WO2017061438A1 - Vehicular cooling device - Google Patents

Vehicular cooling device Download PDF

Info

Publication number
WO2017061438A1
WO2017061438A1 PCT/JP2016/079528 JP2016079528W WO2017061438A1 WO 2017061438 A1 WO2017061438 A1 WO 2017061438A1 JP 2016079528 W JP2016079528 W JP 2016079528W WO 2017061438 A1 WO2017061438 A1 WO 2017061438A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
radiator
cooled
sub
Prior art date
Application number
PCT/JP2016/079528
Other languages
French (fr)
Japanese (ja)
Inventor
進作 山口
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017061438A1 publication Critical patent/WO2017061438A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a vehicle cooling device, and more particularly, to a vehicle cooling device that efficiently cools each of an engine, an intercooler, and a condenser for air conditioning refrigerant.
  • Cooling devices for large vehicles such as trucks are equipped with a sub-radiator that is separate from the radiator that cools the engine cooling water, and the cooling water cooled by the sub-radiator is supplied to the water-cooled intercooler for supercharging. Attention has been focused on devices that improve the exhaust gas performance and fuel consumption by increasing the intake air amount without increasing the work of the aircraft.
  • the load is larger and the weight of the vehicle is larger than that of a passenger car, so the engine load increases, and accordingly, the amount of heat released by an engine heat exchanger such as an intercooler or a radiator increases. Therefore, the air-cooled condenser for cooling the air-conditioning refrigerant used in the vehicle interior air conditioner cannot be placed on the engine heat exchanger.
  • this device is configured to supply cooling water cooled by one sub-radiator to a water-cooled intercooler or a water-cooled condenser.
  • the cooling water is first supplied to the water-cooled condenser having a low temperature range, and the cooling water heated by the water-cooled condenser is supplied to the next water-cooled intercooler.
  • the cooler cannot be cooled efficiently.
  • One aspect of the vehicle cooling device that achieves the above object includes a radiator that cools a first cooling water of an engine, and a second cooling that is supplied to a water-cooled intercooler that cools intake air supercharged by a supercharger.
  • a sub-radiator that has a first outlet for supplying water and a second outlet for supplying the second cooling water supplied to a water-cooled condenser for cooling the air-conditioning refrigerant, and cools the second cooling water.
  • the water-cooled intercooler and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
  • the second outlet is arranged downstream of the internal passage of the sub radiator from the first outlet.
  • the sub-radiator includes a first tank, a second tank, and a partition plate for partitioning the inside of each of the first tank and the second tank, and a plurality of the internal flow paths are provided in the internal flow path.
  • the first outlet may be disposed in one of the first tank and the second tank, and the second outlet may be disposed in the other.
  • the vehicle cooling device includes a main cooling circuit having the radiator, and a sub-cooling circuit having the sub radiator and independent from the main cooling circuit
  • the main cooling circuit includes a cooling passage in which the first cooling water circulates in the order of a mechanical water pump, the engine, the radiator, and the mechanical water pump, and the first cooling water is the mechanical water pump, It is constituted by a bypass passage that bypasses the radiator so as to circulate in the order of the engine and the mechanical water pump
  • the sub-cooling circuit is configured so that the second cooling water circulates in order of one of the electric water pump, the sub-radiator, the water-cooled intercooler, and the water-cooled condenser, and the electric water pump. May be.
  • an auxiliary electric water pump that adjusts the flow rate of the cooling water flowing through the water-cooled condenser may be interposed between the sub-radiator and the water-cooled condenser.
  • the vehicle cooling device includes a main cooling circuit having the radiator, and a sub cooling circuit having the sub radiator and branching from the main cooling circuit
  • the main cooling circuit includes a cooling passage in which cooling water circulates in the order of mechanical water pump, the engine, and the radiator, and the first cooling water circulates in order of the mechanical water pump and the engine. Consists of a bypass passage that bypasses the radiator,
  • the sub-cooling circuit is configured to circulate cooling water in the order of the mechanical water pump, the sub-radiator, the water-cooled intercooler, the water-cooled condenser, and the mechanical water pump. It may be.
  • the water-cooled EGR cooler that cools EGR gas
  • the water-cooled intercooler, the water-cooled EGR cooler, and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
  • the cooling water discharged from the first outlet may be supplied to the water-cooled EGR cooler.
  • the cooling water discharged from the first outlet may be supplied to the water-cooled EGR cooler disposed on the downstream side of the plurality of water-cooled EGR coolers interposed in the EGR passage of the engine.
  • the cooling water cooled by the sub-radiator can be directly supplied to the water-cooled condenser, so that the air-conditioning refrigerant can be effectively cooled. Can be improved.
  • FIG. 1 is a configuration diagram illustrating a vehicle cooling device according to the first embodiment.
  • FIG. 2 is a perspective view illustrating the configuration of the radiator and the sub-radiator of FIG.
  • FIG. 3 is a configuration diagram illustrating a modification of the vehicle cooling device of the first embodiment.
  • FIG. 4 is a configuration diagram illustrating the vehicle cooling device of the second embodiment.
  • FIG. 5 is a configuration diagram illustrating a modification of the vehicle cooling device of the second embodiment.
  • FIG. 6 is a configuration diagram illustrating the vehicle cooling device of the third embodiment.
  • the intake air A sucked into the intake passage 11 during driving of the vehicle is compressed by the compressor (supercharger) 12 a of the turbocharger 12 and becomes high temperature and cooled by the water-cooled intercooler 13, It is supplied to the engine body 15 via the intake manifold 14.
  • the intake air A supplied to the engine body 15 is mixed with fuel in the cylinder and combusted to generate heat energy, then becomes exhaust gas G1 and is exhausted from the exhaust manifold 16 to the exhaust passage 17 to be turbocharged.
  • the 12 turbines 12b are driven, they are purified by an exhaust gas purification device (not shown) and then released into the atmosphere.
  • the vehicle cooling device 30 includes a cooling fan 31 that is connected to and driven by the crankshaft 18, a main cooling circuit 40, and a sub cooling circuit 50.
  • the main cooling circuit 40 and the sub cooling circuit 50 are independent circuits, and hereinafter, the cooling water flowing through each of them will be distinguished from the first cooling water W1 and the second cooling water W2.
  • the main cooling circuit 40 the first cooling water W1 is circulated in the order of the mechanical water pump 41, the engine body 15, the thermostat 42, the radiator 43, and the mechanical water pump 41, and the first cooling water is mechanical.
  • the water pump 41, the engine body 15, the thermostat 42, and the mechanical water pump 41 are configured in order of a bypass passage 45 that bypasses the cooling passage 44. Therefore, the main cooling circuit 40 is a circuit in which the first cooling water W1 for cooling the engine body 15 is circulated.
  • the second cooling water W2 is a circuit independent of the main cooling circuit 40, and one of the electric water pump 51, the sub-radiator 52, the water-cooled intercooler 13 and the water-cooled condenser 23, and the electric motor It circulates in order of the water pump 51. Therefore, the sub-cooling circuit 50 is a circuit in which the second cooling water W2 for cooling the water-cooled intercooler 13 and the water-cooled condenser 23 is circulated.
  • the mechanical water pump 41 is mechanical, and the rotational power of the engine body 15 is transmitted from the crankshaft 18 via a power transmission mechanism 19 such as an endless belt or gear mechanism, and is driven by this rotational power. .
  • the thermostat 42 is arranged on the outlet side of the main body 15 of the main cooling circuit 40.
  • the thermostat 42 has a lifter (not shown) that expands and contracts by a thermal expansion body that has the property of expanding as the temperature rises and shrinking as the temperature decreases, and the first cooling water heated by the engine body 15.
  • the flow rate of the first cooling water W ⁇ b> 1 flowing through the cooling passage 44 and the bypass passage 45 is adjusted by extending and contracting the lifter according to the temperature of W ⁇ b> 1.
  • An electrothermal thermostat in which the lift is forcibly expanded and contracted by electric heating may be used for the thermostat 42.
  • the inlet control it is advantageous in terms of temperature adjustment of the first cooling water W1 as compared with the outlet control.
  • the radiator 43 is disposed on the front side of the vehicle on which the engine 10 and the vehicle cooling device 30 are mounted, and the cooling fan 31 is disposed behind the radiator 43.
  • the radiator 43 cools the first cooling water W ⁇ b> 1 that passes through the interior using the vehicle speed wind and the cooling air from the subsequent cooling fan 31.
  • the electric water pump 51 is a pump driven by electric power generated by an alternator (not shown).
  • the sub radiator 52 is disposed on the front side of the vehicle with respect to the radiator 43, and is disposed on the front side of the radiator 43, thereby enhancing the cooling effect by the vehicle speed wind.
  • the sub-cooling circuit 50 includes the water-cooled intercooler 13 and the water-cooled condenser 23 arranged in parallel downstream of the sub-radiator 52. Then, a first outlet 53 serving as an outlet of the second cooling water W3 supplied to the water-cooled intercooler 13 to the sub radiator 52 and a second outlet 54 serving as an outlet of the second cooling water W4 supplied to the water-cooled condenser 23 are provided.
  • the second outlet 54 is arranged downstream of the internal flow passage 55 which is the flow passage of the second cooling water W2 flowing through the sub radiator 52 rather than the first outlet 53.
  • the vehicular cooling device 30 supplies the second cooling water W3 to the water-cooled intercooler 13 by forming two of the first outlet 53 and the second outlet 54 in the sub-radiator 52, and the water-cooled condenser
  • the second cooling water W3 is supplied to the second cooling water W4 having a different temperature range.
  • the temperature of the second cooling water W4 T4 becomes lower than the temperature T3 of the second cooling water W3.
  • the first cooling water W1 exchanges heat with the engine body 15, and the mechanical water pump is selected by selecting whether the thermostat 42 passes the cooling passage 44 or the bypass passage 45 depending on the temperature after the heat exchange.
  • the temperature T1 of the first cooling water W1 supplied from 41 to the engine body 15 is adjusted.
  • the second cooling water W2 exits from the sub-radiator 52 the second cooling water W3 and the second cooling water W4 are branched into two, and the second cooling water W3 exchanges heat with the intake air A passing through the water-cooled intercooler 13. Then, the second cooling water W4 joins after heat exchange with the air conditioning refrigerant R passing through the water-cooled condenser 23.
  • the temperature T1 of the first cooling water W1 discharged from the mechanical water pump 41, the temperature T2 of the second cooling water W2, the temperature T3 of the second cooling water W3 after passing through the sub radiator 52, and the sub radiator 52 are
  • the temperature T1 is 60 degrees or more and 90 degrees or less
  • the temperature T2 is 70 degrees or more and 90 degrees or less
  • the temperature T3 is 40 degrees or more
  • the temperature T4 is 50 degrees or less.
  • the vehicle cooling device 30 The operation of the vehicle cooling device 30 will be described.
  • the main cooling circuit 40 of the vehicular cooling device 30 when the engine 10 is started, the mechanical water pump 41 is driven and the circulation of the first cooling water W1 is started.
  • the main cooling circuit 40 is a thermostat. 42 is closed and the first cooling water W1 is warmed up via the bypass passage 45.
  • the thermostat 42 is opened and the first cooling water W1 is passed through the cooling passage 44 and the first cooling water W1 is supplied. Cooling with the radiator 43.
  • the electric water pump 51 is driven and the circulation of the second cooling water W2 is started.
  • the second cooling water W3 cooled between the first outlet 53, which is in the middle of the internal flow path 55 of the sub-radiator 52 is supplied to the water-cooled intercooler 13, and the water cooling In the intercooler 13, the intake air A is cooled by heat exchange between the second cooling water W ⁇ b> 3 and the intake air A that is supercharged by the compressor 12 a.
  • the second cooling water W4 cooled between the second outlet 54, which is the terminal position of the internal flow path 55 of the sub-radiator 52, is supplied to the water-cooled condenser 23.
  • the air-conditioning refrigerant R is cooled by heat exchange between the second cooling water W4 and the air-conditioning refrigerant R that has been liquefied by the air-conditioning compressor 22 in the condenser 23.
  • the water-cooled intercooler 13 and the water-cooled condenser 23 are arranged in parallel downstream of the sub-radiator 52 of the sub-cooling circuit 50, and cooling water is simultaneously supplied to each of the water-cooled intercooler 13 and the water-cooled condenser 23. Since the air is supplied, the intake air A and the air conditioning refrigerant R can be simultaneously cooled by the second cooling waters W3 and W4 cooled by the sub radiator 52. Further, since the sub-radiator 52 is formed with the first outlet 53 and the second outlet 54 arranged downstream of the first outlet 53 in the internal flow path 55, the water-cooled condenser 23 has a water-cooled intercooler.
  • the second cooling water W4 having a lower water temperature than the second cooling water W3 supplied to 13 can be supplied.
  • mold condenser 23 from which temperature zones differ can be supplied, and it can cool more efficiently.
  • the air conditioning refrigerant R can be effectively cooled. Deterioration can be prevented and fuel consumption can be further improved.
  • the electric fan that is essential in the air cooling system can be eliminated. Power consumption during use of the device 20 can be suppressed, and a load on an alternator (not shown) can be reduced to further improve fuel efficiency.
  • the vehicular cooling device 30 since the vehicular cooling device 30 includes the main cooling circuit 40 and the sub cooling circuit 50 that are independent from each other, the sub cooling circuit 50 is affected by the first cooling water W ⁇ b> 1 circulating through the main cooling circuit 40.
  • the main cooling circuit 40 and the sub cooling circuit 50 can be set to different temperature zones, the second cooling water having a lower water temperature than the main cooling circuit 40 in the sub cooling circuit 50 without performing complicated control. W2 can be circulated.
  • mold condenser 23 can be supplied, and it can cool efficiently.
  • FIG. 2 is a perspective view illustrating the radiator 43 and the sub radiator 52.
  • white arrows indicate the cooling waters W1 to W4.
  • the inlet 57a of the second cooling water W2 is arranged in the upper tank 57, the first outlet 53 is arranged in one of the upper tank 57 and the lower tank 58, and the second outlet 54 is arranged in the other.
  • the first outlet 53 of the second cooling water W3 is disposed in the lower tank 58, and the second outlet 54 of the second cooling water W4 is disposed in the upper tank 57.
  • the first outlet 53 is disposed when the number of turns of the internal flow path 55 is 3 passes, and the second outlet 54 is disposed when the number of turns of the internal flow path 55 is 4 passes. .
  • the partition plates 59a and 59c are arranged in the upper tank 57, the partition plate 59b is arranged in the lower tank 58, and the number of folding of the internal flow path 55 is set to 4 paths at maximum.
  • the number of turns may be two or more passes.
  • the width of the flow path of the 4th pass was made narrow, you may make the width of each flow path uniform.
  • the sub-radiator 52 is divided into the upper tank 57 and the lower tank 58 by the partition plates 59a to 59c so that the number of turns of the internal flow path 55 is plural, and the upper tank 57 and the lower tank 58 are connected to the first one.
  • the second outlet 54 can be arranged downstream of the internal flow channel 55 from the first outlet 53.
  • the second cooling water W4 discharged from the second outlet 54 has a lower water temperature than the second cooling water W3 that has been folded three times by four turns, and the second cooling of the low water temperature is performed in the water-cooled condenser 23. Water W4 can be supplied.
  • the second cooling water W3 having a large flow rate is supplied to the water-cooled intercooler 13 that requires a large flow rate
  • the second cooling water W4 having a small flow rate is supplied to the water-cooled condenser 23 that requires a relatively small flow rate.
  • the radiator 43 is constituted by a one-pass down-flow type radiator, and the sub-radiator 52 disposed on the front side of the radiator 43 is constituted by a side-flow type radiator having a maximum of four passes, and above the sub-radiator 52. Therefore, the temperature on the lower side of the radiator 43 can be prevented from rising due to the influence of the sub radiator 52.
  • FIG. 3 shows a modification of the vehicle cooling device 30 according to the first embodiment of the present disclosure.
  • an auxiliary electric water pump 60 that adjusts the flow rate of the second cooling water W4 flowing through the water-cooled condenser 23 between the sub-radiator 52 of the sub-cooling circuit 50 and the water-cooled condenser 23 is provided. It is installed.
  • the auxiliary electric water pump 60 when the auxiliary electric water pump 60 is interposed, when the air conditioning refrigerant R needs to be cooled, the auxiliary electric water pump 60 is driven to supply the necessary second cooling water W4. be able to.
  • the air conditioning refrigerant R does not need to be cooled, that is, when the vehicle interior air conditioner 20 is not activated, the auxiliary electric water pump 60 is stopped to supply the second cooling water W4 to the water-cooled condenser 23. Without this, it can be turned to the water-cooled intercooler 13. As a result, the cooling water cooled by the sub radiator 52 can be efficiently cooled without being wasted.
  • FIG. 4 illustrates the vehicle cooling device 30 according to the second embodiment of the present disclosure.
  • a water-cooled EGR cooler 71 provided in an EGR (Exhaust Gas Recirculation) passage 70 is disposed on the downstream side of the sub-radiator 52.
  • EGR exhaust Gas Recirculation
  • the second cooling water W3 discharged from the first outlet 53 is branched and supplied to the water-cooled EGR cooler 71.
  • the engine 10 includes an EGR passage 70 that recirculates the EGR gas G2 from the exhaust passage 17 to the intake passage 11.
  • a water-cooled EGR cooler 71 and an EGR valve 72 are interposed in the EGR passage 70. When opened, the EGR gas G2 is configured to recirculate.
  • the main cooling circuit 40 is added to the water-cooled EGR cooler 71 in addition to the water-cooled intercooler 13 and the water-cooled condenser 23. Since the EGR gas G2 passing through the water-cooled EGR cooler 71 can be effectively cooled by supplying the second cooling water W3 having a lower temperature than the circulating first cooling water W1, it is contained in the exhaust gas G1. NOx can be further reduced.
  • FIG. 5 shows a modification of the vehicle cooling device 30 according to the second embodiment.
  • a plurality of water-cooled EGR coolers 71 and 73 are arranged in the EGR passage 70.
  • Each of the water-cooled EGR coolers 71 and 73 is arranged in series with the EGR passage 70, and the EGR gas G2 is first cooled after passing through the water-cooled EGR cooler 71 arranged on the upstream side of the EGR passage 70.
  • the water-cooled EGR cooler 73 disposed on the downstream side is further cooled.
  • the temperature zones of the respective water-cooled EGR coolers 71 and 73 are made different from each other, and the subsequent stage of the water-cooled EGR cooler 71 in the previous stage is different. It is desirable to lower the temperature zone of the water-cooled EGR cooler 73.
  • the first cooling water W ⁇ b> 1 of the main cooling circuit 40 is supplied to the water-cooled EGR cooler 71 disposed on the upstream side of the EGR passage 70, while the sub-radiator 52 of the sub-cooling circuit 50
  • the cooled second cooling water W3 is configured to be supplied to a water-cooled EGR cooler 73 disposed on the downstream side of the EGR passage 70.
  • the upstream-side water-cooled EGR cooler 71 is supplied with the first cooling water W ⁇ b> 1 having a relatively high temperature, and the downstream-side water-cooled EGR cooler 73 supplies the low-temperature second cooling water W ⁇ b> 3. Is supplied. Accordingly, the upstream water-cooled EGR cooler 71 to which the high-temperature first cooling water W1 is supplied takes the rough heat of the high-temperature EGR gas G2, and then the downstream at which the lower-temperature second cooling water W3 is supplied. Cool to a lower temperature with the water-cooled EGR cooler 73 on the side. That is, the EGR gas G2 is cooled to a lower temperature by cooling in stages with the water-cooled EGR cooler 71 and the water-cooled EGR cooler 73 in different temperature zones.
  • the EGR gas G2 is cooled stepwise, specifically, first by the water-cooled EGR cooler 71 disposed on the upstream side of the EGR passage 70, and then cooled by the water-cooled EGR cooler 73 disposed on the downstream side.
  • the EGR gas G2 can be reliably cooled to a lower temperature.
  • the water-cooled EGR cooler 71 arranged on the upstream side and the water-cooled EGR cooler 73 arranged on the downstream side are respectively independent circuits, and the temperature zones of the first cooling water W1 and the second cooling water W3 are different.
  • the cooling efficiency in each cooling circuit of the main cooling circuit 40 and the subcooling circuit 50 can be improved more.
  • the engine main body 15, the intake air A, the air conditioning refrigerant R, and the EGR gas G2 can all be efficiently cooled.
  • the EGR gas G2 after heat exchange with the upstream water-cooled EGR cooler 71 is cooled by the second cooling water W3 circulating in the sub-cooling circuit 50 with the downstream water-cooled EGR cooler 73. Since the temperature of the second cooling water W3 after heat exchange with the water-cooled EGR cooler 73 on the downstream side can be lowered, the temperature of the second cooling water W2 circulating in the sub cooling circuit 50 can be lowered. Thus, even if the subcooling circuit 50 is configured to cool the water-cooled EGR cooler 73, the low-temperature second cooling water W3 and the second cooling suitable for the water-cooled intercooler 13 and the water-cooled condenser 23, respectively. Water W4 can be supplied to improve each cooling effect.
  • the configuration in which the first cooling water W1 that circulates the main cooling circuit 40 is supplied to the water-cooled EGR cooler 71 on the upstream side of the EGR passage 70 is described as an example. You may make it the structure which supplies the cooling water which circulates through the cooling circuit for EGR.
  • FIG. 6 illustrates the vehicle cooling device 30 according to the third embodiment of the present disclosure.
  • the vehicle cooling device 30 of the third embodiment is configured such that the main cooling circuit 40 and the sub cooling circuit 50 are not independent from each other, and the sub cooling circuit 50 branches from the main cooling circuit 40.
  • the second cooling water W2 circulates in the order of the mechanical water pump 41, the sub-radiator 52, the water-cooled intercooler 13 and the water-cooled condenser 23, and the mechanical water pump 41. Configured to do.
  • the sub cooling circuit 50 is preferably branched from one outlet of the mechanical water pump 41 and merged downstream of the thermostat 42, and merged downstream of the radiator 43 in the cooling passage 44 or downstream of the bypass passage 45. Is more preferable.
  • the second cooling water W2 of the sub-cooling circuit 50 joins the first cooling water W1 upstream of the thermostat 42, the temperature of the second cooling water W2 is higher than the warm-up temperature Ta. Even when the temperature T1 does not reach the warm-up temperature Ta, the thermostat 42 may open and the first cooling water W1 may be cooled by the radiator 43.
  • the thermostat 42 may be closed and the first cooling water W1 may not be cooled by the radiator 43 even if the temperature T1 of the first cooling water W1 is equal to or higher than the warm-up temperature Ta. Therefore, by causing the sub cooling circuit 50 to join the main cooling circuit 40 downstream of the thermostat 42, the influence on the adjustment of the temperature of the main cooling circuit 40 can be suppressed.
  • the present invention can also be applied to the sub-cooling circuit 50 that branches from the main cooling circuit 40 and joins the main cooling circuit 40.
  • this 3rd embodiment can also be comprised so that the 2nd cooling water W3 may be supplied to a water cooling type EGR cooler like 2nd embodiment.
  • the cooling water cooled by the sub-radiator can be supplied to both the water-cooled intercooler and the water-cooled condenser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A water-cooled intercooler 13 and a water-cooled condenser 23 are disposed in parallel downstream of a sub-radiator 52 of a secondary cooling circuit 50 with respect to the flow of cooling water W3. A first outlet 53, which serves as an outlet for the cooling water W3 supplied to the water-cooled intercooler 13, and a second outlet 54, which serves as an outlet for the cooling water W4 supplied to the water-cooled condenser 23, are formed in the sub-radiator 52. The second outlet 54 is disposed further downstream an internal flow path 55 of the sub-radiator 52 than the first outlet 53.

Description

車両用冷却装置Vehicle cooling system
 本開示は、車両用冷却装置に関し、より詳細には、エンジン、インタークーラ、及び空調用冷媒のためのコンデンサのそれぞれを効率良く冷却する車両用冷却装置に関する。 The present disclosure relates to a vehicle cooling device, and more particularly, to a vehicle cooling device that efficiently cools each of an engine, an intercooler, and a condenser for air conditioning refrigerant.
 トラックなどの大型車両の冷却装置では、エンジンの冷却水を冷却するラジエータとは別体のサブラジエータを備えて、そのサブラジエータで冷却された冷却水を水冷式インタークーラに供給して、過給機の仕事を増加することなく吸気量を増加して排気ガス性能や燃費を向上する装置が注目されている。 Cooling devices for large vehicles such as trucks are equipped with a sub-radiator that is separate from the radiator that cools the engine cooling water, and the cooling water cooled by the sub-radiator is supplied to the water-cooled intercooler for supercharging. Attention has been focused on devices that improve the exhaust gas performance and fuel consumption by increasing the intake air amount without increasing the work of the aircraft.
 また、大型車両では、乗用車と比べて積載量が多く車両の重量が大きくなることからエンジン負荷が高くなり、それに伴ってインタークーラやラジエータなどのエンジン用熱交換器による放熱量が多くなる。そのために、車室内空調装置に用いられている空調用冷媒を冷却する空冷式コンデンサをそれらのエンジン用熱交換器に重ねて配置することができない。 Also, in a large vehicle, the load is larger and the weight of the vehicle is larger than that of a passenger car, so the engine load increases, and accordingly, the amount of heat released by an engine heat exchanger such as an intercooler or a radiator increases. Therefore, the air-cooled condenser for cooling the air-conditioning refrigerant used in the vehicle interior air conditioner cannot be placed on the engine heat exchanger.
 また、大型車両では、高負荷走行が多用されるため、エンジン用熱交換器に送風するための冷却ファンに送風量の多いエンジン軸力ファンを使用している。そのため、空冷式コンデンサの冷却が必要となる状況で空冷式コンデンサを冷却する冷却風をコントロールすることができない。 Also, in large vehicles, high load running is frequently used, so an engine axial fan with a large amount of air flow is used as a cooling fan for blowing air to the engine heat exchanger. Therefore, the cooling air for cooling the air-cooled condenser cannot be controlled in a situation where the air-cooled condenser needs to be cooled.
 そこで、空調用冷媒を冷却水と熱交換させて冷却する水冷式コンデンサが注目されている。 Therefore, a water-cooled condenser that cools the air-conditioning refrigerant by exchanging heat with the cooling water has attracted attention.
 これに関連して、サブラジエータによりラジエータで冷却された冷却水よりも低水温の冷却水を水冷式インタークーラや水冷式コンデンサに供給する装置が提案されている(例えば、特許文献1参照)。 In connection with this, there has been proposed a device for supplying cooling water having a lower temperature than the cooling water cooled by the sub-radiator to the water-cooled intercooler or the water-cooled condenser (for example, see Patent Document 1).
 しかし、この装置は、一つのサブラジエータで冷却された冷却水を水冷式インタークーラや水冷式コンデンサに供給する構成である。その結果、先に温度帯の低い水冷式コンデンサに冷却水を供給し、この水冷式コンデンサで温められた冷却水をその次の水冷式インタークーラに供給することになっているので、水冷式インタークーラを効率良く冷却することができないという問題がある。 However, this device is configured to supply cooling water cooled by one sub-radiator to a water-cooled intercooler or a water-cooled condenser. As a result, the cooling water is first supplied to the water-cooled condenser having a low temperature range, and the cooling water heated by the water-cooled condenser is supplied to the next water-cooled intercooler. There is a problem that the cooler cannot be cooled efficiently.
特開2005-186879号公報JP 2005-186879 A
 本開示の一態様の目的は、エンジン、インタークーラ、及び空調用冷媒のためのコンデンサのそれぞれを効率良く冷却して、燃費を向上することができる車両用冷却装置を提供することである。 An object of one aspect of the present disclosure is to provide a vehicular cooling device that can efficiently cool each of an engine, an intercooler, and a condenser for an air conditioning refrigerant to improve fuel efficiency.
 上記の目的を達成する一態様の車両用冷却装置は、エンジンの第一冷却水を冷却するラジエータと、過給機で過給された吸気を冷却する水冷式インタークーラに供給される第二冷却水を供給する第一出口、及び空調用冷媒を冷却する水冷式コンデンサに供給される前記第二冷却水を供給する第二出口を有し、前記第二冷却水を冷却するサブラジエータと、を備え、
 冷却水の流れに関して前記サブラジエータの下流に前記水冷式インタークーラと前記水冷式コンデンサとが並列に配置され、
 前記第一出口よりも前記サブラジエータの内部流路の下流に前記第二出口が配置されたことを特徴とする。
One aspect of the vehicle cooling device that achieves the above object includes a radiator that cools a first cooling water of an engine, and a second cooling that is supplied to a water-cooled intercooler that cools intake air supercharged by a supercharger. A sub-radiator that has a first outlet for supplying water and a second outlet for supplying the second cooling water supplied to a water-cooled condenser for cooling the air-conditioning refrigerant, and cools the second cooling water. Prepared,
The water-cooled intercooler and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
The second outlet is arranged downstream of the internal passage of the sub radiator from the first outlet.
 また、上記の車両用冷却装置は、前記サブラジエータは、第一タンクと、第二タンクと、第一タンクと第二タンクのそれぞれの内部を仕切る仕切り板を備え、前記内部流路には複数の折り返し数が形成され、前記第一タンク及び前記第二タンクのどちらか一方に前記第一出口が配置され、他方に前記第二出口が配置されていてもよい。 Further, in the above vehicle cooling device, the sub-radiator includes a first tank, a second tank, and a partition plate for partitioning the inside of each of the first tank and the second tank, and a plurality of the internal flow paths are provided in the internal flow path. The first outlet may be disposed in one of the first tank and the second tank, and the second outlet may be disposed in the other.
 また、上記の車両用冷却装置は、前記ラジエータを有した主冷却回路と、前記サブラジエータを有して該主冷却回路から独立した副冷却回路とを備え、
 前記主冷却回路は、前記第一冷却水が、機械式ウォータポンプ、前記エンジン、前記ラジエータ及び前記機械式ウォータポンプの順に循環する冷却通路及び、前記第一冷却水が、前記機械式ウォータポンプ、前記エンジン及び前記機械式ウォータポンプの順に循環するように前記ラジエータをバイパスするバイパス通路により構成され、
 前記副冷却回路は、前記第二冷却水が、電動ウォータポンプ、前記サブラジエータ、前記水冷式インタークーラ及び前記水冷式コンデンサのどちから一方、並びに、該電動ウォータポンプの順に循環するように構成されていてもよい。
The vehicle cooling device includes a main cooling circuit having the radiator, and a sub-cooling circuit having the sub radiator and independent from the main cooling circuit,
The main cooling circuit includes a cooling passage in which the first cooling water circulates in the order of a mechanical water pump, the engine, the radiator, and the mechanical water pump, and the first cooling water is the mechanical water pump, It is constituted by a bypass passage that bypasses the radiator so as to circulate in the order of the engine and the mechanical water pump,
The sub-cooling circuit is configured so that the second cooling water circulates in order of one of the electric water pump, the sub-radiator, the water-cooled intercooler, and the water-cooled condenser, and the electric water pump. May be.
 また、上記の車両用冷却装置は、前記サブラジエータと前記水冷式コンデンサとの間に、前記水冷式コンデンサに流れる冷却水の流量を調節する補助電動ウォータポンプが介在されていてもよい。 Further, in the vehicle cooling device, an auxiliary electric water pump that adjusts the flow rate of the cooling water flowing through the water-cooled condenser may be interposed between the sub-radiator and the water-cooled condenser.
 また、上記の車両用冷却装置は、前記ラジエータを有した主冷却回路と、前記サブラジエータを有して該主冷却回路から分岐した副冷却回路とを備え、
 前記主冷却回路は、冷却水が、機械式ウォータポンプ、前記エンジン、前記ラジエータの順に循環する冷却通路及び、前記第一冷却水が、前記機械式ウォータポンプ、前記エンジンの順に循環するように前記ラジエータをバイパスするバイパス通路により構成され、
 前記副冷却回路は、冷却水が、前記機械式ウォータポンプ、前記サブラジエータ、前記水冷式インタークーラ及び前記水冷式コンデンサのどちらか一方、並びに、前記機械式ウォータポンプの順に循環するように構成されていてもよい。
Further, the vehicle cooling device includes a main cooling circuit having the radiator, and a sub cooling circuit having the sub radiator and branching from the main cooling circuit,
The main cooling circuit includes a cooling passage in which cooling water circulates in the order of mechanical water pump, the engine, and the radiator, and the first cooling water circulates in order of the mechanical water pump and the engine. Consists of a bypass passage that bypasses the radiator,
The sub-cooling circuit is configured to circulate cooling water in the order of the mechanical water pump, the sub-radiator, the water-cooled intercooler, the water-cooled condenser, and the mechanical water pump. It may be.
 EGRガスを冷却する水冷式EGRクーラを備え、
 冷却水の流れに関して前記サブラジエータの下流に前記水冷式インタークーラ、前記水冷式EGRクーラ、及び前記水冷式コンデンサが並列に配置され、
 前記第一出口から吐出する冷却水が前記水冷式EGRクーラに供給される構成されていてもよい。
It has a water-cooled EGR cooler that cools EGR gas,
The water-cooled intercooler, the water-cooled EGR cooler, and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
The cooling water discharged from the first outlet may be supplied to the water-cooled EGR cooler.
 前記エンジンのEGR通路に介在する複数の前記水冷式EGRクーラのうちの下流側に配置された前記水冷式EGRクーラに前記第一出口から吐出する冷却水が供給される構成されていてもよい。 The cooling water discharged from the first outlet may be supplied to the water-cooled EGR cooler disposed on the downstream side of the plurality of water-cooled EGR coolers interposed in the EGR passage of the engine.
 本開示の一態様の車両用冷却装置によれば、サブラジエータの下流に水冷式インタークーラと水冷式コンデンサとを並列に配置したことで、同時に水冷式インタークーラと水冷式コンデンサとの両方にサブラジエータで冷却された冷却水を供給することができる。さらに、サブラジエータに、第一出口とその第一出口よりも内部流の下流に配置された第二出口とを形成したことで、水冷式コンデンサには、水冷式インタークーラに供給される冷却水よりも低水温の冷却水を供給することができる。これにより、温度帯の異なるエンジン、水冷式インタークーラ、及び水冷式コンデンサのそれぞれをより効率良く冷却することができる。 According to the vehicle cooling device of one aspect of the present disclosure, the water-cooled intercooler and the water-cooled condenser are arranged in parallel downstream of the sub-radiator, so that both the water-cooled intercooler and the water-cooled condenser are Cooling water cooled by a radiator can be supplied. Furthermore, by forming the sub-radiator with the first outlet and the second outlet disposed downstream of the first outlet, the cooling water supplied to the water-cooled intercooler is provided in the water-cooled condenser. Cooling water with a lower water temperature can be supplied. Thereby, each of an engine, a water-cooled intercooler, and a water-cooled condenser having different temperature zones can be cooled more efficiently.
 特に、サブラジエータで冷却された冷却水を直に水冷式インタークーラに供給することで、過給機で過給された吸気を効果的に冷却することができるので、過給機の仕事を増加することなく、吸気の量を増加して、排気ガス性能の悪化を抑制しながら、燃費を向上することができる。 In particular, by supplying the cooling water cooled by the sub-radiator directly to the water-cooled intercooler, the intake air supercharged by the supercharger can be cooled effectively, increasing the work of the supercharger. Therefore, the fuel consumption can be improved while increasing the amount of intake air and suppressing the deterioration of the exhaust gas performance.
 また、サブラジエータでより冷却された冷却水を直に水冷式コンデンサに供給することで、空調用冷媒を効果的に冷却することができるので、車室内空調装置の効率悪化を防止して燃費を向上することができる。 In addition, the cooling water cooled by the sub-radiator can be directly supplied to the water-cooled condenser, so that the air-conditioning refrigerant can be effectively cooled. Can be improved.
図1は、第一実施形態の車両用冷却装置を例示する構成図である。FIG. 1 is a configuration diagram illustrating a vehicle cooling device according to the first embodiment. 図2は、図1のラジエータとサブラジエータとの構成を例示する斜視図である。FIG. 2 is a perspective view illustrating the configuration of the radiator and the sub-radiator of FIG. 図3は、第一実施形態の車両用冷却装置の変形例を例示する構成図である。FIG. 3 is a configuration diagram illustrating a modification of the vehicle cooling device of the first embodiment. 図4は、第二実施形態の車両用冷却装置を例示する構成図である。FIG. 4 is a configuration diagram illustrating the vehicle cooling device of the second embodiment. 図5は、第二実施形態の車両用冷却装置の変形例を例示する構成図である。FIG. 5 is a configuration diagram illustrating a modification of the vehicle cooling device of the second embodiment. 図6は、第三実施形態の車両用冷却装置を例示する構成図である。FIG. 6 is a configuration diagram illustrating the vehicle cooling device of the third embodiment.
 以下に、本開示の実施形態について、図面を参照して説明する。図1は本開示の第一実施形態からなる車両用冷却装置30を例示している。この車両用冷却装置30は、車両に搭載されたエンジン10、水冷式インタークーラ13、水冷式コンデンサ23のそれぞれを冷却するものである。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 illustrates a vehicle cooling device 30 according to the first embodiment of the present disclosure. The vehicle cooling device 30 cools each of the engine 10, the water-cooled intercooler 13, and the water-cooled condenser 23 mounted on the vehicle.
 エンジン10は車両の走行時などにおいて吸気通路11へ吸入された吸気Aが、ターボチャージャ12のコンプレッサ(過給機)12aにより圧縮されて高温になり、水冷式インタークーラ13で冷却された後に、インテークマニホールド14を経てエンジン本体15に供給される。エンジン本体15に供給された吸気Aは、気筒内で燃料と混合されて燃焼して熱エネルギーを発生させた後に、排気ガスG1となってエキゾーストマニホールド16から排気通路17へ排気されて、ターボチャージャ12のタービン12bを駆動した後に図示しない排気ガス浄化装置で浄化されてから大気中へ放出される。 In the engine 10, after the intake air A sucked into the intake passage 11 during driving of the vehicle is compressed by the compressor (supercharger) 12 a of the turbocharger 12 and becomes high temperature and cooled by the water-cooled intercooler 13, It is supplied to the engine body 15 via the intake manifold 14. The intake air A supplied to the engine body 15 is mixed with fuel in the cylinder and combusted to generate heat energy, then becomes exhaust gas G1 and is exhausted from the exhaust manifold 16 to the exhaust passage 17 to be turbocharged. After the 12 turbines 12b are driven, they are purified by an exhaust gas purification device (not shown) and then released into the atmosphere.
 車室内空調装置20は使用時に電磁クラッチ21により空調用コンプレッサ22がエンジン10のクランクシャフト18から動力伝達機構19を経由して伝達された駆動力で駆動する。その空調用コンプレッサ22によって圧縮された空調用冷媒Rが、高温高圧の半液体の状態で水冷式コンデンサ23により冷却されて、さらに液化が進行した後に、レシーバ24で気液分離、不純物除去、及び水分除去される。この液化された空調用冷媒Rはエキスパンションバルブ25の微小なノズル穴からエバポレータ26の内部へ噴射されて気化し、そのときの気化熱でエバポレータ26から熱を奪うことで、エバポレータ26を冷却する。そして電力が供給された電動ファン27によりこの熱が奪われて冷却されたエバポレータ26を通過する風が冷却風となって車室内に送られる。 When the vehicle interior air conditioner 20 is in use, the air conditioning compressor 22 is driven by the electromagnetic clutch 21 with the driving force transmitted from the crankshaft 18 of the engine 10 via the power transmission mechanism 19. The air-conditioning refrigerant R compressed by the air-conditioning compressor 22 is cooled by a water-cooled condenser 23 in a high-temperature and high-pressure semi-liquid state, and further liquefaction proceeds. Moisture is removed. The liquefied air-conditioning refrigerant R is jetted into the evaporator 26 through a minute nozzle hole of the expansion valve 25 and vaporizes, and the evaporator 26 is cooled by removing heat from the evaporator 26 with the heat of vaporization at that time. Then, the heat passing through the evaporator 26 cooled by the electric fan 27 supplied with electric power is sent as cooling air to the vehicle interior.
 車両用冷却装置30は、クランクシャフト18に連結されて駆動する冷却ファン31と、主冷却回路40と、副冷却回路50とを備えて構成されている。この主冷却回路40と副冷却回路50とは互いに独立した回路であり、以下では、それぞれに流れる冷却水を第一冷却水W1、第二冷却水W2と区別することにする。 The vehicle cooling device 30 includes a cooling fan 31 that is connected to and driven by the crankshaft 18, a main cooling circuit 40, and a sub cooling circuit 50. The main cooling circuit 40 and the sub cooling circuit 50 are independent circuits, and hereinafter, the cooling water flowing through each of them will be distinguished from the first cooling water W1 and the second cooling water W2.
 主冷却回路40は、第一冷却水W1が、機械式ウォータポンプ41、エンジン本体15、サーモスタット42、ラジエータ43及び機械式ウォータポンプ41の順に循環する冷却通路44及び第一冷却水が、機械式ウォータポンプ41、エンジン本体15、サーモスタット42、機械式ウォータポンプ41の順に循環するように、その冷却通路44をバイパスするバイパス通路45から構成される。従って、この主冷却回路40はエンジン本体15を冷却する第一冷却水W1が循環している回路である。 In the main cooling circuit 40, the first cooling water W1 is circulated in the order of the mechanical water pump 41, the engine body 15, the thermostat 42, the radiator 43, and the mechanical water pump 41, and the first cooling water is mechanical. The water pump 41, the engine body 15, the thermostat 42, and the mechanical water pump 41 are configured in order of a bypass passage 45 that bypasses the cooling passage 44. Therefore, the main cooling circuit 40 is a circuit in which the first cooling water W1 for cooling the engine body 15 is circulated.
 副冷却回路50では、第二冷却水W2が、主冷却回路40から独立した回路であり、電動ウォータポンプ51、サブラジエータ52、水冷式インタークーラ13及び水冷式コンデンサ23のどちらか一方、並びに電動ウォータポンプ51の順に循環している。従って、この副冷却回路50は水冷式インタークーラ13及び水冷式コンデンサ23を冷却する第二冷却水W2が循環している回路である。 In the sub-cooling circuit 50, the second cooling water W2 is a circuit independent of the main cooling circuit 40, and one of the electric water pump 51, the sub-radiator 52, the water-cooled intercooler 13 and the water-cooled condenser 23, and the electric motor It circulates in order of the water pump 51. Therefore, the sub-cooling circuit 50 is a circuit in which the second cooling water W2 for cooling the water-cooled intercooler 13 and the water-cooled condenser 23 is circulated.
 機械式ウォータポンプ41は機械式であって、エンジン本体15の回転動力がクランクシャフト18から無端状のベルトやギア機構などの動力伝達機構19を介して伝達され、この回転動力により駆動されている。 The mechanical water pump 41 is mechanical, and the rotational power of the engine body 15 is transmitted from the crankshaft 18 via a power transmission mechanism 19 such as an endless belt or gear mechanism, and is driven by this rotational power. .
 サーモスタット42は主冷却回路40のエンジン本体15の出口側に配置されている。このサーモスタット42は温度上昇に伴って膨張し温度低下に伴って収縮する性質を有する熱膨張体により伸縮動作するリフタ(図示しない)を有しており、エンジン本体15で加熱された第一冷却水W1の温度に応じてそのリフタが伸縮することで、冷却通路44及びバイパス通路45に流れる第一冷却水W1の流量を調節している。なお、このサーモスタット42にリフトを電熱により強制的に伸縮動作させる電熱式サーモスタットを用いてもよい。 The thermostat 42 is arranged on the outlet side of the main body 15 of the main cooling circuit 40. The thermostat 42 has a lifter (not shown) that expands and contracts by a thermal expansion body that has the property of expanding as the temperature rises and shrinking as the temperature decreases, and the first cooling water heated by the engine body 15. The flow rate of the first cooling water W <b> 1 flowing through the cooling passage 44 and the bypass passage 45 is adjusted by extending and contracting the lifter according to the temperature of W <b> 1. An electrothermal thermostat in which the lift is forcibly expanded and contracted by electric heating may be used for the thermostat 42.
 この実施形態のように、主冷却回路40のエンジン本体15の出口側にサーモスタット42が配置されて出口側で第一冷却水W1の水温が制御される、すなわち出口制御の車両用冷却装置30は、エア抜き性を向上でき、かつキャビテーションの発生を抑制できるので耐久性の向上に有利になり、特に、トラックなどの大型車両には好適である。 As in this embodiment, the thermostat 42 is disposed on the outlet side of the engine body 15 of the main cooling circuit 40, and the water temperature of the first cooling water W1 is controlled on the outlet side. In addition, the air bleedability can be improved and the occurrence of cavitation can be suppressed, which is advantageous for improving the durability, and is particularly suitable for a large vehicle such as a truck.
 なお、出口制御に代えて、主冷却回路40のエンジン本体15の入口側にサーモスタット42を配置した入口制御も適用することができる。入口制御の場合は出口制御と比較して第一冷却水W1の温度調整の面で有利になる。 In addition, it can replace with exit control and the entrance control which has arrange | positioned the thermostat 42 in the entrance side of the engine main body 15 of the main cooling circuit 40 is also applicable. In the case of the inlet control, it is advantageous in terms of temperature adjustment of the first cooling water W1 as compared with the outlet control.
 ラジエータ43はエンジン10及び車両用冷却装置30が搭載された車両の前方側に配置されて、このラジエータ43の後方には冷却ファン31が配置されている。このラジエータ43は車速風と後続の冷却ファン31による冷却風とを利用して内部を通過する第一冷却水W1を冷却している。 The radiator 43 is disposed on the front side of the vehicle on which the engine 10 and the vehicle cooling device 30 are mounted, and the cooling fan 31 is disposed behind the radiator 43. The radiator 43 cools the first cooling water W <b> 1 that passes through the interior using the vehicle speed wind and the cooling air from the subsequent cooling fan 31.
 電動ウォータポンプ51は図示しないオルタネータで発電された電力により駆動するポンプである。サブラジエータ52はラジエータ43よりも車両の前方側に配置されており、ラジエータ43よりも前方側に配置されることで車速風による冷却効果を高めている。 The electric water pump 51 is a pump driven by electric power generated by an alternator (not shown). The sub radiator 52 is disposed on the front side of the vehicle with respect to the radiator 43, and is disposed on the front side of the radiator 43, thereby enhancing the cooling effect by the vehicle speed wind.
 このような車両用冷却装置30において、副冷却回路50は、サブラジエータ52の下流に水冷式インタークーラ13と水冷式コンデンサ23とが並列に配置される。そして、サブラジエータ52に水冷式インタークーラ13に供給される第二冷却水W3の出口となる第一出口53と水冷式コンデンサ23に供給される第二冷却水W4の出口となる第二出口54とが形成され、その第二出口54が第一出口53よりもサブラジエータ52を流れる第二冷却水W2の流路である内部流路55の下流に配置される。 In such a vehicular cooling device 30, the sub-cooling circuit 50 includes the water-cooled intercooler 13 and the water-cooled condenser 23 arranged in parallel downstream of the sub-radiator 52. Then, a first outlet 53 serving as an outlet of the second cooling water W3 supplied to the water-cooled intercooler 13 to the sub radiator 52 and a second outlet 54 serving as an outlet of the second cooling water W4 supplied to the water-cooled condenser 23 are provided. The second outlet 54 is arranged downstream of the internal flow passage 55 which is the flow passage of the second cooling water W2 flowing through the sub radiator 52 rather than the first outlet 53.
 つまり、この車両用冷却装置30はサブラジエータ52に第一出口53と第二出口54との二つを形成することで、水冷式インタークーラ13に第二冷却水W3を供給し、水冷式コンデンサ23に第二冷却水W3とは温度帯の異なる第二冷却水W4を同時に供給する構成である。また、第二出口54から吐出される第二冷却水W4が、第一出口53から吐出される第二冷却水W3よりも長くサブラジエータ52で冷却されるため、この第二冷却水W4の温度T4が第二冷却水W3の温度T3よりも低くなる。 In other words, the vehicular cooling device 30 supplies the second cooling water W3 to the water-cooled intercooler 13 by forming two of the first outlet 53 and the second outlet 54 in the sub-radiator 52, and the water-cooled condenser The second cooling water W3 is supplied to the second cooling water W4 having a different temperature range. In addition, since the second cooling water W4 discharged from the second outlet 54 is cooled by the sub radiator 52 longer than the second cooling water W3 discharged from the first outlet 53, the temperature of the second cooling water W4 T4 becomes lower than the temperature T3 of the second cooling water W3.
 第一冷却水W1はエンジン本体15と熱交換しており、熱交換後の温度によってサーモスタット42が冷却通路44を経由させるか、バイパス通路45を経由させるかを選択することで、機械式ウォータポンプ41からエンジン本体15に供給される第一冷却水W1の温度T1が調節されている。第二冷却水W2はサブラジエータ52から出るときに第二冷却水W3と第二冷却水W4の二つに分岐され、第二冷却水W3が水冷式インタークーラ13を通過する吸気Aと熱交換し、第二冷却水W4が水冷式コンデンサ23を通過する空調用冷媒Rと熱交換した後に合流している。従って、機械式ウォータポンプ41から吐出される第一冷却水W1の温度T1、第二冷却水W2の温度T2、サブラジエータ52を通過後の第二冷却水W3の温度T3、及びサブラジエータ52を通過後の第二冷却水W4の温度T4の順に低くなっており、例えば、温度T1が60度以上、90度以下、温度T2が70度以上、90度以下、温度T3が40度以上、60度以下、温度T4が50度以下である。 The first cooling water W1 exchanges heat with the engine body 15, and the mechanical water pump is selected by selecting whether the thermostat 42 passes the cooling passage 44 or the bypass passage 45 depending on the temperature after the heat exchange. The temperature T1 of the first cooling water W1 supplied from 41 to the engine body 15 is adjusted. When the second cooling water W2 exits from the sub-radiator 52, the second cooling water W3 and the second cooling water W4 are branched into two, and the second cooling water W3 exchanges heat with the intake air A passing through the water-cooled intercooler 13. Then, the second cooling water W4 joins after heat exchange with the air conditioning refrigerant R passing through the water-cooled condenser 23. Therefore, the temperature T1 of the first cooling water W1 discharged from the mechanical water pump 41, the temperature T2 of the second cooling water W2, the temperature T3 of the second cooling water W3 after passing through the sub radiator 52, and the sub radiator 52 are For example, the temperature T1 is 60 degrees or more and 90 degrees or less, the temperature T2 is 70 degrees or more and 90 degrees or less, the temperature T3 is 40 degrees or more, 60 The temperature T4 is 50 degrees or less.
 この車両用冷却装置30の動作について説明する。車両用冷却装置30の主冷却回路40では、エンジン10が始動すると機械式ウォータポンプ41が駆動して第一冷却水W1の循環が開始される。主冷却回路40はエンジン10の始動直後でエンジン10の出口側の第一冷却水W1の温度が、例えば、60度以上、80度以下に設定された暖機温度Ta未満の場合には、サーモスタット42が閉じて第一冷却水W1にバイパス通路45を経由させて暖機を行う。一方、エンジン10の出口側の第一冷却水W1の温度が暖機温度Ta以上の場合には、サーモスタット42が開いて第一冷却水W1に冷却通路44を経由させ、第一冷却水W1をラジエータ43で冷却する。 The operation of the vehicle cooling device 30 will be described. In the main cooling circuit 40 of the vehicular cooling device 30, when the engine 10 is started, the mechanical water pump 41 is driven and the circulation of the first cooling water W1 is started. When the temperature of the first cooling water W1 on the outlet side of the engine 10 is less than the warm-up temperature Ta set to, for example, 60 degrees or more and 80 degrees or less immediately after the engine 10 is started, the main cooling circuit 40 is a thermostat. 42 is closed and the first cooling water W1 is warmed up via the bypass passage 45. On the other hand, when the temperature of the first cooling water W1 on the outlet side of the engine 10 is equal to or higher than the warm-up temperature Ta, the thermostat 42 is opened and the first cooling water W1 is passed through the cooling passage 44 and the first cooling water W1 is supplied. Cooling with the radiator 43.
 副冷却回路50ではエンジン10が始動すると電動ウォータポンプ51が駆動して第二冷却水W2の循環が開始される。この副冷却回路50はサブラジエータ52の内部流路55の中途の位置である第一出口53からそれまでの間で冷却された第二冷却水W3が水冷式インタークーラ13に供給され、この水冷式インタークーラ13で、その第二冷却水W3とコンプレッサ12aで過給されて吸気Aとが熱交換を行うことで、吸気Aが冷却される。 In the sub cooling circuit 50, when the engine 10 is started, the electric water pump 51 is driven and the circulation of the second cooling water W2 is started. In the sub-cooling circuit 50, the second cooling water W3 cooled between the first outlet 53, which is in the middle of the internal flow path 55 of the sub-radiator 52, is supplied to the water-cooled intercooler 13, and the water cooling In the intercooler 13, the intake air A is cooled by heat exchange between the second cooling water W <b> 3 and the intake air A that is supercharged by the compressor 12 a.
 また、副冷却回路50ではサブラジエータ52の内部流路55の終端の位置である第二出口54からそれまでの間で冷却された第二冷却水W4が水冷式コンデンサ23に供給され、この水冷式コンデンサ23で、その第二冷却水W4と空調用コンプレッサ22で液化が進行した空調用冷媒Rとが熱交換を行うことで、空調用冷媒Rが冷却される。 Further, in the sub-cooling circuit 50, the second cooling water W4 cooled between the second outlet 54, which is the terminal position of the internal flow path 55 of the sub-radiator 52, is supplied to the water-cooled condenser 23. The air-conditioning refrigerant R is cooled by heat exchange between the second cooling water W4 and the air-conditioning refrigerant R that has been liquefied by the air-conditioning compressor 22 in the condenser 23.
 このように、副冷却回路50のサブラジエータ52の下流に水冷式インタークーラ13及び水冷式コンデンサ23を並列に配置して、水冷式インタークーラ13及び水冷式コンデンサ23のそれぞれに、同時に冷却水を供給するようにしたので、サブラジエータ52で冷却された第二冷却水W3、W4により吸気Aと空調用冷媒Rとを同時に冷却することができる。さらに、サブラジエータ52には第一出口53とその第一出口53よりも内部流路55の下流に配置された第二出口54とを形成したので、水冷式コンデンサ23には、水冷式インタークーラ13に供給される第二冷却水W3よりも低水温の第二冷却水W4を供給することができる。これにより、温度帯の異なる水冷式インタークーラ13、及び水冷式コンデンサ23のそれぞれに適した水温の冷却水を供給でき、より効率良く冷却することができる。 In this manner, the water-cooled intercooler 13 and the water-cooled condenser 23 are arranged in parallel downstream of the sub-radiator 52 of the sub-cooling circuit 50, and cooling water is simultaneously supplied to each of the water-cooled intercooler 13 and the water-cooled condenser 23. Since the air is supplied, the intake air A and the air conditioning refrigerant R can be simultaneously cooled by the second cooling waters W3 and W4 cooled by the sub radiator 52. Further, since the sub-radiator 52 is formed with the first outlet 53 and the second outlet 54 arranged downstream of the first outlet 53 in the internal flow path 55, the water-cooled condenser 23 has a water-cooled intercooler. The second cooling water W4 having a lower water temperature than the second cooling water W3 supplied to 13 can be supplied. Thereby, the cooling water of the water temperature suitable for each of the water cooling type | mold intercooler 13 and the water cooling type | mold condenser 23 from which temperature zones differ can be supplied, and it can cool more efficiently.
 特に、サブラジエータ52で冷却された第二冷却水W3を直に水冷式インタークーラ13に供給することで、ターボチャージャ12のコンプレッサ12aで過給された吸気Aを効果的に冷却することができるので、コンプレッサ12aの仕事を増加することなく、吸気Aの量を増加して、排気ガス性能の悪化を抑制しながら、燃費を向上することができる。 In particular, by supplying the second cooling water W3 cooled by the sub radiator 52 directly to the water-cooled intercooler 13, the intake air A supercharged by the compressor 12a of the turbocharger 12 can be effectively cooled. Therefore, without increasing the work of the compressor 12a, the amount of the intake air A can be increased, and the fuel efficiency can be improved while suppressing the deterioration of the exhaust gas performance.
 また、サブラジエータ52でより冷却された第二冷却水W4を直に水冷式コンデンサ23に供給することで、空調用冷媒Rを効果的に冷却することができるので、車室内空調装置20の効率悪化を防止して燃費をより向上することができる。 Further, since the second cooling water W4 further cooled by the sub radiator 52 is directly supplied to the water-cooled condenser 23, the air conditioning refrigerant R can be effectively cooled. Deterioration can be prevented and fuel consumption can be further improved.
 さらに、車室内空調装置20に空調用冷媒Rを第二冷却水W4で冷却する水冷式コンデンサ23を用いることで、空冷式では必須であった電動ファンを廃止することができるので、車室内空調装置20の使用時の電力消費を抑制することができ、図示しないオルタネータの負荷を低減して燃費をさらに向上することができる。 Furthermore, by using the water-cooled condenser 23 that cools the air-conditioning refrigerant R with the second cooling water W4 in the vehicle interior air conditioner 20, the electric fan that is essential in the air cooling system can be eliminated. Power consumption during use of the device 20 can be suppressed, and a load on an alternator (not shown) can be reduced to further improve fuel efficiency.
 加えて、車両用冷却装置30を、互いに独立した主冷却回路40と副冷却回路50とから構成することで、副冷却回路50が主冷却回路40を循環する第一冷却水W1の影響を受けない、つまり主冷却回路40と副冷却回路50とをそれぞれ異なる温度帯とすることができるので、複雑な制御を行うことなく副冷却回路50で主冷却回路40よりも低水温の第二冷却水W2を循環させることができる。これにより、温度帯の異なるエンジンと、水冷式インタークーラ13、及び水冷式コンデンサ23に対してそれぞれに適した水温の冷却水を供給でき、効率良く冷却することができる。 In addition, since the vehicular cooling device 30 includes the main cooling circuit 40 and the sub cooling circuit 50 that are independent from each other, the sub cooling circuit 50 is affected by the first cooling water W <b> 1 circulating through the main cooling circuit 40. In other words, since the main cooling circuit 40 and the sub cooling circuit 50 can be set to different temperature zones, the second cooling water having a lower water temperature than the main cooling circuit 40 in the sub cooling circuit 50 without performing complicated control. W2 can be circulated. Thereby, the cooling water of the water temperature suitable for each with respect to the engine from which a temperature zone differs, the water cooling type intercooler 13, and the water cooling type | mold condenser 23 can be supplied, and it can cool efficiently.
 次に、サブラジエータ52の詳細な構成について図2を参照しながら説明する。図2はラジエータ43とサブラジエータ52とを例示する斜視図である。なお、図2では白抜き矢印が各冷却水W1~W4を示している。 Next, a detailed configuration of the sub radiator 52 will be described with reference to FIG. FIG. 2 is a perspective view illustrating the radiator 43 and the sub radiator 52. In FIG. 2, white arrows indicate the cooling waters W1 to W4.
 ラジエータ43は第一冷却水W1が流れる多数の扁平チューブと放熱用のフィンとで構成されたラジエータコア46の上下にアッパータンク47(第一タンク)及びロアータンク48(第二タンク)が配置されたダウンフロー式のラジエータである。また、このラジエータ43はアッパータンク47に第一冷却水W1の入口47aが配置される一方、ロアータンク48に冷却水の出口48bが配置されて、流路の折り返し数が無いラジエータである。 In the radiator 43, an upper tank 47 (first tank) and a lower tank 48 (second tank) are arranged above and below a radiator core 46 composed of a number of flat tubes through which the first cooling water W1 flows and fins for heat dissipation. It is a down-flow type radiator. Further, the radiator 43 is a radiator in which the inlet 47a of the first cooling water W1 is disposed in the upper tank 47, and the outlet 48b of the cooling water is disposed in the lower tank 48, so that the flow path is not folded back.
 サブラジエータ52は第二冷却水W2が流れる多数の扁平チューブと放熱用のフィンとで構成されたラジエータコア56の左右にアッパータンク57及びロアータンク58が配置されたサイドフロー式のラジエータである。また、このサブラジエータ52はアッパータンク57とロアータンク58とのそれぞれの内部に仕切り板59a~59cで仕切って、内部流路55の折り返し数を複数回にしたラジエータであり、具体的には折り返し数が最大4パスのラジエータである。そして、アッパータンク57に第二冷却水W2の入口57aが配置されて、アッパータンク57及びロアータンク58のどちらか一方に第一出口53が配置され、他方に第二出口54が配置される、具体的にはロアータンク58に第二冷却水W3の第一出口53が配置され、アッパータンク57に第二冷却水W4の第二出口54が配置される。 The sub-radiator 52 is a side flow type radiator in which an upper tank 57 and a lower tank 58 are arranged on the left and right of a radiator core 56 composed of a number of flat tubes through which the second cooling water W2 flows and fins for heat dissipation. The sub-radiator 52 is a radiator in which the inner tank 55 is partitioned by partition plates 59a to 59c inside the upper tank 57 and the lower tank 58, and the number of times of folding of the internal flow path 55 is made. Is a radiator with a maximum of 4 paths. The inlet 57a of the second cooling water W2 is arranged in the upper tank 57, the first outlet 53 is arranged in one of the upper tank 57 and the lower tank 58, and the second outlet 54 is arranged in the other. Specifically, the first outlet 53 of the second cooling water W3 is disposed in the lower tank 58, and the second outlet 54 of the second cooling water W4 is disposed in the upper tank 57.
 つまり、このサブラジエータ52は内部流路55の折り返し数が3パスのところに第一出口53が配置されて、内部流路55の折り返し数が4パスのところに第二出口54が配置される。 That is, in the sub radiator 52, the first outlet 53 is disposed when the number of turns of the internal flow path 55 is 3 passes, and the second outlet 54 is disposed when the number of turns of the internal flow path 55 is 4 passes. .
 仕切り板59a~59cは、内部流路55の3パス目までは流路の幅を均等にして、4パス目を3パス目までの流路の幅よりも狭くするように、アッパータンク57及びロアータンク58に配置される。仕切り板59a~59cをこのように配置することで、第二冷却水W3の流量を第二冷却水W4よりも大きくすることができるので、温度帯が高く流量がより多く必要な水冷式インタークーラ13により多くの流量を供給することができる。 The partition plates 59a to 59c make the width of the flow path uniform up to the third path of the internal flow path 55 and make the upper tank 57 and the fourth path narrower than the width of the flow path up to the third path. Arranged in the lower tank 58. By disposing the partition plates 59a to 59c in this way, the flow rate of the second cooling water W3 can be made larger than that of the second cooling water W4. Therefore, a water-cooled intercooler that requires a higher temperature zone and a higher flow rate is required. 13 can supply more flow rate.
 なお、この実施形態では、アッパータンク57に仕切り板59a、59cを配置し、ロアータンク58に仕切り板59bを配置して、内部流路55の折り返し数を最大4パスとしたが、内部流路55の折り返し数は2パス以上であればよい。また、4パス目の流路の幅を狭くしたが、各流路の幅を均等にしてもよい。 In this embodiment, the partition plates 59a and 59c are arranged in the upper tank 57, the partition plate 59b is arranged in the lower tank 58, and the number of folding of the internal flow path 55 is set to 4 paths at maximum. The number of turns may be two or more passes. Moreover, although the width of the flow path of the 4th pass was made narrow, you may make the width of each flow path uniform.
 このようにサブラジエータ52をアッパータンク57及びロアータンク58のそれぞれの内部を仕切り板59a~59cで仕切って内部流路55の折り返し数を複数にして、アッパータンク57及びロアータンク58のどちらか一方に第一出口53を、他方に第二出口54を配置するようにしたことで、第一出口53よりも内部流路55の下流に第二出口54を配置することができる。これにより、第二出口54から吐出される第二冷却水W4は4回の折り返しによって3回の折り返しの第二冷却水W3よりも低水温となり、水冷式コンデンサ23にその低水温の第二冷却水W4を供給することができる。 In this way, the sub-radiator 52 is divided into the upper tank 57 and the lower tank 58 by the partition plates 59a to 59c so that the number of turns of the internal flow path 55 is plural, and the upper tank 57 and the lower tank 58 are connected to the first one. By arranging one outlet 53 and the second outlet 54 on the other side, the second outlet 54 can be arranged downstream of the internal flow channel 55 from the first outlet 53. As a result, the second cooling water W4 discharged from the second outlet 54 has a lower water temperature than the second cooling water W3 that has been folded three times by four turns, and the second cooling of the low water temperature is performed in the water-cooled condenser 23. Water W4 can be supplied.
 また、流量が多く必要な水冷式インタークーラ13には流量の多い第二冷却水W3を供給するとともに、比較的に流量が少なくて済む水冷式コンデンサ23には少ない流量の第二冷却水W4を供給することで、水冷式インタークーラ13が冷却不足に陥ることを回避することができる。 Further, the second cooling water W3 having a large flow rate is supplied to the water-cooled intercooler 13 that requires a large flow rate, and the second cooling water W4 having a small flow rate is supplied to the water-cooled condenser 23 that requires a relatively small flow rate. By supplying, it can avoid that the water-cooled intercooler 13 falls into insufficient cooling.
 さらに、ラジエータ43を1パスのダウンフロー式のラジエータで構成し、そのラジエータ43の前方側に配置されるサブラジエータ52を最大4パスのサイドフロー式のラジエータで構成するとともに、サブラジエータ52の上方から下方に向かって温度が低くなるように構成したので、ラジエータ43の下方側の温度がサブラジエータ52の影響により上昇することを回避できる。 Further, the radiator 43 is constituted by a one-pass down-flow type radiator, and the sub-radiator 52 disposed on the front side of the radiator 43 is constituted by a side-flow type radiator having a maximum of four passes, and above the sub-radiator 52. Therefore, the temperature on the lower side of the radiator 43 can be prevented from rising due to the influence of the sub radiator 52.
 図3は本開示の第一実施形態の車両用冷却装置30の変形例を示している。この第一実施形態の変形例では、副冷却回路50のサブラジエータ52と水冷式コンデンサ23との間に、水冷式コンデンサ23に流れる第二冷却水W4の流量を調節する補助電動ウォータポンプ60が介設される。 FIG. 3 shows a modification of the vehicle cooling device 30 according to the first embodiment of the present disclosure. In the modification of the first embodiment, an auxiliary electric water pump 60 that adjusts the flow rate of the second cooling water W4 flowing through the water-cooled condenser 23 between the sub-radiator 52 of the sub-cooling circuit 50 and the water-cooled condenser 23 is provided. It is installed.
 このように補助電動ウォータポンプ60を介設することで、空調用冷媒Rを冷却する必要がある場合に、補助電動ウォータポンプ60を駆動することで、必要分の第二冷却水W4を供給することができる。一方、空調用冷媒Rを冷却する必要が無い、つまり車室内空調装置20が起動していない場合に、補助電動ウォータポンプ60を停止することで、第二冷却水W4を水冷式コンデンサ23に供給せずに、その分を水冷式インタークーラ13に回すことができる。これにより、サブラジエータ52で冷却された冷却水を無駄にすることなく効率よく冷却することができる。 In this way, when the auxiliary electric water pump 60 is interposed, when the air conditioning refrigerant R needs to be cooled, the auxiliary electric water pump 60 is driven to supply the necessary second cooling water W4. be able to. On the other hand, when the air conditioning refrigerant R does not need to be cooled, that is, when the vehicle interior air conditioner 20 is not activated, the auxiliary electric water pump 60 is stopped to supply the second cooling water W4 to the water-cooled condenser 23. Without this, it can be turned to the water-cooled intercooler 13. As a result, the cooling water cooled by the sub radiator 52 can be efficiently cooled without being wasted.
 図4は本開示の第二実施形態からなる車両用冷却装置30を例示している。この第二実施形態の車両用冷却装置30は、第一実施形態の構成に加えて、EGR(Exhaust Gas Recirculation)通路70に介設された水冷式EGRクーラ71がサブラジエータ52の下流に水冷式インタークーラ13及び水冷式コンデンサ23とともに並列に配置されて、第一出口53から吐出する第二冷却水W3が分岐されてその水冷式EGRクーラ71に供給されるように構成される。 FIG. 4 illustrates the vehicle cooling device 30 according to the second embodiment of the present disclosure. In the vehicular cooling device 30 of the second embodiment, in addition to the configuration of the first embodiment, a water-cooled EGR cooler 71 provided in an EGR (Exhaust Gas Recirculation) passage 70 is disposed on the downstream side of the sub-radiator 52. Arranged in parallel with the intercooler 13 and the water-cooled condenser 23, the second cooling water W3 discharged from the first outlet 53 is branched and supplied to the water-cooled EGR cooler 71.
 このエンジン10は排気通路17から吸気通路11にEGRガスG2を還流するEGR通路70を備え、そのEGR通路70に水冷式EGRクーラ71とEGRバルブ72とが介設されており、EGRバルブ72を開くとEGRガスG2が還流するように構成されている。 The engine 10 includes an EGR passage 70 that recirculates the EGR gas G2 from the exhaust passage 17 to the intake passage 11. A water-cooled EGR cooler 71 and an EGR valve 72 are interposed in the EGR passage 70. When opened, the EGR gas G2 is configured to recirculate.
 この水冷式EGRクーラ71に第二冷却水W3を分岐して供給するようにしたことで、水冷式インタークーラ13と水冷式コンデンサ23とに加えて、水冷式EGRクーラ71に主冷却回路40を循環する第一冷却水W1よりも低水温の第二冷却水W3を供給して、水冷式EGRクーラ71を通過するEGRガスG2を効果的に冷却することができるので、排気ガスG1に含有されるNOxをより低減できる。 Since the second cooling water W3 is branched and supplied to the water-cooled EGR cooler 71, the main cooling circuit 40 is added to the water-cooled EGR cooler 71 in addition to the water-cooled intercooler 13 and the water-cooled condenser 23. Since the EGR gas G2 passing through the water-cooled EGR cooler 71 can be effectively cooled by supplying the second cooling water W3 having a lower temperature than the circulating first cooling water W1, it is contained in the exhaust gas G1. NOx can be further reduced.
 なお、大型車両でエンジン10の気筒数が多い場合には、互いに別々の気筒にEGRガスG2を還流する複数のEGR通路70を備えて、その複数のEGR通路70のそれぞれに水冷式EGRクーラ71を介設するように構成してもよい。このようにエンジン10の気筒数が多い場合には複数のEGR通路70のそれぞれに介設された複数の水冷式EGRクーラ71で、各水冷式EGRクーラ71が一度に冷却するEGRガスG2の量を少なくすると、EGRガスG2を効率よく冷却することができる。また、EGR通路70はターボチャージャ12の上流の排気通路17から分岐する高圧型の他に、ターボチャージャ12の下流の排気通路17から分岐する低圧型でもよい。 When the number of cylinders of the engine 10 is large in a large vehicle, a plurality of EGR passages 70 that recirculate the EGR gas G2 are provided in separate cylinders, and a water-cooled EGR cooler 71 is provided in each of the plurality of EGR passages 70. You may comprise so that it may be interposed. When the number of cylinders of the engine 10 is large as described above, the amount of EGR gas G2 cooled by the water-cooled EGR coolers 71 at a time by the plurality of water-cooled EGR coolers 71 provided in the plurality of EGR passages 70, respectively. If E is reduced, the EGR gas G2 can be efficiently cooled. Further, the EGR passage 70 may be a low pressure type branching from the exhaust passage 17 downstream of the turbocharger 12 in addition to the high pressure type branching from the exhaust passage 17 upstream of the turbocharger 12.
 図5は第二実施形態の車両用冷却装置30の変形例である。このエンジン10はEGR通路70に複数の水冷式EGRクーラ71、73を配置している。各水冷式EGRクーラ71、73はEGR通路70に直列に配置されており、EGRガスG2は、最初にEGR通路70の上流側に配置された水冷式EGRクーラ71を通過して冷却された後に、下流側に配置された水冷式EGRクーラ73を通過してさらに冷却されている。このように各水冷式EGRクーラ71、73を直列に配置する場合には、各水冷式EGRクーラ71、73のそれぞれの冷却水の温度帯を異ならせ、前段の水冷式EGRクーラ71よりも後段の水冷式EGRクーラ73の温度帯を低くすることが望ましい。 FIG. 5 shows a modification of the vehicle cooling device 30 according to the second embodiment. In the engine 10, a plurality of water-cooled EGR coolers 71 and 73 are arranged in the EGR passage 70. Each of the water-cooled EGR coolers 71 and 73 is arranged in series with the EGR passage 70, and the EGR gas G2 is first cooled after passing through the water-cooled EGR cooler 71 arranged on the upstream side of the EGR passage 70. The water-cooled EGR cooler 73 disposed on the downstream side is further cooled. In this way, when the water-cooled EGR coolers 71 and 73 are arranged in series, the temperature zones of the respective water-cooled EGR coolers 71 and 73 are made different from each other, and the subsequent stage of the water-cooled EGR cooler 71 in the previous stage is different. It is desirable to lower the temperature zone of the water-cooled EGR cooler 73.
 そこで、この車両用冷却装置30は主冷却回路40の第一冷却水W1がEGR通路70の上流側に配置された水冷式EGRクーラ71に供給される一方、副冷却回路50のサブラジエータ52で冷却された第二冷却水W3がEGR通路70の下流側に配置された水冷式EGRクーラ73に供給されるように構成される。 Accordingly, in the vehicular cooling device 30, the first cooling water W <b> 1 of the main cooling circuit 40 is supplied to the water-cooled EGR cooler 71 disposed on the upstream side of the EGR passage 70, while the sub-radiator 52 of the sub-cooling circuit 50 The cooled second cooling water W3 is configured to be supplied to a water-cooled EGR cooler 73 disposed on the downstream side of the EGR passage 70.
 この車両用冷却装置30は、上流側の水冷式EGRクーラ71には比較的に温度が高い第一冷却水W1が供給され、下流側の水冷式EGRクーラ73により低水温の第二冷却水W3が供給される。従って、高水温の第一冷却水W1が供給される上流側の水冷式EGRクーラ71で高温のEGRガスG2の粗熱を取り、次いで、より低水温の第二冷却水W3が供給される下流側の水冷式EGRクーラ73でより低い温度まで冷却する。つまり、温度帯の異なる水冷式EGRクーラ71と水冷式EGRクーラ73とで段階的に冷却することで、EGRガスG2をより低温まで冷却する。 In the vehicular cooling device 30, the upstream-side water-cooled EGR cooler 71 is supplied with the first cooling water W <b> 1 having a relatively high temperature, and the downstream-side water-cooled EGR cooler 73 supplies the low-temperature second cooling water W <b> 3. Is supplied. Accordingly, the upstream water-cooled EGR cooler 71 to which the high-temperature first cooling water W1 is supplied takes the rough heat of the high-temperature EGR gas G2, and then the downstream at which the lower-temperature second cooling water W3 is supplied. Cool to a lower temperature with the water-cooled EGR cooler 73 on the side. That is, the EGR gas G2 is cooled to a lower temperature by cooling in stages with the water-cooled EGR cooler 71 and the water-cooled EGR cooler 73 in different temperature zones.
 このように、EGRガスG2を段階的に、詳しくは最初にEGR通路70の上流側に配置された水冷式EGRクーラ71で冷却した後に、下流側に配置された水冷式EGRクーラ73で冷却するようにしたことで、EGRガスG2をより低温まで確実に冷却することができる。また、上流側に配置された水冷式EGRクーラ71と下流側に配置された水冷式EGRクーラ73とをそれぞれ独立した回路として、その第一冷却水W1、第二冷却水W3の温度帯を異ならせることで、主冷却回路40と副冷却回路50とのそれぞれの冷却回路における冷却効率をより向上することができる。これにより、エンジン本体15、吸気A、空調用冷媒R、及びEGRガスG2と全てを効率良く冷却することができる。 In this way, the EGR gas G2 is cooled stepwise, specifically, first by the water-cooled EGR cooler 71 disposed on the upstream side of the EGR passage 70, and then cooled by the water-cooled EGR cooler 73 disposed on the downstream side. By doing so, the EGR gas G2 can be reliably cooled to a lower temperature. Further, the water-cooled EGR cooler 71 arranged on the upstream side and the water-cooled EGR cooler 73 arranged on the downstream side are respectively independent circuits, and the temperature zones of the first cooling water W1 and the second cooling water W3 are different. By making it, the cooling efficiency in each cooling circuit of the main cooling circuit 40 and the subcooling circuit 50 can be improved more. As a result, the engine main body 15, the intake air A, the air conditioning refrigerant R, and the EGR gas G2 can all be efficiently cooled.
 また、上流側の水冷式EGRクーラ71で熱交換した後のEGRガスG2を下流側の水冷式EGRクーラ73で副冷却回路50を循環する第二冷却水W3により冷却する構成としたことで、下流側の水冷式EGRクーラ73で熱交換した後の第二冷却水W3の温度を低くすることができるので、副冷却回路50を循環する第二冷却水W2の温度を低くできる。これにより、副冷却回路50で水冷式EGRクーラ73を冷却するように構成しても、水冷式インタークーラ13及び水冷式コンデンサ23のそれぞれに適した低水温の第二冷却水W3及び第二冷却水W4を供給して、それぞれの冷却効果を向上することができる。 In addition, the EGR gas G2 after heat exchange with the upstream water-cooled EGR cooler 71 is cooled by the second cooling water W3 circulating in the sub-cooling circuit 50 with the downstream water-cooled EGR cooler 73. Since the temperature of the second cooling water W3 after heat exchange with the water-cooled EGR cooler 73 on the downstream side can be lowered, the temperature of the second cooling water W2 circulating in the sub cooling circuit 50 can be lowered. Thus, even if the subcooling circuit 50 is configured to cool the water-cooled EGR cooler 73, the low-temperature second cooling water W3 and the second cooling suitable for the water-cooled intercooler 13 and the water-cooled condenser 23, respectively. Water W4 can be supplied to improve each cooling effect.
 なお、この実施形態では、EGR通路70の上流側の水冷式EGRクーラ71に主冷却回路40を循環する第一冷却水W1を供給する構成を例に説明したが、主冷却回路40から独立したEGR用冷却回路を循環する冷却水を供給する構成にしてもよい。 In this embodiment, the configuration in which the first cooling water W1 that circulates the main cooling circuit 40 is supplied to the water-cooled EGR cooler 71 on the upstream side of the EGR passage 70 is described as an example. You may make it the structure which supplies the cooling water which circulates through the cooling circuit for EGR.
 図6は本開示の第三実施形態からなる車両用冷却装置30を例示している。この第三実施形態の車両用冷却装置30は主冷却回路40と副冷却回路50とが互いに独立した構成ではなく、副冷却回路50が主冷却回路40から分岐するように構成される。 FIG. 6 illustrates the vehicle cooling device 30 according to the third embodiment of the present disclosure. The vehicle cooling device 30 of the third embodiment is configured such that the main cooling circuit 40 and the sub cooling circuit 50 are not independent from each other, and the sub cooling circuit 50 branches from the main cooling circuit 40.
 この実施形態では機械式ウォータポンプ41の出口が二つに形成される。そして、副冷却回路50では、第二冷却水W2が、機械式ウォータポンプ41、サブラジエータ52、水冷式インタークーラ13及び水冷式コンデンサ23のどちらか一方、並びに、機械式ウォータポンプ41の順に循環するように構成される。 In this embodiment, two outlets of the mechanical water pump 41 are formed. In the sub-cooling circuit 50, the second cooling water W2 circulates in the order of the mechanical water pump 41, the sub-radiator 52, the water-cooled intercooler 13 and the water-cooled condenser 23, and the mechanical water pump 41. Configured to do.
 副冷却回路50は、機械式ウォータポンプ41の一方の出口から分岐して、サーモスタット42の下流で合流することが好ましく、冷却通路44のラジエータ43の下流、あるいはバイパス通路45の下流で合流することがより好ましい。副冷却回路50の第二冷却水W2がサーモスタット42の上流で第一冷却水W1に合流すると、第二冷却水W2の温度T2が暖機温度Taよりも高い場合に、第一冷却水W1の温度T1が暖機温度Taに達していないときでもサーモスタット42が開いて第一冷却水W1がラジエータ43で冷却されることがある。また、温度T2が暖機温度Taよりも低い場合に、第一冷却水W1の温度T1が暖機温度Ta以上でもサーモスタット42が閉じて第一冷却水W1がラジエータ43で冷却されないことがある。そこで、副冷却回路50をサーモスタット42よりも下流で主冷却回路40に合流させるようにすることで、主冷却回路40の温度の調節への影響を抑制することができる。 The sub cooling circuit 50 is preferably branched from one outlet of the mechanical water pump 41 and merged downstream of the thermostat 42, and merged downstream of the radiator 43 in the cooling passage 44 or downstream of the bypass passage 45. Is more preferable. When the second cooling water W2 of the sub-cooling circuit 50 joins the first cooling water W1 upstream of the thermostat 42, the temperature of the second cooling water W2 is higher than the warm-up temperature Ta. Even when the temperature T1 does not reach the warm-up temperature Ta, the thermostat 42 may open and the first cooling water W1 may be cooled by the radiator 43. Further, when the temperature T2 is lower than the warm-up temperature Ta, the thermostat 42 may be closed and the first cooling water W1 may not be cooled by the radiator 43 even if the temperature T1 of the first cooling water W1 is equal to or higher than the warm-up temperature Ta. Therefore, by causing the sub cooling circuit 50 to join the main cooling circuit 40 downstream of the thermostat 42, the influence on the adjustment of the temperature of the main cooling circuit 40 can be suppressed.
 この実施形態からも分かるように、本発明は主冷却回路40から分岐して主冷却回路40に合流する副冷却回路50にも適用することができる。なお、この第三実施形態も第二実施形態のように水冷式EGRクーラに第二冷却水W3を供給するように構成することもできる。 As can be seen from this embodiment, the present invention can also be applied to the sub-cooling circuit 50 that branches from the main cooling circuit 40 and joins the main cooling circuit 40. In addition, this 3rd embodiment can also be comprised so that the 2nd cooling water W3 may be supplied to a water cooling type EGR cooler like 2nd embodiment.
 本出願は、2015年10月8日付で出願された日本国特許出願(2015-199999)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (2015-199999) filed on October 8, 2015, the contents of which are incorporated herein by reference.
 同時に水冷式インタークーラと水冷式コンデンサとの両方にサブラジエータで冷却された冷却水を供給することができる点で有用である。 At the same time, it is useful in that the cooling water cooled by the sub-radiator can be supplied to both the water-cooled intercooler and the water-cooled condenser.
10 エンジン
12 ターボチャージャ
12a コンプレッサ
13 水冷式インタークーラ
20 車室内空調装置
23 水冷式コンデンサ
30 車両用冷却装置
40 主冷却回路
41 機械式ウォータポンプ
43 ラジエータ
50 副冷却回路
51 電動ウォータポンプ
52 サブラジエータ
53 第一出口
54 第二出口
55 内部流路
A 吸気
R 空調用冷媒
W1~W4 冷却水
DESCRIPTION OF SYMBOLS 10 Engine 12 Turbocharger 12a Compressor 13 Water-cooled intercooler 20 Car interior air conditioner 23 Water-cooled condenser 30 Vehicle cooling device 40 Main cooling circuit 41 Mechanical water pump 43 Radiator 50 Sub cooling circuit 51 Electric water pump 52 Sub radiator 53 First One outlet 54 Second outlet 55 Internal flow path A Intake R Air-conditioning refrigerants W1 to W4 Cooling water

Claims (7)

  1.  エンジンの第一冷却水を冷却するラジエータと、
    過給機で過給された吸気を冷却する水冷式インタークーラに供給される第二冷却水を供給する第一出口、及び空調用冷媒を冷却する水冷式コンデンサに供給される前記第二冷却水を供給する第二出口を有し、前記第二冷却水を冷却するサブラジエータと、
    を備えた車両用冷却装置において、
     冷却水の流れに関して前記サブラジエータの下流に前記水冷式インタークーラと前記水冷式コンデンサとが並列に配置され、
     前記第一出口よりも前記サブラジエータの内部流路の下流に前記第二出口が配置されたことを特徴とする車両用冷却装置。
    A radiator for cooling the first cooling water of the engine;
    A first outlet for supplying a second cooling water supplied to a water-cooled intercooler for cooling intake air supercharged by a supercharger; and the second cooling water supplied to a water-cooled condenser for cooling an air-conditioning refrigerant. A sub-radiator for cooling the second cooling water,
    In a vehicle cooling device comprising:
    The water-cooled intercooler and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
    The vehicular cooling device, wherein the second outlet is disposed downstream of the internal passage of the sub radiator from the first outlet.
  2.  前記サブラジエータは、第一タンクと、第二タンクと、第一タンクと第二タンクのそれぞれの内部を仕切る仕切り板を備え、前記内部流路には複数の折り返し数が形成され、前記第一タンク及び前記第二タンクのどちらか一方に前記第一出口が配置され、他方に前記第二出口が配置された請求項1に記載の車両用冷却装置。 The sub-radiator includes a first tank, a second tank, and a partition plate that partitions the interior of each of the first tank and the second tank, and a plurality of folding numbers are formed in the internal flow path. The vehicle cooling device according to claim 1, wherein the first outlet is disposed in one of the tank and the second tank, and the second outlet is disposed in the other.
  3.  前記ラジエータを有した主冷却回路と、前記サブラジエータを有して該主冷却回路から独立した副冷却回路とを備え、
     前記主冷却回路は、前記第一冷却水が、機械式ウォータポンプ、前記エンジン、前記ラジエータ及び前記機械式ウォータポンプの順に循環する冷却通路及び、前記第一冷却水が、前記機械式ウォータポンプ、前記エンジン及び前記機械式ウォータポンプの順に循環するように前記ラジエータをバイパスするバイパス通路により構成され、
     前記副冷却回路は、前記第二冷却水が、電動ウォータポンプ、前記サブラジエータ、前記水冷式インタークーラ及び前記水冷式コンデンサのどちから一方、並びに、該電動ウォータポンプの順に循環するように構成された請求項1又は2に記載の車両用冷却装置。
    A main cooling circuit having the radiator, and a sub-cooling circuit having the sub-radiator and independent from the main cooling circuit,
    The main cooling circuit includes a cooling passage in which the first cooling water circulates in the order of a mechanical water pump, the engine, the radiator, and the mechanical water pump, and the first cooling water is the mechanical water pump, It is constituted by a bypass passage that bypasses the radiator so as to circulate in the order of the engine and the mechanical water pump,
    The sub-cooling circuit is configured such that the second cooling water circulates from one of the electric water pump, the sub-radiator, the water-cooled intercooler, and the water-cooled condenser, and the electric water pump in this order. The vehicle cooling device according to claim 1 or 2.
  4.  前記サブラジエータと前記水冷式コンデンサとの間に、前記水冷式コンデンサに流れる冷却水の流量を調節する補助電動ウォータポンプが介在された請求項3に記載の車両用冷却装置。 The vehicle cooling device according to claim 3, wherein an auxiliary electric water pump for adjusting a flow rate of cooling water flowing through the water-cooled condenser is interposed between the sub-radiator and the water-cooled condenser.
  5.  前記ラジエータを有した主冷却回路と、前記サブラジエータを有して該主冷却回路から分岐した副冷却回路とを備え、
     前記主冷却回路は、冷却水が、機械式ウォータポンプ、前記エンジン、前記ラジエータの順に循環する冷却通路及び、前記第一冷却水が、前記機械式ウォータポンプ、前記エンジンの順に循環するように前記ラジエータをバイパスするバイパス通路により構成され、
     前記副冷却回路は、冷却水が、前記機械式ウォータポンプ、前記サブラジエータ、前記水冷式インタークーラ及び前記水冷式コンデンサのどちらか一方、並びに、前記機械式ウォータポンプの順に循環するように構成された請求項1又は2に記載の車両用冷却装置。
    A main cooling circuit having the radiator, and a sub cooling circuit having the sub radiator and branched from the main cooling circuit,
    The main cooling circuit includes a cooling passage in which cooling water circulates in the order of mechanical water pump, the engine, and the radiator, and the first cooling water circulates in order of the mechanical water pump and the engine. Consists of a bypass passage that bypasses the radiator,
    The sub-cooling circuit is configured to circulate cooling water in the order of the mechanical water pump, the sub-radiator, the water-cooled intercooler, the water-cooled condenser, and the mechanical water pump. The vehicle cooling device according to claim 1 or 2.
  6.  EGRガスを冷却する水冷式EGRクーラを備え、
     冷却水の流れに関して前記サブラジエータの下流に前記水冷式インタークーラ、前記水冷式EGRクーラ、及び前記水冷式コンデンサが並列に配置され、
     前記第一出口から吐出する冷却水が前記水冷式EGRクーラに供給される構成にした請求項1~5のいずれか1項に記載の車両用冷却装置。
    It has a water-cooled EGR cooler that cools EGR gas,
    The water-cooled intercooler, the water-cooled EGR cooler, and the water-cooled condenser are arranged in parallel downstream of the sub-radiator with respect to the flow of cooling water,
    6. The vehicle cooling device according to claim 1, wherein cooling water discharged from the first outlet is supplied to the water-cooled EGR cooler.
  7.  前記エンジンのEGR通路に介在する複数の前記水冷式EGRクーラのうちの下流側に配置された前記水冷式EGRクーラに前記第一出口から吐出する冷却水が供給される構成にした請求項6に記載の車両用冷却装置。 The cooling water discharged from the first outlet is supplied to the water-cooled EGR cooler disposed on the downstream side of the plurality of water-cooled EGR coolers interposed in the EGR passage of the engine. The vehicle cooling device as described.
PCT/JP2016/079528 2015-10-08 2016-10-04 Vehicular cooling device WO2017061438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199999 2015-10-08
JP2015199999A JP6641865B2 (en) 2015-10-08 2015-10-08 Vehicle cooling system

Publications (1)

Publication Number Publication Date
WO2017061438A1 true WO2017061438A1 (en) 2017-04-13

Family

ID=58487703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079528 WO2017061438A1 (en) 2015-10-08 2016-10-04 Vehicular cooling device

Country Status (2)

Country Link
JP (1) JP6641865B2 (en)
WO (1) WO2017061438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021136953A1 (en) * 2019-12-30 2021-07-08

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002350A (en) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 Cooling system
JP2019143505A (en) 2018-02-19 2019-08-29 トヨタ自動車株式会社 Reserve tank
JP7095512B2 (en) * 2018-09-13 2022-07-05 トヨタ自動車株式会社 Hybrid vehicle cooling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168215U (en) * 1987-04-21 1988-11-01
US20050006067A1 (en) * 2001-11-29 2005-01-13 Markus Hoglinger Heat exchanger
US20050199382A1 (en) * 2002-06-21 2005-09-15 Behr Gmbh & Co.Kg Heat transmitter arrangement
JP2008525700A (en) * 2004-12-23 2008-07-17 ヴァレオ テルミーク モツール Automotive engine thermal energy control system
JP2010090729A (en) * 2008-10-03 2010-04-22 Denso Corp Cooling system for vehicle
WO2013171976A1 (en) * 2012-05-16 2013-11-21 株式会社デンソー Exhaust gas recirculation device
JP2015086778A (en) * 2013-10-30 2015-05-07 いすゞ自動車株式会社 Engine cooling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168215U (en) * 1987-04-21 1988-11-01
US20050006067A1 (en) * 2001-11-29 2005-01-13 Markus Hoglinger Heat exchanger
US20050199382A1 (en) * 2002-06-21 2005-09-15 Behr Gmbh & Co.Kg Heat transmitter arrangement
JP2008525700A (en) * 2004-12-23 2008-07-17 ヴァレオ テルミーク モツール Automotive engine thermal energy control system
JP2010090729A (en) * 2008-10-03 2010-04-22 Denso Corp Cooling system for vehicle
WO2013171976A1 (en) * 2012-05-16 2013-11-21 株式会社デンソー Exhaust gas recirculation device
JP2015086778A (en) * 2013-10-30 2015-05-07 いすゞ自動車株式会社 Engine cooling system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021136953A1 (en) * 2019-12-30 2021-07-08
WO2021136953A1 (en) * 2019-12-30 2021-07-08 日産自動車株式会社 Vehicular cooling device
CN114901933A (en) * 2019-12-30 2022-08-12 日产自动车株式会社 Cooling device for vehicle
EP4086440A4 (en) * 2019-12-30 2023-01-18 NISSAN MOTOR Co., Ltd. Vehicular cooling device
JP7243863B2 (en) 2019-12-30 2023-03-22 日産自動車株式会社 vehicle cooling system
CN114901933B (en) * 2019-12-30 2023-08-08 日产自动车株式会社 Cooling device for vehicle

Also Published As

Publication number Publication date
JP2017072092A (en) 2017-04-13
JP6641865B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5436673B2 (en) Vehicle comprising at least one cooling circuit for cooling a fuel cell system
US9506395B2 (en) Cooling system and associated operating method
EP2110274B1 (en) Improved heating and air conditioning unit for an automotive vehicle
CN111716987B (en) Thermal system, electric or hybrid vehicle and method for operating a thermal system
US8127722B2 (en) Cooling circuit for the thermal engine of an automotive vehicle
US20090078220A1 (en) Cooling System with Isolated Cooling Circuits
WO2017061438A1 (en) Vehicular cooling device
US8464669B2 (en) Cooling circuit for an internal combustion engine
US20080196679A1 (en) Cooling System For a Motor Vehicle
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
JP2008057950A (en) Complex heat exchanger and complex heat exchanger system
CN101734142B (en) Method and system for extra cooling of the coolant in a vehicle&#39;s cooling system
JP2005504686A (en) Temperature control device for electric or hybrid vehicles
WO2019039990A1 (en) A cooling arrangement for a hybrid vehicle comprising an electric drive unit, a combustion engine and a whr system
JP6590321B2 (en) Air conditioner for vehicles
JP2022513251A (en) Temperature control device for heat transfer fluid circuit of hybrid vehicle
JP2021147044A (en) System for air-conditioning air in vehicle interior and transferring heat through drive component of motor vehicle, and method for operating the system
EP2503123B1 (en) Cooling system
WO2021044177A1 (en) Heat exchange device for vehicles
KR20100103891A (en) Cooling module for hybrid automobile
KR102270925B1 (en) Heat management device for automotive vehicles
JP7375648B2 (en) Vehicle cooling system
CN112670615B (en) Device for controlling the temperature of an energy storage device
KR102359106B1 (en) System for air conditioning of a passenger compartment and for heat transfer with drive components of a motor vehicle and method for operating the system
JP6160527B2 (en) Cooling device for internal combustion engine and intake gas cooling device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853592

Country of ref document: EP

Kind code of ref document: A1