WO2017061361A1 - Perovskite photoelectric conversion element - Google Patents

Perovskite photoelectric conversion element Download PDF

Info

Publication number
WO2017061361A1
WO2017061361A1 PCT/JP2016/079241 JP2016079241W WO2017061361A1 WO 2017061361 A1 WO2017061361 A1 WO 2017061361A1 JP 2016079241 W JP2016079241 W JP 2016079241W WO 2017061361 A1 WO2017061361 A1 WO 2017061361A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
perovskite
light
conversion element
Prior art date
Application number
PCT/JP2016/079241
Other languages
French (fr)
Japanese (ja)
Inventor
上谷 保則
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017544479A priority Critical patent/JP6798499B2/en
Publication of WO2017061361A1 publication Critical patent/WO2017061361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a perovskite photoelectric conversion element.
  • a transparent electrode containing FTO an electron transport layer composed of a porous oxide layer containing TiO 2 , an active layer containing a perovskite compound, a hole injection layer containing Spiro-OMETAD, an anode containing Au, and a wavelength of less than 435 nm
  • Non-Patent Document 1 A photoelectric conversion element in which cut filters for cutting are stacked in this order has been reported.
  • Non-Patent Document 1 the photoelectric conversion element described in Non-Patent Document 1 described above has insufficient light durability.
  • An object of the present invention is to provide a perovskite photoelectric conversion element exhibiting high light durability.
  • the present invention provides the following inventions.
  • An electrode an active layer containing a perovskite compound, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm and a cut filter having a light transmittance of 50% or less at a wavelength of 442 nm or less in this order.
  • a perovskite photoelectric conversion element that is stacked.
  • the cut filter is a cut filter having a transmittance of light having a wavelength of 482 nm or less of 50% or less.
  • the cut filter a support substrate having a light transmittance of 400 nm to 1200 nm at a wavelength of 10% or more, an electrode as an anode having a light transmittance of 400 nm to 1200 nm at a wavelength of 10% or more, and the perovskite compound.
  • a support substrate, an anode, an active layer containing the perovskite compound, an electrode having a light transmittance of 400% to 1200 nm as a cathode of 10% or more, and the cut filter are laminated in this order.
  • a perovskite photoelectric conversion element exhibiting high light durability can be obtained.
  • the perovskite photoelectric conversion device of the present invention includes an electrode, an active layer containing a perovskite compound, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm, and light having a wavelength of 442 nm or less.
  • Cut filters having a transmittance of 50% or less are perovskite photoelectric conversion elements stacked in this order.
  • an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm means an electrode having a light transmittance of 10% or more for all wavelengths in a wavelength range of 400 nm to 1200 nm.
  • the cut filter whose transmittance of light having a wavelength of 442 nm or less is 50% or less means a cut filter whose transmittance of light of all wavelengths in a region of wavelength 442 nm or less is 50% or less.
  • the perovskite photoelectric conversion element of the present invention is A perovskite photoelectric conversion element in which a cut filter, a support substrate, an anode, an active layer containing a perovskite compound and a cathode are laminated in this order, or A perovskite photoelectric conversion element in which a support substrate, an anode, an active layer containing a perovskite compound, a cathode, and a cut filter are laminated in this order is preferable.
  • the perovskite photoelectric conversion element of the present invention is A perovskite photoelectric conversion element in which a cut filter, a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer and a cathode are laminated in this order, or A perovskite photoelectric conversion element in which a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer, a cathode, and a cut filter are stacked in this order is more preferable.
  • the perovskite photoelectric conversion element of the present invention may have a sealing layer on the outer side of the electrode far from the support substrate.
  • the perovskite organic photoelectric conversion element includes, for example, a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer, and a cathode in this order to form a sealing layer.
  • it can be manufactured by placing the cut filter on the support substrate.
  • the perovskite photoelectric conversion element of the present invention is usually formed on a support substrate.
  • a support substrate a substrate that is not chemically changed when a photoelectric conversion element is manufactured is preferably used.
  • the support substrate include a glass substrate, a plastic substrate, a polymer film, and a silicon plate.
  • the light transmittance of the support substrate is not particularly limited, but in the perovskite photoelectric conversion element of the present invention, when light is taken from the support substrate side, the light having a transmittance of light of 400 nm to 1200 nm is 10% or more in the support substrate.
  • a highly transmissive substrate is preferably used.
  • a perovskite photoelectric conversion element when a perovskite photoelectric conversion element is manufactured on a support substrate with low light transmittance, light cannot be taken in from the electrode side closer to the support substrate. It is preferable to use an electrode having a high light transmittance and a light transmittance of 400 nm to 1200 nm of 10% or more. By using an electrode with high light transmittance, light can be taken in from an electrode far from the support substrate side even if a support substrate with low light transmittance is used.
  • the anode can take the form of a single layer or a stack of multiple layers.
  • a conductive metal oxide film, a metal thin film, and a conductive film containing an organic substance are used for the anode.
  • indium oxide, zinc oxide, tin oxide, indium tin oxide Indium Tin Oxide: abbreviated as ITO
  • fluorinated tin oxide FLUORINE Tin Oxide: abbreviated as FTO
  • indium zinc oxide Indium Zinc Oxide: Abbreviations IZO
  • gold, platinum, silver, copper, aluminum, polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used.
  • a thin film of ITO, FTO, IZO, or tin oxide is preferably used for the anode.
  • the anode When the electrode having a light transmittance of 400 nm to 1200 nm in the perovskite photoelectric conversion element of the present invention is 10% or more as an anode, the anode has a thickness of a thin film constituting the anode, for example, to the extent that light can be transmitted. It can be obtained by making the thickness.
  • the highly light-transmitting anode include a conductive metal oxide film and a translucent metal thin film.
  • a thin film containing gold, platinum, silver or copper is used.
  • a thin film containing at least one conductive material selected from the group consisting of tin oxide, ITO and IZO is preferable.
  • a hole injection layer is preferably provided between the anode and the active layer.
  • the hole injection layer has a function of promoting hole injection into the anode.
  • the hole injection layer is preferably provided in contact with the anode.
  • Materials for the hole injection layer include polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polymer compounds such as a polymer compound having an aromatic amine residue as a repeating unit, aniline, thiophene, pyrrole, aromatic Low molecular compounds such as group amine compounds, and inorganic compounds such as CuSCN and CuI.
  • polythiophene and derivatives thereof, aromatic amine compounds, polymer compounds having an aromatic amine residue as a repeating unit, CuSCN, and CuI are preferable.
  • a polymer compound having an aromatic amine residue as a repeating unit is preferable from the viewpoint of extending the lifetime of the photoelectric conversion element.
  • aromatic amine compound examples include the following.
  • the aromatic amine compound preferably contains a phenyl group having at least three substituents.
  • aromatic amine compound containing a phenyl group having at least three substituents include the following.
  • the repeating unit having an aromatic amine residue is a repeating unit obtained by removing two hydrogen atoms from the aromatic amine compound.
  • the repeating unit having an aromatic amine residue include a repeating unit represented by the following formula (1 ′).
  • the repeating unit represented by the following formula (1 ′) is preferably a repeating unit represented by the following formula (1).
  • the polymer compound having an aromatic amine residue as a repeating unit preferably includes a phenyl group having at least three substituents. (Where Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent an arylene group (A1) or a divalent heterocyclic group (B1).
  • E 1 ′, E 2 ′ and E 3 ′ each independently represent the following aryl group (A2 ′) or monovalent heterocyclic group (B2 ′).
  • a and b each independently represent 0 or 1, and 0 ⁇ a + b ⁇ 1.
  • Arylene group (A1) an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and a divalent group having a benzene ring or a condensed ring and two or more independent benzene rings or condensed rings are directly Alternatively, a divalent group bonded through a group such as vinylene is also included.
  • the arylene group may have a substituent.
  • substituents examples include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group.
  • the carbon number of the unsubstituted arylene group is usually 6 to 60, preferably 6 to 20.
  • Divalent heterocyclic group (B1) A remaining atomic group obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the divalent heterocyclic group may have a substituent.
  • substituents include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group.
  • An alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a substituted amino group, a substituted silyl group, a substituted silyloxy group, and a monovalent heterocyclic group are preferable.
  • the carbon number of the unsubstituted divalent heterocyclic group is usually about 3 to 60.
  • the aryl group may have a substituent.
  • substituents include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group.
  • a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group, and a halogen atom are preferable.
  • the carbon number of the unsubstituted aryl group is usually about 6 to 30, and preferably 6 to 20.
  • Monovalent heterocyclic group (B2 ′) The monovalent heterocyclic group may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group.
  • a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group, and a halogen atom are preferable.
  • the carbon number of the unsubstituted monovalent heterocyclic group is usually about 1 to 30.
  • E 1 , E 2 and E 3 each independently represent the following aryl group (A2) or monovalent heterocyclic group (B2).
  • the aryl group usually has about 6 to 40 carbon atoms, preferably 6 to 30 carbon atoms.
  • the carbon number of the monovalent heterocyclic group is usually about 1 to 40.
  • the aryl group (A2) is preferably a phenyl group having 3 or more substituents, a naphthyl group having 3 or more substituents, or an anthracenyl group having 3 or more substituents, and represented by the following formula (2) More preferably, it is a group.
  • Re, Rf and Rg are each independently an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, An arylalkynyl group, an amino group, a substituted amino group, a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group or a halogen atom is represented.
  • the polymer compound having an aromatic amine residue as a repeating unit may further have a repeating unit represented by the following formula (3), formula (4), formula (5) or formula (6). . —Ar 12 — (3) —Ar 12 —X 1 — (Ar 13 —X 2 ) c —Ar 14 — (4) —Ar 12 —X 2 — (5) -X 2- (6) (Where Ar 12 , Ar 13 and Ar 14 each independently represent an arylene group, a divalent heterocyclic group or a divalent group having a metal complex structure.
  • X 1 represents —CR 2 ⁇ CR 3 —, —C ⁇ C— or — (SiR 5 R 6 ) d —.
  • X 2 represents —CR 2 ⁇ CR 3 —, —C ⁇ C—, —N (R 4 ) —, or — (SiR 5 R 6 ) d —.
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group or a cyano group.
  • R 4 , R 5 and R 6 each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
  • c represents an integer of 0-2.
  • d represents an integer of 1 to 12.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently
  • Me represents a methyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • MeO represents a methoxy group
  • BuO represents a butyloxy group.
  • the thickness of the hole injection layer is preferably 25 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, and particularly preferably 10 nm or less.
  • the hole transport layer is provided between the hole injection layer and the active layer, and has a function of an electron block. By providing the hole transport layer, a more efficient photoelectric conversion element can be obtained.
  • the hole transport layer include a low molecular compound having an aromatic amine residue exemplified in the hole injection layer, and a polymer having an aromatic amine residue exemplified in the hole injection layer as a repeating unit. Compounds. Note that in the case where a low molecular compound having an aromatic amine residue or a polymer compound having an aromatic amine residue as a repeating unit is used for the hole injection layer, the hole transport layer may not be provided.
  • the active layer includes a perovskite compound.
  • the active layer may contain other components in addition to the perovskite compound.
  • other components that can be included in the active layer include an electron-donating compound, an electron-accepting compound, an ultraviolet absorber, an antioxidant, and a sensitizer for sensitizing the function of generating charge by absorbed light, Examples thereof include a light stabilizer for increasing stability against ultraviolet rays and a binder for enhancing mechanical properties.
  • the perovskite compound is preferably a perovskite compound having an organic-inorganic hybrid structure, and is preferably a perovskite compound represented by any of the following formulas (7) to (9).
  • M 1 is a divalent metal
  • Plural Xs are each independently F, Cl, Br, or I.
  • Examples of the divalent metal represented by M 1 include Cu, Ni, Mn, Fe, Co, Pd, Ge, Sn, Pb, and Eu. )
  • R 1 is an alkyl group having 2 or more carbon atoms, an alkenyl group, an aralkyl group, an aryl group, a monovalent heterocyclic group or a monovalent aromatic heterocyclic group, M 1 and X are as defined above. )
  • the alkyl group represented by R 1 may be linear or branched, or may be a cycloalkyl group.
  • the carbon number of the alkyl group represented by R 1 is usually 2 to 40, and preferably 2 to 30.
  • Examples of the alkyl group represented by R 1 include an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, an isooctyl group, a nonyl group, a dodecyl group, a tridecyl group, and a tetradecyl group.
  • Pentadecyl group Pentadecyl group, octadecyl group, icosanyl group, docosanyl group, triacontanyl group, tetracontanyl group, cyclopentyl group, and cyclohexyl group.
  • the alkenyl group represented by R 1 usually has 2 to 30 carbon atoms, and preferably 2 to 20 carbon atoms.
  • Examples of the alkenyl group represented by R 1 include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, oleyl group, and allyl group.
  • the carbon number of the aralkyl group represented by R 1 is usually 7 to 40, and preferably 7 to 30.
  • Examples of the aralkyl group represented by R 1 include a benzyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group.
  • the aryl group represented by R 1 usually has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms.
  • Examples of the aryl group represented by R 1 include a phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, and indenyl group. , Pyrenyl group and biphenylyl group.
  • the number of carbon atoms of the monovalent heterocyclic group represented by R 1 is usually 1 to 30, and preferably 1 to 20.
  • the monovalent aromatic heterocyclic group represented by R 1 usually has 2 to 30 carbon atoms, and preferably 2 to 20 carbon atoms.
  • Examples of the monovalent heterocyclic group or monovalent aromatic heterocyclic group represented by R 1 include pyrrolidyl group, imidazolidinyl group, morpholyl group, oxazolyl group, oxazolidinyl group, furyl group, thienyl group, pyridyl group, Examples include pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group, and phthalazinyl group.
  • only one perovskite compound may be used as the material of the active layer, or a plurality of perovskite compounds may be used.
  • the perovskite compound in the photoelectric conversion element of the present invention is preferably a compound represented by the formula (7).
  • a compound represented by the formula (7) CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 SnI 3 , CH 3 NH 3 SnCl 3 or CH 3 NH More preferably, it is 3 SnBr 3 .
  • an electron transport layer is preferably provided between the active layer and the cathode.
  • the electron transport layer contains an electron transport material.
  • the electron transporting material may be an organic compound or an inorganic compound.
  • the electron transport material which is an organic compound may be a low molecular compound or a high molecular compound.
  • examples of low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquino.
  • Dimethane and its derivatives Fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerenes and Examples thereof include phenanthrene derivatives such as bathocuproine.
  • polymer compounds include, for example, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, and polythiophene. And its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
  • the electron transport material of the organic compound is preferably fullerenes and derivatives thereof.
  • fullerenes include C 60 fullerene, C 70 fullerene, carbon nanotubes, and derivatives thereof. Specific examples of the C 60 fullerene derivative include the following.
  • an electron transport material of an inorganic compound for example, zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine doped tin oxide), GZO (gallium doped zinc oxide) , ATO (antimony-doped tin oxide), and AZO (aluminum-doped zinc oxide).
  • zinc oxide, gallium-doped zinc oxide, or aluminum-doped zinc oxide is preferable.
  • an electron transport layer containing an electron transport material of an inorganic compound by applying a coating liquid containing particulate zinc oxide, particulate gallium-doped zinc oxide or particulate aluminum-doped zinc oxide, It is preferable to form an electron transport layer.
  • an electron transporting material zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide nanoparticles are preferable, and an electron-transporting material consisting of only zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide nanoparticles is used. More preferably, an electron transport layer is formed.
  • the average particle diameter corresponding to a sphere of nanoparticles of zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide is preferably 1 nm to 1000 nm, and more preferably 10 nm to 100 nm.
  • the average particle diameter can be measured by a laser light scattering method or an X-ray diffraction method.
  • the cathode can take the form of a single layer or a stack of multiple layers.
  • a metal or a conductive polymer is used as the cathode material. Specifically, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, gold, silver, platinum Metals such as copper, manganese, titanium, cobalt, nickel, tungsten, and tin, alloys containing two or more metals selected from the group consisting of these metals, graphite, and graphite intercalation compounds are used.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the cathode has a thickness of a thin film constituting the cathode, for example, to the extent that light is transmitted. It can be obtained by making the thickness.
  • the highly light-transmitting cathode include a conductive metal oxide film and a translucent metal thin film.
  • a thin film containing gold, platinum, silver or copper is used as a cathode.
  • the thin film containing 1 or more types of electroconductive materials chosen from the group which consists of a tin oxide, ITO, and IZO is preferable.
  • the sealing layer may be provided on the electrode side far from the support substrate.
  • the sealing layer can be formed of a material having a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property).
  • the material for the sealing layer include organic resins such as resins such as polyethylene trifluoride, poly (trifluoroethylene fluoride) (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, and ethylene-vinyl alcohol copolymer.
  • organic resins such as polyethylene trifluoride, poly (trifluoroethylene fluoride) (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, and ethylene-vinyl alcohol copolymer.
  • examples thereof include inorganic materials such as materials, silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon.
  • the sealing layer when light is taken from the electrode side far from the support substrate, the sealing layer is preferably a sealing layer having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm.
  • the perovskite photoelectric conversion element of the present invention has a cut filter.
  • the transmittance of light having a wavelength of 442 nm or less in the cut filter is 50% or less.
  • the transmittance of light having a wavelength of 482 nm or less in the cut filter is preferably 50% or less.
  • the wavelength on the long wavelength side where the light transmittance is 50% or less is preferably shorter than the wavelength at the absorption edge of the absorption wavelength of the active layer containing the perovskite compound.
  • the cut filter is manufactured using an interference film, a light-absorbing substance, and the like, and has a function of cutting light having a short wavelength.
  • Cut filters can be broadly classified into dielectric multilayer filters and absorption filters due to differences in their manufacturing methods.
  • the dielectric multilayer filter is obtained by laminating a dielectric multilayer film that functions as a filter on the surface of a substrate.
  • the dielectric multilayer filter for example, on the surface of a glass substrate or a transparent resin film include those obtained by laminating TiO 2, Nb 2 O 5, SiO 2, Ta 2 O 5 or MgF 2.
  • the dielectric multilayer filter selectively extracts light of a specific wavelength by the light interference effect of the dielectric multilayer film.
  • the dielectric multilayer filter has a characteristic that it shows a sudden rise (or fall) of pass / cut in the spectral transmission characteristic graph.
  • the absorption filter extracts light of a specific wavelength by absorbing light by the substrate itself.
  • the absorption filter include an optical glass plate containing an optical absorption material.
  • the absorptive filter is characterized in that it exhibits a gentle pass / cut rise (or fall) in the spectral transmittance graph.
  • a commercially available cut filter can be appropriately used as the cut filter.
  • Two or more types of cut filters may be used in an overlapping manner as the cut filter of the perovskite photoelectric conversion element of the present invention.
  • the anode can be formed by depositing the material of the anode on a supporting substrate by vacuum deposition, sputtering, ion plating, plating, or the like.
  • organic materials such as polyaniline and its derivatives, polythiophene and its derivatives
  • the coating material containing the organic material, metal ink, metal paste, molten low melting point metal, etc. are used to form the anode. May be formed.
  • the anode may be subjected to surface treatment such as ozone UV treatment, corona treatment, ultrasonic treatment or the like.
  • the formation method of a positive hole injection layer is not specifically limited, From a viewpoint of simplification of a positive hole injection layer formation process, it is preferable to form a positive hole injection layer by the apply
  • the hole injection layer is formed by a coating method, for example, the hole injection layer can be formed by applying a coating liquid containing the material of the hole injection layer and a solvent on the anode.
  • Examples of methods for applying a coating solution containing a hole injection layer material and a solvent include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, and dip.
  • Examples include coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc.
  • spin coating The method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
  • Examples of the solvent contained in the coating liquid for forming the hole injection layer include water, alcohol, ketone, and hydrocarbon.
  • the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol.
  • Specific examples of ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone.
  • hydrocarbons include, for example, n-pentane, cyclohexane, n-hexane, benzene, toluene, Examples include xylene, tetralin, chlorobenzene, and orthodichlorobenzene.
  • the coating liquid for forming the hole injection layer may contain two or more types of solvents, and may contain two or more types of solvents exemplified above.
  • the amount of the solvent contained in the coating liquid for forming the hole injection layer is preferably 1 to 10,000 times by weight, preferably 10 to 1000 times by weight, relative to the material of the hole injection layer. It is more preferable that
  • the formation method of a positive hole transport layer is not specifically limited, From a viewpoint of simplification of a positive hole transport layer formation process, it is preferable to form a positive hole transport layer by the apply
  • the hole transport layer can be formed by coating a coating liquid containing the material of the hole transport layer and a solvent on the hole injection layer.
  • the solvent contained in the coating solution for forming the hole transport layer include the same solvents as those contained in the coating solution for forming the hole injection layer.
  • a spin coating method As a method of applying a coating solution containing a hole transport layer material and a solvent, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip
  • coating methods spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc.
  • spin coating The method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
  • an active layer formation process Although the formation method of an active layer is not specifically limited, From a viewpoint of the simplification of an active layer formation process, it is preferable to form an active layer by the apply
  • coating method it can form by apply
  • the perovskite compound can be synthesized by a self-assembly reaction using a precursor solution.
  • the active layer is formed by a coating method, for example, after a solution containing a metal halide is applied on the hole transport layer, a solution containing ammonium halide or amine halide is formed on the formed metal halide film. It can also be formed by coating. Further, for example, after a solution containing a metal halide is applied on the hole transport layer, the formed metal halide film is immersed in a solution containing ammonium halide or amine halide. Can do. Specifically, the active layer may be formed by applying a solution containing lead iodide on the hole transport layer and then applying a solution containing methylammonium iodide on the lead iodide film. Can do.
  • the solvent is 1 to 10,000 times by weight with respect to the metal halide, ammonium halide, or amine halide. It is preferably 10 times by weight or more and 1000 times by weight or less.
  • the active layer it is preferable to form the active layer by applying a coating solution for forming the active layer and then removing the solvent by heat treatment, air drying treatment, decompression treatment or the like.
  • Examples of the solvent contained in a coating solution containing a perovskite compound, a solution containing a metal halide, a solution containing an ammonium halide, and a solution containing an amine halide include, for example, esters (eg, methyl formate, ethyl formate, propyl Formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, etc.), ketones (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone Etc.), ethers (eg, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane
  • the compounds constituting these solvents may have a branched structure or a cyclic structure, and are functional groups of esters, ketones, ethers and alcohols (that is, —O—, —CO—, —COO—). , -OH).
  • the hydrogen atom in the hydrocarbon moiety of the esters, ketones, ethers and alcohols may be substituted with a halogen atom (particularly a fluorine atom).
  • the coating liquid for forming the active layer may contain two or more types of solvents, and may contain two or more types of solvents exemplified above.
  • a spin coating method As a method of applying a coating solution containing a perovskite compound, a solution containing a metal halide, a solution containing an ammonium halide, and a solution containing a halogenated amine, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, Bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method, etc.
  • the coating method include spin coating, flexographic printing, ink jet printing, and dispenser printing.
  • an electron carrying layer formation process Although the formation method of an electron carrying layer is not specifically limited, From a viewpoint of simplification of an electron carrying layer formation process, it is preferable to form an electron carrying layer by the apply
  • coating method When forming an electron carrying layer by the apply
  • the method for applying the coating solution containing the electron transporting material include the same method as the method for applying the coating solution containing the perovskite compound exemplified in the active layer forming step.
  • the coating liquid containing the electron transporting material may be a dispersion such as an emulsion (emulsion) or a suspension (suspension). It is preferable to use a coating solution containing an electron transporting material that causes little damage to a layer (active layer or the like) to which the coating solution is applied. Those which are difficult to dissolve the layer) are preferred.
  • Examples of the solvent contained in the coating liquid for forming the electron transport layer include alcohols, ketones, and hydrocarbons.
  • the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol.
  • Specific examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone.
  • the hydrocarbon include n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, tetralin, chlorobenzene, and orthodichlorobenzene.
  • the coating liquid for forming the electron transport layer may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
  • the amount of the solvent contained in the coating liquid for forming the electron transport layer is preferably 1 to 10,000 times by weight, and preferably 10 to 1000 times by weight with respect to the electron transporting material. Is more preferable.
  • the coating solution containing the electron transporting material and the solvent is preferably used after being filtered through a Teflon (registered trademark) filter having a pore diameter of 0.5 ⁇ m.
  • the cathode can be formed by depositing the material of the cathode on the electron transport layer, for example, by vacuum deposition, sputtering, ion plating, plating, coating, or the like.
  • Examples of cathode materials that can be formed by a coating method of the cathode include polyaniline and derivatives thereof, polythiophene and derivatives thereof, conductive material nanoparticles, conductive material nanowires, and conductive material nanotubes. (Emulsion), conductive material nanoparticles, conductive material nanowires or conductive material nanotubes (suspension).
  • the cathode may be formed by a coating method using a coating liquid containing the conductive substance, a metal ink, a metal paste, a molten low melting point metal, or the like.
  • a coating liquid containing the conductive substance a metal ink, a metal paste, a molten low melting point metal, or the like.
  • Examples of the method of applying a coating solution containing a conductive substance include the same method as the method of applying the coating solution containing the perovskite compound exemplified in the active layer forming step.
  • Examples of the solvent contained in the coating liquid for forming the cathode include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbesen, and t-butylbenzene; Halogenated saturated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane; chlorobenzene, dichlorobenzene, trichlorobenzene, etc.
  • hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-
  • Halogenated unsaturated hydrocarbon solvents such as tetrahydrofuran and tetrahydropyran; water and alcohols.
  • Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol.
  • the coating solution for forming the cathode may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
  • the sealing layer may be formed on an electrode far from the support substrate, or may be formed outside the electrode in a form that does not contact the electrode.
  • the sealing layer can be formed by any method depending on the type of material of the sealing layer. Examples of the method for forming the sealing layer include a vapor deposition method, a spin coating method, a dip method, and a spray method.
  • the sealing layer may be formed by pasting a preformed sealing layer structure with a sealing material (adhesive).
  • the cut filter when capturing light from the support substrate side, can be formed by disposing the cut filter on the surface opposite to the surface on which the electrode of the support substrate is formed. it can.
  • the cut filter when light is taken in from the electrode farther from the support substrate, the cut filter is formed after the electrode far from the support substrate is formed and before the sealing layer is formed. You may arrange
  • the perovskite photoelectric conversion element of the present invention is capable of emitting light between electrodes by irradiating light having a wavelength of 400 nm to 1200 nm with a light transmittance of 10% or more.
  • An electromotive force is generated and can be operated as a solar cell.
  • the solar cell is preferably an organic / inorganic perovskite solar cell. By integrating a plurality of solar cells, the solar cells can also be used as thin film solar cell modules.
  • the perovskite photoelectric conversion element of the present invention can be operated as a photosensor by irradiating light to a transparent or semi-transparent electrode with a voltage applied between the electrodes, so that a photocurrent flows.
  • the optical sensor can be used as an image sensor.
  • Composition 1 was prepared by dissolving 368 mg of lead iodide in 1 ml of N, N-dimethylformamide, followed by complete dissolution by stirring at 70 ° C.
  • composition 2 was prepared by completely dissolving 55 mg of methylammonium iodide in 1 ml of 2-propanol.
  • composition 3 (Production of Composition 3) 2 parts by weight of [6,6] -phenyl C 61 -butyric acid methyl ester (C 60 PCBM) (E100 manufactured by Frontier Carbon Co.) as a fullerene derivative and 100 parts by weight of chlorobenzene as a solvent are mixed to completely dissolve. I let you. Next, the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 0.5 ⁇ m to prepare a composition 3.
  • Teflon registered trademark
  • composition 4 (Production of Composition 4) 0.5 parts by weight of a polymer compound having the following repeating unit (Poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine], average Mn 7,000-10,000, manufactured by Sigma-Aldrich) And 100 parts by weight of chlorobenzene as a solvent were mixed and completely dissolved to prepare composition 4.
  • Comparative Example 1 (Production and evaluation of solar cells) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared.
  • the ITO thin film was formed by the sputtering method, and the thickness was 150 nm.
  • the glass substrate having the ITO thin film was subjected to ozone UV treatment to treat the surface of the ITO thin film.
  • the composition 4 was applied onto the ITO thin film by spin coating, and heated in the atmosphere at 120 ° C. for 10 minutes to form a hole injection layer having a thickness of about 10 nm.
  • the substrate on which the hole injection layer was formed was sufficiently heated to 70 ° C. with a hot plate, and then the heated substrate was placed on a spin coater.
  • composition 1 heated by stirring at 70 ° C. was applied onto the hole injection layer by spin coating at a rotational speed of 2000 rpm, and air-dried in a nitrogen atmosphere to obtain a lead iodide coating film.
  • the composition 2 was applied onto the lead iodide coating film by spin coating at a rotational speed of 6000 rpm, and heated in air at 100 ° C. for 10 minutes to form an active layer.
  • the thickness of the active layer was about 350 nm.
  • the composition 3 was applied onto the active layer by spin coating to form an electron transport layer having a thickness of about 50 nm.
  • calcium was vapor-deposited with a film thickness of 4 nm on the electron transport layer by a vacuum vapor deposition machine, and then silver was vapor-deposited with a film thickness of 60 nm.
  • the degree of vacuum during the deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • a sealing glass was bonded to the surface on the cathode side of the photoelectric conversion element by UV curing, and a solar cell was manufactured.
  • the shape of the solar cell thus obtained was a 2 mm ⁇ 2 mm square.
  • the obtained solar cell is irradiated with constant light using a solar simulator (trade name YSS-80A: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Yamashita Denso), and the generated current and voltage are It was measured.
  • the photoelectric conversion efficiency is 17.6%
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • Comparative Example 2 and Examples 1 to 4 (Production of solar cells) After sealing in Comparative Example 1, a solar cell was produced in the same manner as in Comparative Example 1, except that the cut filter shown below was placed on the glass substrate as the support substrate.
  • a cut filter manufactured by Sigma Koki Co., Ltd., SCF-50S-42L (hereinafter referred to as 42L)
  • 42L a cut filter having a transmittance of light having a wavelength of 423 nm or less is 50% or less
  • Example 1 a wavelength of 442 nm or less is used.
  • a cut filter (manufactured by Sigma Koki Co., Ltd., SCF-50S-44Y (hereinafter referred to as 44Y)) having a light transmittance of 50% or less is used.
  • 44Y SCF-50S-44Y
  • the transmittance of light having a wavelength of 482 nm or less is 50% or less.
  • a cut filter (manufactured by Sigma Kogyo Co., Ltd., SCF-50S-48Y (hereinafter referred to as 48Y)), and in Example 3, a cut filter (manufactured by Sigma Kogyo Co., Ltd.) having a transmittance of light of a wavelength of 502 nm or less is 50% or less
  • SCF-50S-50Y (hereinafter referred to as 50Y)
  • 50Y is a cut filter (sigma light) in which the transmittance of light having a wavelength of 521 nm or less is 50% or less. Ltd., SCF-50S-52Y (shown less 52Y)) was loaded on a glass substrate as a supporting substrate, to produce a solar cell.
  • Comparative Examples 1 and 2 and Examples 1 to 4 Evaluation of light durability of solar cells
  • a solar simulator manufactured by Yamashita Denso, trade name YSS-80A: AM1.5G filter, irradiance 100 mW / cm 2
  • the solar cells of Example 2 and Examples 1 to 4 were subjected to a continuous irradiation test in which light was irradiated from the cut filter side. During the continuous irradiation test, the solar cell was cooled with a Peltier element so that the solar cell was kept at a constant temperature of 25 ° C.
  • Table 1 shows the relationship between the efficiency retention ratio after 163 hours of light irradiation (the ratio of the efficiency to the efficiency after 163 hours of light irradiation with respect to the initial efficiency).
  • the transmission spectra of the cut filters used in Comparative Example 2 and Examples 1 to 4 are shown in FIG.
  • Reference example 1 (Preparation and evaluation of perovskite layer)
  • the glass substrate was sufficiently heated to 70 ° C. with a hot plate, and then the heated substrate was placed on a spin coater.
  • composition 1 heated by stirring at 70 ° C. was applied onto a glass substrate by spin coating at a rotation speed of 2000 rpm, and air-dried in a nitrogen atmosphere to obtain a lead iodide coating film.
  • the composition 2 was applied by spin coating at a rotation speed of 6000 rpm, and heated at 100 ° C. in the atmosphere for 10 minutes to form a perovskite layer on the glass substrate, An element was formed.
  • the thickness of the perovskite layer was about 350 nm.
  • the obtained device was subjected to a continuous irradiation test in which light was irradiated from the glass substrate side.
  • the solar cell was kept at a constant temperature of 25 ° C. by cooling the device with a Peltier device.
  • the absorption spectrum of the perovskite layer 24 hours after light irradiation was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
  • Reference Examples 2-6 Preparation and evaluation of perovskite layer
  • a perovskite layer was formed on a glass substrate. Thereafter, without performing sealing, an element was produced by placing a cut filter on the surface opposite to the surface on which the perovskite layer was formed on the glass substrate.
  • the cut filters used were 42L in Reference Example 2, 44Y in Reference Example 3, 48Y in Reference Example 4, 50Y in Reference Example 5, and 52Y in Reference Example 6.
  • the device obtained in Reference Examples 2 to 6 is continuously irradiated with light from the cut filter side.
  • An irradiation test was performed. During the continuous irradiation test, the solar cell was kept at a constant temperature of 25 ° C. by cooling the device with a Peltier device.
  • the absorption spectrum of the perovskite layer 24 hours after light irradiation was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
  • Reference Example 7 (Preparation and evaluation of perovskite layer) An element similar to that of Reference Example 1 was prepared, and then stored in a dark place for 24 hours without light irradiation. The absorption spectrum of the perovskite layer after being stored for 24 hours in the dark was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
  • the perovskite photoelectric conversion element using a cut filter having a light transmittance of 50% or less of light having a wavelength of 442 nm or less according to the present invention exhibits high light durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention addresses the problem of providing a perovskite photoelectric conversion element that exhibits high durability to light. The present invention provides a perovskite photoelectric conversion element in which an electrode, an active layer containing a perovskite compound, and an electrode cut filter having a transmittance of 10% or greater of light in the wavelength range of 400 nm to 1200 nm are stacked in this order, and the transmittance of the cut filter for light having a wavelength of 442 nm or less is 50% or less. The present invention also provides a perovskite photoelectric conversion element in which the transmittance of the cut filter for light having a wavelength of 482 nm or less is 50% or less.

Description

ペロブスカイト光電変換素子Perovskite photoelectric conversion element
 本発明は、ペロブスカイト光電変換素子に関する。 The present invention relates to a perovskite photoelectric conversion element.
 近年、ペロブスカイト化合物を活性層に用いた高効率の光電変換素子が提案されている。 Recently, a highly efficient photoelectric conversion element using a perovskite compound as an active layer has been proposed.
 例えば、FTOを含む透明電極、TiOを含む多孔質の酸化物層からなる電子輸送層、ペロブスカイト化合物を含む活性層、Spiro-OMETADを含む正孔注入層、Auを含む陽極および435nm未満の波長をカットするカットフィルターが、この順で積層された光電変換素子が報告されている(非特許文献1)。 For example, a transparent electrode containing FTO, an electron transport layer composed of a porous oxide layer containing TiO 2 , an active layer containing a perovskite compound, a hole injection layer containing Spiro-OMETAD, an anode containing Au, and a wavelength of less than 435 nm A photoelectric conversion element in which cut filters for cutting are stacked in this order has been reported (Non-Patent Document 1).
 しかしながら、上述の非特許文献1に記載された光電変換素子では、光耐久性が十分ではなかった。 However, the photoelectric conversion element described in Non-Patent Document 1 described above has insufficient light durability.
 本発明の目的は、高い光耐久性を示すペロブスカイト光電変換素子を提供することにある。 An object of the present invention is to provide a perovskite photoelectric conversion element exhibiting high light durability.
 すなわち、本発明は、以下の発明を提供する。
[1]電極、ペロブスカイト化合物を含む活性層、波長400nm~1200nmの光の透過率が10%以上である電極および波長442nm以下の光の透過率が50%以下であるカットフィルターが、この順番で積層されている、ペロブスカイト光電変換素子。
[2]前記カットフィルターが、波長482nm以下の光の透過率が50%以下であるカットフィルターである、[1]に記載されたペロブスカイト光電変換素子。
[3]前記カットフィルター、波長400nm~1200nmの光の透過率が10%以上である支持基板、陽極としての前記波長400nm~1200nmの光の透過率が10%以上である電極、前記ペロブスカイト化合物を含む活性層および陰極が、この順番で積層されている、[1]または[2]に記載されたペロブスカイト光電変換素子。
[4]支持基板、陽極、前記ペロブスカイト化合物を含む活性層、陰極としての前記波長400nm~1200nmの光の透過率が10%以上である電極および前記カットフィルターが、この順で積層されている、[1]または[2]に記載されたペロブスカイト光電変換素子。
That is, the present invention provides the following inventions.
[1] An electrode, an active layer containing a perovskite compound, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm and a cut filter having a light transmittance of 50% or less at a wavelength of 442 nm or less in this order. A perovskite photoelectric conversion element that is stacked.
[2] The perovskite photoelectric conversion element according to [1], wherein the cut filter is a cut filter having a transmittance of light having a wavelength of 482 nm or less of 50% or less.
[3] The cut filter, a support substrate having a light transmittance of 400 nm to 1200 nm at a wavelength of 10% or more, an electrode as an anode having a light transmittance of 400 nm to 1200 nm at a wavelength of 10% or more, and the perovskite compound. The perovskite photoelectric conversion element according to [1] or [2], wherein the active layer and the cathode are stacked in this order.
[4] A support substrate, an anode, an active layer containing the perovskite compound, an electrode having a light transmittance of 400% to 1200 nm as a cathode of 10% or more, and the cut filter are laminated in this order. The perovskite photoelectric conversion element described in [1] or [2].
 本発明によれば、高い光耐久性を示すペロブスカイト光電変換素子を得ることができる。 According to the present invention, a perovskite photoelectric conversion element exhibiting high light durability can be obtained.
比較例2および実施例1~4で用いたカットフィルターの透過スペクトルを示す図である。It is a figure which shows the transmission spectrum of the cut filter used in the comparative example 2 and Examples 1-4.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <1>ペロブスカイト光電変換素子の構成
 本発明のペロブスカイト光電変換素子は、電極、ペロブスカイト化合物を含む活性層、波長400nm~1200nmの光の透過率が10%以上である電極および波長442nm以下の光の透過率が50%以下であるカットフィルターが、この順番で積層されている、ペロブスカイト光電変換素子である。
 ここで、波長400nm~1200nmの光の透過率が10%以上である電極とは、波長400nm~1200nmの領域における全ての波長の光の透過率が10%以上である電極を意味する。また、波長442nm以下の光の透過率が50%以下であるカットフィルターとは、波長442nm以下の領域における全ての波長の光の透過率が50%以下であるカットフィルターを意味する。
<1> Configuration of Perovskite Photoelectric Conversion Device The perovskite photoelectric conversion device of the present invention includes an electrode, an active layer containing a perovskite compound, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm, and light having a wavelength of 442 nm or less. Cut filters having a transmittance of 50% or less are perovskite photoelectric conversion elements stacked in this order.
Here, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm means an electrode having a light transmittance of 10% or more for all wavelengths in a wavelength range of 400 nm to 1200 nm. Moreover, the cut filter whose transmittance of light having a wavelength of 442 nm or less is 50% or less means a cut filter whose transmittance of light of all wavelengths in a region of wavelength 442 nm or less is 50% or less.
 本発明のペロブスカイト光電変換素子は、
 カットフィルター、支持基板、陽極、ペロブスカイト化合物を含む活性層および陰極がこの順番で積層されているペロブスカイト光電変換素子、または、
 支持基板、陽極、ペロブスカイト化合物を含む活性層、陰極およびカットフィルターがこの順で積層されているペロブスカイト光電変換素子であることが好ましい。
The perovskite photoelectric conversion element of the present invention is
A perovskite photoelectric conversion element in which a cut filter, a support substrate, an anode, an active layer containing a perovskite compound and a cathode are laminated in this order, or
A perovskite photoelectric conversion element in which a support substrate, an anode, an active layer containing a perovskite compound, a cathode, and a cut filter are laminated in this order is preferable.
 本発明のペロブスカイト光電変換素子は、
 カットフィルター、支持基板、陽極、正孔注入層、正孔輸送層、ペロブスカイト化合物を含む活性層、電子輸送層および陰極がこの順番で積層されているペロブスカイト光電変換素子、または、
 支持基板、陽極、正孔注入層、正孔輸送層、ペロブスカイト化合物を含む活性層、電子輸送層、陰極およびカットフィルターがこの順で積層されているペロブスカイト光電変換素子であることがより好ましい。
The perovskite photoelectric conversion element of the present invention is
A perovskite photoelectric conversion element in which a cut filter, a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer and a cathode are laminated in this order, or
A perovskite photoelectric conversion element in which a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer, a cathode, and a cut filter are stacked in this order is more preferable.
 本発明のペロブスカイト光電変換素子は、支持基板から遠い方の電極の外側に封止層を有していてもよい。 The perovskite photoelectric conversion element of the present invention may have a sealing layer on the outer side of the electrode far from the support substrate.
 本発明のペロブスカイト光電変換素子の製造方法の詳細については後述するが、カットフィルター、支持基板、陽極、正孔注入層、正孔輸送層、ペロブスカイト化合物を含む活性層、電子輸送層および陰極がこの順番で積層されているペロブスカイト光電変換素子の構成を採用する場合、
 当該ペロブスカイト有機光電変換素子は、例えば、支持基板、陽極、正孔注入層、正孔輸送層、ペロブスカイト化合物を含む活性層、電子輸送層および陰極をこの順番に積層し、封止層を形成し、最後にカットフィルターを支持基板に配置させることによって製造することができる。
Although the details of the method for producing the perovskite photoelectric conversion element of the present invention will be described later, the cut filter, the support substrate, the anode, the hole injection layer, the hole transport layer, the active layer containing the perovskite compound, the electron transport layer, and the cathode When adopting the configuration of perovskite photoelectric conversion elements stacked in order,
The perovskite organic photoelectric conversion element includes, for example, a support substrate, an anode, a hole injection layer, a hole transport layer, an active layer containing a perovskite compound, an electron transport layer, and a cathode in this order to form a sealing layer. Finally, it can be manufactured by placing the cut filter on the support substrate.
 (支持基板)
 本発明のペロブスカイト光電変換素子は、通常、支持基板上に形成される。支持基板には、光電変換素子を作製する際に化学的に変化しないものが好適に用いられる。支持基板としては、例えば、ガラス基板、プラスチック基板、高分子フィルム、シリコン板が挙げられる。支持基板の光透過性は特に限定されないが、本発明のペロブスカイト光電変換素子において、支持基板側から光を取り込む場合、支持基板には波長400nm~1200nmの光の透過率が10%以上である光透過性の高い基板が好適に用いられる。一方、光透過性の低い支持基板上にペロブスカイト光電変換素子を作製する場合には、支持基板に近い方の電極側から光を取り込むことができないため、支持基板から遠い方の電極には、波長400nm~1200nmの光の透過率が10%以上である光透過性の高い電極を用いることが好ましい。光透過性の高い電極を用いることにより、たとえ光透過性の低い支持基板を用いたとしても、支持基板側から遠い方の電極から光を取り込むことができる。
(Support substrate)
The perovskite photoelectric conversion element of the present invention is usually formed on a support substrate. As the support substrate, a substrate that is not chemically changed when a photoelectric conversion element is manufactured is preferably used. Examples of the support substrate include a glass substrate, a plastic substrate, a polymer film, and a silicon plate. The light transmittance of the support substrate is not particularly limited, but in the perovskite photoelectric conversion element of the present invention, when light is taken from the support substrate side, the light having a transmittance of light of 400 nm to 1200 nm is 10% or more in the support substrate. A highly transmissive substrate is preferably used. On the other hand, when a perovskite photoelectric conversion element is manufactured on a support substrate with low light transmittance, light cannot be taken in from the electrode side closer to the support substrate. It is preferable to use an electrode having a high light transmittance and a light transmittance of 400 nm to 1200 nm of 10% or more. By using an electrode with high light transmittance, light can be taken in from an electrode far from the support substrate side even if a support substrate with low light transmittance is used.
 (陽極)
 陽極は、単層の形態または複数の層が積層された形態を取り得る。陽極には、例えば、導電性の金属酸化物膜、金属薄膜、および、有機物を含む導電膜が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、フッ素化スズ酸化物(FLUORINE Tin Oxide:略称FTO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅、アルミニウム、ポリアニリンおよびその誘導体、並びに、ポリチオフェンおよびその誘導体等の薄膜が用いられる。これらの中でも、陽極には、ITO、FTO、IZO、酸化スズの薄膜が好適に用いられる。
(anode)
The anode can take the form of a single layer or a stack of multiple layers. For the anode, for example, a conductive metal oxide film, a metal thin film, and a conductive film containing an organic substance are used. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated as ITO), fluorinated tin oxide (FLUORINE Tin Oxide: abbreviated as FTO), indium zinc oxide (Indium Zinc Oxide: Abbreviations IZO), gold, platinum, silver, copper, aluminum, polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used. Among these, a thin film of ITO, FTO, IZO, or tin oxide is preferably used for the anode.
 本発明のペロブスカイト光電変換素子における波長400nm~1200nmの光の透過率が10%以上である電極を陽極とする場合、該陽極は、例えば陽極を構成する薄膜の膜厚を、光が透過する程度の厚さにすることによって得ることができる。光透過性の高い陽極としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)等からなる群より選ばれる1種以上の導電性材料を含む薄膜、NESA、金、白金、銀または銅を含む薄膜が用いられる。これらの中でも、陽極としては、酸化スズ、ITOおよびIZOからなる群より選ばれる1種以上の導電性材料を含む薄膜が好ましい。 When the electrode having a light transmittance of 400 nm to 1200 nm in the perovskite photoelectric conversion element of the present invention is 10% or more as an anode, the anode has a thickness of a thin film constituting the anode, for example, to the extent that light can be transmitted. It can be obtained by making the thickness. Examples of the highly light-transmitting anode include a conductive metal oxide film and a translucent metal thin film. Specifically, a thin film containing one or more conductive materials selected from the group consisting of indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc., NESA A thin film containing gold, platinum, silver or copper is used. Among these, as the anode, a thin film containing at least one conductive material selected from the group consisting of tin oxide, ITO and IZO is preferable.
 (正孔注入層)
 本発明のペロブスカイト光電変換素子は、陽極と活性層との間に正孔注入層が設けられていることが好ましい。正孔注入層は、陽極への正孔注入を促進する機能を有する。正孔注入層は陽極に接して設けられていることが好ましい。
(Hole injection layer)
In the perovskite photoelectric conversion device of the present invention, a hole injection layer is preferably provided between the anode and the active layer. The hole injection layer has a function of promoting hole injection into the anode. The hole injection layer is preferably provided in contact with the anode.
 正孔注入層の材料としては、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、芳香族アミン残基を繰り返し単位にもつ高分子化合物等の高分子化合物、アニリン、チオフェン、ピロール、芳香族アミン化合物等の低分子化合物、CuSCN、CuI等の無機化合物が挙げられる。これらの中では、ポリチオフェンおよびその誘導体、芳香族アミン化合物、芳香族アミン残基を繰り返し単位にもつ高分子化合物、CuSCN並びにCuIが好ましい。また、高分子化合物の中では、光電変換素子の寿命を長くする観点から、芳香族アミン残基を繰り返し単位にもつ高分子化合物が好ましい。 Materials for the hole injection layer include polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polymer compounds such as a polymer compound having an aromatic amine residue as a repeating unit, aniline, thiophene, pyrrole, aromatic Low molecular compounds such as group amine compounds, and inorganic compounds such as CuSCN and CuI. Among these, polythiophene and derivatives thereof, aromatic amine compounds, polymer compounds having an aromatic amine residue as a repeating unit, CuSCN, and CuI are preferable. Among the polymer compounds, a polymer compound having an aromatic amine residue as a repeating unit is preferable from the viewpoint of extending the lifetime of the photoelectric conversion element.
 芳香族アミン化合物としては具体的には、以下のようなものが例示される。
Figure JPOXMLDOC01-appb-I000001
Specific examples of the aromatic amine compound include the following.
Figure JPOXMLDOC01-appb-I000001
 前記芳香族アミン化合物は、少なくとも3つの置換基を有するフェニル基を含むことが好ましい。 The aromatic amine compound preferably contains a phenyl group having at least three substituents.
 少なくとも3つの置換基を有するフェニル基を含む芳香族アミン化合物としては、具体的には、以下のようなものが例示される。
Figure JPOXMLDOC01-appb-I000002
Specific examples of the aromatic amine compound containing a phenyl group having at least three substituents include the following.
Figure JPOXMLDOC01-appb-I000002
 芳香族アミン残基を繰り返し単位にもつ高分子化合物において、芳香族アミン残基をもつ繰り返し単位とは、芳香族アミン化合物から水素原子を2個取り除いた繰り返し単位である。芳香族アミン残基をもつ繰り返し単位としては、下記式(1’)で表される繰り返し単位が挙げられる。下記式(1’)で表される繰り返し単位としては、下記式(1)で表される繰り返し単位が好ましい。前記芳香族アミン残基を繰り返し単位にもつ高分子化合物は、少なくとも3つの置換基を有するフェニル基を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000003
(式中、
 Ar、Ar、ArおよびArは、それぞれ独立に、アリーレン基(A1)または2価の複素環基(B1)を表す。
 E’、E’およびE’は、それぞれ独立に、下記アリール基(A2’)または1価の複素環基(B2’)を表す。
 aおよびbは、それぞれ独立に、0または1を表し、0≦a+b≦1である。
 アリーレン基(A1):芳香族炭化水素から水素原子2個を除いた原子団であり、ベンゼン環または縮合環を有する2価の基、および、独立したベンゼン環または縮合環の2個以上が直接またはビニレン等の基を介して結合した2価の基も含まれる。アリーレン基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基等が挙げられ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましい。無置換のアリーレン基の炭素数は、通常6~60であり、好ましくは6~20である。
 2価の複素環基(B1):複素環式化合物から水素原子2個を除いた残りの原子団である。2価の複素環基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、ハロゲン原子、アシル基、アシルオキシ基、イミノ基、アミド基、イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基等が挙げられ、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、置換アミノ基、置換シリル基、置換シリルオキシ基、1価の複素環基が好ましい。無置換の2価の複素環基の炭素数は、通常3~60程度である。
 アリール基(A2’):アリール基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基、ハロゲン原子が好ましい。無置換のアリール基の炭素数は通常6~30程度であり、好ましくは6~20である。
 1価の複素環基(B2’):1価の複素環基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基、ハロゲン原子が好ましい。無置換の1価の複素環基の炭素数は、通常1~30程度である。)
In the polymer compound having an aromatic amine residue as a repeating unit, the repeating unit having an aromatic amine residue is a repeating unit obtained by removing two hydrogen atoms from the aromatic amine compound. Examples of the repeating unit having an aromatic amine residue include a repeating unit represented by the following formula (1 ′). The repeating unit represented by the following formula (1 ′) is preferably a repeating unit represented by the following formula (1). The polymer compound having an aromatic amine residue as a repeating unit preferably includes a phenyl group having at least three substituents.
Figure JPOXMLDOC01-appb-I000003
(Where
Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent an arylene group (A1) or a divalent heterocyclic group (B1).
E 1 ′, E 2 ′ and E 3 ′ each independently represent the following aryl group (A2 ′) or monovalent heterocyclic group (B2 ′).
a and b each independently represent 0 or 1, and 0 ≦ a + b ≦ 1.
Arylene group (A1): an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and a divalent group having a benzene ring or a condensed ring and two or more independent benzene rings or condensed rings are directly Alternatively, a divalent group bonded through a group such as vinylene is also included. The arylene group may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group. , Silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group, cyano And an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a substituted amino group, a substituted silyl group, a substituted silyloxy group, and a monovalent heterocyclic group are preferable. The carbon number of the unsubstituted arylene group is usually 6 to 60, preferably 6 to 20.
Divalent heterocyclic group (B1): A remaining atomic group obtained by removing two hydrogen atoms from a heterocyclic compound. The divalent heterocyclic group may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group. Silyl group, substituted silyl group, silyloxy group, substituted silyloxy group, halogen atom, acyl group, acyloxy group, imino group, amide group, imide group, monovalent heterocyclic group, carboxyl group, substituted carboxyl group, cyano group, etc. An alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, a substituted amino group, a substituted silyl group, a substituted silyloxy group, and a monovalent heterocyclic group are preferable. The carbon number of the unsubstituted divalent heterocyclic group is usually about 3 to 60.
Aryl group (A2 ′): The aryl group may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group. A silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group, and a halogen atom are preferable. The carbon number of the unsubstituted aryl group is usually about 6 to 30, and preferably 6 to 20.
Monovalent heterocyclic group (B2 ′): The monovalent heterocyclic group may have a substituent. Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituted amino group. A silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group, and a halogen atom are preferable. The carbon number of the unsubstituted monovalent heterocyclic group is usually about 1 to 30. )
Figure JPOXMLDOC01-appb-I000004
(式中、
 Ar、Ar、Ar、Ar、aおよびbは、上述と同義である。
 E、EおよびEは、それぞれ独立に、下記アリール基(A2)または1価の複素環基(B2)を表す。
 アリール基(A2):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子からなる群より選ばれる置換基を3個以上有するアリール基。アリール基の炭素数は、通常6~40程度であり、好ましくは6~30である。
 1価の複素環基(B2):アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基およびハロゲン原子からなる群より選ばれる置換基を1以上有し、かつ該置換基の数と複素環のヘテロ原子の数の和が3以上である1価の複素環基。1価の複素環基の炭素数は、通常1~40程度である。)
Figure JPOXMLDOC01-appb-I000004
(Where
Ar 1 , Ar 2 , Ar 3 , Ar 4 , a and b are as defined above.
E 1 , E 2 and E 3 each independently represent the following aryl group (A2) or monovalent heterocyclic group (B2).
Aryl group (A2): alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino group, substituted amino An aryl group having three or more substituents selected from the group consisting of a group, a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group and a halogen atom. The aryl group usually has about 6 to 40 carbon atoms, preferably 6 to 30 carbon atoms.
Monovalent heterocyclic group (B2): alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group, arylalkynyl group, amino Having one or more substituents selected from the group consisting of a group, a substituted amino group, a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group and a halogen atom, and the number of the substituents A monovalent heterocyclic group in which the sum of the number of heteroatoms in the heterocyclic ring is 3 or more. The carbon number of the monovalent heterocyclic group is usually about 1 to 40. )
 アリール基(A2)は、置換基を3個以上有するフェニル基、置換基を3個以上有するナフチル基または置換基を3個以上有するアントラセニル基であることが好ましく、下記式(2)で示される基であることがより好ましい。
Figure JPOXMLDOC01-appb-I000005
(式中、Re、RfおよびRgは、それぞれ独立に、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表す。)
The aryl group (A2) is preferably a phenyl group having 3 or more substituents, a naphthyl group having 3 or more substituents, or an anthracenyl group having 3 or more substituents, and represented by the following formula (2) More preferably, it is a group.
Figure JPOXMLDOC01-appb-I000005
(In the formula, Re, Rf and Rg are each independently an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, An arylalkynyl group, an amino group, a substituted amino group, a silyl group, a substituted silyl group, a silyloxy group, a substituted silyloxy group, a monovalent heterocyclic group or a halogen atom is represented.)
 芳香族アミン残基を繰り返し単位にもつ高分子化合物は、さらに、下記式(3)、式(4)、式(5)または式(6)で表される繰り返し単位を有していてもよい。

   -Ar12-    (3)

   ―Ar12-X―(Ar13-X)―Ar14-       (4)

   -Ar12-X2- (5)

   -X2-      (6)

(式中、
 Ar12、Ar13およびAr14は、それぞれ独立に、アリーレン基、2価の複素環基または金属錯体構造を有する2価の基を表す。
 X1は、-CR=CR-、-C≡C-または-(SiR-を表す。
 X2は、-CR=CR-、-C≡C-、-N(R)-、または-(SiR-を表す。
 RおよびRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を表す。R、RおよびRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基またはアリールアルキル基を表す。
 cは、0~2の整数を表す。dは、1~12の整数を表す。Ar13、R、R、RおよびRがそれぞれ複数存在する場合、それらは同一であっても異なっていてもよい。)
The polymer compound having an aromatic amine residue as a repeating unit may further have a repeating unit represented by the following formula (3), formula (4), formula (5) or formula (6). .

—Ar 12 — (3)

—Ar 12 —X 1 — (Ar 13 —X 2 ) c —Ar 14 — (4)

—Ar 12 —X 2 — (5)

-X 2- (6)

(Where
Ar 12 , Ar 13 and Ar 14 each independently represent an arylene group, a divalent heterocyclic group or a divalent group having a metal complex structure.
X 1 represents —CR 2 ═CR 3 —, —C≡C— or — (SiR 5 R 6 ) d —.
X 2 represents —CR 2 ═CR 3 —, —C≡C—, —N (R 4 ) —, or — (SiR 5 R 6 ) d —.
R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a carboxyl group, a substituted carboxyl group or a cyano group. R 4 , R 5 and R 6 each independently represents a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group or an arylalkyl group.
c represents an integer of 0-2. d represents an integer of 1 to 12. When there are a plurality of Ar 13 , R 2 , R 3 , R 5 and R 6 , they may be the same or different. )
 前記式(1’)で表される繰り返し単位の具体例(前記式(1)で表される繰り返し単位の具体例を含む)として、Ar、Ar、ArおよびArがそれぞれ独立に無置換のフェニレン基であり、a=1、b=0のものとしては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000006
As specific examples of the repeating unit represented by the formula (1 ′) (including specific examples of the repeating unit represented by the formula (1)), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently Examples of the unsubstituted phenylene group having a = 1 and b = 0 include the following.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 前記式(1’)で表される繰り返し単位の具体例(前記式(1)で表される繰り返し単位の具体例を含む)として、Ar、Ar、ArおよびArがそれぞれ独立に無置換のフェニレン基であり、a=0、b=1のものとしては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-I000009
As specific examples of the repeating unit represented by the formula (1 ′) (including specific examples of the repeating unit represented by the formula (1)), Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently Examples of the unsubstituted phenylene group having a = 0 and b = 1 include the following.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
 上記式中、Meはメチル基を、Prはプロピル基を、Buはブチル基を、MeOはメトキシ基を、BuOはブチルオキシ基を表す。 In the above formula, Me represents a methyl group, Pr represents a propyl group, Bu represents a butyl group, MeO represents a methoxy group, and BuO represents a butyloxy group.
 正孔注入層の厚さは、25nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、10nm以下であることが特に好ましい。 The thickness of the hole injection layer is preferably 25 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, and particularly preferably 10 nm or less.
 (正孔輸送層)
 正孔輸送層は、正孔注入層と活性層の間に設けられており、電子ブロックの機能を有する。正孔輸送層を設けることで、より高効率な光電変換素子を得ることができる。正孔輸送層としては、例えば、前記正孔注入層で例示された芳香族アミン残基を有する低分子化合物、前記正孔注入層で例示された芳香族アミン残基を繰り返し単位にもつ高分子化合物が挙げられる。なお、正孔注入層に、芳香族アミン残基を有する低分子化合物、芳香族アミン残基を繰り返し単位にもつ高分子化合物を用いる場合には、正孔輸送層を設けなくてもよい。
(Hole transport layer)
The hole transport layer is provided between the hole injection layer and the active layer, and has a function of an electron block. By providing the hole transport layer, a more efficient photoelectric conversion element can be obtained. Examples of the hole transport layer include a low molecular compound having an aromatic amine residue exemplified in the hole injection layer, and a polymer having an aromatic amine residue exemplified in the hole injection layer as a repeating unit. Compounds. Note that in the case where a low molecular compound having an aromatic amine residue or a polymer compound having an aromatic amine residue as a repeating unit is used for the hole injection layer, the hole transport layer may not be provided.
 (活性層)
 活性層は、ペロブスカイト化合物を含む。活性層は、ペロブスカイト化合物の他に、他の成分を含んでいてもよい。活性層が含み得る他の成分の例としては、電子供与性化合物、電子受容性化合物、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、紫外線に対する安定性を増すための光安定剤、および、機械的特性を高めるためのバインダーが挙げられる。
(Active layer)
The active layer includes a perovskite compound. The active layer may contain other components in addition to the perovskite compound. Examples of other components that can be included in the active layer include an electron-donating compound, an electron-accepting compound, an ultraviolet absorber, an antioxidant, and a sensitizer for sensitizing the function of generating charge by absorbed light, Examples thereof include a light stabilizer for increasing stability against ultraviolet rays and a binder for enhancing mechanical properties.
 ペロブスカイト化合物は、有機無機ハイブリッド構造のペロブスカイト化合物であることが好ましく、下記式(7)~(9)のいずれかで表されるペロブスカイト化合物であることが好ましい。 The perovskite compound is preferably a perovskite compound having an organic-inorganic hybrid structure, and is preferably a perovskite compound represented by any of the following formulas (7) to (9).
 CHNH   (7)
(式中、
 Mは、2価の金属であり、
 複数あるXは、それぞれ独立に、F、Cl、BrまたはIである。
 Mで表される2価の金属としては、例えば、Cu、Ni、Mn、Fe、Co、Pd、Ge、Sn、Pb、Euが挙げられる。)
CH 3 NH 3 M 1 X 3 (7)
(Where
M 1 is a divalent metal,
Plural Xs are each independently F, Cl, Br, or I.
Examples of the divalent metal represented by M 1 include Cu, Ni, Mn, Fe, Co, Pd, Ge, Sn, Pb, and Eu. )
 (RNH4   (8)
(式中、
 Rは、炭素数が2以上のアルキル基、アルケニル基、アラルキル基、アリール基、1価の複素環基または1価の芳香族複素環基であり、
 MおよびXは、上述と同義である。)
(R 1 NH 3 ) 2 M 1 X 4 (8)
(Where
R 1 is an alkyl group having 2 or more carbon atoms, an alkenyl group, an aralkyl group, an aryl group, a monovalent heterocyclic group or a monovalent aromatic heterocyclic group,
M 1 and X are as defined above. )
 式(8)中、Rで表されるアルキル基は、直鎖状であっても分岐状であってもよく、シクロアルキル基であってもよい。Rで表されるアルキル基の炭素数は、通常2~40であり、2~30であることが好ましい。
 Rで表されるアルキル基としては、例えば、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、ノニル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、イコサニル基、ドコサニル基、トリアコンタニル基、テトラコンタニル基、シクロペンチル基、シクロヘキシル基が挙げられる。
In Formula (8), the alkyl group represented by R 1 may be linear or branched, or may be a cycloalkyl group. The carbon number of the alkyl group represented by R 1 is usually 2 to 40, and preferably 2 to 30.
Examples of the alkyl group represented by R 1 include an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, an isooctyl group, a nonyl group, a dodecyl group, a tridecyl group, and a tetradecyl group. , Pentadecyl group, octadecyl group, icosanyl group, docosanyl group, triacontanyl group, tetracontanyl group, cyclopentyl group, and cyclohexyl group.
 Rで表されるアルケニル基の炭素数は、通常2~30であり、2~20であることが好ましい。
 Rで表されるアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、オレイル基、アリル基が挙げられる。
The alkenyl group represented by R 1 usually has 2 to 30 carbon atoms, and preferably 2 to 20 carbon atoms.
Examples of the alkenyl group represented by R 1 include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, oleyl group, and allyl group.
 Rで表されるアラルキル基の炭素数は、通常7~40であり、7~30であることが好ましい。
 Rで表されるアラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基が挙げられる。
The carbon number of the aralkyl group represented by R 1 is usually 7 to 40, and preferably 7 to 30.
Examples of the aralkyl group represented by R 1 include a benzyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group.
 Rで表されるアリール基の炭素数は、通常6~30であり、6~20であることが好ましい。
 Rで表されるアリール基としては、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基が挙げられる。
The aryl group represented by R 1 usually has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms.
Examples of the aryl group represented by R 1 include a phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, and indenyl group. , Pyrenyl group and biphenylyl group.
 Rで表される1価の複素環基の炭素数は、通常1~30であり、1~20であることが好ましい。Rで表される1価の芳香族複素環基の炭素数は、通常2~30であり、2~20であることが好ましい。
 Rで表される1価の複素環基または1価の芳香族複素環基としては、例えば、ピロリジル基、イミダゾリジニル基、モルホリル基、オキサゾリル基、オキサゾリジニル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基、フタラジニル基が挙げられる。
The number of carbon atoms of the monovalent heterocyclic group represented by R 1 is usually 1 to 30, and preferably 1 to 20. The monovalent aromatic heterocyclic group represented by R 1 usually has 2 to 30 carbon atoms, and preferably 2 to 20 carbon atoms.
Examples of the monovalent heterocyclic group or monovalent aromatic heterocyclic group represented by R 1 include pyrrolidyl group, imidazolidinyl group, morpholyl group, oxazolyl group, oxazolidinyl group, furyl group, thienyl group, pyridyl group, Examples include pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group, and phthalazinyl group.
 HC(=NH)NH   (9)
(式中、MおよびXは、上述と同義である。)
HC (= NH) NH 2 M 1 X 3 (9)
(Wherein M 1 and X are as defined above.)
 本発明の光電変化の素子において、ペロブスカイト化合物は、1種のみを活性層の材料として用いてもよいし、複数種を用いてもよい。 In the photoelectric conversion element of the present invention, only one perovskite compound may be used as the material of the active layer, or a plurality of perovskite compounds may be used.
 本発明の光電変換素子におけるペロブスカイト化合物は、式(7)で表される化合物であることが好ましい。式(7)で表される化合物のうち、CHNHPbI、CHNHPbCl、CHNHPbBr、CHNHSnI、CHNHSnClまたはCHNHSnBrであることがより好ましい。 The perovskite compound in the photoelectric conversion element of the present invention is preferably a compound represented by the formula (7). Of the compounds represented by formula (7), CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 SnI 3 , CH 3 NH 3 SnCl 3 or CH 3 NH More preferably, it is 3 SnBr 3 .
 (電子輸送層)
 本発明の光電変換素子は、活性層と陰極との間に電子輸送層を設けられていることが好ましい。
(Electron transport layer)
In the photoelectric conversion element of the present invention, an electron transport layer is preferably provided between the active layer and the cathode.
 電子輸送層は電子輸送性材料を含む。電子輸送性材料は、有機化合物であっても無機化合物であってもよい。有機化合物である電子輸送性材料は、低分子化合物であっても高分子化合物であってもよい。 The electron transport layer contains an electron transport material. The electron transporting material may be an organic compound or an inorganic compound. The electron transport material which is an organic compound may be a low molecular compound or a high molecular compound.
 有機化合物の電子輸送性材料のうち、低分子化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアントラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリンおよびその誘導体の金属錯体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、ポリフルオレンおよびその誘導体、フラーレン類およびその誘導体、バソクプロイン等のフェナントレン誘導体が挙げられる。 Among the electron transport materials of organic compounds, examples of low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquino. Dimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerenes and Examples thereof include phenanthrene derivatives such as bathocuproine.
 有機化合物の電子輸送性材料のうち、高分子化合物としては、例えば、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリフルオレンおよびその誘導体が挙げられる。 Among the electron transport materials of organic compounds, polymer compounds include, for example, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, and polythiophene. And its derivatives, polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives.
 これらの中でも、有機化合物の電子輸送性材料は、フラーレン類およびその誘導体であることが好ましい。 Among these, the electron transport material of the organic compound is preferably fullerenes and derivatives thereof.
 フラーレン類としては、C60フラーレン、C70以上のフラーレン、カーボンナノチューブ、および、それらの誘導体が挙げられる。C60フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000012
Examples of fullerenes include C 60 fullerene, C 70 fullerene, carbon nanotubes, and derivatives thereof. Specific examples of the C 60 fullerene derivative include the following.
Figure JPOXMLDOC01-appb-I000012
 無機化合物の電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(インジウムスズ酸化物)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)が挙げられ、これらの中でも、酸化亜鉛、ガリウムドープ酸化亜鉛またはアルミニウムドープ酸化亜鉛が好ましい。 As an electron transport material of an inorganic compound, for example, zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine doped tin oxide), GZO (gallium doped zinc oxide) , ATO (antimony-doped tin oxide), and AZO (aluminum-doped zinc oxide). Among these, zinc oxide, gallium-doped zinc oxide, or aluminum-doped zinc oxide is preferable.
 無機化合物の電子輸送性材料を含む電子輸送層を形成する際には、粒子状の酸化亜鉛、粒子状のガリウムドープ酸化亜鉛または粒子状のアルミニウムドープ酸化亜鉛を含む塗布液を塗布することにより、電子輸送層を形成することが好ましい。このような電子輸送材料としては、酸化亜鉛、ガリウムドープ酸化亜鉛またはアルミニウムドープ酸化亜鉛のナノ粒子が好ましく、酸化亜鉛、ガリウムドープ酸化亜鉛またはアルミニウムドープ酸化亜鉛のナノ粒子のみからなる電子輸送性材料を用いて、電子輸送層を形成することがより好ましい。酸化亜鉛、ガリウムドープ酸化亜鉛またはアルミニウムドープ酸化亜鉛のナノ粒子の球相当の平均粒子径は、1nm~1000nmであることが好ましく、10nm~100nmであることがより好ましい。平均粒子径は、レーザー光散乱法やX線回折法によって測定することができる。 When forming an electron transport layer containing an electron transport material of an inorganic compound, by applying a coating liquid containing particulate zinc oxide, particulate gallium-doped zinc oxide or particulate aluminum-doped zinc oxide, It is preferable to form an electron transport layer. As such an electron transporting material, zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide nanoparticles are preferable, and an electron-transporting material consisting of only zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide nanoparticles is used. More preferably, an electron transport layer is formed. The average particle diameter corresponding to a sphere of nanoparticles of zinc oxide, gallium-doped zinc oxide or aluminum-doped zinc oxide is preferably 1 nm to 1000 nm, and more preferably 10 nm to 100 nm. The average particle diameter can be measured by a laser light scattering method or an X-ray diffraction method.
 (陰極)
 陰極は、単層の形態または複数の層が積層された形態を取り得る。陰極の材料には、例えば、金属、導電性高分子を用いられる。具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫等の金属、それらの金属からなる群より選ばれる2つ以上の金属を含む合金、グラファイト、グラファイト層間化合物が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
(cathode)
The cathode can take the form of a single layer or a stack of multiple layers. As the cathode material, for example, a metal or a conductive polymer is used. Specifically, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, gold, silver, platinum Metals such as copper, manganese, titanium, cobalt, nickel, tungsten, and tin, alloys containing two or more metals selected from the group consisting of these metals, graphite, and graphite intercalation compounds are used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
 本発明のペロブスカイト光電変換素子における波長400nm~1200nmの光の透過率が10%以上である電極を陰極とする場合、該陰極は、例えば陰極を構成する薄膜の膜厚を、光が透過する程度の厚さにすることによって得ることができる。光透過性の高い陰極としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)等からなる群より選ばれる1種以上の導電性材料を含む薄膜、NESA、金、白金、銀または銅を含む薄膜が用いられる。これらの中でも、陰極としては、酸化スズ、ITOおよびIZOからなる群より選ばれる1種以上の導電性材料を含む薄膜が好ましい。 In the case where an electrode having a light transmittance of 400 nm to 1200 nm in the perovskite photoelectric conversion element of the present invention having a transmittance of 10% or more is used as the cathode, the cathode has a thickness of a thin film constituting the cathode, for example, to the extent that light is transmitted. It can be obtained by making the thickness. Examples of the highly light-transmitting cathode include a conductive metal oxide film and a translucent metal thin film. Specifically, a thin film containing one or more conductive materials selected from the group consisting of indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc., NESA A thin film containing gold, platinum, silver or copper is used. Among these, as a cathode, the thin film containing 1 or more types of electroconductive materials chosen from the group which consists of a tin oxide, ITO, and IZO is preferable.
 (封止層)
 封止層は、支持基板から遠い方の電極側に設けられていてもよい。封止層は、水分を遮断する性質(水蒸気バリア性)または酸素を遮断する性質(酸素バリア性)を有する材料により形成することができる。封止層の材料としては、例えば、三フッ化ポリエチレン、ポリ三フッ化塩化エチレン(PCTFE)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、脂環式ポリオレフィン、エチレン-ビニルアルコール共重合体等の樹脂などの有機材料、酸化ケイ素、窒化ケイ素、酸化アルミニウム、ダイヤモンドライクカーボン等の無機材料が挙げられる。本発明のペロブスカイト光電変換素子において、支持基板から遠い方の電極側から光を取り込む場合、封止層としては、波長400nm~1200nmの光の透過率が10%以上である封止層が好ましい。
(Sealing layer)
The sealing layer may be provided on the electrode side far from the support substrate. The sealing layer can be formed of a material having a property of blocking moisture (water vapor barrier property) or a property of blocking oxygen (oxygen barrier property). Examples of the material for the sealing layer include organic resins such as resins such as polyethylene trifluoride, poly (trifluoroethylene fluoride) (PCTFE), polyimide, polycarbonate, polyethylene terephthalate, alicyclic polyolefin, and ethylene-vinyl alcohol copolymer. Examples thereof include inorganic materials such as materials, silicon oxide, silicon nitride, aluminum oxide, and diamond-like carbon. In the perovskite photoelectric conversion element of the present invention, when light is taken from the electrode side far from the support substrate, the sealing layer is preferably a sealing layer having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm.
 (カットフィルター)
 本発明のペロブスカイト光電変換素子は、カットフィルターを有する。カットフィルターにおける波長442nm以下の光の透過率は50%以下である。カットフィルターにおける波長482nm以下の光の透過率は50%以下であることが好ましい。光の透過率が50%以下となる波長の長波長側の波長は、ペロブスカイト化合物を含む活性層の吸収波長の吸収端の波長よりも、短波長であることが好ましい。カットフィルターは、干渉膜、光吸収のある物質等を用いて製造されており、短波長の光をカットする機能を有する。
(Cut filter)
The perovskite photoelectric conversion element of the present invention has a cut filter. The transmittance of light having a wavelength of 442 nm or less in the cut filter is 50% or less. The transmittance of light having a wavelength of 482 nm or less in the cut filter is preferably 50% or less. The wavelength on the long wavelength side where the light transmittance is 50% or less is preferably shorter than the wavelength at the absorption edge of the absorption wavelength of the active layer containing the perovskite compound. The cut filter is manufactured using an interference film, a light-absorbing substance, and the like, and has a function of cutting light having a short wavelength.
 カットフィルターは、その製造方法の違いから、誘電体多層膜フィルターと吸収型フィルターに大別することが出来る。
 誘電体多層膜フィルターは、基板表面にフィルターとして機能する誘電体多層膜を積層したものである。誘電体多層膜フィルターとしては、例えば、ガラス基板または透明樹脂フィルムの表面に、TiO、Nb、SiO、TaまたはMgFを積層したものが挙げられる。誘電体多層膜フィルターは、誘電体多層膜の光の干渉効果により、特定の波長の光を選択的に取り出す。誘電体多層膜フィルターは、分光透過特性のグラフにおいて、パス/カットの急激な立ち上がり(或いは立ち下がり)を示すという特徴がある。
 吸収型フィルターは、基板自体による光の吸収により、特定の波長の光を取り出す。吸収型フィルターとしては、例えば、光学吸収物質を含有している光学ガラス板が挙げられる。吸収型フィルターは、分光透過性のグラフにおいて、穏やかなパス/カットの立ち上がり(あるいは立ち下がり)を示すという特徴がある。
Cut filters can be broadly classified into dielectric multilayer filters and absorption filters due to differences in their manufacturing methods.
The dielectric multilayer filter is obtained by laminating a dielectric multilayer film that functions as a filter on the surface of a substrate. The dielectric multilayer filter, for example, on the surface of a glass substrate or a transparent resin film include those obtained by laminating TiO 2, Nb 2 O 5, SiO 2, Ta 2 O 5 or MgF 2. The dielectric multilayer filter selectively extracts light of a specific wavelength by the light interference effect of the dielectric multilayer film. The dielectric multilayer filter has a characteristic that it shows a sudden rise (or fall) of pass / cut in the spectral transmission characteristic graph.
The absorption filter extracts light of a specific wavelength by absorbing light by the substrate itself. Examples of the absorption filter include an optical glass plate containing an optical absorption material. The absorptive filter is characterized in that it exhibits a gentle pass / cut rise (or fall) in the spectral transmittance graph.
 カットフィルターには、市販のカットフィルターを適宜用いることができる。本発明のペロブスカイト光電変換素子のカットフィルターには、2種類以上のカットフィルターを重ねて用いてもよい。 A commercially available cut filter can be appropriately used as the cut filter. Two or more types of cut filters may be used in an overlapping manner as the cut filter of the perovskite photoelectric conversion element of the present invention.
 <2>ペロブスカイト光電変換素子の製造方法
 支持基板、陽極、ペロブスカイト化合物を含む活性層、陰極およびカットフィルターがこの順番で積層されている本発明のペロブスカイト光電変換素子の製造方法について、以下で詳しく説明する。
<2> Method for Producing Perovskite Photoelectric Conversion Device A method for producing the perovskite photoelectric conversion device of the present invention in which a support substrate, an anode, an active layer containing a perovskite compound, a cathode, and a cut filter are laminated in this order will be described in detail below. To do.
 (陽極形成工程)
 陽極は、前記陽極の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等によって支持基板上に成膜することで形成することができる。
 陽極の材料として、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等の有機物を用いる場合は、当該有機物を含む塗布液、金属インク、金属ペースト、溶融状態の低融点金属等を用いて、塗布法によって陽極を形成してもよい。陽極は、オゾンUV処理、コロナ処理、超音波処理等の表面処理が施されていてもよい。
(Anode formation process)
The anode can be formed by depositing the material of the anode on a supporting substrate by vacuum deposition, sputtering, ion plating, plating, or the like.
When using organic materials such as polyaniline and its derivatives, polythiophene and its derivatives as the material of the anode, the coating material containing the organic material, metal ink, metal paste, molten low melting point metal, etc. are used to form the anode. May be formed. The anode may be subjected to surface treatment such as ozone UV treatment, corona treatment, ultrasonic treatment or the like.
 (正孔注入層形成工程)
 正孔注入層の形成方法は特に限定されないが、正孔注入層形成工程の簡易化の観点からは、正孔注入層を塗布法によって形成することが好ましい。正孔注入層を塗布法によって形成する場合、例えば、前記正孔注入層の材料と溶媒とを含む塗布液を陽極上に塗布することにより形成することができる。
(Hole injection layer forming process)
Although the formation method of a positive hole injection layer is not specifically limited, From a viewpoint of simplification of a positive hole injection layer formation process, it is preferable to form a positive hole injection layer by the apply | coating method. When the hole injection layer is formed by a coating method, for example, the hole injection layer can be formed by applying a coating liquid containing the material of the hole injection layer and a solvent on the anode.
 正孔注入層の材料と溶媒とを含む塗布液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらの中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 Examples of methods for applying a coating solution containing a hole injection layer material and a solvent include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, and dip. Examples include coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc. Among these, spin coating The method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
 正孔注入層を形成するための塗布液に含まれる溶媒としては、例えば、水、アルコール、ケトン、炭化水素が挙げられる。アルコールの具体例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノールが挙げられる。ケトンの具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、シクロヘキサノンが挙げられ、炭化水素の具体例としては、例えば、n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン、テトラリン、クロロベンゼン、オルトジクロロベンゼンが挙げられる。正孔注入層を形成するための塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。正孔注入層を形成するための塗布液に含まれる溶媒の量は、正孔注入層の材料に対し、1重量倍以上10000重量倍以下であることが好ましく、10重量倍以上1000重量倍以下であることがより好ましい。 Examples of the solvent contained in the coating liquid for forming the hole injection layer include water, alcohol, ketone, and hydrocarbon. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol. Specific examples of ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone. Specific examples of hydrocarbons include, for example, n-pentane, cyclohexane, n-hexane, benzene, toluene, Examples include xylene, tetralin, chlorobenzene, and orthodichlorobenzene. The coating liquid for forming the hole injection layer may contain two or more types of solvents, and may contain two or more types of solvents exemplified above. The amount of the solvent contained in the coating liquid for forming the hole injection layer is preferably 1 to 10,000 times by weight, preferably 10 to 1000 times by weight, relative to the material of the hole injection layer. It is more preferable that
 正孔注入層を形成するための塗布液を塗布した後、加熱処理、風乾処理、減圧処理等で溶媒を除去することにより、正孔注入層を形成することが好ましい。 It is preferable to form the hole injection layer by applying a coating solution for forming the hole injection layer and then removing the solvent by heat treatment, air drying treatment, reduced pressure treatment or the like.
 (正孔輸送層形成工程)
 正孔輸送層の形成方法は特に限定されないが、正孔輸送層形成工程の簡易化の観点からは、正孔輸送層を塗布法によって形成することが好ましい。正孔輸送層を塗布法によって形成する場合、例えば、前記正孔輸送層の材料と溶媒とを含む塗布液を正孔注入層上に塗布することにより形成することができる。正孔輸送層を形成するための塗布液に含まれる溶媒としては、正孔注入層を形成するための塗布液に含まれる溶媒と同様のものが挙げられる。
(Hole transport layer forming process)
Although the formation method of a positive hole transport layer is not specifically limited, From a viewpoint of simplification of a positive hole transport layer formation process, it is preferable to form a positive hole transport layer by the apply | coating method. In the case of forming the hole transport layer by a coating method, for example, the hole transport layer can be formed by coating a coating liquid containing the material of the hole transport layer and a solvent on the hole injection layer. Examples of the solvent contained in the coating solution for forming the hole transport layer include the same solvents as those contained in the coating solution for forming the hole injection layer.
 正孔輸送層の材料と溶媒とを含む塗布液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらの中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 As a method of applying a coating solution containing a hole transport layer material and a solvent, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip Examples include coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc. Among these, spin coating The method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
 正孔輸送層を形成するための塗布液を塗布した後、加熱処理、風乾処理、減圧処理等で溶媒を除去することにより、正孔輸送層を形成することが好ましい。 It is preferable to form the hole transport layer by applying a coating solution for forming the hole transport layer and then removing the solvent by heat treatment, air drying treatment, decompression treatment, or the like.
 (活性層形成工程)
 活性層の形成方法は特に限定されないが、活性層形成工程の簡易化の観点からは、活性層を塗布法によって形成することが好ましい。活性層を塗布法によって形成する場合、例えば、前記ペロブスカイト化合物と溶媒とを含む塗布液を、陽極上、正孔注入層上または正孔輸送層上に塗布することにより形成することができる。前記ペロブスカイト化合物は、前躯体溶液を用いた自己組織化反応により合成することができる。
(Active layer formation process)
Although the formation method of an active layer is not specifically limited, From a viewpoint of the simplification of an active layer formation process, it is preferable to form an active layer by the apply | coating method. When forming an active layer by the apply | coating method, it can form by apply | coating the coating liquid containing the said perovskite compound and a solvent on an anode, a positive hole injection layer, or a positive hole transport layer, for example. The perovskite compound can be synthesized by a self-assembly reaction using a precursor solution.
 活性層を塗布法により形成する場合、例えば、金属ハロゲン化物を含む溶液を正孔輸送層上に塗布した後に、形成された金属ハロゲン化物の膜上に、ハロゲン化アンモニウムまたはハロゲン化アミンを含む溶液を塗布することによっても形成することができる。また、例えば、金属ハロゲン化物を含む溶液を正孔輸送層上に塗布した後に、形成された金属ハロゲン化物の膜を、ハロゲン化アンモニウムまたはハロゲン化アミンを含む溶液に浸漬させることによっても形成することができる。具体的には、活性層は、正孔輸送層上にヨウ化鉛を含む溶液を塗布した後、ヨウ化鉛の膜の上にヨウ化メチルアンモニウムを含む溶液を塗布することによっても形成することができる。金属ハロゲン化物を含む溶液、ハロゲン化アンモニウムを含む溶液、ハロゲン化アミンを含む溶液において、溶媒は、金属ハロゲン化物、ハロゲン化アンモニウムまたはハロゲン化アミンに対して、1重量倍以上10000重量倍以下であることが好ましく、10重量倍以上1000重量倍以下であることがより好ましい。 When the active layer is formed by a coating method, for example, after a solution containing a metal halide is applied on the hole transport layer, a solution containing ammonium halide or amine halide is formed on the formed metal halide film. It can also be formed by coating. Further, for example, after a solution containing a metal halide is applied on the hole transport layer, the formed metal halide film is immersed in a solution containing ammonium halide or amine halide. Can do. Specifically, the active layer may be formed by applying a solution containing lead iodide on the hole transport layer and then applying a solution containing methylammonium iodide on the lead iodide film. Can do. In a solution containing a metal halide, a solution containing an ammonium halide, or a solution containing an amine halide, the solvent is 1 to 10,000 times by weight with respect to the metal halide, ammonium halide, or amine halide. It is preferably 10 times by weight or more and 1000 times by weight or less.
 活性層を形成するための塗布液を塗布した後、加熱処理、風乾処理、減圧処理等で溶媒を除去することにより、活性層を形成することが好ましい。 It is preferable to form the active layer by applying a coating solution for forming the active layer and then removing the solvent by heat treatment, air drying treatment, decompression treatment or the like.
 ペロブスカイト化合物を含む塗布液、金属ハロゲン化物を含む溶液、ハロゲン化アンモニウムを含む溶液およびハロゲン化アミンを含む溶液に含まれる溶媒としては、例えば、エステル類(例、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等)、ケトン類(例、γ-ブチロラクトン、Nメチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等)、エーテル類(例、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等)、アルコール類(例、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等)、グリコールエーテル(セロソルブ)類(例、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等)、アミド系溶剤(例:N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等)、ニトリル系溶剤(例、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等)、カーボート系剤(例、エチレンカーボネート、プロピレンカーボネート等)、ハロゲン化炭化水素(例、塩化メチレン、ジクロロメタン、クロロホルム等)、炭化水素(例、n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等)、ジメチルスルホキシドが挙げられる。これらの溶媒を構成する化合物は、分岐構造または環状構造を有していてもよく、エステル類、ケトン類、エーテル類およびアルコール類の官能基(即ち、-O-、-CO-、-COO-、-OH)のうちの二つ以上を有していてもよい。エステル類、ケトン類、エーテル類およびアルコール類の炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。活性層を形成するための塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。 Examples of the solvent contained in a coating solution containing a perovskite compound, a solution containing a metal halide, a solution containing an ammonium halide, and a solution containing an amine halide include, for example, esters (eg, methyl formate, ethyl formate, propyl Formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, etc.), ketones (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone Etc.), ethers (eg, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane) , Tetrahydrofuran, methyltetrahydrofuran, anisole, phenetole, etc.), alcohols (eg, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl- 2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, etc.), glycol ether (cellosolve) ) (Eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol dimethyl) Ethers), amide solvents (eg, N, N-dimethylformamide, acetamide, N, N-dimethylacetamide, etc.), nitrile solvents (eg, acetonitrile, isobutyronitrile, propionitrile, methoxyacetonitrile, etc.), Carboat agents (eg, ethylene carbonate, propylene carbonate, etc.), halogenated hydrocarbons (eg, methylene chloride, dichloromethane, chloroform, etc.), hydrocarbons (eg, n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene) And dimethyl sulfoxide. The compounds constituting these solvents may have a branched structure or a cyclic structure, and are functional groups of esters, ketones, ethers and alcohols (that is, —O—, —CO—, —COO—). , -OH). The hydrogen atom in the hydrocarbon moiety of the esters, ketones, ethers and alcohols may be substituted with a halogen atom (particularly a fluorine atom). The coating liquid for forming the active layer may contain two or more types of solvents, and may contain two or more types of solvents exemplified above.
 ペロブスカイト化合物を含む塗布液、金属ハロゲン化物を含む溶液、ハロゲン化アンモニウムを含む溶液およびハロゲン化アミンを含む溶液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらの中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 As a method of applying a coating solution containing a perovskite compound, a solution containing a metal halide, a solution containing an ammonium halide, and a solution containing a halogenated amine, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, Bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method, etc. Examples of the coating method include spin coating, flexographic printing, ink jet printing, and dispenser printing.
 (電子輸送層形成工程)
 電子輸送層の形成方法は特に限定されないが、電子輸送層形成工程の簡易化の観点からは、電子輸送層を塗布法によって形成することが好ましい。電子輸送層を塗布法によって形成する場合、例えば、前記電子輸送性材料と溶媒とを含む塗布液を活性層上に塗布することにより形成することができる。電子輸送性材料を含む塗布液を塗布する方法としては、前記活性層形成工程で例示した前記ペロブスカイト化合物を含む塗布液等を塗布する方法と同様の方法が挙げられる。電子輸送性材料を含む塗布液は、エマルション(乳濁液)、サスペンション(懸濁液)等の分散液であってもよい。電子輸送性材料を含む塗布液は、該塗布液が塗布される層(活性層など)に与える損傷が少ないものを用いることが好ましく、具体的には、該塗布液が塗布される層(活性層など)を溶解し難いものが好ましい。
(Electron transport layer formation process)
Although the formation method of an electron carrying layer is not specifically limited, From a viewpoint of simplification of an electron carrying layer formation process, it is preferable to form an electron carrying layer by the apply | coating method. When forming an electron carrying layer by the apply | coating method, it can form by apply | coating the coating liquid containing the said electron transport material and a solvent on an active layer, for example. Examples of the method for applying the coating solution containing the electron transporting material include the same method as the method for applying the coating solution containing the perovskite compound exemplified in the active layer forming step. The coating liquid containing the electron transporting material may be a dispersion such as an emulsion (emulsion) or a suspension (suspension). It is preferable to use a coating solution containing an electron transporting material that causes little damage to a layer (active layer or the like) to which the coating solution is applied. Those which are difficult to dissolve the layer) are preferred.
 電子輸送層を形成するための塗布液に含まれる溶媒としては、例えば、アルコール、ケトン、炭化水素が挙げられる。アルコールの具体例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノールが挙げられる。ケトンの具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、シクロヘキサノンが挙げられる。炭化水素の具体例としては、例えば、n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン、テトラリン、クロロベンゼン、オルトジクロロベンゼンが挙げられる。電子輸送層を形成するための塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。電子輸送層を形成するための塗布液に含まれる溶媒の量は、電子輸送性材料に対し、1重量倍以上10000重量倍以下であることが好ましく、10重量倍以上1000重量倍以下であることがより好ましい。 Examples of the solvent contained in the coating liquid for forming the electron transport layer include alcohols, ketones, and hydrocarbons. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol. Specific examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, and cyclohexanone. Specific examples of the hydrocarbon include n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, tetralin, chlorobenzene, and orthodichlorobenzene. The coating liquid for forming the electron transport layer may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above. The amount of the solvent contained in the coating liquid for forming the electron transport layer is preferably 1 to 10,000 times by weight, and preferably 10 to 1000 times by weight with respect to the electron transporting material. Is more preferable.
 前記電子輸送性材料と溶媒を含む塗布液は、孔径0.5μmのテフロン(登録商標)フィルター等で濾過してから用いることが好ましい。 The coating solution containing the electron transporting material and the solvent is preferably used after being filtered through a Teflon (registered trademark) filter having a pore diameter of 0.5 μm.
 (陰極形成工程)
 陰極は、前記陰極の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等によって、例えば電子輸送層上に成膜することで形成することができる。
 陰極を塗布法により形成することができる陰極の材料としては、例えば、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、導電性物質のナノ粒子、導電性物質のナノワイヤーまたは導電性物質のナノチューブを含むエマルション(乳濁液)、導電性物質のナノ粒子、導電性物質のナノワイヤーまたは導電性物質のナノチューブを含むサスペンション(懸濁液)が挙げられる。陰極の材料が導電性物質を含む場合、当該導電性物質を含む塗布液、金属インク、金属ペースト、溶融状態の低融点金属等を用いて、塗布法によって陰極を形成してもよい。導電性物質を含む塗布液等を塗布する方法としては、前記活性層形成工程で例示した前記ペロブスカイト化合物を含む塗布液等を塗布する方法と同様の方法が挙げられる
(Cathode formation process)
The cathode can be formed by depositing the material of the cathode on the electron transport layer, for example, by vacuum deposition, sputtering, ion plating, plating, coating, or the like.
Examples of cathode materials that can be formed by a coating method of the cathode include polyaniline and derivatives thereof, polythiophene and derivatives thereof, conductive material nanoparticles, conductive material nanowires, and conductive material nanotubes. (Emulsion), conductive material nanoparticles, conductive material nanowires or conductive material nanotubes (suspension). When the material of the cathode contains a conductive substance, the cathode may be formed by a coating method using a coating liquid containing the conductive substance, a metal ink, a metal paste, a molten low melting point metal, or the like. Examples of the method of applying a coating solution containing a conductive substance include the same method as the method of applying the coating solution containing the perovskite compound exemplified in the active layer forming step.
 陰極を形成するための塗布液に含まれる溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、s-ブチルベゼン、t-ブチルベンゼン等の炭化水素系溶媒;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒;テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒;水、アルコールが挙げられる。アルコールの具体例としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノールが挙げられる。陰極を形成するための塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。 Examples of the solvent contained in the coating liquid for forming the cathode include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, s-butylbesen, and t-butylbenzene; Halogenated saturated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane; chlorobenzene, dichlorobenzene, trichlorobenzene, etc. Halogenated unsaturated hydrocarbon solvents; ether solvents such as tetrahydrofuran and tetrahydropyran; water and alcohols. Specific examples of the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, and methoxybutanol. The coating solution for forming the cathode may contain two or more kinds of solvents, and may contain two or more kinds of the solvents exemplified above.
 (封止層形成工程)
 封止層は、支持基板から遠い方の電極上に形成されていてもよいし、該電極の外側に電極に接しない形態で形成されていてもよい。封止層は、前記封止層の材料の種類に応じて、任意の方法で形成させることができる。封止層の形成方法としては、例えば、気相成膜法、スピンコート法、ディップ法、スプレー法が挙げられる。封止層は、予め成形した封止層構造を封止材(接着材)により貼付けることにより形成してもよい。
(Sealing layer forming step)
The sealing layer may be formed on an electrode far from the support substrate, or may be formed outside the electrode in a form that does not contact the electrode. The sealing layer can be formed by any method depending on the type of material of the sealing layer. Examples of the method for forming the sealing layer include a vapor deposition method, a spin coating method, a dip method, and a spray method. The sealing layer may be formed by pasting a preformed sealing layer structure with a sealing material (adhesive).
 (カットフィルター形成工程)
 本発明の光電変換素子において、支持基板側から光を取り込む場合、カットフィルターは、支持基板の電極が形成されている面とは反対側の面にカットフィルターを配置することにより、形成することができる。
 本発明の光電変換素子において、支持基板から遠い方の電極側から光を取り込む場合、カットフィルターは、支持基板から遠い方の電極の形成後、封止層の形成前に、該電極と該封止層との間に配置してもよいし、該電極および該封止層を形成した後、該封止層の外側に配置してもよい。
(Cut filter forming process)
In the photoelectric conversion element of the present invention, when capturing light from the support substrate side, the cut filter can be formed by disposing the cut filter on the surface opposite to the surface on which the electrode of the support substrate is formed. it can.
In the photoelectric conversion element of the present invention, when light is taken in from the electrode farther from the support substrate, the cut filter is formed after the electrode far from the support substrate is formed and before the sealing layer is formed. You may arrange | position between a stop layer, and after forming this electrode and this sealing layer, you may arrange | position outside this sealing layer.
 <3>ペロブスカイト光電変換素子の用途
 本発明のペロブスカイト光電変換素子は、波長400nm~1200nmの光の透過率が10%以上である電極に太陽光等の光を照射することにより、電極間に光起電力が発生し、太陽電池として動作させることができる。太陽電池は、有機無機ペロブスカイト太陽電池であることが好ましい。太陽電池を複数集積することにより、太陽電池を薄膜太陽電池モジュールとして用いることもできる。
<3> Uses of perovskite photoelectric conversion element The perovskite photoelectric conversion element of the present invention is capable of emitting light between electrodes by irradiating light having a wavelength of 400 nm to 1200 nm with a light transmittance of 10% or more. An electromotive force is generated and can be operated as a solar cell. The solar cell is preferably an organic / inorganic perovskite solar cell. By integrating a plurality of solar cells, the solar cells can also be used as thin film solar cell modules.
 本発明のペロブスカイト光電変換素子は、電極間に電圧を印加した状態で、透明または半透明の電極に光を照射することにより、光電流が流れ、光センサーとして動作させることができる。光センサーを複数集積することにより、光センサーをイメージセンサーとして用いることもできる。 The perovskite photoelectric conversion element of the present invention can be operated as a photosensor by irradiating light to a transparent or semi-transparent electrode with a voltage applied between the electrodes, so that a photocurrent flows. By integrating a plurality of optical sensors, the optical sensor can be used as an image sensor.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
(組成物1の製造)
 ヨウ化鉛368mgを、1mlのN,N-ジメチルホルムアミドに溶解させ、次いで、70℃で攪拌することで完溶させることで、組成物1を調製した。
(Production of Composition 1)
Composition 1 was prepared by dissolving 368 mg of lead iodide in 1 ml of N, N-dimethylformamide, followed by complete dissolution by stirring at 70 ° C.
(組成物2の製造)
 ヨウ化メチルアンモニウム55mgを、1mlの2-プロパノールに完溶させることで、組成物2を調製した。
(Production of Composition 2)
Composition 2 was prepared by completely dissolving 55 mg of methylammonium iodide in 1 ml of 2-propanol.
(組成物3の製造)
 フラーレン類の誘導体として2重量部の[6,6]-フェニルC61-酪酸メチルエステル(C60PCBM)(フロンティアカーボン社製E100)と、溶媒として100重量部のクロロベンゼンとを混合し、完溶させた。次に、得られた溶液を、孔径0.5μmのテフロン(登録商標)フィルターで濾過することで、組成物3を調製した。
(Production of Composition 3)
2 parts by weight of [6,6] -phenyl C 61 -butyric acid methyl ester (C 60 PCBM) (E100 manufactured by Frontier Carbon Co.) as a fullerene derivative and 100 parts by weight of chlorobenzene as a solvent are mixed to completely dissolve. I let you. Next, the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 0.5 μm to prepare a composition 3.
(組成物4の製造)
 下記の繰り返し単位を持つ高分子化合物(シグマアルドリッチ社製Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]、average Mn 7,000-10,000)を0.5重量部と、溶媒として100重量部のクロロベンゼンとを混合し、完溶させることで、組成物4を調整した。
Figure JPOXMLDOC01-appb-I000013
(Production of Composition 4)
0.5 parts by weight of a polymer compound having the following repeating unit (Poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine], average Mn 7,000-10,000, manufactured by Sigma-Aldrich) And 100 parts by weight of chlorobenzene as a solvent were mixed and completely dissolved to prepare composition 4.
Figure JPOXMLDOC01-appb-I000013
 比較例1
(太陽電池の作製、評価)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタリング法によって形成されたものであり、その厚みは150nmであった。前記ITO薄膜を有するガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。
 次に、ITO薄膜上に、組成物4をスピンコートにより塗布し、大気中120℃で10分間加熱することにより、膜厚約10nmの正孔注入層を形成した。
 次に、正孔注入層を形成した基板をホットプレートで70℃に充分に加熱した後、加熱された基板をスピンコーターに載せた。その後、正孔注入層上に、70℃で攪拌加熱された組成物1を2000rpmの回転数でスピンコートにより塗布し、窒素雰囲気下で風乾させることにより、ヨウ化鉛の塗布膜を得た。その後、ヨウ化鉛の塗布膜上に、組成物2を6000rpmの回転数でスピンコートにより塗布し、大気中100℃で10分間加熱することにより、活性層を形成した。活性層の膜厚は約350nmであった。
Comparative Example 1
(Production and evaluation of solar cells)
A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared. The ITO thin film was formed by the sputtering method, and the thickness was 150 nm. The glass substrate having the ITO thin film was subjected to ozone UV treatment to treat the surface of the ITO thin film.
Next, the composition 4 was applied onto the ITO thin film by spin coating, and heated in the atmosphere at 120 ° C. for 10 minutes to form a hole injection layer having a thickness of about 10 nm.
Next, the substrate on which the hole injection layer was formed was sufficiently heated to 70 ° C. with a hot plate, and then the heated substrate was placed on a spin coater. Then, composition 1 heated by stirring at 70 ° C. was applied onto the hole injection layer by spin coating at a rotational speed of 2000 rpm, and air-dried in a nitrogen atmosphere to obtain a lead iodide coating film. Thereafter, the composition 2 was applied onto the lead iodide coating film by spin coating at a rotational speed of 6000 rpm, and heated in air at 100 ° C. for 10 minutes to form an active layer. The thickness of the active layer was about 350 nm.
 次に、活性層上に、組成物3をスピンコートにより塗布し、膜厚約50nmの電子輸送層を形成した。
 次に、電子輸送層上に、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、銀を膜厚60nmで蒸着した。蒸着のときの真空度は、すべて1~9×10-3Paであった。
 次に、窒素ガス雰囲気下において、UV硬化性エポキシ樹脂を用いて、封止ガラスを光電変換素子の陰極側の面にUV硬化によって接着して封止することにより、太陽電池を作製した。こうして得られた太陽電池の形状は、2mm×2mmの正方形であった。
Next, the composition 3 was applied onto the active layer by spin coating to form an electron transport layer having a thickness of about 50 nm.
Next, calcium was vapor-deposited with a film thickness of 4 nm on the electron transport layer by a vacuum vapor deposition machine, and then silver was vapor-deposited with a film thickness of 60 nm. The degree of vacuum during the deposition was 1 to 9 × 10 −3 Pa in all cases.
Next, in a nitrogen gas atmosphere, using a UV curable epoxy resin, a sealing glass was bonded to the surface on the cathode side of the photoelectric conversion element by UV curing, and a solar cell was manufactured. The shape of the solar cell thus obtained was a 2 mm × 2 mm square.
 得られた太陽電池に、ソーラーシミュレーター(山下電装製、商品名YSS-80A:AM1.5Gフィルター、放射照度100mW/cm)を用いて、一定の光を照射し、発生する電流と電圧とを測定した。光電変換効率は17.6%であり、Jsc(短絡電流密度)は20.6mA/cmであり、Voc(開放端電圧)は1.10Vであり、FF(フィルファクター)は0.77であった。 The obtained solar cell is irradiated with constant light using a solar simulator (trade name YSS-80A: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Yamashita Denso), and the generated current and voltage are It was measured. The photoelectric conversion efficiency is 17.6%, Jsc (short circuit current density) is 20.6 mA / cm 2 , Voc (open circuit voltage) is 1.10 V, and FF (fill factor) is 0.77. there were.
 比較例2および実施例1~4
(太陽電池の作製)
 比較例1における封止後に、下記に示すカットフィルターを支持基板であるガラス基板上に配置した以外は、比較例1同様にして太陽電池を作成した。
 比較例2では、423nm以下の波長の光の透過率が50%以下になるカットフィルター(シグマ光機製、SCF-50S-42L(以下42Lと示す))を、実施例1では、442nm以下の波長の光の透過率が50%以下になるカットフィルター(シグマ光機製、SCF-50S-44Y(以下44Yと示す))を、実施例2では、482nm以下の波長の光の透過率が50%以下になるカットフィルター(シグマ光機製、SCF-50S-48Y(以下48Yと示す))を、実施例3では、502nm以下の波長の光の透過率が50%以下になるカットフィルター(シグマ光機製、SCF-50S-50Y(以下50Yと示す))を、実施例4では、521nm以下の波長の光の透過率が50%以下になるカットフィルター(シグマ光機製、SCF-50S-52Y(以下52Yと示す))を支持基板であるガラス基板の上に載せ、太陽電池を作製した。
Comparative Example 2 and Examples 1 to 4
(Production of solar cells)
After sealing in Comparative Example 1, a solar cell was produced in the same manner as in Comparative Example 1, except that the cut filter shown below was placed on the glass substrate as the support substrate.
In Comparative Example 2, a cut filter (manufactured by Sigma Koki Co., Ltd., SCF-50S-42L (hereinafter referred to as 42L)) having a transmittance of light having a wavelength of 423 nm or less is 50% or less, and in Example 1, a wavelength of 442 nm or less is used. A cut filter (manufactured by Sigma Koki Co., Ltd., SCF-50S-44Y (hereinafter referred to as 44Y)) having a light transmittance of 50% or less is used. In Example 2, the transmittance of light having a wavelength of 482 nm or less is 50% or less. A cut filter (manufactured by Sigma Kogyo Co., Ltd., SCF-50S-48Y (hereinafter referred to as 48Y)), and in Example 3, a cut filter (manufactured by Sigma Kogyo Co., Ltd.) having a transmittance of light of a wavelength of 502 nm or less is 50% or less In Example 4, SCF-50S-50Y (hereinafter referred to as 50Y)) is a cut filter (sigma light) in which the transmittance of light having a wavelength of 521 nm or less is 50% or less. Ltd., SCF-50S-52Y (shown less 52Y)) was loaded on a glass substrate as a supporting substrate, to produce a solar cell.
 比較例1および2、並びに、実施例1~4
(太陽電池の光耐久性の評価)
 得られた太陽電池に対し、ソーラーシミュレーター(山下電装製、商品名YSS-80A:AM1.5Gフィルター、放射照度100mW/cm)を用いて、比較例1の太陽電池ではガラス基板側から、比較例2および実施例1~4の太陽電池ではカットフィルター側から光照射する連続照射試験を行った。連続照射試験中は、太陽電池をペルチェ素子で冷却することにより、太陽電池を25℃の一定温度に保つようにした。光照射163時間後の効率保持率(初期効率に対する、光照射163時間後の効率に対する割合)の関係を表1に示す。また、比較例2および実施例1~4で用いたカットフィルターの透過スペクトルを図1に示す。
Comparative Examples 1 and 2 and Examples 1 to 4
(Evaluation of light durability of solar cells)
For the obtained solar cell, a solar simulator (manufactured by Yamashita Denso, trade name YSS-80A: AM1.5G filter, irradiance 100 mW / cm 2 ) was used to compare the solar cell of Comparative Example 1 from the glass substrate side. The solar cells of Example 2 and Examples 1 to 4 were subjected to a continuous irradiation test in which light was irradiated from the cut filter side. During the continuous irradiation test, the solar cell was cooled with a Peltier element so that the solar cell was kept at a constant temperature of 25 ° C. Table 1 shows the relationship between the efficiency retention ratio after 163 hours of light irradiation (the ratio of the efficiency to the efficiency after 163 hours of light irradiation with respect to the initial efficiency). In addition, the transmission spectra of the cut filters used in Comparative Example 2 and Examples 1 to 4 are shown in FIG.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 参考例1
(ペロブスカイト層の作製、評価)
 ガラス基板をホットプレートで70℃に充分に加熱後、加熱された基板をスピンコーターに載せた。その後、ガラス基板上に、70℃で攪拌加熱された組成物1を2000rpmの回転数でスピンコートにより塗布し、窒素雰囲気下で風乾させることにより、ヨウ化鉛の塗布膜を得た。その後、ヨウ化鉛の塗布膜上に、組成物2を6000rpmの回転数でスピンコートにより塗布し、大気中100℃で10分間加熱することにより、ガラス基板上にペロブスカイト層を形成することにより、素子を形成した。ペロブスカイト層の膜厚は約350nmであった。
Reference example 1
(Preparation and evaluation of perovskite layer)
The glass substrate was sufficiently heated to 70 ° C. with a hot plate, and then the heated substrate was placed on a spin coater. Then, composition 1 heated by stirring at 70 ° C. was applied onto a glass substrate by spin coating at a rotation speed of 2000 rpm, and air-dried in a nitrogen atmosphere to obtain a lead iodide coating film. Then, on the lead iodide coating film, the composition 2 was applied by spin coating at a rotation speed of 6000 rpm, and heated at 100 ° C. in the atmosphere for 10 minutes to form a perovskite layer on the glass substrate, An element was formed. The thickness of the perovskite layer was about 350 nm.
 得られた素子に対し、ソーラーシミュレーター(山下電装製、商品名YSS-80A:AM1.5Gフィルター、放射照度100mW/cm)を用いて、ガラス基板側から光照射する連続照射試験を行った。連続照射試験中は、素子をペルチェ素子で冷却することにより、太陽電池を25℃の一定温度に保つようにした。光照射24時間後のペロブスカイト層の吸収スペクトルを、分光光度計(日本分光株式会社製、商品名:V-670)で測定した。波長600nmの光の吸光度を表2に示す。 Using the solar simulator (trade name YSS-80A: AM1.5G filter, irradiance 100 mW / cm 2 ) manufactured by Yamashita Denso, the obtained device was subjected to a continuous irradiation test in which light was irradiated from the glass substrate side. During the continuous irradiation test, the solar cell was kept at a constant temperature of 25 ° C. by cooling the device with a Peltier device. The absorption spectrum of the perovskite layer 24 hours after light irradiation was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
参考例2~6
(ペロブスカイト層の作製、評価)
 参考例1と同様にして、ガラス基板上にペロブスカイト層を形成した。その後、封止は行わずに、ガラス基板上にペロブスカイト層が形成されている面とは反対側の面にカットフィルターを配置させることにより、素子を作製した。用いたカットフィルターは、参考例2では前記42Lであり、参考例3では前記44Yであり、参考例4では前記48Yであり、参考例5では前記50Y、参考例6では前記52Yである。
Reference Examples 2-6
(Preparation and evaluation of perovskite layer)
In the same manner as in Reference Example 1, a perovskite layer was formed on a glass substrate. Thereafter, without performing sealing, an element was produced by placing a cut filter on the surface opposite to the surface on which the perovskite layer was formed on the glass substrate. The cut filters used were 42L in Reference Example 2, 44Y in Reference Example 3, 48Y in Reference Example 4, 50Y in Reference Example 5, and 52Y in Reference Example 6.
 参考例2~6で得られた素子に対し、ソーラーシミュレーター(山下電装製、商品名YSS-80A:AM1.5Gフィルター、放射照度100mW/cm)を用いて、カットフィルター側から光照射する連続照射試験を行った。連続照射試験中は、素子をペルチェ素子で冷却することにより、太陽電池を25℃の一定温度に保つようにした。光照射24時間後のペロブスカイト層の吸収スペクトルを、分光光度計(日本分光株式会社製、商品名:V-670)で測定した。波長600nmの光の吸光度を表2に示す。 Using the solar simulator (manufactured by Yamashita Denso, trade name: YSS-80A: AM1.5G filter, irradiance: 100 mW / cm 2 ), the device obtained in Reference Examples 2 to 6 is continuously irradiated with light from the cut filter side. An irradiation test was performed. During the continuous irradiation test, the solar cell was kept at a constant temperature of 25 ° C. by cooling the device with a Peltier device. The absorption spectrum of the perovskite layer 24 hours after light irradiation was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
参考例7
(ペロブスカイト層の作製、評価)
 参考例1と同様の素子を作製した後、光照射なしで、暗所で24時間保管した。暗所で24時間保管後のペロブスカイト層の吸収スペクトルを、分光光度計(日本分光株式会社製、商品名:V-670)で測定した。波長600nmの光の吸光度を表2に示す。
Reference Example 7
(Preparation and evaluation of perovskite layer)
An element similar to that of Reference Example 1 was prepared, and then stored in a dark place for 24 hours without light irradiation. The absorption spectrum of the perovskite layer after being stored for 24 hours in the dark was measured with a spectrophotometer (trade name: V-670, manufactured by JASCO Corporation). Table 2 shows the absorbance of light having a wavelength of 600 nm.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 本発明の、波長442nm以下の光の透過率が50%以下であるカットフィルターを用いたペロブスカイト光電変換素子は、高い光耐久性を示す。 The perovskite photoelectric conversion element using a cut filter having a light transmittance of 50% or less of light having a wavelength of 442 nm or less according to the present invention exhibits high light durability.

Claims (4)

  1.  電極、ペロブスカイト化合物を含む活性層、波長400nm~1200nmの光の透過率が10%以上である電極および波長442nm以下の光の透過率が50%以下であるカットフィルターが、この順番で積層されている、ペロブスカイト光電変換素子。 An electrode, an active layer containing a perovskite compound, an electrode having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm, and a cut filter having a light transmittance of 50% or less at a wavelength of 442 nm or less are laminated in this order. A perovskite photoelectric conversion element.
  2.  前記カットフィルターが、波長482nm以下の光の透過率が50%以下であるカットフィルターである、請求項1に記載されたペロブスカイト光電変換素子。 The perovskite photoelectric conversion element according to claim 1, wherein the cut filter is a cut filter having a transmittance of light having a wavelength of 482 nm or less of 50% or less.
  3.  前記カットフィルター、波長400nm~1200nmの光の透過率が10%以上である支持基板、陽極としての前記波長400nm~1200nmの光の透過率が10%以上である電極、前記ペロブスカイト化合物を含む活性層および陰極が、この順番で積層されている、請求項1または2に記載されたペロブスカイト光電変換素子。 An active layer comprising the cut filter, a support substrate having a light transmittance of 10% or more at a wavelength of 400 nm to 1200 nm, an electrode serving as an anode having a light transmittance of 400% to 1200 nm as a positive electrode, and the perovskite compound; The perovskite photoelectric conversion element according to claim 1 or 2, wherein the cathode and the cathode are laminated in this order.
  4.  支持基板、陽極、前記ペロブスカイト化合物を含む活性層、陰極としての前記波長400nm~1200nmの光の透過率が10%以上である電極および前記カットフィルターが、この順で積層されている、請求項1または2に記載されたペロブスカイト光電変換素子。 2. A support substrate, an anode, an active layer containing the perovskite compound, an electrode having a transmittance of 10% or more of light having a wavelength of 400 nm to 1200 nm as a cathode, and the cut filter are laminated in this order. Or the perovskite photoelectric conversion element described in 2.
PCT/JP2016/079241 2015-10-06 2016-10-03 Perovskite photoelectric conversion element WO2017061361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017544479A JP6798499B2 (en) 2015-10-06 2016-10-03 Perovskite photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-198253 2015-10-06
JP2015198253 2015-10-06

Publications (1)

Publication Number Publication Date
WO2017061361A1 true WO2017061361A1 (en) 2017-04-13

Family

ID=58487562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079241 WO2017061361A1 (en) 2015-10-06 2016-10-03 Perovskite photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP6798499B2 (en)
WO (1) WO2017061361A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206810A (en) * 2017-05-30 2018-12-27 積水化学工業株式会社 Solid-junction photoelectric conversion element
CN110364626A (en) * 2019-06-28 2019-10-22 北京交通大学 A kind of narrowband photodetector and preparation method thereof
CN111490164A (en) * 2020-04-24 2020-08-04 电子科技大学 Perovskite photoelectric detector based on DNT-PH composite hole transport layer and preparation method thereof
CN111540834A (en) * 2020-04-16 2020-08-14 浙江浙能技术研究院有限公司 Perovskite solar cell anode modification method
CN113764541A (en) * 2021-01-25 2021-12-07 西安电子科技大学 Narrow-band all-inorganic perovskite photoelectric detector and preparation method thereof
US20230030635A1 (en) * 2019-12-20 2023-02-02 Siemens Energy Global GmbH & Co. KG Energy-efficient cooling of a perovskite solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2001085076A (en) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and photocell
JP2003282163A (en) * 2002-03-26 2003-10-03 Toppan Printing Co Ltd Dye-sensitized solar battery
JP2005251736A (en) * 2004-02-02 2005-09-15 Hitachi Maxell Ltd Photoelectric conversion element, photocell using it and case of electronic equipment
JP2008112704A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2014049631A (en) * 2012-08-31 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014180780A1 (en) * 2013-05-06 2014-11-13 Greatcell Solar S.A. Organic-inorganic perovskite based solar cell
JP2015092563A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060643A1 (en) * 2012-09-05 2014-03-06 Lane W. Martin Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2001085076A (en) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and photocell
JP2003282163A (en) * 2002-03-26 2003-10-03 Toppan Printing Co Ltd Dye-sensitized solar battery
JP2005251736A (en) * 2004-02-02 2005-09-15 Hitachi Maxell Ltd Photoelectric conversion element, photocell using it and case of electronic equipment
JP2008112704A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2014049631A (en) * 2012-08-31 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014180780A1 (en) * 2013-05-06 2014-11-13 Greatcell Solar S.A. Organic-inorganic perovskite based solar cell
JP2015092563A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206810A (en) * 2017-05-30 2018-12-27 積水化学工業株式会社 Solid-junction photoelectric conversion element
JP7007114B2 (en) 2017-05-30 2022-01-24 積水化学工業株式会社 Solid-state junction type photoelectric conversion element
CN110364626A (en) * 2019-06-28 2019-10-22 北京交通大学 A kind of narrowband photodetector and preparation method thereof
CN110364626B (en) * 2019-06-28 2020-12-01 北京交通大学 Narrow-band photoelectric detector and preparation method thereof
US20230030635A1 (en) * 2019-12-20 2023-02-02 Siemens Energy Global GmbH & Co. KG Energy-efficient cooling of a perovskite solar cell
CN111540834A (en) * 2020-04-16 2020-08-14 浙江浙能技术研究院有限公司 Perovskite solar cell anode modification method
CN111490164A (en) * 2020-04-24 2020-08-04 电子科技大学 Perovskite photoelectric detector based on DNT-PH composite hole transport layer and preparation method thereof
CN113764541A (en) * 2021-01-25 2021-12-07 西安电子科技大学 Narrow-band all-inorganic perovskite photoelectric detector and preparation method thereof

Also Published As

Publication number Publication date
JPWO2017061361A1 (en) 2018-07-26
JP6798499B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2017061361A1 (en) Perovskite photoelectric conversion element
JP6339203B2 (en) Precursor of inorganic / organic hybrid perovskite compound
JP6674948B2 (en) Photoelectric conversion element
JP6689100B2 (en) Mixture, functional layer, photoelectric conversion element and perovskite stabilizer
WO2011052568A1 (en) Organic photoelectric conversion element
WO2018079323A1 (en) Photoelectric conversion element
JP6687025B2 (en) Photoelectric conversion element
JP6697886B2 (en) Photoelectric conversion element
JPWO2016117380A1 (en) Photoelectric conversion element and manufacturing method thereof
JP6966036B2 (en) Manufacturing method of organic solar cells
JP2019212763A (en) Photoelectric conversion element
JP6718249B2 (en) Photoelectric conversion element manufacturing method and photoelectric conversion element
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP5715796B2 (en) Manufacturing method of organic photoelectric conversion element
WO2016063781A1 (en) Organic photoelectric conversion element and method for manufacturing same
JP2015099810A (en) Method of manufacturing organic photoelectric conversion element
JP6697816B2 (en) Photoelectric conversion element
JP6995596B2 (en) Photoelectric conversion element
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
JP2010192862A (en) Organic photoelectric conversion element and method of manufacturing the same
JP5487872B2 (en) Manufacturing method of organic photoelectric conversion element
JP6697820B2 (en) Photoelectric conversion element and fullerene derivative
JP2017103268A (en) Photoelectric conversion element
JP2019024068A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853515

Country of ref document: EP

Kind code of ref document: A1