing or hygroscopic insulator. Further, an insulator made of sol, gel, or solid may be disposed between the fuse element 11 and the electrode 12 so that conductivity is exhibited by the liquid. Further, when an electrolyte made of sol or gel enters between the fuse element 11 and the electrode 12, the electroerosion action of the fuse element 11 may be exhibited.
 [積層構造]
 また、導電体2及び反応部3は、前述した構成例に限られず、例えば、導電体2となるヒューズエレメントが複数並列に重畳配置され、電極が各ヒューズエレメント間に配置されることにより反応部3が形成されていてもよい。図7は、導電体2として平板状に形成されたヒューズエレメント11が複数並列に所定間隔で重畳配置されるとともに、各ヒューズエレメント11の間に平板状に形成された電極12が配置されることにより形成された反応部3の構成例を示す斜視図である。
[Laminated structure]
In addition, the conductor 2 and the reaction unit 3 are not limited to the configuration example described above. For example, a plurality of fuse elements to be the conductors 2 are arranged in parallel and electrodes are arranged between the fuse elements. 3 may be formed. In FIG. 7, a plurality of fuse elements 11 formed in a flat plate shape as the conductor 2 are arranged in a superimposed manner at predetermined intervals in parallel, and electrodes 12 formed in a flat plate shape are arranged between the fuse elements 11. It is a perspective view which shows the structural example of the reaction part 3 formed by these.
 この反応部3は、ヒューズエレメント11と電極12とが3つずつ交互に積層された積層構造を有する。各ヒューズエレメント11は並列に接続され、また各電極12も並列に接続されている。 The reaction part 3 has a laminated structure in which the fuse elements 11 and the electrodes 12 are alternately laminated three by three. Each fuse element 11 is connected in parallel, and each electrode 12 is also connected in parallel.
 このようにヒューズエレメント11を複数並列に配置することにより、定格電流を大きくすることができるとともに、ヒューズエレメント11と電極12との間に液体が浸入した場合におけるヒューズエレメント11の電蝕を促進させることができる。 By arranging a plurality of fuse elements 11 in parallel in this way, the rated current can be increased, and the electrolytic corrosion of the fuse elements 11 when liquid enters between the fuse elements 11 and the electrodes 12 is promoted. be able to.
 なお、導電体2及び反応部3は、図8に示すように、平板状に形成されたヒューズエレメント11が複数並列に所定間隔で重畳配置されるとともに、平板状に形成された電極12をヒューズエレメント11の数よりも1つ多くし、各ヒューズエレメント11の間に配置するとともに、各ヒューズエレメント11の両面に対向して重畳させてもよい。 As shown in FIG. 8, the conductor 2 and the reaction unit 3 include a plurality of plate-shaped fuse elements 11 that are arranged in parallel at a predetermined interval, and the plate-shaped electrodes 12 are fused. One more than the number of the elements 11 may be arranged between the fuse elements 11 and may be overlapped on both sides of each fuse element 11.
 反応部3は、各ヒューズエレメント11の両面に電極12を対向させることにより、ヒューズエレメント11の両面と電極12との間に液体を介在させ、ヒューズエレメント11の電蝕をより促進させることができる。 The reaction unit 3 can further promote the electric corrosion of the fuse element 11 by interposing a liquid between both surfaces of the fuse element 11 and the electrode 12 by making the electrodes 12 face the both surfaces of each fuse element 11. .
 また、反応部3は、図7、図8に示す積層構造において、ヒューズエレメント11及び電極12の一方又は両方に、上述した1又は複数の貫通孔13や、凹部又は凸部を設けてもよい。 Moreover, the reaction part 3 may provide the 1 or several through-hole 13 mentioned above, the recessed part, or the convex part in one or both of the fuse element 11 and the electrode 12 in the laminated structure shown in FIG. 7, FIG. .
 さらに、反応部3は、図7、図8に示す積層構造において、ヒューズエレメント11及び電極12の間に、上述したセパレータ14を配置してもよい。これにより、ヒューズエレメント11と電極12との間の直接短絡を抑制するとともに、水や電解液の保持性を確保することができる。このとき、セパレータ14は、メッシュ状、多孔質状のものを用いてもよく、絶縁材料を用いてもよい。また、セパレータ14は、NaCl等の電解質を担持させ、水や電解液の電気伝導度を向上させ、電蝕を促進させるようにしてもよい。また、上述したように、セパレータ14は、吸水性又は吸湿性の絶縁物であってもよい。また、ヒューズエレメント11と電極12との間に、ゾル、ゲル、又は固体からなる絶縁物を配置し、液体により導電性が発現するようにしてもよい。また、ヒューズエレメント11と電極12との間に、ゾル又はゲルからなる電解質が浸入したときに、ヒューズエレメント11の電蝕作用を発揮するようにしてもよい。 Furthermore, the reaction unit 3 may arrange the separator 14 described above between the fuse element 11 and the electrode 12 in the stacked structure shown in FIGS. Thereby, while suppressing the direct short circuit between the fuse element 11 and the electrode 12, the retainability of water and electrolyte solution can be ensured. At this time, the separator 14 may be a mesh or a porous material, or an insulating material. Further, the separator 14 may carry an electrolyte such as NaCl to improve the electric conductivity of water or an electrolytic solution and promote electric corrosion. Further, as described above, the separator 14 may be a water-absorbing or hygroscopic insulator. Further, an insulator made of sol, gel, or solid may be disposed between the fuse element 11 and the electrode 12 so that conductivity is exhibited by the liquid. Further, when an electrolyte made of sol or gel enters between the fuse element 11 and the electrode 12, the electroerosion action of the fuse element 11 may be exhibited.
 なお、導電体2及び反応部3は、上述したように様々な形態を採用することができる。導電体2及び反応部3の他の形態例については、後に詳述する。 The conductor 2 and the reaction unit 3 can adopt various forms as described above. Other embodiments of the conductor 2 and the reaction unit 3 will be described in detail later.
 [筐体1]
 スイッチ素子1の筐体4は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。スイッチ素子1は、筐体4を設けることにより、導電体2及び反応部3を外部より受ける機械的な外乱等から保護するとともに、導電体2として用いたヒューズエレメントがアーク放電の発生を伴って溶断した際に、溶融金属の周囲への飛散を防止することができる。
[Case 1]
The casing 4 of the switch element 1 can be formed of an insulating member such as various engineering plastics and ceramics. The switch element 1 is provided with a housing 4 to protect the conductor 2 and the reaction part 3 from mechanical disturbances received from the outside, and the fuse element used as the conductor 2 is accompanied by the occurrence of arc discharge. When fusing, it is possible to prevent the molten metal from being scattered around.
 筐体4には、反応部3に液体を導く導入口5が設けられている。スイッチ素子1は、筐体4に設けられた導入口5を介して液体が反応部3へ流入することにより、導電体2を不可逆的に導通又は遮断させる。 The housing 4 is provided with an introduction port 5 that guides the liquid to the reaction unit 3. The switch element 1 irreversibly conducts or blocks the conductor 2 when the liquid flows into the reaction unit 3 through the introduction port 5 provided in the housing 4.
 筐体4は、例えば図9(A)に示すように、多面体からなり、一の面に、一の導入口5が設けられている。スイッチ素子1は、外部回路が形成された回路基板に実装されるチップ部品として形成された場合、筐体4の実装面と反対側の天面4aに導入口5が設けられることが好ましい。天面4aに導入口5が設けられることにより、水濡れ状態になると効率的に液体を筐体4内に取り込むとともに反応部3に保持し、導電体2を導通又は遮断させることができる。もちろん筐体4は、天面4a以外の面、例えば側面4bに導入口5を形成してもよい。また、筐体4は、図9(B)に示すように、天面4aに複数の導入口5を形成してもよく、あるいは側面4bに複数の導入口5を形成してもよい。筐体4は、複数の導入口5を設けることにより、より液体を反応部3に導入しやすくすることができる。 The housing 4 is composed of a polyhedron, for example, as shown in FIG. 9A, and one introduction port 5 is provided on one surface. When the switch element 1 is formed as a chip component to be mounted on a circuit board on which an external circuit is formed, the introduction port 5 is preferably provided on the top surface 4a opposite to the mounting surface of the housing 4. By providing the introduction port 5 on the top surface 4a, the liquid can be efficiently taken into the housing 4 and held in the reaction unit 3 when the water gets wet, and the conductor 2 can be turned on or off. Of course, the housing 4 may have the introduction port 5 formed on a surface other than the top surface 4a, for example, the side surface 4b. Further, as shown in FIG. 9B, the housing 4 may have a plurality of inlets 5 formed on the top surface 4a or a plurality of inlets 5 formed on the side surface 4b. The housing 4 can make it easier to introduce the liquid into the reaction unit 3 by providing a plurality of inlets 5.
 また、筐体4は、例えば図9(C)に示すように、多面体からなり、複数の面、例えば天面4aと側面4bに導入口5を設けてもよい。また、筐体4は、図9(D)に示すように、複数の面にそれぞれ一又は複数の導入口5を形成してもよい。 Moreover, the housing | casing 4 consists of a polyhedron, as shown, for example in FIG.9 (C), You may provide the inlet 5 in several surfaces, for example, the top | upper surface 4a and the side surface 4b. Moreover, as shown to FIG 9 (D), the housing | casing 4 may form the 1 or several introduction port 5 in a some surface, respectively.
 また、筐体4は、筒状に形成し、導入口5を任意の位置に、任意の個数だけ形成してもよい。図10は筐体4を円筒状に形成し、全周にわたって複数の導入口5を形成したスイッチ素子1の外観斜視図である。筐体4を中空の円柱状、角柱状に形成することにより、スイッチ素子1の配置に応じた面や角度、液体の浸入経路等に左右されずに導入口5を形成することができる。なお、図10に示すスイッチ素子1は、導電体2が筐体4の外周面より突出して形成されている。 Further, the casing 4 may be formed in a cylindrical shape, and an arbitrary number of introduction ports 5 may be formed at arbitrary positions. FIG. 10 is an external perspective view of the switch element 1 in which the casing 4 is formed in a cylindrical shape and a plurality of inlets 5 are formed over the entire circumference. By forming the casing 4 into a hollow columnar shape or a prismatic shape, the introduction port 5 can be formed without being influenced by the surface and angle according to the arrangement of the switch element 1, the liquid intrusion route, and the like. Note that the switch element 1 shown in FIG. 10 is formed such that the conductor 2 protrudes from the outer peripheral surface of the housing 4.
 また、筐体4は、導入口5より浸入した液体を排出する排出口を形成してもよい。図11は、多面体からなる筐体4の天面4aに導入口5を形成するとともに、側面4bに液体を排出する排出口6を形成したスイッチ素子1を示す外観斜視図である。排出口6を形成することにより、液体が多量に筐体4内に浸入することによって導電体2及び反応部3が冷却され、ヒューズエレメント11の電蝕作用や自己発熱が阻害される等、反応部3の作用や、導電体2の導通状態の開放、あるいは開放状態の導通が阻害される事態を防止することができる。 Further, the housing 4 may form a discharge port for discharging the liquid that has entered through the introduction port 5. FIG. 11 is an external perspective view showing the switch element 1 in which the introduction port 5 is formed in the top surface 4a of the polyhedral casing 4 and the discharge port 6 for discharging the liquid is formed in the side surface 4b. By forming the discharge port 6, a large amount of liquid enters the housing 4, whereby the conductor 2 and the reaction unit 3 are cooled, and the electric corrosion action and self-heating of the fuse element 11 are inhibited. It is possible to prevent the operation of the portion 3, the opening of the conductive state of the conductor 2, or the situation where the open state of conduction is inhibited.
 なお、排出口6は、導入口5よりも小さく形成されることが好ましい。排出口6を相対的に小さくすることで、筐体4内に浸入した液体が過剰に排出され、却って反応部3の作用や、導電体2の開放あるいは導通が遅延することを防止することができる。 Note that the discharge port 6 is preferably formed smaller than the introduction port 5. By making the discharge port 6 relatively small, it is possible to prevent the liquid that has entered the housing 4 from being excessively discharged and prevent the action of the reaction unit 3 and the opening or conduction of the conductor 2 from being delayed. it can.
 また、排出口は6、筐体4の反応部3が設けられた位置と同じ高さ、又は反応部3が設けられた位置よりも上方に設けられていることが好ましい。例えば、図12に示すように、筐体4を多面形状に形成するとともに、回路基板に実装されるチップ部品として形成された場合、排出口6は、筐体4の側面4bの反応部3が設けられた位置と同じ高さ又は上方に設けられることが好ましい。これにより、筐体4内に浸入した液体は、反応部3より上方に浸入した分が排水され、反応部3には残留するため、反応部3の作用を確保するとともに、筐体4内に多量に浸入した液体によって導電体2及び反応部3が冷却され、ヒューズエレメント11の電蝕作用や自己発熱が阻害される等、反応部3の作用や、導電体2の導通状態の開放、あるいは開放状態の導通が阻害される事態を防止することができる。 Further, it is preferable that the discharge port is provided at the same height as the position where the reaction part 3 of the housing 4 is provided, or above the position where the reaction part 3 is provided. For example, as shown in FIG. 12, when the housing 4 is formed in a multi-face shape and is formed as a chip component mounted on a circuit board, the discharge port 6 is connected to the reaction part 3 on the side surface 4b of the housing 4. It is preferable to be provided at the same height as or above the provided position. As a result, the liquid that has entered the housing 4 is drained from the reaction portion 3 and remains in the reaction portion 3, so that the action of the reaction portion 3 is ensured and the liquid in the housing 4 is retained. The conductor 2 and the reaction part 3 are cooled by the liquid that has entered a large amount, and the action of the reaction part 3 such as the erosion action and self-heating of the fuse element 11 is inhibited, or the conduction state of the conductor 2 is released, or It is possible to prevent a situation where conduction in the open state is hindered.
 なお、液体を導入する導入口5及び液体を排出する排出口6は、円形、矩形等、その形状は問わない。また、導入口5及び排出口6は、図13に示すように、スリット状に形成してもよい。導入口5をスリット状に形成することにより、より広範に液体を導入させ、速やかに反応部3を反応させて導電体2を開放又は導通させることができる。また、排出口6をスリット状に形成することにより、筐体4内に浸入した余剰の液体を速やかに排水することができ、反応部3の作用や導電体2の開放あるいは導通の進行が遅延することを防止することができる。 The shape of the inlet 5 for introducing the liquid and the outlet 6 for discharging the liquid are not particularly limited, such as circular and rectangular. Moreover, you may form the inlet 5 and the discharge port 6 in slit shape, as shown in FIG. By forming the inlet 5 in a slit shape, the liquid can be introduced more extensively, and the reaction section 3 can be reacted quickly to open or conduct the conductor 2. Further, by forming the discharge port 6 in a slit shape, excess liquid that has entered the housing 4 can be quickly drained, and the action of the reaction unit 3, the opening of the conductor 2, or the progress of conduction is delayed. Can be prevented.
 また、筐体4は、天面4aにスリット状の導入口5を設けるとともに、反応部3へ液体を導く導入溝7を設けてもよい。図14(A)(B)に示すように、導入溝7は、溝壁7aが天面4aに形成された導入口5から反応部3の近傍まで延在される。これにより、筐体4は、導入口5に浸入した液体が反応部3以外の場所に流入することなく、確実に反応部3へ導くことができる。また、筐体4は、導入口5に浸入した液体が筐体4内に散逸し、反応部3による導電体2の開放あるいは導通が遅延することを防止することができる。 Further, the housing 4 may be provided with a slit-like introduction port 5 on the top surface 4 a and an introduction groove 7 for guiding the liquid to the reaction unit 3. As shown in FIGS. 14A and 14B, the introduction groove 7 extends from the introduction port 5 in which the groove wall 7a is formed in the top surface 4a to the vicinity of the reaction section 3. Thereby, the casing 4 can be surely guided to the reaction unit 3 without the liquid that has entered the introduction port 5 flowing into a place other than the reaction unit 3. Further, the case 4 can prevent the liquid that has entered the introduction port 5 from escaping into the case 4 and delaying the opening or conduction of the conductor 2 by the reaction unit 3.
 また、筐体4は、図14(B)に示すように、導入溝7を側面4bまで延ばし、側面4bに形成された排出口6と連続させてもよい。これにより、筐体4は、導入口5から浸入した液体を効率よく反応部3に導くとともに、過剰な液体を効率よく排出口6から排水することができる。 Further, as shown in FIG. 14B, the housing 4 may extend the introduction groove 7 to the side surface 4b and be continuous with the discharge port 6 formed on the side surface 4b. As a result, the housing 4 can efficiently guide the liquid that has entered from the inlet 5 to the reaction unit 3 and drain the excess liquid efficiently from the outlet 6.
 なお、図15(A)(B)に示すように、導入溝7は、複数形成してもよい。導入溝7を複数形成することにより、反応部3の全幅にわたって液体を導くことができる。 In addition, as shown in FIGS. 15A and 15B, a plurality of introduction grooves 7 may be formed. By forming a plurality of introduction grooves 7, the liquid can be guided over the entire width of the reaction section 3.
 また、図16(A)に示すように、導入溝7は、天面4aに臨む導入口5の開口部から反応部3が設けられた内部にかけて漸次狭小化させてもよい。導入溝7を反応部3に近づくにつれて狭小化することにより、導入口5の開口部から浸入した液体を、毛細管現象によって効率よく反応部3に導くことができる。 Further, as shown in FIG. 16A, the introduction groove 7 may be gradually narrowed from the opening of the introduction port 5 facing the top surface 4a to the inside where the reaction unit 3 is provided. By narrowing the introduction groove 7 as it approaches the reaction unit 3, the liquid that has entered from the opening of the introduction port 5 can be efficiently guided to the reaction unit 3 by capillary action.
 また、スイッチ素子1は、図17に示すように、筐体4に導電体2及び反応部3の位置に応じて導入口5、又は導入口5及び導入溝7を形成してもよい。スイッチ素子1は、例えば図7に示す導電体2及び反応部3の構成例のように、ヒューズエレメント11及び電極12を複数並列に積層配置させるとともに、側面4bのヒューズエレメント11及び電極12の位置に対応した高さに、ヒューズエレメント11と同数の導入口5、又はヒューズエレメント11と同数の導入口5及び導入溝7を、ヒューズエレメント11と同間隔で形成してもよい。 Further, as shown in FIG. 17, the switch element 1 may form the introduction port 5 or the introduction port 5 and the introduction groove 7 in the housing 4 according to the positions of the conductor 2 and the reaction unit 3. The switch element 1 includes a plurality of fuse elements 11 and electrodes 12 stacked in parallel as in the configuration example of the conductor 2 and the reaction unit 3 shown in FIG. 7, for example, and the positions of the fuse elements 11 and electrodes 12 on the side surface 4b. Alternatively, the same number of introduction ports 5 as the fuse elements 11 or the same number of introduction ports 5 and introduction grooves 7 as the fuse elements 11 may be formed at the same intervals as the fuse elements 11.
 導入口5等が反応部3の位置に応じた位置に形成されることにより、スイッチ素子1は、効率良く多量の液体を導入口5から導電体2及び反応部3へ導くことができ、反応部3の反応を効率良く行い、導電体2の導通又は開放を促進させることができる。 By forming the introduction port 5 and the like at a position corresponding to the position of the reaction unit 3, the switch element 1 can efficiently guide a large amount of liquid from the introduction port 5 to the conductor 2 and the reaction unit 3. The reaction of the part 3 can be performed efficiently, and conduction or opening of the conductor 2 can be promoted.
 また、スイッチ素子1は、反応部3以外の場所に撥水処理を施し、液体を反応部3に誘導してもよい。例えば図18に示すように、スイッチ素子1は、導入口5、又は導入口5及び導入溝7の溝壁7aに撥水処理が施された撥水処理部16を形成してもよい。撥水処理部16は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 Further, the switch element 1 may perform water repellent treatment at a place other than the reaction unit 3 to guide the liquid to the reaction unit 3. For example, as shown in FIG. 18, the switch element 1 may form the water repellent treatment portion 16 in which the water repellent treatment is performed on the introduction port 5 or the groove wall 7 a of the introduction port 5 and the introduction groove 7. The water repellent treatment part 16 can be formed by a known method such as application of a fluorine coating agent, solder paste coating, or the like.
 これによりスイッチ素子1は、導入口5より浸入した液体を効率よく反応部3に導くことができる。また、導入口5や導入溝7に撥水処理を施すことにより、スイッチ素子1を作動させるべき水濡れ状態以外では、少量の液体を弾いて筐体4内に浸入させないことから、誤作動を防止し、センサーとしての信頼性を確保することもできる。 Thereby, the switch element 1 can efficiently guide the liquid that has entered through the introduction port 5 to the reaction unit 3. In addition, by applying a water repellent treatment to the introduction port 5 and the introduction groove 7, a malfunction is not caused because a small amount of liquid is repelled and not entered into the housing 4 except in a wet state where the switch element 1 should be operated. It is possible to prevent and secure the reliability as a sensor.
 また、スイッチ素子1は、筐体4の内壁に撥水処理を施してもよい。筐体4の内壁に撥水処理を施すことによっても、筐体4内に浸入した液体を効率良く反応部3に導き、速やかに反応部3を作用させることができる。 Further, the switch element 1 may perform a water repellent treatment on the inner wall of the housing 4. Also by applying a water repellent treatment to the inner wall of the housing 4, the liquid that has entered the housing 4 can be efficiently guided to the reaction unit 3, and the reaction unit 3 can be operated quickly.
 また、スイッチ素子1は、図19に示すように、筐体4内に浸入した液体を貯留する貯留部8を設けてもよい。貯留部8は、反応部3の周囲を囲むように凹状に形成され、筐体4に一体に成型され、あるいは凹状部材が筐体4の底面に配置されることにより形成することができる。スイッチ素子1は、筐体4内に液体が浸入すると、貯留部8に液体が貯留されることにより反応部3の周囲が液体に満たされる。これにより、スイッチ素子1は、筐体4内に浸入した液体が少量であっても効率よく反応部3を反応させることができる。このため、スイッチ素子1は、排出口6を反応部3よりも下方に形成し、余分な液体を排出することができる。 Further, as shown in FIG. 19, the switch element 1 may be provided with a storage portion 8 for storing the liquid that has entered the housing 4. The storage unit 8 is formed in a concave shape so as to surround the periphery of the reaction unit 3 and is formed integrally with the housing 4 or can be formed by arranging a concave member on the bottom surface of the housing 4. When the liquid enters the casing 4, the switch element 1 stores the liquid in the storage unit 8, thereby filling the periphery of the reaction unit 3 with the liquid. Thereby, the switch element 1 can make the reaction part 3 react efficiently even if the amount of liquid that has entered the housing 4 is small. For this reason, the switch element 1 can form the discharge port 6 below the reaction part 3 to discharge excess liquid.
 なお、図19に示すスイッチ素子1は、導電体2を湾曲させて貯留部8内に通すとともに、導電体2の両端を、筐体4の底面に臨まされている外部接続電極10に接続させている。 In addition, the switch element 1 shown in FIG. 19 is configured to bend the conductor 2 and pass it through the storage portion 8, and connect both ends of the conductor 2 to the external connection electrode 10 facing the bottom surface of the housing 4. ing.
 また、スイッチ素子1は、図20に示すように、導入口5を液体で溶解する水溶性封止材9で形成されたシート体を天面4aに貼付することにより閉塞してもよい。また、スイッチ素子1は、図16(B)に示すように、導入溝7を液体で溶解する水溶性封止材9で閉塞してもよい。水溶性封止材9としては、例えば、寒天,ゼラチンなどの天然ポリマー、セルロース,でんぷんなどの半合成ポリマー、ポリビニルアルコールなどの合成ポリマー等が挙げられる。これらは、液体と接触することにより収縮あるいは溶解する。なお、高分子量になると溶解せず膨張する性質が強くなるため、重合度を調整して用いることが好ましい。また、液溶性材料として角砂糖のような水溶性の固形物を用いた場合、液体と接触することにより溶解、あるいは体積が減少する。 Further, as shown in FIG. 20, the switch element 1 may be closed by sticking a sheet body formed of a water-soluble sealing material 9 that dissolves the introduction port 5 with a liquid to the top surface 4a. Further, as shown in FIG. 16B, the switch element 1 may close the introduction groove 7 with a water-soluble sealing material 9 that dissolves with a liquid. Examples of the water-soluble sealing material 9 include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid. In addition, since the property which does not melt | dissolve but expand | swells will become strong when it becomes high molecular weight, it is preferable to adjust and use a polymerization degree. In addition, when a water-soluble solid material such as sugar cubes is used as the liquid-soluble material, dissolution or volume is reduced by contact with the liquid.
 また、液体としてバッテリセルに充填されたエチレンカーボネート等の電解液を想定し、電解液漏れに対応して作動するスイッチ素子の場合、水溶性封止材9の材料としては、ABS、ポリアクリロニトリル、ポリフッ化ビニリデン、あるいはPET、PTT、PEN等の飽和ポリエステルなどを用いることができる。これらの水溶性材料も、高分子量になると溶解速度が落ち、スイッチ素子1として反応速度が低下する場合もあるため、反応速度を優先する場合は、重合度を調整して用いることが好ましい。 In addition, assuming a liquid electrolyte such as ethylene carbonate filled in a battery cell as a liquid, in the case of a switch element that operates in response to an electrolyte leakage, the water-soluble sealing material 9 includes ABS, polyacrylonitrile, Polyvinylidene fluoride or saturated polyester such as PET, PTT, PEN, or the like can be used. Since these water-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate may decrease as the switch element 1. Therefore, when priority is given to the reaction rate, it is preferable to adjust the polymerization degree.
 導入口5や導入溝7を水溶性封止材9で閉塞することにより、スイッチ素子1を作動させるべき水濡れ状態以外では、少量の液体を弾いてスイッチ素子1内に浸入させないことから、誤作動を防止し、センサーとしての信頼性を確保することもできる。 Since the introduction port 5 and the introduction groove 7 are closed with the water-soluble sealing material 9, a small amount of liquid is repelled and not allowed to enter the switch element 1 except in a wet state where the switch element 1 should be operated. The operation can be prevented and the reliability as a sensor can be secured.
 [反応部の構成例]
 上述したように、スイッチ素子1は、導電体2及び反応部3について、様々な形態を採用することができる。以下、導電体2及び反応部3の構成例について説明する。なお、本発明に係る導電体2及び反応部3は、以下に説明する構成に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。
[Example of reaction unit configuration]
As described above, the switch element 1 can adopt various forms for the conductor 2 and the reaction unit 3. Hereinafter, the structural example of the conductor 2 and the reaction part 3 is demonstrated. Note that the conductor 2 and the reaction unit 3 according to the present invention are not limited to the configurations described below, and various changes can be made without departing from the scope of the present invention.
 [構成例1]
 スイッチ素子1は、反応部3を構成するヒューズエレメント11と電極12との近傍領域における間隔を、その他の領域における間隔よりも狭くしてもよい。例えばスイッチ素子1は、図21(A)~(C)に示すように、導電体2として矩形板状のヒューズエレメント11を用い、略板状の電極12を筐体4内に隣接して配置されるとともに、反応部3においてヒューズエレメント11と電極12とが重畳されることにより、間隔が相対的に狭小化されている。
[Configuration example 1]
In the switch element 1, the interval in the vicinity region of the fuse element 11 and the electrode 12 constituting the reaction unit 3 may be narrower than the interval in other regions. For example, as shown in FIGS. 21A to 21C, the switch element 1 uses a rectangular plate-like fuse element 11 as the conductor 2, and a substantially plate-like electrode 12 is disposed adjacent to the inside of the housing 4. At the same time, the fuse element 11 and the electrode 12 are overlapped in the reaction section 3 so that the distance is relatively narrowed.
 電極12は、長手方向の略中央部に、ヒューズエレメント11上に張り出す重畳部12bが形成されている。スイッチ素子1は、ヒューズエレメント11と電極12の重畳部12bとが面対向されるとともに近接配置されることにより、液体を集めヒューズエレメント11を電蝕させる反応部3が形成される。 The electrode 12 has an overlapping portion 12b that protrudes on the fuse element 11 at a substantially central portion in the longitudinal direction. In the switch element 1, the fuse element 11 and the overlapping portion 12 b of the electrode 12 face each other and are disposed close to each other, thereby forming a reaction portion 3 that collects liquid and causes the fuse element 11 to erode.
 重畳部12bは、筐体4等に設けられた支持部15に支持されることにより、ヒューズエレメント11と面対向されるとともに、液体が浸入、保持可能な所定の間隔が設けられている。ヒューズエレメント11と重畳部12bとの間隔は、0.01mm~10mmであることが好ましい。また、ヒューズエレメント11と電極12間の距離が小さい方が、電界強度が大きく電蝕作用が強いため、また、毛細管現象によってヒューズエレメント11と電極12との間に水を導入しやすいため、より効率的に電気回路を開放させるためには、ヒューズエレメント11と重畳部12bとの間隔を0.01~1mmとすることがより好ましい。 The overlapping portion 12b is supported by a support portion 15 provided in the housing 4 or the like so as to face the fuse element 11 and has a predetermined interval at which liquid can enter and hold. The distance between the fuse element 11 and the overlapping portion 12b is preferably 0.01 mm to 10 mm. In addition, the smaller the distance between the fuse element 11 and the electrode 12, the greater the electric field strength and the stronger the electric erosion action. In addition, it is easier to introduce water between the fuse element 11 and the electrode 12 by capillary action. In order to open the electric circuit efficiently, it is more preferable that the distance between the fuse element 11 and the overlapping portion 12b is 0.01 to 1 mm.
 また、スイッチ素子1は、図22(A)(B)に示すように、ヒューズエレメント11と電極12とを隣接配置し、電極12の先端部12cを屈曲させるとともに支持部15に支持されることにより、ヒューズエレメント11の表面上に先端部12cが所定の間隔を隔てて線状に対向するようにしてもよい。 In addition, as shown in FIGS. 22A and 22B, the switch element 1 has the fuse element 11 and the electrode 12 disposed adjacent to each other, and the tip portion 12c of the electrode 12 is bent and supported by the support portion 15. Thus, the tip 12c may be linearly opposed to the surface of the fuse element 11 at a predetermined interval.
 [構成例2]
 また、スイッチ素子1は、図23(A)に示すように、導電体2として略矩形板状のヒューズエレメント11を用い、略棒状の電極12を近傍に配置することにより反応部3を構成する場合に、ヒューズエレメント11に、電極12の両側面及び底面の3面を囲むように湾曲させた湾曲部11cを形成することにより、電極12の複数面で対向させてもよい。あるいは、スイッチ素子1は、図23(B)に示すように、ヒューズエレメント11に、電極12の両側面及び底面の3面を囲むように矩形状に屈曲させた屈曲部11dを形成することにより、ヒューズエレメント11及び電極12の複数面で対向させてもよい。ヒューズエレメント11の湾曲部11c又は屈曲部11dと電極12とは、いずれの面も所定の狭小化された間隔を隔てて対向され、液体を浸入、保持可能とされている。
[Configuration example 2]
Further, as shown in FIG. 23A, the switch element 1 uses a substantially rectangular plate-like fuse element 11 as the conductor 2, and constitutes the reaction section 3 by arranging a substantially rod-shaped electrode 12 in the vicinity thereof. In this case, the fuse element 11 may be opposed to a plurality of surfaces of the electrode 12 by forming a curved portion 11c that is curved so as to surround both the side surfaces and the bottom surface of the electrode 12. Alternatively, as shown in FIG. 23B, the switch element 1 is formed by forming a bent portion 11d in the fuse element 11 that is bent in a rectangular shape so as to surround the three sides of the electrode 12 and both sides. The fuse element 11 and the electrode 12 may be opposed to each other on a plurality of surfaces. The curved portion 11c or the bent portion 11d of the fuse element 11 and the electrode 12 are opposed to each other with a predetermined narrowed space, so that liquid can enter and be held.
 この反応部3によれば、ヒューズエレメント11と電極12とが複数面で対向されることにより、スイッチ素子1は、一面にて対向する形態に比して液体を保持する面積が増え、ヒューズエレメント11の電蝕による溶断をより促進させることができる。 According to the reaction unit 3, the fuse element 11 and the electrode 12 are opposed to each other on a plurality of surfaces, so that the switch element 1 has an area for holding a liquid as compared with the configuration facing the one surface, and the fuse element 11 can be further promoted by fusing by electric corrosion.
 なお、反応部3は、電極12に、ヒューズエレメント11の両側面及び底面の3面を囲む湾曲部あるいは屈曲部を形成することにより、複数面で対向させてもよい。 The reaction part 3 may be opposed to the electrode 12 in a plurality of surfaces by forming a curved part or a bent part surrounding the three surfaces of the both sides and bottom of the fuse element 11.
 [構成例3]
 また、スイッチ素子1は、反応部3を構成するヒューズエレメント11及び電極12の少なくとも一方の表面を、水や電解液等の液体に触れることで溶解する液溶性材料で被覆してもよい。例えばスイッチ素子1は、図24に示すように、略矩形板状のヒューズエレメント11と略矩形板状の電極12とを対向させるとともに、電極12のヒューズエレメント11と対向する一面に液溶性材料からなるコート層17が形成されている。
[Configuration example 3]
Moreover, the switch element 1 may coat | cover the surface of at least one of the fuse element 11 and the electrode 12 which comprises the reaction part 3 with the liquid-soluble material which melt | dissolves by touching liquids, such as water and electrolyte solution. For example, as shown in FIG. 24, the switch element 1 has a substantially rectangular plate-shaped fuse element 11 and a substantially rectangular plate-shaped electrode 12 opposed to each other, and a surface of the electrode 12 facing the fuse element 11 made of a liquid-soluble material. A coat layer 17 is formed.
 これにより、スイッチ素子1は、液体の浸入前の状態においてはヒューズエレメント11と電極12とのクリアランスを確保し、短絡を防止するとともに、液体の浸入時には溶解し、より多くの液体をヒューズエレメント11と電極12との間に導入させ電蝕作用を促進させることができる。 As a result, the switch element 1 ensures a clearance between the fuse element 11 and the electrode 12 in a state before the liquid enters, prevents a short circuit, dissolves when the liquid enters, and allows more liquid to be discharged. Can be introduced between the electrode 12 and the electrode 12 to promote the galvanic action.
 コート層17を構成する液溶性材料としては、上述した液溶性材料を用いて形成されるセパレータ14と同じ材料を用いることができる。 As the liquid-soluble material constituting the coating layer 17, the same material as the separator 14 formed using the liquid-soluble material described above can be used.
 また、液溶性材料からなるコート層17は、ヒューズエレメント11の電極12と対向する一面側に形成してもよく、ヒューズエレメント11及び電極12の互いに対向する面にそれぞれ形成してもよい。 Further, the coat layer 17 made of a liquid-soluble material may be formed on one surface side facing the electrode 12 of the fuse element 11, or may be formed on the surfaces facing the fuse element 11 and the electrode 12, respectively.
 [構成例4]
 また、スイッチ素子1は、反応部3以外の場所、又は反応部3及びその近傍以外の場所に、撥水領域を設けてもよい。例えばスイッチ素子1は、図25に示すように、略矩形板状のヒューズエレメント11と、略矩形板状の電極12とを対向させるとともに、ヒューズエレメント11と電極12とが筐体4内に配設された絶縁基板20上に搭載される。そして、スイッチ素子1は、絶縁基板20のヒューズエレメント11と電極12とが近接する反応部3及びその近傍を除く領域が撥水処理部18とされる。
[Configuration Example 4]
Further, the switch element 1 may be provided with a water repellent region at a place other than the reaction part 3 or a place other than the reaction part 3 and its vicinity. For example, as shown in FIG. 25, the switch element 1 makes the substantially rectangular plate-like fuse element 11 and the substantially rectangular plate-like electrode 12 face each other, and the fuse element 11 and the electrode 12 are arranged in the housing 4. It is mounted on the insulating substrate 20 provided. In the switch element 1, the water repellent treatment portion 18 is a region excluding the reaction portion 3 where the fuse element 11 and the electrode 12 of the insulating substrate 20 are close to each other and the vicinity thereof.
 撥水処理部18は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 The water repellent portion 18 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
 これにより、スイッチ素子1は、絶縁基板20上に浸入した液体を非撥水領域である反応部3及びその近傍に導くことができ、ヒューズエレメント11の電蝕による溶断を促進させることができる。 Thereby, the switch element 1 can guide the liquid that has entered the insulating substrate 20 to the reaction portion 3 that is a non-water-repellent region and the vicinity thereof, and can promote fusing due to electric corrosion of the fuse element 11.
 [構成例5]
 また、スイッチ素子1は、反応部3の近傍に吸水発熱材19を配置してもよい。例えば、スイッチ素子1は、図25に示す絶縁基板20の表面上にヒューズエレメント11を配置するとともに電極12と対向させた構成において、反応部3へ熱が伝わる近傍領域に、吸水することで発熱する材料19を配置する。吸水発熱材料19は、例えば生石灰を用いることができる。
[Configuration Example 5]
Further, the switch element 1 may be provided with a water-absorbing heat generating material 19 in the vicinity of the reaction unit 3. For example, in the configuration in which the fuse element 11 is arranged on the surface of the insulating substrate 20 shown in FIG. 25 and the electrode 12 is opposed to the switch element 1, the switch element 1 generates heat by absorbing water in a vicinity region where heat is transferred to the reaction unit 3. The material 19 to be placed is arranged. For example, quick lime can be used as the water absorption heat generating material 19.
 このようなスイッチ素子1は、反応部3の近傍に液体が浸入すると、吸水発熱材19が吸湿、発熱し、その熱が反応部3に伝達する。反応部3は、吸水発熱材19の熱により、より反応効率が向上され、ヒューズエレメント11を速やかに電蝕、溶断させることができる。 In such a switch element 1, when a liquid enters the vicinity of the reaction unit 3, the water-absorbing heat generating material 19 absorbs moisture and generates heat, and the heat is transmitted to the reaction unit 3. The reaction part 3 is further improved in reaction efficiency due to the heat of the water-absorbing heat generating material 19, and can quickly galvanize and blow the fuse element 11.
 なお、スイッチ素子1は、図25に示すように、絶縁基板20の反応部3及びその近傍を除く領域に撥水処理部18を設けるとともに、反応部3の近傍に吸水発熱材19を配置してもよく、撥水処理部18又は吸水発熱材19のいずれかを設けるようにしてもよい。 As shown in FIG. 25, the switch element 1 is provided with a water-repellent treatment part 18 in a region excluding the reaction part 3 and its vicinity of the insulating substrate 20 and a water-absorbing heat generating material 19 is arranged in the vicinity of the reaction part 3. Alternatively, either the water repellent portion 18 or the water absorbing heat generating material 19 may be provided.
 [構成例6]
 また、スイッチ素子1は、導電体2として、例えばリード線やスポンジメタル等、公知の導電部材を用い、反応部3として、導電体2を被覆することにより外部回路と絶縁し、液体が接触することにより溶解し導電体2と外部回路を導通させる液溶解性材料23を用いてもよい。
[Configuration Example 6]
In addition, the switch element 1 uses a known conductive member such as a lead wire or sponge metal as the conductor 2 and covers the conductor 2 as the reaction portion 3 so as to insulate from the external circuit and come into contact with the liquid. Alternatively, a liquid-soluble material 23 that dissolves and electrically connects the conductor 2 and the external circuit may be used.
 スイッチ素子1は、導電体2が常態において反応部3を構成する液溶解性材料23によって被覆されることにより外部回路と絶縁されており、反応部3に液体が接触することにより、導電体2を被覆していた液溶解性材料23が溶解し、導電体2を介して外部回路が導通される。 The switch element 1 is insulated from an external circuit by covering the conductor 2 with a liquid-soluble material 23 constituting the reaction part 3 in a normal state. When the liquid contacts the reaction part 3, the conductor 2 The liquid-dissolvable material 23 that has been coated is dissolved, and the external circuit is conducted through the conductor 2.
 例えば導電体2は、図26に示すように、それぞれ外部回路と接続されている一対の導線21A,21Bが撚り合わされた撚り線22を用いることができる。導線21A,21Bは、それぞれ液溶解性材料23によって被覆されることにより、互いに絶縁されている。そして、導線21Aは、スイッチ素子1と接続された外部回路の通電経路の一方の自由端に接続され、導線21Bは、同通電経路の他方の自由端に接続されている。これにより、当該外部回路は通常時において開放されている。 For example, as the conductor 2, as shown in FIG. 26, a stranded wire 22 in which a pair of conductive wires 21 </ b> A and 21 </ b> B connected to an external circuit is twisted can be used. The conducting wires 21A and 21B are insulated from each other by being covered with the liquid-soluble material 23, respectively. The conducting wire 21A is connected to one free end of the energizing path of the external circuit connected to the switch element 1, and the conducting wire 21B is connected to the other free end of the energizing path. As a result, the external circuit is normally opened.
 反応部3は、液体と接触することにより導電体2を不可逆的に導通するためのものであり、導電体2を被覆する液溶解性材料23を備える。液溶解性材料23は、絶縁性を有し、液体と接触することにより溶解する任意の材料を用いることができ、例えば、寒天,ゼラチンなどの天然ポリマー、セルロース,でんぷんなどの半合成ポリマー、ポリビニルアルコールなどの合成ポリマー等が挙げられる。これらは、液体と接触することにより溶解する。なお、高分子量になると溶解せず膨張する性質が強くなるため、重合度を調整して用いることが好ましい。また、液溶性材料として角砂糖のような水溶性の固形物を用いた場合、液体と接触することにより溶解する。 The reaction unit 3 is for irreversibly conducting the conductor 2 by coming into contact with a liquid, and includes a liquid-soluble material 23 that covers the conductor 2. The liquid-soluble material 23 can be any material that has insulating properties and dissolves when in contact with a liquid. For example, natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, polyvinyl Examples thereof include synthetic polymers such as alcohol. They are dissolved by contact with the liquid. In addition, since the property which does not melt | dissolve but expand | swells will become strong when it becomes high molecular weight, it is preferable to adjust and use a polymerization degree. Further, when a water-soluble solid material such as sugar cubes is used as the liquid-soluble material, it dissolves by contact with the liquid.
 また、液体としてバッテリセルに充填されたエチレンカーボネート等の電解液を想定し、電解液漏れに対応して作動するスイッチ素子の場合、液溶解性材料23としては、ABS、ポリアクリロニトリル、ポリフッ化ビニリデン、あるいはPET、PTT、PEN等の飽和ポリエステルなどを用いることができる。これらの液溶解性材料23も、高分子量になると溶解速度が落ち、スイッチ素子1として反応速度が低下する場合もあるため、反応速度を優先する場合は、重合度を調整して用いることが好ましい。 In addition, in the case of a switch element that operates in response to an electrolyte leakage assuming an electrolyte such as ethylene carbonate filled in a battery cell as a liquid, ABS, polyacrylonitrile, polyvinylidene fluoride are used as the liquid-soluble material 23. Alternatively, saturated polyesters such as PET, PTT, and PEN can be used. Since these liquid-soluble materials 23 also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 1 may decrease. Therefore, when giving priority to the reaction rate, it is preferable to adjust the polymerization degree. .
 導電体2を被覆している液溶解性材料23は、筐体4内において反応部3を構成する。反応部3は、水濡れや電池からの液漏れ等の異常時に、筐体4内に浸入した液体によって液溶解性材料23が溶解し、導電体2と外部回路の開放端を接触させ、外部回路を通電させることができる。 The liquid-soluble material 23 covering the conductor 2 constitutes the reaction unit 3 in the housing 4. In the reaction unit 3, the liquid-soluble material 23 is dissolved by the liquid that has entered the housing 4 in the event of an abnormality such as water wetting or leakage from the battery, and the conductor 2 and the open end of the external circuit are brought into contact with each other. The circuit can be energized.
 例えば、反応部3は、液溶解性材料23によって上述した一対の導線21A,21Bを被覆することにより、通常時には絶縁することにより外部回路を開放させている。そして、反応部3は、水濡れや電池からの液漏れ等の異常時に、筐体4内に浸入した液体が液溶解性材料23と接触、溶解することにより、一対の導線21A,21Bを接続させ、これにより外部回路を通電させることができる。 For example, the reaction unit 3 covers the pair of conductive wires 21A and 21B described above with the liquid-soluble material 23, and normally insulates to open the external circuit. And the reaction part 3 connects a pair of conducting wire 21A, 21B because the liquid which infiltrated in the housing | casing 4 contacts and melt | dissolves with the liquid-dissolvable material 23 at the time of abnormality, such as water wetting and the liquid leakage from a battery. Thus, the external circuit can be energized.
 [構成例7]
 また、スイッチ素子1は、図27に示すように、導電体2として、スポンジメタル24を用いてもよい。スポンジメタル24は、液溶解性材料23に被覆されるとともに、筐体4に設けられ、外部回路の開放端と接続される一対の外部接続端子25a,25b間にわたって搭載されている。外部接続端子25a,25bは、例えば筐体4内に設けられた金属端子や、筐体4あるいは筐体4内に配設された絶縁基板に形成された電極パターンにより形成される。
[Configuration Example 7]
In addition, as shown in FIG. 27, the switch element 1 may use a sponge metal 24 as the conductor 2. The sponge metal 24 is covered with the liquid-soluble material 23 and is provided on the housing 4 and mounted between the pair of external connection terminals 25a and 25b connected to the open end of the external circuit. The external connection terminals 25 a and 25 b are formed by, for example, metal terminals provided in the housing 4 or electrode patterns formed on the housing 4 or an insulating substrate provided in the housing 4.
 スイッチ素子1は、スポンジメタル24が、表面を被覆する液溶解性材料23を介して外部接続端子25a,25b上に搭載されることにより、通常時は、外部回路を開放させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等の異常時に、筐体4内に浸入した液体が液溶解性材料23と接触、溶解することにより、スポンジメタル24と外部接続端子25a,25bを接続させ、これにより外部回路を通電させることができる。 In the switch element 1, the sponge metal 24 is mounted on the external connection terminals 25a and 25b via the liquid-soluble material 23 covering the surface, so that the external circuit is normally opened. The switch element 1 has a sponge metal 24 and an external connection terminal 25a when the liquid that has entered the housing 4 contacts and dissolves the liquid-soluble material 23 in the event of an abnormality such as water wetting or leakage from the battery. , 25b can be connected to energize the external circuit.
 なお、導電体2として、スポンジメタル24の他、導電性繊維を用いた織布、不織布や、金属メッシュ等の多孔質体、あるいは金属箔等のメタルシートを用い、液溶解性材料23で被覆させてもよい。 As the conductor 2, in addition to the sponge metal 24, a woven or non-woven fabric using conductive fibers, a porous body such as a metal mesh, or a metal sheet such as a metal foil is covered with a liquid-soluble material 23. You may let them.
 [構成例8]
 また、スイッチ素子1は、図28(A)に示すように、導電体2として、液溶解性材料23によって被覆された導電性粒子27の凝集体28を用いてもよい。凝集体28は、個々の導電性粒子27を被覆する液溶解性材料23によって略シート形状あるいは略フィルム形状を維持し、図28(B)に示すように、筐体4内に設けられた金属端子や筐体4あるいは筐体4内に配設された絶縁基板に形成された電極パターンにより形成される外部接続端子25a,25b間にわたって搭載されている。
[Configuration Example 8]
In addition, as shown in FIG. 28A, the switch element 1 may use an aggregate 28 of conductive particles 27 covered with a liquid-soluble material 23 as the conductor 2. The aggregate 28 maintains a substantially sheet shape or a substantially film shape by the liquid-soluble material 23 that coats the individual conductive particles 27, and as shown in FIG. 28 (B), the metal provided in the housing 4 It is mounted across the terminals and the external connection terminals 25a and 25b formed by the electrode pattern formed on the casing 4 or an insulating substrate disposed in the casing 4.
 スイッチ素子1は、導電性粒子27の凝集体28が、表面を被覆する液溶解性材料23を介して外部接続端子25a,25b上に搭載されることにより、通常時は、外部回路を開放させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等の異常時に、筐体4内に浸入した液体が液溶解性材料23と接触、溶解することにより、外部接続端子25a,25b間にわたって連続する導電性粒子27を介して両端子間を接続させ、これにより外部回路を通電させることができる。 The switch element 1 is configured such that the aggregate 28 of the conductive particles 27 is mounted on the external connection terminals 25a and 25b via the liquid-soluble material 23 covering the surface, so that the external circuit is normally opened. ing. When the switch element 1 is in an abnormal state such as water wetting or leakage from the battery, the liquid that has entered the housing 4 comes into contact with the liquid-soluble material 23 and dissolves, so that the external connection terminals 25a and 25b are spread over. Both terminals can be connected via the continuous conductive particles 27, whereby an external circuit can be energized.
 [構成例9]
 また、スイッチ素子1は、図29に示すように、導電体2として、導電材料からなる筒状の外部導体30と、外部導体30の内部に設けられた導電材料からなる内部導体31とを用いてもよい。図29に示す導電体2は、外部導体30が外部回路の一方の開放端と接続され、内部導体31が外部回路の他方の開放端と接続されている。外部導体30は、例えば円筒状導体であり、外周面に液体が浸入する開口部30aが一又は複数形成されている。なお、外部導体30は、円筒状の他、内部導体31を収納できる中空形状であればどのような形状でもよい。
[Configuration Example 9]
In addition, as shown in FIG. 29, the switch element 1 uses, as the conductor 2, a cylindrical outer conductor 30 made of a conductive material and an inner conductor 31 made of a conductive material provided inside the outer conductor 30. May be. In the conductor 2 shown in FIG. 29, the external conductor 30 is connected to one open end of the external circuit, and the internal conductor 31 is connected to the other open end of the external circuit. The outer conductor 30 is, for example, a cylindrical conductor, and one or a plurality of openings 30a into which liquid enters the outer peripheral surface are formed. The outer conductor 30 may have any shape other than a cylindrical shape as long as the inner conductor 31 can be accommodated.
 内部導体31は、外部導体30の内部に配置されるあらゆる形態をとり得、図29に示す円柱状の他、角柱状、シートの巻装体状、ブロック体状等でもよい。また、内部導体31は、外部導体30の内部において、移動可能に保持されている。 The inner conductor 31 may take any form disposed inside the outer conductor 30, and may be a prismatic shape, a sheet winding shape, a block shape or the like in addition to the columnar shape shown in FIG. The inner conductor 31 is movably held inside the outer conductor 30.
 スイッチ素子1は、図30(A)に示すように、外部導体30の内面に液溶解性材料23によって絶縁コート層30bが形成され、これにより外部導体30と内部導体31とは、常態において絶縁され、外部回路を開放させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等の異常時に、筐体4内に浸入した液体が外部導体30の開口部30a内に浸入し、液溶解性材料23と接触することにより絶縁コート層30bが溶解し、外部導体30と内部導体31とが電気的に接続され、これにより外部回路を通電させることができる。 In the switch element 1, as shown in FIG. 30A, an insulating coat layer 30b is formed on the inner surface of the outer conductor 30 with the liquid-soluble material 23, so that the outer conductor 30 and the inner conductor 31 are normally insulated from each other. The external circuit is opened. In the switch element 1, the liquid that has entered the housing 4 enters the opening 30 a of the external conductor 30 and comes into contact with the liquid-soluble material 23 when there is an abnormality such as water wetting or liquid leakage from the battery. As a result, the insulating coat layer 30b is dissolved, and the external conductor 30 and the internal conductor 31 are electrically connected to each other, whereby the external circuit can be energized.
 なお、スイッチ素子1は、図30(B)に示すように、内部導体31の外面に液溶解性材料23を塗布することにより絶縁コート層31aを形成してもよい。絶縁コート層31aは、外部導体30の開口部30aより浸入した液体と接触することにより溶解し、外部導体30と内部導体31とが電気的に接続可能となる。 In addition, as shown in FIG. 30B, the switch element 1 may form the insulating coat layer 31a by applying the liquid-soluble material 23 to the outer surface of the inner conductor 31. The insulating coat layer 31a is dissolved by coming into contact with the liquid that has entered through the opening 30a of the external conductor 30, and the external conductor 30 and the internal conductor 31 can be electrically connected.
 また、スイッチ素子1は、図31に示すように、外部導体30と内部導体31との間に、液溶解性材料23からなる絶縁フィルム32を介在させてもよい。絶縁フィルム32は、少なくとも内部導体31を外部導体30の内面から遮蔽する大きさ、形状を有し、常態において外部導体30と内部導体31とを絶縁している。そして、絶縁フィルム32は、水濡れや電池からの液漏れ等の異常時に、筐体4及び外部導体30の開口部30aを介して浸入した液体と接触することにより溶解し、外部導体30と内部導体31とが電気的に接続可能とする。 Further, as shown in FIG. 31, the switch element 1 may have an insulating film 32 made of a liquid-soluble material 23 interposed between the outer conductor 30 and the inner conductor 31. The insulating film 32 has a size and shape that shields at least the inner conductor 31 from the inner surface of the outer conductor 30, and insulates the outer conductor 30 from the inner conductor 31 in a normal state. The insulating film 32 is dissolved by contact with the liquid that has entered through the housing 4 and the opening 30a of the external conductor 30 in the event of an abnormality such as water wetting or leakage from the battery, and the external conductor 30 and the internal conductor The conductor 31 can be electrically connected.
 [構成例10]
 また、スイッチ素子1は、導電体2として、それぞれ外部回路と接続された一対のリード線や金属端子片等を用い、反応部3として、液体と接触することにより状態変化し、一対の導電体2を不可逆的に接続又は離間させることにより外部回路を開放又は導通させる絶縁材料40を用いてもよい。
[Configuration Example 10]
In addition, the switch element 1 uses a pair of lead wires, metal terminal pieces, and the like that are respectively connected to an external circuit as the conductor 2, and changes its state by contacting the liquid as the reaction unit 3. An insulating material 40 that opens or conducts an external circuit by irreversibly connecting or separating 2 may be used.
 絶縁材料40としては、絶縁性を有し、液体と接触することにより膨張、収縮、軟化、溶解、凝集といった状態変化をする任意の材料を用いることができ、一対の導電体2を接続あるいは離間させる方法や一対の導電体2や筐体4の形態等に応じて求められる状態変化から、最適な材料を選択することができる。 As the insulating material 40, any material that has insulating properties and changes its state such as expansion, contraction, softening, dissolution, and aggregation when in contact with a liquid can be used, and the pair of conductors 2 can be connected or separated. It is possible to select an optimum material from the state change required according to the method of the method, the shape of the pair of conductors 2 and the housing 4, and the like.
 絶縁材料40の候補としては、例えば、寒天,ゼラチンなどの天然ポリマー、セルロース,でんぷんなどの半合成ポリマー、ポリビニルアルコールなどの合成ポリマー等が挙げられる。これらは、液体と接触することにより収縮あるいは溶解し、高分子量になると溶解せず膨張する性質が強くなる。また、絶縁材料40として角砂糖のような水溶性の固形物を用いた場合、液体と接触することにより溶解、あるいは体積が減少する。 Examples of the candidate insulating material 40 include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These are contracted or dissolved by contact with a liquid, and when they have a high molecular weight, they do not dissolve and expand. In addition, when a water-soluble solid material such as sugar cubes is used as the insulating material 40, the insulating material 40 is dissolved or reduced in volume by contact with the liquid.
 また、液体としてバッテリセルに充填されたエチレンカーボネート等の電解液を想定し、電解液漏れに対応して作動するスイッチ素子の場合、絶縁材料40としては、ABS、ポリアクリロニトリル、ポリフッ化ビニリデン、あるいはPET、PTT、PEN等の飽和ポリエステルなどを用いることができる。これらの絶縁材料40も、高分子量になると溶解速度が落ち、スイッチ素子1として反応速度が低下する場合もあるため、反応速度を優先する場合は、重合度を調整して用いることが好ましい。 In addition, in the case of a switch element that operates in response to an electrolyte leakage, assuming an electrolyte solution such as ethylene carbonate filled in a battery cell as a liquid, as the insulating material 40, ABS, polyacrylonitrile, polyvinylidene fluoride, or Saturated polyesters such as PET, PTT, and PEN can be used. Since these insulating materials 40 also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 1 may decrease. Therefore, when priority is given to the reaction rate, it is preferable to adjust the degree of polymerization.
 図32は、一対の導電体2及び反応部3を備えたスイッチ素子の一例を示す断面図である。図32に示すスイッチ素子1では、一対の導電体2として、第1、第2の金属端子片41,42を用いる。第1、第2の金属端子片41,42は、それぞれ筐体4内に設けられた外部接続電極43a、43bと接続されるとともに、互いに接触する接点部41a,42aとを有し、常態において接点部41aが、接点部42aの上から接触するように付勢されている。外部接続電極43aは外部回路の一方の開放端と接続され、外部接続電極43bは外部回路の他方の開放端と接続されている。これにより、当該外部回路は、通常時において第1、第2の金属端子片41,42を介して導通されている。 FIG. 32 is a cross-sectional view showing an example of a switch element including a pair of conductors 2 and a reaction unit 3. In the switch element 1 shown in FIG. 32, first and second metal terminal pieces 41 and 42 are used as the pair of conductors 2. The first and second metal terminal pieces 41 and 42 are respectively connected to external connection electrodes 43a and 43b provided in the housing 4 and have contact portions 41a and 42a that are in contact with each other. The contact part 41a is urged so as to contact from above the contact part 42a. The external connection electrode 43a is connected to one open end of the external circuit, and the external connection electrode 43b is connected to the other open end of the external circuit. Thereby, the external circuit is electrically connected through the first and second metal terminal pieces 41 and 42 in a normal state.
 また、第1の金属端子片41の下部には、液体と接触すると状態変化する絶縁材料40を有する反応部3が配設されている。スイッチ素子1の反応部3は、液体と接触することにより膨張する絶縁材料40が用いられる。スイッチ素子1は、図33(A)に示すように、絶縁材料40が第1の金属端子片41の下部に配置され、筐体4内に液体が浸入する前の状態においては、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aと接触され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図33(B)に示すように、反応部3の絶縁材料40が液体と接触することにより膨張し、第1の金属端子片41を押し上げる。これにより、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aから離間され、外部回路が遮断される。 Also, a reaction part 3 having an insulating material 40 that changes its state when it comes into contact with a liquid is disposed below the first metal terminal piece 41. The reaction part 3 of the switch element 1 uses an insulating material 40 that expands when it comes into contact with a liquid. As shown in FIG. 33A, the switch element 1 has a first insulating material 40 disposed below the first metal terminal piece 41 and the first state before the liquid enters the housing 4. The contact portion 41a of the metal terminal piece 41 is brought into contact with the contact portion 42a of the second metal terminal piece 42, thereby energizing the external circuit. When the liquid enters the casing 4 due to water wetting or leakage from the battery, the switch element 1 makes the insulating material 40 of the reaction unit 3 come into contact with the liquid as shown in FIG. And the first metal terminal piece 41 is pushed up. Thereby, the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted | blocked.
 なお、スイッチ素子1は、液体と接触することにより収縮又は溶解する絶縁材料40を用いて、第1、第2の金属端子片41,42を常時離間させ、絶縁材料40の収縮又は溶解により第1、第2の金属端子片41,42を接続してもよい。この場合、第1、第2の金属端子片41,42は常時接触する方向に付勢され、絶縁材料40が第1の金属端子片41の下部に配置されることにより、筐体4内に液体が浸入する前の状態においては、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aから離間されている。そして、筐体4内に液体が浸入すると絶縁材料40が収縮又は溶解することにより、第1、第2の金属端子片41,42が弾性復帰し、各接点部41a,42aが接触される。 Note that the switch element 1 always uses the insulating material 40 that contracts or dissolves by contact with the liquid to always separate the first and second metal terminal pieces 41 and 42, and the insulating material 40 contracts or dissolves to change the first. The first and second metal terminal pieces 41 and 42 may be connected. In this case, the first and second metal terminal pieces 41 and 42 are always urged in the direction of contact, and the insulating material 40 is disposed below the first metal terminal piece 41, so that In a state before the liquid enters, the contact portion 41 a of the first metal terminal piece 41 is separated from the contact portion 42 a of the second metal terminal piece 42. When the liquid enters the housing 4, the insulating material 40 contracts or dissolves, whereby the first and second metal terminal pieces 41 and 42 are elastically restored, and the contact portions 41 a and 42 a are brought into contact with each other.
 また、図34に示すように、第1の金属端子片41は、接点部41aが第2の金属端子片42の接点部42aから常時離間する方向に付勢されるとともに、常態において絶縁材料40に押圧されることによって第2の金属端子片42と接触されるようにしてもよい。絶縁材料40は、液体と接触することにより収縮、溶解、軟化等する材料が用いられ、第1の金属端子片41の上方に配置される。 Further, as shown in FIG. 34, the first metal terminal piece 41 is biased in a direction in which the contact portion 41a is always separated from the contact portion 42a of the second metal terminal piece 42, and in the normal state, the insulating material 40 You may make it contact with the 2nd metal terminal piece 42 by pressing. The insulating material 40 is made of a material that contracts, dissolves, softens, etc. when it comes into contact with a liquid, and is disposed above the first metal terminal piece 41.
 図34(A)に示すように、スイッチ素子1は、筐体4内に液体が浸入する前の状態においては、第1の金属端子片41が絶縁材料40に押圧されることにより、接点部41aが第2の金属端子片42の接点部42aと接触され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図34(B)に示すように、反応部3の絶縁材料40が液体と接触することにより収縮、溶解あるいは軟化等、第1の金属端子片41の内部応力に抗しえない性状に変化し、第1の金属端子片41が第2の金属端子片42と離間する方向に弾性復帰する。これにより、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aから離間され、外部回路が遮断される。 As shown in FIG. 34 (A), the switch element 1 has a contact portion when the first metal terminal piece 41 is pressed against the insulating material 40 in a state before the liquid enters the housing 4. 41a is in contact with the contact portion 42a of the second metal terminal piece 42 to energize the external circuit. When the liquid enters the casing 4 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG. Due to shrinkage, dissolution, softening, or the like, and changes to a property that cannot resist the internal stress of the first metal terminal piece 41, and the first metal terminal piece 41 is elastically restored in a direction away from the second metal terminal piece 42. To do. Thereby, the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted | blocked.
 なお、スイッチ素子1は、液体と接触することにより膨張する絶縁材料40を用いて、離間している第1、第2の金属端子片41,42を接続させてもよい。この場合、絶縁材料40は第1の金属端子片41の上部に配置される。また、第1、第2の金属端子片41,42は常時離間する方向に付勢され、筐体4内に液体が浸入する前の状態においては、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aから離間されている。そして、筐体4内に液体が浸入すると絶縁材料40が膨張することにより、第1の金属端子片41が絶縁材料40によって押圧され、接点部41aが第2の金属端子片42の接点部42aに接触される。 In addition, the switch element 1 may connect the 1st, 2nd metal terminal pieces 41 and 42 which are spaced apart using the insulating material 40 which expand | swells when it contacts with a liquid. In this case, the insulating material 40 is disposed on the upper part of the first metal terminal piece 41. Further, the first and second metal terminal pieces 41 and 42 are always urged in the direction of separating, and in a state before the liquid enters the housing 4, the contact portions 41 a of the first metal terminal piece 41. Is spaced from the contact portion 42a of the second metal terminal piece 42. Then, when the liquid enters the housing 4, the insulating material 40 expands, whereby the first metal terminal piece 41 is pressed by the insulating material 40, and the contact portion 41 a becomes the contact portion 42 a of the second metal terminal piece 42. Touched.
 また、図35に示すように、第1の金属端子片41は、接点部41aが第2の金属端子片42の接点部42aから離間する方向に付勢されるとともに、常態において絶縁材料40によって第2の金属端子片42と接触された状態で固着されるようにしてもよい。絶縁材料40は、常態において接着性を有するとともに液体と接触することにより溶解する材料が用いられ、第1、第2の金属端子片41,42の各接点部41a,42a同士を固着する。 Further, as shown in FIG. 35, the first metal terminal piece 41 is urged in a direction in which the contact portion 41a is separated from the contact portion 42a of the second metal terminal piece 42, and in a normal state by the insulating material 40. You may make it fix in the state contacted with the 2nd metal terminal piece 42. FIG. The insulating material 40 is made of a material that has adhesiveness in a normal state and dissolves when in contact with a liquid, and fixes the contact portions 41a and 42a of the first and second metal terminal pieces 41 and 42 to each other.
 図35(A)に示すように、スイッチ素子1は、筐体4内に液体が浸入する前の状態においては、第1の金属端子片41が絶縁材料40に固着されることにより、接点部41aが第2の金属端子片42の接点部42aと接触され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図35(B)に示すように、反応部3の絶縁材料40が液体と接触することにより溶解あるいは軟化等、第1の金属端子片41の内部応力に抗しえない性状に変化し、第1の金属端子片41が第2の金属端子片42と離間する方向に弾性復帰する。これにより、第1の金属端子片41の接点部41aが第2の金属端子片42の接点部42aから離間され、外部回路が遮断される。 As shown in FIG. 35 (A), the switch element 1 has a contact portion by fixing the first metal terminal piece 41 to the insulating material 40 in a state before the liquid enters the housing 4. 41a is in contact with the contact portion 42a of the second metal terminal piece 42 to energize the external circuit. When the liquid enters the casing 4 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG. As a result, the first metal terminal piece 41 elastically recovers in a direction away from the second metal terminal piece 42, such as melting or softening. Thereby, the contact part 41a of the 1st metal terminal piece 41 is spaced apart from the contact part 42a of the 2nd metal terminal piece 42, and an external circuit is interrupted | blocked.
 [構成例11]
 また、本発明が適用されたスイッチ素子は、図36、図37に示すように、導電性粒子45を介して一対の導電体2を接続するとともに、反応部3によって導電性粒子45を介した導電パスを遮断してもよい。図36、図37に示すスイッチ素子1は、一又は複数の液体の導入口5が形成された筐体4を有し、反応部3として、液体と接触することにより溶解する絶縁材料40が筐体4の導入口5が開口された内壁に設けられ、絶縁材料40には、導電性粒子45が固着、配列されている。筐体4は、筒状に形成され、両端から一対の導電体2となるリード線46,47が導出されている。また、導入口5は、リード線46,47が設けられていない略中央部に形成され、筐体4の周方向に亘ってスリット状に形成されてもよい。
[Configuration Example 11]
In addition, as shown in FIGS. 36 and 37, the switch element to which the present invention is applied connects a pair of conductors 2 via the conductive particles 45, and causes the reaction unit 3 to pass the conductive particles 45 The conductive path may be blocked. The switch element 1 shown in FIG. 36 and FIG. 37 has a casing 4 in which one or a plurality of liquid inlets 5 are formed. The introduction port 5 of the body 4 is provided on the opened inner wall, and conductive particles 45 are fixed and arranged on the insulating material 40. The housing 4 is formed in a cylindrical shape, and lead wires 46 and 47 serving as a pair of conductors 2 are led out from both ends. The introduction port 5 may be formed in a substantially central portion where the lead wires 46 and 47 are not provided, and may be formed in a slit shape over the circumferential direction of the housing 4.
 また、スイッチ素子1は、筐体4内においてリード線46,47が離間されるとともに、絶縁材料40に固着された導電性粒子45がリード線46,47間にわたって連続することにより導通されている。また、導電性粒子45の配列上には導入口5が形成されている。 Further, the switch element 1 is electrically connected by separating the lead wires 46 and 47 in the housing 4 and continuing the conductive particles 45 fixed to the insulating material 40 between the lead wires 46 and 47. . An introduction port 5 is formed on the array of the conductive particles 45.
 一対の導電体2となるリード線46,47は、筐体4から外部に引き出されるとともに、それぞれ外部回路の接続端と接続される。 The lead wires 46 and 47 to be a pair of conductors 2 are drawn out from the housing 4 and connected to the connection ends of the external circuits.
 そして、スイッチ素子1は、筐体4内に液体が浸入する前の状態においては、図36(A)に示すように、リード線46,47が絶縁材料40に固着された導電性粒子45からなる導電パスを介して導通され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図36(B)に示すように、反応部3の絶縁材料40が液体と接触することにより溶解、収縮等、形質変位することにより配列されていた導電性粒子45が凝集し、導電性粒子45の配列からなる導電パスが遮断される。これにより、リード線46,47間が切断され、外部回路が遮断される。 In the state before the liquid enters the casing 4, the switch element 1 is formed from the conductive particles 45 in which the lead wires 46 and 47 are fixed to the insulating material 40 as shown in FIG. It is conducted through the conductive path to energize the external circuit. When the liquid enters the housing 4 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes the insulating material 40 of the reaction unit 3 to come into contact with the liquid as shown in FIG. As a result, the conductive particles 45 arranged by the morphological displacement such as dissolution and contraction are aggregated, and the conductive path formed by the arrangement of the conductive particles 45 is blocked. As a result, the lead wires 46 and 47 are disconnected, and the external circuit is shut off.
 なお、スイッチ素子1は、一対の導電体2として、筐体4内に支持された金属端子片や絶縁基板に形成された電極パターンからなる外部接続電極を用いてもよい。図38に示すスイッチ素子1は、一対の導電体2として、導電性粒子45によって接続された一対の金属端子片48,49が設けられている。金属端子片48,49は、それぞれ筐体4の実装面から外方に臨まされた外部接続電極50,51と接続されている。スイッチ素子1は、外部接続電極50,51が臨まされた面が外部回路基板への実装面となり、外部回路に形成された電極と外部接続電極50,51が接続される。 Note that the switch element 1 may use, as the pair of conductors 2, external connection electrodes composed of metal terminal pieces supported in the housing 4 or electrode patterns formed on an insulating substrate. The switch element 1 shown in FIG. 38 is provided with a pair of metal terminal pieces 48 and 49 connected by conductive particles 45 as a pair of conductors 2. The metal terminal pieces 48 and 49 are connected to external connection electrodes 50 and 51 facing outward from the mounting surface of the housing 4, respectively. In the switch element 1, the surface on which the external connection electrodes 50 and 51 are exposed becomes a mounting surface on the external circuit board, and the electrodes formed in the external circuit and the external connection electrodes 50 and 51 are connected.
 筐体4は、金属端子片48,49が設けられていない天面略中央部に導入口5が設けられるとともに、液体と接触することにより溶解する絶縁材料40が天面内側に形成され、導電性粒子45が接着されている。また、図38(A)に示すように、スイッチ素子1は、筐体4内において金属端子片48,49が離間されるとともに、絶縁材料40に固着された導電性粒子45が金属端子片48,49間にわたって連続することにより導通されている。また、導電性粒子45の配列上には導入口5が形成されている。 The casing 4 is provided with an introduction port 5 at a substantially central portion of the top surface where the metal terminal pieces 48 and 49 are not provided, and an insulating material 40 that dissolves by contact with the liquid is formed on the inner side of the top surface. The conductive particles 45 are adhered. As shown in FIG. 38A, the switch element 1 has the metal terminal pieces 48 and 49 separated from each other in the housing 4, and the conductive particles 45 fixed to the insulating material 40 have the metal terminal pieces 48. , 49 are connected by being continuous. An introduction port 5 is formed on the array of the conductive particles 45.
 導入口5の下方には、配列から脱落した導電性粒子45が収容される空間52が設けられている。そして図38(B)に示すように、スイッチ素子1は、導入口5から液体が浸入すると、絶縁材料40が溶融することにより、導電性粒子45が空間52に脱落する。これにより、導電性粒子45の配列からなる導電パスが遮断され、金属端子片48,49間が遮断される。 Below the introduction port 5 is provided a space 52 in which the conductive particles 45 dropped from the array are accommodated. Then, as shown in FIG. 38B, when the liquid enters the switching element 1 from the introduction port 5, the insulating material 40 melts, and the conductive particles 45 fall into the space 52. As a result, the conductive path formed by the arrangement of the conductive particles 45 is blocked, and the space between the metal terminal pieces 48 and 49 is blocked.
 [構成例12]
 また、本発明が適用されたスイッチ素子は、筐体4の導入口5に、絶縁材料40が充填されるとともに導電性粒子53が配列された部位と対峙する導入溝7を設けてもよい。図39(A)(B)に示すスイッチ素子1は、一面にスリット状に開口された導入口5が形成された筐体4と、導入口5から筐体4内に延在された導入溝7と、筐体4内に離間して配置された一対の導電体2となるリード線55,56と、筐体4内に配列されることにより連続されリード線55,56を導通させる導電性粒子53と、導入溝7内に充填され、液体と触れることにより膨張して導電性粒子53の配列を遮断する絶縁材料40とを備える。
[Configuration Example 12]
In addition, in the switch element to which the present invention is applied, the introduction port 5 of the housing 4 may be provided with the introduction groove 7 that is filled with the insulating material 40 and faces the portion where the conductive particles 53 are arranged. The switch element 1 shown in FIGS. 39A and 39B includes a housing 4 in which an introduction port 5 that is opened in a slit shape is formed on one surface, and an introduction groove that extends from the introduction port 5 into the housing 4. 7, lead wires 55 and 56 to be a pair of conductors 2 that are arranged apart from each other in the housing 4, and conductivity that is continuous by being arranged in the housing 4 to conduct the lead wires 55 and 56. The particle 53 and the insulating material 40 filled in the introduction groove 7 and expanded by touching the liquid to block the arrangement of the conductive particles 53 are provided.
 スイッチ素子1は、導入溝7の溝壁7aが導電性粒子53の配列の近傍まで延在されて対峙されている。これにより、筐体4は、導入溝7に液体が浸入すると、絶縁材料40が膨張し導電性粒子53の配列を押圧することができ、また、膨張した絶縁材料40が筐体4内に散逸することなく、確実に絶縁材料40によって導電性粒子53の配列を遮断することができる。また、スイッチ素子1は、導入溝7の導電性粒子53の配列を挟んだ反対側には、導電性粒子53が押し出される空間57が形成されている。 The switch element 1 is opposed to the groove wall 7 a of the introduction groove 7 extending to the vicinity of the arrangement of the conductive particles 53. As a result, when the liquid enters the introduction groove 7, the insulating material 40 expands to press the array of the conductive particles 53, and the expanded insulating material 40 dissipates into the housing 4. Without this, the arrangement of the conductive particles 53 can be reliably blocked by the insulating material 40. In the switch element 1, a space 57 in which the conductive particles 53 are pushed out is formed on the opposite side of the introduction groove 7 across the array of the conductive particles 53.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、リード線55,56が筐体4内に配列、固定された導電性粒子53からなる導電パスを介して導通され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図39(B)に示すように、導入口5から導入溝7に浸入した液体が絶縁材料40と接触することにより膨張し、導電性粒子53が空間57側へ押し出され導電パスが遮断される。これにより、リード線55,56間が切断され、外部回路が遮断される。 In the state before the liquid enters the casing 4, the switch element 1 is conducted through a conductive path including conductive particles 53 in which lead wires 55 and 56 are arranged and fixed in the casing 4. The external circuit is energized. When the liquid enters the casing 4 due to water wetting or leakage from the battery, the switch element 1 insulates the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG. When the material 40 comes into contact with the material 40, the material expands, and the conductive particles 53 are pushed out toward the space 57 to block the conductive path. As a result, the lead wires 55 and 56 are disconnected, and the external circuit is shut off.
 なお、スイッチ素子1は、一対の導電体2として、リード線55,56以外にも、金属端子片等、公知の導電体を用いることができる。 The switch element 1 can use a known conductor such as a metal terminal piece in addition to the lead wires 55 and 56 as the pair of conductors 2.
 なお、スイッチ素子1は、膨張した絶縁材料40よりも網目の小さいメッシュ部材58を筐体4の表面に配置することによって、導入口5を閉塞するようにしてもよい。これにより、スイッチ素子1は、導入溝7に充填された絶縁材料40が導入口5の開口部から浸入した液体と接触し、膨張した際に、メッシュ部材58によって閉塞された導入口5から筐体外部へ膨張、排出されることがなく、筐体4の内部に向かって膨張し、確実に導電性粒子53を空間57側へ押し出し、リード線55,56間を遮断することができる。 Note that the switch element 1 may close the introduction port 5 by disposing a mesh member 58 having a mesh smaller than the expanded insulating material 40 on the surface of the housing 4. As a result, the switch element 1 contacts the liquid that has entered the introduction groove 7 from the opening of the introduction port 5 and expands from the introduction port 5 that is blocked by the mesh member 58 when expanded. It expands toward the inside of the housing 4 without being expanded or discharged outside the body, and the conductive particles 53 can be reliably pushed out toward the space 57 and the space between the lead wires 55 and 56 can be blocked.
 また、スイッチ素子1は、図40(A)に示すように、導入溝7を、導入口5の開口部から導電性粒子53が配列された内部にかけて漸次拡幅するテーパ状に形成してもよい。導入溝7を導電性粒子53の配列に近づくにつれて漸次拡幅することにより、図40(B)に示すように、導入溝7に充填された絶縁材料40が導入口5から浸入した液体と接触することにより、より膨張しやすくするとともに、膨張した際に幅広な筐体4の内部に向かって膨張し、確実に導電性粒子53を空間57側へ押し出し、リード線55,56間を遮断することができる。 In addition, as shown in FIG. 40A, in the switch element 1, the introduction groove 7 may be formed in a tapered shape that gradually widens from the opening of the introduction port 5 to the inside where the conductive particles 53 are arranged. . By gradually widening the introduction groove 7 as approaching the arrangement of the conductive particles 53, the insulating material 40 filled in the introduction groove 7 comes into contact with the liquid that has entered from the introduction port 5, as shown in FIG. This makes it easier to expand, expands toward the inside of the wide housing 4 when expanded, reliably pushes the conductive particles 53 toward the space 57, and blocks between the lead wires 55 and 56. Can do.
 また、スイッチ素子1は、導入溝7を導入口5の開口部から筐体4の内部にかけて拡幅するように形成することにより、スイッチ素子1を作動させるほどではない少量の液体が導入溝7内に浸入することを防止し、センサーとしての信頼性を確保することもできる。 Further, the switch element 1 is formed so that the introduction groove 7 is widened from the opening of the introduction port 5 to the inside of the housing 4, so that a small amount of liquid that does not actuate the switch element 1 is contained in the introduction groove 7. Can be prevented, and the reliability as a sensor can be secured.
 また、スイッチ素子1は、筐体4をセラミック製にしてもよい。これにより、筐体4の強度が向上され、絶縁材料40の膨張に伴って膨張圧力が掛かった場合にも筐体4が変形することがない。なお、スイッチ素子1は、筐体4をセラミック製にする他、筐体4をセラミックコーティングすることにより強度を向上させてもよい。また、スイッチ素子1は、筐体4に用いるセラミックあるいはセラミックコート材として、多孔質材を用いることにより、より液体を取り込みやすくできる。 Further, in the switch element 1, the casing 4 may be made of ceramic. Thereby, the intensity | strength of the housing | casing 4 is improved and the housing | casing 4 does not deform | transform even when an expansion pressure is applied with the expansion | swelling of the insulating material 40. FIG. Note that the switch element 1 may be improved in strength by ceramic coating the casing 4 in addition to the casing 4 being made of ceramic. Moreover, the switch element 1 can take in a liquid more easily by using a porous material as a ceramic used for the housing | casing 4, or a ceramic coating material.
 また、図41、図42に示すように、スイッチ素子1は、導入口5と導電性粒子53の配列との間にシート状の絶縁材料40を配置してもよい。図41、図42に示すスイッチ素子1は、一面にスリット状に開口された導入口5が形成された筐体4と、導入口5から筐体内に延在された導入溝7と、筐体4内に離間して配置された一対の導電体2となる金属端子片60,61と、筐体4内に配列されることにより連続され金属端子片60,61を導通させる導電性粒子53と、導入口5と導電性粒子53の配列との間に配設され、液体と触れることにより膨張して導電性粒子53の配列を遮断する絶縁材料40のシート体62とを備える。 41 and 42, the switch element 1 may have a sheet-like insulating material 40 disposed between the inlet 5 and the arrangement of the conductive particles 53. The switch element 1 shown in FIGS. 41 and 42 includes a housing 4 in which an introduction port 5 opened in a slit shape on one surface, an introduction groove 7 extending from the introduction port 5 into the housing, and a housing Metal terminal pieces 60 and 61 to be a pair of conductors 2 spaced apart in 4, and conductive particles 53 that are arranged in the housing 4 to be continuous and make the metal terminal pieces 60 and 61 conductive. And a sheet body 62 of an insulating material 40 that is disposed between the introduction port 5 and the array of the conductive particles 53 and expands when the liquid is touched to block the array of the conductive particles 53.
 筐体4は、上下一対のハーフ4c、4dが付き合わされることにより形成される。上ハーフ4cは、スリット状の導入口5及び導入溝7が形成されるとともに、下ハーフ4dと付き合わされる内面側に、液体と接触することにより膨張する絶縁材料40のシート体62が貼り合わされている。下ハーフ4dには、金属端子片60,61及び導電性粒子53が配設されるとともに、金属端子片60,61の上ハーフ4cと反対側には、導電性粒子53が押し出される空間63が形成されている。金属端子片60,61は、離間されて設けられ、筐体内に配列された導電性粒子53を介して導通されている。 The housing 4 is formed by attaching a pair of upper and lower halves 4c and 4d. In the upper half 4c, a slit-like introduction port 5 and an introduction groove 7 are formed, and a sheet body 62 of an insulating material 40 that expands by coming into contact with a liquid is attached to the inner surface side to be associated with the lower half 4d. ing. In the lower half 4d, metal terminal pieces 60 and 61 and conductive particles 53 are disposed, and on the side opposite to the upper half 4c of the metal terminal pieces 60 and 61, there is a space 63 in which the conductive particles 53 are pushed out. Is formed. The metal terminal pieces 60 and 61 are provided so as to be separated from each other, and are electrically connected via the conductive particles 53 arranged in the housing.
 スイッチ素子1は、上下ハーフ4c,4dが付き合わされることにより、導入口5と導電性粒子53の配列との間には、絶縁材料40のシート体62が配置される。 In the switch element 1, the sheet body 62 of the insulating material 40 is disposed between the inlet 5 and the array of the conductive particles 53 by the upper and lower halves 4 c and 4 d being brought together.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、金属端子片60,61が筐体4内に配列、固定された導電性粒子53からなる導電パスを介して導通され、外部回路を通電させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図42(B)に示すように、導入口5から導入溝7に浸入した液体がシート体62と接触することにより絶縁材料40が膨張し、導電性粒子53が金属端子片60,61間から空間63側へ押し出され導電パスが遮断される。これにより、金属端子片60,61間が切断され、外部回路が遮断される。 In the state before the liquid enters the casing 4, the switch element 1 is electrically connected via a conductive path made of conductive particles 53 in which the metal terminal pieces 60 and 61 are arranged and fixed in the casing 4. The external circuit is energized. When the liquid enters the casing 4 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG. By contacting the body 62, the insulating material 40 expands, and the conductive particles 53 are pushed out from between the metal terminal pieces 60, 61 toward the space 63 to block the conductive path. Thereby, between the metal terminal pieces 60 and 61 is cut | disconnected and an external circuit is interrupted | blocked.
 ここで、図41(B)に示すように、金属端子片60,61は、櫛歯状に形成されるとともに、互いに櫛歯部60a,61aが空間63上に張り出すとともに非接触に咬合するよう配置され、導電性粒子53は、櫛歯部60a,61aの間に配列させてもよい。この場合、スリット状に形成された導入口5及び導入溝7は、櫛歯部60a,61aの間に配列された導電性粒子53に沿って形成することが好ましい。 Here, as shown in FIG. 41 (B), the metal terminal pieces 60 and 61 are formed in a comb-teeth shape, and the comb- teeth portions 60a and 61a project over the space 63 and engage with each other in a non-contact manner. The conductive particles 53 may be arranged between the comb tooth portions 60a and 61a. In this case, the introduction port 5 and the introduction groove 7 formed in a slit shape are preferably formed along the conductive particles 53 arranged between the comb- tooth portions 60a and 61a.
 [構成例13]
 また、本発明が適用されたスイッチ素子は、導入溝7内に充填した導電性粒子65を押し出すことにより一対の導電体2を導通させてもよい。図43に示すスイッチ素子1は、一面に導入口5が形成された筐体4と、導入口5から筐体内に延在された導入溝7と、導入溝7内に充填された導電性粒子65と、導入溝7と連続され、導入溝7内に充填された導電性粒子65が押し出される空間66と、空間66内に離間して配置された一対の導電体2となるリード線67,68と、導入溝7の導入口5側に充填され、液体と触れることにより膨張する絶縁材料40とを有する。
[Configuration Example 13]
In addition, the switch element to which the present invention is applied may cause the pair of conductors 2 to conduct by extruding the conductive particles 65 filled in the introduction groove 7. The switch element 1 shown in FIG. 43 includes a housing 4 in which an introduction port 5 is formed on one side, an introduction groove 7 extending from the introduction port 5 into the housing, and conductive particles filled in the introduction groove 7. 65, a space 66 that is continuous with the introduction groove 7 and into which the conductive particles 65 filled in the introduction groove 7 are pushed out, and lead wires 67 that form a pair of conductors 2 that are spaced apart in the space 66, 68 and an insulating material 40 that is filled on the introduction port 5 side of the introduction groove 7 and expands when it comes into contact with the liquid.
 導入溝7は、導入口5側に液体と触れることにより膨張する絶縁材料40が充填され、空間66側に導電性粒子65が充填されている。空間66は、導入溝7と連続されるとともに、図43(A)に示すように、リード線67,68の一端と接続された導電性粒子69の配列がそれぞれ離間して設けられている。また、空間66は、導電性粒子65が単層配列可能な高さを有し、導電性粒子65が押し出されると連続するように配列される。 The introduction groove 7 is filled with an insulating material 40 that expands when touching the liquid on the introduction port 5 side, and is filled with conductive particles 65 on the space 66 side. The space 66 is continuous with the introduction groove 7, and as shown in FIG. 43A, the array of conductive particles 69 connected to one end of the lead wires 67 and 68 is provided separately from each other. The space 66 has such a height that the conductive particles 65 can be arranged in a single layer, and is arranged so as to be continuous when the conductive particles 65 are pushed out.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、リード線67,68及び導電性粒子69の配列が離間されることにより外部回路を遮断させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により筐体4内に液体が浸入すると、図43(B)に示すように、導入口5から導入溝7に浸入した液体が絶縁材料40と接触することにより絶縁材料40が膨張し、導電性粒子65が空間66へ押し出される。これにより、空間66において導電性粒子65がリード線67,68と連続する導電性粒子69の配列と連続し、リード線67,68間にわたる導電パスが形成され、外部回路が導通される。 This switch element 1 shuts off the external circuit by separating the arrangement of the lead wires 67 and 68 and the conductive particles 69 before the liquid enters the casing 4. When the liquid enters the casing 4 due to water wetting or leakage from the battery, the switch element 1 is insulated from the liquid that has entered the introduction groove 7 from the introduction port 5 as shown in FIG. The contact with the material 40 causes the insulating material 40 to expand, and the conductive particles 65 are pushed out into the space 66. Thereby, in the space 66, the conductive particles 65 are continuous with the arrangement of the conductive particles 69 continuous with the lead wires 67 and 68, a conductive path is formed between the lead wires 67 and 68, and the external circuit is conducted.
 なお、図43に示すスイッチ素子1は、空間66内に導電性粒子69を配列させる他にも、リード線67,68を導入溝7の下方に延在させ、リード線67,68と導電性粒子65とを直接接触させ、導通させるようにしてもよい。 In addition to arranging the conductive particles 69 in the space 66, the switch element 1 shown in FIG. 43 has lead wires 67 and 68 extending below the introduction groove 7 so that the lead wires 67 and 68 are electrically conductive. The particles 65 may be brought into direct contact and conducted.
 また、図43に示すスイッチ素子1においても、導入溝7を筐体4の内部に向かって拡幅するテーパ状に形成してもよく、また、膨張した絶縁材料40の粒径よりも網目の小さなメッシュ部材によって閉塞するようにしてもよい。これにより、スイッチ素子1は、導入溝7に充填された絶縁材料40が導入口5の開口部から浸入した液体と接触し、膨張した際に、導入口5から筐体外部へ膨張、排出されることがなく、筐体4の内部に向かって膨張し、確実に導電性粒子65を空間66側へ押し出し、リード線67,68間を導通することができる。 Also, in the switch element 1 shown in FIG. 43, the introduction groove 7 may be formed in a tapered shape that widens toward the inside of the housing 4, and the mesh is smaller than the particle size of the expanded insulating material 40. You may make it obstruct | occlude with a mesh member. Thereby, when the insulating material 40 filled in the introduction groove 7 comes into contact with the liquid that has entered from the opening of the introduction port 5 and expands, the switch element 1 is expanded and discharged from the introduction port 5 to the outside of the housing. The conductive particle 65 expands toward the inside of the housing 4 and reliably pushes the conductive particles 65 to the space 66 side, and the lead wires 67 and 68 can be electrically connected.
 さらに、図43に示すスイッチ素子1においても、液体と接触することにより溶解する絶縁材料40のシート体70によって導入口5を塞いでもよい。これによりスイッチ素子1は、スイッチ素子1を作動させるほどではない少量の液体が導入口5に浸入することを防止し、センサーとしての信頼性を確保することもできる。なお、スイッチ素子1は、絶縁材料40のシート体70を貼付する他にも、絶縁材料40の塗布、導入口5内への充填等によって導入口5を閉塞してもよい。スイッチ素子1は、絶縁材料40の厚みや成分を調整することにより、作動条件となる導入口5内への液体の浸入を調整することができる。 Further, in the switch element 1 shown in FIG. 43, the introduction port 5 may be closed by the sheet body 70 of the insulating material 40 that dissolves by contact with the liquid. As a result, the switch element 1 can prevent a small amount of liquid that does not operate the switch element 1 from entering the inlet 5, and can also ensure the reliability of the sensor. In addition to sticking the sheet body 70 of the insulating material 40, the switch element 1 may close the inlet 5 by applying the insulating material 40, filling the inlet 5, and the like. The switch element 1 can adjust the penetration of the liquid into the introduction port 5 that is the operating condition by adjusting the thickness and components of the insulating material 40.
 [構成例14]
 また、本発明が適用されたスイッチ素子は、導電性粒子71を格子状に配列するとともに、絶縁材料40の状態変化に応じて導電性粒子71の配列を切断することにより一対の導電体2間を遮断させてもよい。図44に示すスイッチ素子1は、液体が浸入する複数の導入口5が格子状に形成された筐体4を有し、筐体4内には、液体と接触することにより膨張、収縮又は溶解する絶縁材料40が、筐体4内の全面にわたって設けられるとともに、絶縁材料40によって導電性粒子71が固定、配列されている。また、筐体4には、一対の導電体2となる外部接続電極72,73が筐体4の相対向する角部付近に離間して設けられ、筐体4の上下面に臨まされている。導電性粒子71は、隣接する導電性粒子71と密接した状態で絶縁材料40によって格子状に固定、配列されることにより、外部接続電極72,73間にわたる導電パスを形成し、外部接続電極72,73を導通させている。
[Configuration Example 14]
In addition, the switch element to which the present invention is applied arranges the conductive particles 71 in a lattice shape, and cuts the arrangement of the conductive particles 71 in accordance with the state change of the insulating material 40, thereby separating the pair of conductors 2 from each other. May be blocked. The switch element 1 shown in FIG. 44 has a housing 4 in which a plurality of inlets 5 into which liquid enters is formed in a lattice shape, and the housing 4 expands, contracts, or dissolves by contact with the liquid. The insulating material 40 is provided over the entire surface of the housing 4, and the conductive particles 71 are fixed and arranged by the insulating material 40. In addition, the housing 4 is provided with external connection electrodes 72 and 73, which are a pair of conductors 2, spaced apart in the vicinity of opposite corners of the housing 4 and face the upper and lower surfaces of the housing 4. . The conductive particles 71 are fixed and arranged in a lattice pattern by the insulating material 40 in close contact with the adjacent conductive particles 71, thereby forming a conductive path between the external connection electrodes 72 and 73. , 73 are made conductive.
 また、スイッチ素子1は、筐体4内に、導電性粒子71の移動を規制する固定部74が設けられている。固定部74は、絶縁材料40の状態変化が生じた際の導電性粒子71の移動を規制することにより外部接続電極72,73間にわたる絶縁性を確保するものであり、絶縁材料によって形成され、例えば十字状の立壁が所定の間隔で複数設けられてなる。 Further, the switch element 1 is provided with a fixing portion 74 for restricting the movement of the conductive particles 71 in the housing 4. The fixing portion 74 is to secure the insulation between the external connection electrodes 72 and 73 by restricting the movement of the conductive particles 71 when the state change of the insulating material 40 occurs, and is formed of an insulating material. For example, a plurality of cross-shaped standing walls are provided at predetermined intervals.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、離間して設けられた外部接続電極72,73間が、絶縁材料40によって格子状に固定、配列された導電性粒子71を介して連続されることにより、外部回路を導通させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、浸入した液体が絶縁材料40と接触することにより状態変化を起し、格子状に配列されていた導電性粒子71の導電パスが遮断される。例えば図45に示すように、スイッチ素子1は、絶縁材料40が液体と接触することにより収縮すると、当該収縮箇所に固定されていた導電性粒子71が凝集することにより、導電性粒子71の導電パスが遮断される。したがって、スイッチ素子1は、外部接続電極72,73間が開放されることにより、外部回路を遮断することができる。 In the state before the liquid enters the casing 4, the switch element 1 has a conductive property in which a space between the external connection electrodes 72 and 73 provided separately is fixed and arranged in a lattice pattern by the insulating material 40. The external circuit is made conductive by being continued through the particles 71. When the liquid enters the casing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes a change in state due to the intruded liquid coming into contact with the insulating material 40, The conductive paths of the conductive particles 71 arranged in the shape are blocked. For example, as shown in FIG. 45, when the insulating material 40 contracts due to contact with the liquid, the switch element 1 aggregates the conductive particles 71 fixed to the contracted portion, thereby causing the conductive particles 71 to conduct. The path is blocked. Therefore, the switch element 1 can shut off the external circuit by opening between the external connection electrodes 72 and 73.
 ここで、スイッチ素子1は、導入口5が筐体4の一面に格子状に形成されるとともに、絶縁材料40が筐体4の全面にわたって設けられ導電性粒子71が格子状に配列されることにより、図45(A)に示すように、液体の浸入箇所Aに応じた箇所の絶縁材料40が状態変化を起し、導電性粒子71が凝集等する。このとき、図45(B)、図46に示すように、スイッチ素子1は、固定部74によって導電性粒子71の自由な移動が規制されているため、導電性粒子71の凝集体が他の配列粒子と接触することにより新たな導電パスが形成されることを防止することができ、絶縁性を確保することができる。また、スイッチ素子1は、液体の浸入箇所Aに応じた箇所の絶縁材料40が状態変化を起して導電性粒子71による導電パスが切断されることから、筐体4のいずれの箇所に液体が浸入しても、その浸入箇所を検出することができる。 Here, in the switch element 1, the introduction ports 5 are formed in a lattice shape on one surface of the housing 4, and the insulating material 40 is provided over the entire surface of the housing 4 so that the conductive particles 71 are arranged in a lattice shape. Thus, as shown in FIG. 45 (A), the insulating material 40 at a location corresponding to the location A where the liquid has entered causes a change in state, and the conductive particles 71 agglomerate. At this time, as shown in FIG. 45 (B) and FIG. 46, in the switch element 1, the free movement of the conductive particles 71 is restricted by the fixing portion 74. A new conductive path can be prevented from being formed by contact with the arrayed particles, and insulation can be ensured. Further, since the insulating material 40 at a location corresponding to the liquid intrusion location A undergoes a state change and the conductive path by the conductive particles 71 is cut off, the switch element 1 has a liquid at any location of the housing 4. Even if it enters, the intrusion location can be detected.
 また、スイッチ素子1は、導電性粒子71を線状に配列するとともに、絶縁材料40の状態変化に応じて導電性粒子71の配列を切断することにより外部接続電極72,73間を遮断させてもよい。図47に示すスイッチ素子1は、液体が浸入する複数の導入口5が格子状に形成された筐体4を有し、筐体4内には、液体と接触することにより膨張、収縮又は溶解する絶縁材料40が、筐体4内の全面にわたって設けられるとともに、絶縁材料40によって導電性粒子71が固定、配列されている。また、筐体4には、外部接続電極72,73が筐体4の相対向する角部付近に離間して設けられ、筐体4の上下面に臨まされている。絶縁材料40によって固定、配列された導電性粒子71は、線状に配列されることにより、外部接続電極72,73間にわたる導電パスを形成し、外部接続電極72,73を導通させている。 In addition, the switch element 1 arranges the conductive particles 71 in a linear form and cuts off the arrangement of the conductive particles 71 in accordance with a change in the state of the insulating material 40, thereby cutting off the connection between the external connection electrodes 72 and 73. Also good. The switch element 1 shown in FIG. 47 has a casing 4 in which a plurality of inlets 5 into which liquid enters is formed in a lattice shape, and the casing 4 expands, contracts, or dissolves by contact with the liquid. The insulating material 40 is provided over the entire surface of the housing 4, and the conductive particles 71 are fixed and arranged by the insulating material 40. In addition, the external connection electrodes 72 and 73 are provided in the casing 4 so as to be separated in the vicinity of opposite corners of the casing 4 and face the upper and lower surfaces of the casing 4. The conductive particles 71 fixed and arranged by the insulating material 40 are linearly arranged to form a conductive path between the external connection electrodes 72 and 73, and the external connection electrodes 72 and 73 are made conductive.
 このとき、スイッチ素子1は、導電性粒子71が蛇行するように配列されることにより、筐体4の全面にわたって広範囲に配列されることが好ましい。また、スイッチ素子1は、筐体4内に、導電性粒子71の移動を規制する上述した固定部74が所定の間隔で複数設けられている。 At this time, the switch elements 1 are preferably arranged over a wide range over the entire surface of the housing 4 by arranging the conductive particles 71 so as to meander. In addition, the switch element 1 is provided with a plurality of the above-described fixing portions 74 that restrict the movement of the conductive particles 71 in the housing 4 at a predetermined interval.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、図47(A)に示すように、離間して設けられた外部接続電極72,73間が、絶縁材料40によって線状に固定、配列された導電性粒子71を介して連続されることにより、外部回路を導通させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、浸入した液体が絶縁材料40と接触することにより状態変化を起し、線状に配列されていた導電性粒子71の導電パスが遮断される。図47(B)に示すように、スイッチ素子1は、絶縁材料40が液体と接触することにより収縮すると、当該収縮箇所に固定されていた導電性粒子71が凝集することにより、導電性粒子71の導電パスが遮断される。したがって、スイッチ素子1は、外部接続電極72,73間が開放されることにより、外部回路を遮断することができる。 In the state before the liquid enters the casing 4, the switch element 1 has an insulating material 40 between the external connection electrodes 72, 73 provided apart as shown in FIG. The external circuit is made conductive by being continued through the conductive particles 71 fixed and arranged in a line. When the liquid enters the housing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 causes a change in state due to the intruded liquid coming into contact with the insulating material 40, The conductive paths of the conductive particles 71 arranged in the shape are blocked. As shown in FIG. 47 (B), when the insulating material 40 contracts due to contact with the liquid, the switch element 1 aggregates the conductive particles 71 fixed to the contracted portion, and thereby the conductive particles 71. Is interrupted. Therefore, the switch element 1 can shut off the external circuit by opening between the external connection electrodes 72 and 73.
 ここで、スイッチ素子1は、導入口5が筐体4の一面に格子状に形成されるとともに、線状に配列された導電性粒子71が筐体4の全面にわたって設けられることにより、液体の浸入箇所に応じた箇所の絶縁材料40が状態変化を起し、当該箇所の導電性粒子71が凝集等する。このとき、スイッチ素子1は、固定部74によって導電性粒子71の自由な移動が規制されているため、導電性粒子71の凝集体が他の配列粒子と接触することにより新たな導電パスが形成されることを防止することができ、絶縁性を確保することができる。また、スイッチ素子1は、液体の浸入箇所Aに応じた箇所の絶縁材料40が状態変化を起して導電性粒子71による導電パスが切断されることから、筐体4のいずれの箇所に液体が浸入しても、その浸入箇所を検出することができる。 Here, in the switch element 1, the introduction port 5 is formed in a lattice shape on one surface of the housing 4, and the conductive particles 71 arranged in a linear shape are provided over the entire surface of the housing 4, thereby The insulating material 40 at a location corresponding to the intrusion location changes its state, and the conductive particles 71 at the location aggregate. At this time, in the switch element 1, since the free movement of the conductive particles 71 is restricted by the fixing portion 74, a new conductive path is formed when the aggregate of the conductive particles 71 contacts other array particles. Can be prevented, and insulation can be ensured. Further, since the insulating material 40 at a location corresponding to the liquid intrusion location A undergoes a state change and the conductive path by the conductive particles 71 is cut off, the switch element 1 has a liquid at any location of the housing 4. Even if it enters, the intrusion location can be detected.
 [構成例15] また、本発明が適用されたスイッチ素子は、一対の導電体2としてリード端子82,83を用いるとともに、絶縁材料に固定された導電性粒子81を介して導通又は開放され、絶縁材料の状態変化に応じて開放又は導通するようにしてもよい。図48(A)(B)に示すスイッチ素子1は、一対の導電体2として、筐体4の内外にわたって配設されたリード端子82,83が用いられている。リード端子82,83は、筐体4内において互いに離間された状態で固定されるとともに、筐体4内に充填された導電性粒子81を介して導通されている。 [Configuration Example 15] The switch element to which the present invention is applied uses the lead terminals 82 and 83 as the pair of conductors 2 and is electrically connected or opened via the conductive particles 81 fixed to the insulating material. You may make it open | release or conduct | electrically_connecting according to the state change of an insulating material. In the switch element 1 shown in FIGS. 48 (A) and 48 (B), lead terminals 82 and 83 arranged over the inside and outside of the housing 4 are used as a pair of conductors 2. The lead terminals 82 and 83 are fixed in a state of being separated from each other in the casing 4 and are electrically connected via conductive particles 81 filled in the casing 4.
 筐体4は、液体が浸入する1又は複数の導入口5が形成されている。筐体4内には、液体と接触することにより収縮又は溶解する絶縁材料40、及びこの絶縁材料40によって固定された導電性粒子81が配設されている。導電性粒子81は、筐体4内に充填された絶縁材料40によって所定の位置に固定されることにより、離間して支持されているリード端子82,83間に充填、配列されている。これにより、スイッチ素子1は、リード端子82,83間を導通させている。 The housing 4 is formed with one or a plurality of inlets 5 through which liquid enters. In the housing 4, an insulating material 40 that contracts or dissolves by contact with a liquid and conductive particles 81 fixed by the insulating material 40 are disposed. The conductive particles 81 are filled and arranged between the lead terminals 82 and 83 that are spaced apart by being fixed at a predetermined position by the insulating material 40 filled in the housing 4. Thereby, the switch element 1 makes the lead terminals 82 and 83 conductive.
 このスイッチ素子1は、筐体4内に液体が浸入する前の状態においては、図48に示すように、離間して設けられたリード端子82,83間が、絶縁材料40によって固定、配列された導電性粒子81を介して連続されることにより、外部回路を導通させている。そして、スイッチ素子1は、図49(A)に示すように、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、図49(B)に示すように、浸入した液体が絶縁材料40と接触することにより収縮又は溶解し、リード端子82,83間において配列されていた導電性粒子81が凝集される。これにより、スイッチ素子1は、リード端子82,83間に配列、固定されていた導電性粒子81が凝集することにより、導電性粒子81の導電パスが遮断される。したがって、スイッチ素子1は、リード端子82,83間が開放されることにより、外部回路を遮断することができる。 In the state before the liquid enters the casing 4, the switch element 1 is fixed and arranged with the insulating material 40 between the lead terminals 82 and 83 provided apart as shown in FIG. 48. The external circuit is made conductive by being continued through the conductive particles 81. As shown in FIG. 49 (A), when the liquid enters the casing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, or the like, as shown in FIG. The infiltrated liquid comes into contact with the insulating material 40 to contract or dissolve, and the conductive particles 81 arranged between the lead terminals 82 and 83 are aggregated. As a result, in the switch element 1, the conductive particles 81 arranged and fixed between the lead terminals 82 and 83 aggregate to block the conductive path of the conductive particles 81. Therefore, the switch element 1 can shut off the external circuit by opening the lead terminals 82 and 83.
 また、スイッチ素子1は、液体と接触することにより膨張、収縮又は溶解する絶縁材料40を用いて、開放されていたリード端子82,83間を導通させてもよい。図50(A)に示すスイッチ素子1は、絶縁材料40によって導電性粒子81がリード端子82,83間以外の領域に凝集した状態で固定され、常態においてリード端子82,83間が開放されている。 Further, the switch element 1 may conduct between the opened lead terminals 82 and 83 by using the insulating material 40 that expands, contracts, or dissolves by contact with the liquid. The switch element 1 shown in FIG. 50A is fixed in a state where the conductive particles 81 are aggregated in a region other than between the lead terminals 82 and 83 by the insulating material 40, and the lead terminals 82 and 83 are normally opened. Yes.
 そして、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、浸入した液体が絶縁材料40と接触することにより膨張、収縮又は溶解し、リード端子82,83間以外の領域において凝集固定されていた導電性粒子81が筐体4内に拡散される。これにより図50(B)に示すように、スイッチ素子1は、リード端子82,83間に多数の導電性粒子81が入り込み、導電性粒子81の導電パスが形成される。したがって、スイッチ素子1は、リード端子82,83間が接続されることにより、外部回路を導通することができる。 The switch element 1 expands, contracts, or dissolves when the liquid enters the housing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, etc. The conductive particles 81 that have been aggregated and fixed in a region other than between the lead terminals 82 and 83 are diffused into the housing 4. As a result, as shown in FIG. 50B, in the switch element 1, a large number of conductive particles 81 enter between the lead terminals 82 and 83, and a conductive path of the conductive particles 81 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 82 and 83.
 [構成例16]
 また、本発明が適用されたスイッチ素子は、筐体4の導入口5を導電性粒子91の凝集位置に応じて形成してもよい。図51に示すスイッチ素子1は、スイッチ素子1と同様に、一対の導電体2としてリード端子92,93を用いるとともに、導電性粒子91を介して開放されていたリード端子92,93間を導通するものである。
[Configuration Example 16]
In the switch element to which the present invention is applied, the introduction port 5 of the housing 4 may be formed according to the aggregation position of the conductive particles 91. 51 uses the lead terminals 92 and 93 as a pair of conductors 2 and conducts between the lead terminals 92 and 93 that are open via the conductive particles 91, similarly to the switch element 1. To do.
 スイッチ素子1は、リード端子92,93が筐体4内において互いに離間されるとともに、液体と接触することにより溶解する絶縁材料40によって導電性粒子91がリード端子92,93間以外の領域に凝集した状態で固定され、常態においてリード端子92,93間が開放されている。 In the switch element 1, the lead terminals 92 and 93 are separated from each other in the housing 4, and the conductive particles 91 are aggregated in a region other than between the lead terminals 92 and 93 by the insulating material 40 that dissolves by contact with the liquid. The lead terminals 92 and 93 are open in a normal state.
 スイッチ素子1の筐体4は、液体が浸入するスリット状の導入口5が形成されている。導入口5は、リード端子92,93間の導電性粒子91の凝集位置に応じた位置にスリット状に形成されている。具体的に、スイッチ素子1は、リード端子92,93が筐体4内において相対向して所定の間隔を隔てて支持され、導電性粒子91が水溶性の絶縁材料40によってリード端子92,93及びこれらの間隙を挟んで対向する位置に凝集固定されている。そして図51(B)に示すように、スイッチ素子1は、筐体4に、リード端子92,93の間隙と交差するスリット状の導入口5が形成されている。絶縁材料40は、筐体4内に全体的に充填され、導電性粒子91を所定の位置に凝集固定している。 The casing 4 of the switch element 1 has a slit-like inlet 5 through which liquid enters. The introduction port 5 is formed in a slit shape at a position corresponding to the aggregation position of the conductive particles 91 between the lead terminals 92 and 93. Specifically, in the switch element 1, the lead terminals 92 and 93 are opposed to each other in the housing 4 and supported at a predetermined interval, and the conductive particles 91 are supported by the water-soluble insulating material 40 on the lead terminals 92 and 93. In addition, they are agglomerated and fixed at positions facing each other across these gaps. As shown in FIG. 51B, the switch element 1 is formed with a slit-shaped inlet 5 that intersects the gap between the lead terminals 92 and 93 in the housing 4. The insulating material 40 is entirely filled in the housing 4 and aggregates and fixes the conductive particles 91 at predetermined positions.
 図52(A)に示すように、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、浸入した液体がリード端子92,93の間隙を中心に絶縁材料40を溶解させる。これにより図52(B)に示すように、スイッチ素子1は、リード端子92,93間に積極的に導電性粒子91が凝集され、導電性粒子91の導電パスが形成される。したがって、スイッチ素子1は、リード端子92,93間が接続されることにより、外部回路を導通することができる。 As shown in FIG. 52 (A), when the liquid enters the casing 4 from the inlet 5 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 enters the gap between the lead terminals 92 and 93. The insulating material 40 is dissolved around the center. As a result, as shown in FIG. 52B, in the switch element 1, the conductive particles 91 are positively aggregated between the lead terminals 92 and 93, and a conductive path of the conductive particles 91 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 92 and 93.
 また、スイッチ素子1は、図53(A)(B)に示すように、導電性粒子91を、筐体4内において相対向して所定の間隔を隔てて支持されているリード端子92,93側に凝集、固定するとともに、導入口5を、リード端子92,93間の間隙上にリード端子92,93と同方向にわたってスリット状に形成してもよい。 Further, as shown in FIGS. 53A and 53B, the switch element 1 includes lead terminals 92 and 93 in which conductive particles 91 are supported in the housing 4 so as to face each other at a predetermined interval. The inlet 5 may be formed in a slit shape in the same direction as the lead terminals 92 and 93 in the gap between the lead terminals 92 and 93 while being agglomerated and fixed to the side.
 これにより、スイッチ素子1は、 図54(A)に示すように、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、浸入した液体がリード端子92,93の間隙を中心に絶縁材料40を溶解させる。これによっても図54(B)に示すように、スイッチ素子1は、リード端子92,93間に積極的に導電性粒子91が凝集され、導電性粒子91の導電パスが形成される。したがって、スイッチ素子1は、リード端子92,93間が接続されることにより、外部回路を導通することができる。 Thereby, as shown in FIG. 54 (A), the switch element 1 becomes intruded when liquid enters the casing 4 from the inlet 5 due to water wetting or leakage from the battery. However, the insulating material 40 is dissolved around the gap between the lead terminals 92 and 93. As a result, as shown in FIG. 54B, in the switch element 1, the conductive particles 91 are positively aggregated between the lead terminals 92 and 93, and a conductive path of the conductive particles 91 is formed. Therefore, the switch element 1 can conduct an external circuit by connecting the lead terminals 92 and 93.
 [構成例17]
 また、本発明が適用されたスイッチ素子は、絶縁材料の側面に導電層を形成するとともに、液体と接触した絶縁材料が膨張することにより、導電層の両端を断絶してもよい。図55、図56に示すスイッチ素子1は、液体が浸入する一又は複数の導入口5が形成された筐体4と、筐体4内に設けられ、液体と接触することにより膨張する反応部3を構成する絶縁材料103と、両端が外部回路に接続されるとともに、絶縁材料103の側面に被覆された導電体2を構成する導電層104とを有し、導入口5より浸入した液体と接触した絶縁材料103が膨張することにより、導電層104の両端が断絶されるものである。
[Configuration Example 17]
In addition, in the switch element to which the present invention is applied, both ends of the conductive layer may be cut off by forming a conductive layer on the side surface of the insulating material and expanding the insulating material in contact with the liquid. The switch element 1 shown in FIGS. 55 and 56 includes a housing 4 in which one or a plurality of introduction ports 5 into which a liquid enters is formed, and a reaction unit that is provided in the housing 4 and expands by contact with the liquid. 3 and an insulating material 103 that is connected to an external circuit at both ends, and a conductive layer 104 that forms the conductor 2 covered on the side surface of the insulating material 103. When the insulating material 103 that has come into contact expands, both ends of the conductive layer 104 are cut off.
 筐体4は、例えば筒状に形成され、内部に絶縁材料103が収納されている。また、筐体4は、筐体4の内部に貫通する液体の導入口5が複数形成されている。筐体4内に収納されている絶縁材料103は、液体と接触することにより膨張する材料であり、上述した絶縁材料40と同様の材料を用いて形成することができる。絶縁材料103は、例えば円柱状に形成され、外周面に導電層104が形成されている。 The housing 4 is formed in a cylindrical shape, for example, and an insulating material 103 is accommodated therein. The housing 4 has a plurality of liquid inlets 5 penetrating into the housing 4. The insulating material 103 accommodated in the housing 4 is a material that expands when in contact with a liquid, and can be formed using the same material as the insulating material 40 described above. The insulating material 103 is formed in a columnar shape, for example, and the conductive layer 104 is formed on the outer peripheral surface.
 導電層104は、ハンダ等、導電材料として用いられる公知の材料によって形成することができ、導電メッキや印刷等、公知の方法により形成することができる。また、導電層104は、一対のリード線等の外部接続電極材105,106と接続され、この外部接続電極材105,106が外部回路の接続電極と接続されることにより、当該外部回路の通電経路の一部を構成する。 The conductive layer 104 can be formed of a known material used as a conductive material such as solder, and can be formed by a known method such as conductive plating or printing. The conductive layer 104 is connected to external connection electrode materials 105 and 106 such as a pair of lead wires, and the external connection electrode materials 105 and 106 are connected to connection electrodes of the external circuit, thereby energizing the external circuit. Configure part of the path.
 このスイッチ素子1は、導入口5を介して筐体4内に液体が浸入する前の状態においては、図55(A)、図56(A)に示すように、導電層104を介して接続された一対の外部接続電極材105,106が接続されることにより外部回路を導通させている。そして、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5から筐体4内に液体が浸入すると、図55(B)、図56(B)に示すように、絶縁材料103が浸入した液体と接触することにより膨張し、絶縁材料103の周囲に形成されていた導電層104が破断する。これにより、スイッチ素子1は、導電層104を介して接続されていた一対の外部接続電極材105,106が切断され、外部回路を遮断することができる。 The switch element 1 is connected via the conductive layer 104 as shown in FIGS. 55A and 56A before the liquid enters the housing 4 through the inlet 5. The external circuit is made conductive by connecting the paired external connection electrode members 105 and 106. When the liquid enters the casing 4 from the introduction port 5 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 has an insulating material 103 as shown in FIGS. 55 (B) and 56 (B). Is expanded by contact with the liquid that has entered, and the conductive layer 104 formed around the insulating material 103 is broken. Thereby, the switch element 1 can cut off the external circuit by cutting the pair of external connection electrode materials 105 and 106 connected via the conductive layer 104.
 なお、スイッチ素子1は、導電層104を絶縁材料103の周囲全体にベタで形成してもよく、あるいは、線状の導電パターンが絶縁材料103の周囲を螺旋状に周回するように形成してもよい。また、スイッチ素子1は、図57(A)に示すように、導電層104を絶縁材料103の側面を螺旋状に周回するワイヤー等の導電性を有する線材107で構成してもよい。 In the switch element 1, the conductive layer 104 may be formed in a solid shape around the insulating material 103, or a linear conductive pattern may be formed so as to spiral around the insulating material 103. Also good. In the switch element 1, as shown in FIG. 57A, the conductive layer 104 may be formed of a conductive wire 107 such as a wire that spirals around the side surface of the insulating material 103.
 スイッチ素子1は、導電層104を導電性の線材107を螺旋状に巻き付けることで、容易に形成することができ、また、図57(B)に示すように、絶縁材料103が膨張した際にも、線材107の一部が断線することで確実に導電パスを遮断することができる。 The switch element 1 can be easily formed by winding the conductive layer 104 in a spiral shape with the conductive wire 107, and when the insulating material 103 expands as shown in FIG. However, if a part of the wire 107 is disconnected, the conductive path can be reliably interrupted.
 なお、スイッチ素子1は、絶縁材料103を中空円筒状に形成するとともに、内周面に導電層104を形成してもよい。この場合も、絶縁材料103が液体と接触して膨張することにより、内周面に形成された導電層104が切断され、導電パスを遮断することができる。 In the switch element 1, the insulating material 103 may be formed in a hollow cylindrical shape, and the conductive layer 104 may be formed on the inner peripheral surface. Also in this case, the insulating material 103 expands in contact with the liquid, whereby the conductive layer 104 formed on the inner peripheral surface is cut and the conductive path can be blocked.
 [構成例18]
 また、本発明が適用されたスイッチ素子は、絶縁材料の側面に導電層を形成するとともに、液体と接触した絶縁材料が膨張することにより、導電層の断絶されていた両端を接続してもよい。図58、図59に示すスイッチ素子1は、液体が浸入する一又は複数の導入口5が形成された中空状の筐体4と、筐体4の内壁に沿って配置され、液体と接触することにより膨張する反応部3を構成する筒状の絶縁材料113と、両端が外部回路に接続されるとともに、絶縁材料113の内周面を周回する導電体2を構成する線状の導電層114とを有する。
[Configuration Example 18]
In the switch element to which the present invention is applied, the conductive layer is formed on the side surface of the insulating material, and the insulating material in contact with the liquid expands to connect both ends of the conductive layer that have been disconnected. . The switch element 1 shown in FIG. 58 and FIG. 59 is disposed along a hollow housing 4 in which one or a plurality of introduction ports 5 into which liquid enters and the inner wall of the housing 4 are formed, and is in contact with the liquid. The cylindrical insulating material 113 that constitutes the reaction part 3 that expands by this, and the linear conductive layer 114 that constitutes the conductor 2 that circulates around the inner peripheral surface of the insulating material 113 while both ends are connected to an external circuit. And have.
 筐体4は、例えば円筒形状をなし、内壁に沿って絶縁材料113が収納されている。また、筐体4は、スリット状の導入口5が形成されている。筐体4内に収納されている絶縁材料113は、液体と接触することにより膨張する材料であり、上述した絶縁材料40と同様の材料を用いて形成することができる。絶縁材料113は、筐体4と同様の例えば円筒形状をなし、内周面に線状の導電層114が螺旋状に周回されている。 The housing 4 has, for example, a cylindrical shape, and an insulating material 113 is accommodated along the inner wall. The housing 4 has a slit-shaped inlet 5 formed therein. The insulating material 113 accommodated in the housing 4 is a material that expands when in contact with a liquid, and can be formed using the same material as the insulating material 40 described above. The insulating material 113 has, for example, a cylindrical shape similar to that of the housing 4, and a linear conductive layer 114 is spirally wound around the inner peripheral surface.
 導電層114は、ハンダ等、導電材料として用いられる公知の材料によって形成することができ、導電メッキや印刷等、公知の方法により形成することができる。また、導電層114は、一対のリード線等の外部接続電極材115,116と接続され、この外部接続電極材115,116が外部回路の接続電極と接続されることにより、当該外部回路の通電経路の一部を構成する。 The conductive layer 114 can be formed of a known material used as a conductive material such as solder, and can be formed by a known method such as conductive plating or printing. The conductive layer 114 is connected to external connection electrode materials 115 and 116 such as a pair of lead wires, and the external connection electrode materials 115 and 116 are connected to connection electrodes of the external circuit, thereby energizing the external circuit. Configure part of the path.
 図58(A)、図59(A)に示すように、絶縁材料113及び導電層114は、導入口5と連続するスリット117が形成され、導電層114は、スリット117によって外部接続電極材115,116と接続されている両端が断絶されている。これにより、スイッチ素子1は、導入口5を介して筐体4内に液体が浸入する前の状態において、導電層114が断絶されることにより外部回路を遮断している。 As shown in FIGS. 58A and 59A, the insulating material 113 and the conductive layer 114 are formed with a slit 117 continuous with the introduction port 5, and the conductive layer 114 has an external connection electrode material 115 formed by the slit 117. , 116 are disconnected at both ends. Thereby, the switch element 1 interrupts the external circuit by disconnecting the conductive layer 114 in a state before the liquid enters the housing 4 through the introduction port 5.
 そして、スイッチ素子1は、水濡れや電池からの液漏れ等により導入口5及びスリット117に液体が浸入すると、図58(B)、図59(B)に示すように、絶縁材料113が浸入した液体と接触することにより筐体4の内周面に沿って膨張し、スリット117が閉じられる。これにより、スイッチ素子1は、絶縁材料113の周囲に形成されていた導電層114が接続することにより導電パスが形成され、スリット117によって断絶されていた外部回路を導通させることができる。 When the liquid enters the introduction port 5 and the slit 117 due to water wetting, liquid leakage from the battery, or the like, the switch element 1 enters the insulating material 113 as shown in FIGS. 58 (B) and 59 (B). By contacting the liquid, the liquid expands along the inner peripheral surface of the housing 4 and the slit 117 is closed. As a result, the switch element 1 is connected to the conductive layer 114 formed around the insulating material 113 to form a conductive path, and can conduct an external circuit disconnected by the slit 117.
 なお、スイッチ素子1は、導電層114として、導電パターンによる他、導電性を有する線材を用いてもよく、また導電パターンと導電性を有する線材を混合して用いてもよい。また、スリット117で断絶され、絶縁材料113の膨張に伴って接続される導電層114の断絶部分の一端又は両端を、金属端子によって形成し、接続性を向上させてもよい。 In addition, the switch element 1 may use a conductive wire material as the conductive layer 114 in addition to a conductive pattern, or may mix and use a conductive pattern and a conductive wire material. In addition, one end or both ends of the disconnected portion of the conductive layer 114 that is disconnected by the slit 117 and connected as the insulating material 113 is expanded may be formed using a metal terminal to improve connectivity.
 [構成例19]
 また、本発明が適用されたスイッチ素子1は、図60に示すように、液体に触れることで発熱する反応部3と、反応部3の近傍に配置され、温度上昇に伴い電気抵抗値が低下するサーミスタ120からなる導電体2とを有してもよい。反応部3は、例えば水と反応して発熱する生石灰を用いて構成することができ、例えば図61に示すように、絶縁基板121上に配設、保持されている。反応部3とサーミスタ120とは互いに近接して配置されることにより熱的に接続され、反応部3の熱によってサーミスタ120が熱せられる。
[Configuration Example 19]
Further, as shown in FIG. 60, the switch element 1 to which the present invention is applied is disposed in the vicinity of the reaction unit 3 that generates heat when it is in contact with the liquid and the reaction unit 3, and the electrical resistance value decreases as the temperature rises. And the conductor 2 made of the thermistor 120. The reaction unit 3 can be configured by using, for example, quick lime that generates heat by reacting with water. For example, as shown in FIG. 61, the reaction unit 3 is arranged and held on an insulating substrate 121. The reaction unit 3 and the thermistor 120 are thermally connected by being arranged close to each other, and the thermistor 120 is heated by the heat of the reaction unit 3.
 サーミスタ120は、絶縁基板121上に形成されるとともに、両端が第1、第2の外部接続電極122,123と接続されている。サーミスタ120は第1、第2の外部接続電極122,123を介して外部回路の通電経路上に接続され、常時、高い電気抵抗によって外部回路の通電を規制している。また、サーミスタ120は、NTC(negative temperature coefficient)サーミスタ又はCTR(critical temperature resistor)サーミスタを好適に用いることができる。そして、スイッチ素子1は、反応部3が液体と接触することにより発熱すると、サーミスタ120の電気抵抗値が低下することにより、外部回路を通電させることができる。 The thermistor 120 is formed on the insulating substrate 121, and both ends thereof are connected to the first and second external connection electrodes 122 and 123. The thermistor 120 is connected to the energization path of the external circuit via the first and second external connection electrodes 122 and 123, and the energization of the external circuit is always regulated by a high electric resistance. As the thermistor 120, an NTC (negative temperature coefficient) thermistor or a CTR (critical temperature resistor) thermistor can be preferably used. Then, when the switching element 1 generates heat due to the reaction unit 3 coming into contact with the liquid, the electrical resistance value of the thermistor 120 is decreased, and thereby the external circuit can be energized.
 また、スイッチ素子1は、絶縁基板121上を覆うカバー部材124により筐体4が形成される。カバー部材124には、反応部3に液体を導く導入口5が形成されている。 In the switch element 1, the housing 4 is formed by a cover member 124 that covers the insulating substrate 121. The cover member 124 is formed with an introduction port 5 that guides the liquid to the reaction unit 3.
 なお、スイッチ素子1は、反応部3とサーミスタ120とが重畳して配置されることが好ましい。例えば、スイッチ素子1は、絶縁基板上に配置された生石灰上にサーミスタ120が重畳配置される。これにより反応部3とサーミスタ120とが熱的に密接に接続され、反応部3が発熱することにより、速やかにサーミスタ120の電気抵抗値を低下させることができる。 In addition, it is preferable that the switch element 1 is disposed so that the reaction unit 3 and the thermistor 120 overlap each other. For example, in the switch element 1, the thermistor 120 is placed on a quicklime placed on an insulating substrate. Thereby, the reaction part 3 and the thermistor 120 are thermally connected closely, and the reaction part 3 generates heat, so that the electrical resistance value of the thermistor 120 can be quickly reduced.
 なお、スイッチ素子1は、図61に示すように、反応部3以外の場所、又は反応部3及びその近傍以外の場所に、撥水処理部125を設けてもよい。例えばスイッチ素子1は、反応部3、サーミスタ120を除く絶縁基板121の表面121aの露出領域に、撥水処理部125が設けられる。 As shown in FIG. 61, the switch element 1 may be provided with a water repellent treatment part 125 at a place other than the reaction part 3 or a place other than the reaction part 3 and its vicinity. For example, in the switch element 1, a water repellent treatment part 125 is provided in an exposed region of the surface 121 a of the insulating substrate 121 excluding the reaction part 3 and the thermistor 120.
 撥水処理部125は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 The water-repellent treatment part 125 can be formed by a known method such as application of a fluorine-based coating agent or solder paste coating.
 これにより、スイッチ素子1は、絶縁基板121上の液体を非撥水領域である反応部3に導くことができ、サーミスタ120の加熱を促進して速やかにサーミスタ120の電気抵抗値を低下させることができる。 Thereby, the switch element 1 can guide the liquid on the insulating substrate 121 to the reaction part 3 which is a non-water-repellent region, and accelerates the heating of the thermistor 120 to quickly reduce the electrical resistance value of the thermistor 120. Can do.
1 スイッチ素子、2 導電体、3 反応部、4 筐体、4a 天面、4b 側面、5 導入口、6 排出口、7 導入溝、8 貯留部、9 水溶性封止材、10 外部接続電極、11 ヒューズエレメント、12 電極、13 貫通孔、14 セパレータ、15 支持部、16 撥水処理部、17 コート層、18 撥水処理部、19 吸水発熱材、20 絶縁基板、21 導線、22 撚り線、23 液溶解性材料、24 スポンジメタル、25 外部接続端子、27 導電性粒子、28 凝集体、30 外部導体、30a 開口部、30b 絶縁コート層、31 内部導体、31a 絶縁コート層、32 絶縁フィルム、40 絶縁材料、41 第1の金属端子片、41a 接点部、42 第2の金属端子片、42a 接点部、43 外部接続電極、45 導電性粒子、46 リード線、47 リード線、48 金属端子片、49 金属端子片、50 外部接続電極、51 外部接続電極、52 空間、53 導電性粒子、55 リード線、56 リード線、57 空間、58 メッシュ部材、60 金属端子片、60a 櫛歯部、61 金属端子片、61a 櫛歯部、62 シート体、63 空間、65 導電性粒子、66 空間、67 リード線、68 リード線、69 導電性粒子、70 シート体、71 導電性粒子、72 外部接続電極、73 外部接続電極、74 固定部、81 導電性粒子、82 リード線、83 リード線、91 導電性粒子、92 リード線、93 リード線、103 絶縁材料、104 導電層、105 外部接続電極材、106 外部接続電極材、107 線材、113 絶縁材料、114 導電層、115 外部接続電極材、116 外部接続電極材、117 スリット、120 サーミスタ、121 絶縁基板、122 第1の外部接続電極、123 第2の外部接続電極、124 カバー部材、125 撥水処理部 1 switch element, 2 conductor, 3 reaction unit, 4 housing, 4a top surface, 4b side surface, 5 introduction port, 6 discharge port, 7 introduction groove, 8 storage unit, 9 water-soluble sealing material, 10 external connection electrode , 11 fuse element, 12 electrode, 13 through-hole, 14 separator, 15 support part, 16 water-repellent treatment part, 17 coat layer, 18 water-repellent treatment part, 19 water-absorbing heat generating material, 20 insulating substrate, 21 conductor, 22 stranded wire , 23 liquid soluble material, 24 sponge metal, 25 external connection terminal, 27 conductive particles, 28 aggregate, 30 external conductor, 30a opening, 30b insulation coat layer, 31 internal conductor, 31a insulation coat layer, 32 insulation film , 40 insulating material, 41 first metal terminal piece, 41a contact part, 42 second metal terminal piece, 42a contact part, 43 Part connection electrode, 45 conductive particles, 46 lead wire, 47 lead wire, 48 metal terminal piece, 49 metal terminal piece, 50 external connection electrode, 51 external connection electrode, 52 space, 53 conductive particle, 55 lead wire, 56 Lead wire, 57 space, 58 mesh member, 60 metal terminal piece, 60a comb tooth portion, 61 metal terminal piece, 61a comb tooth portion, 62 sheet body, 63 space, 65 conductive particles, 66 space, 67 lead wire, 68 Lead wire, 69 conductive particle, 70 sheet body, 71 conductive particle, 72 external connection electrode, 73 external connection electrode, 74 fixing part, 81 conductive particle, 82 lead wire, 83 lead wire, 91 conductive particle, 92 Lead wire, 93 lead wire, 103 insulating material, 104 conductive layer, 105 external connection electrode material, 106 outside Connection electrode material, 107 wire material, 113 insulation material, 114 conductive layer, 115 external connection electrode material, 116 external connection electrode material, 117 slit, 120 thermistor, 121 insulation substrate, 122 first external connection electrode, 123 second external Connection electrode, 124 cover member, 125 water repellent treatment part

Claims (14)

  1.  外部回路に接続される1又は複数の導電体と、
     液体と接触することにより上記導電体を導通又は遮断する反応部と、
     上記反応部が内蔵された筐体とを有し、
     上記筐体には、上記反応部に液体を導く導入口が設けられているスイッチ素子。
    One or more conductors connected to an external circuit;
    A reaction section that conducts or blocks the conductor by contact with a liquid; and
    A housing with the reaction part built-in,
    A switch element in which the casing is provided with an introduction port for guiding a liquid to the reaction part.
  2.  上記筐体は多面体からなり、一又は複数の面に、一又は複数の上記導入口が設けられている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the casing is made of a polyhedron, and one or more introduction ports are provided on one or more surfaces.
  3.  上記筐体は円筒状に形成され、側面に一又は複数の上記導入口が形成されている請求項1記載のスイッチ素子。 The switch element according to claim 1, wherein the casing is formed in a cylindrical shape, and one or more introduction ports are formed on a side surface.
  4.  上記筐体には、流入した上記液体を排出する排出口が設けられている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein the casing is provided with a discharge port for discharging the flowed-in liquid.
  5.  上記排出口は、上記反応部が設けられた位置と同じ高さ、又は上記反応部が設けられた位置よりも上方に設けられている請求項4記載のスイッチ素子。 The switch element according to claim 4, wherein the discharge port is provided at the same height as the position where the reaction part is provided or above the position where the reaction part is provided.
  6.  上記導入口は、上記反応部へ上記液体を導く導入溝が設けられている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein the introduction port is provided with an introduction groove that guides the liquid to the reaction section.
  7.  上記導入溝は、上記導入口の開口部から内部にかけて漸次狭小化されている請求項6記載のスイッチ素子。 The switch element according to claim 6, wherein the introduction groove is gradually narrowed from the opening of the introduction port to the inside.
  8.  上記筐体は、上記導入口に撥水処理が施されている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein the casing has a water repellent treatment applied to the introduction port.
  9.  上記筐体は、上記導入溝に撥水処理が施されている請求項6に記載のスイッチ素子。 The switch element according to claim 6, wherein the casing has a water repellent treatment applied to the introduction groove.
  10.  上記筐体は、内壁に撥水処理が施されている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein the casing has a water repellent treatment applied to an inner wall.
  11.  上記導入口は、上記液体で溶解する水溶性材料で閉塞されている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein the introduction port is closed with a water-soluble material that dissolves in the liquid.
  12.  上記導入溝は、上記液体で溶解する水溶性材料が配置されている請求項6に記載のスイッチ素子。 The switch element according to claim 6, wherein a water-soluble material that dissolves in the liquid is disposed in the introduction groove.
  13.  上記反応部が設けられた位置に上記液体を貯留する貯留部が設けられている請求項1~3のいずれか1項に記載のスイッチ素子。 The switch element according to any one of claims 1 to 3, wherein a storage part for storing the liquid is provided at a position where the reaction part is provided.
  14.  上記筐体には、上記貯留部が設けられた位置と同じ高さ、又は上記貯留部が設けられた位置よりも下方に、流入した上記液体を排出する排出口が設けられている請求項13記載のスイッチ素子。 14. The housing is provided with a discharge port for discharging the flowed-in liquid at the same height as the position where the storage section is provided or below the position where the storage section is provided. The switch element as described.
PCT/JP2016/079598 2015-10-07 2016-10-05 Switch element WO2017061457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015199817A JP6706477B2 (en) 2015-10-07 2015-10-07 Switch element
JP2015-199817 2015-10-07

Publications (1)

Publication Number Publication Date
WO2017061457A1 true WO2017061457A1 (en) 2017-04-13

Family

ID=58487685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079598 WO2017061457A1 (en) 2015-10-07 2016-10-05 Switch element

Country Status (3)

Country Link
JP (1) JP6706477B2 (en)
TW (1) TW201719704A (en)
WO (1) WO2017061457A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199590A1 (en) * 2020-04-03 2021-10-07 三和株式会社 Water leak detection sensor structure and water leak detection sensor including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077523A (en) * 2018-11-07 2020-05-21 デクセリアルズ株式会社 Protection element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019488U (en) * 1973-06-16 1975-03-05
JPS61140952U (en) * 1985-02-22 1986-09-01
JPS62153559U (en) * 1986-03-20 1987-09-29
JPH01107963U (en) * 1988-01-12 1989-07-20
JPH04152236A (en) * 1990-10-17 1992-05-26 Toshiba Corp Leak sensing device
JPH0633042U (en) * 1992-09-30 1994-04-28 日産アルティア株式会社 Balance weight supply device for vehicle wheels
US20030094033A1 (en) * 2001-11-21 2003-05-22 Gibbs Dennis Charles Parkins Liquid leak detector
JP2006078389A (en) * 2004-09-10 2006-03-23 Toyoko Kagaku Co Ltd Detector for leaking water
JP2006098382A (en) * 2004-09-29 2006-04-13 Miinosu Denshi Kk Raindrop sensor and raindrop warning device
JP2007322175A (en) * 2006-05-30 2007-12-13 Japan Energy Corp Oil leak detecting apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093246A (en) * 2002-08-30 2004-03-25 Origin Electric Co Ltd Acid liquid leakage sensor
JP4317099B2 (en) * 2004-08-12 2009-08-19 日本電信電話株式会社 Leak sensor and leak detection system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019488U (en) * 1973-06-16 1975-03-05
JPS61140952U (en) * 1985-02-22 1986-09-01
JPS62153559U (en) * 1986-03-20 1987-09-29
JPH01107963U (en) * 1988-01-12 1989-07-20
JPH04152236A (en) * 1990-10-17 1992-05-26 Toshiba Corp Leak sensing device
JPH0633042U (en) * 1992-09-30 1994-04-28 日産アルティア株式会社 Balance weight supply device for vehicle wheels
US20030094033A1 (en) * 2001-11-21 2003-05-22 Gibbs Dennis Charles Parkins Liquid leak detector
JP2006078389A (en) * 2004-09-10 2006-03-23 Toyoko Kagaku Co Ltd Detector for leaking water
JP2006098382A (en) * 2004-09-29 2006-04-13 Miinosu Denshi Kk Raindrop sensor and raindrop warning device
JP2007322175A (en) * 2006-05-30 2007-12-13 Japan Energy Corp Oil leak detecting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199590A1 (en) * 2020-04-03 2021-10-07 三和株式会社 Water leak detection sensor structure and water leak detection sensor including same
JP2021162553A (en) * 2020-04-03 2021-10-11 三和株式会社 Structure for water leak detection sensor and water leak detection sensor including the same
JP7464810B2 (en) 2020-04-03 2024-04-10 三和株式会社 Water leakage detection sensor structure and water leakage detection sensor equipped with the same

Also Published As

Publication number Publication date
TW201719704A (en) 2017-06-01
JP2017072488A (en) 2017-04-13
JP6706477B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6731228B2 (en) Switch element, electronic parts, battery system
WO2017061454A1 (en) Switch element, electronic component, battery system
TWI712791B (en) Liquid moisture sensor, switching element, battery system
JP4121481B2 (en) Pouch-type lithium secondary battery
JP2011040387A (en) Battery pack
US20200321175A1 (en) Switch device and protective device
WO2017061457A1 (en) Switch element
KR102325845B1 (en) Rechargeable battery
JP7062091B2 (en) Battery pack with a structure that can prevent overcharging and automobiles including this
JP4222779B2 (en) battery
KR100968052B1 (en) Battery Pack Employed with Mechanical Fuse
KR20200053375A (en) A battery cell having a structure capable of overcharge prevention, A battery pack comprising the same and A vehicle comprising the battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853611

Country of ref document: EP

Kind code of ref document: A1