WO2017061455A1 - Wetting sensor, switch element and battery system - Google Patents

Wetting sensor, switch element and battery system Download PDF

Info

Publication number
WO2017061455A1
WO2017061455A1 PCT/JP2016/079596 JP2016079596W WO2017061455A1 WO 2017061455 A1 WO2017061455 A1 WO 2017061455A1 JP 2016079596 W JP2016079596 W JP 2016079596W WO 2017061455 A1 WO2017061455 A1 WO 2017061455A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch element
liquid
element according
reaction part
heating resistor
Prior art date
Application number
PCT/JP2016/079596
Other languages
French (fr)
Japanese (ja)
Inventor
裕治 古内
吉弘 米田
幸市 向
和征 榊原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201680055764.8A priority Critical patent/CN108028154B/en
Priority to KR1020187007373A priority patent/KR102024488B1/en
Publication of WO2017061455A1 publication Critical patent/WO2017061455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a liquid wetting sensor that detects liquid intrusion, a switch element that opens an electric circuit in response to liquid intrusion, and a battery system incorporating the switch element.
  • a battery pack In recent years, lithium ion secondary batteries have been adopted in many mobile phones, notebook PCs, and the like. Lithium ion secondary batteries have a high energy density, so in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. In this case, the battery pack has a function of shutting off input / output of the battery pack.
  • the positive / negative electrode insulation fitting portion of the battery corrodes due to water wetting, the pressure inside the battery leaks, and there is a risk of causing a fire accident without the safety valve functioning properly.
  • Attaching a sticker that detects wet traces against water wetting and issuing a warning does not limit the use of the battery, so migration due to water on the circuit board There is a risk of circuit malfunction due to (insulation deterioration) or a short circuit. Moreover, there is a possibility that the same defect as described above may occur even when the electrolyte leaks due to battery abnormality.
  • a sensor that detects a liquid such as water is provided, and a protection circuit is activated by a signal transmitted from the sensor that detects water wetting.
  • a water leak sensor has been proposed that includes a detection unit composed of a pair of electrodes arranged opposite to each other on an insulating substrate (see, for example, Patent Document 2).
  • This water leak sensor controls the operation of the device when a signal is input to the control circuit due to leakage between the terminals when the electrodes of the detection unit become wet.
  • this water wetting sensor has an operating condition for the inflow of liquid to the detection unit. It is also necessary to ensure the reliability as a sensor by preventing malfunctions except in a wet state where it is not necessary to operate the circuit.
  • a method is proposed in which a fuse element is connected to a charge / discharge circuit of a battery cell, and the charge / discharge circuit is cut off by fusing the fuse with heat from a heating resistor.
  • a fuse element is connected to a charge / discharge circuit of a battery cell, and the charge / discharge circuit is cut off by fusing the fuse with heat from a heating resistor.
  • an FET 102 that switches energization to the heating resistor 101
  • a battery stack 103 in which battery cells are connected in series and / or in parallel, an overcharge and an overdischarge of the battery stack 103, etc.
  • a control IC 104 that monitors and outputs a control signal to the FET 102 when the battery stack 103 is abnormal, and a fuse 105 connected to the charge / discharge path of the battery stack 103 are provided.
  • the protection circuit 100 when there is no abnormality in the battery stack 103, energization of the heating resistor 101 is regulated by the FET 102.
  • the control IC 104 detects an abnormality such as overcharge or overdischarge of the battery stack 103, the protection circuit 100 causes the FET 102 to energize the heating resistor 101. Thereby, the protection circuit 100 melts the fuse 105 when the heating resistor 101 generates heat, and interrupts the charging / discharging path of the battery stack 103.
  • the protection circuit 100 requires the FET 102 and the control IC 104 for controlling the FET 102 in order to control the energization of the heating resistor 101, resulting in an increase in the number of parts and an increase in assembly man-hours. If the control IC 104 fails due to liquid leakage, the fuse 105 may not be blown.
  • the present invention has been proposed in view of such a conventional situation, a liquid wetting sensor for detecting water wetting and liquid leakage from the battery, etc., for abnormalities such as water wetting and liquid leakage from the battery, It is an object of the present invention to provide a switch element capable of safely opening an electric circuit, and a battery system incorporating the switch element.
  • a liquid wetting sensor includes a reaction unit that generates heat when touched by a liquid, a thermistor that is disposed in the vicinity of the reaction unit, and whose electrical resistance value decreases as the temperature rises. It is what has.
  • the switch element according to the present invention is connected to a soluble conductor connected to an external circuit, a heating resistor, a reaction part that generates heat when touched by liquid, and the temperature of the reaction part. And a thermistor whose electric resistance value decreases as it rises, and the soluble conductor is blown by the heat generation of the heating resistor whose energization amount has increased due to the decrease in the electric resistance value of the thermistor.
  • the battery system includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, a heating resistor, a reaction unit that generates heat by touching the liquid, and the heating resistor.
  • a thermistor that is connected to the body energization path and has an electrical resistance value that decreases as the temperature of the reaction section increases, and the heat generation of the heating resistor that increases the amount of electricity due to a decrease in the electrical resistance value of the thermistor. It melts the fusible conductor.
  • the battery system includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, a heating resistor, a reaction unit that generates heat by touching the liquid, and the reaction unit.
  • a thermistor whose electrical resistance value decreases as the temperature rises, and a current control element that controls energization to the heating resistor, the thermistor and the current control element are connected, and the electrical resistance value of the thermistor decreases
  • the current control element is energized, energization of the heating resistor is started, and the soluble conductor is blown by the heat generated by the heating resistor.
  • the switch element according to the present invention includes a soluble conductor connected to an external circuit and a reaction portion that generates heat when touched by a liquid, and blows off the soluble conductor by heat generation of the reaction portion. .
  • a battery system includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, and a reaction unit that generates heat by touching the liquid, and generates heat by the reaction unit.
  • the soluble conductor is blown out.
  • the protection element can be operated, or the heating resistor can be energized and heated to melt the fuse element, and the current path of the external circuit can be interrupted.
  • the soluble conductor when it is necessary to cut off the current path of the external circuit such as water wetting or liquid leakage from the battery, the soluble conductor is blown out by the heat generated in the reaction part in contact with the liquid.
  • the current path of the external circuit that is energized through the fusible conductor can be interrupted.
  • FIG. 1 is a diagram illustrating a schematic configuration of a liquid wetting sensor.
  • FIG. 2 is an exploded perspective view illustrating a configuration example of the liquid wetting sensor.
  • FIG. 3 is a diagram illustrating a circuit configuration of a battery pack using a liquid wetting sensor.
  • 4A and 4B are diagrams showing the protection element, in which FIG. 4A is a plan view and FIG. 4B is a cross-sectional view along X-X ′.
  • FIG. 5 is a circuit configuration diagram of the protection element, where (A) shows before the fuse element is blown and (B) shows after the fuse element is blown.
  • FIG. 6 is a diagram illustrating a circuit configuration of a battery pack using a liquid wetting sensor.
  • FIG. 1 is a diagram illustrating a schematic configuration of a liquid wetting sensor.
  • FIG. 2 is an exploded perspective view illustrating a configuration example of the liquid wetting sensor.
  • FIG. 3 is a diagram illustrating a circuit configuration of a
  • FIG. 7 is an exploded perspective view showing a configuration example of the switch element.
  • FIG. 8 is a cross-sectional perspective view of the fuse element.
  • 9A and 9B are diagrams showing a circuit configuration of the switch element, where FIG. 9A shows before the fuse element is blown, and FIG. 9B shows after the fuse element is blown.
  • FIG. 10 is a diagram illustrating a circuit configuration of a battery pack using a switch element.
  • FIG. 11 is a diagram illustrating a circuit configuration of a battery pack using a switch element.
  • FIG. 12 is a diagram showing a configuration example of a switch element in which a heating resistor is covered with a glass layer, where (A) is a cross-sectional view and (B) is a plan view.
  • FIG. 13 is a diagram illustrating a configuration example of a switch element in which a power feeding path to a heating resistor and a current-carrying path to a fuse element are separated, (A) is a cross-sectional view, and (B) is a plan view.
  • FIG. 14 is a circuit diagram of a switch element in which a power supply path to the heating resistor and a current supply path to the fuse element are separated.
  • FIG. 15 is a diagram illustrating a circuit configuration of a battery pack using a switch element in which a power supply path to the heating resistor and a current supply path to the fuse element are separated.
  • 16A and 16B are perspective views showing a casing of the switch element, in which FIG.
  • FIG. 16A shows a state in which an introduction port is formed on the top surface
  • FIG. 16B shows a state in which a plurality of introduction ports are formed on the top surface
  • FIG. ) Shows a state where inlets are formed on the top and side surfaces
  • (D) shows a state where a plurality of inlets are formed on the top and side surfaces.
  • FIG. 17 is a perspective view showing a switch element using a cylindrical cover member.
  • FIG. 18 is a perspective view showing a switch element using a casing in which a discharge port is formed.
  • FIG. 19 is a cross-sectional view showing a switch element in which a discharge port is provided at the same height as the position where the reaction part is provided.
  • FIG. 20 is a perspective view showing a switch element using a housing in which a slit-shaped inlet and a slit-shaped outlet are formed.
  • 21A and 21B are diagrams showing a switch element using a housing in which an introduction groove is formed.
  • FIG. 21A is a cross-sectional view and FIG. 21B is an external perspective view.
  • 22A and 22B are diagrams showing a switch element using a housing in which a plurality of introduction ports and introduction grooves are formed.
  • FIG. 22A is a cross-sectional view
  • FIG. 22B is an external perspective view.
  • FIG. 23 is a cross-sectional view showing a switch element using a housing in which an introduction groove that gradually narrows toward the inside where the reaction portion is provided.
  • FIG. 23 is a cross-sectional view showing a switch element using a housing in which an introduction groove that gradually narrows toward the inside where the reaction portion is provided.
  • FIG. 24 is a cross-sectional view showing a switch element using a casing in which a water repellent treatment part is formed in a place other than the reaction part.
  • FIG. 25 is a perspective view showing a switch element using a housing whose inlet is sealed with a water-soluble insulating material.
  • FIG. 26 is a cross-sectional view showing a switch element in which the introduction groove is sealed with a water-soluble insulating material.
  • FIG. 27 is an exploded perspective view showing a switch element that melts the soluble conductor by the heat generated in the reaction section.
  • 28A and 28B are diagrams showing a circuit diagram configuration example of the switch element shown in FIG. 27.
  • FIG. 28A shows a state before fusing
  • FIG. 28B shows a state after fusing.
  • FIG. 29 is a diagram showing a circuit configuration example of a battery system using the switch element shown in FIG.
  • FIG. 30 is a diagram showing a circuit configuration of a conventional battery pack.
  • the liquid wetting sensor 1 to which the present invention is applied includes a reaction part 2 that generates heat when touched by a liquid, and a temperature-sensitive part 3 whose electrical characteristics change as the temperature of the reaction part 2 increases.
  • the reaction part 2 can be comprised, for example using quicklime which reacts with water and generates heat, and is disposed and held on an insulating substrate 5, for example, as shown in FIG.
  • the temperature sensing part 3 for example, a thermistor whose resistance value decreases as the temperature of the reaction part 2 increases, a diode whose voltage changes, other Peltier elements, thermocouples, bimetals, temperature sensors, etc.
  • the electrical characteristics have temperature dependence. Electronic components can be used.
  • the reaction part 2 and the temperature sensitive part 3 are thermally connected by being arranged close to each other, and the temperature sensitive part 3 is heated by the heat of the reaction part 2. Thereby, the temperature sensitive part 3 changes electrical characteristics such as a resistance value and an output voltage.
  • the thermistor 3a is formed on the insulating substrate 5, and both ends thereof are connected to the first and second external connection electrodes 6 and 7.
  • the thermistor 3a is connected to the energization path of the electric circuit 4 via the first and second external connection electrodes 6 and 7, and always restricts the energization of the electric circuit 4 by a high electric resistance.
  • a NTC (negative temperature coefficient) thermistor or a CTR (critical temperature resistor) thermistor can be preferably used.
  • the reaction part 2 will generate heat
  • the liquid wetting sensor 1 has a casing formed by a cover member 8 that covers the insulating substrate 5.
  • the cover member 8 is formed with an introduction port 9 that guides the liquid to the reaction unit 2.
  • the liquid wetting sensor 1 is disposed so that the reaction unit 2 and the thermistor 3a overlap each other.
  • the liquid wetting sensor 1 has a thermistor 3a superimposed on quick lime arranged on an insulating substrate.
  • the reaction part 2 and the thermistor 3a are thermally connected closely, and the reaction part 2 generates heat, so that the electric resistance value of the thermistor 3a can be quickly reduced.
  • the liquid wetting sensor 1 may be provided with a water repellent treatment unit 14 at a place other than the reaction part 2 or a place other than the reaction part 2 and its vicinity.
  • a water repellent treatment portion 14 is provided in an exposed region of the surface 5a of the insulating substrate 5 excluding the reaction portion 2 and the thermistor 3a.
  • the water repellent portion 14 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
  • the liquid wetting sensor 1 can guide the liquid on the insulating substrate 5 to the reaction part 2 which is a non-water-repellent region, and accelerates the heating of the thermistor 3a to quickly reduce the electric resistance value of the thermistor 3a. be able to.
  • the liquid wetting sensor 1 can be used by being incorporated in a circuit in a battery pack 10 of a lithium ion secondary battery, for example.
  • the battery pack 10 includes a battery stack 15 including, for example, a plurality of lithium ion secondary battery cells.
  • the battery pack 10 includes a battery stack 15, a charge / discharge control circuit 16 that controls charging / discharging of the battery stack 15, a protection element 11 that cuts off charging when the battery stack 15 is abnormal, liquid leakage or submergence of each battery cell, etc.
  • a liquid wetting sensor 1 that detects the above and a current control element 12 that controls the operation of the protection element 11 according to the detection result of the liquid wetting sensor 1.
  • the battery stack 15 includes battery cells that need to be controlled to protect against leakage, submersion, etc., in series and / or in parallel, and is detachable via the positive terminal 10a and the negative terminal 10b of the battery pack 10.
  • the charging device 13 is connected to the charging device 13 and the charging voltage from the charging device 13 is applied.
  • the battery pack 10 charged by the charging device 13 can operate the electronic device by connecting the positive electrode terminal 10a and the negative electrode terminal 10b to the electronic device operated by the battery.
  • the charge / discharge control circuit 16 includes two current control elements 17 and 18 connected in series to a current path flowing from the battery stack 15 to the charging device 13, and a control unit 19 that controls operations of the current control elements 17 and 18. Is provided.
  • the current control elements 17 and 18 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and the control unit 19 controls the gate voltage to thereby charge and / or discharge the current path of the battery stack 15. Controls continuity and shut-off.
  • the control unit 19 When the battery stack 15 is overdischarged or overcharged according to the detection result by a detection circuit (not shown) that operates by receiving power supply from the charging device 13 and detects the voltage of each battery cell, the control unit 19 The operations of the current control elements 17 and 18 are controlled so as to interrupt the path.
  • the protection element 11 is connected, for example, on a charge / discharge current path between the battery stack 15 and the charge / discharge control circuit 16, and its operation is controlled by the current control element 12.
  • the protection element 11 includes an insulating substrate 26, first and second electrodes 22 and 23 formed on the insulating substrate 26, and an insulating substrate 26.
  • a heating resistor 24 formed on the surface of the substrate, a glass layer 27 covering the heating resistor 24, a heating element extraction electrode 21 laminated on the glass layer 27 and connected to the heating resistor 24, and a first And the fuse element 20 mounted over the second electrode 23 through the connecting solder 28.
  • the first and second electrodes 22 and 23 are respectively connected to the first and second external connection electrodes 22a and 23a formed on the back surface of the insulating substrate 26 through castellation.
  • the heating resistor 24 is connected to the heating element power supply electrode 25 and is connected to the current control element 12 via the heating element power supply electrode 25. Further, the heating resistor 24 is connected to the charging and discharging paths of the fuse element 20 and the battery stack 15 by electrically connecting the heating element lead electrode 21 to the fuse element 20.
  • the liquid wetting sensor 1 has one end of the temperature sensing unit 3 (thermistor 3a) connected to the battery stack 15 and the other end connected to the current control element 12. Then, the liquid wetting sensor 1 always regulates energization from the battery stack 15 to the current control element 12 by the high resistance of the thermistor 3a. Further, the liquid wetting sensor 1 controls the current from the battery stack 15 by causing the reaction section 2 to generate heat when the liquid wetting state such as battery cell leakage or submergence occurs and the electrical resistance value of the thermistor 3a decreases. The element 12 can be energized.
  • the current control element 12 is composed of, for example, an FET.
  • the current control element 12 controls the charge / discharge current path of the battery stack 15 to be cut off regardless of the switching operation of the current control elements 17 and 18.
  • the protection element 11 has a circuit configuration as shown in FIG. That is, the protection element 11 generates heat by energizing the fuse element 20 connected in series between the first and second electrodes 22 and 23 via the heating element lead electrode 21 and the connection point of the fuse element 20.
  • This is a circuit configuration comprising the heating resistor 24 that melts the fuse element 20.
  • the fuse element 20 is connected in series on the charge / discharge current path of the battery pack 10 via the first and second external connection electrodes 22a and 23a, and the heating resistor 24 feeds the heating element.
  • the current control element 12 is connected via the electrode 25.
  • the first electrode 22 of the protection element 11 is connected to one open end side of the battery stack 15 via the first external connection electrode 22a, and the second electrode 23 is connected via the second external connection electrode 23a.
  • the battery pack 10 is connected to the positive terminal 10a side.
  • the liquid wetting sensor 1 having such a circuit configuration allows the liquid to flow through the inlet 9 of the cover member 8 when it is necessary to cut off the current path of the battery pack 10 such as liquid leakage from the battery or submersion.
  • the resistance of the thermistor 3 a is reduced by the heat generation of the reaction unit 2, and the power of the battery stack 15 is supplied to the protection element 11 by the current control element 12 energized from the battery stack 15.
  • the heating element 24 is energized and heated in the protection element 11, and the fuse element 20 incorporated on the current path of the battery pack 10 is melted.
  • the battery pack 10 can cut the current path of the battery pack 10 by fusing between the first electrode 22 and the heating element extraction electrode 21 and the second electrode 23 (FIG. 5B). Further, when the fuse element 20 is melted, power supply to the heating resistor 24 is also stopped.
  • the battery pack 10 using the liquid wetting sensor 1 may omit the FET for controlling the operation of the protection element 11 and operate the protection element 11 with the liquid wetting sensor 1.
  • the temperature sensing unit 3 (thermistor 3 a) of the liquid wetting sensor 1 has one end connected to the heating resistor 24 of the protection element 11 and the other end opened to the battery stack 15. Connected with the end.
  • the liquid wetting sensor 1 always regulates energization to the heating resistor 24 by the high resistance of the thermistor 3a.
  • the reaction unit When the liquid wetting sensor 1 needs to cut off the current path of the battery pack 10 such as liquid leakage from the battery or submergence, when the liquid enters through the inlet 9 of the cover member 8, the reaction unit The resistance of the thermistor 3a is reduced by the heat generation of 2, and the power of the battery stack 15 can be supplied to the heating resistor 24 of the protection element 11. As a result, the heating element 24 is energized and heated in the protection element 11, and the fuse element 20 incorporated on the current path of the battery pack 10 is melted. Therefore, the battery pack 10 can cut the current path of the battery pack 10 by fusing between the first electrode 22 and the heating element extraction electrode 21 and the second electrode 23 (FIG. 5B). Further, when the fuse element 20 is melted, power supply to the heating resistor 24 is also stopped.
  • the liquid wetting sensor 1 of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
  • the liquid wetting sensor 1 uses various electronic components having temperature characteristics that constitute the temperature sensing unit 3, and appropriately adjusts the liquid according to changes in the electric characteristics. The energization of the electric circuit connected to the wetness sensor 1 can be controlled.
  • FIG. 7 is an exploded perspective view of the switch element 30.
  • the switch element 30 is arranged on the energization path of the external circuit to cut off the conduction of the external circuit.
  • the switch element 30 is in a wet state such as submergence or battery leakage. By detecting this, the energization path is appropriately interrupted.
  • the switch element 30 is formed so as to be mountable by reflow or the like on a circuit board on which an external circuit is formed.
  • the switch element 30 includes a fuse element 31 connected to an external circuit, a heating resistor 32, and a reaction unit 2 and a temperature sensing unit 3 constituting the liquid wetting sensor 1.
  • the switch element 30 has a housing formed by a fuse element 31, a heating resistor 32, an insulating substrate 33 provided with the temperature sensing unit 3, and a cover member 34 covering the insulating substrate 33.
  • the cover member 34 is formed with an introduction port 36 that guides the liquid to the reaction unit 2.
  • the thermistor 3a is used as the temperature sensing part 3 of the liquid leak sensor 1 will be described as an example.
  • the insulating substrate 33 is formed in, for example, a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia.
  • the insulating substrate 33 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
  • First and second electrodes 38 and 39 are formed on opposite ends of the insulating substrate 33.
  • the first and second electrodes 38 and 39 are each formed of a conductive pattern such as Ag or Cu.
  • the first and second electrodes 38 and 39 are continued from the front surface 33a of the insulating substrate 33 to the first and second external connection electrodes 38a and 39a formed on the back surface 33b through a castellation (not shown).
  • the switch element 30 includes a fuse element formed by connecting the first and second external connection electrodes 38a and 39a formed on the back surface 33b to connection electrodes provided on an external circuit board on which the switch element 30 is mounted. 31 is incorporated into a part of the current path formed on the circuit board.
  • reaction part 2 is formed on the insulating substrate 33 by arranging and holding, for example, quick lime.
  • the insulating substrate 33 includes the liquid wetting sensor 1 by the thermistor 3 being superimposed on the reaction unit 2.
  • the heat generating resistor 32 is a conductive member that has a relatively high resistance value and generates heat when energized.
  • the heating resistor 32 is obtained by mixing a powdered material of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 33 using a screen printing technique, and firing the paste. Or the like.
  • the heat generating resistor 32 is overlapped with the fuse element 31 and melts the fuse element 31 when heat is generated by energization.
  • One end of the heating resistor 32 is connected to the thermistor 3a, so that energization and heat generation are always regulated.
  • the heating resistor 32 generates heat when the amount of energization increases due to a decrease in the electrical resistance value of the thermistor 3a, and can fuse the fuse element 31.
  • the heating resistor 32 is electrically and thermally connected by the fuse element 31 being superimposed.
  • the fuse element 31 is connected by the connecting solder 28 across the first electrode 38 and the second electrode 39.
  • the fuse element 31 is electrically connected between the first and second electrodes 38 and 39 during normal use, and constitutes a part of a current path of an external circuit in which the switch element 30 is incorporated.
  • the fuse element 31 is blown by self-heating (Joule heat) when a current exceeding the rating is applied, or blown by the heat generated by the heating resistor 32, and the first and second electrodes 38 and 39 are cut off. To do.
  • the fuse element 31 has a predetermined rated current value, and when the heat generated by the heating resistor 32 or a current exceeding the rated current value is energized, the fuse element 31 is quickly melted by self-heating.
  • the fuse element 31 is preferably composed mainly of any one selected from nickel, tin, and lead.
  • the main component refers to a component that is 50 wt% or more based on the total mass of the material.
  • the fuse element 31 may have a laminated structure in which a low melting point metal layer 41 and a high melting point metal layer 42 are laminated.
  • a low melting point metal it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component.
  • the fuse element 31 may have an inner layer made of a low melting point metal and an outer layer made of a high melting point metal.
  • a soluble conductor in which the entire surface of the inner low melting point metal layer 41 is covered with the outer high melting point metal layer 42, even when a low melting point metal having a melting point lower than the reflow temperature is used, The outflow of the low melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.
  • the thermistor 3 a has one end connected to the heating resistor 32 and the other end connected to the first heating element electrode 43.
  • the first heating element electrode 43 is formed on the front surface 33a of the insulating substrate 33, and is continuous with a first heating element power supply electrode (not shown) formed on the back surface 33b of the insulating substrate 33 via castellation. ing.
  • the thermistor 3a regulates energization to the heating resistor 32 with high electrical resistance.
  • the switch element 30 decreases the electrical resistance value of the thermistor 3 a, thereby increasing the amount of current supplied to the heating resistor 32 and generating heat from the heating resistor 32. To fuse the fuse element 31. Thereby, the switch element 30 can interrupt
  • the liquid wetting sensor 1 is arranged such that the reaction unit 2 and the thermistor 3a are overlapped. Thereby, the reaction part 2 and the thermistor 3a are thermally connected closely, and the reaction part 2 generates heat, so that the electric resistance value of the thermistor 3a can be quickly reduced.
  • the switch element 30 is provided with a cover member 34 on the surface 33a of the insulating substrate 33 on which the fuse element 31 is provided, which protects the inside and prevents the molten fuse element 31 from scattering.
  • the cover member 34 can be formed of an insulating member such as various engineering plastics and ceramics.
  • the cover member 34 is connected to the surface 33 a of the insulating substrate 33 by an insulating adhesive, thereby covering the fuse element 31.
  • cover member 34 is formed with an inlet 36 for introducing a liquid into the reaction section 2 provided on the insulating substrate 33.
  • Such a switch element 30 has a circuit configuration as shown in FIG. That is, the switch element 30 melts the fuse element 31 by causing the fuse element 31 connected in series between the first and second electrodes 38 and 39 to generate heat by energizing through the connection point of the fuse element 31.
  • the circuit configuration includes the heating resistor 32.
  • the switch element 30 is formed with an energization path to the first heating element electrode 43, the temperature sensing unit 3 (thermistor 3 a), the heating resistor 32, and the heating element 32 that reaches the fuse element 31.
  • the switch element 30 has the first and second electrodes 38 and 39 connected to the open end of an external circuit such as a power supply circuit, whereby the fuse element 31 is incorporated on the energization path of the external circuit.
  • the switch element 30 can be used by being incorporated in the circuit in the battery pack 10 of the above-described lithium ion secondary battery, for example.
  • the switch element 30 is connected to one open end of the battery stack 15 through which the first heating element electrode 43 energizes the heating resistor 32 and energization to the heating resistor 32 is regulated by the thermistor 3a.
  • the switch element 30 has the first electrode 38 connected to the other open end side of the battery stack 15 and the second electrode 39 connected to the positive electrode terminal 10 a side of the battery pack 10, whereby the fuse element 31. Is incorporated on the energization path of the external circuit.
  • the switch element 30 decreases the electric resistance value of the thermistor 3a, thereby reducing the battery stack.
  • the heating resistor 32 can be heated by being energized from 15.
  • the fuse element 31 incorporated in the current path of the battery pack 10 is melted in the switch element 30, and the molten conductor of the fuse element 31 is heated to the heating element extraction electrode 21 and the first and second electrodes with high wettability.
  • the fuse element 31 is blown by being attracted to the electrodes 38 and 39. Therefore, as shown in FIG. 9B, the switch element 30 can block the charge / discharge path of the battery stack 15.
  • the switch element 30 constitutes a part of an energization path to the heating resistor 32 by connecting the fuse element 31 to the heating resistor 32. Therefore, when the fuse element 31 is melted and the connection with the external circuit is interrupted, the switch element 30 can also stop the heat generation because the energization path to the heating resistor 32 is also interrupted.
  • the switch element 30 may be provided with a water repellent treatment part 35 at a place other than the reaction part 2 or a place other than the reaction part 2 and its vicinity.
  • the switch element 30 repels the exposed region of the surface 33a of the insulating substrate 33 excluding the reaction part 2, the heating resistor 32, the first and second electrodes 38 and 39, the first heating element electrode 43, and the thermistor 3a.
  • a water treatment unit 35 is provided.
  • the water repellent portion 35 can be formed by a known method such as application of a fluorine-based coating agent or solder paste coating.
  • the switch element 30 can guide the liquid on the insulating substrate 33 to the reaction part 2 which is a non-water-repellent region, and can accelerate the heating of the thermistor 3a and promote the fusing of the fuse element 31.
  • the switch element 30 connects the temperature sensing unit 3 (thermistor 3a) between the battery stack 15 and the current control element 12 such as an FET, and controls one end of the heating resistor 32. It may be connected to the element 12.
  • the thermistor 3 a has one end connected to the open end of the battery stack 15 via the third external connection electrode 44 and the other end connected to the current control element 12 via the fourth external connection electrode 45.
  • the switch element 30 always regulates the energization from the battery stack 15 to the current control element 12 by the high resistance of the thermistor 3a.
  • one end of the heating resistor 32 is connected to the current control element 12 via the first heating element electrode 43, and energization from the battery stack 15 is restricted.
  • the switch element 30 generates heat when the liquid leaks from the battery cell or the liquid wet state such as submergence occurs, the liquid enters from the introduction port 36 provided in the cover member 34 and the reaction unit 2 comes into contact with the liquid. .
  • the current control element 12 is energized from the battery stack 15 by decreasing the electrical resistance value of the thermistor 3a.
  • the current control element 12 is switched so that the electric power of the battery stack 15 is supplied to the heating resistor 32, whereby the switch element 30 is energized and heated by the heating resistor 24, and is on the current path of the battery pack 10.
  • the fuse element 31 incorporated in the battery pack is melted and the current path of the battery pack 10 can be cut off. Further, when the fuse element 31 is melted, power supply to the heating resistor 32 is also stopped.
  • the switch element 30 is provided with an insulating layer 50 so as to cover the heating resistor 32, and the heating element extraction electrode 51 so as to face the heating resistor 32 through the insulating layer 50. May be formed.
  • the heating element extraction electrode 51 is connected by overlapping the fuse element 31, whereby the heating resistor 32 is overlapped with the fuse element 31 via the insulating layer 50 and the heating element extraction electrode 51.
  • the insulating layer 50 is provided in order to protect and insulate the heating resistor 32 and to efficiently transfer the heat of the heating resistor 32 to the fuse element 31, and is made of, for example, a glass layer.
  • an insulating layer 50 may be laminated between the heat generating resistor 32 and the insulating substrate 33 in order to efficiently transmit the heat of the heat generating resistor 32 to the fuse element 31.
  • one end of the heating resistor 32 is connected to the heating element extraction electrode 51, and the other end is connected to the first heating element electrode 43 via the thermistor 3a.
  • the heating element extraction electrode 51 is formed on the surface 33a of the insulating substrate 33 and connected to the heating resistor 32.
  • the heating element lead electrode 51 is laminated on the insulating layer 50 so as to face the heating resistor 32, and the fuse. And an upper layer portion 51 b connected to the element 31.
  • the heating resistor 32 is electrically connected to the fuse element 31 through the heating element lead electrode 51.
  • the heating resistor 32 is thermally connected to the fuse element 31 via the insulating layer 50 and the heating element lead electrode 51.
  • the heating element extraction electrode 51 is heated by being disposed opposite to the heating resistor 32 via the insulating layer 50, so that the fuse element 31 can be melted and the molten conductor can be easily aggregated.
  • the switch element 30 constitutes a part of the energization path to the heating resistor 32 by connecting the fuse element 31 to the heating element extraction electrode 51. Therefore, when the fuse element 31 is melted and the connection with the external circuit is interrupted, the switch element 30 can also stop the heat generation because the energization path to the heating resistor 32 is also interrupted.
  • the switch element to which the present invention is applied may separate the energization path of the fuse element 31 and the power supply path to the heating resistor 32.
  • the switch element 30 shown in FIG. 13 is electrically connected to the fuse element 31 electrically and thermally by the heating resistor 32 being superimposed on the fuse element 31 via the insulating layer 50.
  • the heating resistor 32 has one end connected to the thermistor 3 a and the other end connected to the second heating element electrode 52.
  • the second heating element electrode 52 is formed on the front surface 33a of the insulating substrate 33, and is continuous with the second heating element power supply electrode (not shown) formed on the back surface 33b of the insulating substrate 33 via castellation. ing.
  • the heating resistor 32 may be formed on the back surface 33b opposite to the front surface 33a of the insulating substrate 33 on which the first and second electrodes 38 and 39 are formed. Alternatively, it may be formed on the surface 33a of the insulating substrate 33 adjacent to the fuse element 31 or the thermistor 3a. In addition, the switch element 30 may have the heating resistor 32 formed inside the insulating substrate 33.
  • such a switch element 30 includes a first heating element electrode 43, a temperature sensing unit 3 (thermistor 3 a), a heating resistor 32, and a second heating element electrode 52.
  • a power supply path 53 is formed.
  • the first and second heat generating body electrodes 43 and 52 are connected to the power supply circuit, and energization is restricted by the thermistor 3a.
  • an energization path 54 of the fuse element 31 is formed between the first and second electrodes 38 and 39.
  • the energization path 54 is incorporated on the energization path of the external circuit by connecting the first and second electrodes 38 and 39 to the open end of the external circuit.
  • the switch element 30 when the switch element 30 generates heat when the reaction unit 2 comes into contact with the liquid, the electrical resistance value of the thermistor 3a decreases, and thereby the power supply path 53 is energized and the heat generating resistor 32 can generate heat. Thereby, the switch element 30 can cut off the external circuit by fusing the fuse element 31 with the heat of the heating resistor 32.
  • the switch element 30 may have a power supply path 31 to the heating resistor 32 and an energization path 32 of the fuse element 31 in parallel. Also in the configuration shown in FIG. 15, when the switch element 30 generates heat due to the reaction unit 2 coming into contact with the liquid, the electrical resistance value of the thermistor 3 a decreases, thereby energizing the power supply path 31, and the heating resistor 32. Can generate heat. Thereby, the switch element 30 can cut off the external circuit by fusing the fuse element 31 with the heat of the heating resistor 32.
  • first and second electrodes 38 and 39, the heating element extraction electrode 51, and the first and second heating element electrodes 43 and 52 described above are formed by a conductive pattern such as Ag or Cu, and are appropriately formed on the surface. It is preferable that a protective layer of Sn plating, Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating, or the like is formed. Thus, the surface is prevented from being oxidized, and the first and second electrodes 38 and 39, the heating element lead-out electrode 51, and the first and second heating element electrodes are made of the connecting material such as the solder 28 for connecting the fuse element 31. 43 and 52 can be suppressed.
  • the switch element 30 has a housing formed of the insulating substrate 33 and the cover member 34 connected on the insulating substrate 33.
  • the switch element 30 is provided with a cover member 34 to protect the fuse element 31, the reaction unit 2, and the temperature sensing unit 3 from external mechanical disturbances and the like, and the fuse element 31 generates arc discharge by self-heating. When the fusing is accompanied, the scattering of the molten metal to the surroundings can be prevented.
  • the cover member 34 is provided with an inlet 36 that guides the liquid to the reaction unit 2.
  • the switch element 30 irreversibly blocks the fuse element 31 by allowing the liquid to flow into the reaction portion 2 through the inlet 36 provided in the cover member 34.
  • the cover member 34 is made of a polyhedron, for example, as shown in FIG. 16A, and one introduction port 36 is provided on one surface.
  • the introduction port 36 may be provided on the top surface 34a of the cover member 34 on the side opposite to the mounting surface of the housing. preferable.
  • the cover member 34 may form the introduction port 36 on a surface other than the top surface 34a, for example, the side surface 34b. As shown in FIG.
  • the cover member 34 may have a plurality of inlets 36 formed on the top surface 34a, or a plurality of inlets 36 formed on the side surface 34b.
  • the cover member 34 can more easily introduce the liquid into the reaction unit 2 by providing a plurality of introduction ports 36.
  • the cover member 34 may be a polyhedron as shown in FIG. 16C, for example, and the inlet 36 may be provided on a plurality of surfaces, for example, the top surface 34a and the side surface 34b. Further, as shown in FIG. 16D, the cover member 34 may have one or a plurality of introduction ports 36 on a plurality of surfaces.
  • the switch element 30 may be formed by forming the cover member 34 in a cylindrical shape and forming an arbitrary number of introduction ports 36 at an arbitrary position.
  • FIG. 17 is an external perspective view of the switch element 30 in which the cover member 34 is formed in a cylindrical shape and a plurality of introduction ports 36 are formed over the entire circumference.
  • the cover member 34 may be formed in a hollow polygonal column shape. By forming the cover member 34 in the shape of a hollow cylinder or prism, the introduction port 36 can be formed without being affected by the surface and angle according to the arrangement of the switch element 30, the liquid intrusion route, and the like.
  • a heating element power supply electrode 43 a is formed so as to protrude from the outer peripheral surface of the cover member 34.
  • FIG. 18 is an external perspective view showing the switch element 30 in which the introduction port 36 is formed on the top surface 34a of the cover member 34 made of a polyhedron and the discharge port 37 for discharging the liquid is formed on the side surface 34b.
  • the discharge port 37 By forming the discharge port 37, the reaction part 2 and the temperature sensing part 3 are cooled when a large amount of liquid enters the switch element 30, and the decrease in the resistance value of the thermistor 3a is inhibited. It is possible to prevent such a situation that the change of the electrical characteristics 3 is hindered and the fusing action of the fuse element 31 is delayed.
  • the discharge port 37 is preferably formed smaller than the introduction port 36. By making the discharge port 37 relatively small, it is possible to prevent the liquid that has entered the switch element 30 from being excessively discharged and to prevent the reaction unit 2 from generating heat and the fuse element 31 from being delayed. .
  • the discharge port 37 is provided at the same height as the position where the reaction part 2 is provided or above the position where the reaction part 2 is provided.
  • the discharge port 37 is connected to the reaction part 2 on the side surface 34 b of the cover member 34. It is preferable to be provided at the same height as or above the provided position.
  • the liquid that has entered the switch element 30 is drained from the reaction part 2 and remains in the reaction part 2, so that the action of the reaction part 2 is ensured and the liquid in the switch element 30 is retained.
  • the reaction part 2 and the temperature sensing part 3 are cooled by the liquid that has entered a large amount, and it is possible to prevent the heat generation action of the reaction part 2 and the fusing of the fuse element 31 from being delayed.
  • the shape of the inlet 36 for introducing the liquid and the outlet 37 for discharging the liquid are not particularly limited, such as circular and rectangular.
  • the introduction port 36 and the discharge port 37 may be formed in a slit shape as shown in FIG.
  • the introduction port 36 in a slit shape the liquid can be introduced more extensively, the reaction portion 2 can be reacted quickly, and the fuse element 31 can be blown.
  • the discharge port 37 in a slit shape excess liquid that has entered the switch element 30 can be quickly drained, and the heat generation action of the reaction unit 2 and the progress of fusing of the fuse element 31 are delayed. This can be prevented.
  • the cover member 34 may be provided with a slit-like introduction port 36 on the top surface 34 a and an introduction groove 40 that guides the liquid to the reaction unit 2.
  • the introduction groove 40 extends from the introduction port 36 in which the groove wall 40a is formed in the top surface 34a to the vicinity of the reaction section 2.
  • the switch element 30 can reliably guide the liquid that has entered the inlet 36 to the reaction unit 2 without flowing into a place other than the reaction unit 2.
  • the switch element 30 can prevent the liquid that has entered the introduction port 36 from being dissipated into the housing and delaying the heating action of the reaction unit 2 and the progress of fusing of the fuse element 31.
  • the cover member 34 may extend the introduction groove 40 to the side surface 34b and be continuous with the discharge port 37 formed on the side surface 34b. Accordingly, the switch element 30 can efficiently guide the liquid that has entered from the inlet 36 to the reaction unit 2 and drain the excess liquid from the outlet 37 efficiently.
  • a plurality of introduction grooves 40 may be formed. By forming a plurality of introduction grooves 40, the liquid can be guided over the entire width of the reaction section 2.
  • the introduction groove 40 may be gradually narrowed from the opening of the introduction port 36 facing the top surface 34a to the inside where the reaction unit 2 is provided. By narrowing the introduction groove 40 as it approaches the reaction part 2, the liquid that has entered through the opening of the introduction port 36 can be efficiently guided to the reaction part 2 by capillary action.
  • the switch element 30 may perform water repellent treatment at a place other than the reaction unit 2 to induce the liquid to the reaction unit 2.
  • the switch element 30 may form a water repellent treatment portion 46 in which the water repellent treatment is applied to the introduction port 36 or the groove wall 40 a of the introduction port 36 and the introduction groove 40.
  • the water repellent portion 46 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
  • the switch element 30 can efficiently guide the liquid that has entered from the introduction port 36 to the reaction unit 2.
  • a water repellent treatment to the introduction port 36 and the introduction groove 40, a small amount of liquid is repelled and not entered into the switch element 30 except in a wet state in which the switch element 30 should be operated. And reliability as a sensor or a switch can be secured.
  • the switch element 30 may perform water repellent treatment on the inner wall of the cover member 34. Also by applying a water-repellent treatment to the inner wall of the cover member 34, the liquid that has entered the switch element 30 can be efficiently guided to the reaction unit 2, and the reaction unit 2 can be operated quickly.
  • the switch element 30 may be closed by sticking a sheet body formed of a water-soluble sealing material 47 that dissolves the introduction port 36 with a liquid to the top surface 34a.
  • the switch element 30 may block the introduction groove 40 with a water-soluble sealing material 47 that dissolves with a liquid.
  • the water-soluble sealing material 47 include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid.
  • the material of the water-soluble sealing material 47 includes ABS, polyacrylonitrile, Polyvinylidene fluoride or saturated polyester such as PET, PTT, PEN, or the like can be used. Since these water-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 30 may decrease. Therefore, when giving priority to the reaction rate, it is preferable to adjust the polymerization degree and use it.
  • FIG. 27 is an exploded perspective view of the switch element 60.
  • the switch element 60 is disposed on the energization path of the external circuit to cut off the conduction of the external circuit.
  • the switch element 60 includes a fuse element 61 connected to an external circuit and the reaction unit 2 that generates heat when touched by a liquid, and the fuse element 61 is melted by heat generated by the reaction unit 2.
  • the switch element 60 has a housing formed of an insulating substrate 33 provided with the fuse element 61 and the reaction unit 2 and a cover member 34 covering the insulating substrate 33.
  • the cover member 34 is formed with an introduction port 36 that guides the liquid to the reaction unit 2.
  • First and second electrodes 38 and 39 are formed at opposite ends of the insulating substrate 33.
  • the first and second external connection electrodes 38 a and 39 a continuous with the first and second electrodes 38 and 39 are connected to connection electrodes provided on an external circuit board on which the switch element 60 is mounted.
  • the fuse element 61 is incorporated into a part of the current path formed on the circuit board.
  • reaction part 2 is formed on the insulating substrate 33 by arranging and holding, for example, quick lime.
  • the fuse element 61 is disposed in the vicinity of the reaction unit 2, so that the reaction unit 2 and the fuse element 61 are thermally connected.
  • the reaction unit 2 is arranged with the fuse element 61 superimposed thereon.
  • the fuse element 61 is connected by connecting solder from the first electrode 38 to the second electrode 39.
  • the fuse element 61 conducts between the first and second electrodes 38 and 39 during normal use, and constitutes a part of a current path of an external circuit in which the switch element 60 is incorporated.
  • the fuse element 61 is melted by self-heating (Joule heat) when a current exceeding the rating is applied, or is melted by the heat generated by the reaction unit 2 to cut off between the first and second electrodes 38 and 39. .
  • the fuse element 61 has a predetermined rated current value, and when the heat generated by the reaction part 2 or a current exceeding the rated current value is energized, the fuse element 61 is quickly melted by self-heating.
  • the fuse element 61 is preferably composed mainly of any one selected from nickel, tin, and lead. Note that the fuse element 61 may have a laminated structure in which a low melting point metal layer 41 and a high melting point metal layer 42 are laminated similarly to the fuse element 31 described above.
  • Such a switch element 60 has a circuit configuration as shown in FIG. That is, the switch element 60 has a circuit configuration including a fuse element 61 connected in series between the first and second electrodes 38 and 39 and a reaction unit 2 that melts the fuse element 61 by generating heat due to liquid wetting. is there. Further, the switch element 60 has the first and second electrodes 38 and 39 connected to the open end of the external electric circuit 4 such as a power supply circuit, so that the fuse element 61 is placed on the energization path of the electric circuit 4. The electric circuit 4 is energized by passing a rated current.
  • the switch element 60 When the current exceeding the rating flows through the fuse element 61, the switch element 60 is self-heated (Joule heat), and when a liquid enters the switch element 60, the heat is generated by the reaction unit 2. The fuse element 61 is melted and the electric circuit 4 is cut off (FIG. 28B).
  • the switch element 60 can be used by being incorporated in the circuit in the battery pack 10 of the above-described lithium ion secondary battery, for example.
  • the switch element 60 has the first electrode 38 connected to the other open end side of the battery stack 15, and the second electrode 39 connected to the positive electrode terminal 10 a side of the battery pack 10. It is incorporated on the energization path of the external circuit.
  • the switch element 60 When the switch element 60 generates heat when liquid enters from the introduction port 36 provided in the cover member 34 and the reaction unit 2 comes into contact with the liquid, the fuse element 61 incorporated on the current path of the battery pack 10. Is melted, and the fuse conductor of the fuse element 61 is attracted to the first and second electrodes 38 and 39 having high wettability, so that the fuse element 61 is blown. Therefore, as shown in FIG. 28B, the switch element 60 can block the charge / discharge path of the battery stack 15.
  • the switch element 60 is provided with a water repellent treatment part 35 at a place other than the reaction part 2 or at a place other than the reaction part 2 and its vicinity, like the switch element 30 described above. Also good.
  • the switch element 60 is provided with a water repellent treatment portion 35 in an exposed region of the surface 33 a of the insulating substrate 33 excluding the reaction portion 2 and the first and second electrodes 38 and 39.
  • the switch element 60 can guide the liquid on the insulating substrate 33 to the reaction part 2 that is a non-water-repellent region, and can promote the heating of the fuse element 61 and promote the fusing.
  • the cover member 34 constituting the casing is formed of a polyhedron, and one introduction port 36 is provided on one surface (FIG. 16 ( A)).
  • the cover member 34 may have a plurality of inlets 36 formed on the top surface 34a (see FIG. 16B), or a plurality of inlets 36 formed on the side surface 34b.
  • the cover member 34 may be provided with introduction ports 36 on a plurality of surfaces, for example, the top surface 34a and the side surface 34b (see FIG. 16C).
  • the cover member 34 may form one or a plurality of introduction ports 36 on a plurality of surfaces, respectively (see FIG. 16D).
  • the cover member 34 may be formed in a cylindrical shape, and any number of introduction ports 36 may be formed at any position (see FIG. 17).
  • the switch element 60 may form a discharge port 37 for discharging the liquid that has entered the cover member 34 from the introduction port 36, as with the switch element 30 (see FIG. 18).
  • the discharge port 37 is provided at the same height as the position where the reaction part 2 is provided or above the position where the reaction part 2 is provided (see FIG. 19).
  • the inlet 36 for introducing the liquid and the outlet 37 for discharging the liquid may have any shape such as a circle or a rectangle.
  • the introduction port 36 and the discharge port 37 may be formed in a slit shape (see FIG. 20).
  • the switch element 60 may be provided with a slit-like introduction port 36 on the top surface 34 a of the cover member 34 and an introduction groove 40 that guides the liquid to the reaction unit 2 (FIG. 21). (See (A) and (B)).
  • introduction grooves 40 may be formed (see FIGS. 22A and 22B).
  • the introduction groove 40 may be gradually narrowed from the opening of the introduction port 36 facing the top surface 34a to the inside where the reaction unit 2 is provided (see FIG. 23). By narrowing the introduction groove 40 as it approaches the reaction part 2, the liquid that has entered through the opening of the introduction port 36 can be efficiently guided to the reaction part 2 by capillary action.
  • the switch element 60 may perform water-repellent treatment at a place other than the reaction unit 2 and guide the liquid to the reaction unit 2 as in the case of the switch element 30 (see FIG. 24).
  • the switch element 60 may form the water repellent treatment portion 46 in which the water repellent treatment is performed on the introduction port 36 or the groove wall 40 a of the introduction port 36 and the introduction groove 40.
  • the water repellent portion 46 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
  • the switch element 60 can efficiently guide the liquid that has entered through the introduction port 36 to the reaction unit 2.
  • a water repellent treatment to the introduction port 36 and the introduction groove 40, a small amount of liquid is repelled and not entered into the switch element 60 except in a wet state where the switch element 60 should be operated. And reliability as a sensor or a switch can be secured.
  • the switch element 60 may perform a water repellent treatment on the inner wall of the cover member 34, similarly to the switch element 30. Also by applying a water repellent treatment to the inner wall of the cover member 34, the liquid that has entered the switch element 60 can be efficiently guided to the reaction unit 2 and the reaction unit 2 can be operated quickly.
  • the switch element 60 may be closed by sticking a sheet body formed of a water-soluble sealing material 47 that dissolves the introduction port 36 with a liquid to the top surface 34a (FIG. 25). Moreover, the switch element 60 may close the introduction groove 40 with a water-soluble sealing material 47 that dissolves with a liquid, as with the switch element 30 (see FIG. 26).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Fuses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

A wetting sensor which makes it possible to safely open an electric circuit in response to abnormalities such as wetting with water or leakage from a battery, and a switch element are provided. This wetting sensor is provided with a reaction unit 2 which heats when contacted with a liquid, and a thermistor 3 which is arranged near the reaction unit 2 and which has an electric resistance value that decreases with the increase of temperature.

Description

液濡れセンサー、スイッチ素子、バッテリシステムLiquid wetting sensor, switch element, battery system
 本発明は、液体の浸入を検知する液濡れセンサー、液体の浸入に応じて電気回路を開放させるスイッチ素子、及びこれを組み込んだバッテリシステムに関する。本出願は、日本国において2015年10月7日に出願された日本出願番号特願2015-199816を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a liquid wetting sensor that detects liquid intrusion, a switch element that opens an electric circuit in response to liquid intrusion, and a battery system incorporating the switch element. This application claims priority on the basis of Japanese Patent Application No. 2015-199816 filed on Oct. 7, 2015 in Japan. This application is incorporated herein by reference. Is done.
 近年、携帯電話、ノートPC等の多くにリチウムイオン二次電池が採用されている。リチウムイオン二次電池は、エネルギー密度が高いため、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの入出力を遮断する機能を有している。しかしながら、水濡れにより電池の正極/負極絶縁嵌合部が腐食した場合、電池内部の圧力がリークし、安全弁が正しく機能せずに発火事故に繋がるリスクがある。 In recent years, lithium ion secondary batteries have been adopted in many mobile phones, notebook PCs, and the like. Lithium ion secondary batteries have a high energy density, so in order to ensure the safety of users and electronic devices, a battery pack generally includes a number of protection circuits such as overcharge protection and overdischarge protection. In this case, the battery pack has a function of shutting off input / output of the battery pack. However, when the positive / negative electrode insulation fitting portion of the battery corrodes due to water wetting, the pressure inside the battery leaks, and there is a risk of causing a fire accident without the safety valve functioning properly.
特開平11-144695号公報JP-A-11-144695 特開2000-162081号公報JP 2000-162081 A
 水濡れに対して濡れた形跡を検知するシールを添付し、警告を発するものがある(例えば、特許文献1参照)が、電池の使用を制限するものではないため、回路基板の水濡れによるマイグレーション(絶縁劣化)やショートによる回路誤動作が発生する虞がある。また、電池の異常に伴う電解液の漏れに対しても、上記と同等の不具合が発生する虞がある。 Attaching a sticker that detects wet traces against water wetting and issuing a warning (see, for example, Patent Document 1) does not limit the use of the battery, so migration due to water on the circuit board There is a risk of circuit malfunction due to (insulation deterioration) or a short circuit. Moreover, there is a possibility that the same defect as described above may occur even when the electrolyte leaks due to battery abnormality.
 また、電子機器の水濡れ対策としては、水等の液体を検知するセンサーを設け、水濡れを検知した当該センサーから発信される信号によって保護回路を作動させるものも用いられている。例えば、絶縁基板上に所定間隔をおいて対向配置された一対の電極からなる検知部を備える水漏れセンサーが提案されている(例えば、特許文献2参照)。 Also, as a countermeasure against water wetting of electronic equipment, a sensor that detects a liquid such as water is provided, and a protection circuit is activated by a signal transmitted from the sensor that detects water wetting. For example, a water leak sensor has been proposed that includes a detection unit composed of a pair of electrodes arranged opposite to each other on an insulating substrate (see, for example, Patent Document 2).
 この水漏れセンサーは、検知部の電極間が水濡れ状態になると、端子部間がリークすることで制御回路に信号が入力され、機器の動作が制御される。すなわち、この水濡れセンサーは、検知部への液体の流入が作動条件となっているため、水濡れ状態が起きたときには、積極的に検知部へ液体を流入させる構成が望まれる一方で、制御回路を作動させる必要のない水濡れ状態以外では、誤作動させないようにし、センサーとしての信頼性を確保する必要もある。 This water leak sensor controls the operation of the device when a signal is input to the control circuit due to leakage between the terminals when the electrodes of the detection unit become wet. In other words, this water wetting sensor has an operating condition for the inflow of liquid to the detection unit. It is also necessary to ensure the reliability as a sensor by preventing malfunctions except in a wet state where it is not necessary to operate the circuit.
 また、リチウムイオン二次電池等のバッテリシステムにおいては、バッテリセルの充放電回路上にヒューズ素子を接続し、発熱抵抗体の熱でヒューズを溶断することにより当該充放電回路を遮断する方法が提案されている。例えば図30に示す保護回路100では、発熱抵抗体101への通電を切り替えるFET102と、バッテリセルが直列及び/又は並列に接続されたバッテリスタック103と、バッテリスタック103の過充電や過放電等をモニタするとともに、バッテリスタック103の異常時にはFET102に制御信号を出力する制御IC104と、バッテリスタック103の充放電経路上に接続されたヒューズ105を備える。 In addition, in battery systems such as lithium ion secondary batteries, a method is proposed in which a fuse element is connected to a charge / discharge circuit of a battery cell, and the charge / discharge circuit is cut off by fusing the fuse with heat from a heating resistor. Has been. For example, in the protection circuit 100 shown in FIG. 30, an FET 102 that switches energization to the heating resistor 101, a battery stack 103 in which battery cells are connected in series and / or in parallel, an overcharge and an overdischarge of the battery stack 103, etc. A control IC 104 that monitors and outputs a control signal to the FET 102 when the battery stack 103 is abnormal, and a fuse 105 connected to the charge / discharge path of the battery stack 103 are provided.
 保護回路100は、バッテリスタック103に異常がない場合は、FET102によって発熱抵抗体101への通電が規制されている。そして、保護回路100は、制御IC104によってバッテリスタック103の過充電や過放電等の異常を検知すると、FET102によって発熱抵抗体101へ通電させる。これにより、保護回路100は、発熱抵抗体101が発熱することによりヒューズ105を溶断し、バッテリスタック103の充放電経路を遮断する。 In the protection circuit 100, when there is no abnormality in the battery stack 103, energization of the heating resistor 101 is regulated by the FET 102. When the control IC 104 detects an abnormality such as overcharge or overdischarge of the battery stack 103, the protection circuit 100 causes the FET 102 to energize the heating resistor 101. Thereby, the protection circuit 100 melts the fuse 105 when the heating resistor 101 generates heat, and interrupts the charging / discharging path of the battery stack 103.
 しかし、保護回路100では、発熱抵抗体101の通電を制御するために、FET102及びFET102を制御する制御IC104が必要となり、部品点数の増加や組み立て工数の増加を招き、また、水濡れや電池からの液漏れ等により制御IC104の故障が起きると、ヒューズ105を溶断できない恐れがある。 However, the protection circuit 100 requires the FET 102 and the control IC 104 for controlling the FET 102 in order to control the energization of the heating resistor 101, resulting in an increase in the number of parts and an increase in assembly man-hours. If the control IC 104 fails due to liquid leakage, the fuse 105 may not be blown.
 本発明は、このような従来の実情に鑑みて提案されたものであり、水濡れや電池からの液漏れ等を検知する液濡れセンサー、水濡れや電池からの液漏れ等の異常に対し、安全に電気回路を開放させることができるスイッチ素子、及びスイッチ素子を組み込んだバッテリシステムを提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, a liquid wetting sensor for detecting water wetting and liquid leakage from the battery, etc., for abnormalities such as water wetting and liquid leakage from the battery, It is an object of the present invention to provide a switch element capable of safely opening an electric circuit, and a battery system incorporating the switch element.
 上述した課題を解決するために、本発明に係る液濡れセンサーは、液体に触れることで発熱する反応部と、上記反応部の近傍に配置され、温度上昇に伴い電気抵抗値が低下するサーミスタとを有するものである。 In order to solve the above-described problems, a liquid wetting sensor according to the present invention includes a reaction unit that generates heat when touched by a liquid, a thermistor that is disposed in the vicinity of the reaction unit, and whose electrical resistance value decreases as the temperature rises. It is what has.
 また、本発明に係るスイッチ素子は、外部回路に接続される可溶導体と、発熱抵抗体と、液体に触れることで発熱する反応部と、上記発熱抵抗体と接続され、上記反応部の温度上昇に伴い電気抵抗値が低下するサーミスタとを備え、上記サーミスタの電気抵抗値の低下により通電量が増加した上記発熱抵抗体の発熱によって上記可溶導体を溶断するものである。 The switch element according to the present invention is connected to a soluble conductor connected to an external circuit, a heating resistor, a reaction part that generates heat when touched by liquid, and the temperature of the reaction part. And a thermistor whose electric resistance value decreases as it rises, and the soluble conductor is blown by the heat generation of the heating resistor whose energization amount has increased due to the decrease in the electric resistance value of the thermistor.
 また、本発明に係るバッテリシステムは、バッテリセルと、上記バッテリセルの充放電経路上に接続された可溶導体と、発熱抵抗体と、液体に触れることで発熱する反応部と、上記発熱抵抗体の通電経路上に接続され、上記反応部の温度上昇に伴い電気抵抗値が低下するサーミスタとを備え、上記サーミスタの電気抵抗値の低下により通電量が増加した上記発熱抵抗体の発熱によって上記可溶導体を溶断するものである。 In addition, the battery system according to the present invention includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, a heating resistor, a reaction unit that generates heat by touching the liquid, and the heating resistor. A thermistor that is connected to the body energization path and has an electrical resistance value that decreases as the temperature of the reaction section increases, and the heat generation of the heating resistor that increases the amount of electricity due to a decrease in the electrical resistance value of the thermistor. It melts the fusible conductor.
 また、本発明に係るバッテリシステムは、バッテリセルと、上記バッテリセルの充放電経路上に接続された可溶導体と、発熱抵抗体と、液体に触れることで発熱する反応部と、上記反応部の温度上昇に伴い電気抵抗値が低下するサーミスタと、上記発熱抵抗体への通電を制御する電流制御素子を備え、上記サーミスタと上記電流制御素子とが接続され、上記サーミスタの電気抵抗値の低下により上記電流制御素子が通電され、上記発熱抵抗体への通電が開始され、上記発熱抵抗体の発熱によって上記可溶導体を溶断するものである。 In addition, the battery system according to the present invention includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, a heating resistor, a reaction unit that generates heat by touching the liquid, and the reaction unit. A thermistor whose electrical resistance value decreases as the temperature rises, and a current control element that controls energization to the heating resistor, the thermistor and the current control element are connected, and the electrical resistance value of the thermistor decreases Thus, the current control element is energized, energization of the heating resistor is started, and the soluble conductor is blown by the heat generated by the heating resistor.
 また、本発明に係るスイッチ素子は、外部回路に接続される可溶導体と、液体に触れることで発熱する反応部とを備え、上記反応部の発熱によって上記可溶導体を溶断するものである。 The switch element according to the present invention includes a soluble conductor connected to an external circuit and a reaction portion that generates heat when touched by a liquid, and blows off the soluble conductor by heat generation of the reaction portion. .
 また、本発明に係るバッテリシステムは、バッテリセルと、上記バッテリセルの充放電経路上に接続された可溶導体と、液体に触れることで発熱する反応部とを備え、上記反応部の発熱によって上記可溶導体を溶断するものである。 In addition, a battery system according to the present invention includes a battery cell, a soluble conductor connected on the charge / discharge path of the battery cell, and a reaction unit that generates heat by touching the liquid, and generates heat by the reaction unit. The soluble conductor is blown out.
 本発明によれば、水濡れや電池からの液漏れ等、外部回路の電流経路を遮断する必要が生じた場合に、液体と触れた反応部の発熱によって感温部の電気特性が変化し、外部回路に電力が供給される。これにより、保護素子を作動させ、あるいは発熱抵抗体を通電、発熱させてヒューズエレメントを溶断し、外部回路の電流経路を遮断することができる。 According to the present invention, when it is necessary to cut off the current path of the external circuit, such as water wetting or liquid leakage from the battery, the electrical characteristics of the temperature sensitive part change due to the heat generated by the reaction part in contact with the liquid, Power is supplied to the external circuit. As a result, the protection element can be operated, or the heating resistor can be energized and heated to melt the fuse element, and the current path of the external circuit can be interrupted.
 また、本発明によれば、水濡れや電池からの液漏れ等、外部回路の電流経路を遮断する必要が生じた場合に、液体と触れた反応部の発熱によって可溶導体が溶断され、この可溶導体を介して通電されていた外部回路の電流経路を遮断することができる。 Further, according to the present invention, when it is necessary to cut off the current path of the external circuit such as water wetting or liquid leakage from the battery, the soluble conductor is blown out by the heat generated in the reaction part in contact with the liquid. The current path of the external circuit that is energized through the fusible conductor can be interrupted.
図1は、液濡れセンサーの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a liquid wetting sensor. 図2は、液濡れセンサーの構成例を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating a configuration example of the liquid wetting sensor. 図3は、液濡れセンサーを用いたバッテリパックの回路構成を示す図である。FIG. 3 is a diagram illustrating a circuit configuration of a battery pack using a liquid wetting sensor. 図4は、保護素子を示す図であり、(A)は平面図、(B)はX-X’断面図である。4A and 4B are diagrams showing the protection element, in which FIG. 4A is a plan view and FIG. 4B is a cross-sectional view along X-X ′. 図5は、保護素子の回路構成図であり、(A)はヒューズエレメントの溶断前、(B)はヒューズエレメントの溶断後を示す。FIG. 5 is a circuit configuration diagram of the protection element, where (A) shows before the fuse element is blown and (B) shows after the fuse element is blown. 図6は、液濡れセンサーを用いたバッテリパックの回路構成を示す図である。FIG. 6 is a diagram illustrating a circuit configuration of a battery pack using a liquid wetting sensor. 図7は、スイッチ素子の構成例を示す分解斜視図である。FIG. 7 is an exploded perspective view showing a configuration example of the switch element. 図8は、ヒューズエレメントの断面斜視図である。FIG. 8 is a cross-sectional perspective view of the fuse element. 図9は、スイッチ素子の回路構成を示す図であり、(A)はヒューズエレメントの溶断前、(B)はヒューズエレメントの溶断後を示す。9A and 9B are diagrams showing a circuit configuration of the switch element, where FIG. 9A shows before the fuse element is blown, and FIG. 9B shows after the fuse element is blown. 図10は、スイッチ素子を用いたバッテリパックの回路構成を示す図である。FIG. 10 is a diagram illustrating a circuit configuration of a battery pack using a switch element. 図11は、スイッチ素子を用いたバッテリパックの回路構成を示す図である。FIG. 11 is a diagram illustrating a circuit configuration of a battery pack using a switch element. 図12は、発熱抵抗体をガラス層で被覆したスイッチ素子の構成例を示す図であり、(A)は断面図、(B)は平面図である。FIG. 12 is a diagram showing a configuration example of a switch element in which a heating resistor is covered with a glass layer, where (A) is a cross-sectional view and (B) is a plan view. 図13は、発熱抵抗体への給電経路とヒューズエレメントへの通電経路を分離したスイッチ素子の構成例を示す図であり、(A)は断面図、(B)は平面図である。FIG. 13 is a diagram illustrating a configuration example of a switch element in which a power feeding path to a heating resistor and a current-carrying path to a fuse element are separated, (A) is a cross-sectional view, and (B) is a plan view. 図14は、発熱抵抗体への給電経路とヒューズエレメントへの通電経路を分離したスイッチ素子の回路図である。FIG. 14 is a circuit diagram of a switch element in which a power supply path to the heating resistor and a current supply path to the fuse element are separated. 図15は、発熱抵抗体への給電経路とヒューズエレメントへの通電経路を分離したスイッチ素子を用いたバッテリパックの回路構成を示す図である。FIG. 15 is a diagram illustrating a circuit configuration of a battery pack using a switch element in which a power supply path to the heating resistor and a current supply path to the fuse element are separated. 図16は、スイッチ素子の筐体を示す斜視図であり、(A)は天面に導入口が形成された状態、(B)は天面に複数の導入口が形成された状態、(C)は天面及び側面に導入口が形成された状態、(D)は天面及び側面に複数の導入口が形成された状態を示す。16A and 16B are perspective views showing a casing of the switch element, in which FIG. 16A shows a state in which an introduction port is formed on the top surface, FIG. 16B shows a state in which a plurality of introduction ports are formed on the top surface, and FIG. ) Shows a state where inlets are formed on the top and side surfaces, and (D) shows a state where a plurality of inlets are formed on the top and side surfaces. 図17は、円筒状のカバー部材を用いたスイッチ素子を示す斜視図である。FIG. 17 is a perspective view showing a switch element using a cylindrical cover member. 図18は、排出口が形成された筐体を用いたスイッチ素子を示す斜視図である。FIG. 18 is a perspective view showing a switch element using a casing in which a discharge port is formed. 図19は、反応部が設けられた位置と同じ高さに排出口が設けられたスイッチ素子を示す断面図である。FIG. 19 is a cross-sectional view showing a switch element in which a discharge port is provided at the same height as the position where the reaction part is provided. 図20は、スリット状の導入口及びスリット状の排出口が形成された筐体を用いたスイッチ素子を示す斜視図である。FIG. 20 is a perspective view showing a switch element using a housing in which a slit-shaped inlet and a slit-shaped outlet are formed. 図21は、導入溝が形成された筐体を用いたスイッチ素子を示す図であり、(A)は断面図、(B)は外観斜視図である。21A and 21B are diagrams showing a switch element using a housing in which an introduction groove is formed. FIG. 21A is a cross-sectional view and FIG. 21B is an external perspective view. 図22は、複数の導入口及び導入溝が形成された筐体を用いたスイッチ素子を示す図であり、(A)は断面図、(B)は外観斜視図である。22A and 22B are diagrams showing a switch element using a housing in which a plurality of introduction ports and introduction grooves are formed. FIG. 22A is a cross-sectional view, and FIG. 22B is an external perspective view. 図23は、反応部が設けられた内部にかけて漸次狭小化する導入溝が形成された筐体を用いたスイッチ素子を示す断面図である。FIG. 23 is a cross-sectional view showing a switch element using a housing in which an introduction groove that gradually narrows toward the inside where the reaction portion is provided. 図24は、反応部以外の場所に撥水処理部を形成した筐体を用いたスイッチ素子を示す断面図である。FIG. 24 is a cross-sectional view showing a switch element using a casing in which a water repellent treatment part is formed in a place other than the reaction part. 図25は、導入口を水溶性の絶縁材料でシールした筐体を用いたスイッチ素子を示す斜視図である。FIG. 25 is a perspective view showing a switch element using a housing whose inlet is sealed with a water-soluble insulating material. 図26は、導入溝内を水溶性の絶縁材料で封止したスイッチ素子を示す断面図である。FIG. 26 is a cross-sectional view showing a switch element in which the introduction groove is sealed with a water-soluble insulating material. 図27は、反応部の発熱によって可溶導体を溶断するスイッチ素子を示す分解斜視図である。FIG. 27 is an exploded perspective view showing a switch element that melts the soluble conductor by the heat generated in the reaction section. 図28は、図27に示すスイッチ素子の回路図構成例を示す図である(A)は溶断前、(B)は溶断後の状態を示す。28A and 28B are diagrams showing a circuit diagram configuration example of the switch element shown in FIG. 27. FIG. 28A shows a state before fusing and FIG. 28B shows a state after fusing. 図29は、図27に示すスイッチ素子を用いたバッテリシステムの回路構成例を示す図である。FIG. 29 is a diagram showing a circuit configuration example of a battery system using the switch element shown in FIG. 図30は、従来のバッテリパックの回路構成を示す図である。FIG. 30 is a diagram showing a circuit configuration of a conventional battery pack.
 以下、本発明が適用された液濡れセンサー、スイッチ素子、及びスイッチ素子を組み込んだバッテリシステムについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a liquid wetting sensor, a switch element, and a battery system incorporating the switch element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [液濡れセンサー]
 本発明が適用された液濡れセンサー1は、図1に示すように、液体に触れることで発熱する反応部2と、反応部2の温度上昇に伴い電気特性が変化する感温部3とを有する。反応部2は、例えば水と反応して発熱する生石灰を用いて構成することができ、例えば図2に示すように、絶縁基板5上に配設、保持されている。感温部3としては、例えば反応部2の温度上昇に伴い抵抗値が低下するサーミスタや電圧が変化するダイオード、その他ペルチェ素子、熱電対、バイメタル、温度センサ等、電気特性が温度依存性を有する電子部品を用いることができる。反応部2と感温部3とは互いに近接して配置されることにより熱的に接続され、反応部2の熱によって感温部3が熱せられる。これにより感温部3は、抵抗値や出力電圧等の電気特性が変化する。
[Liquid wetting sensor]
As shown in FIG. 1, the liquid wetting sensor 1 to which the present invention is applied includes a reaction part 2 that generates heat when touched by a liquid, and a temperature-sensitive part 3 whose electrical characteristics change as the temperature of the reaction part 2 increases. Have. The reaction part 2 can be comprised, for example using quicklime which reacts with water and generates heat, and is disposed and held on an insulating substrate 5, for example, as shown in FIG. As the temperature sensing part 3, for example, a thermistor whose resistance value decreases as the temperature of the reaction part 2 increases, a diode whose voltage changes, other Peltier elements, thermocouples, bimetals, temperature sensors, etc., the electrical characteristics have temperature dependence. Electronic components can be used. The reaction part 2 and the temperature sensitive part 3 are thermally connected by being arranged close to each other, and the temperature sensitive part 3 is heated by the heat of the reaction part 2. Thereby, the temperature sensitive part 3 changes electrical characteristics such as a resistance value and an output voltage.
 以下では、液漏れセンサー1の感温部3としてサーミスタ3aを用いた場合を例に説明する。サーミスタ3aは、絶縁基板5上に形成されるとともに、両端が第1、第2の外部接続電極6,7と接続されている。サーミスタ3aは第1、第2の外部接続電極6,7を介して電気回路4の通電経路上に接続され、常時、高い電気抵抗によって電気回路4の通電を規制している。また、サーミスタ3aは、NTC(negative temperature coefficient)サーミスタ又はCTR(critical temperature resistor)サーミスタを好適に用いることができる。そして、液濡れセンサー1は、反応部2が液体と接触することにより発熱すると、サーミスタ3aの電気抵抗値が低下することにより、電気回路4を通電させることができる。 Hereinafter, a case where the thermistor 3a is used as the temperature sensing unit 3 of the liquid leak sensor 1 will be described as an example. The thermistor 3a is formed on the insulating substrate 5, and both ends thereof are connected to the first and second external connection electrodes 6 and 7. The thermistor 3a is connected to the energization path of the electric circuit 4 via the first and second external connection electrodes 6 and 7, and always restricts the energization of the electric circuit 4 by a high electric resistance. As the thermistor 3a, a NTC (negative temperature coefficient) thermistor or a CTR (critical temperature resistor) thermistor can be preferably used. And if the reaction part 2 will generate heat | fever when the reaction part 2 contacts with a liquid, the electrical resistance value of the thermistor 3a will fall, and the electric circuit 4 can be energized.
 また、液濡れセンサー1は、絶縁基板5上を覆うカバー部材8により筐体が形成される。カバー部材8には、反応部2に液体を導く導入口9が形成されている。 Further, the liquid wetting sensor 1 has a casing formed by a cover member 8 that covers the insulating substrate 5. The cover member 8 is formed with an introduction port 9 that guides the liquid to the reaction unit 2.
 なお、液濡れセンサー1は、反応部2とサーミスタ3aとが重畳して配置されることが好ましい。例えば、液濡れセンサー1は、絶縁基板上に配置された生石灰上にサーミスタ3aが重畳配置される。これにより反応部2とサーミスタ3aとが熱的に密接に接続され、反応部2が発熱することにより、速やかにサーミスタ3aの電気抵抗値を低下させることができる。 In addition, it is preferable that the liquid wetting sensor 1 is disposed so that the reaction unit 2 and the thermistor 3a overlap each other. For example, the liquid wetting sensor 1 has a thermistor 3a superimposed on quick lime arranged on an insulating substrate. Thereby, the reaction part 2 and the thermistor 3a are thermally connected closely, and the reaction part 2 generates heat, so that the electric resistance value of the thermistor 3a can be quickly reduced.
 [撥水処理]
 なお、液濡れセンサー1は、図2に示すように、反応部2以外の場所、又は反応部2及びその近傍以外の場所に、撥水処理部14を設けてもよい。例えば液濡れセンサー1は、反応部2、サーミスタ3aを除く絶縁基板5の表面5aの露出領域に、撥水処理部14が設けられる。
[Water repellent treatment]
As shown in FIG. 2, the liquid wetting sensor 1 may be provided with a water repellent treatment unit 14 at a place other than the reaction part 2 or a place other than the reaction part 2 and its vicinity. For example, in the liquid wetting sensor 1, a water repellent treatment portion 14 is provided in an exposed region of the surface 5a of the insulating substrate 5 excluding the reaction portion 2 and the thermistor 3a.
 撥水処理部14は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 The water repellent portion 14 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
 これにより、液濡れセンサー1は、絶縁基板5上の液体を非撥水領域である反応部2に導くことができ、サーミスタ3aの加熱を促進して速やかにサーミスタ3aの電気抵抗値を低下させることができる。 Thereby, the liquid wetting sensor 1 can guide the liquid on the insulating substrate 5 to the reaction part 2 which is a non-water-repellent region, and accelerates the heating of the thermistor 3a to quickly reduce the electric resistance value of the thermistor 3a. be able to.
 [液濡れセンサーの使用例]
 液濡れセンサー1は、図3に示すように、例えばリチウムイオン二次電池のバッテリパック10内の回路に組み込んで用いることができる。バッテリパック10は、例えば、複数のリチウムイオン二次電池のバッテリセルからなるバッテリスタック15を有する。
[Usage example of liquid wetting sensor]
As shown in FIG. 3, the liquid wetting sensor 1 can be used by being incorporated in a circuit in a battery pack 10 of a lithium ion secondary battery, for example. The battery pack 10 includes a battery stack 15 including, for example, a plurality of lithium ion secondary battery cells.
 バッテリパック10は、バッテリスタック15と、バッテリスタック15の充放電を制御する充放電制御回路16と、バッテリスタック15の異常時に充電を遮断する保護素子11と、各バッテリセルの液漏れや水没等を検出する液濡れセンサー1と、液濡れセンサー1の検出結果に応じて保護素子11の動作を制御する電流制御素子12とを備える。 The battery pack 10 includes a battery stack 15, a charge / discharge control circuit 16 that controls charging / discharging of the battery stack 15, a protection element 11 that cuts off charging when the battery stack 15 is abnormal, liquid leakage or submergence of each battery cell, etc. A liquid wetting sensor 1 that detects the above and a current control element 12 that controls the operation of the protection element 11 according to the detection result of the liquid wetting sensor 1.
 バッテリスタック15は、液漏れや水没等から保護するための制御を要するバッテリセルが直列及び/又は並列接続されたものであり、バッテリパック10の正極端子10a、負極端子10bを介して、着脱可能に充電装置13に接続され、充電装置13からの充電電圧が印加される。充電装置13により充電されたバッテリパック10は、正極端子10a、負極端子10bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 15 includes battery cells that need to be controlled to protect against leakage, submersion, etc., in series and / or in parallel, and is detachable via the positive terminal 10a and the negative terminal 10b of the battery pack 10. The charging device 13 is connected to the charging device 13 and the charging voltage from the charging device 13 is applied. The battery pack 10 charged by the charging device 13 can operate the electronic device by connecting the positive electrode terminal 10a and the negative electrode terminal 10b to the electronic device operated by the battery.
 充放電制御回路16は、バッテリスタック15から充電装置13に流れる電流経路に直列接続された2つの電流制御素子17,18と、これらの電流制御素子17,18の動作を制御する制御部19とを備える。電流制御素子17,18は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部19によりゲート電圧を制御することによって、バッテリスタック15の電流経路の充電方向及び/又は放電方向への導通と遮断とを制御する。制御部19は、充電装置13から電力供給を受けて動作し、各バッテリセルの電圧を検出する図示しない検出回路による検出結果に応じて、バッテリスタック15が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子17,18の動作を制御する。 The charge / discharge control circuit 16 includes two current control elements 17 and 18 connected in series to a current path flowing from the battery stack 15 to the charging device 13, and a control unit 19 that controls operations of the current control elements 17 and 18. Is provided. The current control elements 17 and 18 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and the control unit 19 controls the gate voltage to thereby charge and / or discharge the current path of the battery stack 15. Controls continuity and shut-off. When the battery stack 15 is overdischarged or overcharged according to the detection result by a detection circuit (not shown) that operates by receiving power supply from the charging device 13 and detects the voltage of each battery cell, the control unit 19 The operations of the current control elements 17 and 18 are controlled so as to interrupt the path.
 保護素子11は、たとえば、バッテリスタック15と充放電制御回路16との間の充放電電流経路上に接続され、その動作が電流制御素子12によって制御される。具体的に、保護素子11は、図4(A)(B)に示すように、絶縁基板26と、絶縁基板26上に形成された第1、第2の電極22、23と、絶縁基板26の表面に形成された発熱抵抗体24と、発熱抵抗体24を被覆するガラス層27と、ガラス層27上に積層されるとともに発熱抵抗体24と接続された発熱体引出電極21と、第1の電極22、発熱体引出電極21、及び第2の電極23にわたって接続用ハンダ28を介して搭載されるヒューズエレメント20とを備える。第1、第2の電極22,23は、それぞれ絶縁基板26の裏面に形成された第1、第2の外部接続電極22a,23aとキャスタレーションを介して接続されている。また、発熱抵抗体24は、発熱体給電電極25と接続され、発熱体給電電極25を介して電流制御素子12と接続されている。また、発熱抵抗体24は、発熱体引出電極21がヒューズエレメント20と電気的に接続されることにより、ヒューズエレメント20及びバッテリスタック15の充放電経路と接続されている。 The protection element 11 is connected, for example, on a charge / discharge current path between the battery stack 15 and the charge / discharge control circuit 16, and its operation is controlled by the current control element 12. Specifically, as shown in FIGS. 4A and 4B, the protection element 11 includes an insulating substrate 26, first and second electrodes 22 and 23 formed on the insulating substrate 26, and an insulating substrate 26. A heating resistor 24 formed on the surface of the substrate, a glass layer 27 covering the heating resistor 24, a heating element extraction electrode 21 laminated on the glass layer 27 and connected to the heating resistor 24, and a first And the fuse element 20 mounted over the second electrode 23 through the connecting solder 28. The first and second electrodes 22 and 23 are respectively connected to the first and second external connection electrodes 22a and 23a formed on the back surface of the insulating substrate 26 through castellation. The heating resistor 24 is connected to the heating element power supply electrode 25 and is connected to the current control element 12 via the heating element power supply electrode 25. Further, the heating resistor 24 is connected to the charging and discharging paths of the fuse element 20 and the battery stack 15 by electrically connecting the heating element lead electrode 21 to the fuse element 20.
 液濡れセンサー1は、感温部3(サーミスタ3a)の一端がバッテリスタック15と接続され、他端が電流制御素子12と接続されている。そして、液濡れセンサー1は、常時サーミスタ3aの高抵抗により、バッテリスタック15から電流制御素子12への通電を規制している。また、液濡れセンサー1は、バッテリセルの液漏れや水没等の液濡れ状態が発生したときに、反応部2が発熱し、サーミスタ3aの電気抵抗値が下がることにより、バッテリスタック15から電流制御素子12へ通電可能とする。 The liquid wetting sensor 1 has one end of the temperature sensing unit 3 (thermistor 3a) connected to the battery stack 15 and the other end connected to the current control element 12. Then, the liquid wetting sensor 1 always regulates energization from the battery stack 15 to the current control element 12 by the high resistance of the thermistor 3a. Further, the liquid wetting sensor 1 controls the current from the battery stack 15 by causing the reaction section 2 to generate heat when the liquid wetting state such as battery cell leakage or submergence occurs and the electrical resistance value of the thermistor 3a decreases. The element 12 can be energized.
 電流制御素子12は、たとえばFETにより構成され、液濡れ状態になったときに液濡れセンサー1を介してバッテリスタック15の電力が通電されると、保護素子11にバッテリスタック15からの電流が流れるように切り替え、保護素子11を作動させる。これにより、電流制御素子12は、バッテリスタック15の充放電電流経路を電流制御素子17,18のスイッチ動作によらず遮断するように制御する。 The current control element 12 is composed of, for example, an FET. When the battery stack 15 is energized through the liquid wetting sensor 1 when the liquid wetting state is reached, the current from the battery stack 15 flows to the protection element 11. Then, the protection element 11 is operated. As a result, the current control element 12 controls the charge / discharge current path of the battery stack 15 to be cut off regardless of the switching operation of the current control elements 17 and 18.
 以上のような構成からなるバッテリパック10において、保護素子11は、図5(A)に示すような回路構成を有する。すなわち、保護素子11は、発熱体引出電極21を介して第1、第2の電極22,23間にわたって直列接続されたヒューズエレメント20と、ヒューズエレメント20の接続点を介して通電して発熱させることによってヒューズエレメント20を溶融する発熱抵抗体24とからなる回路構成である。また、保護素子11では、たとえば、ヒューズエレメント20が第1、第2の外部接続電極22a,23aを介してバッテリパック10の充放電電流経路上に直列接続され、発熱抵抗体24が発熱体給電電極25を介して電流制御素子12と接続される。保護素子11の第1の電極22は、第1の外部接続電極22aを介してバッテリスタック15の一方の開放端側に接続され、第2の電極23は、第2の外部接続電極23aを介してバッテリパック10の正極端子10a側に接続される。 In the battery pack 10 configured as described above, the protection element 11 has a circuit configuration as shown in FIG. That is, the protection element 11 generates heat by energizing the fuse element 20 connected in series between the first and second electrodes 22 and 23 via the heating element lead electrode 21 and the connection point of the fuse element 20. This is a circuit configuration comprising the heating resistor 24 that melts the fuse element 20. Further, in the protection element 11, for example, the fuse element 20 is connected in series on the charge / discharge current path of the battery pack 10 via the first and second external connection electrodes 22a and 23a, and the heating resistor 24 feeds the heating element. The current control element 12 is connected via the electrode 25. The first electrode 22 of the protection element 11 is connected to one open end side of the battery stack 15 via the first external connection electrode 22a, and the second electrode 23 is connected via the second external connection electrode 23a. The battery pack 10 is connected to the positive terminal 10a side.
 [溶断工程]
 このような回路構成からなる液濡れセンサー1は、電池からの液漏れや水没等、バッテリパック10の電流経路を遮断する必要が生じた場合に、カバー部材8の導入口9を介して液体が浸入すると、反応部2の発熱によってサーミスタ3aが低抵抗化し、バッテリスタック15から通電された電流制御素子12によって保護素子11にバッテリスタック15の電力が供給される。これにより、保護素子11は、発熱抵抗体24が通電、発熱され、バッテリパック10の電流経路上に組み込まれたヒューズエレメント20が溶断される。したがって、バッテリパック10は、第1の電極22~発熱体引出電極21~第2の電極23の間を溶断させ(図5(B))、バッテリパック10の電流経路を遮断することができる。また、ヒューズエレメント20が溶断することにより、発熱抵抗体24への給電も停止される。
[Fusing process]
The liquid wetting sensor 1 having such a circuit configuration allows the liquid to flow through the inlet 9 of the cover member 8 when it is necessary to cut off the current path of the battery pack 10 such as liquid leakage from the battery or submersion. When entering, the resistance of the thermistor 3 a is reduced by the heat generation of the reaction unit 2, and the power of the battery stack 15 is supplied to the protection element 11 by the current control element 12 energized from the battery stack 15. As a result, the heating element 24 is energized and heated in the protection element 11, and the fuse element 20 incorporated on the current path of the battery pack 10 is melted. Therefore, the battery pack 10 can cut the current path of the battery pack 10 by fusing between the first electrode 22 and the heating element extraction electrode 21 and the second electrode 23 (FIG. 5B). Further, when the fuse element 20 is melted, power supply to the heating resistor 24 is also stopped.
 [FET省略型]
 また、液濡れセンサー1を用いたバッテリパック10は、保護素子11の作動を制御するFETを省略し、液濡れセンサー1によって保護素子11を作動させてもよい。図6に示すように、このバッテリパック10は、液濡れセンサー1の感温部3(サーミスタ3a)は、一端を保護素子11の発熱抵抗体24と接続され、他端をバッテリスタック15の開放端と接続されている。液濡れセンサー1は、常時サーミスタ3aの高抵抗により発熱抵抗体24への通電を規制している。
[FET abbreviation type]
The battery pack 10 using the liquid wetting sensor 1 may omit the FET for controlling the operation of the protection element 11 and operate the protection element 11 with the liquid wetting sensor 1. As shown in FIG. 6, in the battery pack 10, the temperature sensing unit 3 (thermistor 3 a) of the liquid wetting sensor 1 has one end connected to the heating resistor 24 of the protection element 11 and the other end opened to the battery stack 15. Connected with the end. The liquid wetting sensor 1 always regulates energization to the heating resistor 24 by the high resistance of the thermistor 3a.
 そして、液濡れセンサー1は、電池からの液漏れや水没等、バッテリパック10の電流経路を遮断する必要が生じた場合に、カバー部材8の導入口9を介して液体が浸入すると、反応部2の発熱によってサーミスタ3aが低抵抗化し、保護素子11の発熱抵抗体24にバッテリスタック15の電力が供給可能となる。これにより、保護素子11は、発熱抵抗体24が通電、発熱され、バッテリパック10の電流経路上に組み込まれたヒューズエレメント20が溶断される。したがって、バッテリパック10は、第1の電極22~発熱体引出電極21~第2の電極23の間を溶断させ(図5(B))、バッテリパック10の電流経路を遮断することができる。また、ヒューズエレメント20が溶断することにより、発熱抵抗体24への給電も停止される。 When the liquid wetting sensor 1 needs to cut off the current path of the battery pack 10 such as liquid leakage from the battery or submergence, when the liquid enters through the inlet 9 of the cover member 8, the reaction unit The resistance of the thermistor 3a is reduced by the heat generation of 2, and the power of the battery stack 15 can be supplied to the heating resistor 24 of the protection element 11. As a result, the heating element 24 is energized and heated in the protection element 11, and the fuse element 20 incorporated on the current path of the battery pack 10 is melted. Therefore, the battery pack 10 can cut the current path of the battery pack 10 by fusing between the first electrode 22 and the heating element extraction electrode 21 and the second electrode 23 (FIG. 5B). Further, when the fuse element 20 is melted, power supply to the heating resistor 24 is also stopped.
 なお、本発明の液濡れセンサー1は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。また、液濡れセンサー1は、サーミスタ3aの他にも感温部3を構成する温度依存性を有する電気特性を備えた各種電子部品を用いて、当該電気特性の変化に応じて、適宜、液濡れセンサー1と接続される電気回路の通電を制御することができる。 Note that the liquid wetting sensor 1 of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal. In addition to the thermistor 3a, the liquid wetting sensor 1 uses various electronic components having temperature characteristics that constitute the temperature sensing unit 3, and appropriately adjusts the liquid according to changes in the electric characteristics. The energization of the electric circuit connected to the wetness sensor 1 can be controlled.
 [第1のスイッチ素子]
 次いで、液濡れセンサー1を用いて形成されたスイッチ素子30について説明する。図7は、スイッチ素子30の分解斜視図である。スイッチ素子30は、外部回路の通電経路上に配設されることにより当該外部回路の導通を遮断するものであり、液濡れセンサー1を内蔵することで、水没やバッテリ液漏れ等の水濡れ状態を検知することにより、適宜通電経路の遮断を行うものである。また、スイッチ素子30は、外部回路が形成された回路基板上にリフロー等により実装可能に形成されている。
[First switch element]
Next, the switch element 30 formed using the liquid wetting sensor 1 will be described. FIG. 7 is an exploded perspective view of the switch element 30. The switch element 30 is arranged on the energization path of the external circuit to cut off the conduction of the external circuit. By incorporating the liquid wetting sensor 1, the switch element 30 is in a wet state such as submergence or battery leakage. By detecting this, the energization path is appropriately interrupted. The switch element 30 is formed so as to be mountable by reflow or the like on a circuit board on which an external circuit is formed.
 スイッチ素子30は、外部回路に接続されるヒューズエレメント31と、発熱抵抗体32と、液濡れセンサー1を構成する反応部2及び感温部3とを備える。また、スイッチ素子30は、ヒューズエレメント31や発熱抵抗体32、感温部3が設けられる絶縁基板33と、絶縁基板33上を覆うカバー部材34により筐体が形成される。カバー部材34には、反応部2に液体を導く導入口36が形成されている。以下、液漏れセンサー1の感温部3としてサーミスタ3aを用いた場合を例に説明する。 The switch element 30 includes a fuse element 31 connected to an external circuit, a heating resistor 32, and a reaction unit 2 and a temperature sensing unit 3 constituting the liquid wetting sensor 1. The switch element 30 has a housing formed by a fuse element 31, a heating resistor 32, an insulating substrate 33 provided with the temperature sensing unit 3, and a cover member 34 covering the insulating substrate 33. The cover member 34 is formed with an introduction port 36 that guides the liquid to the reaction unit 2. Hereinafter, the case where the thermistor 3a is used as the temperature sensing part 3 of the liquid leak sensor 1 will be described as an example.
 [絶縁基板]
 絶縁基板33は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて、例えば略方形状に形成されている。絶縁基板33は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。
[Insulated substrate]
The insulating substrate 33 is formed in, for example, a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia. In addition, the insulating substrate 33 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
 絶縁基板33の相対向する両端部には、第1、第2の電極38,39が形成されている。第1、第2の電極38,39は、それぞれ、AgやCu等の導電パターンによって形成されている。また、第1、第2の電極38,39は、絶縁基板33の表面33aより、図示しないキャスタレーションを介して裏面33bに形成された第1、第2の外部接続電極38a,39aと連続されている。スイッチ素子30は、裏面33bに形成された第1、第2の外部接続電極38a,39aが、スイッチ素子30が実装される外部回路基板に設けられた接続電極に接続されることにより、ヒューズエレメント31が回路基板上に形成された電流経路の一部に組み込まれる。 First and second electrodes 38 and 39 are formed on opposite ends of the insulating substrate 33. The first and second electrodes 38 and 39 are each formed of a conductive pattern such as Ag or Cu. The first and second electrodes 38 and 39 are continued from the front surface 33a of the insulating substrate 33 to the first and second external connection electrodes 38a and 39a formed on the back surface 33b through a castellation (not shown). ing. The switch element 30 includes a fuse element formed by connecting the first and second external connection electrodes 38a and 39a formed on the back surface 33b to connection electrodes provided on an external circuit board on which the switch element 30 is mounted. 31 is incorporated into a part of the current path formed on the circuit board.
 また、絶縁基板33には、例えば生石灰が配設、保持されることにより反応部2が形成される。また、絶縁基板33は、反応部2にサーミスタ3が重畳配置されることにより液濡れセンサー1が構成されている。 Further, the reaction part 2 is formed on the insulating substrate 33 by arranging and holding, for example, quick lime. The insulating substrate 33 includes the liquid wetting sensor 1 by the thermistor 3 being superimposed on the reaction unit 2.
 [発熱抵抗体]
 発熱抵抗体32は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、例えばニクロム、W、Mo、Ru等又はこれらを含む材料からなる。発熱抵抗体32は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板33上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
[Heating resistor]
The heat generating resistor 32 is a conductive member that has a relatively high resistance value and generates heat when energized. The heating resistor 32 is obtained by mixing a powdered material of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 33 using a screen printing technique, and firing the paste. Or the like.
 発熱抵抗体32は、ヒューズエレメント31が重畳され、通電によって発熱するとヒューズエレメント31を溶断する。発熱抵抗体32は、一端がサーミスタ3aと接続されることにより、常時、通電及び発熱が規制されている。そして、発熱抵抗体32は、サーミスタ3aの電気抵抗値の低下により通電量が増加することにより発熱し、ヒューズエレメント31を溶断することができる。また、発熱抵抗体32は、ヒューズエレメント31が重畳されることにより電気的、熱的に接続されている。 The heat generating resistor 32 is overlapped with the fuse element 31 and melts the fuse element 31 when heat is generated by energization. One end of the heating resistor 32 is connected to the thermistor 3a, so that energization and heat generation are always regulated. The heating resistor 32 generates heat when the amount of energization increases due to a decrease in the electrical resistance value of the thermistor 3a, and can fuse the fuse element 31. The heating resistor 32 is electrically and thermally connected by the fuse element 31 being superimposed.
 [ヒューズエレメント]
 スイッチ素子30は、第1の電極38から第2の電極39に跨ってヒューズエレメント31が接続用ハンダ28により接続されている。ヒューズエレメント31は、通常使用時には第1、第2の電極38,39間を導通させ、スイッチ素子30が組み込まれた外部回路の電流経路の一部を構成する。そして、ヒューズエレメント31は、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、あるいは発熱抵抗体32の発熱により溶断し、第1、第2の電極38,39間を遮断する。
[Fuse element]
In the switch element 30, the fuse element 31 is connected by the connecting solder 28 across the first electrode 38 and the second electrode 39. The fuse element 31 is electrically connected between the first and second electrodes 38 and 39 during normal use, and constitutes a part of a current path of an external circuit in which the switch element 30 is incorporated. The fuse element 31 is blown by self-heating (Joule heat) when a current exceeding the rating is applied, or blown by the heat generated by the heating resistor 32, and the first and second electrodes 38 and 39 are cut off. To do.
 ヒューズエレメント31は、所定の定格電流値を有し、発熱抵抗体32の発熱や定格電流値を超える電流が通電されると自己発熱により速やかに溶断する。ヒューズエレメント31は、ニッケル、錫、鉛から選択されるいずれか1種を主成分とすることが好ましい。なお、本明細書において、主成分とは、材料全質量を基準として、50wt%以上である成分をいう。 The fuse element 31 has a predetermined rated current value, and when the heat generated by the heating resistor 32 or a current exceeding the rated current value is energized, the fuse element 31 is quickly melted by self-heating. The fuse element 31 is preferably composed mainly of any one selected from nickel, tin, and lead. In the present specification, the main component refers to a component that is 50 wt% or more based on the total mass of the material.
 また、ヒューズエレメント31は、低融点金属層41と高融点金属層42とを積層させた積層構造を有していてもよい。低融点金属としては、Pbフリーハンダなどのハンダを用いることが好ましく、高融点金属としては、Ag、Cu又はこれらを主成分とする合金などを用いることが好ましい。高融点金属と低融点金属とを含有することによって、スイッチ素子30をリフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、ヒューズエレメント31として溶断するに至らない。 The fuse element 31 may have a laminated structure in which a low melting point metal layer 41 and a high melting point metal layer 42 are laminated. As the low melting point metal, it is preferable to use solder such as Pb-free solder, and as the high melting point metal, it is preferable to use Ag, Cu or an alloy containing these as a main component. By including the high melting point metal and the low melting point metal, when the switch element 30 is reflow mounted, even if the reflow temperature exceeds the melting temperature of the low melting point metal layer and the low melting point metal melts, the fuse element 31. Will not blow out.
 図8に示すように、ヒューズエレメント31は、内層を低融点金属とし、外層を高融点金属としてもよい。内層の低融点金属層41の全表面を外層の高融点金属層42で被覆した可溶導体を用いることにより、リフロー温度よりも融点の低い低融点金属を用いた場合でも、リフロー実装時に、内層の低融点金属の外部への流出を抑制することができる。また、溶断時も、内層の低融点金属が溶融することにより、外層の高融点金属を溶食(ハンダ食われ)し、速やかに溶断することができる。 As shown in FIG. 8, the fuse element 31 may have an inner layer made of a low melting point metal and an outer layer made of a high melting point metal. By using a soluble conductor in which the entire surface of the inner low melting point metal layer 41 is covered with the outer high melting point metal layer 42, even when a low melting point metal having a melting point lower than the reflow temperature is used, The outflow of the low melting point metal to the outside can be suppressed. Further, when the inner layer low melting point metal melts, the outer layer high melting point metal is also eroded (soldered) and can be quickly melted.
 サーミスタ3aは、一端が発熱抵抗体32と接続され、他端が第1の発熱体電極43と接続されている。第1の発熱体電極43は、絶縁基板33の表面33a上に形成され、キャスタレーションを介して絶縁基板33の裏面33bに形成された第1の発熱体給電電極(図示せず)と連続されている。そして、サーミスタ3aは、高い電気抵抗によって発熱抵抗体32への通電を規制している。 The thermistor 3 a has one end connected to the heating resistor 32 and the other end connected to the first heating element electrode 43. The first heating element electrode 43 is formed on the front surface 33a of the insulating substrate 33, and is continuous with a first heating element power supply electrode (not shown) formed on the back surface 33b of the insulating substrate 33 via castellation. ing. The thermistor 3a regulates energization to the heating resistor 32 with high electrical resistance.
 そして、スイッチ素子30は、反応部2が液体と接触することにより発熱すると、サーミスタ3aの電気抵抗値が低下することにより、発熱抵抗体32への通電量を増加させ、発熱抵抗体32の発熱によってヒューズエレメント31を溶断する。これにより、スイッチ素子30は、外部回路の通電経路を遮断することができる。 When the reaction element 2 generates heat due to contact with the liquid, the switch element 30 decreases the electrical resistance value of the thermistor 3 a, thereby increasing the amount of current supplied to the heating resistor 32 and generating heat from the heating resistor 32. To fuse the fuse element 31. Thereby, the switch element 30 can interrupt | block the electricity supply path | route of an external circuit.
 また、上述したように、液濡れセンサー1は、反応部2とサーミスタ3aとが重畳して配置されている。これにより反応部2とサーミスタ3aとが熱的に密接に接続され、反応部2が発熱することにより、速やかにサーミスタ3aの電気抵抗値を低下させることができる。 Further, as described above, the liquid wetting sensor 1 is arranged such that the reaction unit 2 and the thermistor 3a are overlapped. Thereby, the reaction part 2 and the thermistor 3a are thermally connected closely, and the reaction part 2 generates heat, so that the electric resistance value of the thermistor 3a can be quickly reduced.
 [カバー部材]
 また、スイッチ素子30は、ヒューズエレメント31が設けられた絶縁基板33の表面33a上に、内部を保護するとともに溶融したヒューズエレメント31の飛散を防止するカバー部材34が取り付けられている。カバー部材34は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。カバー部材34は、絶縁基板33の表面33a上に絶縁性接着剤によって接続され、これにより、ヒューズエレメント31を覆う。
[Cover member]
The switch element 30 is provided with a cover member 34 on the surface 33a of the insulating substrate 33 on which the fuse element 31 is provided, which protects the inside and prevents the molten fuse element 31 from scattering. The cover member 34 can be formed of an insulating member such as various engineering plastics and ceramics. The cover member 34 is connected to the surface 33 a of the insulating substrate 33 by an insulating adhesive, thereby covering the fuse element 31.
 また、カバー部材34は、絶縁基板33に設けられた反応部2に液体を導入する導入口36が形成されている。 Further, the cover member 34 is formed with an inlet 36 for introducing a liquid into the reaction section 2 provided on the insulating substrate 33.
 このようなスイッチ素子30は、図9(A)に示すような回路構成を有する。すなわち、スイッチ素子30は、第1、第2の電極38,39間にわたって直列接続されたヒューズエレメント31と、ヒューズエレメント31の接続点を介して通電して発熱させることによってヒューズエレメント31を溶融する発熱抵抗体32とからなる回路構成である。また、スイッチ素子30は、第1の発熱体電極43、感温部3(サーミスタ3a)、発熱抵抗体32、及びヒューズエレメント31に至る発熱抵抗体32への通電経路が形成される。また、スイッチ素子30は、第1、第2の電極38,39が電源回路等の外部回路の開放端に接続されることで、ヒューズエレメント31が当該外部回路の通電経路上に組み込まれる。 Such a switch element 30 has a circuit configuration as shown in FIG. That is, the switch element 30 melts the fuse element 31 by causing the fuse element 31 connected in series between the first and second electrodes 38 and 39 to generate heat by energizing through the connection point of the fuse element 31. The circuit configuration includes the heating resistor 32. In addition, the switch element 30 is formed with an energization path to the first heating element electrode 43, the temperature sensing unit 3 (thermistor 3 a), the heating resistor 32, and the heating element 32 that reaches the fuse element 31. Further, the switch element 30 has the first and second electrodes 38 and 39 connected to the open end of an external circuit such as a power supply circuit, whereby the fuse element 31 is incorporated on the energization path of the external circuit.
 スイッチ素子30は、図10に示すように、例えば上述したリチウムイオン二次電池のバッテリパック10内の回路に組み込んで用いることができる。スイッチ素子30は、第1の発熱体電極43が発熱抵抗体32に通電させるバッテリスタック15の一方の開放端と接続されるとともに、サーミスタ3aによって発熱抵抗体32への通電が規制されている。また、スイッチ素子30は、第1の電極38がバッテリスタック15の他方の開放端側に接続され、第2の電極39がバッテリパック10の正極端子10a側に接続されることで、ヒューズエレメント31が当該外部回路の通電経路上に組み込まれる。 As shown in FIG. 10, the switch element 30 can be used by being incorporated in the circuit in the battery pack 10 of the above-described lithium ion secondary battery, for example. The switch element 30 is connected to one open end of the battery stack 15 through which the first heating element electrode 43 energizes the heating resistor 32 and energization to the heating resistor 32 is regulated by the thermistor 3a. Further, the switch element 30 has the first electrode 38 connected to the other open end side of the battery stack 15 and the second electrode 39 connected to the positive electrode terminal 10 a side of the battery pack 10, whereby the fuse element 31. Is incorporated on the energization path of the external circuit.
 そして、スイッチ素子30は、カバー部材34に設けられた導入口36より液体が浸入し、反応部2が液体と接触することにより発熱すると、サーミスタ3aの電気抵抗値が低下することにより、バッテリスタック15から通電され、発熱抵抗体32を発熱させることができる。これにより、スイッチ素子30は、バッテリパック10の電流経路上に組み込まれたヒューズエレメント31が溶融され、ヒューズエレメント31の溶融導体が、濡れ性の高い発熱体引出電極21及び第1、第2の電極38,39に引き寄せられることによりヒューズエレメント31が溶断される。したがって、図9(B)に示すように、スイッチ素子30は、バッテリスタック15の充放電経路を遮断することができる。 When the liquid enters from the introduction port 36 provided in the cover member 34 and heat is generated when the reaction unit 2 comes into contact with the liquid, the switch element 30 decreases the electric resistance value of the thermistor 3a, thereby reducing the battery stack. The heating resistor 32 can be heated by being energized from 15. As a result, the fuse element 31 incorporated in the current path of the battery pack 10 is melted in the switch element 30, and the molten conductor of the fuse element 31 is heated to the heating element extraction electrode 21 and the first and second electrodes with high wettability. The fuse element 31 is blown by being attracted to the electrodes 38 and 39. Therefore, as shown in FIG. 9B, the switch element 30 can block the charge / discharge path of the battery stack 15.
 ここで、スイッチ素子30は、ヒューズエレメント31が発熱抵抗体32と接続されることにより、発熱抵抗体32への通電経路の一部を構成する。したがって、スイッチ素子30は、ヒューズエレメント31が溶融し、外部回路との接続が遮断されると、発熱抵抗体32への通電経路も遮断されるため、発熱を停止させることができる。 Here, the switch element 30 constitutes a part of an energization path to the heating resistor 32 by connecting the fuse element 31 to the heating resistor 32. Therefore, when the fuse element 31 is melted and the connection with the external circuit is interrupted, the switch element 30 can also stop the heat generation because the energization path to the heating resistor 32 is also interrupted.
 [撥水処理]
 なお、スイッチ素子30は、図7に示すように、反応部2以外の場所、又は反応部2及びその近傍以外の場所に、撥水処理部35を設けてもよい。例えばスイッチ素子30は、反応部2、発熱抵抗体32、第1、第2の電極38,39、第1の発熱体電極43、サーミスタ3aを除く絶縁基板33の表面33aの露出領域に、撥水処理部35が設けられる。
[Water repellent treatment]
As shown in FIG. 7, the switch element 30 may be provided with a water repellent treatment part 35 at a place other than the reaction part 2 or a place other than the reaction part 2 and its vicinity. For example, the switch element 30 repels the exposed region of the surface 33a of the insulating substrate 33 excluding the reaction part 2, the heating resistor 32, the first and second electrodes 38 and 39, the first heating element electrode 43, and the thermistor 3a. A water treatment unit 35 is provided.
 撥水処理部35は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 The water repellent portion 35 can be formed by a known method such as application of a fluorine-based coating agent or solder paste coating.
 これにより、スイッチ素子30は、絶縁基板33上の液体を非撥水領域である反応部2に導くことができ、サーミスタ3aの加熱を促進してヒューズエレメント31の溶断を促進させることができる。 Thereby, the switch element 30 can guide the liquid on the insulating substrate 33 to the reaction part 2 which is a non-water-repellent region, and can accelerate the heating of the thermistor 3a and promote the fusing of the fuse element 31.
 [FETスイッチング]
 また、スイッチ素子30は、図11に示すように、感温部3(サーミスタ3a)をバッテリスタック15とFET等の電流制御素子12との間に接続し、発熱抵抗体32の一端を電流制御素子12と接続してもよい。この場合、サーミスタ3aは、一端が第3の外部接続電極44を介してバッテリスタック15の開放端と接続されるとともに、他端が第4の外部接続電極45を介して電流制御素子12と接続されている。そして、スイッチ素子30は、常時サーミスタ3aの高抵抗により、バッテリスタック15から電流制御素子12への通電を規制している。また、発熱抵抗体32は、一端を第1の発熱体電極43を介して電流制御素子12と接続され、バッテリスタック15からの通電が規制されている。
[FET switching]
As shown in FIG. 11, the switch element 30 connects the temperature sensing unit 3 (thermistor 3a) between the battery stack 15 and the current control element 12 such as an FET, and controls one end of the heating resistor 32. It may be connected to the element 12. In this case, the thermistor 3 a has one end connected to the open end of the battery stack 15 via the third external connection electrode 44 and the other end connected to the current control element 12 via the fourth external connection electrode 45. Has been. The switch element 30 always regulates the energization from the battery stack 15 to the current control element 12 by the high resistance of the thermistor 3a. Further, one end of the heating resistor 32 is connected to the current control element 12 via the first heating element electrode 43, and energization from the battery stack 15 is restricted.
 そして、スイッチ素子30は、バッテリセルの液漏れや水没等の液濡れ状態が発生するとカバー部材34に設けられた導入口36より液体が浸入し、反応部2が液体と接触することにより発熱する。これにより、サーミスタ3aの電気抵抗値が低下することにより、バッテリスタック15から電流制御素子12へ通電される。電流制御素子12は、発熱抵抗体32にバッテリスタック15の電力が供給されるように切り替えられ、これにより、スイッチ素子30は、発熱抵抗体24が通電、発熱され、バッテリパック10の電流経路上に組み込まれたヒューズエレメント31が溶断され、バッテリパック10の電流経路を遮断することができる。また、ヒューズエレメント31が溶断することにより、発熱抵抗体32への給電も停止される。
 [絶縁層/発熱体引出電極]
The switch element 30 generates heat when the liquid leaks from the battery cell or the liquid wet state such as submergence occurs, the liquid enters from the introduction port 36 provided in the cover member 34 and the reaction unit 2 comes into contact with the liquid. . As a result, the current control element 12 is energized from the battery stack 15 by decreasing the electrical resistance value of the thermistor 3a. The current control element 12 is switched so that the electric power of the battery stack 15 is supplied to the heating resistor 32, whereby the switch element 30 is energized and heated by the heating resistor 24, and is on the current path of the battery pack 10. The fuse element 31 incorporated in the battery pack is melted and the current path of the battery pack 10 can be cut off. Further, when the fuse element 31 is melted, power supply to the heating resistor 32 is also stopped.
[Insulating layer / heater lead electrode]
 なお、図12に示すように、スイッチ素子30は、発熱抵抗体32を覆うように絶縁層50を設けるとともに、この絶縁層50を介して発熱抵抗体32に対向するように発熱体引出電極51を形成してもよい。発熱体引出電極51はヒューズエレメント31が重畳されることにより接続され、これにより発熱抵抗体32は、絶縁層50及び発熱体引出電極51を介してヒューズエレメント31と重畳される。絶縁層50は、発熱抵抗体32の保護及び絶縁を図るとともに、発熱抵抗体32の熱を効率よくヒューズエレメント31へ伝えるために設けられ、例えばガラス層からなる。なお、スイッチ素子30は、発熱抵抗体32の熱を効率良くヒューズエレメント31に伝えるために、発熱抵抗体32と絶縁基板33の間にも絶縁層50を積層しても良い。 As shown in FIG. 12, the switch element 30 is provided with an insulating layer 50 so as to cover the heating resistor 32, and the heating element extraction electrode 51 so as to face the heating resistor 32 through the insulating layer 50. May be formed. The heating element extraction electrode 51 is connected by overlapping the fuse element 31, whereby the heating resistor 32 is overlapped with the fuse element 31 via the insulating layer 50 and the heating element extraction electrode 51. The insulating layer 50 is provided in order to protect and insulate the heating resistor 32 and to efficiently transfer the heat of the heating resistor 32 to the fuse element 31, and is made of, for example, a glass layer. In the switch element 30, an insulating layer 50 may be laminated between the heat generating resistor 32 and the insulating substrate 33 in order to efficiently transmit the heat of the heat generating resistor 32 to the fuse element 31.
 この場合、発熱抵抗体32は、一端が発熱体引出電極51と接続され、他端がサーミスタ3aを介して第1の発熱体電極43と接続されている。発熱体引出電極51は、絶縁基板33の表面33a上に形成されるとともに発熱抵抗体32と接続された下層部51aと、発熱抵抗体32と対向して絶縁層50上に積層されるとともにヒューズエレメント31と接続される上層部51bとを有する。これにより、発熱抵抗体32は、発熱体引出電極51を介してヒューズエレメント31と電気的に接続されている。また、発熱抵抗体32は、絶縁層50及び発熱体引出電極51を介してヒューズエレメント31と熱的に接続されている。なお、発熱体引出電極51は、絶縁層50を介して発熱抵抗体32に対向配置されることにより熱せられ、ヒューズエレメント31を溶融させるとともに、溶融導体を凝集しやすくすることができる。 In this case, one end of the heating resistor 32 is connected to the heating element extraction electrode 51, and the other end is connected to the first heating element electrode 43 via the thermistor 3a. The heating element extraction electrode 51 is formed on the surface 33a of the insulating substrate 33 and connected to the heating resistor 32. The heating element lead electrode 51 is laminated on the insulating layer 50 so as to face the heating resistor 32, and the fuse. And an upper layer portion 51 b connected to the element 31. Thereby, the heating resistor 32 is electrically connected to the fuse element 31 through the heating element lead electrode 51. The heating resistor 32 is thermally connected to the fuse element 31 via the insulating layer 50 and the heating element lead electrode 51. The heating element extraction electrode 51 is heated by being disposed opposite to the heating resistor 32 via the insulating layer 50, so that the fuse element 31 can be melted and the molten conductor can be easily aggregated.
 また、スイッチ素子30は、ヒューズエレメント31が発熱体引出電極51と接続されることにより、発熱抵抗体32への通電経路の一部を構成する。したがって、スイッチ素子30は、ヒューズエレメント31が溶融し、外部回路との接続が遮断されると、発熱抵抗体32への通電経路も遮断されるため、発熱を停止させることができる。 Further, the switch element 30 constitutes a part of the energization path to the heating resistor 32 by connecting the fuse element 31 to the heating element extraction electrode 51. Therefore, when the fuse element 31 is melted and the connection with the external circuit is interrupted, the switch element 30 can also stop the heat generation because the energization path to the heating resistor 32 is also interrupted.
 [通電経路/給電経路]
 また、本発明が適用されたスイッチ素子は、ヒューズエレメント31の通電経路と、発熱抵抗体32への給電経路を分けてもよい。例えば、図13に示すスイッチ素子30は、発熱抵抗体32が絶縁層50を介してヒューズエレメント31と重畳されることで、電気的にはヒューズエレメント31と独立し、熱的に接続される。また、発熱抵抗体32は、一端がサーミスタ3aと接続され、他端が第2の発熱体電極52と接続されている。第2の発熱体電極52は、絶縁基板33の表面33a上に形成され、キャスタレーションを介して絶縁基板33の裏面33bに形成された第2の発熱体給電電極(図示せず)と連続されている。
[Energization path / Power supply path]
Further, the switch element to which the present invention is applied may separate the energization path of the fuse element 31 and the power supply path to the heating resistor 32. For example, the switch element 30 shown in FIG. 13 is electrically connected to the fuse element 31 electrically and thermally by the heating resistor 32 being superimposed on the fuse element 31 via the insulating layer 50. The heating resistor 32 has one end connected to the thermistor 3 a and the other end connected to the second heating element electrode 52. The second heating element electrode 52 is formed on the front surface 33a of the insulating substrate 33, and is continuous with the second heating element power supply electrode (not shown) formed on the back surface 33b of the insulating substrate 33 via castellation. ing.
 なお、図13に示すスイッチ素子30は、発熱抵抗体32を、第1、第2の電極38,39が形成された絶縁基板33の表面33aと反対側の裏面33bに形成してもよく、あるいは、絶縁基板33の表面33aにヒューズエレメント31やサーミスタ3aと隣接して形成してもよい。また、スイッチ素子30は、発熱抵抗体32を、絶縁基板33の内部に形成してもよい。 In the switch element 30 shown in FIG. 13, the heating resistor 32 may be formed on the back surface 33b opposite to the front surface 33a of the insulating substrate 33 on which the first and second electrodes 38 and 39 are formed. Alternatively, it may be formed on the surface 33a of the insulating substrate 33 adjacent to the fuse element 31 or the thermistor 3a. In addition, the switch element 30 may have the heating resistor 32 formed inside the insulating substrate 33.
 このようなスイッチ素子30は、図14に示すように、第1の発熱体電極43、感温部3(サーミスタ3a)、発熱抵抗体32、第2の発熱体電極52に至る発熱抵抗体32への給電経路53が形成される。この発熱抵抗体32の給電経路53は、第1、第2の発熱体電極43,52が給電回路に接続されるとともに、サーミスタ3aによって通電が規制されている。また、スイッチ素子30は、第1、第2の電極38,39間にわたってヒューズエレメント31の通電経路54が形成される。この通電経路54は、第1、第2の電極38,39が外部回路の開放端に接続されることで、当該外部回路の通電経路上に組み込まれる。 As shown in FIG. 14, such a switch element 30 includes a first heating element electrode 43, a temperature sensing unit 3 (thermistor 3 a), a heating resistor 32, and a second heating element electrode 52. A power supply path 53 is formed. In the power supply path 53 of the heat generating resistor 32, the first and second heat generating body electrodes 43 and 52 are connected to the power supply circuit, and energization is restricted by the thermistor 3a. In the switch element 30, an energization path 54 of the fuse element 31 is formed between the first and second electrodes 38 and 39. The energization path 54 is incorporated on the energization path of the external circuit by connecting the first and second electrodes 38 and 39 to the open end of the external circuit.
 そして、スイッチ素子30は、反応部2が液体と接触することにより発熱すると、サーミスタ3aの電気抵抗値が低下することにより、給電経路53を通電させ、発熱抵抗体32を発熱させることができる。これにより、スイッチ素子30は、ヒューズエレメント31が発熱抵抗体32の熱で溶断し、外部回路を遮断することができる。 Then, when the switch element 30 generates heat when the reaction unit 2 comes into contact with the liquid, the electrical resistance value of the thermistor 3a decreases, and thereby the power supply path 53 is energized and the heat generating resistor 32 can generate heat. Thereby, the switch element 30 can cut off the external circuit by fusing the fuse element 31 with the heat of the heating resistor 32.
 また、スイッチ素子30は、図15に示すように、発熱抵抗体32への給電経路31とヒューズエレメント31の通電経路32とを並列させてもよい。図15に示す構成においても、スイッチ素子30は、反応部2が液体と接触することにより発熱すると、サーミスタ3aの電気抵抗値が低下することにより、給電経路31を通電させ、発熱抵抗体32を発熱させることができる。これにより、スイッチ素子30は、ヒューズエレメント31が発熱抵抗体32の熱で溶断し、外部回路を遮断することができる。 Further, as shown in FIG. 15, the switch element 30 may have a power supply path 31 to the heating resistor 32 and an energization path 32 of the fuse element 31 in parallel. Also in the configuration shown in FIG. 15, when the switch element 30 generates heat due to the reaction unit 2 coming into contact with the liquid, the electrical resistance value of the thermistor 3 a decreases, thereby energizing the power supply path 31, and the heating resistor 32. Can generate heat. Thereby, the switch element 30 can cut off the external circuit by fusing the fuse element 31 with the heat of the heating resistor 32.
 なお、上述した第1、第2の電極38,39、発熱体引出電極51及び第1、第2の発熱体電極43,52は、例えばAgやCu等の導電パターンによって形成され、適宜、表面にSnメッキ、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の保護層が形成されていることが好ましい。これにより、表面の酸化を防止するとともに、ヒューズエレメント31の接続用ハンダ28等の接続材料による第1、第2の電極38,39、発熱体引出電極51及び第1、第2の発熱体電極43,52の浸食を抑制することができる。 Note that the first and second electrodes 38 and 39, the heating element extraction electrode 51, and the first and second heating element electrodes 43 and 52 described above are formed by a conductive pattern such as Ag or Cu, and are appropriately formed on the surface. It is preferable that a protective layer of Sn plating, Ni / Au plating, Ni / Pd plating, Ni / Pd / Au plating, or the like is formed. Thus, the surface is prevented from being oxidized, and the first and second electrodes 38 and 39, the heating element lead-out electrode 51, and the first and second heating element electrodes are made of the connecting material such as the solder 28 for connecting the fuse element 31. 43 and 52 can be suppressed.
 [筐体]
 次いで、液濡れセンサー1及びスイッチ素子30の筐体について説明する。以下では、スイッチ素子30の筐体について説明するが、液濡れセンサー1についても同様の構成を有することができる。上述したように、スイッチ素子30は、絶縁基板33と、絶縁基板33上に接続されたカバー部材34によって筐体が構成されている。スイッチ素子30は、カバー部材34を設けることにより、ヒューズエレメント31、反応部2及び感温部3を外部より受ける機械的な外乱等から保護するとともに、ヒューズエレメント31が自己発熱によりアーク放電の発生を伴って溶断した際に、溶融金属の周囲への飛散を防止することができる。
[Case]
Next, the housing of the liquid wetting sensor 1 and the switch element 30 will be described. Hereinafter, the casing of the switch element 30 will be described, but the liquid wetting sensor 1 can have the same configuration. As described above, the switch element 30 has a housing formed of the insulating substrate 33 and the cover member 34 connected on the insulating substrate 33. The switch element 30 is provided with a cover member 34 to protect the fuse element 31, the reaction unit 2, and the temperature sensing unit 3 from external mechanical disturbances and the like, and the fuse element 31 generates arc discharge by self-heating. When the fusing is accompanied, the scattering of the molten metal to the surroundings can be prevented.
 カバー部材34には、反応部2に液体を導く導入口36が設けられている。スイッチ素子30は、カバー部材34に設けられた導入口36を介して液体が反応部2へ流入することにより、ヒューズエレメント31を不可逆的に遮断させる。 The cover member 34 is provided with an inlet 36 that guides the liquid to the reaction unit 2. The switch element 30 irreversibly blocks the fuse element 31 by allowing the liquid to flow into the reaction portion 2 through the inlet 36 provided in the cover member 34.
 カバー部材34は、例えば図16(A)に示すように、多面体からなり、一の面に、一の導入口36が設けられている。スイッチ素子30は、外部回路が形成された回路基板に実装されるチップ部品として形成された場合、筐体の実装面と反対側のカバー部材34の天面34aに導入口36が設けられることが好ましい。天面34aに導入口36が設けられることにより、水濡れ状態になると効率的に液体を筐体内に取り込むとともに反応部2に保持し、ヒューズエレメント31を遮断させることができる。もちろんカバー部材34は、天面34a以外の面、例えば側面34bに導入口36を形成してもよい。また、カバー部材34は、図16(B)に示すように、天面34aに複数の導入口36を形成してもよく、あるいは側面34bに複数の導入口36を形成してもよい。カバー部材34は、複数の導入口36を設けることにより、より液体を反応部2に導入しやすくすることができる。 The cover member 34 is made of a polyhedron, for example, as shown in FIG. 16A, and one introduction port 36 is provided on one surface. When the switch element 30 is formed as a chip component to be mounted on a circuit board on which an external circuit is formed, the introduction port 36 may be provided on the top surface 34a of the cover member 34 on the side opposite to the mounting surface of the housing. preferable. By providing the introduction port 36 on the top surface 34a, the liquid can be efficiently taken into the casing and held in the reaction section 2 when the water is wet, and the fuse element 31 can be shut off. Of course, the cover member 34 may form the introduction port 36 on a surface other than the top surface 34a, for example, the side surface 34b. As shown in FIG. 16B, the cover member 34 may have a plurality of inlets 36 formed on the top surface 34a, or a plurality of inlets 36 formed on the side surface 34b. The cover member 34 can more easily introduce the liquid into the reaction unit 2 by providing a plurality of introduction ports 36.
 また、カバー部材34は、例えば図16(C)に示すように、多面体からなり、複数の面、例えば天面34aと側面34bに導入口36を設けてもよい。また、カバー部材34は、図16(D)に示すように、複数の面にそれぞれ一又は複数の導入口36を形成してもよい。 Further, the cover member 34 may be a polyhedron as shown in FIG. 16C, for example, and the inlet 36 may be provided on a plurality of surfaces, for example, the top surface 34a and the side surface 34b. Further, as shown in FIG. 16D, the cover member 34 may have one or a plurality of introduction ports 36 on a plurality of surfaces.
 また、スイッチ素子30は、カバー部材34を筒状に形成し、導入口36を任意の位置に、任意の個数だけ形成してもよい。図17はカバー部材34を円筒状に形成し、全周にわたって複数の導入口36を形成したスイッチ素子30の外観斜視図である。カバー部材34は、中空の多角柱状に形成してもよい。カバー部材34を中空の円柱状、角柱状に形成することにより、スイッチ素子30の配置に応じた面や角度、液体の浸入経路等に左右されずに導入口36を形成することができる。 Further, the switch element 30 may be formed by forming the cover member 34 in a cylindrical shape and forming an arbitrary number of introduction ports 36 at an arbitrary position. FIG. 17 is an external perspective view of the switch element 30 in which the cover member 34 is formed in a cylindrical shape and a plurality of introduction ports 36 are formed over the entire circumference. The cover member 34 may be formed in a hollow polygonal column shape. By forming the cover member 34 in the shape of a hollow cylinder or prism, the introduction port 36 can be formed without being affected by the surface and angle according to the arrangement of the switch element 30, the liquid intrusion route, and the like.
 なお、図17に示すスイッチ素子30は、ヒューズエレメント31に通電するための第1の外部接続電極38a及び第2の外部接続電極39aと、第1の発熱体電極43と接続された第1の発熱体給電電極43aがカバー部材34の外周面より突出して形成されている。 17 includes a first external connection electrode 38a and a second external connection electrode 39a for energizing the fuse element 31, and a first heating element electrode 43 connected to the first heating element electrode 43. A heating element power supply electrode 43 a is formed so as to protrude from the outer peripheral surface of the cover member 34.
 また、カバー部材34は、導入口36より浸入した液体を排出する排出口を形成してもよい。図18は、多面体からなるカバー部材34の天面34aに導入口36を形成するとともに、側面34bに液体を排出する排出口37を形成したスイッチ素子30を示す外観斜視図である。排出口37を形成することにより、液体が多量にスイッチ素子30内に浸入することによって反応部2及び感温部3が冷却され、サーミスタ3aの抵抗値の低下が阻害される等、感温部3の電気特性の変化が阻害されて、ヒューズエレメント31の溶断作用が遅れる等の事態を防止することができる。 Further, the cover member 34 may form a discharge port for discharging the liquid that has entered through the introduction port 36. FIG. 18 is an external perspective view showing the switch element 30 in which the introduction port 36 is formed on the top surface 34a of the cover member 34 made of a polyhedron and the discharge port 37 for discharging the liquid is formed on the side surface 34b. By forming the discharge port 37, the reaction part 2 and the temperature sensing part 3 are cooled when a large amount of liquid enters the switch element 30, and the decrease in the resistance value of the thermistor 3a is inhibited. It is possible to prevent such a situation that the change of the electrical characteristics 3 is hindered and the fusing action of the fuse element 31 is delayed.
 なお、排出口37は、導入口36よりも小さく形成されることが好ましい。排出口37を相対的に小さくすることで、スイッチ素子30内に浸入した液体が過剰に排出され、却って反応部2の発熱作用や、ヒューズエレメント31の溶断が遅延することを防止することができる。 The discharge port 37 is preferably formed smaller than the introduction port 36. By making the discharge port 37 relatively small, it is possible to prevent the liquid that has entered the switch element 30 from being excessively discharged and to prevent the reaction unit 2 from generating heat and the fuse element 31 from being delayed. .
 また、排出口37は、反応部2が設けられた位置と同じ高さ、又は反応部2が設けられた位置よりも上方に設けられていることが好ましい。例えば、図19に示すように、カバー部材34を多面形状に形成するとともに、回路基板に実装されるチップ部品として形成された場合、排出口37は、カバー部材34の側面34bの反応部2が設けられた位置と同じ高さ又は上方に設けられることが好ましい。これにより、スイッチ素子30内に浸入した液体は、反応部2より上方に浸入した分が排水され、反応部2には残留するため、反応部2の作用を確保するとともに、スイッチ素子30内に多量に浸入した液体によって反応部2及び感温部3が冷却され、反応部2の発熱作用や、ヒューズエレメント31の溶断が遅延することを防止することができる。 Moreover, it is preferable that the discharge port 37 is provided at the same height as the position where the reaction part 2 is provided or above the position where the reaction part 2 is provided. For example, as shown in FIG. 19, when the cover member 34 is formed in a multi-face shape and formed as a chip component mounted on a circuit board, the discharge port 37 is connected to the reaction part 2 on the side surface 34 b of the cover member 34. It is preferable to be provided at the same height as or above the provided position. As a result, the liquid that has entered the switch element 30 is drained from the reaction part 2 and remains in the reaction part 2, so that the action of the reaction part 2 is ensured and the liquid in the switch element 30 is retained. The reaction part 2 and the temperature sensing part 3 are cooled by the liquid that has entered a large amount, and it is possible to prevent the heat generation action of the reaction part 2 and the fusing of the fuse element 31 from being delayed.
 なお、液体を導入する導入口36及び液体を排出する排出口37は、円形、矩形等、その形状は問わない。また、導入口36及び排出口37は、図20に示すように、スリット状に形成してもよい。導入口36をスリット状に形成することにより、より広範に液体を導入させ、速やかに反応部2を反応させてヒューズエレメント31を溶断させることができる。また、排出口37をスリット状に形成することにより、スイッチ素子30内に浸入した余剰の液体を速やかに排水することができ、反応部2の発熱作用やヒューズエレメント31の溶断の進行が遅延することを防止することができる。 Note that the shape of the inlet 36 for introducing the liquid and the outlet 37 for discharging the liquid are not particularly limited, such as circular and rectangular. Further, the introduction port 36 and the discharge port 37 may be formed in a slit shape as shown in FIG. By forming the introduction port 36 in a slit shape, the liquid can be introduced more extensively, the reaction portion 2 can be reacted quickly, and the fuse element 31 can be blown. Moreover, by forming the discharge port 37 in a slit shape, excess liquid that has entered the switch element 30 can be quickly drained, and the heat generation action of the reaction unit 2 and the progress of fusing of the fuse element 31 are delayed. This can be prevented.
 また、カバー部材34は、天面34aにスリット状の導入口36を設けるとともに、反応部2へ液体を導く導入溝40を設けてもよい。図21(A)(B)に示すように、導入溝40は、溝壁40aが天面34aに形成された導入口36から反応部2の近傍まで延在される。これにより、スイッチ素子30は、導入口36に浸入した液体が反応部2以外の場所に流入することなく、確実に反応部2へ導くことができる。また、スイッチ素子30は、導入口36に浸入した液体が筐体内に散逸し、反応部2の発熱作用やヒューズエレメント31の溶断の進行が遅延することを防止することができる。 In addition, the cover member 34 may be provided with a slit-like introduction port 36 on the top surface 34 a and an introduction groove 40 that guides the liquid to the reaction unit 2. As shown in FIGS. 21A and 21B, the introduction groove 40 extends from the introduction port 36 in which the groove wall 40a is formed in the top surface 34a to the vicinity of the reaction section 2. Thus, the switch element 30 can reliably guide the liquid that has entered the inlet 36 to the reaction unit 2 without flowing into a place other than the reaction unit 2. In addition, the switch element 30 can prevent the liquid that has entered the introduction port 36 from being dissipated into the housing and delaying the heating action of the reaction unit 2 and the progress of fusing of the fuse element 31.
 また、カバー部材34は、図21(B)に示すように、導入溝40を側面34bまで延ばし、側面34bに形成された排出口37と連続させてもよい。これにより、スイッチ素子30は、導入口36から浸入した液体を効率よく反応部2に導くとともに、過剰な液体を効率よく排出口37から排水することができる。 Further, as shown in FIG. 21B, the cover member 34 may extend the introduction groove 40 to the side surface 34b and be continuous with the discharge port 37 formed on the side surface 34b. Accordingly, the switch element 30 can efficiently guide the liquid that has entered from the inlet 36 to the reaction unit 2 and drain the excess liquid from the outlet 37 efficiently.
 なお、図22(A)(B)に示すように、導入溝40は、複数形成してもよい。導入溝40を複数形成することにより、反応部2の全幅にわたって液体を導くことができる。 Note that, as shown in FIGS. 22A and 22B, a plurality of introduction grooves 40 may be formed. By forming a plurality of introduction grooves 40, the liquid can be guided over the entire width of the reaction section 2.
 また、図23に示すように、導入溝40は、天面34aに臨む導入口36の開口部から反応部2が設けられた内部にかけて漸次狭小化させてもよい。導入溝40を反応部2に近づくにつれて狭小化することにより、導入口36の開口部から浸入した液体を、毛細管現象によって効率よく反応部2に導くことができる。 23, the introduction groove 40 may be gradually narrowed from the opening of the introduction port 36 facing the top surface 34a to the inside where the reaction unit 2 is provided. By narrowing the introduction groove 40 as it approaches the reaction part 2, the liquid that has entered through the opening of the introduction port 36 can be efficiently guided to the reaction part 2 by capillary action.
 また、スイッチ素子30は、反応部2以外の場所に撥水処理を施し、液体を反応部2に誘導してもよい。例えば図24に示すように、スイッチ素子30は、導入口36、又は導入口36及び導入溝40の溝壁40aに撥水処理が施された撥水処理部46を形成してもよい。撥水処理部46は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 Further, the switch element 30 may perform water repellent treatment at a place other than the reaction unit 2 to induce the liquid to the reaction unit 2. For example, as shown in FIG. 24, the switch element 30 may form a water repellent treatment portion 46 in which the water repellent treatment is applied to the introduction port 36 or the groove wall 40 a of the introduction port 36 and the introduction groove 40. The water repellent portion 46 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
 これによりスイッチ素子30は、導入口36より浸入した液体を効率よく反応部2に導くことができる。また、導入口36や導入溝40に撥水処理を施すことにより、スイッチ素子30を作動させるべき水濡れ状態以外では、少量の液体を弾いてスイッチ素子30内に浸入させないことから、誤作動を防止し、センサー又はスイッチとしての信頼性を確保することもできる。 Thereby, the switch element 30 can efficiently guide the liquid that has entered from the introduction port 36 to the reaction unit 2. In addition, by applying a water repellent treatment to the introduction port 36 and the introduction groove 40, a small amount of liquid is repelled and not entered into the switch element 30 except in a wet state in which the switch element 30 should be operated. And reliability as a sensor or a switch can be secured.
 また、スイッチ素子30は、カバー部材34の内壁に撥水処理を施してもよい。カバー部材34の内壁に撥水処理を施すことによっても、スイッチ素子30内に浸入した液体を効率良く反応部2に導き、速やかに反応部2を作用させることができる。 Further, the switch element 30 may perform water repellent treatment on the inner wall of the cover member 34. Also by applying a water-repellent treatment to the inner wall of the cover member 34, the liquid that has entered the switch element 30 can be efficiently guided to the reaction unit 2, and the reaction unit 2 can be operated quickly.
 また、スイッチ素子30は、図25に示すように、導入口36を液体で溶解する水溶性封止材47で形成されたシート体を天面34aに貼付することにより閉塞してもよい。また、スイッチ素子30は、図26に示すように、導入溝40を液体で溶解する水溶性封止材47で閉塞してもよい。水溶性封止材47としては、例えば、寒天,ゼラチンなどの天然ポリマー、セルロース,でんぷんなどの半合成ポリマー、ポリビニルアルコールなどの合成ポリマー等が挙げられる。これらは、液体と接触することにより収縮あるいは溶解する。なお、高分子量になると溶解せず膨張する性質が強くなるため、重合度を調整して用いることが好ましい。また、液溶性材料として角砂糖のような水溶性の固形物を用いた場合、液体と接触することにより溶解、あるいは体積が減少する。 Further, as shown in FIG. 25, the switch element 30 may be closed by sticking a sheet body formed of a water-soluble sealing material 47 that dissolves the introduction port 36 with a liquid to the top surface 34a. In addition, as shown in FIG. 26, the switch element 30 may block the introduction groove 40 with a water-soluble sealing material 47 that dissolves with a liquid. Examples of the water-soluble sealing material 47 include natural polymers such as agar and gelatin, semi-synthetic polymers such as cellulose and starch, and synthetic polymers such as polyvinyl alcohol. These shrink or dissolve when contacted with a liquid. In addition, since the property which does not melt | dissolve but expand | swells will become strong when it becomes high molecular weight, it is preferable to adjust and use a polymerization degree. In addition, when a water-soluble solid material such as sugar cubes is used as the liquid-soluble material, dissolution or volume is reduced by contact with the liquid.
 また、液体としてバッテリセルに充填されたエチレンカーボネート等の電解液を想定し、電解液漏れに対応して作動するスイッチ素子の場合、水溶性封止材47の材料としては、ABS、ポリアクリロニトリル、ポリフッ化ビニリデン、あるいはPET、PTT、PEN等の飽和ポリエステルなどを用いることができる。これらの水溶性材料も、高分子量になると溶解速度が落ち、スイッチ素子30として反応速度が低下する場合もあるため、反応速度を優先する場合は、重合度を調整して用いることが好ましい。 In addition, assuming a liquid electrolyte such as ethylene carbonate filled in the battery cell as a liquid, in the case of a switch element that operates in response to an electrolyte leakage, the material of the water-soluble sealing material 47 includes ABS, polyacrylonitrile, Polyvinylidene fluoride or saturated polyester such as PET, PTT, PEN, or the like can be used. Since these water-soluble materials also have a high molecular weight, the dissolution rate decreases and the reaction rate of the switch element 30 may decrease. Therefore, when giving priority to the reaction rate, it is preferable to adjust the polymerization degree and use it.
 導入口36や導入溝40を水溶性封止材47で閉塞することにより、スイッチ素子30を作動させるべき水濡れ状態以外では、少量の液体を弾いてスイッチ素子30内に浸入させないことから、誤作動を防止し、センサー又はスイッチとしての信頼性を確保することもできる。 By closing the introduction port 36 and the introduction groove 40 with the water-soluble sealing material 47, a small amount of liquid is repelled and not allowed to enter the switch element 30 except in a water wet state where the switch element 30 should be operated. The operation can be prevented, and the reliability as a sensor or a switch can be secured.
 [第2のスイッチ素子]
 次いで、第2のスイッチ素子について説明する。なお、以下の説明において、上述した液濡れセンサー1及びスイッチ素子30と同じ部材については同一の符号を付してその詳細を省略する。図27は、スイッチ素子60の分解斜視図である。スイッチ素子60は、外部回路の通電経路上に配設されることにより当該外部回路の導通を遮断するものである。スイッチ素子60は、外部回路に接続されるヒューズエレメント61と、液体に触れることで発熱する反応部2とを備え、反応部2の発熱によってヒューズエレメント61を溶断する。
[Second switch element]
Next, the second switch element will be described. In the following description, the same members as those of the liquid wetting sensor 1 and the switch element 30 described above are denoted by the same reference numerals, and details thereof are omitted. FIG. 27 is an exploded perspective view of the switch element 60. The switch element 60 is disposed on the energization path of the external circuit to cut off the conduction of the external circuit. The switch element 60 includes a fuse element 61 connected to an external circuit and the reaction unit 2 that generates heat when touched by a liquid, and the fuse element 61 is melted by heat generated by the reaction unit 2.
 また、スイッチ素子60は、ヒューズエレメント61及び反応部2が設けられる絶縁基板33と、絶縁基板33上を覆うカバー部材34により筐体が形成される。カバー部材34には、反応部2に液体を導く導入口36が形成されている。絶縁基板33の相対向する両端部には、第1、第2の電極38,39が形成されている。スイッチ素子60は、第1、第2の電極38,39と連続する第1、第2の外部接続電極38a,39aが、スイッチ素子60が実装される外部回路基板に設けられた接続電極に接続されることにより、ヒューズエレメント61が回路基板上に形成された電流経路の一部に組み込まれる。 Further, the switch element 60 has a housing formed of an insulating substrate 33 provided with the fuse element 61 and the reaction unit 2 and a cover member 34 covering the insulating substrate 33. The cover member 34 is formed with an introduction port 36 that guides the liquid to the reaction unit 2. First and second electrodes 38 and 39 are formed at opposite ends of the insulating substrate 33. In the switch element 60, the first and second external connection electrodes 38 a and 39 a continuous with the first and second electrodes 38 and 39 are connected to connection electrodes provided on an external circuit board on which the switch element 60 is mounted. As a result, the fuse element 61 is incorporated into a part of the current path formed on the circuit board.
 また、絶縁基板33には、例えば生石灰が配設、保持されることにより反応部2が形成される。反応部2の近傍にはヒューズエレメント61が配置されることにより、反応部2とヒューズエレメント61とが熱的に接続されている。例えば反応部2は、ヒューズエレメント61が重畳して配置されている。 Further, the reaction part 2 is formed on the insulating substrate 33 by arranging and holding, for example, quick lime. The fuse element 61 is disposed in the vicinity of the reaction unit 2, so that the reaction unit 2 and the fuse element 61 are thermally connected. For example, the reaction unit 2 is arranged with the fuse element 61 superimposed thereon.
 [ヒューズエレメント]
 スイッチ素子60は、第1の電極38から第2の電極39に跨ってヒューズエレメント61が接続用ハンダにより接続されている。ヒューズエレメント61は、通常使用時には第1、第2の電極38,39間を導通させ、スイッチ素子60が組み込まれた外部回路の電流経路の一部を構成する。そして、ヒューズエレメント61は、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、あるいは反応部2の発熱により溶断し、第1、第2の電極38,39間を遮断する。
[Fuse element]
In the switch element 60, the fuse element 61 is connected by connecting solder from the first electrode 38 to the second electrode 39. The fuse element 61 conducts between the first and second electrodes 38 and 39 during normal use, and constitutes a part of a current path of an external circuit in which the switch element 60 is incorporated. The fuse element 61 is melted by self-heating (Joule heat) when a current exceeding the rating is applied, or is melted by the heat generated by the reaction unit 2 to cut off between the first and second electrodes 38 and 39. .
 ヒューズエレメント61は、所定の定格電流値を有し、反応部2の発熱や定格電流値を超える電流が通電されると自己発熱により速やかに溶断する。ヒューズエレメント61は、ニッケル、錫、鉛から選択されるいずれか1種を主成分とすることが好ましい。なお、ヒューズエレメント61は、上述したヒューズエレメント31と同様に、低融点金属層41と高融点金属層42とを積層させた積層構造を有していてもよい。 The fuse element 61 has a predetermined rated current value, and when the heat generated by the reaction part 2 or a current exceeding the rated current value is energized, the fuse element 61 is quickly melted by self-heating. The fuse element 61 is preferably composed mainly of any one selected from nickel, tin, and lead. Note that the fuse element 61 may have a laminated structure in which a low melting point metal layer 41 and a high melting point metal layer 42 are laminated similarly to the fuse element 31 described above.
 このようなスイッチ素子60は、図28(A)に示すような回路構成を有する。すなわち、スイッチ素子60は、第1、第2の電極38,39間にわたって直列接続されたヒューズエレメント61と、液濡れにより発熱することによってヒューズエレメント61を溶融する反応部2とからなる回路構成である。また、スイッチ素子60は、第1、第2の電極38,39が電源回路等の外部の電気回路4の開放端に接続されることで、ヒューズエレメント61が当該電気回路4の通電経路上に組み込まれ、定格電流を流し、電気回路4を通電させている。 Such a switch element 60 has a circuit configuration as shown in FIG. That is, the switch element 60 has a circuit configuration including a fuse element 61 connected in series between the first and second electrodes 38 and 39 and a reaction unit 2 that melts the fuse element 61 by generating heat due to liquid wetting. is there. Further, the switch element 60 has the first and second electrodes 38 and 39 connected to the open end of the external electric circuit 4 such as a power supply circuit, so that the fuse element 61 is placed on the energization path of the electric circuit 4. The electric circuit 4 is energized by passing a rated current.
 そして、スイッチ素子60は、ヒューズエレメント61に定格を超える電流が流れた場合には自己発熱(ジュール熱)により、また、スイッチ素子60の内部に液体が浸入した場合には反応部2の発熱により、ヒューズエレメント61が溶断し、電気回路4を遮断する(図28(B))。 When the current exceeding the rating flows through the fuse element 61, the switch element 60 is self-heated (Joule heat), and when a liquid enters the switch element 60, the heat is generated by the reaction unit 2. The fuse element 61 is melted and the electric circuit 4 is cut off (FIG. 28B).
 スイッチ素子60は、図29に示すように、例えば上述したリチウムイオン二次電池のバッテリパック10内の回路に組み込んで用いることができる。スイッチ素子60は、第1の電極38がバッテリスタック15の他方の開放端側に接続され、第2の電極39がバッテリパック10の正極端子10a側に接続されることで、ヒューズエレメント61が当該外部回路の通電経路上に組み込まれる。 As shown in FIG. 29, the switch element 60 can be used by being incorporated in the circuit in the battery pack 10 of the above-described lithium ion secondary battery, for example. The switch element 60 has the first electrode 38 connected to the other open end side of the battery stack 15, and the second electrode 39 connected to the positive electrode terminal 10 a side of the battery pack 10. It is incorporated on the energization path of the external circuit.
 そして、スイッチ素子60は、カバー部材34に設けられた導入口36より液体が浸入し、反応部2が液体と接触することにより発熱すると、バッテリパック10の電流経路上に組み込まれたヒューズエレメント61が溶融され、ヒューズエレメント61の溶融導体が、濡れ性の高い第1、第2の電極38,39に引き寄せられることによりヒューズエレメント61が溶断される。したがって、図28(B)に示すように、スイッチ素子60は、バッテリスタック15の充放電経路を遮断することができる。 When the switch element 60 generates heat when liquid enters from the introduction port 36 provided in the cover member 34 and the reaction unit 2 comes into contact with the liquid, the fuse element 61 incorporated on the current path of the battery pack 10. Is melted, and the fuse conductor of the fuse element 61 is attracted to the first and second electrodes 38 and 39 having high wettability, so that the fuse element 61 is blown. Therefore, as shown in FIG. 28B, the switch element 60 can block the charge / discharge path of the battery stack 15.
 [撥水処理]
 なお、図27に示すように、スイッチ素子60は、上述したスイッチ素子30と同様に、反応部2以外の場所、又は反応部2及びその近傍以外の場所に、撥水処理部35を設けてもよい。例えばスイッチ素子60は、反応部2、第1、第2の電極38,39を除く絶縁基板33の表面33aの露出領域に、撥水処理部35が設けられる。
[Water repellent treatment]
As shown in FIG. 27, the switch element 60 is provided with a water repellent treatment part 35 at a place other than the reaction part 2 or at a place other than the reaction part 2 and its vicinity, like the switch element 30 described above. Also good. For example, the switch element 60 is provided with a water repellent treatment portion 35 in an exposed region of the surface 33 a of the insulating substrate 33 excluding the reaction portion 2 and the first and second electrodes 38 and 39.
 これにより、スイッチ素子60は、絶縁基板33上の液体を非撥水領域である反応部2に導くことができ、ヒューズエレメント61の加熱を促進して溶断を促進させることができる。 Thereby, the switch element 60 can guide the liquid on the insulating substrate 33 to the reaction part 2 that is a non-water-repellent region, and can promote the heating of the fuse element 61 and promote the fusing.
 なお、スイッチ素子60においても、上述したスイッチ素子30と同様に、筐体を構成するカバー部材34は、多面体からなり、一の面に、一の導入口36が設けられている(図16(A)参照)。また、カバー部材34は、天面34aに複数の導入口36を形成してもよく(図16(B)参照)、あるいは側面34bに複数の導入口36を形成してもよい。また、カバー部材34は、複数の面、例えば天面34aと側面34bに導入口36を設けてもよい(図16(C)参照)。また、カバー部材34は、複数の面にそれぞれ一又は複数の導入口36を形成してもよい(図16(D)参照)。 Also in the switch element 60, similarly to the switch element 30 described above, the cover member 34 constituting the casing is formed of a polyhedron, and one introduction port 36 is provided on one surface (FIG. 16 ( A)). The cover member 34 may have a plurality of inlets 36 formed on the top surface 34a (see FIG. 16B), or a plurality of inlets 36 formed on the side surface 34b. In addition, the cover member 34 may be provided with introduction ports 36 on a plurality of surfaces, for example, the top surface 34a and the side surface 34b (see FIG. 16C). Moreover, the cover member 34 may form one or a plurality of introduction ports 36 on a plurality of surfaces, respectively (see FIG. 16D).
 また、スイッチ素子60は、スイッチ素子30と同様に、カバー部材34を筒状に形成し、導入口36を任意の位置に、任意の個数だけ形成してもよい(図17参照)。 Further, in the switch element 60, similarly to the switch element 30, the cover member 34 may be formed in a cylindrical shape, and any number of introduction ports 36 may be formed at any position (see FIG. 17).
 また、スイッチ素子60は、スイッチ素子30と同様に、カバー部材34に導入口36より浸入した液体を排出する排出口37を形成してもよい(図18参照)。また、排出口37は、反応部2が設けられた位置と同じ高さ、又は反応部2が設けられた位置よりも上方に設けられていることが好ましい(図19参照)。なお、液体を導入する導入口36及び液体を排出する排出口37は、円形、矩形等、その形状は問わない。また、導入口36及び排出口37はスリット状に形成してもよい(図20参照)。 Also, the switch element 60 may form a discharge port 37 for discharging the liquid that has entered the cover member 34 from the introduction port 36, as with the switch element 30 (see FIG. 18). Moreover, it is preferable that the discharge port 37 is provided at the same height as the position where the reaction part 2 is provided or above the position where the reaction part 2 is provided (see FIG. 19). The inlet 36 for introducing the liquid and the outlet 37 for discharging the liquid may have any shape such as a circle or a rectangle. Further, the introduction port 36 and the discharge port 37 may be formed in a slit shape (see FIG. 20).
 また、スイッチ素子60は、スイッチ素子30と同様に、カバー部材34の天面34aにスリット状の導入口36を設けるとともに、反応部2へ液体を導く導入溝40を設けてもよい(図21(A)(B)参照)。 Similarly to the switch element 30, the switch element 60 may be provided with a slit-like introduction port 36 on the top surface 34 a of the cover member 34 and an introduction groove 40 that guides the liquid to the reaction unit 2 (FIG. 21). (See (A) and (B)).
 なお、導入溝40は、複数形成してもよい(図22(A)(B)参照)。また、導入溝40は、天面34aに臨む導入口36の開口部から反応部2が設けられた内部にかけて漸次狭小化させてもよい(図23参照)。導入溝40を反応部2に近づくにつれて狭小化することにより、導入口36の開口部から浸入した液体を、毛細管現象によって効率よく反応部2に導くことができる。 Note that a plurality of introduction grooves 40 may be formed (see FIGS. 22A and 22B). The introduction groove 40 may be gradually narrowed from the opening of the introduction port 36 facing the top surface 34a to the inside where the reaction unit 2 is provided (see FIG. 23). By narrowing the introduction groove 40 as it approaches the reaction part 2, the liquid that has entered through the opening of the introduction port 36 can be efficiently guided to the reaction part 2 by capillary action.
 また、スイッチ素子60は、スイッチ素子30と同様に、反応部2以外の場所に撥水処理を施し、液体を反応部2に誘導してもよい(図24参照)。スイッチ素子60は、導入口36、又は導入口36及び導入溝40の溝壁40aに撥水処理が施された撥水処理部46を形成してもよい。撥水処理部46は、例えばフッ素系コーティング剤の塗布、ソルダーペーストコーティング等、公知の手法により形成することができる。 Moreover, the switch element 60 may perform water-repellent treatment at a place other than the reaction unit 2 and guide the liquid to the reaction unit 2 as in the case of the switch element 30 (see FIG. 24). The switch element 60 may form the water repellent treatment portion 46 in which the water repellent treatment is performed on the introduction port 36 or the groove wall 40 a of the introduction port 36 and the introduction groove 40. The water repellent portion 46 can be formed by a known method such as application of a fluorine coating agent or solder paste coating.
 これによりスイッチ素子60は、導入口36より浸入した液体を効率よく反応部2に導くことができる。また、導入口36や導入溝40に撥水処理を施すことにより、スイッチ素子60を作動させるべき水濡れ状態以外では、少量の液体を弾いてスイッチ素子60内に浸入させないことから、誤作動を防止し、センサー又はスイッチとしての信頼性を確保することもできる。 Thereby, the switch element 60 can efficiently guide the liquid that has entered through the introduction port 36 to the reaction unit 2. In addition, by applying a water repellent treatment to the introduction port 36 and the introduction groove 40, a small amount of liquid is repelled and not entered into the switch element 60 except in a wet state where the switch element 60 should be operated. And reliability as a sensor or a switch can be secured.
 また、スイッチ素子60は、スイッチ素子30と同様に、カバー部材34の内壁に撥水処理を施してもよい。カバー部材34の内壁に撥水処理を施すことによっても、スイッチ素子60内に浸入した液体を効率良く反応部2に導き、速やかに反応部2を作用させることができる。 Further, the switch element 60 may perform a water repellent treatment on the inner wall of the cover member 34, similarly to the switch element 30. Also by applying a water repellent treatment to the inner wall of the cover member 34, the liquid that has entered the switch element 60 can be efficiently guided to the reaction unit 2 and the reaction unit 2 can be operated quickly.
 また、スイッチ素子60は、スイッチ素子30と同様に、導入口36を液体で溶解する水溶性封止材47で形成されたシート体を天面34aに貼付することにより閉塞してもよい(図25参照)。また、スイッチ素子60は、スイッチ素子30と同様に、導入溝40を液体で溶解する水溶性封止材47で閉塞してもよい(図26参照)。 Similarly to the switch element 30, the switch element 60 may be closed by sticking a sheet body formed of a water-soluble sealing material 47 that dissolves the introduction port 36 with a liquid to the top surface 34a (FIG. 25). Moreover, the switch element 60 may close the introduction groove 40 with a water-soluble sealing material 47 that dissolves with a liquid, as with the switch element 30 (see FIG. 26).
 導入口36や導入溝40を水溶性封止材47で閉塞することにより、スイッチ素子60を作動させるべき水濡れ状態以外では、少量の液体を弾いてスイッチ素子60内に浸入させないことから、誤作動を防止し、センサー又はスイッチとしての信頼性を確保することもできる。 Since the introduction port 36 and the introduction groove 40 are closed with the water-soluble sealing material 47, a small amount of liquid is repelled and not allowed to enter the switch element 60 except in a wet state in which the switch element 60 should be operated. The operation can be prevented, and the reliability as a sensor or a switch can be secured.
1 液濡れセンサー、2 反応部、3 サーミスタ、4 電気回路、5 絶縁基板、6 第1の外部接続電極、7 第2の外部接続電極、8 カバー部材、9 導入口、10 バッテリパック、11 保護素子、12 電流制御素子、13 充電装置、15 バッテリスタック、16 充放電制御回路、17 電流制御素子、18 電流制御素子、19 制御部、20 ヒューズエレメント、21 発熱体引出電極、22 第1の電極、23 第2の電極、24 発熱抵抗体、25 発熱体給電電極、26 絶縁基板、27 ガラス層、28 接続用ハンダ、30 スイッチ素子、31 ヒューズエレメント、32 発熱抵抗体、33 絶縁基板、34 カバー部材、35 撥水処理部、36 導入口、37 排出口、38 第1の電極、39 第2の電極、40 導入溝、41 低融点金属層、42 高融点金属層、43 第1の発熱体電極、44 第3の外部接続電極、45 第4の外部接続電極、46 撥水処理部、47 水溶性封止材、50 絶縁層、51 発熱体引出電極、52 第2の発熱体電極、53 給電経路、54 通電経路、60 スイッチ素子、61 ヒューズエレメント 1 liquid wetting sensor, 2 reaction unit, 3 thermistor, 4 electrical circuit, 5 insulating substrate, 6 first external connection electrode, 7 second external connection electrode, 8 cover member, 9 inlet, 10 battery pack, 11 protection Element, 12 Current control element, 13 Charging device, 15 Battery stack, 16 Charge / discharge control circuit, 17 Current control element, 18 Current control element, 19 Control unit, 20 Fuse element, 21 Heating element extraction electrode, 22 First electrode , 23 2nd electrode, 24 heating resistor, 25 heating element feeding electrode, 26 insulating substrate, 27 glass layer, 28 connecting solder, 30 switch element, 31 fuse element, 32 heating resistor, 33 insulating substrate, 34 cover Member, 35 water-repellent treatment part, 36 inlet, 37 outlet, 38 first electrode, 3 Second electrode, 40 introduction groove, 41 low melting point metal layer, 42 high melting point metal layer, 43 first heating element electrode, 44 third external connection electrode, 45 fourth external connection electrode, 46 water repellent treatment part 47, water-soluble sealing material, 50 insulating layer, 51 heating element extraction electrode, 52 second heating element electrode, 53 power supply path, 54 energization path, 60 switch element, 61 fuse element

Claims (40)

  1.  液体に触れることで発熱する反応部と、
     上記反応部の温度変化に伴い電気特性が変化する感温部とを有する液濡れセンサー。
    A reaction part that generates heat by touching the liquid;
    A liquid wetting sensor having a temperature sensitive part whose electrical characteristics change with a change in temperature of the reaction part.
  2.  上記反応部は、酸化カルシウム(CaO:生石灰)を有し、
     上記液体は、水を主成分とする請求項1記載の液濡れセンサー。
    The reaction part has calcium oxide (CaO: quick lime),
    The liquid wetting sensor according to claim 1, wherein the liquid contains water as a main component.
  3.  上記反応部と上記感温部とが重畳されている請求項1又は2に記載の液濡れセンサー。 The liquid wetting sensor according to claim 1 or 2, wherein the reaction part and the temperature sensing part are superimposed.
  4.  上記感温部は、サーミスタ、ダイオード、ペルチェ素子、熱電対、バイメタル又は温度センサである請求項1又は2に記載の液濡れセンサー。 The liquid wetting sensor according to claim 1 or 2, wherein the temperature sensing part is a thermistor, a diode, a Peltier element, a thermocouple, a bimetal, or a temperature sensor.
  5.  外部回路に接続される可溶導体と、
     発熱抵抗体と、
     液体に触れることで発熱する反応部と、
     上記発熱抵抗体と接続され、上記反応部の温度変化に伴い電気特性が変化する感温部とを備え、
     上記感温部の電気特性の変化により通電量が増加した上記発熱抵抗体の発熱によって上記可溶導体を溶断するスイッチ素子。
    A fusible conductor connected to an external circuit;
    A heating resistor;
    A reaction part that generates heat by touching the liquid;
    A temperature sensing part connected to the heating resistor, the electrical characteristics of which change with temperature change of the reaction part,
    A switch element for fusing the soluble conductor by heat generation of the heating resistor whose energization amount is increased due to a change in electrical characteristics of the temperature sensing part.
  6.  上記反応部は、酸化カルシウム(CaO:生石灰)を有し、
     上記液体は、水を主成分とする請求項5記載のスイッチ素子。
    The reaction part has calcium oxide (CaO: quick lime),
    The switch element according to claim 5, wherein the liquid contains water as a main component.
  7.  上記反応部と上記感温部とが重畳されている請求項5又は6に記載のスイッチ素子。 The switch element according to claim 5 or 6, wherein the reaction part and the temperature sensing part are superimposed.
  8.  上記感温部は、サーミスタ、ダイオード、ペルチェ素子、熱電対、バイメタル又は温度センサである請求項5又は6に記載のスイッチ素子。 The switch element according to claim 5 or 6, wherein the temperature sensing part is a thermistor, a diode, a Peltier element, a thermocouple, a bimetal, or a temperature sensor.
  9.  上記可溶導体は、電源回路に接続され、
     上記発熱抵抗体は、上記可溶導体の通電経路に電気的に接続されている請求項5又は6に記載のスイッチ素子。
    The fusible conductor is connected to a power circuit,
    The switch element according to claim 5 or 6, wherein the heating resistor is electrically connected to an energization path of the soluble conductor.
  10.  上記可溶導体は、電源回路に接続され、
     上記発熱抵抗体は、上記可溶導体と並列に電源回路に接続されている請求項5又は6に記載のスイッチ素子。
    The fusible conductor is connected to a power circuit,
    The switch element according to claim 5 or 6, wherein the heating resistor is connected to a power supply circuit in parallel with the fusible conductor.
  11.  さらに、上記可溶導体、上記発熱抵抗体、上記反応部、上記感温部が内蔵された筐体を備え、
     上記筐体は、上記反応部に上記液体を導く導入口が設けられている請求項5又は6に記載のスイッチ素子。
    Furthermore, the housing includes the soluble conductor, the heating resistor, the reaction part, the temperature sensing part,
    The switch element according to claim 5 or 6, wherein the casing is provided with an inlet for introducing the liquid into the reaction part.
  12.  上記筐体は多面体からなり、一又は複数の面に、一又は複数の上記導入口が設けられている請求項11記載のスイッチ素子。 The switch element according to claim 11, wherein the casing is formed of a polyhedron, and one or a plurality of introduction ports are provided on one or a plurality of surfaces.
  13.  上記筐体は筒状に形成され、側面に一又は複数の上記導入口が形成されている請求項11記載のスイッチ素子。 12. The switch element according to claim 11, wherein the casing is formed in a cylindrical shape, and one or more introduction ports are formed on a side surface.
  14.  上記筐体には、流入した上記液体を排出する排出口が設けられている請求項11に記載のスイッチ素子。 The switch element according to claim 11, wherein the casing is provided with a discharge port for discharging the flowed-in liquid.
  15.  上記排出口は、上記反応部が設けられた位置と同じ高さ、又は上記反応部が設けられた位置よりも上方に設けられている請求項14記載のスイッチ素子。 15. The switch element according to claim 14, wherein the discharge port is provided at the same height as the position where the reaction part is provided or above the position where the reaction part is provided.
  16.  上記導入口は、上記反応部へ上記液体を導く導入溝が設けられている請求項11に記載のスイッチ素子。 The switch element according to claim 11, wherein the introduction port is provided with an introduction groove for guiding the liquid to the reaction part.
  17.  上記導入溝は、上記導入口の開口部から内部にかけて漸次狭小化されている請求項16記載のスイッチ素子。 The switch element according to claim 16, wherein the introduction groove is gradually narrowed from an opening portion of the introduction port to an inside thereof.
  18.  上記筐体は、上記導入口に撥水処理が施されている請求項11に記載のスイッチ素子。 The switch element according to claim 11, wherein the casing has a water repellent treatment at the inlet.
  19.  上記筐体は、上記導入溝に撥水処理が施されている請求項16に記載のスイッチ素子。 The switch element according to claim 16, wherein the casing has a water repellent treatment applied to the introduction groove.
  20.  上記筐体は、内壁に撥水処理が施されている請求項11に記載のスイッチ素子。 The switch element according to claim 11, wherein the casing has a water-repellent treatment applied to an inner wall.
  21.  上記導入口は、上記液体で溶解する液溶性材料で閉塞されている請求項11に記載のスイッチ素子。 The switch element according to claim 11, wherein the introduction port is closed with a liquid-soluble material that dissolves with the liquid.
  22.  上記導入溝は、上記液体で溶解する液溶性材料が配置されている請求項16に記載のスイッチ素子。 The switch element according to claim 16, wherein a liquid-soluble material that dissolves in the liquid is disposed in the introduction groove.
  23.  バッテリセルと、
     上記バッテリセルの充放電経路上に接続された可溶導体と、
     発熱抵抗体と、
     液体に触れることで発熱する反応部と、
     上記発熱抵抗体の通電経路上に接続され、上記反応部の温度変化に伴い電気特性が変化する感温部とを備え、
     上記感温部の電気特性の変化により通電量が増加した上記発熱抵抗体の発熱によって上記可溶導体を溶断するバッテリシステム。
    A battery cell;
    A fusible conductor connected on the charge / discharge path of the battery cell;
    A heating resistor;
    A reaction part that generates heat by touching the liquid;
    A temperature-sensitive part connected to the energization path of the heating resistor, and a temperature-sensitive part whose electrical characteristics change with a temperature change of the reaction part,
    A battery system in which the soluble conductor is blown by heat generation of the heating resistor whose energization amount is increased by a change in electrical characteristics of the temperature sensing unit.
  24.  バッテリセルと、
     上記バッテリセルの充放電経路上に接続された可溶導体と、
     発熱抵抗体と、
     液体に触れることで発熱する反応部と、
     上記反応部の温度変化に伴い電気特性が変化する感温部と、
     上記発熱抵抗体への通電を制御する電流制御素子を備え、
     上記感温部と上記電流制御素子とが接続され、
     上記感温部の電気特性の変化により上記電流制御素子が通電され、上記発熱抵抗体への通電が開始され、上記発熱抵抗体の発熱によって上記可溶導体を溶断するバッテリシステム。
    A battery cell;
    A fusible conductor connected on the charge / discharge path of the battery cell;
    A heating resistor;
    A reaction part that generates heat by touching the liquid;
    A temperature-sensitive part whose electrical characteristics change with a change in temperature of the reaction part;
    A current control element for controlling energization to the heating resistor,
    The temperature sensing part and the current control element are connected,
    A battery system in which the current control element is energized by a change in electrical characteristics of the temperature sensing unit, energization to the heating resistor is started, and the soluble conductor is blown by heat generation of the heating resistor.
  25.  外部回路に接続される可溶導体と、
     液体に触れることで発熱する反応部とを備え、
     上記反応部の発熱によって上記可溶導体を溶断するスイッチ素子。
    A fusible conductor connected to an external circuit;
    With a reaction part that generates heat by touching the liquid,
    A switch element for fusing the soluble conductor by heat generated in the reaction part.
  26.  上記反応部は、酸化カルシウム(CaO:生石灰)を有し、
     上記液体は、水を主成分とする請求項25記載のスイッチ素子。
    The reaction part has calcium oxide (CaO: quick lime),
    26. The switch element according to claim 25, wherein the liquid is mainly composed of water.
  27.  上記反応部と上記可溶導体とが重畳されている請求項25又は26に記載のスイッチ素子。 The switch element according to claim 25 or 26, wherein the reaction part and the soluble conductor are superimposed.
  28.  さらに、上記可溶導体、及び上記反応部が内蔵された筐体を備え、
     上記筐体は、上記反応部に上記液体を導く導入口が設けられている請求項25又は26に記載のスイッチ素子。
    Furthermore, it comprises a housing in which the soluble conductor and the reaction part are incorporated,
    27. The switch element according to claim 25 or 26, wherein the casing is provided with an inlet for introducing the liquid into the reaction part.
  29.  上記筐体は多面体からなり、一又は複数の面に、一又は複数の上記導入口が設けられている請求項28記載のスイッチ素子。 29. The switch element according to claim 28, wherein the casing is made of a polyhedron, and one or more introduction ports are provided on one or more surfaces.
  30.  上記筐体は筒状に形成され、側面に一又は複数の上記導入口が形成されている請求項28記載のスイッチ素子。 29. The switch element according to claim 28, wherein the casing is formed in a cylindrical shape, and one or more introduction ports are formed on a side surface.
  31.  上記筐体には、流入した上記液体を排出する排出口が設けられている請求項28に記載のスイッチ素子。 29. The switch element according to claim 28, wherein the casing is provided with a discharge port for discharging the flowed-in liquid.
  32.  上記排出口は、上記反応部が設けられた位置と同じ高さ、又は上記反応部が設けられた位置よりも上方に設けられている請求項31記載のスイッチ素子。 32. The switch element according to claim 31, wherein the discharge port is provided at the same height as the position where the reaction part is provided or above the position where the reaction part is provided.
  33.  上記導入口は、上記反応部へ上記液体を導く導入溝が設けられている請求項28に記載のスイッチ素子。 29. The switch element according to claim 28, wherein the introduction port is provided with an introduction groove that guides the liquid to the reaction section.
  34.  上記導入溝は、上記導入口の開口部から内部にかけて漸次狭小化されている請求項33記載のスイッチ素子。 34. The switch element according to claim 33, wherein the introduction groove is gradually narrowed from an opening portion of the introduction port to an inside thereof.
  35.  上記筐体は、上記導入口に撥水処理が施されている請求項28に記載のスイッチ素子。 The switch element according to claim 28, wherein the casing has a water-repellent treatment applied to the introduction port.
  36.  上記筐体は、上記導入溝に撥水処理が施されている請求項33に記載のスイッチ素子。 34. The switch element according to claim 33, wherein the casing has a water repellent treatment applied to the introduction groove.
  37.  上記筐体は、内壁に撥水処理が施されている請求項28に記載のスイッチ素子。 The switch element according to claim 28, wherein the casing has a water-repellent treatment applied to an inner wall.
  38.  上記導入口は、上記液体で溶解する液溶性材料で閉塞されている請求項28に記載のスイッチ素子。 29. The switch element according to claim 28, wherein the introduction port is closed with a liquid-soluble material that dissolves with the liquid.
  39.  上記導入溝は、上記液体で溶解する液溶性材料が配置されている請求項33に記載のスイッチ素子。 34. The switch element according to claim 33, wherein a liquid-soluble material that dissolves in the liquid is disposed in the introduction groove.
  40.  バッテリセルと、
     上記バッテリセルの充放電経路上に接続された可溶導体と、
     液体に触れることで発熱する反応部とを備え、
     上記反応部の発熱によって上記可溶導体を溶断するバッテリシステム。
    A battery cell;
    A fusible conductor connected on the charge / discharge path of the battery cell;
    With a reaction part that generates heat by touching the liquid,
    A battery system for fusing the fusible conductor by heat generated in the reaction part.
PCT/JP2016/079596 2015-10-07 2016-10-05 Wetting sensor, switch element and battery system WO2017061455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680055764.8A CN108028154B (en) 2015-10-07 2016-10-05 Liquid immersion sensor, switching element, and battery system
KR1020187007373A KR102024488B1 (en) 2015-10-07 2016-10-05 Wetting Sensors, Switch Elements, Battery Systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199816 2015-10-07
JP2015199816A JP6708388B2 (en) 2015-10-07 2015-10-07 Wetting sensor, switch element, battery system

Publications (1)

Publication Number Publication Date
WO2017061455A1 true WO2017061455A1 (en) 2017-04-13

Family

ID=58487720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079596 WO2017061455A1 (en) 2015-10-07 2016-10-05 Wetting sensor, switch element and battery system

Country Status (5)

Country Link
JP (1) JP6708388B2 (en)
KR (1) KR102024488B1 (en)
CN (1) CN108028154B (en)
TW (1) TWI712791B (en)
WO (1) WO2017061455A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969168A (en) * 2019-05-20 2020-11-20 Oppo广东移动通信有限公司 Battery pack and electronic device
CN112524389A (en) * 2020-11-17 2021-03-19 华霆(合肥)动力技术有限公司 Liquid cooling pipeline, liquid leakage detection device, liquid cooling pipeline system and battery pack
WO2021241629A1 (en) * 2020-05-29 2021-12-02 デクセリアルズ株式会社 Protective element
WO2022150201A3 (en) * 2021-01-08 2022-12-01 Google Llc Battery protection systems for detecting conductive liquid ingress and associated devices and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807735A (en) * 2017-05-04 2018-11-13 郑州宇通客车股份有限公司 A kind of Battery case, Battery case water resistance detection method and system
JP7018786B2 (en) * 2018-02-27 2022-02-14 デクセリアルズ株式会社 Protection circuit, photovoltaic system
CN110474087A (en) * 2019-08-14 2019-11-19 润远建设发展有限公司 A kind of novel lithium battery with leakage warning function
JP7443144B2 (en) * 2020-04-17 2024-03-05 デクセリアルズ株式会社 Protection elements and battery packs
JP7487098B2 (en) 2020-12-28 2024-05-20 デクセリアルズ株式会社 Protection elements and electronic devices
JP7215611B1 (en) 2022-02-01 2023-01-31 スズキ株式会社 street lamp
CN116386282A (en) * 2023-03-24 2023-07-04 国网河南省电力公司电力科学研究院 Prevention alarm device for transformer substation slope water level impregnation and laying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107631A1 (en) * 2014-01-15 2015-07-23 デクセリアルズ株式会社 Protective element
JP2015228354A (en) * 2014-06-03 2015-12-17 デクセリアルズ株式会社 Fuse element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281848A (en) * 1993-01-28 1994-10-07 Showa Electric Wire & Cable Co Ltd Loose tube type optical fiber cable
JP3475060B2 (en) 1997-11-12 2003-12-08 三洋電機株式会社 Battery pack with a submerged judgment seal
JP3793359B2 (en) 1998-11-30 2006-07-05 株式会社オートネットワーク技術研究所 Electronic control circuit board with water wetting sensor and water wetting sensor
JP3468421B2 (en) * 2000-07-21 2003-11-17 Necトーキン栃木株式会社 Battery pack
JP2006252919A (en) * 2005-03-10 2006-09-21 Nissan Motor Co Ltd Fuel cell system
WO2007096878A2 (en) * 2006-02-21 2007-08-30 Rf Dynamics Ltd. Electromagnetic heating
DE102009029279A1 (en) * 2009-09-08 2011-03-10 Robert Bosch Gmbh Protective device for an electrical device
JPWO2012042903A1 (en) * 2010-09-30 2014-02-06 パナソニック株式会社 REAGENT COMPOSITION, SENSOR, SENSOR SYSTEM, AND SENSOR MANUFACTURING METHOD
JP5952674B2 (en) * 2012-08-01 2016-07-13 デクセリアルズ株式会社 Protective element and battery pack
CN104407083B (en) * 2014-11-28 2016-08-31 天津博纳艾杰尔科技有限公司 Full-automatic piece-rate system and the application in edible oil polar compound separates thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107631A1 (en) * 2014-01-15 2015-07-23 デクセリアルズ株式会社 Protective element
JP2015228354A (en) * 2014-06-03 2015-12-17 デクセリアルズ株式会社 Fuse element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969168A (en) * 2019-05-20 2020-11-20 Oppo广东移动通信有限公司 Battery pack and electronic device
WO2021241629A1 (en) * 2020-05-29 2021-12-02 デクセリアルズ株式会社 Protective element
CN112524389A (en) * 2020-11-17 2021-03-19 华霆(合肥)动力技术有限公司 Liquid cooling pipeline, liquid leakage detection device, liquid cooling pipeline system and battery pack
WO2022150201A3 (en) * 2021-01-08 2022-12-01 Google Llc Battery protection systems for detecting conductive liquid ingress and associated devices and methods
US20230066939A1 (en) * 2021-01-08 2023-03-02 Google Llc Battery Protection Systems for Detecting Conductive Liquid Ingress and Associated Devices and Methods

Also Published As

Publication number Publication date
TWI712791B (en) 2020-12-11
KR20180039160A (en) 2018-04-17
CN108028154A (en) 2018-05-11
TW201809647A (en) 2018-03-16
CN108028154B (en) 2020-11-10
JP2017073288A (en) 2017-04-13
JP6708388B2 (en) 2020-06-10
KR102024488B1 (en) 2019-09-23

Similar Documents

Publication Publication Date Title
WO2017061455A1 (en) Wetting sensor, switch element and battery system
KR102614725B1 (en) Battery protection circuit and battery pack including same
JP6151550B2 (en) Protective element
TW201633352A (en) Fuse element and circuit module
US20200321175A1 (en) Switch device and protective device
WO2017061454A1 (en) Switch element, electronic component, battery system
TW201611069A (en) Protection element and protection circuit
JP6621255B2 (en) Protection element, fuse element
KR102043051B1 (en) Protective element
JP6030431B2 (en) Protective element
JP6712257B2 (en) Protection element, fuse element
TWI621145B (en) Protective component
WO2015025885A1 (en) Protection element
WO2020189225A1 (en) Battery pack and protection circuit
JP6202992B2 (en) Protective circuit, battery circuit, protective element, and driving method of protective element
TWI680482B (en) Protection element
JP7390825B2 (en) Protection element, battery pack
JP4438284B2 (en) Protective element and battery pack
JP2016031863A (en) Electronic component, circuit board and method for mounting electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007373

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853609

Country of ref document: EP

Kind code of ref document: A1