WO2017061020A1 - Optical disc recording and reproducing device - Google Patents

Optical disc recording and reproducing device Download PDF

Info

Publication number
WO2017061020A1
WO2017061020A1 PCT/JP2015/078705 JP2015078705W WO2017061020A1 WO 2017061020 A1 WO2017061020 A1 WO 2017061020A1 JP 2015078705 W JP2015078705 W JP 2015078705W WO 2017061020 A1 WO2017061020 A1 WO 2017061020A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference light
light
phase
hologram recording
hologram
Prior art date
Application number
PCT/JP2015/078705
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田 堅一
和良 山崎
健 宇津木
誠 保坂
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/078705 priority Critical patent/WO2017061020A1/en
Publication of WO2017061020A1 publication Critical patent/WO2017061020A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • the present invention relates to an apparatus for recording or reproducing optical information using holography.
  • Patent Document 1 discloses that an amount equal to the beam waist of signal light for writing a hologram separates individual stacks of holograms. All the holograms adjacent to are read out simultaneously, and the adjacent holograms read out are not transmitted to the camera surface by arranging the filter at the beam waist of the reproduced data, or these are not desired. The reproduction can be filtered by an angular filter in the middle plane in an optical system with a limited angular passband.
  • Patent Document 2 states that “the reference light deflecting unit 6A is mounted on the angle rotating device 6B, and the angle rotating device 6B rotationally drives the reference light deflecting unit 6A by a minute angle to enable angle multiplex recording.
  • a flat mirror is used as the reference light deflecting means 6A, and a light diffusing layer is formed on the surface by applying an acrylic resin-based light diffusing paint as the reference light phase changing means 20. The light diffusing layer is reflected from the mirror. The wavefront of the reference light is made random, and the position shift selectivity is improved.
  • Also,“ the reference light phase changing means 20 is attached to the reference light deflecting means 6A to change the phase of the reference light when deflecting the reference light.
  • the recording density is greatly improved by spatially changing it and increasing the position shift selectivity.
  • Patent Document 1 describes that a spatial filter (polytopic filter) is arranged in the beam waist of the reproduction light and recording is performed at an interval where the beam waists of adjacent holograms do not overlap.
  • the polytopic filter cannot block the leakage light of the reproduction light of the adjacent holograms, and Since the hologram reproduction is affected, the recording interval of the hologram cannot be reduced.
  • an object of the present invention is to provide a technique for improving recording density while maintaining compatibility between apparatuses.
  • a hologram recording / reproducing apparatus for recording a hologram having two-dimensional page data information or reproducing the recorded page data information, a light source for emitting a light beam, and the light beam as a reference light
  • a beam splitter that separates the reference light into a signal light
  • a phase modulation unit that periodically modulates the phase of the reference light in a light beam plane of the reference light, and an incident angle of the phase-modulated reference light with respect to the optical information recording medium
  • the hologram recording / reproducing apparatus is characterized in that the period of the phase modulation of the reference light depends on the recording interval of the hologram.
  • the recording density can be improved while maintaining compatibility between apparatuses. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
  • Block diagram of hologram recording / reproducing optical system in embodiment at the time of hologram recording Schematic diagram of hologram multiplex recording in an embodiment Schematic showing the recording position of the book in the embodiment Schematic of phase distribution given by phase modulation element in embodiment Schematic of phase distribution given by phase modulation element in embodiment Schematic of phase distribution given by phase modulation element in embodiment Block diagram at the time of hologram reproduction of the hologram recording / reproducing optical system in the embodiment Schematic which shows the relationship of the phase of the reference light and reproduction
  • FIG. 11 is a block diagram of the hologram recording / reproducing apparatus 10 in the present embodiment.
  • the hologram recording medium 30 can be attached and detached.
  • the mechanism 15 includes an access control unit 16, a recording information processing unit 17, a reproduction information processing unit 18, and an input / output unit 19.
  • the hologram recording / reproducing apparatus 10 is connected to the host library control unit 71 via the input / output unit 20 and receives various commands such as a recording command and a reproduction command and data to be recorded on the hologram recording medium 30 from the library control unit 71.
  • the command execution result and the data reproduced from the hologram recording medium 30 are transmitted to the library control unit 71.
  • the drive control unit 11 controls the overall operation of the hologram recording / reproducing apparatus 10 and operates the hologram recording / reproducing apparatus 10 in accordance with various received commands. That is, the access mechanism 15 is operated via the access control unit 16 to position the hologram recording medium 30 at a predetermined position, and the data received via the recording information processing unit 17 is encoded and converted into two-dimensional data.
  • the hologram recording / reproducing optical system 12 and the cure optical system 13 are operated via the system control unit 14 to record two-dimensional data on the hologram recording medium 30 as a hologram. In the case of binary recording, the recorded two-dimensional data is composed of a two-dimensional array of white (on pixel) and black (off pixel) pixels.
  • the hologram recording / reproducing optical system 12 is operated to acquire two-dimensional data recorded as a hologram on the hologram recording medium 30, and the two-dimensional data is decoded via the reproduction information processing unit 18 to reproduce the data.
  • the access mechanism 15 moves the hologram recording medium 30 so that an arbitrary area of the mounted hologram recording medium 30 is positioned at a predetermined position with respect to the hologram recording / reproducing optical system 12 and the cure optical system 13.
  • the hologram recording medium 30 has a disk shape
  • the access mechanism 15 includes a spindle motor that rotates the hologram recording medium 30 around the central axis of the disk and a slide mechanism that moves the disk in a predetermined radial direction. I have.
  • a hologram recording medium rotation angle detection unit that detects the rotation angle of the hologram recording medium 30 is provided, and a signal corresponding to the rotation angle of the hologram recording medium 30 is output.
  • the access control unit 16 controls the access mechanism 15 to position the hologram recording medium 30 at a position specified by the drive control unit 11. Based on the output signal of the hologram recording medium rotation angle detector, the spindle motor is driven to control the rotation angle of the hologram recording medium 30, and the slide mechanism is driven to control the radial position of the hologram recording medium 30.
  • the hologram recording / reproducing optical system 12 includes a laser light source 101 having a highly variable 405 nm band wavelength variable, and irradiates the hologram recording medium 30 with signal light and reference light spatially modulated with two-dimensional data by the spatial light modulator 110. Then, two-dimensional data is recorded by forming a hologram. In addition, the two-dimensional data is detected and reproduced by the two-dimensional light detection element 122 by irradiating the hologram recorded on the hologram recording medium 30 with the reference light from the opposite direction to the time of recording.
  • the cure optical system 13 performs pre-cure and post-cure by irradiating the hologram recording medium 30 with a light beam having low coherence.
  • Precure is a pre-process of hologram recording processing performed for the purpose of easily exposing a region in which a hologram is recorded by irradiating signal light and reference light in advance.
  • post-cure is a post-process of hologram recording processing performed for the purpose of inactivating the area where the hologram is recorded so that the quality of the hologram recorded by unintentional exposure is not deteriorated.
  • the optical system control unit 14 controls each device mounted on the hologram recording / reproducing optical system 12 and the cure optical system 13.
  • the laser light source 101 of the hologram recording / reproducing optical system 12 is driven to emit light with a predetermined light amount, and each actuator is driven to record the recording mode.
  • the reproduction mode is switched, and the incident angle of the reference light applied to the hologram recording medium 30 is controlled.
  • the light source mounted on the cure optical system 13 is driven so that the hologram recording medium 30 is irradiated with energy suitable for pre-cure and post-cure.
  • the recording information processing unit 17 converts the data received from the host library control unit 71 into two-dimensional data to be displayed on the spatial light modulator 110. After the received data is divided into a plurality of data strings, parity addition for CRC (Cyclic Redundancy Check), scramble processing, and error correction code addition are performed. This data string is converted into two-dimensional data for sub-pages, a plurality of sub-pages are collected to form two-dimensional data for one page, and a marker serving as a reference in image position detection and image distortion correction at the time of reproduction is set. In addition, it is transferred to the spatial light modulator 110.
  • CRC Cyclic Redundancy Check
  • the reproduction information processing unit 18 reproduces data from the image detected by the two-dimensional light detection element 122.
  • the image position is detected based on the received marker of the image data to correct the distortion of the image, binarization processing is performed, the marker is removed, and two-dimensional data for one page is acquired.
  • the data is converted into a plurality of data strings for each subpage, and error correction processing, descrambling, and CRC are performed to obtain data.
  • FIG. 1 is a block diagram of the hologram recording / reproducing optical system 12 in this embodiment, and shows a state during hologram recording.
  • a highly coherent light beam emitted from the laser light source 101 that can be adjusted to a predetermined wavelength in the 405 nm band is transmitted through the collimator lens 102 to be converted into a parallel light beam, reflected by the polarizing element 135, and guided to the shutter unit 130.
  • the shutter unit 130 functions as a shutter that switches between transmission and blocking of an incident light beam.
  • the light beam that has passed through the shutter unit 130 is directed to the half-wave plate 104.
  • the half-wave plate 104 is mounted on an actuator and is configured to be rotatable around the optical axis. By rotating the half-wave plate 104 at a predetermined angle, the incident light beam has a predetermined light amount ratio between the P-polarized component and the S-polarized component. Then, the light is separated into P-polarized light and S-polarized light by the subsequent polarizing element 105.
  • the P-polarized light beam that has passed through the polarizing element 105 is used as signal light, and the diameter of the light beam is expanded by the beam expander 106, and then transmitted through the phase mask 107, the relay lens 108, and the polarizing element 109 to enter the spatial light modulator 110.
  • the signal light is spatially modulated by reflecting the spatial light modulator 110 displaying predetermined two-dimensional data, and the polarization direction of the light passing through the predetermined pixel of the spatial light modulator 110 is converted to S-polarized light. .
  • the signal light on which the two-dimensional data is superimposed is reflected by the polarizing element 109, transmitted through the relay lens 111 and the spatial filter 112, and condensed on the hologram recording medium 30 by the objective lens 113.
  • the S-polarized light beam reflected from the polarizing element 105 is used as reference light, converted into a predetermined polarization direction by the half-wave plate 114, reflected by the total reflection mirror 115 and the total reflection mirror 116, and the phase modulation element 120. Irradiate.
  • the phase pattern of the reference light is modulated into a phase pattern described later by the phase modulation element 120, passes through the relay lens 119, reflects the galvano mirror 117, and irradiates the hologram recording medium 30 through the scanner lens 118.
  • the galvanometer mirror 117 is configured such that the reflection angle can be changed by an actuator, and by controlling the reflection angle of the galvanometer mirror 117, the incident angle of the reference light applied to the hologram recording medium 30 is set to a predetermined angle.
  • the signal light 150 and the reference light 160 are irradiated so as to overlap each other in the hologram recording medium 30, a hologram is formed on the hologram recording medium 30 by interference, and two-dimensional data (page) superimposed on the signal light is recorded.
  • the polarization directions of the signal light and the reference light at the time of recording are both configured to be incident on the medium as S-polarized light in order to increase the degree of modulation of interference.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • the position of the phase modulation element 120 is not limited to the illustrated arrangement, but the phase distribution superimposed on the phase modulation element 120 needs to be arranged at a position where it is projected onto the hologram recording medium 30.
  • it is effective to arrange the optical element so that the light modulated by the phase modulation element 120 passes through, for example, a 4f lens system.
  • FIG. 2 is a schematic diagram of hologram recording.
  • FIG. 2A shows a state where multiple recording of holograms is performed.
  • a plurality of pages are angled in the same recording area.
  • Multiplex recording Note that an aggregate of a plurality of pages recorded in the same recording area as a book is a book, and the direction in which the incident angle of the reference light with respect to the recording medium is changed when a predetermined book is recorded is the angle scanning direction.
  • FIG. 2B shows the recording positions of a plurality of books.
  • the book 300 which is an aggregate of a plurality of pages recorded in a predetermined recording area, is recorded, as shown in FIG.
  • a plurality of pages are similarly recorded by angle multiplexing and newly recorded as book 300A, book 300B,..., Book 300E.
  • the interval between adjacent books is A, and recording is performed so that a plurality of books are spread.
  • the arrangement of the book shown in FIG. 2B is such that the waist portions 400 of the adjacent books do not overlap each other, but this embodiment is not limited to this, and in order to achieve higher density. , It is possible to record the book closely packed so that the waist of adjacent books overlap.
  • the phase modulation element 120 uses the reference light.
  • a predetermined phase distribution is periodically superimposed on.
  • FIG. 3 shows a schematic diagram of the phase distribution given to the reference light by the phase modulation element 120 in this embodiment.
  • the phase modulation element 120 is arranged at intervals of a period A in a predetermined direction (x-axis in the figure) in a plane perpendicular to the optical axis (in the xy plane in the figure). It plays the role of periodically giving the phase difference ⁇ .
  • the x axis in FIG. 3 corresponds to the angle scanning direction of the reference light.
  • phase distribution is superimposed on the reference light transmitted through the phase modulation element 120, and an area having a phase difference of zero with respect to a predetermined phase as a reference in the light beam plane of the reference light A region of phase difference ⁇ is generated. Therefore, this embodiment can be applied not only to the binary amplitude recording but also to the phase multi-level recording technique being studied for the purpose of further increasing the capacity.
  • the period of the phase distribution of the reference light projected on the surface of the hologram recording medium 30 is determined by the incident angle of the reference light 160 with respect to the hologram recording medium and the optical magnification of the scanner lens 118, etc., and the period is shown in FIG. As defined in FIG.
  • the phase modulation element 120 is not limited to the stepped phase distribution.
  • FIG. 4 is a configuration example of the phase modulation element 120 that superimposes a phase distribution that adds a phase difference ⁇ in a sine wave shape. Even in the case of a sine wave shape, an area having a phase difference of zero and an area having a phase difference of ⁇ can be generated with respect to a predetermined phase. Therefore, the cancellation effect of the reproduction light amplitude, which is a feature of this embodiment described later, is expected. Is done. Since the sinusoidal phase distribution does not have a high-frequency component wavefront compared to the stepped phase distribution, unnecessary angular components and intensity distributions of the reference light generated in the process in which the reference light propagates through the hologram recording medium 30 are obtained. The occurrence of high-frequency fluctuations can be suppressed, and the playback quality is improved.
  • FIG. 5 is a block diagram of the hologram recording / reproducing optical system 12 in this embodiment, and shows a state during hologram reproduction.
  • the light beam emitted from the laser light source 101 is transmitted through the collimator lens 102 and reflected by the polarizing element 135.
  • the light beam that has passed through the shutter unit 130 is directed to the half-wave plate 104, converted into a light beam in which the P-polarized component and the S-polarized component have a predetermined light amount ratio, and is incident on the polarizing element 105.
  • the S-polarized light beam reflected by the polarizing element 105 is converted to P-polarized light by the half-wave plate 114, reflected by the total reflection mirror 115 and the total reflection mirror 116, and applied to the phase modulation element 120.
  • the phase pattern of the reference light is modulated by the phase modulation element 120 into a phase pattern as shown in FIG. Thereafter, the reference light passes through the relay lens 119, reflects off the galvanometer mirror 117, and irradiates the hologram recording medium 30 via the scanner lens 118.
  • the reference light transmitted through the hologram recording medium 30 is reflected at a predetermined reflection angle by the angle-adjustable galvanometer mirror 121 having a wavelength plate function, and is incident again on the hologram recording medium 30 as S-polarized reproduction reference light.
  • the reflectance is generally higher for S-polarized light than for P-polarized light
  • reproduction with S-polarized light allows the surface reflected light of the reference light in the hologram recording medium 30 to be incident on the two-dimensional light detection element. Can be reduced.
  • the reproduction reference light is diffracted by the hologram recorded on the hologram recording medium 30, passes through the objective lens 113, the relay lens 111, the spatial filter 112, and the polarization element 109 as reproduction light and enters the two-dimensional light detection element 122.
  • the two-dimensional light detection element 122 outputs a signal corresponding to the light intensity of the reproduction light incident on each cell.
  • the galvano mirror 117 and the galvano mirror 121 are set to angles corresponding to the respective pages, and a predetermined page of a predetermined book is reproduced.
  • phase of the reproduction light corresponds to the phase of the reference light during reproduction.
  • FIG. 6 shows the relationship between the phase of the reference light and the reproduction light.
  • FIG. 6A shows the case where no phase is added to the complex amplitude R of the reference light 160
  • the phase of the reproduction light corresponds to the phase of the reference light at the time of reproduction
  • the complex amplitude of the reproduction light is shown in FIG. 6B with respect to the complex amplitude P of the reproduction light shown in FIG.
  • phase ⁇ is added. Therefore, for example, if reference light having a predetermined phase and a reference light having a phase difference of ⁇ can be simultaneously irradiated to the reference light, it is considered that two reproduction lights having a phase difference of ⁇ are generated.
  • the present embodiment provides a technique for suppressing crosstalk due to reproduction light from an adjacent book by actively utilizing this phenomenon.
  • the adjacent book shown in FIG. 2B is used to suppress the light amount of the reproduction light from the adjacent book without reducing the light amount of the reproduction light from the target book to be reproduced (reproduction target book).
  • FIG. 7 shows the relationship between the phase distribution of the reference light and the phase of the reproduction light at the time of recording and reproduction of the reproduction target book and the adjacent book.
  • FIG. 8 shows the calculation result of the reproduced image of the hologram in this example.
  • FIG. 7A shows the phase distribution of the reference light during recording and reproduction of the reproduction target book, and the phase difference during recording and reproduction.
  • the phase distribution of the reference light when recording a hologram is such that, for example, a phase difference ⁇ is periodically added with a period C in the plane of the hologram recording medium 30 as shown in FIG. It is a phase pattern.
  • the reference light to which the phase difference ⁇ is periodically added with the period C is irradiated in the plane of the hologram recording medium 30 as shown in the middle part of FIG. Therefore, as shown in the lower part of FIG. 7A, the difference in the phase of the reference light applied to the reproduction target book during recording and during reproduction is zero.
  • the phase of the reproduction light corresponds to the phase of the reference light at the time of reproduction. Therefore, when the phase difference between the reference light during recording and reproduction is 0, that is, when the phase of the reference light during recording and reproduction is the same, the reproduction light from the reproduction target book is not canceled and a sufficient amount of light is obtained. It is detected and reproduced by the two-dimensional photodetecting element 122 while keeping it.
  • FIG. 8A shows the calculation result of the reproduction image of the reproduction target book, and shows that the light amount of the reproduction image of the reproduction target book is sufficiently detected.
  • FIG. 7B shows the phase distribution of the reference light when recording the adjacent book, the phase distribution of the reference light irradiated to the adjacent book when reproducing the reproduction target book, and the difference between these phases.
  • the irradiation position is controlled so as to irradiate the reference light to a position suitable for reproduction of the reproduction target book, that is, a position where the reproduction target book is recorded. As shown in the middle row, the adjacent book is irradiated with the reference light that is displaced by the recording interval A.
  • the adjacent book interval A and the phase period C are set so as to satisfy the relationship of (Equation 1), so that the phase difference between the region where the phase difference between recording and reproduction is zero and the phase difference is ⁇ . Are generated at approximately the same rate.
  • FIG. 7C shows an example of the relationship between the phase of the reproduction light from the region where the phase difference between recording and reproduction is zero and the phase of the reproduction light from the region where the phase difference is ⁇ .
  • the reproduction light is reproduced in the region where the phase difference is zero and the phase difference is ⁇ .
  • the reproduced lights that are reproduced cancel each other, and as a result, the amount of reproduced light from the adjacent book can be suppressed.
  • FIG. 8B shows a calculation result of a reproduction image of reproduction light from a predetermined page in the adjacent book.
  • the phase pattern at the time of recording the reference light and the phase pattern at the time of reproduction are the same, so that the reproduction is possible without being suppressed like the reproduction light from the adjacent book. In this way, it is possible to suppress crosstalk due to reproduction light from an adjacent book while allowing reproduction from the reproduction target book.
  • the irradiation area of the reference light 160 in the surface of the hologram recording medium 30 changes according to the incident angle of the reference light with respect to the hologram recording medium 30.
  • the relationship of (Equation 1) is satisfied in the state of a predetermined incident angle, there is a possibility that the relationship of (Equation 1) may not be satisfied if reference light having an incident angle different from that is used.
  • the irradiation area of the reference light projected onto the hologram recording medium 30 does not depend on the incident angle of the reference light and needs to be substantially equal.
  • FIG. 9 shows the result of calculating the quality of the hologram reproduction image with respect to the interval A between adjacent books.
  • the horizontal axis indicates the adjacent book interval A
  • the vertical axis indicates the quality of the hologram reproduction image.
  • the quality of the hologram reproduction image shown on the vertical axis uses SNR (Signal to Noise ratio) defined by (Equation 1), and in (Equation 1), ⁇ on and ⁇ off are two-dimensional pages superimposed on signal light.
  • the average value of the intensity distribution of the on pixel and the off pixel in the data is shown, and ⁇ on and ⁇ off show the standard deviation of the intensity distribution of the on pixel and the off pixel.
  • the interval A between adjacent books is about 350 ⁇ m when phase modulation is not performed, but is narrowed to about 220 ⁇ m when phase modulation is performed. be able to.
  • the phase distribution of the phase modulation element 120 is assumed to have a periodicity of a phase difference ⁇ on a predetermined axis, but the present invention is not limited to a single axis.
  • a pattern having a periodicity of phase difference ⁇ may be used.
  • the waist portion of the book to be recorded on the hologram recording medium 30 can be arranged so as to overlap in two axes, and further higher density can be realized. it can.
  • the phase distribution pattern is not limited to a rectangular shape, and may be a sine wave shape as in FIG.
  • the configuration of the present embodiment by adding a phase difference to the reference light at a period depending on the recording interval, even if the recording interval of the hologram is narrowed, the adjacent book can be reproduced while being reproduced from the reproduction target book. Crosstalk due to reproduction light from the can be suppressed.
  • phase distribution of the phase modulation element 120 is periodic, even when the recording apparatus and the reproducing apparatus are different, the control of the irradiation position of the reference light becomes easy, and compatibility between apparatuses can be maintained. In addition, it is possible to easily manufacture the element, to suppress phase mismatch in device compatibility, and to maintain the stability of reproduction quality.
  • the density can be increased by narrowing the interval between adjacent recording areas to about several tens of ⁇ m.
  • the tolerance of reproduction position control tolerance is maintained by making the phase distribution superimposed on the reference light periodic and making the phase of the phase distribution dependent on the recording interval of the hologram. Is also possible.
  • the phase difference is set to ⁇ . However, if the phase difference is not 0, the amount of reproduction light from the adjacent book can be reduced, and a value other than ⁇ may be used.
  • FIG. 12 is a diagram showing another configuration of the pickup 11 in the present embodiment. In order to avoid duplication of explanation, the difference from FIG. 1 will be described. The difference is that the signal light 1206 and the reference light 1212 enter the hologram recording medium 1 through the same objective lens 1210.
  • the light beam emitted from the light source 1201 passes through the collimating lens 1202 and enters the shutter 1203.
  • the optical element 1204 composed of, for example, a half-wave plate or the like, adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio. After the polarization direction is controlled, the light enters the PBS prism 1205.
  • the light beam transmitted through the PBS prism 1205 enters the spatial light modulator 1208 via the PBS prism 1207.
  • the signal light 1206 to which information is added by the spatial light modulator 1208 is reflected by the PBS prism 1207 and propagates through an angle filter 1209 that passes only a light beam having a predetermined incident angle. Thereafter, the signal light beam is focused on the hologram recording medium 1 by the objective lens 510.
  • the light beam reflected from the PBS prism 1205 functions as reference light 1212, is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 1219, is then reflected by the mirror 1213, and is reflected by the phase modulation element 120. Irradiate.
  • the phase pattern of the reference light is modulated into the phase pattern shown in FIG. 3 or 4 or 10 by the phase modulation element 120, passes through the relay lens 1222, and enters the lens 1215 via the mirror 1214.
  • the lens 1215 plays a role of condensing the reference light 1212 on the back focus surface of the objective lens 1210, and the reference light once condensed on the back focus surface of the objective lens 1210 becomes parallel light again by the objective lens 1210. Is incident on the hologram recording medium 1.
  • the objective lens 1210 or the optical block 1221 can be driven, for example, in the direction indicated by reference numeral 1220.
  • the objective lens 1210 and the objective lens can be driven. Since the relative positional relationship of the condensing points on the back focus surface 1210 changes, the incident angle of the reference light incident on the hologram recording medium 1 can be set to a desired angle.
  • the incident angle of the reference light may be set to a desired angle by driving the mirror 1214 with an actuator.
  • the reference light When reproducing the recorded information, the reference light is incident on the hologram recording medium 1 as described above, and the light beam transmitted through the hologram recording medium 1 is reflected by the galvanometer mirror 1216, so that the reproduction reference light is reflected. Generate.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 1210 and the angle filter 1209. Thereafter, the reproduction light passes through the PBS prism 1207 and enters the photodetector 1218, and the recorded signal can be reproduced.
  • the optical system shown in FIG. 12 has an advantage that it can be reduced in size as compared with the optical system configuration shown in FIG. 1 by making the signal light and the reference light incident on the same objective lens.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • DESCRIPTION OF SYMBOLS 10 ... Hologram recording / reproducing apparatus, 11 ... Drive control part, 12 ... Hologram recording / reproducing optical system, DESCRIPTION OF SYMBOLS 13 ... Cure optical system, 14 ... Optical system control part, 15 ... Access mechanism, 16 ... Access control part, 17 ... Recording information processing unit, 18 ... Reproduction information processing unit, 19 ... Input / output unit, 30 ... Hologram recording medium, 71 ... Library controller, 101 ... Laser light source, 102 ... collimating lens, 104 ... half-wave plate, 130 ... shutter part, 135: Polarizing element, 150: Signal light, 160: Reference light, 300: Book

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

Although it is effective to lay books to the extent that the beam waists of adjacent holograms overlap each other to achieve high density, the beam waists cannot be made to overlap each other since the signals from the adjacent holograms cannot be separated. The present invention provides a hologram recording and reproducing device that records a hologram including two-dimensional page data information or reproduces the recorded page data information, said hologram recording and reproducing device including: a light source for emitting a light beam; a beam splitter for separating the light beam into reference light and signal light; a phase modulation unit for periodically modulating the phase of the reference light within the plane of the reference light beam; and an angle scanning unit for scanning and changing the incident angle of the phase-modulated reference light relative to the optical information recording medium. The period of phase modulation for the reference light depends on the recording interval of the hologram.

Description

光ディスク記録再生装置Optical disc recording / reproducing apparatus
 本発明は、ホログラフィを利用して光情報を記録または再生する装置に関する。 The present invention relates to an apparatus for recording or reproducing optical information using holography.
 次世代の光ストレージ技術に関する研究が行われる中、ホログラフィを利用してデジタル情報を記録するホログラム記録技術が注目を集めている。ホログラフィックメモリの記録密度を増大させる方法として、例えば特許文献1には、「ホログラムを書き込む信号光のビームウエストに等しい量が、ホログラムの個々のスタックを分離する。再現時に、あるホログラムとそのホログラムに隣接するホログラムとは、全て同時に読み出される。再現されたデータのビームウエストにフィルタが配置されることにより、読み出された隣接するホログラムは、カメラ面まで伝達されない。もしくは、これらの所望ではない再現は、制限された角度パスバンドを有する光学系においては、中間面の角度フィルタによってフィルタリングされ得る。」との記載がある。 While research on next-generation optical storage technology is underway, hologram recording technology that records digital information using holography is attracting attention. As a method for increasing the recording density of a holographic memory, for example, Patent Document 1 discloses that an amount equal to the beam waist of signal light for writing a hologram separates individual stacks of holograms. All the holograms adjacent to are read out simultaneously, and the adjacent holograms read out are not transmitted to the camera surface by arranging the filter at the beam waist of the reproduced data, or these are not desired. The reproduction can be filtered by an angular filter in the middle plane in an optical system with a limited angular passband. "
 また、特許文献2には「参照光偏向手段6Aは、角度回転装置6Bに搭載され、角度回転装置6Bが微小角度ずつ参照光偏向手段6Aを回転駆動することにより、角度多重記録が可能となる。参照光偏向手段6Aとして平面ミラーを用い、その表面に、参照光位相変更手段20としてアクリル樹脂ベースの光拡散用塗料を塗布し光拡散層を形成する。この光拡散層は、ミラーから反射した参照光の波面をランダム状とし、位置シフト選択性を高める」、また、「参照光偏向手段6Aに参照光位相変更手段20を付設し、参照光を偏向させる際に、参照光の位相を空間的に変化せしめ、位置シフト選択性を高めることで、大幅な記録密度の向上を図っている。」との記載がある。 Further, Patent Document 2 states that “the reference light deflecting unit 6A is mounted on the angle rotating device 6B, and the angle rotating device 6B rotationally drives the reference light deflecting unit 6A by a minute angle to enable angle multiplex recording. A flat mirror is used as the reference light deflecting means 6A, and a light diffusing layer is formed on the surface by applying an acrylic resin-based light diffusing paint as the reference light phase changing means 20. The light diffusing layer is reflected from the mirror. The wavefront of the reference light is made random, and the position shift selectivity is improved. ”Also,“ the reference light phase changing means 20 is attached to the reference light deflecting means 6A to change the phase of the reference light when deflecting the reference light. The recording density is greatly improved by spatially changing it and increasing the position shift selectivity. "
特開2004-272268号JP 2004-272268 A 特開2007-305218号JP 2007-305218 A
 高密度化を実現するためには、隣り合うホログラムの記録間隔を狭くすることが有効である。特許文献1には再生光のビームウェストに空間フィルタ(ポリトピックフィルタ)を配置し、隣り合うホログラム同士のビームウェストが重ならない間隔で記録することが記載されている。しかしながらこの方法では、隣り合うホログラムのビームウェストが重なる間隔でホログラムを記録した場合に再生対象のホログラムを再生すると、ポリトピックフィルタでは隣り合うホログラムの再生光の漏れ光が遮光出来ず、再生対象のホログラムの再生に影響してしまうため、ホログラムの記録間隔を狭める事ができない。 In order to achieve high density, it is effective to narrow the recording interval between adjacent holograms. Patent Document 1 describes that a spatial filter (polytopic filter) is arranged in the beam waist of the reproduction light and recording is performed at an interval where the beam waists of adjacent holograms do not overlap. However, with this method, if the holograms to be reproduced are reproduced when the holograms are recorded at intervals where the beam waists of adjacent holograms overlap, the polytopic filter cannot block the leakage light of the reproduction light of the adjacent holograms, and Since the hologram reproduction is affected, the recording interval of the hologram cannot be reduced.
 また、特許文献2に示す方法では、参照光に重畳する位相パターンがランダムである。たとえ既知の不規則パターンを用いたとしても、どの装置でも同じパターンで照射するように位置を調整することが難しく、装置間互換が課題となる。 In the method shown in Patent Document 2, the phase pattern superimposed on the reference light is random. Even if a known irregular pattern is used, it is difficult to adjust the position so that any device irradiates with the same pattern, and compatibility between devices becomes a problem.
 そこで、本発明では、装置間互換を保ちつつ、記録密度を向上する技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique for improving recording density while maintaining compatibility between apparatuses.
 上記課題を解決するため、本発明では一例として特許請求の範囲に記載の構成を用いる。その一例を挙げるならば、2次元のページデータ情報を有するホログラムを記録し、または記録されたページデータ情報を再生するホログラム記録再生装置において、光ビームを発射する光源と、前記光ビームを参照光と信号光に分離するビームスプリッタと、前記参照光の光束面内において該参照光の位相を周期的に変調する位相変調部と、前記位相変調された参照光の前記光情報記録媒体に対する入射角度を走査して変化させる角度走査部と、を備え前記参照光の位相変調の周期は、ホログラムの記録間隔に依存することを特徴とするホログラム記録再生装置を用いる。 In order to solve the above problems, the present invention uses the configuration described in the claims as an example. For example, in a hologram recording / reproducing apparatus for recording a hologram having two-dimensional page data information or reproducing the recorded page data information, a light source for emitting a light beam, and the light beam as a reference light A beam splitter that separates the reference light into a signal light, a phase modulation unit that periodically modulates the phase of the reference light in a light beam plane of the reference light, and an incident angle of the phase-modulated reference light with respect to the optical information recording medium The hologram recording / reproducing apparatus is characterized in that the period of the phase modulation of the reference light depends on the recording interval of the hologram.
 本発明によれば、装置間互換を保ちつつ、記録密度を向上することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the recording density can be improved while maintaining compatibility between apparatuses. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
実施例におけるホログラム記録再生光学系のホログラム記録時のブロック図Block diagram of hologram recording / reproducing optical system in embodiment at the time of hologram recording 実施例におけるホログラム多重記録の概略図Schematic diagram of hologram multiplex recording in an embodiment 実施例におけるブックの記録位置を示す概略図Schematic showing the recording position of the book in the embodiment 実施例における位相変調素子が与える位相分布の概略図Schematic of phase distribution given by phase modulation element in embodiment 実施例における位相変調素子が与える位相分布の概略図Schematic of phase distribution given by phase modulation element in embodiment 実施例における位相変調素子が与える位相分布の概略図Schematic of phase distribution given by phase modulation element in embodiment 実施例におけるホログラム記録再生光学系のホログラム再生時のブロック図Block diagram at the time of hologram reproduction of the hologram recording / reproducing optical system in the embodiment 実施例における参照光と再生光の位相の関係を示す概略図Schematic which shows the relationship of the phase of the reference light and reproduction | regeneration light in an Example 実施例における参照光と再生光の位相の関係を示す概略図Schematic which shows the relationship of the phase of the reference light and reproduction | regeneration light in an Example 実施例における再生対象ブックの参照光の位相分布の概略図Schematic diagram of phase distribution of reference light of book to be reproduced in the embodiment 実施例における隣接ブックの参照光の位相分布の概略図Schematic of phase distribution of reference light of adjacent book in embodiment 実施例における再生光の位相の関係の概略図Schematic of phase relationship of reproduction light in the embodiment 実施例における再生対象ブックの再生像の概略図Schematic of a reproduction image of a reproduction target book in the embodiment 実施例における隣接ブックの再生像の概略図Schematic of a reproduction image of an adjacent book in the embodiment 実施例におけるホログラム再生性能を示す概略図Schematic showing the hologram reproduction performance in the example 実施例における位相変調素子が与える位相分布の概略図Schematic of phase distribution given by phase modulation element in embodiment 実施例におけるホログラム記録再生装置の概略図Schematic diagram of hologram recording / reproducing apparatus in an embodiment 実施例におけるホログラム記録再生光学系の別の概略図Another schematic diagram of hologram recording / reproducing optical system in the embodiment
 はじめに、ホログラム記録再生装置の構成を説明する。 First, the configuration of the hologram recording / reproducing apparatus will be described.
 図11は、本実施例におけるホログラム記録再生装置10のブロック図である。本実施例のホログラム記録再生装置10は、ホログラム記録媒体30の着脱が可能であり、ドライブ制御部11と、ホログラム記録再生光学系12と、キュア光学系13と、光学系制御部14と、アクセス機構15と、アクセス制御部16と、記録情報処理部17と、再生情報処理部18と、入出力部19とで構成される。 FIG. 11 is a block diagram of the hologram recording / reproducing apparatus 10 in the present embodiment. In the hologram recording / reproducing apparatus 10 of this embodiment, the hologram recording medium 30 can be attached and detached. The drive control unit 11, the hologram recording / reproducing optical system 12, the cure optical system 13, the optical system control unit 14, and the access The mechanism 15 includes an access control unit 16, a recording information processing unit 17, a reproduction information processing unit 18, and an input / output unit 19.
 ホログラム記録再生装置10は、入出力部20を介して上位のライブラリ制御部71と接続され、ライブラリ制御部71から記録コマンドや再生コマンドなどの各種コマンドとホログラム記録媒体30に記録するデータを受信し、ライブラリ制御部71にコマンドの実行結果とホログラム記録媒体30から再生したデータを送信する。 The hologram recording / reproducing apparatus 10 is connected to the host library control unit 71 via the input / output unit 20 and receives various commands such as a recording command and a reproduction command and data to be recorded on the hologram recording medium 30 from the library control unit 71. The command execution result and the data reproduced from the hologram recording medium 30 are transmitted to the library control unit 71.
 ドライブ制御部11は、ホログラム記録再生装置10の動作全般を制御し、受信した各種コマンドに応じてホログラム記録再生装置10を動作させる。即ち、アクセス制御部16を介してアクセス機構15を動作させてホログラム記録媒体30を所定の位置に位置づけ、記録情報処理部17を介して受信したデータをエンコードして2次元データに変換し、光学系制御部14を介してホログラム記録再生光学系12およびキュア光学系13を動作させてホログラム記録媒体30に2次元データをホログラムとして記録する。2値記録の場合、記録される2次元データは、白(オンピクセル)と黒(オフピクセル)の画素の2次元の配列により構成される。 The drive control unit 11 controls the overall operation of the hologram recording / reproducing apparatus 10 and operates the hologram recording / reproducing apparatus 10 in accordance with various received commands. That is, the access mechanism 15 is operated via the access control unit 16 to position the hologram recording medium 30 at a predetermined position, and the data received via the recording information processing unit 17 is encoded and converted into two-dimensional data. The hologram recording / reproducing optical system 12 and the cure optical system 13 are operated via the system control unit 14 to record two-dimensional data on the hologram recording medium 30 as a hologram. In the case of binary recording, the recorded two-dimensional data is composed of a two-dimensional array of white (on pixel) and black (off pixel) pixels.
 また、ホログラム記録再生光学系12を動作させてホログラム記録媒体30にホログラムとして記録されている2次元データを取得し、再生情報処理部18を介して2次元データをデコードしてデータを再生する。 Further, the hologram recording / reproducing optical system 12 is operated to acquire two-dimensional data recorded as a hologram on the hologram recording medium 30, and the two-dimensional data is decoded via the reproduction information processing unit 18 to reproduce the data.
 アクセス機構15は、装着されたホログラム記録媒体30の任意の領域をホログラム記録再生光学系12およびキュア光学系13に対して所定の位置に位置づけるようにホログラム記録媒体30を移動させる。本実施例におけるホログラム記録媒体30は円板状であり、アクセス機構15はホログラム記録媒体30を円板の中心軸周りに回転させるスピンドルモータと、円板の所定の半径方向に移動させるスライド機構を備えている。また、ホログラム記録媒体30の回転角度を検出するホログラム記録媒体回転角度検出部を備え、ホログラム記録媒体30の回転角度に応じた信号を出力する。 The access mechanism 15 moves the hologram recording medium 30 so that an arbitrary area of the mounted hologram recording medium 30 is positioned at a predetermined position with respect to the hologram recording / reproducing optical system 12 and the cure optical system 13. In this embodiment, the hologram recording medium 30 has a disk shape, and the access mechanism 15 includes a spindle motor that rotates the hologram recording medium 30 around the central axis of the disk and a slide mechanism that moves the disk in a predetermined radial direction. I have. Further, a hologram recording medium rotation angle detection unit that detects the rotation angle of the hologram recording medium 30 is provided, and a signal corresponding to the rotation angle of the hologram recording medium 30 is output.
 アクセス制御部16は、アクセス機構15を制御してドライブ制御部11が指定する位置にホログラム記録媒体30を位置づける。ホログラム記録媒体回転角度検出部の出力信号に基づいてスピンドルモータを駆動してホログラム記録媒体30の回転角度を制御し、また、スライド機構を駆動してホログラム記録媒体30の半径方向位置を制御する。 The access control unit 16 controls the access mechanism 15 to position the hologram recording medium 30 at a position specified by the drive control unit 11. Based on the output signal of the hologram recording medium rotation angle detector, the spindle motor is driven to control the rotation angle of the hologram recording medium 30, and the slide mechanism is driven to control the radial position of the hologram recording medium 30.
 ホログラム記録再生光学系12は、干渉性の高い405nm帯の波長可変なレーザ光源101を備え、空間光変調素子110により2次元データで空間変調された信号光と参照光をホログラム記録媒体30に照射してホログラムを形成することで2次元データを記録する。また、ホログラム記録媒体30に記録されているホログラムに記録時とは反対の方向から参照光を照射することで2次元データを2次元光検出素子122で検出して再生する。 The hologram recording / reproducing optical system 12 includes a laser light source 101 having a highly variable 405 nm band wavelength variable, and irradiates the hologram recording medium 30 with signal light and reference light spatially modulated with two-dimensional data by the spatial light modulator 110. Then, two-dimensional data is recorded by forming a hologram. In addition, the two-dimensional data is detected and reproduced by the two-dimensional light detection element 122 by irradiating the hologram recorded on the hologram recording medium 30 with the reference light from the opposite direction to the time of recording.
 キュア光学系13は、ホログラム記録媒体30に干渉性の低い光束を照射してプリキュアおよびポストキュアを行う。プリキュアとは、信号光と参照光を照射してホログラムを記録する領域を予め感光しやすくする目的で行うホログラム記録処理の前工程である。一方、ポストキュアとは、意図しない感光により記録したホログラムの品質が劣化しないようにホログラムを記録した領域を不活化する目的で行うホログラム記録処理の後工程である。 The cure optical system 13 performs pre-cure and post-cure by irradiating the hologram recording medium 30 with a light beam having low coherence. Precure is a pre-process of hologram recording processing performed for the purpose of easily exposing a region in which a hologram is recorded by irradiating signal light and reference light in advance. On the other hand, post-cure is a post-process of hologram recording processing performed for the purpose of inactivating the area where the hologram is recorded so that the quality of the hologram recorded by unintentional exposure is not deteriorated.
 光学系制御部14は、ホログラム記録再生光学系12とキュア光学系13に搭載されている各デバイスを制御する。ホログラム記録媒体30の所定の位置にホログラムを多重して記録再生するために、ホログラム記録再生光学系12のレーザ光源101を所定の光量で発光するように駆動し、各アクチュエータを駆動して記録モードと再生モードの切り替えおよびホログラム記録媒体30に照射する参照光入射角度の制御を行う。また、プリキュアおよびポストキュアとして適切なエネルギーをホログラム記録媒体30に照射するように、キュア光学系13に搭載されている光源を駆動する。 The optical system control unit 14 controls each device mounted on the hologram recording / reproducing optical system 12 and the cure optical system 13. In order to multiplex and record the hologram at a predetermined position on the hologram recording medium 30, the laser light source 101 of the hologram recording / reproducing optical system 12 is driven to emit light with a predetermined light amount, and each actuator is driven to record the recording mode. The reproduction mode is switched, and the incident angle of the reference light applied to the hologram recording medium 30 is controlled. Further, the light source mounted on the cure optical system 13 is driven so that the hologram recording medium 30 is irradiated with energy suitable for pre-cure and post-cure.
 記録情報処理部17は、上位のライブラリ制御部71から受信したデータを空間光変調素子110に表示する2次元データに変換する。受信したデータを複数のデータ列に分割後、CRC(巡回冗長検査)用のパリティ付加、スクランブル処理、誤り訂正符号の付加を行う。このデータ列をサブページ分の2次元データに変換し、複数のサブページを集めて1ページ分の2次元データを構成し、再生時の画像位置検出や画像歪補正での基準となるマーカーを付加して空間光変調素子110に転送する。 The recording information processing unit 17 converts the data received from the host library control unit 71 into two-dimensional data to be displayed on the spatial light modulator 110. After the received data is divided into a plurality of data strings, parity addition for CRC (Cyclic Redundancy Check), scramble processing, and error correction code addition are performed. This data string is converted into two-dimensional data for sub-pages, a plurality of sub-pages are collected to form two-dimensional data for one page, and a marker serving as a reference in image position detection and image distortion correction at the time of reproduction is set. In addition, it is transferred to the spatial light modulator 110.
 再生情報処理部18は、2次元光検出素子122で検出した画像からデータを再生する。受信した画像データのマーカーを基準に画像位置を検出して画像の歪みを補正し、2値化処理を行い、マーカーを除去して1ページ分の2次元データを取得する。サブページ毎の複数のデータ列に変換し、誤り訂正処理、スクランブル解除、CRCを行い、データを取得する。 The reproduction information processing unit 18 reproduces data from the image detected by the two-dimensional light detection element 122. The image position is detected based on the received marker of the image data to correct the distortion of the image, binarization processing is performed, the marker is removed, and two-dimensional data for one page is acquired. The data is converted into a plurality of data strings for each subpage, and error correction processing, descrambling, and CRC are performed to obtain data.
 図1は、本実施例におけるホログラム記録再生光学系12のブロック図であり、ホログラム記録時の状態を示している。405nm帯の所定の波長に調整可能なレーザ光源101を出射した干渉性の高い光束を、コリメートレンズ102を透過して平行光束に変換し、偏光素子135で反射させてシャッタ部130に導く。 FIG. 1 is a block diagram of the hologram recording / reproducing optical system 12 in this embodiment, and shows a state during hologram recording. A highly coherent light beam emitted from the laser light source 101 that can be adjusted to a predetermined wavelength in the 405 nm band is transmitted through the collimator lens 102 to be converted into a parallel light beam, reflected by the polarizing element 135, and guided to the shutter unit 130.
 記録モードにおいて、シャッタ部130は入射する光束の透過と遮断を切り替えるシャッタとして作用する。シャッタ部130を通過した光束は1/2波長板104に向かう。1/2波長板104はアクチュエータに搭載して光軸周りに回転可能に構成し、所定の角度に回転させることで、入射した光束をP偏光成分とS偏光成分が所定の光量比となる光束に変換し、続く偏光素子105でP偏光とS偏光に分離する。 In the recording mode, the shutter unit 130 functions as a shutter that switches between transmission and blocking of an incident light beam. The light beam that has passed through the shutter unit 130 is directed to the half-wave plate 104. The half-wave plate 104 is mounted on an actuator and is configured to be rotatable around the optical axis. By rotating the half-wave plate 104 at a predetermined angle, the incident light beam has a predetermined light amount ratio between the P-polarized component and the S-polarized component. Then, the light is separated into P-polarized light and S-polarized light by the subsequent polarizing element 105.
 偏光素子105を透過したP偏光の光束を信号光とし、ビームエキスパンダ106で光束径を拡大した後、位相マスク107、リレーレンズ108、偏光素子109を透過させて空間光変調器110に入射させる。所定の2次元データを表示した空間光変調器110を反射させることで信号光を空間的に変調すると共に、空間光変調器110の所定の画素を通過する光の偏光方向をS偏光に変換する。 The P-polarized light beam that has passed through the polarizing element 105 is used as signal light, and the diameter of the light beam is expanded by the beam expander 106, and then transmitted through the phase mask 107, the relay lens 108, and the polarizing element 109 to enter the spatial light modulator 110. . The signal light is spatially modulated by reflecting the spatial light modulator 110 displaying predetermined two-dimensional data, and the polarization direction of the light passing through the predetermined pixel of the spatial light modulator 110 is converted to S-polarized light. .
 2次元データが重畳された信号光を偏光素子109で反射し、リレーレンズ111および空間フィルタ112を透過させて、対物レンズ113によりホログラム記録媒体30に集光する。 The signal light on which the two-dimensional data is superimposed is reflected by the polarizing element 109, transmitted through the relay lens 111 and the spatial filter 112, and condensed on the hologram recording medium 30 by the objective lens 113.
 一方、偏光素子105を反射したS偏光の光束を参照光とし、1/2波長板114で所定の偏光方向に変換し、全反射ミラー115、全反射ミラー116を反射させて、位相変調素子120に照射する。参照光の位相パターンは、位相変調素子120によって後述する位相パターンに変調され、リレーレンズ119を透過し、ガルバノミラー117を反射させて、スキャナーレンズ118を介してホログラム記録媒体30に照射する。 On the other hand, the S-polarized light beam reflected from the polarizing element 105 is used as reference light, converted into a predetermined polarization direction by the half-wave plate 114, reflected by the total reflection mirror 115 and the total reflection mirror 116, and the phase modulation element 120. Irradiate. The phase pattern of the reference light is modulated into a phase pattern described later by the phase modulation element 120, passes through the relay lens 119, reflects the galvano mirror 117, and irradiates the hologram recording medium 30 through the scanner lens 118.
 ガルバノミラー117はアクチュエータにより反射角度の変更が可能な構成とし、ガルバノミラー117の反射角度を制御することで、ホログラム記録媒体30に照射する参照光の入射角度を所定の角度とする。信号光150と参照光160とが互いにホログラム記録媒体30の中で重なるように照射し、ホログラム記録媒体30に干渉によるホログラムを形成し、信号光に重畳した2次元データ(ページ)を記録する。ここで記録時における信号光と参照光の偏光方向は、干渉の変調度を高めるため、共にS偏光として媒体に入射する構成とする。 The galvanometer mirror 117 is configured such that the reflection angle can be changed by an actuator, and by controlling the reflection angle of the galvanometer mirror 117, the incident angle of the reference light applied to the hologram recording medium 30 is set to a predetermined angle. The signal light 150 and the reference light 160 are irradiated so as to overlap each other in the hologram recording medium 30, a hologram is formed on the hologram recording medium 30 by interference, and two-dimensional data (page) superimposed on the signal light is recorded. Here, the polarization directions of the signal light and the reference light at the time of recording are both configured to be incident on the medium as S-polarized light in order to increase the degree of modulation of interference.
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同じ領域に角度多重されたページの集合をブックと呼ぶことにする。 Hereinafter, in holograms recorded in the same area with different reference beam angles, holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
 なお、位相変調素子120の位置は図示した配置に限られないが、位相変調素子120で重畳した位相分布がホログラム記録媒体30に投影される位置に配置される必要がある。投影する方法としては、位相変調素子120で変調された光が、例えば4f系のレンズシステムを通るように光学素子を配置することが有効である。 Note that the position of the phase modulation element 120 is not limited to the illustrated arrangement, but the phase distribution superimposed on the phase modulation element 120 needs to be arranged at a position where it is projected onto the hologram recording medium 30. As a projection method, it is effective to arrange the optical element so that the light modulated by the phase modulation element 120 passes through, for example, a 4f lens system.
 図2は、ホログラム記録の概略図である。図2(a)はホログラムを多重記録する様子を示しており、参照光の異なる入射角度200A、200B、200C、と逐次的に参照光を照射することにより、同一記録エリアに複数のページを角度多重して記録する。なお、同一記録エリアに多重記録した複数ページの集合体をブックとし、所定のブックを記録する際に記録媒体に対する参照光の入射角度を変化させる方向を角度走査方向とする。 FIG. 2 is a schematic diagram of hologram recording. FIG. 2A shows a state where multiple recording of holograms is performed. By sequentially irradiating the reference light with different incident angles 200A, 200B, and 200C of the reference light, a plurality of pages are angled in the same recording area. Multiplex recording. Note that an aggregate of a plurality of pages recorded in the same recording area as a book is a book, and the direction in which the incident angle of the reference light with respect to the recording medium is changed when a predetermined book is recorded is the angle scanning direction.
 図2(b)は、複数ブックの記録位置を示しており、所定の記録エリアに多重記録した複数ページの集合体であるブック300を記録した後は、図2(b)に示すように別の記録エリアに移動して、再度、同様に角度多重で複数ページを記録し、新たにブック300A、ブック300B、・・・、ブック300Eと記録する。本実施例では隣接ブックの間隔をAとして、複数ブックを敷き詰めるように記録する。 FIG. 2B shows the recording positions of a plurality of books. After the book 300, which is an aggregate of a plurality of pages recorded in a predetermined recording area, is recorded, as shown in FIG. In the same manner, a plurality of pages are similarly recorded by angle multiplexing and newly recorded as book 300A, book 300B,..., Book 300E. In this embodiment, the interval between adjacent books is A, and recording is performed so that a plurality of books are spread.
 なお、図2(b)に示したブックの配置は、隣接ブックのウェスト部400が互いに重ならない状態となっているが、本実施例はこれに限定されず、高密度化を実現するために、隣接するブック同士のウェスト部が重なる様に密にブックを敷き詰めて記録する事を可能としている。 The arrangement of the book shown in FIG. 2B is such that the waist portions 400 of the adjacent books do not overlap each other, but this embodiment is not limited to this, and in order to achieve higher density. , It is possible to record the book closely packed so that the waist of adjacent books overlap.
 そこで本実施例では、記録したホログラムを再生する際に、ウェスト部が重なった隣接ブックから再生される光の漏れ光の発生(以降、クロストーク)を除去するため、位相変調素子120によって参照光に周期的に所定の位相分布を重畳させる。 Therefore, in this embodiment, when reproducing the recorded hologram, in order to remove the occurrence of leakage light (hereinafter referred to as crosstalk) of light reproduced from the adjacent book with overlapping waist portions, the phase modulation element 120 uses the reference light. A predetermined phase distribution is periodically superimposed on.
 図3は、本実施例における位相変調素子120が参照光に与える位相分布の概略図を示す。位相変調素子120は、例えば図3(a)に示すように、光軸に垂直な面内(図中のxy面内)において、所定の方向(図中のx軸)に周期Aの間隔で周期的に位相差πを与える役割を果たす。なお、本実施例では、図3のx軸は参照光の角度走査方向と対応する。 FIG. 3 shows a schematic diagram of the phase distribution given to the reference light by the phase modulation element 120 in this embodiment. For example, as shown in FIG. 3A, the phase modulation element 120 is arranged at intervals of a period A in a predetermined direction (x-axis in the figure) in a plane perpendicular to the optical axis (in the xy plane in the figure). It plays the role of periodically giving the phase difference π. In this embodiment, the x axis in FIG. 3 corresponds to the angle scanning direction of the reference light.
 この様な位相分布を生成する事で、位相変調素子120を透過した参照光には位相分布が重畳され、参照光の光束面内において基準となる所定の位相に対して位相差ゼロの領域と、位相差πの領域が生成される。よって、本実施例は振幅二値記録に限らず、更なる大容量化を目指すために検討されている位相多値記録技術にも適用できる。 By generating such a phase distribution, the phase distribution is superimposed on the reference light transmitted through the phase modulation element 120, and an area having a phase difference of zero with respect to a predetermined phase as a reference in the light beam plane of the reference light A region of phase difference π is generated. Therefore, this embodiment can be applied not only to the binary amplitude recording but also to the phase multi-level recording technique being studied for the purpose of further increasing the capacity.
 ホログラム記録媒体30の面内に投影される参照光の位相分布の周期は、ホログラム記録媒体に対する参照光160の入射角度やスキャナーレンズ118等の光学倍率によって決定され、その周期を図3(b)に示すように周期Cと定義する。なお位相変調素子120は階段状の位相分布に限定されない。 The period of the phase distribution of the reference light projected on the surface of the hologram recording medium 30 is determined by the incident angle of the reference light 160 with respect to the hologram recording medium and the optical magnification of the scanner lens 118, etc., and the period is shown in FIG. As defined in FIG. The phase modulation element 120 is not limited to the stepped phase distribution.
 図4は、位相差πを正弦波状に付加するような位相分布を重畳する位相変調素子120の構成例である。正弦波状の場合においても、所定の位相に対して位相差ゼロの領域と位相差πの領域を生成する事ができるため、後述する本実施例の特徴である再生光振幅の打消し効果が期待される。なお、正弦波状の位相分布は階段状の位相分布と比較すると、高周波成分の波面が無いため、参照光がホログラム記録媒体30を伝播する過程で発生する参照光の不要な角度成分や強度分布の高周波ゆらぎの発生を抑制でき、再生品質が向上する。 FIG. 4 is a configuration example of the phase modulation element 120 that superimposes a phase distribution that adds a phase difference π in a sine wave shape. Even in the case of a sine wave shape, an area having a phase difference of zero and an area having a phase difference of π can be generated with respect to a predetermined phase. Therefore, the cancellation effect of the reproduction light amplitude, which is a feature of this embodiment described later, is expected. Is done. Since the sinusoidal phase distribution does not have a high-frequency component wavefront compared to the stepped phase distribution, unnecessary angular components and intensity distributions of the reference light generated in the process in which the reference light propagates through the hologram recording medium 30 are obtained. The occurrence of high-frequency fluctuations can be suppressed, and the playback quality is improved.
 図5は、本実施例におけるホログラム記録再生光学系12のブロック図であり、ホログラム再生時の状態を示す。レーザ光源101を出射した光束はコリメートレンズ102を透過して偏光素子135を反射する。シャッタ部130を通過した光束は1/2波長板104に向かい、P偏光成分とS偏光成分が所定の光量比となる光束に変換され、偏光素子105に入射する。偏光素子105で反射されたS偏光の光束を1/2波長板114でP偏光に変換し、全反射ミラー115、全反射ミラー116を反射させて、位相変調素子120に照射する。 FIG. 5 is a block diagram of the hologram recording / reproducing optical system 12 in this embodiment, and shows a state during hologram reproduction. The light beam emitted from the laser light source 101 is transmitted through the collimator lens 102 and reflected by the polarizing element 135. The light beam that has passed through the shutter unit 130 is directed to the half-wave plate 104, converted into a light beam in which the P-polarized component and the S-polarized component have a predetermined light amount ratio, and is incident on the polarizing element 105. The S-polarized light beam reflected by the polarizing element 105 is converted to P-polarized light by the half-wave plate 114, reflected by the total reflection mirror 115 and the total reflection mirror 116, and applied to the phase modulation element 120.
 参照光の位相パターンは、位相変調素子120によって記録時と同様に図3(a)に示したような位相パターンに変調される。その後、参照光はリレーレンズ119を透過し、ガルバノミラー117を反射し、スキャナーレンズ118を介してホログラム記録媒体30に照射する。ホログラム記録媒体30を透過した参照光を波長板機能を有する、角度調整が可能なガルバノミラー121で所定の反射角度で反射し、S偏光の再生用参照光として再びホログラム記録媒体30に入射させる。S偏光で再生する事で、結合波理論に基づく結合効率を高める事ができ、再生光強度が向上する。また、一般的に反射率はP偏光よりもS偏光の方が高いため、S偏光で再生することで、ホログラム記録媒体30における参照光の表面反射光が2次元光検出素子に入射する光量を低減できる。 The phase pattern of the reference light is modulated by the phase modulation element 120 into a phase pattern as shown in FIG. Thereafter, the reference light passes through the relay lens 119, reflects off the galvanometer mirror 117, and irradiates the hologram recording medium 30 via the scanner lens 118. The reference light transmitted through the hologram recording medium 30 is reflected at a predetermined reflection angle by the angle-adjustable galvanometer mirror 121 having a wavelength plate function, and is incident again on the hologram recording medium 30 as S-polarized reproduction reference light. By reproducing with S-polarized light, the coupling efficiency based on the coupled wave theory can be increased, and the reproduction light intensity is improved. Also, since the reflectance is generally higher for S-polarized light than for P-polarized light, reproduction with S-polarized light allows the surface reflected light of the reference light in the hologram recording medium 30 to be incident on the two-dimensional light detection element. Can be reduced.
 再生用参照光はホログラム記録媒体30に記録したホログラムで回折し、再生光として対物レンズ113、リレーレンズ111、空間フィルタ112、偏光素子109を透過し、2次元光検出素子122に入射する。2次元光検出素子122は各セルに入射した再生光の光強度に応じた信号を出力する。ガルバノミラー117とガルバノミラー121を各ページに対応した角度に設定し、所定のブックの所定のページを再生する。 The reproduction reference light is diffracted by the hologram recorded on the hologram recording medium 30, passes through the objective lens 113, the relay lens 111, the spatial filter 112, and the polarization element 109 as reproduction light and enters the two-dimensional light detection element 122. The two-dimensional light detection element 122 outputs a signal corresponding to the light intensity of the reproduction light incident on each cell. The galvano mirror 117 and the galvano mirror 121 are set to angles corresponding to the respective pages, and a predetermined page of a predetermined book is reproduced.
 ここで、再生光の位相は、再生時の参照光の位相と対応する点に着目する。図6は、参照光と再生光の位相の関係を示しており、図6(a)は、参照光160の複素振幅Rに対して位相が付加されていない場合、図6(b)は、参照光160の複素振幅Rに対して位相πを付加した場合を示す。再生光の位相は再生時の参照光の位相と対応しており、再生光の複素振幅には、図6(a)に示す再生光の複素振幅Pに対して、図6(b)に示すように位相πが付加される。ゆえに、例えば所定の位相を有する参照光と共に、該参照光に対して位相差πの参照光を同時に照射する事ができれば、互いに位相差πの2つの再生光が生成すると考えられる。 Note that the phase of the reproduction light corresponds to the phase of the reference light during reproduction. FIG. 6 shows the relationship between the phase of the reference light and the reproduction light. FIG. 6A shows the case where no phase is added to the complex amplitude R of the reference light 160, and FIG. A case where a phase π is added to the complex amplitude R of the reference beam 160 is shown. The phase of the reproduction light corresponds to the phase of the reference light at the time of reproduction, and the complex amplitude of the reproduction light is shown in FIG. 6B with respect to the complex amplitude P of the reproduction light shown in FIG. Thus, phase π is added. Therefore, for example, if reference light having a predetermined phase and a reference light having a phase difference of π can be simultaneously irradiated to the reference light, it is considered that two reproduction lights having a phase difference of π are generated.
 互いに位相差πの2つの再生光の合成は、P+P・exp(jπ)=0となって振幅が互いに打ち消しあうため、再生光が消滅する。本実施例では、本現象を積極的に利用する事で、隣接ブックからの再生光によるクロストークを抑制する技術を提供する。 In the synthesis of two reproduction lights having a phase difference of π, the amplitudes cancel each other because P + P · exp (jπ) = 0, and the reproduction light disappears. The present embodiment provides a technique for suppressing crosstalk due to reproduction light from an adjacent book by actively utilizing this phenomenon.
 再生したい対象のブック(再生対象ブック)からの再生光の光量を低下する事無く、隣接するブックからの再生光の光量を抑制するため、本実施例では図2(b)に示した隣接ブックの間隔Aと、図3(b)に示した参照光の位相分布の周期Cとの関係が(式1)に示す関係式となる様に、位相変調素子120の位相分布の周期Bを設定する。
  (式1) C=4×A
なお、リレーレンズ118、119の光学倍率を1.0倍と仮定すると、図3(a)に示す周期Bと図3(b)に示す周期Cの関係は、ホログラム記録媒体30への入射角度θに応じて(式2)に示すように変化する。
  (式2) B=C×cosθ
 よって、位相変調素子120の位相分布の周期Bは、入射角度θに応じて動的に制御可能である事が望ましい。例えば、液晶を用いた空間光変調器等を位相変調素子120として用いる事で動的制御が可能となる。また、例えば特開2014-203500号に記載されているので詳細な説明は省略するが、例えばガルバノミラー117の代わりにウェッジプリズムを用いる事で、入射角θに応じて参照光の光束径を変化させる事ができるため、ウェッジプリズムの頂角を適切に設定する事で、周期Bと周期Cの関係が入射角度θに依存しない関係とする事も可能であり、この場合は位相変調素子120の位相分布を固定パターンとすることが可能である。
In this embodiment, the adjacent book shown in FIG. 2B is used to suppress the light amount of the reproduction light from the adjacent book without reducing the light amount of the reproduction light from the target book to be reproduced (reproduction target book). The period B of the phase distribution of the phase modulation element 120 is set so that the relationship between the interval A of FIG. 3 and the period C of the phase distribution of the reference light shown in FIG. To do.
(Formula 1) C = 4 × A
Assuming that the optical magnification of the relay lenses 118 and 119 is 1.0, the relationship between the period B shown in FIG. 3A and the period C shown in FIG. It changes as shown in (Formula 2) according to θ.
(Formula 2) B = C × cos θ
Therefore, it is desirable that the period B of the phase distribution of the phase modulation element 120 can be dynamically controlled according to the incident angle θ. For example, dynamic control becomes possible by using a spatial light modulator or the like using liquid crystal as the phase modulation element 120. Although detailed description is omitted because it is described in, for example, Japanese Patent Application Laid-Open No. 2014-203500, for example, by using a wedge prism instead of the galvanometer mirror 117, the beam diameter of the reference light is changed according to the incident angle θ. Therefore, the relationship between the period B and the period C can be made independent of the incident angle θ by appropriately setting the apex angle of the wedge prism. The phase distribution can be a fixed pattern.
 ここで、図3(a)に示す位相変調素子120を用いてホログラムを記録再生した場合の効果について検討する。記録されたホログラムを再生する時、再生対象ブックの隣に記録されている隣接ブックからの再生光によるクロストークを抑制する様子を、図7、図8を用いて説明する。図7は、再生対象ブックと隣接ブックの記録時、再生時の参照光の位相分布と、再生光の位相の関係を示す。図8は、本実施例におけるホログラムの再生像の計算結果である。 Here, the effect when the hologram is recorded and reproduced using the phase modulation element 120 shown in FIG. The manner in which crosstalk due to reproduction light from the adjacent book recorded next to the reproduction target book is suppressed when reproducing the recorded hologram will be described with reference to FIGS. FIG. 7 shows the relationship between the phase distribution of the reference light and the phase of the reproduction light at the time of recording and reproduction of the reproduction target book and the adjacent book. FIG. 8 shows the calculation result of the reproduced image of the hologram in this example.
 図7(a)は、再生対象ブックの記録時、再生時の参照光の位相分布と、記録時、再生時の位相の差分を示している。前述したとおり、本実施例ではホログラムを記録する時の参照光の位相分布は、例えば図3に示すようにホログラム記録媒体30の面内において、位相差πが周期Cで周期的に付加された位相パターンである。 FIG. 7A shows the phase distribution of the reference light during recording and reproduction of the reproduction target book, and the phase difference during recording and reproduction. As described above, in this embodiment, the phase distribution of the reference light when recording a hologram is such that, for example, a phase difference π is periodically added with a period C in the plane of the hologram recording medium 30 as shown in FIG. It is a phase pattern.
 再生時においても、図7(a)中段に示すようにホログラム記録媒体30の面内において位相差πが周期Cで周期的に付加された参照光が照射される。そのため、図7(a)下段に示すように、記録時と再生時のそれぞれで再生対象ブックに照射される参照光の位相の差分は0となる。 Also at the time of reproduction, the reference light to which the phase difference π is periodically added with the period C is irradiated in the plane of the hologram recording medium 30 as shown in the middle part of FIG. Therefore, as shown in the lower part of FIG. 7A, the difference in the phase of the reference light applied to the reproduction target book during recording and during reproduction is zero.
 図6で説明したとおり再生光の位相は再生時の参照光の位相と対応する。よって、記録時と再生時の参照光の位相の差分が0、すなわち、記録時と再生時の参照光の位相が同じ場合は再生対象ブックからの再生光は打ち消されることなく、十分な光量を保ったまま2次元光検出素子122で検出され、再生される。図8(a)は、再生対象ブックの再生像の計算結果であり、再生対象ブックの再生像の光量が十分に検出されることを示している。 As described in FIG. 6, the phase of the reproduction light corresponds to the phase of the reference light at the time of reproduction. Therefore, when the phase difference between the reference light during recording and reproduction is 0, that is, when the phase of the reference light during recording and reproduction is the same, the reproduction light from the reproduction target book is not canceled and a sufficient amount of light is obtained. It is detected and reproduced by the two-dimensional photodetecting element 122 while keeping it. FIG. 8A shows the calculation result of the reproduction image of the reproduction target book, and shows that the light amount of the reproduction image of the reproduction target book is sufficiently detected.
 図7(b)は、隣接ブックの記録時における参照光の位相分布と、再生対象ブック再生時に隣接ブックにも照射される参照光の位相分布と、これらの位相の差分を示している。隣接ブックを記録する際は、図7(b)の上段に示すように、隣接ブックの記録位置に参照光の照射位置が調整されたうえで、位相分布が重畳された参照光が照射される。 FIG. 7B shows the phase distribution of the reference light when recording the adjacent book, the phase distribution of the reference light irradiated to the adjacent book when reproducing the reproduction target book, and the difference between these phases. When recording an adjacent book, as shown in the upper part of FIG. 7B, the reference light irradiation position is adjusted at the recording position of the adjacent book, and the reference light on which the phase distribution is superimposed is applied. .
 再生対象ブックの再生時は、再生対象ブックの再生に適した位置、すなわち、再生対象ブックが記録された位置に参照光を照射するように照射位置が制御されているため、図7(b)の中段に示すように隣接ブックには、記録間隔Aの分だけ位置ずれした参照光が照射される事になる。 When the reproduction target book is reproduced, the irradiation position is controlled so as to irradiate the reference light to a position suitable for reproduction of the reproduction target book, that is, a position where the reproduction target book is recorded. As shown in the middle row, the adjacent book is irradiated with the reference light that is displaced by the recording interval A.
 つまり、図7(b)の下段に示すように、隣接ブック記録時における参照光の位相パターンと、再生対象ブック再生時における隣接ブックに照射される参照光の位相パターンとに差分が生じる。また、本実施例では、(式1)の関係を満たす様に隣接ブック間隔Aと位相周期Cを設定しているため、記録時と再生時の位相差がゼロとなる領域と位相差がπとなる領域がほぼ等しい割合で発生する。 That is, as shown in the lower part of FIG. 7B, there is a difference between the phase pattern of the reference light when recording the adjacent book and the phase pattern of the reference light irradiated to the adjacent book when reproducing the reproduction target book. Further, in this embodiment, the adjacent book interval A and the phase period C are set so as to satisfy the relationship of (Equation 1), so that the phase difference between the region where the phase difference between recording and reproduction is zero and the phase difference is π. Are generated at approximately the same rate.
 図7(c)は、記録時と再生時の位相差がゼロとなる領域からの再生光と、位相差がπとなる領域からの再生光の位相の関係の一例を示す。上述の通り、再生光の位相は再生時の参照光の位相と対応するため、図7(c)に示すように位相差がゼロの領域で再生された再生光と位相差がπの領域で再生された再生光が互いに打ち消しあい、その結果、隣接ブックからの再生光の光量を抑制する事ができる。 FIG. 7C shows an example of the relationship between the phase of the reproduction light from the region where the phase difference between recording and reproduction is zero and the phase of the reproduction light from the region where the phase difference is π. As described above, since the phase of the reproduction light corresponds to the phase of the reference light at the time of reproduction, as shown in FIG. 7C, the reproduction light is reproduced in the region where the phase difference is zero and the phase difference is π. The reproduced lights that are reproduced cancel each other, and as a result, the amount of reproduced light from the adjacent book can be suppressed.
 図8(b)は隣接ブック内の所定のページからの再生光の再生像の計算結果を示している。再生対象ブックおよび隣接ブック共に同じ入射角度の参照光で記録しているが、前述した本実施例の構成により、隣接ブックからの再生光の光量は十分に抑制される事になる。 FIG. 8B shows a calculation result of a reproduction image of reproduction light from a predetermined page in the adjacent book. Although both the reproduction target book and the adjacent book are recorded with the reference light having the same incident angle, the light quantity of the reproduction light from the adjacent book is sufficiently suppressed by the configuration of the above-described embodiment.
 再生ブックの立場で考えれば、参照光の記録時の位相パターンと再生時の位相パターンは位相が同じため、隣接ブックからの再生光のように抑制される事無く、再生可能である。このようにして、再生対象ブックからの再生を可能なまま、隣接ブックからの再生光によるクロストークを抑制できる。 From the viewpoint of the reproduction book, the phase pattern at the time of recording the reference light and the phase pattern at the time of reproduction are the same, so that the reproduction is possible without being suppressed like the reproduction light from the adjacent book. In this way, it is possible to suppress crosstalk due to reproduction light from an adjacent book while allowing reproduction from the reproduction target book.
 なお、ホログラム記録媒体30面内における参照光160の照射領域は、ホログラム記録媒体30に対する参照光の入射角度に応じて変化する事が考えられる。例えば所定の入射角度の状態において(式1)の関係を満たす場合、それとは異なる入射角度の参照光を用いると(式1)の関係を満たさない場合が発生する恐れがある。どの様な参照光の入射角度においても、クロストークを抑制するためには、ホログラム記録媒体30に投影した参照光の照射領域が参照光の入射角度に依存せず、ほぼ等しくする必要がある。参照光の入射角度に拠らず、照射領域をほぼ一定にする手段としては、例えばガルバノミラー117の代わりに、ウェッジプリズムを用いた方法等があり、本願ではその様な方法と組み合わせる事で、参照光の入射角度に拠らず、クロストークを抑制する事ができる。 Note that it is conceivable that the irradiation area of the reference light 160 in the surface of the hologram recording medium 30 changes according to the incident angle of the reference light with respect to the hologram recording medium 30. For example, when the relationship of (Equation 1) is satisfied in the state of a predetermined incident angle, there is a possibility that the relationship of (Equation 1) may not be satisfied if reference light having an incident angle different from that is used. In order to suppress crosstalk at any incident angle of the reference light, the irradiation area of the reference light projected onto the hologram recording medium 30 does not depend on the incident angle of the reference light and needs to be substantially equal. As a means for making the irradiation region substantially constant regardless of the incident angle of the reference light, for example, there is a method using a wedge prism instead of the galvanometer mirror 117, and in this application, by combining with such a method, Crosstalk can be suppressed regardless of the incident angle of the reference light.
 図9は、隣接ブックの間隔Aに対して、ホログラム再生像の品質を計算した結果である。横軸を隣接ブック間隔A、縦軸をホログラム再生像の品質としてグラフに纏めている。縦軸に示すホログラム再生像の品質は、(数1)で定義されるSNR(Signal to Noise ratio)を用いており、(数1)においてμonとμoffは信号光に重畳した2次元ページデータ内のオンピクセルとオフピクセルの強度分布の平均値を示し、σonとσoffはオンピクセルとオフピクセルの強度分布の標準偏差を示す。 FIG. 9 shows the result of calculating the quality of the hologram reproduction image with respect to the interval A between adjacent books. The horizontal axis indicates the adjacent book interval A, and the vertical axis indicates the quality of the hologram reproduction image. The quality of the hologram reproduction image shown on the vertical axis uses SNR (Signal to Noise ratio) defined by (Equation 1), and in (Equation 1), μ on and μ off are two-dimensional pages superimposed on signal light. The average value of the intensity distribution of the on pixel and the off pixel in the data is shown, and σ on and σ off show the standard deviation of the intensity distribution of the on pixel and the off pixel.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 従来の様に、位相変調素子120によって参照光を位相変調しない場合は、隣接ブックの間隔Aを小さくするにつれ、隣接ブックからの再生光によるクロストークが大きくなり、再生品質が劣化する。一方、本実施例の様に位相変調素子120によって参照光を位相変調すると、隣接ブックからの再生光によるクロストークが抑制され、隣接ブックの間隔Aを小さくしても、ホログラム再生像の再生品質を保ちつつ、高密度にホログラムを記録する事が可能となる。 In the case where the reference light is not phase-modulated by the phase modulation element 120 as in the prior art, as the interval A between adjacent books is reduced, the crosstalk due to the reproduction light from the adjacent books increases and the reproduction quality deteriorates. On the other hand, when the reference light is phase-modulated by the phase modulation element 120 as in this embodiment, crosstalk due to the reproduction light from the adjacent book is suppressed, and the reproduction quality of the hologram reproduction image is reduced even if the interval A between the adjacent books is reduced. It is possible to record holograms at high density while maintaining the above.
 図9の計算結果に基づくと、SNRの閾値を例えば3.0dB以上に設定した場合、位相変調しない場合は隣接ブックの間隔Aは約350μm程度だが、位相変調した場合は、約220μm程度まで狭めることができる。 Based on the calculation result of FIG. 9, when the SNR threshold is set to, for example, 3.0 dB or more, the interval A between adjacent books is about 350 μm when phase modulation is not performed, but is narrowed to about 220 μm when phase modulation is performed. be able to.
 ところで、位相変調素子120の位相分布は、所定の一軸において位相差πの周期性を有するものとしたが、本発明は一軸に限定するものではなく、例えば図10に示すように二軸において位相差πの周期性を有するパターンであっても良い。この様なパターンを用いる事で、前述した同様の原理により、ホログラム記録媒体30に記録するブックのウェスト部を二軸において重なる様に配置する事ができ、更なる高密度化を実現する事ができる。なお位相分布パターンは矩形状のみならず、図4と同様に正弦波状であっても良い。 By the way, the phase distribution of the phase modulation element 120 is assumed to have a periodicity of a phase difference π on a predetermined axis, but the present invention is not limited to a single axis. For example, as shown in FIG. A pattern having a periodicity of phase difference π may be used. By using such a pattern, according to the same principle as described above, the waist portion of the book to be recorded on the hologram recording medium 30 can be arranged so as to overlap in two axes, and further higher density can be realized. it can. The phase distribution pattern is not limited to a rectangular shape, and may be a sine wave shape as in FIG.
 以上、本実施例の構成により、参照光に記録間隔に依存する周期で位相差を付加することで、ホログラムの記録間隔を狭くしても、再生対象ブックからの再生を可能なまま、隣接ブックからの再生光によるクロストークを抑制できる。 As described above, according to the configuration of the present embodiment, by adding a phase difference to the reference light at a period depending on the recording interval, even if the recording interval of the hologram is narrowed, the adjacent book can be reproduced while being reproduced from the reproduction target book. Crosstalk due to reproduction light from the can be suppressed.
 また、位相変調素子120の位相分布が周期的であるため、記録する装置と再生する装置が異なる場合でも、参照光の照射位置の制御が容易となり、装置間互換を保つことが可能となる。加えて、素子の作製が容易であることと、装置互換において位相の不一致を抑え、再生品質の安定性を保つことも可能である。 In addition, since the phase distribution of the phase modulation element 120 is periodic, even when the recording apparatus and the reproducing apparatus are different, the control of the irradiation position of the reference light becomes easy, and compatibility between apparatuses can be maintained. In addition, it is possible to easily manufacture the element, to suppress phase mismatch in device compatibility, and to maintain the stability of reproduction quality.
 また、参照光に重畳する位相パターンがランダムな場合、隣接記録領域間隔を数十μm程度まで狭くすることで高密度化できる反面、再生時の参照光の照射位置が数μm程度ずれてしまうとホログラム再生像を検出できなくなり、再生位置制御に係わる公差が厳しくなる場合がある。一方、本実施例のように、参照光に重畳する位相分布を周期的とし、位相分布の周期をホログラムの記録間隔に依存する周期とすることで、再生位置制御の公差の許容度を保つことも可能となる。 Further, when the phase pattern superimposed on the reference light is random, the density can be increased by narrowing the interval between adjacent recording areas to about several tens of μm. On the other hand, if the irradiation position of the reference light during reproduction is shifted by about several μm. In some cases, the hologram reproduction image cannot be detected, and the tolerance for reproduction position control becomes severe. On the other hand, as in this embodiment, the tolerance of reproduction position control tolerance is maintained by making the phase distribution superimposed on the reference light periodic and making the phase of the phase distribution dependent on the recording interval of the hologram. Is also possible.
 なお、本実施例では位相差をπとなるようにしたが、位相差が0でなければ隣接ブックからの再生光の光量は低減可能であり、π以外の値でも良い。 In this embodiment, the phase difference is set to π. However, if the phase difference is not 0, the amount of reproduction light from the adjacent book can be reduced, and a value other than π may be used.
 図12は、本実施例におけるピックアップ11の別の構成を示した図である。説明の重複を避けるため図1とは異なる点を説明すると、信号光1206と参照光1212が、同一の対物レンズ1210を通り、ホログラム記録媒体1に入射する点が異なる。 FIG. 12 is a diagram showing another configuration of the pickup 11 in the present embodiment. In order to avoid duplication of explanation, the difference from FIG. 1 will be described. The difference is that the signal light 1206 and the reference light 1212 enter the hologram recording medium 1 through the same objective lens 1210.
 図12において、光源1201を出射した光ビームはコリメートレンズ1202を透過し、シャッタ1203に入射する。シャッタ1203が開いている時は、光ビームはシャッタ1203を通過した後、例えば1/2波長板などで構成される光学素子1204によってp偏光とs偏光の光量比が所望の比になるように偏光方向を制御された後、PBSプリズム1205に入射する。 In FIG. 12, the light beam emitted from the light source 1201 passes through the collimating lens 1202 and enters the shutter 1203. When the shutter 1203 is open, after the light beam passes through the shutter 1203, the optical element 1204 composed of, for example, a half-wave plate or the like, adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio. After the polarization direction is controlled, the light enters the PBS prism 1205.
 PBSプリズム1205を透過した光ビームは、PBSプリズム1207を経由して空間光変調器1208に入射する。空間光変調器1208によって情報を付加された信号光1206はPBSプリズム1207を反射し、所定の入射角度の光ビームのみを通過させるアングルフィルタ1209を伝播する。その後、信号光ビームは対物レンズ510によってホログラム記録媒体1に集光する。 The light beam transmitted through the PBS prism 1205 enters the spatial light modulator 1208 via the PBS prism 1207. The signal light 1206 to which information is added by the spatial light modulator 1208 is reflected by the PBS prism 1207 and propagates through an angle filter 1209 that passes only a light beam having a predetermined incident angle. Thereafter, the signal light beam is focused on the hologram recording medium 1 by the objective lens 510.
 一方、PBSプリズム1205を反射した光ビームは参照光1212として働き、偏光方向変換素子1219によって記録時又は再生時に応じて所定の偏光方向に設定された後、ミラー1213で反射され、位相変調素子120に照射する。参照光の位相パターンは、位相変調素子120によって図3または図4または図10に示す位相パターンに変調され、リレーレンズ1222を透過し、ミラー1214を経由してレンズ1215に入射する。レンズ1215は参照光1212を対物レンズ1210のバックフォーカス面に集光させる役割を果たしており、対物レンズ1210のバックフォーカス面にて一度集光した参照光は、対物レンズ1210によって再度、平行光となってホログラム記録媒体1に入射する。 On the other hand, the light beam reflected from the PBS prism 1205 functions as reference light 1212, is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 1219, is then reflected by the mirror 1213, and is reflected by the phase modulation element 120. Irradiate. The phase pattern of the reference light is modulated into the phase pattern shown in FIG. 3 or 4 or 10 by the phase modulation element 120, passes through the relay lens 1222, and enters the lens 1215 via the mirror 1214. The lens 1215 plays a role of condensing the reference light 1212 on the back focus surface of the objective lens 1210, and the reference light once condensed on the back focus surface of the objective lens 1210 becomes parallel light again by the objective lens 1210. Is incident on the hologram recording medium 1.
 ここで、対物レンズ1210又は光学ブロック1221は、例えば符号1220に示す方向に駆動可能であり、対物レンズ1210又は光学ブロック1221の位置を駆動方向1220に沿ってずらすことにより、対物レンズ1210と対物レンズ1210のバックフォーカス面における集光点の相対位置関係が変化するため、ホログラム記録媒体1に入射する参照光の入射角度を所望の角度に設定することができる。なお、対物レンズ1210又は光学ブロック1221を駆動する代わりに、ミラー1214をアクチュエータにより駆動することで参照光の入射角度を所望の角度に設定しても構わない。 Here, the objective lens 1210 or the optical block 1221 can be driven, for example, in the direction indicated by reference numeral 1220. By shifting the position of the objective lens 1210 or the optical block 1221 along the driving direction 1220, the objective lens 1210 and the objective lens can be driven. Since the relative positional relationship of the condensing points on the back focus surface 1210 changes, the incident angle of the reference light incident on the hologram recording medium 1 can be set to a desired angle. Instead of driving the objective lens 1210 or the optical block 1221, the incident angle of the reference light may be set to a desired angle by driving the mirror 1214 with an actuator.
 このように、信号光と参照光をホログラム記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また対物レンズ1210又は光学ブロック1221の位置を駆動方向1220に沿ってずらすことによって、ホログラム記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。 In this way, by causing the signal light and the reference light to enter the hologram recording medium 1 so as to overlap each other, an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium. . Further, by shifting the position of the objective lens 1210 or the optical block 1221 along the driving direction 1220, the incident angle of the reference light incident on the hologram recording medium 1 can be changed, so that recording by angle multiplexing is possible.
 記録した情報を再生する場合は、前述したように参照光をホログラム記録媒体1に入射し、ホログラム記録媒体1を透過した光ビームをガルバノミラー1216にて反射させることで、その再生用参照光を生成する。この再生用参照光によって再生された再生光は、対物レンズ1210、アングルフィルタ1209を伝播する。その後、再生光はPBSプリズム1207を透過して光検出器1218に入射し、記録した信号を再生することができる。 When reproducing the recorded information, the reference light is incident on the hologram recording medium 1 as described above, and the light beam transmitted through the hologram recording medium 1 is reflected by the galvanometer mirror 1216, so that the reproduction reference light is reflected. Generate. The reproduction light reproduced by the reproduction reference light propagates through the objective lens 1210 and the angle filter 1209. Thereafter, the reproduction light passes through the PBS prism 1207 and enters the photodetector 1218, and the recorded signal can be reproduced.
 図12で示した光学系は、信号光と参照光を同一の対物レンズに入射させる構成とすることで、図1で示した光学系構成に比して、小型化できる利点を有する。 The optical system shown in FIG. 12 has an advantage that it can be reduced in size as compared with the optical system configuration shown in FIG. 1 by making the signal light and the reference light incident on the same objective lens.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
10・・・ホログラム記録再生装置、11・・・ドライブ制御部、12・・・ホログラム記録再生光学系、
13・・・キュア光学系、14・・・光学系制御部、15・・・アクセス機構、16・・・アクセス制御部、
17・・・記録情報処理部、18・・・再生情報処理部、19・・・入出力部、
30・・・ホログラム記録媒体、71・・・ライブラリ制御部、101・・・レーザ光源、
102・・・コリメートレンズ、104・・・1/2波長板、130・・・シャッタ部、
135・・・偏光素子、150・・・信号光、160・・・参照光、300・・・ブック
DESCRIPTION OF SYMBOLS 10 ... Hologram recording / reproducing apparatus, 11 ... Drive control part, 12 ... Hologram recording / reproducing optical system,
DESCRIPTION OF SYMBOLS 13 ... Cure optical system, 14 ... Optical system control part, 15 ... Access mechanism, 16 ... Access control part,
17 ... Recording information processing unit, 18 ... Reproduction information processing unit, 19 ... Input / output unit,
30 ... Hologram recording medium, 71 ... Library controller, 101 ... Laser light source,
102 ... collimating lens, 104 ... half-wave plate, 130 ... shutter part,
135: Polarizing element, 150: Signal light, 160: Reference light, 300: Book

Claims (12)

  1.  2次元のページデータ情報を有するホログラムを記録し、または記録されたページデータ情報を再生するホログラム記録再生装置において、
     光ビームを発射する光源と、
     前記光ビームを参照光と信号光に分離するビームスプリッタと、
     前記参照光の光束面内において該参照光の位相を周期的に変調する位相変調部と、
     前記位相変調された参照光の光情報記録媒体に対する入射角度を走査して変化させる角度走査部と、
    を備え、
     前記参照光の位相変調の周期は、ホログラムの記録間隔に依存することを特徴とするホログラム記録再生装置。
    In a hologram recording / reproducing apparatus for recording a hologram having two-dimensional page data information or reproducing the recorded page data information,
    A light source that emits a light beam;
    A beam splitter for separating the light beam into reference light and signal light;
    A phase modulation unit that periodically modulates the phase of the reference light in the light beam plane of the reference light;
    An angle scanning unit that scans and changes an incident angle of the phase-modulated reference light with respect to the optical information recording medium;
    With
    The hologram recording / reproducing apparatus, wherein the phase modulation period of the reference light depends on a hologram recording interval.
  2.  請求項1記載のホログラム記録再生装置において、
     前記位相変調部は、前記参照光の光束面内において該参照光への位相付加量の差がπとなるように周期的に変調する事を特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The hologram recording / reproducing apparatus, wherein the phase modulation unit periodically modulates the difference in the amount of phase addition to the reference light to be π within the light beam plane of the reference light.
  3.  請求項1記載のホログラム記録再生装置において、
     前記位相変調部は、前記参照光の光束面内において正弦波状または矩形状に位相を変調する事を特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The hologram recording / reproducing apparatus, wherein the phase modulation unit modulates a phase in a sine wave shape or a rectangular shape in a light beam plane of the reference light.
  4.  請求項1記載のホログラム記録再生装置において、
     前記位相変調されて前記光情報記録媒体に照射された参照光の前記位相変調の周期は、ホログラムの記録間隔に対して、略4倍であることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The hologram recording / reproducing apparatus, wherein the phase modulation period of the reference light that has been phase-modulated and applied to the optical information recording medium is approximately four times the hologram recording interval.
  5.  請求項1記載のホログラム記録再生装置において、
     前記位相変調部は、前記参照光の光束面内において該参照光の位相は、前記参照光の走査方向に周期的に変調されることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The hologram recording / reproducing apparatus, wherein the phase modulation unit periodically modulates the phase of the reference light in the scanning direction of the reference light in the light beam plane of the reference light.
  6.  請求項1記載のホログラム記録再生装置において、
     前記位相変調部は、前記参照光の光束面内において該参照光の位相は、前記参照光の走査方向と該走査方向に垂直な方向の2方向のうち少なくとも一方に周期的に変調されることを特徴とするホログラム記録再生装置。
    The hologram recording / reproducing apparatus according to claim 1,
    The phase modulation unit periodically modulates the phase of the reference light in at least one of two directions, ie, a scanning direction of the reference light and a direction perpendicular to the scanning direction, in the light beam plane of the reference light. Hologram recording / reproducing apparatus characterized by the above.
  7.  2次元のページデータ情報を有するホログラムを記録し、または記録されたページデータ情報を再生するホログラム記録再生方法において、
     光ビームを発射するステップと、
     前記光ビームを参照光と信号光に分離する光分離ステップと、
     前記参照光の光束面内において該参照光の位相を周期的に変調する位相変調ステップと、
     前記位相変調された参照光の前記光情報記録媒体に対する入射角度を走査して変化させる角度走査ステップと、
    を備え、
     前記参照光の位相変調の周期は、ホログラムの記録間隔に依存することを特徴とするホログラム記録再生方法。
    In a hologram recording / reproducing method for recording a hologram having two-dimensional page data information or reproducing the recorded page data information,
    Firing a light beam;
    A light separation step of separating the light beam into reference light and signal light;
    A phase modulation step of periodically modulating the phase of the reference light in the light beam plane of the reference light;
    An angle scanning step of scanning and changing an incident angle of the phase-modulated reference light with respect to the optical information recording medium;
    With
    A hologram recording / reproducing method, wherein the phase modulation period of the reference light depends on a hologram recording interval.
  8.  請求項7記載のホログラム記録再生方法において、
     前記位相変調ステップでは、前記参照光の光束面内において該参照光への位相付加量の差がπとなるように周期的に変調する事を特徴とするホログラム記録再生方法。
    The hologram recording / reproducing method according to claim 7,
    In the phase modulation step, the hologram recording / reproducing method is characterized in that modulation is periodically performed so that a difference in phase addition amount to the reference light becomes π in a light beam plane of the reference light.
  9.  請求項7記載のホログラム記録再生方法において、
     前記位相変調ステップでは、前記参照光の光束面内において正弦波状または矩形状に位相を変調する事を特徴とするホログラム記録再生方法。
    The hologram recording / reproducing method according to claim 7,
    In the phase modulation step, a phase is modulated in a sinusoidal shape or a rectangular shape in a light beam plane of the reference light, and the hologram recording / reproducing method is characterized in that:
  10.  請求項7記載のホログラム記録再生方法において、
     前記位相変調されて前記光情報記録媒体に照射された参照光の前記位相変調の周期は、ホログラムの記録間隔に対して、略4倍であることを特徴とするホログラム記録再生方法。
    The hologram recording / reproducing method according to claim 7,
    The hologram recording / reproducing method, wherein the phase modulation period of the reference light that is phase-modulated and applied to the optical information recording medium is approximately four times the hologram recording interval.
  11.  請求項7記載のホログラム記録再生方法において、
     前記位相変調ステップでは、前記参照光の光束面内において該参照光の位相は、前記参照光の走査方向に周期的に変調されることを特徴とするホログラム記録再生方法。
    The hologram recording / reproducing method according to claim 7,
    In the phase modulation step, the phase of the reference light is periodically modulated in the scanning direction of the reference light in the light beam plane of the reference light.
  12.  請求項7記載のホログラム記録再生方法において、
     前記位相変調ステップでは、前記参照光の光束面内において該参照光の位相は、前記参照光の走査方向と該走査方向に垂直な方向の2方向のうち少なくとも一方に周期的に変調されることを特徴とするホログラム記録再生方法。
    The hologram recording / reproducing method according to claim 7,
    In the phase modulation step, the phase of the reference light is periodically modulated in at least one of two directions, ie, a scanning direction of the reference light and a direction perpendicular to the scanning direction, in the light beam plane of the reference light. A method for recording and reproducing holograms.
PCT/JP2015/078705 2015-10-09 2015-10-09 Optical disc recording and reproducing device WO2017061020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078705 WO2017061020A1 (en) 2015-10-09 2015-10-09 Optical disc recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078705 WO2017061020A1 (en) 2015-10-09 2015-10-09 Optical disc recording and reproducing device

Publications (1)

Publication Number Publication Date
WO2017061020A1 true WO2017061020A1 (en) 2017-04-13

Family

ID=58488180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078705 WO2017061020A1 (en) 2015-10-09 2015-10-09 Optical disc recording and reproducing device

Country Status (1)

Country Link
WO (1) WO2017061020A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049336A1 (en) * 2005-10-25 2007-05-03 Fujitsu Limited Hologram recording device
JP2008122565A (en) * 2006-11-10 2008-05-29 Hyogo Prefecture Image recording device and image recording method by holography
JP2008130137A (en) * 2006-11-20 2008-06-05 Sharp Corp Information recording device and information reproducing device
JP2013182653A (en) * 2012-03-05 2013-09-12 Hitachi Consumer Electronics Co Ltd Optical information reproducing device, optical information recording device, and optical information reproducing method
JP2013211066A (en) * 2012-03-30 2013-10-10 Sony Corp Negative type optical recording medium, device and method for manufacturing negative type optical recording medium, recording device, and reproducing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049336A1 (en) * 2005-10-25 2007-05-03 Fujitsu Limited Hologram recording device
JP2008122565A (en) * 2006-11-10 2008-05-29 Hyogo Prefecture Image recording device and image recording method by holography
JP2008130137A (en) * 2006-11-20 2008-06-05 Sharp Corp Information recording device and information reproducing device
JP2013182653A (en) * 2012-03-05 2013-09-12 Hitachi Consumer Electronics Co Ltd Optical information reproducing device, optical information recording device, and optical information reproducing method
JP2013211066A (en) * 2012-03-30 2013-10-10 Sony Corp Negative type optical recording medium, device and method for manufacturing negative type optical recording medium, recording device, and reproducing device

Similar Documents

Publication Publication Date Title
JP5358530B2 (en) Optical information recording / reproducing apparatus and reproducing apparatus
JP5802616B2 (en) Optical information recording / reproducing apparatus and optical information recording / reproducing method
JP2008226434A (en) Optical pickup, optical information recording and reproducing apparatus and method for optically recoridng and reproducing information
JP5487057B2 (en) Playback apparatus and playback method
JP5581111B2 (en) Optical information reproducing apparatus and optical information reproducing method
US9330704B2 (en) Optical information recording device, optical information recording and reproducing device, optical information recording method, optical information recording and reproducing method, and optical element
JP5096191B2 (en) Optical pickup, optical information reproducing apparatus and optical information recording / reproducing apparatus using the same
JP4581841B2 (en) Hologram recording apparatus and hologram recording method
US9081364B2 (en) Optical information recording/reproducing apparatus, optical information recording/reproducing method, and optical information recording medium
JP2008130137A (en) Information recording device and information reproducing device
JP5868494B2 (en) Optical information recording / reproducing apparatus, optical information recording / reproducing method, and reproducing apparatus
JP5557787B2 (en) Optical information reproducing apparatus, optical information recording / reproducing apparatus
WO2017061020A1 (en) Optical disc recording and reproducing device
US9373352B2 (en) Optical information reproduction apparatus and optical information reproduction method
JP2009020134A (en) Hologram element, hologram element fabricating apparatus, hologram element fabricating method and hologram reproducing apparatus
US9728219B2 (en) Optical information reproduction device and optical information reproduction method
US20180267464A1 (en) Hologram recording and reproducing apparatus and hologram recording and reproducing method
JP5298267B2 (en) Optical information reproducing apparatus and reproducing method
WO2016199229A1 (en) Hologram record-playback device
WO2016020994A1 (en) Otical information recording device and optical information reproduction device
JP6078634B2 (en) Optical information reproducing apparatus and optical information recording / reproducing apparatus
JP2012043504A (en) Optical information recording/reproducing device and optical recording/reproducing method
JP2007242145A (en) Information recorder and information reproducing device
WO2016208047A1 (en) Optical phase control device, optical phase control method, optical information recording/playback device, and optical information recording/playback method
JP2008097759A (en) Information recording/reproducing device and information recording/reproducing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP