WO2017060613A1 - Aube comportant un bord de fuite comprenant trois régions de refroidissement distinctes - Google Patents

Aube comportant un bord de fuite comprenant trois régions de refroidissement distinctes Download PDF

Info

Publication number
WO2017060613A1
WO2017060613A1 PCT/FR2016/052548 FR2016052548W WO2017060613A1 WO 2017060613 A1 WO2017060613 A1 WO 2017060613A1 FR 2016052548 W FR2016052548 W FR 2016052548W WO 2017060613 A1 WO2017060613 A1 WO 2017060613A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
slots
downstream
trailing edge
cavity
Prior art date
Application number
PCT/FR2016/052548
Other languages
English (en)
Inventor
Patrice Eneau
Sébastien Serge Francis CONGRATEL
Charlotte Marie Dujol
Philippe Picot
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to GB1805442.9A priority Critical patent/GB2558113B/en
Priority to US15/765,334 priority patent/US10767491B2/en
Publication of WO2017060613A1 publication Critical patent/WO2017060613A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an aircraft engine blade of the turbomachine type, such as for example a turbofan engine or a turboprop turbojet engine.
  • the outside air is admitted into an inlet sleeve 2 to pass through a fan 3 comprising a series of rotating blades before splitting into a central primary flow and a secondary flow surrounding the primary flow.
  • the primary flow is then compressed through a first and a second compression stage 4 and 6, before arriving in a combustion chamber 7, after which it relaxes by passing through a set of turbines 8 before being discharged to the back by generating thrust.
  • the secondary flow is propelled directly backwards by the blower to generate a complementary thrust.
  • This turbine 8 is thus designed and sized to operate in severe conditions of temperature, pressure and fluid flow.
  • Each turbine comprises a succession of stages each comprising a series of vanes carried by the motor shaft, the blades subjected to the most severe conditions being those of the first expansion stages, called high pressure stages.
  • Cooling is ensured by circulating inside the dawn fresh air taken upstream of the combustion and admitted at the bottom of the blade, to walk along an internal circuit of the blade.
  • This circuit typically has a shape called trombone extending over the entire height of the blade, from the leading edge located upstream of the blade to the trailing edge located downstream of the dawn, upstream and downstream with respect to the direction of circulation of the fluid surrounding the blade in use.
  • the cooling air circulating in the blade is evacuated from it by holes through its wall, which also make it possible to create on the outer surface of the blade a film of air colder than the air coming from of burning, to limit the temperature of the dawn.
  • the object of the invention is to provide a blade structure for improving the efficiency of its cooling at the trailing edge of this blade.
  • the subject of the invention is a turbine engine turbine blade such as a turboprop engine or a turbojet engine, this blade comprising a foot carrying a blade extending in a wingspan direction by ending by a top this blade comprising a leading edge and a trailing edge located downstream of the leading edge, this blade comprising a lower surface wall and an extrados wall each connecting the leading edge to the trailing edge the trailing edge having on the intrados side a series of through slots fed with cooling air, characterized in that these slots comprise:
  • first slots which are closest to the foot and which are fed by an inferior cavity of the blade
  • the cooling of the trailing edge can be improved at the top of the blade and at its base, that is to say in the vicinity of his foot.
  • the region of the top of the trailing edge is strongly constrained due in particular to the temperatures which are very high, and the base of the trailing edge is also strongly constrained because it supports all the centrifugal forces applied to the blade in use.
  • the invention also relates to a blade thus defined, comprising a downstream duct for supplying air to the downstream ramp, this downstream duct being connected to the downstream ramp by a series of holes to ensure a calibrated supply of this downstream ramp.
  • the invention also relates to a blade thus defined, in which the lower cavity and the cooling ramp of the intermediate slots extend in the extension of one another in the direction of span of the blade
  • the invention also relates to a blade thus defined, comprising a single first slot and / or a single last slot.
  • the invention also relates to a blade thus defined, wherein the upper cavity is located at the top of the blade being arranged to cool the top.
  • the invention also relates to a blade thus defined, comprising a lateral intrados cavity located between the central duct and the intrados wall of the blade to form a heat shield protecting the central duct.
  • the invention also relates to a blade thus defined, comprising an extrados lateral cavity located between the central duct and the extrados wall of the blade to form a heat shield protecting the central duct.
  • the invention also relates to molding means for the manufacture of a blade thus defined, comprising a core intended to delimit at least a portion of the internal space of the blade during its manufacture by molding.
  • the invention also relates to a turbomachine turbine comprising a blade thus defined.
  • the invention also relates to a turbomachine comprising a turbine thus defined.
  • FIG. 1 is a schematic view of a turbofan engine in longitudinal section
  • Figure 2 is a perspective view of a blade according to the invention.
  • Figure 3 is a perspective view of a set of cores defining the inside of the blade according to the invention during its molding
  • Figure 4 is a cross-sectional view of a set of cores defining the inside of the blade according to a second embodiment of the invention.
  • Figure 5 is a perspective view of a set of cores defining the inside of the blade according to the second embodiment of the invention.
  • Figure 6 is a side view of a core assembly defining the blade according to a variant of the second embodiment of the invention.
  • the blade according to the invention which appears in FIG. 2, being indicated by 11, has a foot P carrying a blade 12 extending in a radial direction EV with respect to its axis of rotation AX.
  • the blade 12 extends from a base or platform by which it is connected to the foot P to a vertex S corresponding to its free end, and it comprises an extrados wall and a lower surface wall 14.
  • the upper surface and the lower surface 14 meet on the one hand at the leading edge 16 of the blade which corresponds to its upstream region AM, and on the other hand at its tapered trailing edge 17 which corresponds to its downstream region AV.
  • the upstream and downstream are in relation to the direction of flow of the fluid surrounding the blade in use.
  • the interior of this blade comprises a central duct 18 downstream of which extends a downstream duct 19 which runs along the central duct 18 in order to calibrate a downstream ramp 21.
  • This downstream ramp 21 In turn, it supplies fresh air with a set of cooling slots 22 for the trailing edge 17.
  • This blade also comprises other parts not shown, such as in particular an upstream duct and / or ramp, situated upstream of the central duct and arranged for provide cooling air at the leading edge.
  • the central duct 18 is extended by an upper cavity 23 for cooling the blade tip.
  • This upper cavity 23 extends from the central or upstream portion to the downstream part of the blade, and it feeds by its downstream portion the last slot 24 for cooling the trailing edge.
  • This last slot 24 is the one that is closest to the sun tip S along the span direction EV.
  • the central duct 18 extends over substantially the entire height of the blade along the span axis EV.
  • the end of the central duct 18 which is located in the region of the top of the blade is connected to an upstream portion of the upper cavity 23 for supplying cooling air to the upper cavity.
  • the central duct 18 and the upper cavity 23 fed by this central duct are defined during the manufacture of the blade by an element E forming part of a core, this core being removed for example by etching when the dawn has been removed. casting.
  • the conduit 19 has a substantially smaller length than the conduit 18, it runs along the conduit 18 and its free end is located vis-à-vis the upper cavity 23. It communicates with the downstream ramp 21 by a series of calibrated holes 26 distributed and regularly spaced along the entire length of the ramp 21 along the span direction EV, and oriented perpendicularly to this direction EV. These communication holes 26 provide a calibrated supply of the ramp 21, so that the air flow is as homogeneous as possible in the different cooling slots of the trailing edge.
  • the downstream duct 19 and the downstream ramp 21 are defined during the manufacture of the blade by a second element E2 constituting another part of the core which is removed after molding the blade by etching.
  • Holes 25 may be made through the upper surface of the suction surface of the blade to evacuate the air circulating in its internal space while forming an outside air film along the intrados to isolate it from the heat. of the flow surrounding the dawn in use.
  • downstream ramp 21 runs along the downstream duct 19 to comprise, like this duct 19, a free end 27 located opposite the upper cavity 23. But this downstream ramp 21 has a length less than the duct 19 along the span direction EV, because it does not start at the base of the blade.
  • the downstream ramp 21 has a lower end 28 which is spaced from the base of the blade, so that this downstream ramp 21 supplies air to the slots 22 of the trailing edge which comprise the second slot starting from the base of the blade and the following until the penultimate slot before reaching the top of the blade.
  • This slot 31 is the first slot of the trailing edge 17, starting from the base of the blade, that is to say the slot of the trailing edge 17 which is closest to the foot P of the 'dawn.
  • downstream ramp 21 extends in the extension of the lower cavity 29, the lower cavity 29 and the ramp 21 both along the downstream conduit 19. But the lower cavity 29 is fed directly with air from the foot P of the blade 11, instead of being fed by the downstream conduit 19, and it feeds only the first cooling slot 31 of the trailing edge 17 of the blade.
  • the lower cavity 29 is also delimited by an element E3 forming another part of the core which is removed by etching at the end of the molding.
  • the blade may be produced by the additive manufacturing process.
  • the air supply of the cooling slots of the trailing edge 17 is provided separately for the first slot 31 and for the last slot 24, respectively by the lower cavity 29 and the upper cavity 23.
  • This supply is provided jointly by the ramp 21 for all the intermediate slots 22 which are located between the first slot 31 and the last slot 24.
  • the slots of the trailing edge 17 can be distinguished into three zones, namely a first zone ZI close to the base comprising only the first slot in the example of the figures, a second intermediate zone Z2 having a series of intermediate slots, and a third zone Z3 corresponding to the vertex and having only the last slot in the example of the figures.
  • These three zones ZI, Z2, Z3 are independently supplied with cooling air, so as to optimize and evenly optimize the cooling of the trailing edge.
  • the first zone ZI comprises not only a first slot as in the example of the figures, but several contiguous first slots which are closest to the foot.
  • the third zone may also comprise not only one last slot as in the example of the figures, but several of the last contiguous slots located at the level of the apex of the blade, that is to say several last slots and not just one as in the example of the figures.
  • the boundary between the first zone ZI and the second zone Z2 is located well below half the height of the blade along the span axis EV.
  • the first slots which correspond to the first zone ZI, extend about twenty percent of the height of the trailing edge along the axis EV starting from the base of the blade, that is to say starting from the platform separating the foot of the blade from the blade.
  • the central duct 18 can be thermally insulated from the intrados and extrados walls of the blade 14 by a lateral cavity. intrados 32 and / or by an extrados lateral cavity 33, as illustrated in Figures 4 and 5.
  • the lateral cavity 32 then has a small thickness extending facing the majority of the surface of the duct 18, so as to form a heat shield: the duct 18 is then separated from the intrados wall by this lateral cavity 32 .
  • the lateral cavity 33 which is of the same type, is similarly a heat shield which is located on the upper surface of the blade, to separate the conduit 18 from the extrados wall.
  • Each lateral cavity 32, 33 is formed in one piece, and it runs along the intrados or extrados with a small thickness. It is delimited by a generally rectangular contour and it extends over most of the height of the blade and over the entire length of the upstream duct along the intrados, extrados or axis AX. Each lateral cavity 32, 33 is supplied with air via the foot of the blade in a direct manner, that is to say independently of the other ducts, cavities or ramps of the blade.
  • the lateral cavities 32, 33 cover only the central duct 18, but their length can also be extended so that they also cover the downstream duct 19 in order to isolate it also from the intrados walls and / or extrados of the dawn.
  • the length of the lateral cavities 32, 33 may also be extended upstream to cover other cavities of the blade.
  • the separate and independent supply ducts 18 and 19 and the cavity 29 can be provided by three separate mouths each collecting air independently at the blade root.
  • This distinct supply can also be provided, as shown schematically in Figure 6, by the same mouth 34, so as to facilitate the manufacture of the blade, located at the blade root and which splits into three separate channels to feed separately the ducts 18, 19 and the cavity 29.
  • the invention makes it possible to optimize the cooling of the trailing edge of a blade of a high pressure stage by favoring the ventilation of the blade tip and the low blade zone without degrading that of the intermediate region of the blade edge. leak.
  • the independent power supply of the first slot (s) makes it possible to better control the cooling of this zone to avoid, in particular, air shear phenomena at the entrance of these slots. It improves the cooling of the trailing edge in the region of the base of the blade which undergoes all the centrifugal forces applied to the blade in use. In practice, this region is prone to the appearance of breakaway primers at the connection fillet with the foot or the platform of the blade.
  • the platform designates the generally flat portion of normal orientation to the span axis located between the blade and the foot.
  • the independent supply of the last slot or slots optimizes the cooling of the trailing edge in the region of the summit where high temperatures give rise to significant constraints. These important constraints can result in burns, oxidation, and loss of material that can be significant.
  • the independent supply of the intermediate slots makes it possible to preserve an adequate level of cooling for the median portion of the trailing edge.
  • the implementation of a calibrated supply of the downstream feed ramp of the intermediate slots makes it possible to homogenize the cooling over the height, while limiting the overheating and the pressure drops.
  • the fact of distinguishing three zones for the cooling of the trailing edge makes it possible to calibrate or regulate more finely the cooling of the various parts of the trailing edge in order to increase the cooling in the critical portions for this edge of leak.
  • the risk of heterogeneous cooling disadvantaging the first slots and the last slots, for example due to internal turbulence, is excluded.
  • the invention thus ensures optimum cooling in all circumstances for the critical parts of the trailing edge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention a pour objet une aube (12) de turbine comprenant un pied (P) portant une pale (11) s'étendant selon une direction d'envergure (EV) en se terminant par un sommet (S), cette pale (11) comprenant un bord d'attaque (16) et un bord de fuite (17) reliés par une paroi d'intrados (14) et une paroi d'extrados, le bord de fuite (17) comportant du côté intrados (14) des fentes (22, 24, 31) de refroidissement. Le bord de fuite (17) comporte : – une ou plusieurs premières fentes (31) proches du pied (P) qui sont alimentées par une cavité inférieure (29); – une ou plusieurs dernières fentes (24) proches du sommet (S) alimentées par une cavité supérieure (23); – des fentes intermédiaires (22) situées entre les premières fentes (31) et les dernières fentes (24) alimentées en air par une rampe aval (21); et en ce que les cavités inférieure (29) et supérieure (23) et la rampe aval (21) sont alimentées distinctement au niveau du pied (P).

Description

AUBE COMPORTANT UN BORD DE FUITE COMPRENANT TROIS REGIONS DE
REFROIDISSEMENT DISTINCTES
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne une aube de moteur d'aéronef de type turbomachine, tel que par exemple un turboréacteur à double flux ou un turbopropulseur à double flux.
ETAT DE LA TECHNIQUE ANTERIEURE
Dans un tel moteur 1, l'air extérieur est admis dans une manche d'entrée 2 pour traverser une soufflante 3 comportant une série de pales rotatives avant de se scinder en un flux primaire central et un flux secondaire entourant le flux primaire.
Le flux primaire est ensuite compressé en traversant un premier et un second étage de compression 4 et 6, avant d'arriver dans une chambre de combustion 7, après quoi il se détend en traversant un ensemble de turbines 8 avant d'être évacué vers l'arrière en générant de la poussée. Le flux secondaire est quant à lui propulsé directement vers l'arrière par la soufflante pour générer une poussée complémentaire.
La détente dans les turbines 8, qui permet d'entraîner le compresseur 4, 6 et la soufflante 3, a lieu à température élevée du fait qu'elle se produit immédiatement après la combustion. Cette turbine 8 est ainsi conçue et dimensionnée pour fonctionner dans des conditions sévères de température, de pression et de débit de fluide.
Chaque turbine comporte une succession d'étages comprenant chacun une série d'aubes portées par l'arbre moteur, les aubes soumises aux conditions les plus sévères étant celles des premiers étages de détente, appelés étages haute pression.
Les besoins accrus en performances conduisent à concevoir des moteurs fonctionnant dans des environnements de plus en plus sévères, ce qui implique d'accroître la tenue en température des aubes haute pression, et par là même de reconsidérer leur refroidissement. Le refroidissement est assuré en faisant circuler à l'intérieur de l'aube de l'air frais prélevé en amont de la combustion et admis en pied d'aube, pour cheminer le long d'un circuit interne de l'aube.
Ce circuit a typiquement une forme dite en trombone en s'étendant sur toute la hauteur de l'aube, depuis le bord d'attaque situé à l'amont de cette aube jusqu'au bord de fuite situé à l'aval de l'aube, l'amont et l'aval s'entendant par rapport au sens de circulation du fluide entourant l'aube en service.
L'air de refroidissement circulant dans l'aube est évacué hors de celle-ci par des perçages traversant sa paroi, qui permettent en outre de créer à la surface externe de l'aube un film d'air plus froid que l'air issu de la combustion, pour limiter la température de l'aube.
Le but de l'invention est de proposer une structure d'aube permettant d'améliorer l'efficacité de son refroidissement au niveau du bord de fuite de cette aube.
EXPOSÉ DE L'INVENTION A cet effet, l'invention a pour objet une aube de turbine de turbomachine telle qu'un turbopropulseur ou un turboréacteur, cette aube comprenant un pied portant une pale s'étendant selon une direction d'envergure en se terminant par un sommet cette pale comprenant un bord d'attaque et un bord de fuite situé en aval du bord d'attaque, cette pale comprenant une paroi d'intrados et une paroi d'extrados reliant chacune le bord d'attaque au bord de fuite le bord de fuite comportant du côté intrados une série de fentes traversantes alimentées avec de l'air de refroidissement, caractérisé en ce que ces fentes comportent :
- une ou plusieurs premières fentes qui sont les plus proches du pied et qui sont alimentées par une cavité inférieure de l'aube ;
- une ou plusieurs dernières fentes qui sont les plus proches du sommet et qui sont alimentées par une cavité supérieure de l'aube ;
- des fentes intermédiaires situées entre les premières fentes et les dernières fentes et qui sont alimentées par une rampe aval de la pale ; et en ce que la cavité inférieure la cavité supérieure et la rampe aval sont alimentées en air de manière distincte au niveau du pied de l'aube
Grâce à cet agencement, le refroidissement du bord de fuite peut être amélioré au niveau du sommet de l'aube et au niveau de sa base, c'est-à-dire au voisinage de son pied. En effet, la région du sommet du bord de fuite est fortement contrainte du fait notamment des températures qui y sont très élevées, et la base du bord de fuite est elle aussi fortement contrainte du fait qu'elle supporte tous les efforts centrifuges appliqués à la pale en service.
L'invention concerne également une aube ainsi définie, comprenant un conduit aval d'alimentation en air de la rampe aval ce conduit aval étant relié à la rampe aval par une série de trous pour assurer une alimentation calibrée de cette rampe aval
L'invention concerne également une aube ainsi définie, dans laquelle la cavité inférieure et la rampe de refroidissement des fentes intermédiaires s'étendent dans le prolongement l'une de l'autre selon la direction d'envergure de la pale
L'invention concerne également une aube ainsi définie, comprenant une seule première fente et/ou une seule dernière fente.
L'invention concerne également une aube ainsi définie, dans laquelle la cavité supérieure est située au niveau du sommet de l'aube en étant agencée pour refroidir ce sommet.
L'invention concerne également une aube ainsi définie, comprenant une cavité latérale d'intrados située entre le conduit central et la paroi d'intrados de la pale pour constituer un écran thermique protégeant le conduit central.
L'invention concerne également une aube ainsi définie, comprenant une cavité latérale d'extrados située entre le conduit central et la paroi d'extrados de la pale pour constituer un écran thermique protégeant le conduit central.
L'invention concerne également de moyens de moulage pour la fabrication d'une aube ainsi définie, comprenant un noyau destinés à délimiter au moins une partie de l'espace interne de l'aube lors de sa fabrication par moulage. L'invention a également pour objet une turbine de turbomachine comprenant une aube ainsi définie.
L'invention a également pour objet une turbomachine comprenant une turbine ainsi définie. BRÈVE DESCRIPTION DES DESSINS
La figure 1 est une vue schématique d'un turboréacteur à double flux en coupe longitudinale ;
La figure 2 est une vue en perspective d'une aube selon l'invention ;
La figure 3 est une vue en perspective d'un ensemble de noyaux délimitant l'intérieur de l'aube selon l'invention lors de son moulage ;
La figure 4 est une vue en coupe transversale d'un ensemble de noyaux délimitant l'intérieur de l'aube selon un second mode de réalisation de l'invention ;
La figure 5 est une vue en perspective d'un ensemble de noyaux délimitant l'intérieur de l'aube selon le second mode de réalisation de l'invention ;
La figure 6 est une vue latérale d'un ensemble de noyau délimitant l'aube selon une variante du second mode de réalisation de l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'aube selon l'invention qui apparaît sur la figure 2 en y étant repérée par 11 comporte un pied P portant une pale 12 s'étendant selon une direction d'envergure EV radiale par rapport à son axe de rotation AX. La pale 12 s'étend depuis une base ou plateforme par laquelle elle est raccordée au pied P jusqu'à un sommet S correspondant à son extrémité libre, et elle comporte une paroi d'extrados ainsi qu'une paroi d'intrados 14.
L'extrados et l'intrados 14 se rejoignent d'une part au niveau du bord d'attaque 16 de la pale qui correspond à sa région amont AM, et d'autre part au niveau de son bord de fuite effilé 17 qui correspond à sa région aval AV. L'amont et l'aval s'entendent par rapport au sens de circulation du fluide entourant la pale en service. Comme visible sur les figures 3 et 4, l'intérieur de cette aube comporte un conduit central 18 en aval duquel s'étend un conduit aval 19 qui longe le conduit central 18 pour alimenter de façon calibrée une rampe aval 21. Cette rampe aval 21 alimente à son tour en air frais un ensemble de fentes 22 de refroidissement du bord de fuite 17. Cette aube comporte encore d'autres parties non représentées comme notamment un conduit et/ou une rampe amont, situé en amont du conduit central et agencé pour fournir de l'air de refroidissement au bord d'attaque.
Dans la région correspondant au sommet S de l'aube, le conduit central 18 est prolongé par une cavité supérieure 23 de refroidissement du sommet d'aube. Cette cavité supérieure 23 s'étend de la partie centrale ou amont jusqu'à la partie aval de l'aube, et elle alimente par sa portion aval la dernière fente 24 de refroidissement du bord de fuite. Cette dernière fente 24 est celle qui est la plus proche du sommet S d'aube le long de la direction d'envergure EV.
Comme visible sur la figure 3, le conduit central 18 s'étend sur sensiblement toute la hauteur de la pale le long de l'axe d'envergure EV. L'extrémité du conduit central 18 qui est située dans la région du sommet de l'aube est raccordée à une partie amont de la cavité supérieure 23 afin d'alimenter en air de refroidissement cette cavité supérieure.
Le conduit central 18 et la cavité supérieure 23 alimentée par ce conduit central sont délimités lors de la fabrication de l'aube par un élément El formant partie d'un noyau, ce noyau étant retiré par exemple par attaque chimique lorsque l'aube a été coulée.
Le conduit 19 présente une longueur sensiblement plus faible que le conduit 18, il longe ce conduit 18 et son extrémité libre est située en vis-à-vis de la cavité supérieure 23. Il communique avec la rampe aval 21 par une série de trous calibrés 26 répartis et régulièrement espacés sur toute la longueur de la rampe 21 le long de la direction d'envergure EV, et orientés perpendiculairement à cette direction EV. Ces trous de communication 26 permettent d'assurer une alimentation calibrée de la rampe 21, pour que le débit d'air soit le plus homogène possible dans les différentes fentes de refroidissement du bord de fuite. Le conduit aval 19 et la rampe aval 21 sont délimités lors de la fabrication de l'aube par un deuxième élément E2 constituant une autre partie du noyau qui est supprimé après moulage de l'aube par attaque chimique.
Des trous 25 peuvent être réalisées à travers les parois d'intrados d'extrados de l'aube pour évacuer l'air circulant dans son espace interne tout en formant un film d'air extérieur longeant l'intrados pour l'isoler de la chaleur du flux entourant l'aube en service.
Comme visible sur la figure 3, la rampe aval 21 longe le conduit aval 19 pour comporter, tout comme ce conduit 19, une extrémité libre 27 située en vis-à-vis de la cavité supérieure 23. Mais cette rampe aval 21 présente une longueur inférieure à celle du conduit 19 le long de la direction d'envergure EV, du fait qu'elle ne débute pas au niveau de la base de la pale.
La rampe aval 21 présente une extrémité inférieure 28 qui est espacée de la base de la pale, de sorte que cette rampe aval 21 alimente en air les fentes 22 du bord de fuite qui comportent la seconde fente en partant de la base de la pale et les suivantes jusqu'à l'avant-dernière fente avant d'atteindre le sommet de pale.
Comme indiqué plus haut, c'est la portion aval de la cavité supérieure 23 qui alimente la dernière fente 24. Mais c'est aussi une cavité inférieure distincte, repérée par 29, qui alimente de manière distincte et indépendante la première fente, à savoir la fente 31. Cette fente 31 est la première fente du bord de fuite 17, en partant de la base de la pale, c'est-à-dire la fente du bord de fuite 17 qui est la plus proche du pied P de l'aube.
Ainsi, la rampe aval 21 s'étend dans le prolongement de la cavité inférieure 29, la cavité inférieure 29 et la rampe 21 longeant toutes deux le conduit aval 19. Mais la cavité inférieure 29 est alimentée directement en air depuis le pied P de la pale 11, au lieu d'être alimentée par le conduit aval 19, et elle alimente uniquement la première fente 31 de refroidissement du bord de fuite 17 de la pale.
Lors de la fabrication, la cavité inférieure 29 est elle aussi délimitée par un élément E3 formant une autre partie du noyau qui est supprimé par attaque chimique à l'issue du moulage. Alternativement, l'aube pourra être réalisée par le procédé de fabrication additive.
Dans ces conditions, l'alimentation en air des fentes de refroidissement du bord de fuite 17 est assurée de manière distincte pour la première fente 31 et pour la dernière fente 24, respectivement par la cavité inférieure 29 et par la cavité supérieure 23. Cette alimentation est assurée de façon conjointe par la rampe 21 pour toutes les fentes intermédiaires 22 qui sont situées entre la première fente 31 et la dernière fente 24.
Les fentes du bord de fuite 17 peuvent être distinguées en trois zones, à savoir une première zone ZI proche de la base comprenant uniquement la première fente dans l'exemple des figures, une deuxième zone Z2 dite intermédiaire comportant une série de fentes intermédiaire, et une troisième zone Z3 correspondant au sommet et comportant uniquement la dernière fente dans l'exemple des figures. Ces trois zones ZI, Z2, Z3 sont alimentées de manière indépendante en air de refroidissement, de façon à optimiser et régulier au mieux le refroidissement du bord de fuite.
On pourra le cas échéant prévoir que la première zone ZI comporte non pas une seule première fente comme dans l'exemple des figures, mais plusieurs premières fentes contiguës qui sont les plus proches du pied. De la même manière, la troisième zone peut elle aussi comporter non pas une seule dernière fente comme dans l'exemple des figures, mais plusieurs des dernières fentes contiguës situées au niveau du sommet de l'aube, c'est-à-dire plusieurs dernières fentes et non pas une seule comme dans l'exemple des figures.
Comme visible sur la figure 3, la limite entre la première zone ZI et la deuxième zone Z2 est située bien en deçà de la moitié de la hauteur de la pale le long de l'axe d'envergure EV. En pratique, les premières fentes, qui correspondent à la première zone ZI, s'étendent sur environ vingt pourcents de la hauteur du bord de fuite selon l'axe EV en partant de la base de la pale, c'est-à-dire en partant de la plateforme séparant le pied de l'aube de la pale.
Complémentairement, le conduit central 18 peut être isolé thermiquement des parois d'intrados 14 et d'extrados de l'aube par une cavité latérale d'intrados 32 et/ou par une cavité latérale d'extrados 33, comme illustré sur les figures 4 et 5.
La cavité latérale 32 présente alors une faible épaisseur en s'étendant en regard de la majorité de la surface du conduit 18, de manière à constituer un écran thermique : le conduit 18 est alors séparé de la paroi d'intrados par cette cavité latérale 32.
La cavité latérale 33 qui est du même type, constitue de manière analogue un écran thermique qui est situé du côté extrados de l'aube, pour séparer le conduit 18 de la paroi d'extrados.
Chaque cavité latérale 32, 33 est formée d'un seul tenant, et elle longe l'intrados ou l'extrados en présentant une faible épaisseur. Elle est délimitée par un contour généralement rectangulaire et elle s'étend sur la majorité de la hauteur de la pale et sur toute la longueur du conduit amont le long de l'intrados, de l'extrados ou de l'axe AX. Chaque cavité latérale 32, 33 est alimentée en air via le pied de l'aube de façon directe, c'est-à-dire indépendamment des autres conduits, cavités ou rampes de l'aube.
Dans l'exemple des figures, les cavités latérales 32, 33 couvrent uniquement le conduit central 18, mais leur longueur peut aussi être étendue pour qu'elles couvrent également le conduit aval 19 afin de l'isoler lui aussi des parois d'intrados et/ou d'extrados de l'aube. La longueur des cavités latérales 32, 33 peut également être étendue en amont pour couvrir d'autres cavités de l'aube.
L'alimentation distincte et indépendante des conduits 18 et 19 et de la cavité 29 peut être assurée par trois embouchures distinctes collectant chacune l'air indépendamment au niveau du pied de pale. Cette alimentation distincte peut aussi être assurée, comme représenté schématiquement en figure 6, par une même embouchure 34, de sorte à faciliter la fabrication de l'aube, située au niveau du pied de pale et qui se scinde en trois canaux distincts pour alimenter séparément les conduits 18, 19 et la cavité 29.
L'invention permet d'optimiser le refroidissement du bord de fuite d'une aube d'un étage haute pression, en favorisant la ventilation du sommet d'aube et de la zone bas de pale sans dégrader celui de la région intermédiaire du bord de fuite. L'alimentation indépendante de la ou des premières fentes permet de mieux maîtriser le refroidissement de cette zone pour éviter notamment des phénomènes de cisaillement de l'air en entrée de ces fentes. Elle permet d'améliorer le refroidissement du bord de fuite dans la région de la base de la pale qui subit tous les efforts centrifuges appliqués à la pale en service. En pratique, cette région est sujette à l'apparition d'amorces de rupture au niveau du congé de raccordement avec le pied ou la plateforme de la pale. La plateforme désigne la portion généralement plane d'orientation normale à l'axe d'envergure située entre la pale et le pied.
L'alimentation indépendante de la ou des dernières fentes permet d'optimiser le refroidissement du bord de fuite dans la région du sommet où les températures élevées donnent lieu à des contraintes importantes. Ces contraintes importantes peuvent se traduire par des brûlures, des oxydations, et des pertes de matières pouvant être significatives.
De manière analogue, l'alimentation indépendante des fentes intermédiaires permet de préserver un niveau de refroidissement adéquat pour la portion médiane du bord de fuite. La mise en œuvre d'une alimentation calibrée de la rampe aval d'alimentation des fentes intermédiaires permet d'homogénéiser le refroidissement sur la hauteur, tout en limitant les échauffements et les pertes de charge.
D'une manière générale, le fait de distinguer trois zones pour le refroidissement du bord de fuite permet de calibrer ou de réguler plus finement le refroidissement des différentes parties du bord de fuite afin d'accroître le refroidissement dans les portions critiques pour ce bord de fuite.
En particulier, grâce aux trois alimentations distinctes d'air de refroidissement du bord de fuite, le risque d'un refroidissement hétérogène défavorisant les premières fentes et les dernières fentes, pour cause par exemple de turbulences internes, est exclu. L'invention permet ainsi de garantir un refroidissement optimal en toutes circonstances pour les parties critiques du bord de fuite.

Claims

REVENDICATIONS
1. Aube (12) de turbine de turbomachine telle qu'un turbopropulseur ou un turboréacteur, cette aube (12) comprenant un pied (P) portant une pale (11) s'étendant selon une direction d'envergure (EV) en se terminant par un sommet (S), cette pale (11) comprenant un bord d'attaque (16) et un bord de fuite (17) situé en aval du bord d'attaque, cette pale comprenant une paroi d'intrados (14) et une paroi d'extrados reliant chacune le bord d'attaque (16) au bord de fuite (17) le bord de fuite (17) comportant du côté intrados (14) une série de fentes traversantes (22, 24, 31) alimentées avec de l'air de refroidissement, caractérisé en ce que ces fentes (22, 24, 31) comportent :
- une ou plusieurs premières fentes (31) qui sont les plus proches du pied (P) et qui sont alimentées par une cavité inférieure (29) de l'aube (11) ;
- une ou plusieurs dernières fentes (24) qui sont les plus proches du sommet (S) et qui sont alimentées par une cavité supérieure (23) de l'aube (11) ;
- des fentes intermédiaires (22) situées entre les premières fentes (31) et les dernières fentes (24) et qui sont alimentées par une rampe aval (21) de la pale (11) ;
en ce que la cavité inférieure (29), la cavité supérieure (23) et la rampe aval (21) sont alimentées en air de manière distincte au niveau du pied (P) de l'aube (12) ;
et en ce que l'aube (12) comprend un conduit aval (19) d'alimentation en air de la rampe aval (21), ce conduit aval (19) étant relié à la rampe aval (21) par une série de trous (26) pour assurer une alimentation calibrée de cette rampe aval (21).
2. Aube (12) selon la revendication 1, dans laquelle la cavité inférieure (29) et la rampe (21) de refroidissement des fentes intermédiaires s'étendent dans le prolongement l'une de l'autre selon la direction d'envergure (EV) de la pale (11).
3. Aube (12) selon la revendication 1 ou 2, comprenant une seule première fente (31) et/ou une seule dernière fente (24).
4. Aube (12) selon l'une des revendications précédentes, dans laquelle la cavité supérieure (23) est située au niveau du sommet (S) de l'aube (11) en étant agencée pour refroidir ce sommet (S).
5. Aube (12) selon l'une des revendications précédentes, comprenant un conduit central (18) et une cavité latérale d'intrados (32) située entre le conduit central (18) et la paroi d'intrados (14) de la pale (12) pour constituer un écran thermique protégeant le conduit central (18).
6. Aube (12) selon l'une des revendications précédentes, comprenant un conduit central (18) et une cavité latérale d'extrados (33) située entre le conduit central (18) et la paroi d'extrados de la pale (12) pour constituer un écran thermique protégeant le conduit central (18).
7. Moyens de moulage pour la fabrication d'une aube selon l'une des revendications 1 à 6, comprenant un noyau (El, E2, E3) destiné à délimiter au moins une partie de l'espace interne de l'aube (11) lors de sa fabrication par moulage.
8. Turbine de turbomachine comprenant une aube selon l'une quelconque des revendications 1 à 6.
9. Turbomachine comprenant une turbine selon la revendication précédente.
PCT/FR2016/052548 2015-10-06 2016-10-04 Aube comportant un bord de fuite comprenant trois régions de refroidissement distinctes WO2017060613A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1805442.9A GB2558113B (en) 2015-10-06 2016-10-04 Blade comprising a trailing edge having three distinct cooling regions
US15/765,334 US10767491B2 (en) 2015-10-06 2016-10-04 Blade comprising a trailing edge having three distinct cooling regions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502074 2015-10-06
FR1502074A FR3041989B1 (fr) 2015-10-06 2015-10-06 Aube comportant un bord de fuite comprenant trois regions de refroidissement distinctes

Publications (1)

Publication Number Publication Date
WO2017060613A1 true WO2017060613A1 (fr) 2017-04-13

Family

ID=55236418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052548 WO2017060613A1 (fr) 2015-10-06 2016-10-04 Aube comportant un bord de fuite comprenant trois régions de refroidissement distinctes

Country Status (4)

Country Link
US (1) US10767491B2 (fr)
FR (1) FR3041989B1 (fr)
GB (1) GB2558113B (fr)
WO (1) WO2017060613A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057906B1 (fr) 2016-10-20 2019-03-15 Safran Aircraft Engines Aube de turbomachine a refroidissement optimise
US10753210B2 (en) 2018-05-02 2020-08-25 Raytheon Technologies Corporation Airfoil having improved cooling scheme
US11015457B2 (en) 2018-10-01 2021-05-25 Raytheon Technologies Corporation Multi-walled airfoil core
FR3108363B1 (fr) 2020-03-18 2022-03-11 Safran Aircraft Engines Aube de turbine comportant trois types d’orifices de refroidissement du bord de fuite
FR3108364B1 (fr) 2020-03-18 2022-03-11 Safran Aircraft Engines Aube de turbine comportant des nervures entre des sorties de refroidissement avec des orifices de refroidissement
US11913353B2 (en) 2021-08-06 2024-02-27 Rtx Corporation Airfoil tip arrangement for gas turbine engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017159A (en) * 1956-11-23 1962-01-16 Curtiss Wright Corp Hollow blade construction
US20050084370A1 (en) * 2003-07-29 2005-04-21 Heinz-Jurgen Gross Cooled turbine blade
EP2193859A1 (fr) * 2008-11-21 2010-06-09 United Technologies Corporation Moulages, noyaux de moulage et procédés
US20140093386A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with inner spar

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700530A (en) * 1948-08-27 1955-01-25 Chrysler Corp High temperature elastic fluid apparatus
US20080085193A1 (en) * 2006-10-05 2008-04-10 Siemens Power Generation, Inc. Turbine airfoil cooling system with enhanced tip corner cooling channel
US8113780B2 (en) * 2008-11-21 2012-02-14 United Technologies Corporation Castings, casting cores, and methods
GB201121531D0 (en) * 2011-12-15 2012-01-25 Rolls Royce Plc Aerofoil blade or vane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017159A (en) * 1956-11-23 1962-01-16 Curtiss Wright Corp Hollow blade construction
US20050084370A1 (en) * 2003-07-29 2005-04-21 Heinz-Jurgen Gross Cooled turbine blade
EP2193859A1 (fr) * 2008-11-21 2010-06-09 United Technologies Corporation Moulages, noyaux de moulage et procédés
US20140093386A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with inner spar

Also Published As

Publication number Publication date
US10767491B2 (en) 2020-09-08
FR3041989B1 (fr) 2020-04-17
GB2558113A (en) 2018-07-04
GB201805442D0 (en) 2018-05-16
GB2558113B (en) 2021-05-12
US20180306035A1 (en) 2018-10-25
FR3041989A1 (fr) 2017-04-07

Similar Documents

Publication Publication Date Title
WO2017060613A1 (fr) Aube comportant un bord de fuite comprenant trois régions de refroidissement distinctes
FR3021699B1 (fr) Aube de turbine a refroidissement optimise au niveau de son bord de fuite
WO2015181497A1 (fr) Aube de turbine a refroidissement optimise
EP3073053B1 (fr) Aube mobile de turbine a conception amelioree pour turbomachine d'aeronef
EP3134620B1 (fr) Aube pour turbine de turbomachine comprenant un circuit de refroidissement à homogénéité améliorée
EP3529463B1 (fr) Aube de turbomachine à refroidissement optimisé
EP3149281B1 (fr) Aube de turbine comprenant un conduit central de refroidissement et deux cavités latérales jointives en aval du conduit central
FR2970032A1 (fr) Configuration de canaux de refroidissement de regions de plates-formes pour aubes de rotor de turbine.
FR3037829A1 (fr) Noyau pour le moulage d'une aube ayant des cavites superposees et comprenant un trou de depoussierage traversant une cavite de part en part
EP3426896B1 (fr) Aube refroidie de turbine
FR3036140B1 (fr) Turbomachine d'aeronef a effet coanda
FR2955152A1 (fr) Turbomachine a circulation de flux d'air de purge amelioree
FR2983517A1 (fr) Aube de turbine refroidie pour moteur a turbine a gaz.
EP3947916B1 (fr) Aube de turbine d'une turbomachine, turbine, turbomachine et noyau céramique associé pour la fabrication d'une aube de turbine de turbomachine
EP3867499B1 (fr) Aube de turbomachine à refroidissement amélioré et noyau céramique pour la fabrication d'une telle aube
WO2020249905A1 (fr) Aube de turbomachine à refroidissement amélioré
EP3262348B1 (fr) Chambre de combustion de turbomachine comportant une pièce pénétrante avec ouverture
WO2018215718A1 (fr) Aube pour turbine de turbomachine comprenant des cavites internes de circulation d'air de refroidissement
FR3130881A1 (fr) Aube comportant un trou de dépoussiérage comportant une portion d’admission étendue
FR3108663A1 (fr) Aube de soufflante rotative de turbomachine, soufflante et turbomachine munies de celle-ci
FR3079869A1 (fr) Aube de turbine haute pression comportant une cavite morte presentant une reduction de section
FR3066551A1 (fr) Aube mobile d'une turbine comprenant un circuit de refroidissement interne
FR3061512A1 (fr) Element radial de stator de turbomachine comportant un raidisseur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16787503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15765334

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201805442

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20161004

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16787503

Country of ref document: EP

Kind code of ref document: A1