WO2017058055A1 - Commande de charge de ballast globale dans une installation électro-énergétique autonome à modules multiples - Google Patents

Commande de charge de ballast globale dans une installation électro-énergétique autonome à modules multiples Download PDF

Info

Publication number
WO2017058055A1
WO2017058055A1 PCT/RU2016/000494 RU2016000494W WO2017058055A1 WO 2017058055 A1 WO2017058055 A1 WO 2017058055A1 RU 2016000494 W RU2016000494 W RU 2016000494W WO 2017058055 A1 WO2017058055 A1 WO 2017058055A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
voltage
payload
calculated
Prior art date
Application number
PCT/RU2016/000494
Other languages
English (en)
Russian (ru)
Inventor
Алексей Викторович ДЕМЬЯНОВ
Валерий Павлович КЛИМОВ
Original Assignee
Общество С Ограниченной Ответственностью "Наука -Энерготех"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Наука -Энерготех" filed Critical Общество С Ограниченной Ответственностью "Наука -Энерготех"
Publication of WO2017058055A1 publication Critical patent/WO2017058055A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the invention relates to the field of energy and electrical engineering, in particular, to devices for converting thermodynamic energy into electrical energy, which can be used as a source of electrical energy in power systems of autonomous electric power complexes, and methods for controlling the total ballast load in such devices.
  • the Stirling Free Piston Engine is a heat-dynamic external combustion system designed to convert thermal energy into mechanical energy of reciprocating motion.
  • SPDS Stirling Free Piston Engine
  • DSP digital signal processor
  • the modular construction principle is based on the parallel inclusion of generation modules on a common output bus, which provides the necessary redundancy of the system on the principle of "p + x" and the possibility of increasing the capacity of the system if necessary to increase the number of consumers. Uniform current distribution between the modules is ensured by matching their output characteristics.
  • the main principle of increasing power in a multi-engine system is the use of rectifier systems with the organization of a common DC bus with common batteries working on it.
  • Modern rectifier circuits are highly automated and allow you to build up to several tens of rectifiers on a common bus. Moreover, how as a rule, a multiplexed data bus is used (for example, CAN) to solve the problems of equalizing the voltage of rectifiers and providing a multimaster principle for organizing the operation of the data exchange bus.
  • a multiplexed data bus is used (for example, CAN) to solve the problems of equalizing the voltage of rectifiers and providing a multimaster principle for organizing the operation of the data exchange bus.
  • a known system for generating electricity comprising a Stirling motor with an integrated linear generator, a rectifier converter and a control system for it, the error signal controlling the PWM controller of the converter is generated by comparing the measured generator current and the programmed current value obtained by using the multiplexer to multiply the table value and the signal from the integrator, the input of which receives a digital signal from the ADC, the input signal of which is the voltage of the oscillation sensor of the generator inductor.
  • a disadvantage of the known device is: the presence of a large number of analog elements that reduce the reliability and noise immunity of the system; low dynamic stability of the system during transient conditions that occur during load surges at the output of the regulator; the inability to increase the load power due to the parallel operation of the generators.
  • the closest in technical essence is a hybrid source of electrical energy (US 2009/0206667 A1, 08.20.2009), containing two generating modules based on Stirling free-piston engines with integrated linear generators and rectifiers, the outputs of which are connected in parallel and form a DC bus to which the payload is connected, the battery through a bi-directional converter and a common ballast load unit based on a resistor and a transistor controlled by the controller.
  • the control system is configured for three levels of DC bus voltage as a function of the output power value during stationary operation of the device.
  • a disadvantage of the known device is the limited number (two) of generating modules and low dynamic characteristics during transients (surge and load shedding).
  • An object of the invention is to control a common ballast load unit of a multi-module generation system based on a digital method for calculating and comparing active generator powers and load output power, generating an error signal as a function of the ratio of these powers and the deviation of the DC bus voltage from a given value , which will determine the duty cycle of the PWM sequence of the control signal of the transistor of the common ballast load unit.
  • the technical result of the invention is to increase the dynamic accuracy and stability of the wide-pulse regulator of the common ballast load unit while ensuring voltage stability on the DC bus in transient and steady-state operation modes of the autonomous power supply system.
  • the signal of the ratio of the calculated payload power to the total power of the linear generators determines the duty cycle of the pulse-width modulated control signal of the ballast block.
  • the polling frequency of the calculated current value of the output payload voltage is 10 times higher than the polling frequency of the current value of the payload power.
  • FIG. 1 shows a block diagram of a multi-module generating system with a DC bus and a common ballast load unit.
  • FIG. 2 presents a structural diagram of an example implementation of the proposed method using the DSP controller as an example.
  • FIG. Figure 3 shows the dependences of the generator capacities and the ballast load on the value of the normalized load power.
  • FIG. Figure 4 shows diagrams of the voltage variation on the DC bus during surges in the load current.
  • a schematic diagram of the controller of the total ballast load of an autonomous multi-module electric power plant based on Stirling engines is proposed, which provides increased dynamic accuracy and stability while ensuring voltage stability on the DC bus in transient and steady-state modes of operation of the autonomous power supply system, which implements a control method with the integration of an error signal over the output DC bus voltage and the formation of a PWM control signal o present block ballasting.
  • FIG. 1 shows a block diagram of a multi-module generating system with a DC bus and a common ballast load unit when using the proposed control method, implemented by a digital processing unit BTSO (10) based on a DSP controller.
  • BTSO digital processing unit
  • the installation contains “t” the number of generation modules, each of which includes a free Stirling piston engine with an integrated linear generator (1) and a rectifier (2), the outputs of which are connected in parallel and form a DC bus (3), to which the battery is connected ( 4), the payload (5) and the common ballast load unit (6).
  • the transistor (7) of the ballast load unit is controlled through the driver (8) with a PWM signal (9) from the digital processing unit (BTSO) (10) based on the DSP controller (for example, TMS320LF240) (10).
  • the rechargeable battery (4) provides power to the control system units and other elements of the device for the period of starting up the generation modules and power to the load during transients.
  • the number of modules connected in parallel to the load (5) may vary. After the next module is connected, its state is tested, and when the system is in good working order, it is automatically determined by the other modules connected to the load, which leads to a corresponding redistribution of the load current. If a malfunction occurs in one of the modules, it automatically disconnects from the load bus, which allows you to isolate the damaged part without disconnecting the load from the rest of the modules.
  • the claimed control method is carried out by a digital processing unit (BTS) (10) based on a DSP controller (for example, TMS320LF240) (Fig. 2), which generates a PWM control signal for the transistor (7) of the common ballast load unit (6), ensuring that the power balance is maintained as in stationary and transient modes of operation, which increases the accuracy and reliability of the installation.
  • BTS digital processing unit
  • Fig. 2 DSP controller
  • the block for processing and normalizing the measured signals (BONIS) (12) provides the necessary matching of the levels of analog signals from the sensors with the parameters of the analog-to-digital converter DSP controller.
  • Procedures for measuring, calculating electrical parameters and generating a PWM control signal for the transistor of the ballast block, requiring the launch of subprograms at precisely defined time intervals, are performed using internal hardware interrupts generated by the built-in timers of the DSP controller. Interrupt handling has the highest priority over the main firmware loop. The remaining routines are called as needed.
  • analog signals of the measured voltages and currents from BONIS (11) are fed to a 2 (t + 1) channel analog-to-digital converter (ADC) (18), which converts the signals into digital form.
  • ADC analog-to-digital converter
  • the digitized values of voltages and currents are fed to the block of active power calculators (BWM) (19), where the current values are calculated active power of each linear generator (1) and the current value of the payload power (24)
  • the polling frequency of the calculated current values of active power is 50 Hz in accordance with the frequency of the linear generator of the generation module.
  • N 100 for each repetition period.
  • N is the value of the "p" -th sample of the DC bus voltage
  • 'TM is the value of the "p" -th sample of the load current.
  • the obtained result ⁇ (21) is supplied to the inverse unit (22) and then to the first input of the multiplexer (23), to the second input of which the calculated value of the load power P n (24) is supplied.
  • a signal (25) equal to the ratio of the load power to the total power of the generators and characterizing
  • the polling frequency of the calculated current value of the DC bus output voltage is adopted 10 times higher than the polling frequency of the current power value and is 500 Hz. This makes it possible to more accurately assess the changes in the output voltage when comparing with the reference voltage U 0 (28) (the output voltage setting signal) carried out on the adder (27), which is especially important when evaluating sharp changes in voltage during surges in the load current.
  • a diagram of a possible change in voltage on the DC bus during a jump in the load current is shown in Fig.4.
  • U p (n) U p (n - l) + k x [W ⁇ n) - AU (n - 1)] + k 2 AU (n), (6) where: k x is the gain of the proportional link, to 2 - gain of the integral link.
  • the output signal (30) from the block of the correcting device (29) is fed to one input of the adder (31), the second input of which is affected by the signal d (25) from the multiplexer (23).
  • an error signal U ⁇ (32) is generated, which arrives at the first input of the comparator (33) of the PWM (BFSM) generating unit (34).
  • a step-sawtooth voltage and saws (35) are supplied to the second input of the comparator formed by the event manager of the DSP controller (36) with built-in PWM support.
  • the frequency of the sawtooth signal f k - taken equal to 20 kHz, which will correspond to the frequency of the PWM signal (37) (Fig. Zb).
  • the sawtooth voltage quantization frequency is taken equal to 200 kHz, which provides high accuracy of comparison with the error signal (32) when generating a PWM signal (37) at the output of the comparator (33) of the PWM forming unit (34).
  • This signal from the PWM output of the DSP controller (10) is fed to the driver (8) of the transistor control of the ballast block (7).
  • This embodiment is the most preferred implementation of ballast load control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne le domaine des équipements électriques et peut être utilisée dans des systèmes d'alimentation électrique de centrales de production d'électricité autonomes. Le résultat technique consiste en une augmentation de la précision dynamique et de la stabilité d'un régulateur à impulsions larges d'une unité globale de charge de ballast tout en assurant la stabilité de la tension sur le bus de courant continu dans des modes de fonctionnement transitoires ou établis du système autonome d'alimentation électrique. L'invention concerne un procédé de commande de la charge de ballast globale dans une installation électro-énergétique autonome à modules multiples de génération électrique à base de moteurs de Sterling, dans lequel on mesure les valeurs de tensions et de courant de chaque générateur linéaire et de charge utile, à partir desquelles on calcule les puissances actives qui sont ensuite additionnées; on calcule la valeur courante de la puissance de la charge utile, on génère un signal de la relation entre la puissance de la charge utile et la puissance globale des générateurs linéaires calculées; on compare la valeur mesurée de la tension de sortie à une charge utile ayant une tension de référence, le résultat obtenu est traité par une unité d'un dispositif de correction comprenant un régulateur proportionnel d'intégration dont le signal de sortie est ajouté au signal de ladite relation, et un signal d'erreur est envoyé depuis des entrées du comparateur, tandis que l'on envoie à une autre entrée du comparateur une tension graduelle-en dents de scie et que l'on forme à sa sortie un signal modulé en impulsion large allant vers l'actionneur de commande du transistor de l'unité de charge de ballast
PCT/RU2016/000494 2015-09-30 2016-07-29 Commande de charge de ballast globale dans une installation électro-énergétique autonome à modules multiples WO2017058055A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015141535A RU2606979C1 (ru) 2015-09-30 2015-09-30 Способ управления общей балластной нагрузкой в автономной многомодульной электроэнергетической установке на основе двигателей стирлинга
RU2015141535 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017058055A1 true WO2017058055A1 (fr) 2017-04-06

Family

ID=58423955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000494 WO2017058055A1 (fr) 2015-09-30 2016-07-29 Commande de charge de ballast globale dans une installation électro-énergétique autonome à modules multiples

Country Status (2)

Country Link
RU (1) RU2606979C1 (fr)
WO (1) WO2017058055A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221576A1 (en) * 2003-05-08 2004-11-11 Lynch Thomas H. Thermal cycle engine boost bridge power interface
RU2294045C2 (ru) * 2001-12-20 2007-02-20 Майкроджен Энерджи Лимитед Бытовая комбинированная тепловая и энергетическая система
US20090206667A1 (en) * 2007-12-05 2009-08-20 Sunpower, Inc. Hybrid electrical power source combining stirling engine driven alternator with supplementing electrical energy storage
US7633173B2 (en) * 2006-11-29 2009-12-15 Sunpower, Inc. Electronic controller matching engine power to alternator power and maintaining engine frequency for a free-piston stirling engine driving a linear alternator
WO2012003294A1 (fr) * 2010-06-30 2012-01-05 Moore Ii James R Système de production d'énergie à moteur stirling perfectionné

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2000654C1 (ru) * 1992-01-28 1993-09-07 Опытно-конструкторское бюро "Горизонт" Автономна электроэнергетическа установка с синхронными машинами
US6050092A (en) * 1998-08-28 2000-04-18 Stirling Technology Company Stirling cycle generator control system and method for regulating displacement amplitude of moving members
ES2160091B1 (es) * 2000-03-16 2002-10-16 Viscofan Ind Tripa celulosica multicapa, metodo de fabricacion de la misma y filiera de extrusion para la obtencion de dicha tripa.
US7122916B2 (en) * 2003-01-16 2006-10-17 General Electric Company Multi-unit power generation system for stand-alone and grid connected operation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2294045C2 (ru) * 2001-12-20 2007-02-20 Майкроджен Энерджи Лимитед Бытовая комбинированная тепловая и энергетическая система
US20040221576A1 (en) * 2003-05-08 2004-11-11 Lynch Thomas H. Thermal cycle engine boost bridge power interface
US7633173B2 (en) * 2006-11-29 2009-12-15 Sunpower, Inc. Electronic controller matching engine power to alternator power and maintaining engine frequency for a free-piston stirling engine driving a linear alternator
EP2087204B1 (fr) * 2006-11-29 2010-12-29 Sunpower, Inc. Unité de commande électronique faisant concorder la puissance d'un moteur avec la puissance d'un alternateur et maintenant une fréquence de moteur pour un moteur stirling à pistons libres qui entraîne un alternateur linéaire
US20090206667A1 (en) * 2007-12-05 2009-08-20 Sunpower, Inc. Hybrid electrical power source combining stirling engine driven alternator with supplementing electrical energy storage
WO2012003294A1 (fr) * 2010-06-30 2012-01-05 Moore Ii James R Système de production d'énergie à moteur stirling perfectionné

Also Published As

Publication number Publication date
RU2606979C1 (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
Wang et al. Adaptive droop control of VSC-MTDC system for frequency support and power sharing
Zhao et al. ${\cal L} _1 $ adaptive speed control of a small wind energy conversion system for maximum power point tracking
Lasseter Dynamic models for micro-turbines and fuel cells
AU2011225422B8 (en) Photovoltaic generation system and power feeding system
WO2009016340A1 (fr) Procédés de commande pour un redresseur/onduleur actif de convertisseur de source de tension dans des conditions fonctionnelles non équilibrées
US9543852B2 (en) Method and system for controlling a DC link voltage of a power converter connecting an electric generator of a wind turbine with a power grid
JP2007037226A (ja) 電源システムおよびその制御方法
CN103683319A (zh) 电网电压不平衡时基于滞环调制的并网逆变器控制方法
Zeng Some aspects in lifetime prediction of power semiconductor devices
Tandekar et al. SEIG‐based renewable power generation and compensation in MVDC ship power system
EP3358436A1 (fr) Système d'alimentation électrique
RU2606979C1 (ru) Способ управления общей балластной нагрузкой в автономной многомодульной электроэнергетической установке на основе двигателей стирлинга
US10063054B2 (en) Power management in an energy distribution system
Sikorski et al. Cooperation of induction squirrel-cage generator with grid connected AC/DC/AC converter
Liu et al. Improved design of transient power sharing strategy for AES multi-gensets in response to high power load mutation
RU2606383C1 (ru) Инвертор для солнечных электростанций
KR101707013B1 (ko) 복합발전 무효전력 제어장치 및 방법
US20230089057A1 (en) Power conversion device
US9407157B2 (en) High voltage DC power conversion system and method of operating the same
Touaiti et al. Direct voltage control of stand-alone DFIG in wind energy applications
Caballero Morilla et al. Active and reactive power control strategy for grid-connected six-phase generator by using multi-modular matrix converters
Choudhury et al. A robust control approach based on seeker optimization for power quality enhancement in a grid connected diesel generator
RU2769039C1 (ru) Устройство отслеживания точки максимальной мощности для инвертора с питанием от солнечных батарей
Lukutin et al. Tuning the regulators of wind-diesel power plant operating on the DC-bus
Kulmanov et al. Simulation and testing of a power converter for aircraft AC electric power generation system using software elimination of higher harmonics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852163

Country of ref document: EP

Kind code of ref document: A1