WO2017057450A1 - Peptide that specifically accumulates in biliary tract cancer, and use thereof - Google Patents

Peptide that specifically accumulates in biliary tract cancer, and use thereof Download PDF

Info

Publication number
WO2017057450A1
WO2017057450A1 PCT/JP2016/078607 JP2016078607W WO2017057450A1 WO 2017057450 A1 WO2017057450 A1 WO 2017057450A1 JP 2016078607 W JP2016078607 W JP 2016078607W WO 2017057450 A1 WO2017057450 A1 WO 2017057450A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cells
biliary tract
tract cancer
amino acid
Prior art date
Application number
PCT/JP2016/078607
Other languages
French (fr)
Japanese (ja)
Inventor
英作 近藤
齋藤 憲
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to JP2017543480A priority Critical patent/JP6839447B2/en
Publication of WO2017057450A1 publication Critical patent/WO2017057450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a peptide having an accumulation property specific to biliary tract cancer and use thereof.
  • Biliary tract cancer is a cancer composed of bile duct cancer, gallbladder cancer, and duodenal papilla cancer.
  • the number of deaths from bile duct cancer and gallbladder cancer in Japan is about 8,900 men and about 9,300 women in 2013.
  • the number of bile duct cancer and gallbladder cancer cases (national estimates) in 2010 was about 11,300 males and about 11,300 females, accounting for 2% and 3% of the total cancer cases, respectively.
  • about 20% of the patients can apply surgery, and the survival rate five years after surgery is about 30%.
  • Biliary tract cancer has few subjective symptoms at an early stage and may progress to some extent when symptoms such as jaundice, white stool, jaundice urine, abdominal pain appear, and early detection is important in treatment .
  • the biliary tract cancer in the present specification includes bile duct epithelium-derived adenocarcinoma, adenosquamous cell carcinoma, and intrahepatic cholangiocellular carcinoma in terms of histopathology.
  • Tests and diagnostic methods for biliary tract cancer include blood biochemical examination, abdominal ultrasonography, abdominal contrast CT examination, endoscopic retrograde pancreatobiliary imaging (ERCP: Examples include endoscopic retrograde cholangiopancreatography and FDG-PET (Fluorodeoxy glucose-Positron Emission Tomography) inspection.
  • ERCP endoscopic retrograde pancreatobiliary imaging
  • FDG-PET Fluorodeoxy glucose-Positron Emission Tomography
  • cell membrane-permeable (cell-absorbing) peptides such as Tat, penetratin, and polyargineine have attracted attention.
  • these peptides are widely and non-selectively absorbed without distinction between normal cells or normal tissues and tumor cells or tumor tissues, treatment of malignant tumors requiring target-selective drug transport DDS (Drag Delivery) Application to the (System) tool is difficult in that it causes serious side effects.
  • cell membrane-permeable (cell-absorbing) peptides such as Tat which are widely used in experimental systems worldwide, are known to cause accumulation in the liver (see, for example, Non-Patent Document 1).
  • Cyclic RGD is the only medicinal peptide. Cyclic RGD targets ⁇ v ⁇ 3 integrin, which has been reported to be highly expressed in endothelial cells (and some tumor cells) in new blood vessels or existing blood vessels, and its action point for enhancing vascular permeability. Therefore, it is applied as an imaging agent or a DDS agent in the form of simultaneous use with other drugs, not alone (see, for example, Patent Document 1).
  • the determination criterion of the inspection result is the determination of an abnormal shadow.
  • the accuracy of shadow determination including the spread of lesions.
  • the cyclic RGD described in Patent Document 1 is not a peptide that targets tumor cells and tumor tissue itself, and thus is novel in terms of a peptide having the ability to directly capture cancer. There was still room for improvement.
  • the present invention has been made in view of the above circumstances, and provides a novel peptide having a specific accumulation property by directly acting on biliary tract cancer cells and tissues.
  • the present invention includes the following aspects.
  • the peptide according to [1] or [2] further comprising cysteine residues at the N-terminus and C-terminus.
  • [4] The peptide according to any one of [1] to [3], which is a retro-inverso type substituted with a D-form amino acid.
  • [5] A nucleic acid encoding the peptide according to any one of [1] to [4].
  • [6] A vector comprising the nucleic acid according to [5].
  • [7] A carrier comprising the peptide according to any one of [1] to [4].
  • [8] The carrier according to [7], further comprising a labeling substance or a modifying substance.
  • the carrier according to [8], wherein the labeling substance is a stable isotope, a radioisotope or a fluorescent substance.
  • a pharmaceutical composition comprising the carrier according to any one of [7] to [10] and a physiologically active substance.
  • the pharmaceutical composition according to [11] which is for treating or diagnosing biliary tract cancer.
  • a novel peptide having an accumulation property specific to biliary tract cancer can be provided.
  • biliary tract cancer can be detected simply, with high sensitivity and selectively.
  • 2 is a fluorescence micrograph of various biliary tract cancer cells to which various peptides in Test Example 1 are added.
  • 4 is a fluorescence micrograph of M213 cells to which Peptide 3 and chlorpromazine in Test Example 2 were added. It is a fluorescence micrograph of M213 cell which added Peptide3 and Dinosaur in Test Example 2.
  • 4 is a fluorescence micrograph of M213 cells to which Peptide 3 and EIPA were added in Test Example 2. It is a fluorescence-microscope photograph of M214 cell which added Peptide3 (L body) in Test Example 3 and was culture
  • the present invention provides the following peptide (a) or (b): (A) A peptide consisting of an amino acid sequence containing the sequence represented by SEQ ID NO: 1. (B) A peptide comprising an amino acid sequence comprising a sequence having identity of 60% or more with the sequence represented by SEQ ID NO: 1 and having a specific accumulation property for biliary tract cancer.
  • the peptide of the present embodiment is a novel peptide having an accumulation property specific to biliary tract cancer.
  • the present inventors have found a novel peptide having an accumulation property specific to biliary tract cancer by an in vitro virus (IVV) method, and have completed the present invention.
  • IVV in vitro virus
  • a kind of antibiotic puromycin is bound to the 3 ′ end of mRNA via a PEG (polyethylene glycol) spacer, and cell-free translation reaction is carried out using it as a template, whereby protein and mRNA are purified.
  • a simple mRNA-protein linking molecule IVV covalently linked via is constructed.
  • IVV containing a protein that binds to bait (bait) from this IVV library is picked up in vitro, the mRNA linked to it is reverse-transcribed, amplified by PCR, and the nucleotide sequence is decoded.
  • interacting proteins can be identified in a very small amount (more than 1000 times the sensitivity of mass spectrometry).
  • the peptide of this embodiment includes the following peptide (a).
  • the amino acid sequence represented by SEQ ID NO: 1 in the above (a) is a sequence represented by the following amino acid sequence.
  • LVXGARLVVR SEQ ID NO: 1 [In the amino acid sequence represented by SEQ ID NO: 1 above, X is an isoleucine residue (I), an alanine residue (A), an arginine residue (R), a lysine residue (K) or a histidine residue (H ). ]
  • the peptide (a) has a specific accumulation property for biliary tract cancer. Moreover, even if the peptide of this embodiment is a peptide which consists only of the amino acid sequence represented by sequence number 1, it has accumulation property specific to biliary tract cancer.
  • Bile duct cancer means a malignant tumor that develops from the epithelium of the bile duct.
  • hepatic hilar cholangiocarcinoma hepatic hilar cholangiocarcinoma
  • distal bile duct cancer distal bile duct cancer
  • liver It can be divided into internal bile duct cancer (bile duct cell carcinoma).
  • Gallbladder cancer means a malignant tumor arising from the gallbladder and gallbladder duct.
  • duodenal papilla is composed of the papilla bile duct, papilla pancreas, common duct, and large duodenal papilla
  • duodenal papilla cancer means cancer that has occurred in the above-mentioned site.
  • histopathological classification it refers to adenocarcinoma, adenosquamous carcinoma, and intrahepatic cholangiocellular carcinoma.
  • accumulation specific to biliary tract cancer means a property of being highly absorbed and accumulated in biliary tract cancer cells as compared with normal tissues in vivo and tumor cells of other strains. . As shown in Examples described later, it is presumed that the peptide of this embodiment is absorbed into biliary tract cancer cells by clathrin-dependent endocytosis by dynamin.
  • X is preferably a hydrophilic amino acid residue, and is an arginine residue (R), a lysine residue (K), or a histidine residue (H). Is more preferable, and from the viewpoint of toxicity, an arginine residue (R) is more preferable.
  • amino acid sequence represented by SEQ ID NO: 1 in the above (a) the amino acid sequence represented by SEQ ID NO: 2 and the like can be mentioned.
  • LVRGARLVVR SEQ ID NO: 2
  • the peptide of this embodiment includes the following peptide (b) as a peptide functionally equivalent to the peptide (a).
  • the peptide (b) has 60% or more identity.
  • identity is preferably 70% or more, more preferably 80% or more, further preferably 85% or more, particularly preferably 90% or more, and most preferably 95% or more.
  • the peptide of (b) has a specific accumulation property for biliary tract cancer.
  • the peptide (a) or (b) preferably has a cyclic structure. By being a cyclic structure, it is easily absorbed only into biliary tract cancer cells.
  • the peptide of (a) or (b) may be composed of an L-amino acid, a D-amino acid, or a combination thereof, and is preferably a Retro-Inverso type substituted with a D-form amino acid. .
  • the retro-inverso type makes it difficult to be degraded by intracellular enzymes.
  • the half-life of the peptide (a) or (b) composed only of L-amino acid is 3 to 6 hours, whereas the half-life is increased to 8 to 12 hours due to the Retro-Inverso type. Can do.
  • L-amino acids are naturally occurring amino acids
  • D-amino acids are those in which the chirality of L-amino acid residues is reversed.
  • L-amino acids are naturally occurring amino acids
  • D-amino acids are those in which the chirality of L-amino acid residues is reversed.
  • D-amino acids are those in which the chirality of L-amino acid residues is reversed.
  • in order to enhance the accumulation property specific to biliary tract cancer or may be subjected to chemical modification in order to optimize other physical properties.
  • the peptide (a) or (b) preferably further comprises cysteine residues at the N-terminus and C-terminus.
  • Specific examples include the amino acid sequence represented by SEQ ID NO: 3 below.
  • CLVRGARLLVRC SEQ ID NO: 3
  • the peptide of this embodiment can take a cyclized form by using disulfide bonds between thiol groups possessed by cysteine residues by providing cysteine residues at the N-terminal and C-terminal.
  • nucleic acid encoding peptide In one embodiment, the present invention provides a nucleic acid encoding the peptide described above.
  • a peptide having an accumulation property specific to biliary tract cancer can be obtained.
  • nucleic acid encoding the above peptide for example, a nucleic acid consisting of the base sequence set forth in SEQ ID NO: 4, or 80% or more, such as 85% or more, such as 90% or more, such as the base sequence set forth in SEQ ID NO: 4, for example Examples include nucleic acids including any combination of base sequences encoding each amino acid that is a component of a peptide having 95% or more identity and specific accumulation properties for biliary tract cancer.
  • the base sequence shown in SEQ ID NO: 4 is a nucleic acid base sequence encoding a peptide consisting of the amino acid sequence of SEQ ID NO: 3 above.
  • the present invention provides a vector comprising the nucleic acid described above.
  • a peptide having an accumulation property specific to biliary tract cancer can be obtained.
  • the vector of this embodiment is preferably an expression vector.
  • the expression vector is not particularly limited.
  • plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13
  • plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194
  • plasmids derived from yeast such as pSH19 and pSH15
  • viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus; and modified vectors thereof.
  • the above-mentioned peptide expression promoter is not particularly limited, and examples thereof include animal cells such as EF1 ⁇ promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, HSV-tk promoter, and the like. Promoters for expression using a host cell such as a promoter for expression, cauliflower mosaic virus (CaMV) 35S promoter, REF (rubber elongation factor) promoter, and insect cells such as polyhedrin promoter and p10 promoter. A promoter for expression used as a host can be used. These promoters can be appropriately selected depending on the host expressing the above-mentioned peptide.
  • CaMV cauliflower mosaic virus
  • REF rubber elongation factor
  • the above-described expression vector may further have a multicloning site, an enhancer, a splicing signal, a poly A addition signal, a selection marker, a replication origin, and the like.
  • the present invention provides a carrier comprising a peptide as described above.
  • the target substance can be easily and efficiently transported to the biliary tract cancer.
  • the carrier of this embodiment further includes a labeling substance or a modifying substance.
  • the carrier of this embodiment may include both a labeling substance and a modifying substance.
  • the labeling substance or modifying substance may be physically or chemically bound to the above-described peptide directly or via a linker.
  • the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
  • the labeling substance examples include stable isotopes, radioisotopes, fluorescent substances, positron emission tomography (PET) nuclide, single photon emission tomography (SPECT) nuclide, nuclide Examples thereof include a magnetic resonance imaging (MRI) contrast agent, a computed tomography (CT) contrast agent, and a magnetic substance. Of these, stable isotopes, radioactive isotopes or fluorescent substances are preferred.
  • stable isotopes examples include 13 C, 15 N, 2 H, 17 O, and 18 O.
  • radioisotope examples include 3 H, 14 C, 13 N, 32 P, 33 P, and 35 S.
  • the above peptide may be prepared using a stable isotope-labeled amino acid or a radioisotope-labeled amino acid.
  • amino acids labeled with stable isotopes or radioisotopes 20 kinds of amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine , Valine, tryptophan, cysteine, asparagine, glutamine), and any amino acids included in the above-mentioned peptides are not particularly limited.
  • the amino acid may be L-form or D-form, and can be appropriately selected as necessary.
  • the above-mentioned peptide labeled with a stable isotope or a radioisotope is prepared by expressing the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide in a system in which a stable isotope-labeled amino acid or a radioisotope-labeled amino acid is present. can do.
  • systems in which stable isotope-labeled amino acids or radioisotope-labeled amino acids are present include cell-free peptide synthesis systems in which stable isotope-labeled amino acids or radioisotope-labeled amino acids are present, live cell peptide synthesis systems, etc. .
  • a peptide in addition to a stable isotope-labeled amino acid or a radioisotope-labeled amino acid, a peptide is synthesized using a stable isotope unlabeled amino acid or a radioisotope unlabeled amino acid as a material, or a live cell peptide synthesis system
  • a cell transformed with the above vector containing a nucleic acid encoding the above peptide is cultured in the presence of a stable isotope labeled amino acid or a radioisotope labeled amino acid to thereby contain the above nucleic acid encoding the above peptide.
  • a stable isotope-labeled or radioisotope-labeled peptide described above can be prepared from a vector.
  • Expression of the above-mentioned peptide labeled with a stable isotope or radioisotope using a cell-free peptide synthesis system is performed by the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide, the above-mentioned stable isotope-labeled amino acid or radioisotope
  • a stable isotope-labeled amino acid or a radioisotope-unlabeled amino acid a cell extract for cell-free peptide synthesis, which is necessary for the synthesis of the above-mentioned peptide labeled with a stable isotope or a radioisotope
  • an energy source high energy phosphate bond-containing material such as ATP, GTP, creatine phosphate, etc.
  • Reaction conditions such as temperature and time can be appropriately selected as appropriate.
  • the temperature is 20 to 40 ° C., preferably
  • cell extract for cell-free peptide synthesis refers to a translation system involved in protein synthesis such as ribosome, tRNA, or a plant cell, animal cell, which contains components necessary for a transcription system and a translation system, It means an extract from fungal cells and bacterial cells. Specific examples include cell extracts such as Escherichia coli, wheat germ, rabbit reticulocyte, mouse L-cell, Ehrlich ascites tumor cell, HeLa cell, CHO cell, and budding yeast. Preparation of such cell extracts is described, for example, in Pratt, J. et al. M.M. Et al., Transcribation and translation-a practical approach (1984), pp.
  • the above cells are disrupted using a French press, glass beads, an ultrasonic disrupter, etc., and a buffer containing several kinds of salts for solubilizing protein components and ribosomes is prepared.
  • a buffer containing several kinds of salts for solubilizing protein components and ribosomes is prepared.
  • it can be performed by homogenizing and precipitating insoluble components by centrifugation.
  • the expression of the above-mentioned peptide labeled with a stable isotope or radioisotope using a cell-free peptide synthesis system is, for example, Premium Expression Kit (manufactured by Cell Free Science) with wheat germ extract, Escherichia coli extraction RTS 100, E. You may carry out using commercially available kits, such as E. coli HY Kit (Roche Applied Science company) and a cell-free Quick (manufactured by Taiyo Nippon Sanso Corporation).
  • the expressed stable isotope-labeled or radioisotope-labeled peptide described above may be appropriately solubilized using a protein denaturant such as guanidine hydrochloride or urea.
  • a protein denaturant such as guanidine hydrochloride or urea.
  • the above-mentioned peptides labeled with a stable isotope or a radioisotope are further prepared by fractionation by fractional centrifugation, sucrose density gradient centrifugation, etc., or by purification using affinity column, ion exchange chromatography, etc. You can also
  • the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide is introduced into a living cell, and the living cell is nutrientized.
  • stable isotope-labeled amino acids or radioisotope-labeled amino acids stable isotope-labeled peptides or radioisotope-labeled peptides, It can be performed by culturing in a culture solution containing a labeled amino acid or the like.
  • the living cell is not particularly limited as long as it is a living cell capable of expressing the above-described vector containing the nucleic acid encoding the above-mentioned peptide, for example, a mammalian cell line such as a Chinese hamster ovary (CHO) cell, Examples include living cells such as E. coli, yeast cells, insect cells, and plant cells, and E. coli is preferred in view of convenience and cost effectiveness.
  • CHO Chinese hamster ovary
  • the expression of the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide is incorporated into an expression vector designed so that it can be expressed in each living cell by gene recombination technology, and the expression vector is introduced into the living cell. It can be carried out.
  • introduction of the above-mentioned vector containing a nucleic acid encoding the above-described peptide into a living cell can be performed by a method suitable for the living cell to be used, for example, electroporation method, heat shock method, calcium phosphate method, lipofection Method, DEAE dextran method, microinjection method, particle gun method, method using virus, FuGENE (registered trademark) 6 Transfection Reagent (manufactured by Roche), Lipofectamine 2000 Reagent (manufactured by Invitrogen), Lipofectamine LTX Regent (in vitro) A commercially available transfection reagent such as Lipofectamine 3000 Reagent (manufactured by Invitrogen). Mention may be made of the law and the like.
  • the above-mentioned peptide labeled with a stable isotope label or radioisotope labeled expressed by a living cell peptide synthesis system crushes or extracts a living cell containing the above-mentioned peptide labeled with a stable isotope or radioisotope.
  • the crushing treatment include a physical crushing treatment using a freeze-thaw method, a French press, glass beads, a homogenizer, an ultrasonic crushing device, and the like.
  • Examples of the extraction treatment include extraction treatment using a protein denaturant such as guanidine hydrochloride and urea.
  • the above-mentioned peptide labeled with a stable isotope or a radioisotope is further purified by fractionation using a differential centrifugation method, sucrose density gradient centrifugation, or purification using an affinity column, ion exchange chromatography, etc. It can also be prepared.
  • the above-mentioned peptide labeled with a fluorescent substance is the above-mentioned vector containing a fluorescent substance and a nucleic acid encoding the above-mentioned peptide. May be prepared by the above cell-free peptide synthesis system or living cell peptide synthesis system without using stable isotope-labeled amino acids or radioisotope-labeled amino acids.
  • the above-mentioned peptide labeled with the PET nuclide or SPECT nuclide may be prepared by the above-mentioned cell-free peptide synthesis system or the living cell peptide synthesis system containing the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide.
  • the MRI contrast agent, CT contrast agent, and magnetic substance include gadolinium, Gd-DTPA, Gd-DTPA-BMA, Gd-HP-DO3A, iodine, iron, iron oxide, chromium, manganese, or a complex thereof, or a chelate thereof. A complex etc. are mentioned.
  • the above-mentioned peptide labeled with an MRI contrast agent, CT contrast agent or magnetic substance is physically or chemically obtained by directly or via a linker between the MRI contrast agent, CT contrast agent or magnetic substance and the above-mentioned peptide.
  • the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
  • the modifying substance examples include sugar chains and polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the target substance can be easily and efficiently absorbed into the biliary tract cancer cells.
  • the above-mentioned peptide modified with the modifying substance may be prepared by physically or chemically bonding the modifying substance and the above-mentioned peptide directly or via a linker.
  • the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
  • the target substance can be appropriately selected depending on the application.
  • the target substance when used for imaging biliary tract cancer, the target substance is provided with the above-described labeling substance as described later.
  • a physiologically active substance when used in the treatment or diagnosis of biliary tract cancer, as described later, a physiologically active substance can be provided as a target substance.
  • the target substance may be physically or chemically bound to the above peptide directly or via a linker.
  • the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
  • a fusion protein containing the target substance and the above-described peptide can be produced by, for example, the following method.
  • a host is transformed with an expression vector containing a nucleic acid encoding a fusion protein.
  • the host is cultured to express the fusion protein.
  • Conditions such as medium composition, culture temperature, time, addition of inducer, etc. can be determined by those skilled in the art according to known methods so that the transformant grows and the fusion protein is efficiently produced.
  • an antibiotic resistance gene is incorporated into an expression vector as a selection marker, a transformant can be selected by adding an antibiotic to the medium.
  • the fusion protein expressed by the host is purified by an appropriate method to obtain the fusion protein.
  • the host is not particularly limited as long as it is a living cell capable of expressing an expression vector containing a nucleic acid encoding a fusion protein.
  • a mammalian cell line such as a Chinese hamster ovary (CHO) cell, or a virus (eg, adeno Virus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus etc.), microorganisms such as bacteria (eg E. coli etc.), live cells such as yeast cells, insect cells, plant cells Can be mentioned.
  • an expression vector containing a nucleic acid encoding the above-described fusion protein may be directly introduced into a biliary tract cancer cell or tissue for expression.
  • the present invention provides a pharmaceutical composition comprising the carrier described above and a physiologically active substance.
  • biliary tract cancer can be selectively treated.
  • the “physiologically active substance” is not particularly limited as long as it is effective for treating biliary tract cancer.
  • drugs such as anticancer agents, nucleic acids, antibodies that specifically bind to biliary tract cancer, antibodies Examples thereof include fragments and aptamers.
  • the “physiologically active substance” a molecular target drug having selective cytotoxic activity against biliary tract cancer is preferable.
  • cytotoxic used as a conventional anticancer agent is used. Medicine may be used.
  • the physiologically active substance may be physically or chemically bound to the above carrier directly or via a linker.
  • the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
  • the above-mentioned carrier may contain the above-mentioned labeling substance or modifying substance.
  • nucleic acid examples include siRNA, miRNA, antisense, or an artificial nucleic acid that compensates for these functions.
  • An antibody can be prepared, for example, by immunizing a rodent animal such as a mouse with a peptide derived from biliary tract cancer as an antigen. Further, for example, it can be prepared by screening a phage library. Examples of antibody fragments include Fv, Fab, scFv and the like.
  • Aptamers are substances that have a specific binding ability to biliary tract cancer.
  • Examples of aptamers include nucleic acid aptamers and peptide aptamers.
  • Nucleic acid aptamers having a specific binding ability to biliary tract cancer can be selected by, for example, the systematic evolution of ligand by exponential enrichment (SELEX) method.
  • Peptide aptamers having specific binding ability to biliary tract cancer can be selected by, for example, the two-hybrid method using yeast.
  • the pharmaceutical composition of the present embodiment can be used for biliary tract cancer diagnosis, biliary tract cancer treatment effect diagnosis, pathological analysis, biliary tract cancer treatment, or diagnosis of disease associated with biliary tract cancer, pathological analysis, treatment, and therapeutic effect diagnosis.
  • a diagnostic method for example, PET, SPECT, CT, MRI, an endoscope, a fluorescence detector, and the like can be used.
  • the pharmaceutical composition of the present embodiment takes into account the age, sex, weight, symptoms, treatment method, administration method, treatment time, etc. of the test animal (various mammals including humans or non-human animals, preferably humans). Adjust as appropriate.
  • the pharmaceutical composition of the present embodiment is injected intravenously (Intravenous: iv) by injection, 5 mg or more per kg body weight in a single administration to a test animal (preferably a human).
  • the amount of peptide is preferably administered, more preferably 5 mg or more and 15 mg or less of peptide, and particularly preferably 5 mg or more and 10 mg or less of peptide.
  • the number of administration is preferably 1 to several times per week.
  • Examples of the dosage form include intraarterial injection, intravenous injection, subcutaneous injection, intranasal, intraperitoneal, transbronchial, intramuscular, transdermal, or oral methods known to those skilled in the art. Intravenous injection or intraperitoneal administration is preferred.
  • composition component comprises a therapeutically effective amount of the above-described carrier and bioactive substance, and a pharmaceutically acceptable carrier or diluent.
  • Pharmaceutically acceptable carriers or diluents include excipients, diluents, extenders, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, colorants, sweeteners, thickeners, flavoring agents. Agents, solubilizers, additives and the like.
  • pharmaceutical compositions in the form of injections, solutions, capsules, suspensions, emulsions, syrups and the like can be prepared.
  • a colloidal dispersion system can also be used as the carrier.
  • the colloidal dispersion system is expected to have an effect of enhancing the in vivo stability of the peptide and an effect of enhancing the transferability of the peptide to a specific organ, tissue, or cell.
  • colloidal dispersion systems include polyethylene glycol, polymer composites, polymer aggregates, nanocapsules, microspheres, beads, oil-in-water emulsifiers, micelles, mixed micelles, and lipids including liposomes. Liposomes and artificial membrane vesicles, which are effective in efficiently transporting peptides to the organs, tissues, or cells, are preferred.
  • Examples of formulation in the pharmaceutical composition of this embodiment include those used orally as tablets, capsules, elixirs, and microcapsules with sugar coating as necessary. Alternatively, those which are used parenterally in the form of sterile solutions with water or other pharmaceutically acceptable liquids, or injectable suspensions. Further, a pharmacologically acceptable carrier or diluent, specifically, sterilized water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, Examples thereof include those formulated by mixing with a preservative, a binder and the like, and mixing in a unit dosage form generally required for pharmaceutical practice.
  • Additives that can be mixed into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, swelling such as corn starch, gelatin, and alginic acid Agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavoring agents such as peppermint, red mono oil or cherry.
  • the above material can further contain a liquid carrier such as fats and oils.
  • Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride.
  • Suitable solubilizers such as Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), HCO-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • a buffering agent eg, phosphate buffer, sodium acetate buffer, etc.
  • a soothing agent eg, procaine hydrochloride, etc.
  • a stabilizer eg, benzyl alcohol, phenol, etc.
  • an antioxidant etc.
  • an injection it can also be prepared as an aqueous or non-aqueous diluent, suspension, or emulsion as described above.
  • sterilization of injections can be performed by blending filter sterilization with a filter, bactericides, and the like.
  • injectables can be manufactured in the form of business preparation. That is, it can be used as a sterile solid composition by lyophilization, etc., and dissolved in distilled water for injection or other solvent before use.
  • One aspect of the present invention provides a pharmaceutical composition comprising the above carrier and a physiologically active substance for the treatment of biliary tract cancer.
  • One aspect of the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of the above-described carrier and bioactive substance, and a pharmaceutically acceptable carrier or diluent.
  • One aspect of the present invention also provides a therapeutic agent for biliary tract cancer comprising the pharmaceutical composition.
  • one aspect of the present invention provides use of the above-described carrier and physiologically active substance for producing a therapeutic agent for biliary tract cancer.
  • Another aspect of the present invention provides a method for treating biliary tract cancer, comprising administering an effective amount of the above carrier and physiologically active substance to a patient in need of treatment.
  • the present invention provides a method for imaging biliary tract cancer using the carrier described above.
  • biliary tract cancer can be detected simply, with high sensitivity and selectively.
  • the carrier described above preferably includes a labeling substance. Furthermore, you may provide the modifier. Examples of the labeling substance and the modifying substance include those described above.
  • the addition amount of the above-mentioned carrier with a labeling substance is preferably 1 ⁇ M or more and 4 ⁇ M or less in the culture solution.
  • it can be evaluated whether or not it is accumulated in the biliary tract cancer cells after 30 minutes or more and 3 hours or less after the addition.
  • the above-mentioned carrier comprising a fluorescent substance as a labeling substance is injected intravenously (Intravenous: iv) with an injection, 1 kg body weight can be obtained per administration to a test animal (preferably human). It is preferable to administer a peptide amount of 5 mg or more, more preferably 5 mg to 15 mg of peptide, and particularly preferably 5 mg to 10 mg of peptide.
  • a PET nuclide or a SPECT nuclide as a labeling substance is injected intravenously (Intravenous: iv) by injection
  • the stable isotope used the PET nuclide
  • what is necessary is just to determine dosage from the radiation dose according to the kind of nuclide for SPECT.
  • PET PET, SPECT, CT, MRI, an endoscope, a fluorescence detector, or the like can be used as a method for detecting the carrier including the labeling substance.
  • Example 1 Peptide synthesis Protein-RNA chimera type random having a 12 amino acid residue peptide as a phenotype and an mRNA coding sequence as a corresponding genotype via a puromycin that is produced independently Using a peptide library (in vitro virus library; IVVL), each peptide (Peptide 1 to 4) shown in Table 1 below was separated and identified according to a known IVV (in vitro virus) method. In addition, each identified peptide derived from IVVL is synthesized with a FITC (Fluoresceinisothiocynate) label and subjected to hydrochloride treatment. R9 (9-residue continuous D-arginine) is a non-selective membrane-permeable peptide that is currently widely used. All of these were obtained by consignment synthesis to Sigma Aldrich Japan (Genosis Division).
  • FITC Fluoresceinisothiocynate
  • MMNK-1 cells For cholangiocarcinoma cells, MMNK-1 cells, hepatoma cells, HeLa cells, U2OS cells, A172 cells, A549 cells, MCF7 cells, GCIY cells, Lovo cells, BxPC3 cells, KPK cells, PC-3 cells, NHDF cells, 10 Culturing was performed using RPMI1640 medium containing% FBS (RPMI1640 medium). Hepatocyte cells were cultured using 5% FBS-containing hepatocyte medium (Hepatocyte medium). HPNE cells were cultured using a CS-C medium kit containing 5% FBS. NuLi-1 cells were cultured using BEGM medium (Bronchial Epidermal Growth Medium, Serum-free). Kidney cells were cultured using a growth medium for normal human kidney epithelial cells (RenaLife Comp Kit). TIME cells were cultured using EBM-2-MV Bullet kit (Endothelial Cell Basal Medium-2 Bullet kit).
  • Example 1 Confirmation test of peptide accumulation in biliary tract cancer cells
  • Peptides 1, 2 and 3 prepared in Example 1 were added to M156 cells, M213 cells, M214 cells and KKU-100 cells in a medium at 4 ⁇ M, respectively. It added so that it might become. The cells were incubated for 60 minutes at 37 ° C. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope. Remove the culture supernatant to which the peptide was added before microscopic examination, wash 3 times with 1 ⁇ PBS ( ⁇ ), trypsinize, peel off the adherent cells, and immediately transfer to a new 96-well plate. After resuspension, microscopic examination was performed. The results are shown in FIG.
  • Chlorpromazine is an inhibitor that inhibits clathrin-dependent endocytosis.
  • Dinosaur is an inhibitor that inhibits clathrin-dependent endocytosis by dynamin.
  • EIPA is an inhibitor that inhibits macropinocytosis (phagocytosis).
  • Test Example 7 Confirmation test for accumulation of peptides in normal cells derived from various tissues Peptide 3 (4 ⁇ M) and nuclear stain prepared in Example 1 on normal cells derived from various tissues shown in Table 1 above Hoechst (manufactured by Dojindo Co., Ltd.) was added and cultured at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
  • FIG. 8 reveals that Peptide3 is not taken up by MMNK-1 cells but is taken up only by M156 cells. From this, it was revealed that the peptide of the present invention has specific accumulation properties only in cholangiocarcinoma cells, unlike Tat, which is a conventional cell-permeable peptide.
  • “gal” means gallbladder
  • “liv” means liver
  • “st” means stomach
  • “sp” means spleen
  • “br” means brain
  • “hr” means heart
  • “kd” means kidney
  • “lu” means lung
  • “tumor” means malignant tumor.
  • “Bright Field” is an image taken in a bright field
  • “FITC” is an image taken in a dark field. The upper image is an image when the mouse is opened, the lower left image is an image of various extracted tissues, and the lower right image is an image of sliced various extracted tissues. .
  • FIG. 10 confirmed that Peptide 3 was accumulated only in the gallbladder and malignant tumor.
  • fluorescence was detected only in cholangiocarcinoma cells.
  • Peptide 3 when compared with bile duct cancer cells to which Peptide 3 was added, stronger fluorescence was detected in the bile duct cancer cells to which Peptide 4 was added.
  • fluorescence was also detected in SSP25 cells, OCUG-1 cells, TFK-1 cells and HuCCT1 cells in which no fluorescence was detected with Peptide3. From the above, it was confirmed that Peptide4 which is D body has higher accumulation property in cholangiocarcinoma cells.
  • FIG. 12 “gal” means gallbladder, “liv” means liver, “st” means stomach, “sp” means spleen, “br” means brain, “hr” means heart, “kd” means kidney, “lu” means lung, and “tumor” means malignant tumor.
  • “Bright Field” is an image taken in a bright field
  • “FITC” is an image taken in a dark field.
  • the upper image is an image of a tissue extracted from a mouse added with Peptide3
  • the lower image is an image of a tissue extracted from a mouse added with Peptide4.
  • the left image is an image of various extracted tissues
  • the right image is an image of sliced various tissues.
  • FIG. 13A and 13B are graphs showing the ratios of the fluorescence intensities detected in various tissues when the fluorescence detected in each tissue is quantified and the fluorescence detected in the pancreas is 1 in Test Example 12. It is.
  • FIG. 14 is a graph showing the ratio of the fluorescence intensity detected in the malignant tumor when the fluorescence detected in each tissue is quantified and the fluorescence detected in each tissue is 1. From FIG. 13A and FIG. 13B, in the mouse administered with Peptide3, the fluorescence detected in the malignant tumor was about 8.6 times the fluorescence detected in the liver, whereas in the mouse administered with Peptide4, the malignant tumor was detected. The detected fluorescence was about 45.8 times the fluorescence detected in the liver. In addition, from FIG. 14, when the fluorescence in any tissue was set to 1, it was detected in the malignant tumor in the mouse administered with Peptide 4 rather than the fluorescence detected in the malignant tumor in the mouse administered with Peptide 3. Fluorescence was higher.
  • Peptide 4 which is D body, has higher accumulation in cholangiocarcinoma cells.
  • “Bright Field” is an image taken in a bright field
  • “FITC” is an image taken in a dark field.
  • the upper image is an image when the mouse is opened
  • the lower left image is an image of the extracted liver and malignant tumor
  • the lower right image is a slice of the extracted liver and malignant tumor. It is an image of things.
  • FIG. 15 confirmed that Peptide 4 was accumulated only in the gallbladder and malignant tumor.
  • Peptide 3 has an accumulation property not only in cultured cells but also in cholangiocarcinoma cells derived from cholangiocarcinoma patients.
  • a novel peptide having an accumulation property specific to biliary tract cancer can be provided.
  • biliary tract cancer can be detected simply, with high sensitivity and selectively.

Abstract

The present invention provides a novel peptide that specifically accumulates in biliary tract cancer. The peptide according to the present invention is (a) a peptide having an amino acid sequence containing a sequence represented by SEQ ID NO. 1, or (b) a peptide having an amino acid sequence containing a sequence having an identity of 60% or more with respect to the sequence represented by SEQ ID NO. 1, and specifically accumulates in biliary tract cancer.

Description

胆道癌に特異的な集積性を有するペプチド及びその使用Peptide having specific accumulation property for biliary tract cancer and use thereof
 本発明は、胆道癌に特異的な集積性を有するペプチド及びその使用に関する。
 本願は、2015年10月1日に、日本に出願された特願2015-196227号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a peptide having an accumulation property specific to biliary tract cancer and use thereof.
This application claims priority based on Japanese Patent Application No. 2015-196227 filed in Japan on October 1, 2015, the contents of which are incorporated herein by reference.
 胆道癌は、胆管癌、胆嚢癌、及び十二指腸乳頭部癌からなる癌である。日本における胆管癌及び胆嚢癌の死亡数は、2013年では男性約8,900人、女性約9,300人である。胆管癌及び胆嚢癌の罹患数(全国推計値)は、2010年では、男性約11,300例及び女性約11,300例で、それぞれ癌罹患数全体の2%及び3%を占める。また、胆管癌及び胆嚢癌患者の内、外科手術が適用可能なのは全体の約20%であり、さらに、外科手術後から5年後の生存率は約30%である。
 胆道癌は、早期には自覚症状がほとんどなく、黄疸、白色便、黄疸尿、腹痛等の症状が現れた時点ではある程度進行していることがあり、早期に発見することが治療において重要である。なお、本明細書における胆道癌とは病理組織学的に胆管上皮由来の腺癌、腺扁平上皮癌、肝内胆管細胞癌を包括する。
Biliary tract cancer is a cancer composed of bile duct cancer, gallbladder cancer, and duodenal papilla cancer. The number of deaths from bile duct cancer and gallbladder cancer in Japan is about 8,900 men and about 9,300 women in 2013. The number of bile duct cancer and gallbladder cancer cases (national estimates) in 2010 was about 11,300 males and about 11,300 females, accounting for 2% and 3% of the total cancer cases, respectively. Of the patients with bile duct cancer and gallbladder cancer, about 20% of the patients can apply surgery, and the survival rate five years after surgery is about 30%.
Biliary tract cancer has few subjective symptoms at an early stage and may progress to some extent when symptoms such as jaundice, white stool, jaundice urine, abdominal pain appear, and early detection is important in treatment . The biliary tract cancer in the present specification includes bile duct epithelium-derived adenocarcinoma, adenosquamous cell carcinoma, and intrahepatic cholangiocellular carcinoma in terms of histopathology.
 胆道癌(特に、肝内又は肝外胆管上皮由来癌)の検査及び診断方法は、血液生化学的検査、腹部超音波検査、腹部造影CT検査、内視鏡的逆行性膵胆管造影(ERCP:endoscopic retrograde cholangiopancreatography)、FDG-PET(Fluorodeoxy glucose-Positron Emission Tomography)検査等が挙げられる。 Tests and diagnostic methods for biliary tract cancer (particularly intrahepatic or extrahepatic bile duct epithelium-derived cancer) include blood biochemical examination, abdominal ultrasonography, abdominal contrast CT examination, endoscopic retrograde pancreatobiliary imaging (ERCP: Examples include endoscopic retrograde cholangiopancreatography and FDG-PET (Fluorodeoxy glucose-Positron Emission Tomography) inspection.
 ところで、ペプチドをバイオマテリアルとして活用した医療分野での動向において、Tat、penetratin、polyarginine等の細胞膜透過性(細胞吸収性)ペプチドが着目されている。
 しかしながら、これらのペプチドは、正常細胞又は正常組織と腫瘍細胞又は腫瘍組織との区別なく広汎且つ非選択的に吸収されるため、標的選択的な薬剤輸送を要求する悪性腫瘍の治療DDS(Drag Delivery System)ツールに応用することは、重篤な副作用を惹起する点で利用困難である。特に、世界的に実験系で汎用されているTat等の細胞膜透過性(細胞吸収性)ペプチドは、肝臓に集積を引き起こす性質が知られている(例えば、非特許文献1参照)。
 これに対して、cyclic RGDは、唯一医薬化されているペプチドである。cyclic RGDは、新生血管あるいは既存血管中の内皮細胞(及び一部の腫瘍細胞)で高発現することが報告されているαβインテグリンを標的としており、血管透過性亢進にその作用点を持っているため、単独でなく他の医薬との同時併用の形でイメージング剤やDDS剤として応用されている(例えば、特許文献1参照。)。
By the way, in the trend in the medical field utilizing peptides as biomaterials, cell membrane-permeable (cell-absorbing) peptides such as Tat, penetratin, and polyargineine have attracted attention.
However, since these peptides are widely and non-selectively absorbed without distinction between normal cells or normal tissues and tumor cells or tumor tissues, treatment of malignant tumors requiring target-selective drug transport DDS (Drag Delivery) Application to the (System) tool is difficult in that it causes serious side effects. In particular, cell membrane-permeable (cell-absorbing) peptides such as Tat, which are widely used in experimental systems worldwide, are known to cause accumulation in the liver (see, for example, Non-Patent Document 1).
In contrast, cyclic RGD is the only medicinal peptide. Cyclic RGD targets α v β 3 integrin, which has been reported to be highly expressed in endothelial cells (and some tumor cells) in new blood vessels or existing blood vessels, and its action point for enhancing vascular permeability. Therefore, it is applied as an imaging agent or a DDS agent in the form of simultaneous use with other drugs, not alone (see, for example, Patent Document 1).
特許第5721140号公報Japanese Patent No. 5721140
 上述の胆道癌(特に、肝内又は肝外胆管上皮由来癌)の検査及び診断方法では、検査結果の判断基準が異常陰影の判定である。陰影判定には病変の拡がりを含めて精度上の限界が存在する。
 また、特許文献1に記載のcyclic RGDは、腫瘍細胞及び腫瘍組織そのものを標的とするペプチドではないため、がんを直接捕捉する性能を持つペプチドという点で新規であり、制がん医療技術の面で未だ改良の余地があった。
In the above-described inspection and diagnosis method for biliary tract cancer (particularly, intrahepatic or extrahepatic bile duct epithelial cancer), the determination criterion of the inspection result is the determination of an abnormal shadow. There is a limit to the accuracy of shadow determination, including the spread of lesions.
In addition, the cyclic RGD described in Patent Document 1 is not a peptide that targets tumor cells and tumor tissue itself, and thus is novel in terms of a peptide having the ability to directly capture cancer. There was still room for improvement.
 本発明は、上記事情に鑑みてなされたものであって、胆道癌細胞及び組織に直接作用しに特異的な集積性を有する新規ペプチドを提供する。 The present invention has been made in view of the above circumstances, and provides a novel peptide having a specific accumulation property by directly acting on biliary tract cancer cells and tissues.
 すなわち、本発明は、以下の態様を含む。
[1]以下の(a)又は(b)のペプチド。
(a)配列番号1で表される配列を含むアミノ酸配列からなるペプチド、
(b)配列番号1で表される配列と同一性が60%以上である配列を含むアミノ酸配列からなり、且つ、胆道癌に特異的な集積性を有するペプチド
[2]環状構造である、[1]に記載のペプチド。
[3]さらに、N末端及びC末端にシステイン残基を備える[1]又は[2]に記載のペプチド。
[4]D体アミノ酸に置換したRetro-Inverso型である[1]~[3]のいずれか一つに記載のペプチド。
[5][1]~[4]のいずれか一つに記載のペプチドをコードすることを特徴とする核酸。
[6][5]に記載の核酸を含むことを特徴とするベクター。
[7][1]~[4]のいずれか一つに記載のペプチドを含むことを特徴とするキャリア。
[8]さらに、標識物質又は修飾物質を備える[7]に記載のキャリア。
[9]前記標識物質が、安定同位体、放射性同位体又は蛍光物質である[8]に記載のキャリア。
[10]前記修飾物質が、糖鎖又はポリエチレングリコールである[8]又は[9]に記載のキャリア。
[11][7]~[10]のいずれか一つに記載のキャリアと生理活性物質とを備えることを特徴とする医薬組成物。
[12]胆道癌治療用又は診断用である[11]に記載の医薬組成物。
That is, the present invention includes the following aspects.
[1] The following peptide (a) or (b):
(A) a peptide comprising an amino acid sequence comprising the sequence represented by SEQ ID NO: 1,
(B) a peptide [2] consisting of an amino acid sequence comprising a sequence having an identity of 60% or more with the sequence represented by SEQ ID NO: 1 and having a specific accumulation property for biliary tract cancer [2] a cyclic structure [ 1].
[3] The peptide according to [1] or [2], further comprising cysteine residues at the N-terminus and C-terminus.
[4] The peptide according to any one of [1] to [3], which is a retro-inverso type substituted with a D-form amino acid.
[5] A nucleic acid encoding the peptide according to any one of [1] to [4].
[6] A vector comprising the nucleic acid according to [5].
[7] A carrier comprising the peptide according to any one of [1] to [4].
[8] The carrier according to [7], further comprising a labeling substance or a modifying substance.
[9] The carrier according to [8], wherein the labeling substance is a stable isotope, a radioisotope or a fluorescent substance.
[10] The carrier according to [8] or [9], wherein the modifying substance is a sugar chain or polyethylene glycol.
[11] A pharmaceutical composition comprising the carrier according to any one of [7] to [10] and a physiologically active substance.
[12] The pharmaceutical composition according to [11], which is for treating or diagnosing biliary tract cancer.
 本発明によれば、胆道癌に特異的な集積性を有する新規ペプチドを提供することできる。また、胆道癌を簡便、高感度且つ選択的に検出することができる。 According to the present invention, a novel peptide having an accumulation property specific to biliary tract cancer can be provided. In addition, biliary tract cancer can be detected simply, with high sensitivity and selectively.
試験例1における各種ペプチドを添加した各種胆道癌細胞の蛍光顕微鏡写真である。2 is a fluorescence micrograph of various biliary tract cancer cells to which various peptides in Test Example 1 are added. 試験例2におけるPeptide3及びクロルプロマジンを添加したM213細胞の蛍光顕微鏡写真である。4 is a fluorescence micrograph of M213 cells to which Peptide 3 and chlorpromazine in Test Example 2 were added. 試験例2におけるPeptide3及びダイナソーを添加したM213細胞の蛍光顕微鏡写真である。It is a fluorescence micrograph of M213 cell which added Peptide3 and Dinosaur in Test Example 2. 試験例2におけるPeptide3及びEIPAを添加したM213細胞の蛍光顕微鏡写真である。4 is a fluorescence micrograph of M213 cells to which Peptide 3 and EIPA were added in Test Example 2. 試験例3におけるPeptide3(L体)を添加し、異なる血清濃度で培養したM214細胞の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph of M214 cell which added Peptide3 (L body) in Test Example 3 and was culture | cultivated by different serum concentration. 試験例3におけるPeptide4(D体)を添加し、異なる血清濃度で培養したM214細胞の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph of M214 cell which added Peptide4 (D body) in Experiment 3 and was culture | cultivated by different serum concentration. 試験例4におけるPeptide3を添加した各種胆道癌細胞の蛍光顕微鏡写真である。4 is a fluorescence micrograph of various biliary tract cancer cells to which Peptide 3 was added in Test Example 4. 試験例5におけるPeptide3を添加した各種肝癌細胞の蛍光顕微鏡写真である。6 is a fluorescence micrograph of various liver cancer cells to which Peptide 3 in Test Example 5 was added. 試験例6におけるPeptide3を添加した各種癌細胞の蛍光顕微鏡写真である。4 is a fluorescence micrograph of various cancer cells to which Peptide 3 in Test Example 6 was added. 試験例7におけるPeptide3を添加した正常な各種組織由来の細胞の蛍光顕微鏡写真である。7 is a fluorescence micrograph of cells derived from various normal tissues to which Peptide 3 was added in Test Example 7. 試験例8におけるPeptide3を添加し、共培養した胆管癌細胞及び胆管由来の正常な細胞の蛍光顕微鏡写真である。6 is a fluorescence micrograph of cholangiocarcinoma cells and normal cells derived from bile ducts co-cultured with Peptide 3 in Test Example 8. 試験例9におけるM214細胞を移植し、Peptide3(L体)を腹腔内投与したマウスの各種組織の明視野及び暗視野の蛍光顕微鏡写真である。It is the fluorescence-microscope photograph of the bright field of the various structures | tissues of the mouse | mouth which transplanted M214 cell in Test Example 9, and administered Peptide3 (L body) intraperitoneally. 試験例10におけるM156細胞を植えた肝臓を移植し、Peptide3(L体)を腹腔内投与したマウスの各種組織の明視野及び暗視野の蛍光顕微鏡写真である。It is the fluorescence-microscope photograph of the bright field of the various structures | tissue of the mouse | mouth which transplanted the liver which planted the M156 cell in Test Example 10, and administered Peptide3 (L body) intraperitoneally. 試験例11におけるPeptide4(D体)を添加した各種細胞の蛍光顕微鏡写真である。It is a fluorescence-microscope photograph of the various cells which added Peptide4 (D body) in Experiment 11. 試験例12におけるTKKK細胞を移植し、Peptide3(L体)又はPeptide4(D体)を腹腔内投与したマウスの各種組織の明視野及び暗視野の蛍光顕微鏡写真である。It is the fluorescence micrograph of the bright field of the various tissues | tissue of the mouse | mouth which transplanted the TKKK cell in Test Example 12, and administered Peptide3 (L body) or Peptide4 (D body) intraperitoneally. 試験例12におけるTKKK細胞を移植し、Peptide3(L体)を腹腔内投与したマウスの各種組織での蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity in the various structure | tissues of the mouse | mouth which transplanted the TKKK cell in Experiment 12, and administered Peptide3 (L body) intraperitoneally. 試験例12におけるTKKK細胞を移植し、Peptide4(D体)を腹腔内投与したマウスの各種組織での蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity in the various structure | tissues of the mouse | mouth which transplanted the TKKK cell in Experiment 12, and administered Peptide4 (D body) intraperitoneally. 試験例12におけるTKKK細胞を移植し、Peptide3(L体)又はPeptide4(D体)を腹腔内投与したマウスの各種組織での蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity in the various structures | tissues of the mouse | mouth which transplanted the TKKK cell in Experiment 12, and administered Peptide3 (L body) or Peptide4 (D body) intraperitoneally. 試験例13におけるM156細胞を移植し、Peptide4(D体)を腹腔内投与したマウスの各種組織の明視野及び暗視野の蛍光顕微鏡写真である。It is the fluorescence-microscope photograph of the bright field of the various structures | tissue of the mouse | mouth which transplanted M156 cell in Test Example 13, and administered Peptide4 (D body) intraperitoneally. 試験例14におけるPeptide3を添加した胆管癌患者の腹水に含まれる胆管癌細胞の蛍光顕微鏡写真である。It is a fluorescence micrograph of a bile duct cancer cell contained in the ascites of a bile duct cancer patient to which Peptide 3 was added in Test Example 14.
[胆道癌に特異的な集積性を有するペプチド]
 一実施形態において、本発明は、以下の(a)又は(b)のペプチドを提供する。
(a)配列番号1で表される配列を含むアミノ酸配列からなるペプチド。
(b)配列番号1で表される配列と同一性が60%以上である配列を含むアミノ酸配列からなり、且つ、胆道癌に特異的な集積性を有するペプチド。
[Peptides with specific accumulation properties for biliary tract cancer]
In one embodiment, the present invention provides the following peptide (a) or (b):
(A) A peptide consisting of an amino acid sequence containing the sequence represented by SEQ ID NO: 1.
(B) A peptide comprising an amino acid sequence comprising a sequence having identity of 60% or more with the sequence represented by SEQ ID NO: 1 and having a specific accumulation property for biliary tract cancer.
 本実施形態のペプチドは、胆道癌に特異的な集積性を有する新規のペプチドである。 The peptide of the present embodiment is a novel peptide having an accumulation property specific to biliary tract cancer.
 本発明者らは、in vitro virus(IVV)法により、胆道癌に特異的な集積性を有する新規ペプチドを見出し、本発明を完成するに至った。
 IVV法では、mRNAの3’末端にPEG(ポリエチレングリコール)スペーサーを介して抗生物質の一種のピューロマイシンを結合し、それを鋳型として無細胞翻訳反応を行うことにより、タンパク質とmRNAとがピューロマイシンを介して共有結合した単純なmRNA-タンパク質連結分子IVVが構築される。本発明者らは、IVVを独自に作製することにより、IVVライブラリーを構築した。このIVVライブラリーの中からベイト(餌)と結合するタンパク質を含むIVVをin vitroで釣り上げた後、そこに連結しているmRNAを逆転写反応し、PCRで増幅し、塩基配列を解読することによって、相互作用するタンパク質群を、ごく微量(質量分析法の千倍以上の感度)で同定できる。
The present inventors have found a novel peptide having an accumulation property specific to biliary tract cancer by an in vitro virus (IVV) method, and have completed the present invention.
In the IVV method, a kind of antibiotic puromycin is bound to the 3 ′ end of mRNA via a PEG (polyethylene glycol) spacer, and cell-free translation reaction is carried out using it as a template, whereby protein and mRNA are purified. A simple mRNA-protein linking molecule IVV covalently linked via is constructed. We constructed an IVV library by creating IVV uniquely. After IVV containing a protein that binds to bait (bait) from this IVV library is picked up in vitro, the mRNA linked to it is reverse-transcribed, amplified by PCR, and the nucleotide sequence is decoded. Thus, interacting proteins can be identified in a very small amount (more than 1000 times the sensitivity of mass spectrometry).
 本実施形態のペプチドは、下記(a)のペプチドを含む。
(a)配列番号1で表される配列を含むアミノ酸配列からなるペプチド。
The peptide of this embodiment includes the following peptide (a).
(A) A peptide consisting of an amino acid sequence containing the sequence represented by SEQ ID NO: 1.
 上記(a)における配列番号1で表されるアミノ酸配列は、下記のアミノ酸配列で表される配列である。
 LVXGARLVVR (配列番号1)
[上記の配列番号1で表されるアミノ酸配列において、Xは、イソロイシン残基(I)、アラニン残基(A)、アルギニン残基(R)、リシン残基(K)又はヒスチジン残基(H)を表す。]
The amino acid sequence represented by SEQ ID NO: 1 in the above (a) is a sequence represented by the following amino acid sequence.
LVXGARLVVR (SEQ ID NO: 1)
[In the amino acid sequence represented by SEQ ID NO: 1 above, X is an isoleucine residue (I), an alanine residue (A), an arginine residue (R), a lysine residue (K) or a histidine residue (H ). ]
 上記(a)のペプチドは、胆道癌に特異的な集積性を有する。また、本実施形態のペプチドは、配列番号1で表されるアミノ酸配列のみからなるペプチドであっても、胆道癌に特異的な集積性を有する。 The peptide (a) has a specific accumulation property for biliary tract cancer. Moreover, even if the peptide of this embodiment is a peptide which consists only of the amino acid sequence represented by sequence number 1, it has accumulation property specific to biliary tract cancer.
 本明細書において、「胆道癌」とは、胆管癌、胆嚢癌及び十二指腸乳頭部癌胆管癌からなる癌を意味する。また、胆管癌とは、胆管の上皮から発生する悪性腫瘍を意味し、その発生した胆管の部位により、肝外胆管がんである肝門部領域胆管がん及び遠位胆管がん、並びに、肝内胆管がん(胆管細胞癌)に分けることができる。胆嚢癌とは、胆嚢と胆嚢管から発生する悪性腫瘍を意味する。十二指腸乳頭部は、乳頭部胆管、乳頭部膵管、共通管部、大十二指腸乳頭から構成されており、十二指腸乳頭部癌とは、上述の部位に発生した癌を意味する。また、病理組織学的分類では、腺癌、腺扁平上皮癌、肝内胆管細胞癌を指す。 In this specification, “biliary tract cancer” means a cancer composed of bile duct cancer, gallbladder cancer, and duodenal papilla cancer bile duct cancer. Bile duct cancer means a malignant tumor that develops from the epithelium of the bile duct. Depending on the site of the bile duct that has developed, hepatic hilar cholangiocarcinoma, distal bile duct cancer, distal bile duct cancer, and liver It can be divided into internal bile duct cancer (bile duct cell carcinoma). Gallbladder cancer means a malignant tumor arising from the gallbladder and gallbladder duct. The duodenal papilla is composed of the papilla bile duct, papilla pancreas, common duct, and large duodenal papilla, and duodenal papilla cancer means cancer that has occurred in the above-mentioned site. In histopathological classification, it refers to adenocarcinoma, adenosquamous carcinoma, and intrahepatic cholangiocellular carcinoma.
 本明細書において、「胆道癌に特異的な集積性」とは、生体内正常組織及び他の系統の腫瘍細胞と比較して、胆道癌細胞内に高度に吸収され、集積する性質を意味する。後述の実施例において示すように、本実施形態のペプチドはダイナミンによるクラスリン依存性のエンドサイトーシスにより胆道癌細胞内に吸収されていると推察される。 As used herein, “accumulation specific to biliary tract cancer” means a property of being highly absorbed and accumulated in biliary tract cancer cells as compared with normal tissues in vivo and tumor cells of other strains. . As shown in Examples described later, it is presumed that the peptide of this embodiment is absorbed into biliary tract cancer cells by clathrin-dependent endocytosis by dynamin.
 配列番号1で表されるアミノ酸配列において、Xは、親水性を有するアミノ酸残基であることが好ましく、アルギニン残基(R)、リシン残基(K)又はヒスチジン残基(H)であることがより好ましく、毒性の観点から、アルギニン残基(R)であることがさらに好ましい。 In the amino acid sequence represented by SEQ ID NO: 1, X is preferably a hydrophilic amino acid residue, and is an arginine residue (R), a lysine residue (K), or a histidine residue (H). Is more preferable, and from the viewpoint of toxicity, an arginine residue (R) is more preferable.
 上記(a)における配列番号1で表されるアミノ酸配列のうち、より具体的には、下記配列番号2で表されるアミノ酸配列等が挙げられる。
 LVRGARLVVR (配列番号2)
More specifically, among the amino acid sequence represented by SEQ ID NO: 1 in the above (a), the amino acid sequence represented by SEQ ID NO: 2 and the like can be mentioned.
LVRGARLVVR (SEQ ID NO: 2)
本実施形態のペプチドは、上記(a)のペプチドと機能的に同等なペプチドとして、下記(b)のペプチドを含む。
(b)配列番号1で表されるアミノ酸配列と同一性が60%以上であるアミノ酸配列からなり、且つ、胆道癌に特異的な集積性を有するペプチド。
The peptide of this embodiment includes the following peptide (b) as a peptide functionally equivalent to the peptide (a).
(B) A peptide comprising an amino acid sequence having an identity of 60% or more with the amino acid sequence represented by SEQ ID NO: 1 and having a specific accumulation property for biliary tract cancer.
 上記(a)のペプチドと機能的に同等であるためには60%以上の同一性を有する。係る同一性としては、70%以上が好ましく、80%以上がより好ましく、85%以上がさらに好ましく、90%以上が特に好ましく、95%以上が最も好ましい。
 さらに、前記(b)のペプチドは、胆道癌に特異的な集積性を有する。
In order to be functionally equivalent to the peptide (a) above, it has 60% or more identity. Such identity is preferably 70% or more, more preferably 80% or more, further preferably 85% or more, particularly preferably 90% or more, and most preferably 95% or more.
Furthermore, the peptide of (b) has a specific accumulation property for biliary tract cancer.
 ここで、基準アミノ酸配列に対する、対象アミノ酸配列の配列同一性は、例えば次のようにして求めることができる。まず、基準アミノ酸配列及び対象アミノ酸配列をアラインメントする。ここで、各アミノ酸配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準アミノ酸配列及び対象アミノ酸配列において、一致したアミノ酸の数を算出し、下記式(1)にしたがって、配列同一性を求めることができる。
 「配列同一性(%)」 = [一致したアミノ酸の数]/[対象アミノ酸配列のアミノ酸の総数]×100 (1)
Here, the sequence identity of the target amino acid sequence with respect to the reference amino acid sequence can be determined, for example, as follows. First, the reference amino acid sequence and the target amino acid sequence are aligned. Here, a gap may be included in each amino acid sequence so as to maximize the sequence identity. Subsequently, in the reference amino acid sequence and the target amino acid sequence, the number of matched amino acids is calculated, and the sequence identity can be obtained according to the following formula (1).
“Sequence identity (%)” = [number of matched amino acids] / [total number of amino acids in the subject amino acid sequence] × 100 (1)
 上記(a)又は(b)のペプチドは、環状構造であることが好ましい。環状構造であることにより、胆道癌細胞内にのみ吸収されやすくなる。また、上記(a)又は(b)のペプチドは、L-アミノ酸、D-アミノ酸、又はこれらの組み合わせからなるものであってもよく、D体アミノ酸に置換したRetro-Inverso型であることが好ましい。
Retro-Inverso型であることにより、細胞内の酵素による分解を受けにくくなる。L-アミノ酸のみから構成される上記(a)又は(b)のペプチドの半減期が3~6時間であるのに対し、Retro-Inverso型であることにより、半減期を8~12時間まで長くすることできる。
 L-アミノ酸は、天然に存在するアミノ酸であり、D-アミノ酸は、L-アミノ酸残基のキラリティーが反転しているものである。また、胆道癌に特異的な集積性を高めるために、又は他の物性を最適化するために化学的修飾を受けていてもよい。
The peptide (a) or (b) preferably has a cyclic structure. By being a cyclic structure, it is easily absorbed only into biliary tract cancer cells. The peptide of (a) or (b) may be composed of an L-amino acid, a D-amino acid, or a combination thereof, and is preferably a Retro-Inverso type substituted with a D-form amino acid. .
The retro-inverso type makes it difficult to be degraded by intracellular enzymes. The half-life of the peptide (a) or (b) composed only of L-amino acid is 3 to 6 hours, whereas the half-life is increased to 8 to 12 hours due to the Retro-Inverso type. Can do.
L-amino acids are naturally occurring amino acids, and D-amino acids are those in which the chirality of L-amino acid residues is reversed. Moreover, in order to enhance the accumulation property specific to biliary tract cancer, or may be subjected to chemical modification in order to optimize other physical properties.
上記(a)又は(b)のペプチドは、さらに、N末端及びC末端にシステイン残基を備えることが好ましい。具体的には、下記配列番号3で表されるアミノ酸配列等が挙げられる。
CLVRGARLVVRC (配列番号3)
本実施形態のペプチドは、N末端及びC末端にシステイン残基を備えることで、システイン残基が有するチオール基同士のジスルフィド結合を利用して環状化形態をとることができる。
The peptide (a) or (b) preferably further comprises cysteine residues at the N-terminus and C-terminus. Specific examples include the amino acid sequence represented by SEQ ID NO: 3 below.
CLVRGARLLVRC (SEQ ID NO: 3)
The peptide of this embodiment can take a cyclized form by using disulfide bonds between thiol groups possessed by cysteine residues by providing cysteine residues at the N-terminal and C-terminal.
[ペプチドをコードする核酸]
 一実施形態において、本発明は、上述したペプチドをコードする核酸を提供する。
[Nucleic acid encoding peptide]
In one embodiment, the present invention provides a nucleic acid encoding the peptide described above.
 本実施形態の核酸によれば、胆道癌に特異的な集積性を有するペプチドを得ることができる。 According to the nucleic acid of the present embodiment, a peptide having an accumulation property specific to biliary tract cancer can be obtained.
 上記のペプチドをコードする核酸としては、例えば、配列番号4に記載の塩基配列からなる核酸、又は、配列番号4に記載の塩基配列と80%以上、例えば85%以上、例えば90%以上、例えば95%以上の同一性を有し、胆道癌に特異的な集積性を有するペプチドの構成成分となる各アミノ酸をコードする組み合わせの塩基配列のいかなるものも含めた核酸等が挙げられる。なお、配列番号4に示す塩基配列は、上記の配列番号3のアミノ酸配列からなるペプチドをコードする核酸の塩基配列である。 As a nucleic acid encoding the above peptide, for example, a nucleic acid consisting of the base sequence set forth in SEQ ID NO: 4, or 80% or more, such as 85% or more, such as 90% or more, such as the base sequence set forth in SEQ ID NO: 4, for example Examples include nucleic acids including any combination of base sequences encoding each amino acid that is a component of a peptide having 95% or more identity and specific accumulation properties for biliary tract cancer. The base sequence shown in SEQ ID NO: 4 is a nucleic acid base sequence encoding a peptide consisting of the amino acid sequence of SEQ ID NO: 3 above.
 ここで、基準塩基配列に対する、対照塩基配列の配列同一性は、例えば次のようにして求めることができる。まず、基準塩基配列及び対象塩基配列をアラインメントする。ここで、各塩基配列には、配列同一性が最大となるようにギャップを含めてもよい。続いて、基準塩基配列及び対象塩基配列において、一致した塩基の塩基数を算出し、下記式(2)にしたがって、配列同一性を求めることができる。
 「配列同一性(%)」 = [一致した塩基数]/[対象塩基配列の総塩基数]×100 (2)
Here, the sequence identity of the control base sequence with respect to the reference base sequence can be determined, for example, as follows. First, the reference base sequence and the target base sequence are aligned. Here, each base sequence may include a gap so as to maximize the sequence identity. Subsequently, in the reference base sequence and the target base sequence, the number of bases of the matched bases is calculated, and the sequence identity can be obtained according to the following formula (2).
“Sequence identity (%)” = [number of matched bases] / [total number of bases of target base sequence] × 100 (2)
[ペプチドをコードする核酸を含むベクター]
 一実施形態において、本発明は、上述した核酸を含むベクターを提供する。
[Vector containing nucleic acid encoding peptide]
In one embodiment, the present invention provides a vector comprising the nucleic acid described above.
 本実施形態のベクターによれば、胆道癌に特異的な集積性を有するペプチドを得ることができる。 According to the vector of the present embodiment, a peptide having an accumulation property specific to biliary tract cancer can be obtained.
 本実施形態のベクターは、発現ベクターであることが好ましい。発現ベクターとしては特に限定されず、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のプラスミド;pUB110、pTP5、pC194等の枯草菌由来のプラスミド;pSH19、pSH15等の酵母由来プラスミド;λファージ等のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス、レトロウイルス、肝炎ウイルス等のウイルス;及びこれらを改変したベクター等を用いることができる。 The vector of this embodiment is preferably an expression vector. The expression vector is not particularly limited. For example, plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13; plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194; plasmids derived from yeast such as pSH19 and pSH15; And bacteriophages; viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus; and modified vectors thereof.
 上述の発現ベクターにおいて、上述のペプチド発現用プロモーターとしては特に限定されず、例えば、EF1αプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、HSV-tkプロモーター等の動物細胞を宿主とした発現用のプロモーター、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、REF(rubber elongation factor)プロモーター等の植物細胞を宿主とした発現用のプロモーター、ポリヘドリンプロモーター、p10プロモーター等の昆虫細胞を宿主とした発現用のプロモーター等を使用することができる。これらプロモーターは、上述のペプチドを発現する宿主に応じて、適宜選択することができる。 In the above-described expression vector, the above-mentioned peptide expression promoter is not particularly limited, and examples thereof include animal cells such as EF1α promoter, SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, HSV-tk promoter, and the like. Promoters for expression using a host cell such as a promoter for expression, cauliflower mosaic virus (CaMV) 35S promoter, REF (rubber elongation factor) promoter, and insect cells such as polyhedrin promoter and p10 promoter. A promoter for expression used as a host can be used. These promoters can be appropriately selected depending on the host expressing the above-mentioned peptide.
 上述の発現ベクターは、さらに、マルチクローニングサイト、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、複製起点等を有していてもよい。 The above-described expression vector may further have a multicloning site, an enhancer, a splicing signal, a poly A addition signal, a selection marker, a replication origin, and the like.
[キャリア]
 一実施形態において、本発明は、上述したペプチドを含むキャリアを提供する。
[Career]
In one embodiment, the present invention provides a carrier comprising a peptide as described above.
 本実施形態のキャリアによれば、目的物質を胆道癌まで簡便且つ効率よく運搬することができる。 According to the carrier of the present embodiment, the target substance can be easily and efficiently transported to the biliary tract cancer.
 本実施形態のキャリアは、さらに、標識物質又は修飾物質を備えることが好ましい。また、本実施形態のキャリアは、標識物質及び修飾物質両方を備えていてもよい。標識物質又は修飾物質は、上述のペプチドと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。 It is preferable that the carrier of this embodiment further includes a labeling substance or a modifying substance. In addition, the carrier of this embodiment may include both a labeling substance and a modifying substance. The labeling substance or modifying substance may be physically or chemically bound to the above-described peptide directly or via a linker. Specifically, the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
 標識物質としては、例えば安定同位体、放射性同位体、蛍光物質、陽電子放射断層撮影(Positron Emission Tomography:PET)用核種、単一光子放射断層撮影(Single photon emission computed tomography:SPECT)用核種、核磁気共鳴画像法(Magnetic resonance imaging:MRI)造影剤、コンピューター断層撮影法(Computed Tomography:CT)造影剤、磁性体等が挙げられる。中でも、安定同位体、放射性同位体又は蛍光物質が好ましい。上記標識物質を備えることで、目的物質が胆道癌に運搬されたか否かを簡便且つ高感度に確かめることができる。 Examples of the labeling substance include stable isotopes, radioisotopes, fluorescent substances, positron emission tomography (PET) nuclide, single photon emission tomography (SPECT) nuclide, nuclide Examples thereof include a magnetic resonance imaging (MRI) contrast agent, a computed tomography (CT) contrast agent, and a magnetic substance. Of these, stable isotopes, radioactive isotopes or fluorescent substances are preferred. By providing the labeling substance, it can be confirmed simply and with high sensitivity whether or not the target substance has been transported to biliary tract cancer.
 安定同位体としては、例えば13C、15N、H、17O、18Oが挙げられる。放射性同位体としては、例えばH、14C、13N、32P、33P、35Sが挙げられる。標識物質が安定同位体又は放射性同位体である場合、安定同位体標識アミノ酸又は放射性同位体標識アミノ酸を用いて、上述のペプチドを作製してもよい。安定同位体又は放射性同位体で標識されるアミノ酸としては、20種類のアミノ酸(アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、スレオニン、チロシン、バリン、トリプトファン、システイン、アスパラギン、グルタミン)であって、上述のペプチドに含まれるアミノ酸であれば特に限定されない。また、アミノ酸はL体であってもD体であってもよく、必要に応じて適宜選択することができる。 Examples of stable isotopes include 13 C, 15 N, 2 H, 17 O, and 18 O. Examples of the radioisotope include 3 H, 14 C, 13 N, 32 P, 33 P, and 35 S. When the labeling substance is a stable isotope or a radioisotope, the above peptide may be prepared using a stable isotope-labeled amino acid or a radioisotope-labeled amino acid. As amino acids labeled with stable isotopes or radioisotopes, 20 kinds of amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine , Valine, tryptophan, cysteine, asparagine, glutamine), and any amino acids included in the above-mentioned peptides are not particularly limited. In addition, the amino acid may be L-form or D-form, and can be appropriately selected as necessary.
 安定同位体標識又は放射性同位体標識された上述のペプチドは、上述のペプチドをコードする核酸を含む上述のベクターを安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する系で発現させることにより調製することができる。安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する系としては、例えば安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の存在する無細胞ペプチド合成系や生細胞ペプチド合成系等を挙げることができる。すなわち、無細胞ペプチド合成系において安定同位体標識アミノ酸又は放射性同位体標識アミノ酸に加えて安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸を材料としてペプチドを合成させることや、生細胞ペプチド合成系において、上述のペプチドをコードする核酸を含む上述のベクターで形質転換した細胞を安定同位体標識アミノ酸又は放射性同位体標識アミノ酸存在下で培養することにより、上述のペプチドをコードする核酸を含む上述のベクターから安定同位体標識又は放射性同位体標識された上述のペプチドを調製することができる。 The above-mentioned peptide labeled with a stable isotope or a radioisotope is prepared by expressing the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide in a system in which a stable isotope-labeled amino acid or a radioisotope-labeled amino acid is present. can do. Examples of systems in which stable isotope-labeled amino acids or radioisotope-labeled amino acids are present include cell-free peptide synthesis systems in which stable isotope-labeled amino acids or radioisotope-labeled amino acids are present, live cell peptide synthesis systems, etc. . That is, in a cell-free peptide synthesis system, in addition to a stable isotope-labeled amino acid or a radioisotope-labeled amino acid, a peptide is synthesized using a stable isotope unlabeled amino acid or a radioisotope unlabeled amino acid as a material, or a live cell peptide synthesis system In the above, a cell transformed with the above vector containing a nucleic acid encoding the above peptide is cultured in the presence of a stable isotope labeled amino acid or a radioisotope labeled amino acid to thereby contain the above nucleic acid encoding the above peptide. A stable isotope-labeled or radioisotope-labeled peptide described above can be prepared from a vector.
 無細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、上述のペプチドをコードする核酸を含む上述のベクターや上記の安定同位体標識アミノ酸又は放射性同位体標識アミノ酸の他に、安定同位体標識又は放射性同位体標識された上述のペプチドの合成のために必要な安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸、無細胞ペプチド合成用細胞抽出液、エネルギー源(ATP、GTP、クレアチンホスフェート等の高エネルギーリン酸結合含有物)等を用いて行うことができる。温度、時間等の反応条件は、適宜最適な条件を選択して行うことができ、例えば温度は20~40℃、好ましくは23~37℃であり、また反応時間は1~24時間、好ましくは10~20時間である。 Expression of the above-mentioned peptide labeled with a stable isotope or radioisotope using a cell-free peptide synthesis system is performed by the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide, the above-mentioned stable isotope-labeled amino acid or radioisotope In addition to the labeled amino acid, a stable isotope-labeled amino acid or a radioisotope-unlabeled amino acid, a cell extract for cell-free peptide synthesis, which is necessary for the synthesis of the above-mentioned peptide labeled with a stable isotope or a radioisotope, It can be carried out using an energy source (high energy phosphate bond-containing material such as ATP, GTP, creatine phosphate, etc.). Reaction conditions such as temperature and time can be appropriately selected as appropriate. For example, the temperature is 20 to 40 ° C., preferably 23 to 37 ° C., and the reaction time is 1 to 24 hours, preferably 10 to 20 hours.
 本明細書において、「無細胞ペプチド合成用細胞抽出液」とは、リボソーム、tRNA等のタンパク質合成に関与する翻訳系、又は、転写系及び翻訳系に必要な成分を含む植物細胞、動物細胞、真菌細胞、細菌細胞からの抽出液を意味する。具体的には、大腸菌、小麦胚芽、ウサギ網赤血球、マウスL-細胞、エールリッヒ腹水癌細胞、HeLa細胞、CHO細胞、出芽酵母等の細胞抽出液を挙げることができる。かかる細胞抽出液の調製は、例えばPratt,J.M.ら、Transcription and trasnlation-a practical approach(1984)、pp.179-209に記載の方法に従い、上記の細胞をフレンチプレス、グラスビーズ、超音波破砕装置等を用いて破砕処理し、タンパク質成分やリボソームを可溶化するための数種類の塩を含有する緩衝液を加えてホモジナイズし、遠心分離にて不溶成分を沈殿させることによって行うことができる。 In the present specification, “cell extract for cell-free peptide synthesis” refers to a translation system involved in protein synthesis such as ribosome, tRNA, or a plant cell, animal cell, which contains components necessary for a transcription system and a translation system, It means an extract from fungal cells and bacterial cells. Specific examples include cell extracts such as Escherichia coli, wheat germ, rabbit reticulocyte, mouse L-cell, Ehrlich ascites tumor cell, HeLa cell, CHO cell, and budding yeast. Preparation of such cell extracts is described, for example, in Pratt, J. et al. M.M. Et al., Transcribation and translation-a practical approach (1984), pp. In accordance with the method described in 179-209, the above cells are disrupted using a French press, glass beads, an ultrasonic disrupter, etc., and a buffer containing several kinds of salts for solubilizing protein components and ribosomes is prepared. In addition, it can be performed by homogenizing and precipitating insoluble components by centrifugation.
 また、無細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、例えば、小麦胚芽抽出液を備えたPremium Expression Kit(セルフリーサイエンス社製)、大腸菌抽出液を備えたRTS 100,E.coli HY Kit(Roche Applied Science社製)、無細胞くんQuick(大陽日酸社製)等市販のキットを適宜使用して行ってもよい。発現させた安定同位体標識又は放射性同位体標識された上述のペプチドが不溶性の場合、グアニジン塩酸塩、尿素等のタンパク質変性剤を用いて適宜可溶化させてもよい。安定同位体標識又は放射性同位体標識された上述のペプチドは、さらに分画遠心法、ショ糖密度勾配遠心法等による分画処理や、アフィニティーカラム、イオン交換クロマトグラフィー等を用いた精製処理により調製することもできる。 The expression of the above-mentioned peptide labeled with a stable isotope or radioisotope using a cell-free peptide synthesis system is, for example, Premium Expression Kit (manufactured by Cell Free Science) with wheat germ extract, Escherichia coli extraction RTS 100, E. You may carry out using commercially available kits, such as E. coli HY Kit (Roche Applied Science company) and a cell-free Quick (manufactured by Taiyo Nippon Sanso Corporation). When the expressed stable isotope-labeled or radioisotope-labeled peptide described above is insoluble, it may be appropriately solubilized using a protein denaturant such as guanidine hydrochloride or urea. The above-mentioned peptides labeled with a stable isotope or a radioisotope are further prepared by fractionation by fractional centrifugation, sucrose density gradient centrifugation, etc., or by purification using affinity column, ion exchange chromatography, etc. You can also
 生細胞ペプチド合成系を用いた安定同位体標識又は放射性同位体標識された上述のペプチドの発現は、生細胞に上述のペプチドをコードする核酸を含む上述のベクターを導入し、かかる生細胞を栄養分や抗生物質等の他、上記の安定同位体標識アミノ酸又は放射性同位体標識アミノ酸、安定同位体標識ペプチド又は放射性同位体標識ペプチドの合成のために必要な安定同位体非標識アミノ酸又は放射性同位体非標識アミノ酸等を含む培養液中で培養することにより行うことができる。ここで生細胞としては、上述のペプチドをコードする核酸を含む上述のベクターを発現させることができる生細胞であれば特に限定されず、例えばチャイニーズハムスター卵巣(CHO)細胞等の哺乳類細胞株や、大腸菌、酵母細胞、昆虫細胞、植物細胞等の生細胞を挙げることができ、簡便性や費用対効果の面から考慮すると、大腸菌が好ましい。上述のペプチドをコードする核酸を含む上述のベクターの発現は、遺伝子組換え技術により、それぞれの生細胞で発現できるように設計された発現ベクターへ組み込み、かかる発現ベクターを生細胞へ導入することにより行うことができる。また上述のペプチドをコードする核酸を含む上述のベクターの生細胞への導入は、使用する生細胞に適した方法で行うことができ、例えば、エレクトロポレーション法、ヒートショック法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、マイクロインジェクション法、パーティクル・ガン法、ウイルスを用いた方法や、FuGENE(登録商標) 6 Transfection Reagent(ロシュ社製)、Lipofectamine 2000 Reagent(インビトロジェン社製)、Lipofectamine LTX Reagent(インビトロジェン社製)、Lipofectamine 3000 Reagent(インビトロジェン社製)等の市販のトランスフェクション試薬を用いた方法等を挙げることができる。 For the expression of the above-mentioned peptide labeled with a stable isotope or radioisotope using a living cell peptide synthesis system, the above-mentioned vector containing a nucleic acid encoding the above-mentioned peptide is introduced into a living cell, and the living cell is nutrientized. In addition to the above-mentioned stable isotope-labeled amino acids or radioisotope-labeled amino acids, stable isotope-labeled peptides or radioisotope-labeled peptides, It can be performed by culturing in a culture solution containing a labeled amino acid or the like. Here, the living cell is not particularly limited as long as it is a living cell capable of expressing the above-described vector containing the nucleic acid encoding the above-mentioned peptide, for example, a mammalian cell line such as a Chinese hamster ovary (CHO) cell, Examples include living cells such as E. coli, yeast cells, insect cells, and plant cells, and E. coli is preferred in view of convenience and cost effectiveness. The expression of the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide is incorporated into an expression vector designed so that it can be expressed in each living cell by gene recombination technology, and the expression vector is introduced into the living cell. It can be carried out. In addition, introduction of the above-mentioned vector containing a nucleic acid encoding the above-described peptide into a living cell can be performed by a method suitable for the living cell to be used, for example, electroporation method, heat shock method, calcium phosphate method, lipofection Method, DEAE dextran method, microinjection method, particle gun method, method using virus, FuGENE (registered trademark) 6 Transfection Reagent (manufactured by Roche), Lipofectamine 2000 Reagent (manufactured by Invitrogen), Lipofectamine LTX Regent (in vitro) A commercially available transfection reagent such as Lipofectamine 3000 Reagent (manufactured by Invitrogen). Mention may be made of the law and the like.
 生細胞ペプチド合成系により発現させた安定同位体標識又は放射性同位体標識された上述のペプチドは、安定同位体標識又は放射性同位体標識された上述のペプチドを含む生細胞を破砕処理や抽出処理することにより調製することができる。破砕処理としては、例えば凍結融解法、フレンチプレス、グラスビーズ、ホモジナイザー、超音波破砕装置等を用いた物理的破砕処理等を挙げることができる。また抽出処理としては、例えばグアニジン塩酸塩、尿素等のタンパク質変性剤を用いた抽出処理等を挙げることができる。安定同位体標識又は放射性同位体標識された上述のペプチドは、さらに分画遠心法、ショ糖密度勾配遠心法等による分画処理や、アフィニティーカラム、イオン交換クロマトグラフィー等を用いた精製処理等により調製することもできる。 The above-mentioned peptide labeled with a stable isotope label or radioisotope labeled expressed by a living cell peptide synthesis system crushes or extracts a living cell containing the above-mentioned peptide labeled with a stable isotope or radioisotope. Can be prepared. Examples of the crushing treatment include a physical crushing treatment using a freeze-thaw method, a French press, glass beads, a homogenizer, an ultrasonic crushing device, and the like. Examples of the extraction treatment include extraction treatment using a protein denaturant such as guanidine hydrochloride and urea. The above-mentioned peptide labeled with a stable isotope or a radioisotope is further purified by fractionation using a differential centrifugation method, sucrose density gradient centrifugation, or purification using an affinity column, ion exchange chromatography, etc. It can also be prepared.
 蛍光物質としては、例えば公知の量子ドット、インドシアニングリーン、5-アミノレブリン酸(5-ALA;代謝産物プロトポルフィリンIX(PP IX)、近赤外蛍光色素(例えば、Cy5.5、Cy7、AlexaFluoro等)、その他公知の蛍光色素(例えば、GFP、FITC(Fluorescein)、TAMRA等)等が挙げられる。蛍光物質標識された上述のペプチドは、蛍光物質及び上述のペプチドをコードする核酸を含む上述のベクターを、安定同位体標識アミノ酸又は放射性同位体標識アミノ酸を使用せずに、上述の無細胞ペプチド合成系又は生細胞ペプチド合成系により調製すればよい。 Examples of the fluorescent substance include known quantum dots, indocyanine green, 5-aminolevulinic acid (5-ALA; metabolite protoporphyrin IX (PP IX), near-infrared fluorescent dyes (for example, Cy5.5, Cy7, AlexaFluoro, etc.) ) And other known fluorescent dyes (for example, GFP, FITC (Fluorescein), TAMRA, etc.) The above-mentioned peptide labeled with a fluorescent substance is the above-mentioned vector containing a fluorescent substance and a nucleic acid encoding the above-mentioned peptide. May be prepared by the above cell-free peptide synthesis system or living cell peptide synthesis system without using stable isotope-labeled amino acids or radioisotope-labeled amino acids.
 PET用核種、SPECT用核種として好ましくは、例えば11C、13N、15O、18F、66Ga、67Ga、68Ga、60Cu、61Cu、62Cu、67Cu、64Cu、48V、Tc-99m、241Am、55Co、57Co、153Gd、111In、133Ba、82Rb、139Ce、Te-123m、137Cs、86Y、90Y、185/187Re、186/188Re、125I、又はそれらの錯体、或いはそれらの組み合わせ等が挙げられる。PET用核種又はSPECT用核種で標識された上述のペプチドは、上述のペプチドをコードする核酸を含む上述のベクターを、上述の無細胞ペプチド合成系又は生細胞ペプチド合成系により調製すればよい。
 MRI造影剤、CT造影剤及び磁性体としては、例えばガドリニウム、Gd-DTPA、Gd-DTPA-BMA、Gd-HP-DO3A、ヨード、鉄、酸化鉄、クロム、マンガン、又はその錯体、若しくはそのキレート錯体等が挙げられる。MRI造影剤、CT造影剤又は磁性体で標識された上述のペプチドは、MRI造影剤、CT造影剤又は磁性体と上述のペプチドとを直接又はリンカーを介すことで、物理的又は化学的に結合させて調製すればよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。
Preferably, for example, 11 C, 13 N, 15 O, 18 F, 66 Ga, 67 Ga, 68 Ga, 60 Cu, 61 Cu, 62 Cu, 67 Cu, 64 Cu, 48 V as the nuclide for PET and SPECT , Tc-99m, 241 Am, 55 Co, 57 Co, 153 Gd, 111 In, 133 Ba, 82 Rb, 139 Ce, Te-123m, 137 Cs, 86 Y, 90 Y, 185/187 Re, 186/188 And Re, 125 I, or a complex thereof, or a combination thereof. The above-mentioned peptide labeled with the PET nuclide or SPECT nuclide may be prepared by the above-mentioned cell-free peptide synthesis system or the living cell peptide synthesis system containing the above-mentioned vector containing the nucleic acid encoding the above-mentioned peptide.
Examples of the MRI contrast agent, CT contrast agent, and magnetic substance include gadolinium, Gd-DTPA, Gd-DTPA-BMA, Gd-HP-DO3A, iodine, iron, iron oxide, chromium, manganese, or a complex thereof, or a chelate thereof. A complex etc. are mentioned. The above-mentioned peptide labeled with an MRI contrast agent, CT contrast agent or magnetic substance is physically or chemically obtained by directly or via a linker between the MRI contrast agent, CT contrast agent or magnetic substance and the above-mentioned peptide. What is necessary is just to prepare by combining. Specifically, the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
 修飾物質としては、例えば糖鎖、ポリエチレングリコール(PEG)等を挙げることができる。上記の修飾物質を備えることで、目的物質が胆道癌細胞内に簡便且つ効率よく吸収されやすくなる。修飾物質で修飾された上述のペプチドは、修飾物質と上述のペプチドとを直接又はリンカーを介すことで、物理的又は化学的に結合させて調製すればよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。 Examples of the modifying substance include sugar chains and polyethylene glycol (PEG). By providing the modifying substance, the target substance can be easily and efficiently absorbed into the biliary tract cancer cells. The above-mentioned peptide modified with the modifying substance may be prepared by physically or chemically bonding the modifying substance and the above-mentioned peptide directly or via a linker. Specifically, the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
本実施形態のキャリアにおいて、目的物質としては、用途に応じて適宜選択することができ、例えば胆道癌のイメージングのために使用する場合においては、後述するとおり、上述の標識物質を目的物質として備えることができ、また、胆道癌の治療又は診断用途で使用する場合においては、後述するとおり、生理活性物質を目的物質として備えることができる。目的物質は、上述のペプチドと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。 In the carrier of the present embodiment, the target substance can be appropriately selected depending on the application. For example, when used for imaging biliary tract cancer, the target substance is provided with the above-described labeling substance as described later. In addition, when used in the treatment or diagnosis of biliary tract cancer, as described later, a physiologically active substance can be provided as a target substance. The target substance may be physically or chemically bound to the above peptide directly or via a linker. Specifically, the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted.
また、本実施形態のキャリアにおいて、目的物質がタンパク質である場合、目的物質と上述のペプチドとを含む融合タンパク質は、例えば次のような方法により作製することができる。まず、融合タンパク質をコードする核酸を含む発現ベクターを用いて、宿主を形質転換する。続いて、当該宿主を培養して融合タンパク質を発現させる。培地の組成、培養の温度、時間、誘導物質の添加等の条件は、形質転換体が生育し、融合タンパク質が効率よく産生されるよう、公知の方法に従って当業者が決定できる。また、例えば、選択マーカーとして抗生物質抵抗性遺伝子を発現ベクターに組み込んだ場合、培地に抗生物質を加えることにより、形質転換体を選択することができる。続いて、宿主が発現した融合タンパク質を適宜の方法により精製することにより、融合タンパク質が得られる。 In the carrier of the present embodiment, when the target substance is a protein, a fusion protein containing the target substance and the above-described peptide can be produced by, for example, the following method. First, a host is transformed with an expression vector containing a nucleic acid encoding a fusion protein. Subsequently, the host is cultured to express the fusion protein. Conditions such as medium composition, culture temperature, time, addition of inducer, etc. can be determined by those skilled in the art according to known methods so that the transformant grows and the fusion protein is efficiently produced. For example, when an antibiotic resistance gene is incorporated into an expression vector as a selection marker, a transformant can be selected by adding an antibiotic to the medium. Subsequently, the fusion protein expressed by the host is purified by an appropriate method to obtain the fusion protein.
宿主としては、融合タンパク質をコードする核酸を含む発現ベクターを発現させることができる生細胞であれば特に制限されず、例えばチャイニーズハムスター卵巣(CHO)細胞等の哺乳類細胞株や、ウイルス(例えば、アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス、レトロウイルス、肝炎ウイルス等のウイルス等)、細菌(例えば、大腸菌等)等の微生物、酵母細胞、昆虫細胞、植物細胞などの生細胞が挙げられる。
さらに、本実施形態のキャリアにおいて、上述の融合タンパク質をコードする核酸を含む発現ベクターを胆道癌細胞又は組織に直接導入し、発現させてもよい。
The host is not particularly limited as long as it is a living cell capable of expressing an expression vector containing a nucleic acid encoding a fusion protein. For example, a mammalian cell line such as a Chinese hamster ovary (CHO) cell, or a virus (eg, adeno Virus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, retrovirus, hepatitis virus etc.), microorganisms such as bacteria (eg E. coli etc.), live cells such as yeast cells, insect cells, plant cells Can be mentioned.
Furthermore, in the carrier of this embodiment, an expression vector containing a nucleic acid encoding the above-described fusion protein may be directly introduced into a biliary tract cancer cell or tissue for expression.
[医薬組成物]
 一実施形態において、本発明は、上述のキャリアと生理活性物質とを備える医薬組成物を提供する。
[Pharmaceutical composition]
In one embodiment, the present invention provides a pharmaceutical composition comprising the carrier described above and a physiologically active substance.
 本実施形態の医薬組成物によれば、胆道癌選択的に治療することができる。 According to the pharmaceutical composition of this embodiment, biliary tract cancer can be selectively treated.
 本明細書において、「生理活性物質」としては、胆道癌の治療に有効なものであれば、特別な限定はなく、例えば抗癌剤等の薬剤、核酸、胆道癌に特異的に結合する抗体、抗体断片、アプタマー等が挙げられる。
 「生理活性物質」としては、胆道癌選択的な細胞障害活性を有する分子標的薬が好ましいが、上述のキャリアにより、胆道癌選択的に蓄積されるため、従来の抗癌剤として用いられているサイトトキシック薬でもよい。
 また、生理活性物質は、上述のキャリアと、直接又はリンカーを介すことで、物理的又は化学的に結合されていてよい。具体的には配位結合、共有結合、水素結合、疎水性相互作用、物理吸着であってよく、何れも公知の結合、リンカー及び結合方法を採用することができる。また、本実施形態の医薬組成物において、上述のキャリアは上述の標識物質又は修飾物質を含んでいてもよい。
In the present specification, the “physiologically active substance” is not particularly limited as long as it is effective for treating biliary tract cancer. For example, drugs such as anticancer agents, nucleic acids, antibodies that specifically bind to biliary tract cancer, antibodies Examples thereof include fragments and aptamers.
As the “physiologically active substance”, a molecular target drug having selective cytotoxic activity against biliary tract cancer is preferable. However, since biliary tract cancer is selectively accumulated by the above-mentioned carrier, cytotoxic used as a conventional anticancer agent is used. Medicine may be used.
In addition, the physiologically active substance may be physically or chemically bound to the above carrier directly or via a linker. Specifically, the bond may be a coordinate bond, a covalent bond, a hydrogen bond, a hydrophobic interaction, or a physical adsorption, and any of the known bonds, linkers, and bonding methods can be adopted. Moreover, in the pharmaceutical composition of this embodiment, the above-mentioned carrier may contain the above-mentioned labeling substance or modifying substance.
 核酸は、例えば、siRNA、miRNA、antisense、又はそれらの機能を代償する人工核酸等が挙げられる。 Examples of the nucleic acid include siRNA, miRNA, antisense, or an artificial nucleic acid that compensates for these functions.
 抗体は、例えば、マウス等のげっ歯類の動物に胆道癌由来のペプチド等を抗原として免疫することによって作製することができる。また、例えば、ファージライブラリーのスクリーニングにより作製することができる。抗体断片としては、Fv、Fab、scFv等が挙げられる。 An antibody can be prepared, for example, by immunizing a rodent animal such as a mouse with a peptide derived from biliary tract cancer as an antigen. Further, for example, it can be prepared by screening a phage library. Examples of antibody fragments include Fv, Fab, scFv and the like.
 アプタマーとは、胆道癌に対する特異的結合能を有する物質である。アプタマーとしては、核酸アプタマー、ペプチドアプタマー等が挙げられる。胆道癌に特異的結合能を有する核酸アプタマーは、例えば、systematic evolution of ligand by exponential enrichment(SELEX)法等により選別することができる。また、胆道癌に特異的結合能を有するペプチドアプタマーは、例えば酵母を用いたTwo-hybrid法等により選別することができる。 Aptamers are substances that have a specific binding ability to biliary tract cancer. Examples of aptamers include nucleic acid aptamers and peptide aptamers. Nucleic acid aptamers having a specific binding ability to biliary tract cancer can be selected by, for example, the systematic evolution of ligand by exponential enrichment (SELEX) method. Peptide aptamers having specific binding ability to biliary tract cancer can be selected by, for example, the two-hybrid method using yeast.
 本実施形態の医薬組成物は、胆道癌診断、胆道癌治療効果診断、病態解析、胆道癌治療、又は胆道癌を伴う疾患の診断、病態解析、治療、治療効果診断のために用いることができる。診断方法としては、例えばPET、SPECT、CT、MRI、内視鏡、蛍光検出器等を用いることができる。 The pharmaceutical composition of the present embodiment can be used for biliary tract cancer diagnosis, biliary tract cancer treatment effect diagnosis, pathological analysis, biliary tract cancer treatment, or diagnosis of disease associated with biliary tract cancer, pathological analysis, treatment, and therapeutic effect diagnosis. . As a diagnostic method, for example, PET, SPECT, CT, MRI, an endoscope, a fluorescence detector, and the like can be used.
<投与量>
 本実施形態の医薬組成物は、被検動物(ヒト又は非ヒト動物を含む各種哺乳動物、好ましくはヒト)の年齢、性別、体重、症状、治療方法、投与方法、処理時間等を勘案して適宜調節される。
 例えば、本実施形態の医薬組成物を注射剤により静脈内(Intravenous:i.v.)注射する場合、被検動物(好ましくはヒト)に対し、1回の投与において1kg体重当たり、5mg以上のペプチドの量を投与することが好ましく、5mg以上15mg以下のペプチドの量を投与することがより好ましく、5mg以上10mg以下のペプチドの量を投与することが特に好ましい。
<Dose>
The pharmaceutical composition of the present embodiment takes into account the age, sex, weight, symptoms, treatment method, administration method, treatment time, etc. of the test animal (various mammals including humans or non-human animals, preferably humans). Adjust as appropriate.
For example, when the pharmaceutical composition of the present embodiment is injected intravenously (Intravenous: iv) by injection, 5 mg or more per kg body weight in a single administration to a test animal (preferably a human). The amount of peptide is preferably administered, more preferably 5 mg or more and 15 mg or less of peptide, and particularly preferably 5 mg or more and 10 mg or less of peptide.
 投与回数としては、1週間平均当たり、1回~数回投与することが好ましい。
 投与形態としては、例えば、動脈内注射、静脈内注射、皮下注射、鼻腔内的、腹腔内的、経気管支的、筋内的、経皮的、又は経口的に当業者に公知の方法が挙げられ、静脈内注射又は腹腔内的投与が好ましい。
The number of administration is preferably 1 to several times per week.
Examples of the dosage form include intraarterial injection, intravenous injection, subcutaneous injection, intranasal, intraperitoneal, transbronchial, intramuscular, transdermal, or oral methods known to those skilled in the art. Intravenous injection or intraperitoneal administration is preferred.
<組成成分>
 本実施形態の医薬組成物は、治療的に有効量の上述のキャリア及び生理活性物質、並びに薬学的に許容されうる担体又は希釈剤を含む。薬学的に許容されうる担体又は希釈剤は、賦形剤、稀釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味料、粘稠剤、矯味剤、溶解補助剤、添加剤等が挙げられる。これら担体の1種以上を用いることにより、注射剤、液剤、カプセル剤、懸濁剤、乳剤、又はシロップ剤等の形態の医薬組成物を調製することができる。
 また、担体としてコロイド分散系を用いることもできる。コロイド分散系は、ペプチドの生体内安定性を高める効果や、特定の臓器、組織、又は細胞へ、ペプチドの移行性を高める効果が期待される。コロイド分散系としては、ポリエチレングリコール、高分子複合体、高分子凝集体、ナノカプセル、ミクロスフェア、ビーズ、水中油系の乳化剤、ミセル、混合ミセル、リポソームを包含する脂質を挙げることができ、特定の臓器、組織、又は細胞へ、ペプチドを効率的に輸送する効果のある、リポソームや人工膜の小胞が好ましい。
<Composition component>
The pharmaceutical composition of this embodiment comprises a therapeutically effective amount of the above-described carrier and bioactive substance, and a pharmaceutically acceptable carrier or diluent. Pharmaceutically acceptable carriers or diluents include excipients, diluents, extenders, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, colorants, sweeteners, thickeners, flavoring agents. Agents, solubilizers, additives and the like. By using one or more of these carriers, pharmaceutical compositions in the form of injections, solutions, capsules, suspensions, emulsions, syrups and the like can be prepared.
A colloidal dispersion system can also be used as the carrier. The colloidal dispersion system is expected to have an effect of enhancing the in vivo stability of the peptide and an effect of enhancing the transferability of the peptide to a specific organ, tissue, or cell. Examples of colloidal dispersion systems include polyethylene glycol, polymer composites, polymer aggregates, nanocapsules, microspheres, beads, oil-in-water emulsifiers, micelles, mixed micelles, and lipids including liposomes. Liposomes and artificial membrane vesicles, which are effective in efficiently transporting peptides to the organs, tissues, or cells, are preferred.
 本実施形態の医薬組成物における製剤化の例としては、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤として経口的に使用されるものが挙げられる。
 又は、水若しくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用されるものが挙げられる。さらには、薬理学上許容される担体又は希釈剤、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化されたものが挙げられる。
Examples of formulation in the pharmaceutical composition of this embodiment include those used orally as tablets, capsules, elixirs, and microcapsules with sugar coating as necessary.
Alternatively, those which are used parenterally in the form of sterile solutions with water or other pharmaceutically acceptable liquids, or injectable suspensions. Further, a pharmacologically acceptable carrier or diluent, specifically, sterilized water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, Examples thereof include those formulated by mixing with a preservative, a binder and the like, and mixing in a unit dosage form generally required for pharmaceutical practice.
 錠剤、カプセル剤に混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤が用いられる。調剤単位形態がカプセルである場合には、上記の材料にさらに油脂のような液状担体を含有することができる。 Additives that can be mixed into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, swelling such as corn starch, gelatin, and alginic acid Agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavoring agents such as peppermint, red mono oil or cherry. When the dispensing unit form is a capsule, the above material can further contain a liquid carrier such as fats and oils.
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。
Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride. Suitable solubilizers such as Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), HCO-50 may be used in combination.
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液等)、無痛化剤(例えば、塩酸プロカイン等)、安定剤(例えば、ベンジルアルコール、フェノール等)、酸化防止剤等を配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。 Examples of the oily liquid include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. In addition, a buffering agent (eg, phosphate buffer, sodium acetate buffer, etc.), a soothing agent (eg, procaine hydrochloride, etc.), a stabilizer (eg, benzyl alcohol, phenol, etc.), an antioxidant, etc. are blended. May be. The prepared injection solution is usually filled into a suitable ampoule.
 注射剤である場合、上記のような水性又は非水性の希釈剤、懸濁剤、又は乳濁剤として調製することもできる。このような注射剤の無菌化は、フィルターによる濾過滅菌、殺菌剤等の配合により行うことができる。注射剤は、用事調製の形態として製造することができる。即ち、凍結乾燥法などによって、無菌の固体組成物とし、使用前に注射用蒸留水又は他の溶媒に溶解して使用することができる。 In the case of an injection, it can also be prepared as an aqueous or non-aqueous diluent, suspension, or emulsion as described above. Such sterilization of injections can be performed by blending filter sterilization with a filter, bactericides, and the like. Injectables can be manufactured in the form of business preparation. That is, it can be used as a sterile solid composition by lyophilization, etc., and dissolved in distilled water for injection or other solvent before use.
<治療方法>
 本発明の一側面は、胆道癌の治療のための上述のキャリアと生理活性物質とを備える医薬組成物を提供する。
 また、本発明の一側面は、治療的に有効量の上述のキャリア及び生理活性物質、並びに薬学的に許容されうる担体又は希釈剤を含む医薬組成物を提供する。
 また、本発明の一側面は、前記医薬組成物を含む、胆道癌の治療剤を提供する。
 また、本発明の一側面は、胆道癌の治療剤を製造するための上述のキャリア及び生理活性物質の使用を提供する。
 また、本発明の一側面は、上述のキャリア及び生理活性物質の有効量を、治療を必要とする患者に投与することを含む、胆道癌の治療方法を提供する。
<Treatment method>
One aspect of the present invention provides a pharmaceutical composition comprising the above carrier and a physiologically active substance for the treatment of biliary tract cancer.
One aspect of the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of the above-described carrier and bioactive substance, and a pharmaceutically acceptable carrier or diluent.
One aspect of the present invention also provides a therapeutic agent for biliary tract cancer comprising the pharmaceutical composition.
In addition, one aspect of the present invention provides use of the above-described carrier and physiologically active substance for producing a therapeutic agent for biliary tract cancer.
Another aspect of the present invention provides a method for treating biliary tract cancer, comprising administering an effective amount of the above carrier and physiologically active substance to a patient in need of treatment.
[胆道癌をイメージングするための方法]
 一実施形態において、本発明は、胆道癌をイメージングするための方法であって、上述のキャリアを用いる方法を提供する。
[Method for imaging biliary tract cancer]
In one embodiment, the present invention provides a method for imaging biliary tract cancer using the carrier described above.
 本実施形態の方法によれば、胆道癌を簡便、高感度且つ選択的に検出することができる。 According to the method of this embodiment, biliary tract cancer can be detected simply, with high sensitivity and selectively.
 本実施形態の方法において、上述のキャリアは標識物質を備えることが好ましい。さらに、修飾物質を備えていてもよい。標識物質及び修飾物質としては、上述したものと同様のものが挙げられる。 In the method of the present embodiment, the carrier described above preferably includes a labeling substance. Furthermore, you may provide the modifier. Examples of the labeling substance and the modifying substance include those described above.
 例えば、標識物質を備える上述のキャリアを胆道癌細胞に添加する場合において、標識物質を備える上述のキャリアの添加量は培養液中1μM以上4μM以下が好ましい。また、添加後、30分以上3時間以下後には胆道癌細胞内に集積されているか否かについて評価することができる。 For example, when the above-mentioned carrier with a labeling substance is added to biliary tract cancer cells, the addition amount of the above-mentioned carrier with a labeling substance is preferably 1 μM or more and 4 μM or less in the culture solution. In addition, it can be evaluated whether or not it is accumulated in the biliary tract cancer cells after 30 minutes or more and 3 hours or less after the addition.
 また、例えば、標識物質として蛍光物質を備える上述のキャリアを注射剤により静脈内(Intravenous:i.v.)注射する場合、被検動物(好ましくはヒト)に対し、1回の投与において1kg体重当たり、5mg以上のペプチドの量を投与することが好ましく、5mg以上15mg以下のペプチドの量を投与することがより好ましく、5mg以上10mg以下のペプチドの量を投与することが特に好ましい。
 また、例えば、標識物質として安定同位体、PET用核種又はSPECT用核種を備える上述のキャリアを注射剤により静脈内(Intravenous:i.v.)注射する場合、使用する安定同位体、PET用核種又はSPECT用核種の種類に応じた放射線量から投与量を決定すればよい。
In addition, for example, when the above-mentioned carrier comprising a fluorescent substance as a labeling substance is injected intravenously (Intravenous: iv) with an injection, 1 kg body weight can be obtained per administration to a test animal (preferably human). It is preferable to administer a peptide amount of 5 mg or more, more preferably 5 mg to 15 mg of peptide, and particularly preferably 5 mg to 10 mg of peptide.
In addition, for example, when the above-mentioned carrier comprising a stable isotope, a PET nuclide or a SPECT nuclide as a labeling substance is injected intravenously (Intravenous: iv) by injection, the stable isotope used, the PET nuclide Or what is necessary is just to determine dosage from the radiation dose according to the kind of nuclide for SPECT.
 本実施形態の方法において、標識物質を備える上述のキャリアの検出方法としては、例えばPET、SPECT、CT、MRI、内視鏡、蛍光検出器等を用いることができる。 In the method of the present embodiment, for example, PET, SPECT, CT, MRI, an endoscope, a fluorescence detector, or the like can be used as a method for detecting the carrier including the labeling substance.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[実施例1]ペプチドの合成
 独自に作製した、ピューロマイシン(puromycin)を介在して表現型としての12アミノ酸残基ペプチドとそれに対応する遺伝子型としてのmRNAコード配列を有するprotein-RNAキメラ型ランダムペプチドライブラリー(in vitro virus library; IVVL)を用いて、公知のIVV(in vitro virus)法に準じて、下記表1に示す各ペプチド(Peptide1~4)を分離及び同定した。また、IVVL由来の同定された各ペプチドは、FITC(Fluoresceinisothiocyanate)ラベルで合成し、塩酸塩処理を施したものである。また、r9(9残基連続D-アルギニン)は、現在汎用されている非選択的膜透過性ペプチドである。
 これらは、いずれもシグマアルドリッチジャパン(ジェノシス事業部)への委託合成により入手した。
[Example 1] Peptide synthesis Protein-RNA chimera type random having a 12 amino acid residue peptide as a phenotype and an mRNA coding sequence as a corresponding genotype via a puromycin that is produced independently Using a peptide library (in vitro virus library; IVVL), each peptide (Peptide 1 to 4) shown in Table 1 below was separated and identified according to a known IVV (in vitro virus) method. In addition, each identified peptide derived from IVVL is synthesized with a FITC (Fluoresceinisothiocynate) label and subjected to hydrochloride treatment. R9 (9-residue continuous D-arginine) is a non-selective membrane-permeable peptide that is currently widely used.
All of these were obtained by consignment synthesis to Sigma Aldrich Japan (Genosis Division).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、以下の試験例1~13に使用した各種細胞の細胞株と由来は下記表2示したとおりである。これらは、発明者が研究室において、継代培養して維持しているものである。 In addition, the cell lines and origins of various cells used in the following Test Examples 1 to 13 are as shown in Table 2 below. These are what the inventor has maintained by subculturing in the laboratory.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 胆管癌細胞、MMNK-1細胞、肝癌細胞、HeLa細胞、U2OS細胞、A172細胞、A549細胞、MCF7細胞、GCIY細胞、Lovo細胞、BxPC3細胞、KPK細胞、PC-3細胞、NHDF細胞については、10%FBS含有RPMI1640培地(RPMI1640 medium)を用いて培養した。Hepatocyte細胞は、5%FBS含有肝細胞培地(Hepatocytemedium)を用いて培養した。
HPNE細胞は、5%FBS含CS-C培地キットを用いて培養した。NuLi-1細胞は、BEGM培地(Bronchial Epithelial Growth Medium, Serum-free)を用いて培養した。Kidney細胞は、正常ヒト腎臓上皮細胞用増殖培地(RenaLife Comp Kit)を用いて培養した。TIME細胞は、EBM-2-MV Bullet kit(Endothelial Cell Basal Medium-2 Bullet kit)を用いて培養した。
For cholangiocarcinoma cells, MMNK-1 cells, hepatoma cells, HeLa cells, U2OS cells, A172 cells, A549 cells, MCF7 cells, GCIY cells, Lovo cells, BxPC3 cells, KPK cells, PC-3 cells, NHDF cells, 10 Culturing was performed using RPMI1640 medium containing% FBS (RPMI1640 medium). Hepatocyte cells were cultured using 5% FBS-containing hepatocyte medium (Hepatocyte medium).
HPNE cells were cultured using a CS-C medium kit containing 5% FBS. NuLi-1 cells were cultured using BEGM medium (Bronchial Epidermal Growth Medium, Serum-free). Kidney cells were cultured using a growth medium for normal human kidney epithelial cells (RenaLife Comp Kit). TIME cells were cultured using EBM-2-MV Bullet kit (Endothelial Cell Basal Medium-2 Bullet kit).
[試験例1]ペプチドの胆道癌細胞での集積性の確認試験
 M156細胞、M213細胞、M214細胞及びKKU-100細胞に、実施例1において作製したPeptide1、2及び3をそれぞれ、培地中に4μMとなるように添加した。それらの細胞を37℃で60分間培養した。続いて、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。検鏡の前にペプチドを添加した培養上清を除去し、1×PBS(-)で3回洗浄後、トリプシン処理し接着細胞を剥離してただちに新しい96穴プレートに移入して新しい培養液に再懸濁後、検鏡を行った。結果を図1に示す。
[Test Example 1] Confirmation test of peptide accumulation in biliary tract cancer cells Peptides 1, 2 and 3 prepared in Example 1 were added to M156 cells, M213 cells, M214 cells and KKU-100 cells in a medium at 4 μM, respectively. It added so that it might become. The cells were incubated for 60 minutes at 37 ° C. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope. Remove the culture supernatant to which the peptide was added before microscopic examination, wash 3 times with 1 × PBS (−), trypsinize, peel off the adherent cells, and immediately transfer to a new 96-well plate. After resuspension, microscopic examination was performed. The results are shown in FIG.
 図1から、Peptide1、2及び3について、全ての細胞で蛍光が検出された。特にPeptide3を添加した細胞は、蛍光が強く検出された。以上のことから、Peptide3は、胆管癌細胞内への高透過性を有することが明らかとなった。 From FIG. 1, fluorescence was detected in all cells for Peptides 1, 2 and 3. In particular, strong fluorescence was detected in cells to which Peptide 3 was added. From the above, it was revealed that Peptide3 has high permeability into cholangiocarcinoma cells.
[試験例2]インヒビターを用いたペプチドの胆道癌細胞での集積性の確認試験
 M213細胞に、実施例1において作製したPeptide3又はr9を、培地中に4μMとなるように添加し、37℃で60分間培養した。胆管癌細胞内へのペプチドの阻害を検討するための阻害剤として、培養開始から20分後に、0、5、20、50、100μMのクロルプロマジン又は0、2、10、50、100μMの5-(N-エチル-N-イソプロピル)アミロライド(EIPA)を、30分後に0、10、20、40、80μMのダイナソーを、それぞれ添加した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図2A~図2Cに示す。
 なお、クロルプロマジンはクラスリン依存性のエンドサイトーシスを阻害する阻害剤である。また、ダイナソーは、ダイナミンによるクラスリン依存性のエンドサイトーシスを阻害する阻害剤である。また、EIPAは、マクロピノサイトーシス(飲作用)を阻害する阻害剤である。
[Test Example 2] Confirmation test of peptide accumulation in biliary tract cancer cells using inhibitor Peptide 3 or r9 prepared in Example 1 was added to M213 cells so as to be 4 μM in the medium, and the culture was performed at 37 ° C. Incubated for 60 minutes. As an inhibitor for examining the inhibition of peptides into cholangiocarcinoma cells, 20 minutes after the start of culture, 0, 5, 20, 50, 100 μM chlorpromazine or 0, 2, 10, 50, 100 μM 5- ( N-ethyl-N-isopropyl) amiloride (EIPA) was added 30 minutes later and 0, 10, 20, 40, and 80 μM dynaso were added. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIGS. 2A to 2C.
Chlorpromazine is an inhibitor that inhibits clathrin-dependent endocytosis. Dinosaur is an inhibitor that inhibits clathrin-dependent endocytosis by dynamin. EIPA is an inhibitor that inhibits macropinocytosis (phagocytosis).
 図2A~図2Cから、r9を添加した細胞における蛍光は、EIPAの添加量の増加に応じて、減少するのに対し、Peptide3を添加した細胞における蛍光は、ダイナソーの添加量の増加に応じて、減少することが明らかとなった。このことから、Peptide3の胆管癌細胞内への取り込みは、ダイナミンによるクラスリン依存性のエンドサイトーシスによるものであると推察された。 From FIG. 2A to FIG. 2C, the fluorescence in the cells to which r9 was added decreased with an increase in the amount of EIPA added, whereas the fluorescence in the cells to which Peptide 3 was added increased with an increase in the amount of dynaso added. It became clear that it decreased. From this, it was speculated that the uptake of Peptide3 into cholangiocarcinoma cells was due to clathrin-dependent endocytosis by dynamin.
[試験例3]異なる血清濃度の培地におけるペプチドの胆道癌細胞での集積性の確認試験
 M214細胞に、実施例1において作製したPeptide3又はPeptide4を、0%、10%、50%FBS含有培地中に4μMとなるように添加し、37℃で60分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図3A及び図3Bに示す。
 なお、Peptide3及びPeptide4は同じアミノ酸配列からなるペプチであって、Peptide3はL体のアミノ酸のみから構成されており、Peptide4はD体のアミノ酸のみから構成されている。すなわち、Peptide3及びPeptide4は鏡面異性体の関係にある。
[Test Example 3] Confirmation test for accumulation of peptides in biliary tract cancer cells in media with different serum concentrations Peptide 3 or Peptide 4 prepared in Example 1 was added to M214 cells in media containing 0%, 10%, 50% FBS. To 4 μM and incubated at 37 ° C. for 60 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIGS. 3A and 3B.
Peptide 3 and Peptide 4 are peptides having the same amino acid sequence, Peptide 3 is composed of only L-form amino acids, and Peptide 4 is composed of only D-form amino acids. That is, Peptide 3 and Peptide 4 are in a mirror isomer relationship.
 図3A及び図3Bから、Peptide3を添加した細胞よりも、Peptide4を添加した細胞の方が、120分後においても強い蛍光が見られることが確かめられた。また、50%FBS含有の高血清濃度の環境下においても、血清中に含まれるアルブミン等による胆管癌細胞内への取り込みの阻害を受けるが、Peptide4を添加した細胞の方が、胆管癌細胞での集積性が高いことが明らかとなった。50%FBS含有の培地は、ヒトの血液の濃度に近い。よって、Peptide3及びPeptide4は、例えば静脈内注射等によりヒト体内に添加した場合においても、胆管癌に集積させることが可能であると推察された。 From FIG. 3A and FIG. 3B, it was confirmed that the cells to which Peptide 4 was added showed stronger fluorescence even after 120 minutes than the cells to which Peptide 3 was added. In addition, even in an environment with a high serum concentration containing 50% FBS, the uptake into cholangiocarcinoma cells by albumin contained in the serum is inhibited, but cells added with Peptide 4 are more cholangiocarcinoma cells. It became clear that the accumulation property of was high. A medium containing 50% FBS is close to the concentration of human blood. Therefore, it was speculated that Peptide 3 and Peptide 4 can be accumulated in cholangiocarcinoma even when added to the human body by intravenous injection or the like.
[試験例4] ペプチドの各種胆道癌細胞での集積性の確認試験
 上記表1に示した各種胆道癌細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図4に示す。
[Test Example 4] Confirmation test for peptide accumulation in various biliary tract cancer cells Peptide 3 (4 μM) prepared in Example 1 and Hoechst (Dojindo Co., Ltd.) prepared in Example 1 were added to the various biliary tract cancer cells shown in Table 1 above. And cultured at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
 図4から、Peptide3は、M156細胞、M213細胞、M214細胞、KKU-100細胞及びTKKK細胞において、蛍光が検出された。 4. From FIG. 4, fluorescence was detected in Peptide3 in M156 cells, M213 cells, M214 cells, KKU-100 cells, and TKKK cells.
[試験例5] ペプチドの各種胆細胞癌細胞での集積性の確認試験
 上記表1に示した各種胆細胞癌細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図5に示す。
[Test Example 5] Confirmation test of peptide accumulation in various cholangiocarcinoma cells Peptide 3 (4 μM) prepared in Example 1 and Hoechst (which is a nuclear stain) were added to the various cholangiocarcinoma cells shown in Table 1 above. (Manufactured by Dojindo Co., Ltd.) was added and incubated at 37 ° C for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
 図5から、PLC/PRF/5細胞及びHepG2細胞において、ほとんど蛍光が検出されなかった。 From FIG. 5, almost no fluorescence was detected in PLC / PRF / 5 cells and HepG2 cells.
[試験例6] ペプチドのその他各種組織由来の癌細胞での集積性の確認試験
 上記表1に示したその他各種組織由来の癌細胞及びM156細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図6に示す。
[Test Example 6] Confirmation test for accumulation of peptide in cancer cells derived from various other tissues Peptide 3 (4 μM) prepared in Example 1 and cancer cells derived from other various tissues and M156 cells shown in Table 1 above. Hoechst (manufactured by Dojindo Co., Ltd.), a nuclear stain, was added and incubated at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
図6から、GCIY細胞及びPC-3細胞において、ほとんど蛍光が検出されなかった。 From FIG. 6, almost no fluorescence was detected in GCIY cells and PC-3 cells.
[試験例7] ペプチドの各種組織由来の正常細胞での集積性の確認試験
 上記表1に示した各種組織由来の正常細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図7に示す。
[Test Example 7] Confirmation test for accumulation of peptides in normal cells derived from various tissues Peptide 3 (4 μM) and nuclear stain prepared in Example 1 on normal cells derived from various tissues shown in Table 1 above Hoechst (manufactured by Dojindo Co., Ltd.) was added and cultured at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
 図7から、いずれの細胞においても、蛍光は検出されなかった。 From FIG. 7, no fluorescence was detected in any of the cells.
 試験例4~7から、本発明のペプチドは、胆管癌細胞に特異的な集積性を有することが確認された。 From Test Examples 4 to 7, it was confirmed that the peptide of the present invention has specific accumulation properties in cholangiocarcinoma cells.
[試験例8] ペプチドの共培養した胆管癌細胞及び胆管由来の正常な細胞での集積性の確認試験
 共培養したM156細胞及びMMNK-1細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を含む培地を入れ、37℃で60分間培養した。また、同時に、共培養したM156細胞及びMMNK-1細胞に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で30分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図8に示す。
[Test Example 8] Confirmation test of accumulation of peptide in co-cultured bile duct cancer cells and normal cells derived from bile ducts Peptide 3 (4 μM) prepared in Example 1 and M156 cells and MMNK-1 cells co-cultured A medium containing Hoechst (manufactured by Dojindo Co., Ltd.), a nuclear stain, was added and cultured at 37 ° C. for 60 minutes. Simultaneously, Peptide 3 (4 μM) prepared in Example 1 and Hoechst (manufactured by Dojindo Co., Ltd.) as a nuclear stain were added to the co-cultured M156 cells and MMNK-1 cells, followed by incubation at 37 ° C. for 30 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
 図8から、Peptide3は、MMNK-1細胞には取り込まれず、M156細胞にのみ取り込まれることが明らかとなった。このことから、本発明のペプチドは、従来の細胞透過性ペプチドであるTat等と異なり、胆管癌細胞にのみ特異的な集積性を有することが明らかとなった。 FIG. 8 reveals that Peptide3 is not taken up by MMNK-1 cells but is taken up only by M156 cells. From this, it was revealed that the peptide of the present invention has specific accumulation properties only in cholangiocarcinoma cells, unlike Tat, which is a conventional cell-permeable peptide.
[試験例9]ヒト胆管癌細胞移植マウスでの各種組織におけるペプチドの集積性の評価試験
 M214細胞を腹腔内(i.p.)注射したNOD-SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)をヒト胆管癌細胞移植モデル(human leukemia-xenograft model)として作製した。続いて、マウス体重20gに対して150μgの実施例1で作製したPeptide3を静脈内(i.v.)注射した。投与後90分で開腹して腫瘍病変とペプチドの分布を蛍光実体顕微鏡下に観察した。結果を図9に示す。図9において、gallは胆嚢、livは肝臓、stは胃、spは脾臓、brは脳、hrは心臓、kdは腎臓、luは肺、tumorは悪性腫瘍を意味する。また、図9において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において撮影した画像である。さらに上部の画像はマウスの開腹時の画像であり、下部の左側の画像は、摘出された各種組織の画像であり、下部の右側の画像は、摘出された各種組織をスライスしたものの画像である。
[Test Example 9] Evaluation test of peptide accumulation in various tissues in human cholangiocarcinoma cell transplanted mice NOD-SCID mice injected intraperitoneally (ip) with M214 cells (6 weeks purchased from Charles River Japan) Aged female mice) were prepared as a human leukemia-xenograft model. Subsequently, 150 μg of Peptide 3 prepared in Example 1 was injected intravenously (iv) to a mouse body weight of 20 g. At 90 minutes after administration, the abdomen was opened, and the tumor lesion and peptide distribution were observed under a fluorescent stereomicroscope. The results are shown in FIG. In FIG. 9, “gal” means gallbladder, “live” means liver, “st” means stomach, “sp” means spleen, “br” means brain, “hr” means heart, “kd” means kidney, “lu” means lung, and “tumor” means malignant tumor. In FIG. 9, “Bright Field” is an image taken in a bright field, and “FITC” is an image taken in a dark field. The upper image is an image when the mouse is opened, the lower left image is an image of various extracted tissues, and the lower right image is an image of sliced various extracted tissues. .
 図9から、Peptide3は胆嚢及び悪性腫瘍にのみ集積していることが確かめられた。 From FIG. 9, it was confirmed that Peptide 3 was accumulated only in the gallbladder and malignant tumor.
[試験例10]ヒト胆管癌細胞を植えた肝臓を移植したマウスでの各種組織におけるペプチドの集積性の評価試験
 M156細胞を植えた肝臓をNOD-SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)に移植した。続いて、マウス体重20gに対して150μgの実施例1で作製したPeptide3を静脈内(i.v.)注射した。投与後90分で開腹して腫瘍病変とペプチドの分布を蛍光実体顕微鏡下に観察した。結果を図10に示す。図10において、gallは胆嚢、livは肝臓、stは胃、spは脾臓、brは脳、hrは心臓、kdは腎臓、luは肺、tumorは悪性腫瘍を意味する。また、図10において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において撮影した画像である。さらに上部の画像はマウスの開腹時の画像であり、下部の左側の画像は、摘出された各種組織の画像であり、下部の右側の画像は、摘出された各種組織をスライスしたものの画像である。
[Test Example 10] Evaluation test of peptide accumulation in various tissues in mice transplanted with livers transplanted with human cholangiocarcinoma cells NOD-SCID mice (6 weeks purchased from Charles River, Japan) with livers planted with M156 cells Aged female mice). Subsequently, 150 μg of Peptide 3 prepared in Example 1 was injected intravenously (iv) to a mouse body weight of 20 g. At 90 minutes after administration, the abdomen was opened, and the tumor lesion and peptide distribution were observed under a fluorescent stereomicroscope. The results are shown in FIG. In FIG. 10, “gal” means gallbladder, “liv” means liver, “st” means stomach, “sp” means spleen, “br” means brain, “hr” means heart, “kd” means kidney, “lu” means lung, and “tumor” means malignant tumor. In FIG. 10, “Bright Field” is an image taken in a bright field, and “FITC” is an image taken in a dark field. The upper image is an image when the mouse is opened, the lower left image is an image of various extracted tissues, and the lower right image is an image of sliced various extracted tissues. .
 図10から、Peptide3は胆嚢及び悪性腫瘍にのみ集積していることが確かめられた。 FIG. 10 confirmed that Peptide 3 was accumulated only in the gallbladder and malignant tumor.
[試験例11]ペプチドの各種細胞での集積性の確認試験
 上記表1に示した各種胆道癌細胞、MMNK-1細胞及びHepatocyte細胞に、実施例1において作製したPeptide4(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図11に示す。
[Test Example 11] Confirmation test of peptide accumulation in various cells Peptide 4 (4 μM) and nuclear stain prepared in Example 1 were applied to the various biliary tract cancer cells, MMNK-1 cells and Hepatocyte cells shown in Table 1 above. Hoechst (manufactured by Dojindo) was added and incubated at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG.
 図11から、胆管癌細胞においてのみ、蛍光が検出された。また、Peptide3を添加した胆管癌細胞と比較したところ、Peptide4を添加した胆管癌細胞のほうが、強い蛍光が検出された。さらにPeptide3では蛍光が検出されなかったSSP25細胞、OCUG-1細胞、TFK-1細胞及びHuCCT1細胞においても蛍光が検出された。以上のことから、D体であるPeptide4のほうが胆管癌細胞への集積性が高いことが確かめられた。 From FIG. 11, fluorescence was detected only in cholangiocarcinoma cells. In addition, when compared with bile duct cancer cells to which Peptide 3 was added, stronger fluorescence was detected in the bile duct cancer cells to which Peptide 4 was added. Furthermore, fluorescence was also detected in SSP25 cells, OCUG-1 cells, TFK-1 cells and HuCCT1 cells in which no fluorescence was detected with Peptide3. From the above, it was confirmed that Peptide4 which is D body has higher accumulation property in cholangiocarcinoma cells.
[試験例12]ヒト胆管癌細胞移植マウスでの各種組織におけるペプチドの集積性の評価試験
 TKKK細胞を腹腔内(i.p.)注射し、さらにTKKK細胞を植えた肝臓を移植したNOD-SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)をヒト胆管癌細胞移植モデル(human leukemia-xenograft model)として作製した。続いて、マウス体重20gに対して150μgの実施例1で作製したPeptide3又はPeptide4を静脈内(i.v.)注射した。投与後90分で開腹して腫瘍病変とペプチドの分布を蛍光実体顕微鏡下に観察した。結果を図12に示す。図12において、gallは胆嚢、livは肝臓、stは胃、spは脾臓、brは脳、hrは心臓、kdは腎臓、luは肺、tumorは悪性腫瘍を意味する。また、図12において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において撮影した画像である。さらに、上部の画像はPeptide3を添加したマウスから摘出された組織の画像であり、下部の画像はPeptide4を添加したマウスから摘出された組織の画像である。また、左側の画像は、摘出された各種組織の画像であり、右側の画像は、摘出された各種組織をスライスしたものの画像である。
[Test Example 12] Evaluation test of peptide accumulation in various tissues in human cholangiocarcinoma cell transplanted mice NOD-SCID in which TKKK cells were injected intraperitoneally (ip) and transplanted with a liver in which TKKK cells were transplanted Mice (6-week-old female mice purchased from Charles River, Japan) were prepared as a human cholangiocarcinoma cell transplant model (human leukemia-xenograft model). Subsequently, 150 μg of Peptide 3 or Peptide 4 prepared in Example 1 was injected intravenously (iv) to a mouse body weight of 20 g. At 90 minutes after administration, the abdomen was opened, and the tumor lesion and peptide distribution were observed under a fluorescent stereomicroscope. The results are shown in FIG. In FIG. 12, “gal” means gallbladder, “liv” means liver, “st” means stomach, “sp” means spleen, “br” means brain, “hr” means heart, “kd” means kidney, “lu” means lung, and “tumor” means malignant tumor. In FIG. 12, “Bright Field” is an image taken in a bright field, and “FITC” is an image taken in a dark field. Furthermore, the upper image is an image of a tissue extracted from a mouse added with Peptide3, and the lower image is an image of a tissue extracted from a mouse added with Peptide4. The left image is an image of various extracted tissues, and the right image is an image of sliced various tissues.
 図12から、Peptide3及びPeptide4は悪性腫瘍にのみ集積していることが確かめられた。また、Peptide3よりもPeptide4の方が強い蛍光が検出された。 From FIG. 12, it was confirmed that Peptide 3 and Peptide 4 were accumulated only in malignant tumors. In addition, stronger fluorescence was detected with Peptide 4 than with Peptide 3.
 また、図13A及び図13Bは、試験例12において、各組織で検出された蛍光を定量化し、膵臓で検出された蛍光を1としたときの各種組織で検出された蛍光強度の割合を示すグラフである。また、図14は、各組織で検出された蛍光を定量化し、各組織で検出された蛍光を1としたときの悪性腫瘍で検出された蛍光強度の割合を示すグラフである。
 図13A及び図13Bから、Peptide3を投与したマウスでは、悪性腫瘍で検出された蛍光が肝臓で検出された蛍光の約8.6倍であるのに対し、Peptide4を投与したマウスでは、悪性腫瘍で検出された蛍光が肝臓で検出された蛍光の約45.8倍であった。
 また、図14から、いずれの組織での蛍光を1としたときにおいても、Peptide3を投与したマウスでの悪性腫瘍で検出された蛍光よりも、Peptide4を投与したマウスでの悪性腫瘍で検出された蛍光のほうが高い数値であった。
13A and 13B are graphs showing the ratios of the fluorescence intensities detected in various tissues when the fluorescence detected in each tissue is quantified and the fluorescence detected in the pancreas is 1 in Test Example 12. It is. FIG. 14 is a graph showing the ratio of the fluorescence intensity detected in the malignant tumor when the fluorescence detected in each tissue is quantified and the fluorescence detected in each tissue is 1.
From FIG. 13A and FIG. 13B, in the mouse administered with Peptide3, the fluorescence detected in the malignant tumor was about 8.6 times the fluorescence detected in the liver, whereas in the mouse administered with Peptide4, the malignant tumor was detected. The detected fluorescence was about 45.8 times the fluorescence detected in the liver.
In addition, from FIG. 14, when the fluorescence in any tissue was set to 1, it was detected in the malignant tumor in the mouse administered with Peptide 4 rather than the fluorescence detected in the malignant tumor in the mouse administered with Peptide 3. Fluorescence was higher.
 以上のことから、D体であるPeptide4のほうが胆管癌細胞への集積性が高いことが確かめられた。 From the above, it was confirmed that Peptide 4, which is D body, has higher accumulation in cholangiocarcinoma cells.
[試験例13]ヒト胆管癌細胞を植えた肝臓を移植したマウスでの各種組織におけるペプチドの集積性の評価試験
 M156細胞を植えた肝臓をNOD-SCIDマウス(日本チャールズリバー社より購入した6週齢雌マウス)に移植した。続いて、マウス体重20gに対して150μgの実施例1で作製したPeptide4を静脈内(i.v.)注射した。投与後90分で開腹して腫瘍病変とペプチドの分布を蛍光実体顕微鏡下に観察した。結果を図15に示す。図15において、gallは胆嚢、livは肝臓、tumorは悪性腫瘍を意味する。また、図15において、「Bright Field」とは明視野において撮影した画像であり、「FITC」は暗視野において撮影した画像である。さらに上部の画像はマウスの開腹時の画像であり、下部の左側の画像は、摘出された肝臓及び悪性腫瘍の画像であり、下部の右側の画像は、摘出された肝臓及び悪性腫瘍をスライスしたものの画像である。
[Test Example 13] Evaluation test of peptide accumulation in various tissues in mice transplanted with livers transplanted with human cholangiocarcinoma cells NOD-SCID mice (6 weeks purchased from Charles River, Japan) with livers planted with M156 cells Aged female mice). Subsequently, 150 μg of Peptide 4 prepared in Example 1 was injected intravenously (iv) to a mouse body weight of 20 g. At 90 minutes after administration, the abdomen was opened, and the tumor lesion and peptide distribution were observed under a fluorescent stereomicroscope. The results are shown in FIG. In FIG. 15, “gal” means gallbladder, “live” means liver, and “tumor” means malignant tumor. In FIG. 15, “Bright Field” is an image taken in a bright field, and “FITC” is an image taken in a dark field. Furthermore, the upper image is an image when the mouse is opened, the lower left image is an image of the extracted liver and malignant tumor, and the lower right image is a slice of the extracted liver and malignant tumor. It is an image of things.
 図15から、Peptide4は胆嚢及び悪性腫瘍にのみ集積していることが確かめられた。 FIG. 15 confirmed that Peptide 4 was accumulated only in the gallbladder and malignant tumor.
[試験例14]胆管癌患者の腹水に含まれる胆管癌細胞におけるペプチドの集積性の評価試験
 3例の胆管癌患者の腹水に、実施例1において作製したPeptide3(4μM)及び核染色剤であるHoechst(同仁堂社製)を添加し、37℃で120分間培養した。続いて、試験例1と同様の方法により、倒立型蛍光顕微鏡で生細胞における各ペプチドの取り込みを視覚的に評価した。結果を図16に示す。図16において、「Phase+Hoechst」とは、核染色像を含む明視野を示す。
[Test Example 14] Peptide evaluation test for peptide accumulation in cholangiocarcinoma cells contained in ascites of patients with cholangiocarcinoma Peptide 3 (4 μM) and nuclear stain prepared in Example 1 in ascites of three patients with cholangiocarcinoma Hoechst (manufactured by Dojindo Co., Ltd.) was added and cultured at 37 ° C. for 120 minutes. Subsequently, the uptake of each peptide in living cells was visually evaluated with an inverted fluorescence microscope by the same method as in Test Example 1. The results are shown in FIG. In FIG. 16, “Phase + Hoechst” indicates a bright field including a nuclear stained image.
 図16から、Peptide3は、培養細胞だけでなく、胆管癌患者由来の胆管癌細胞においても、集積性を有することが確かめられた。 From FIG. 16, it was confirmed that Peptide 3 has an accumulation property not only in cultured cells but also in cholangiocarcinoma cells derived from cholangiocarcinoma patients.
 本発明によれば、胆道癌に特異的な集積性を有する新規ペプチドを提供することできる。また、胆道癌を簡便、高感度且つ選択的に検出することができる。 According to the present invention, a novel peptide having an accumulation property specific to biliary tract cancer can be provided. In addition, biliary tract cancer can be detected simply, with high sensitivity and selectively.

Claims (12)

  1.  以下の(a)又は(b)のペプチド。
    (a)配列番号1で表される配列を含むアミノ酸配列からなるペプチド、
    (b)配列番号1で表される配列と同一性が60%以上である配列を含むアミノ酸配列からなり、且つ、胆道癌に特異的な集積性を有するペプチド
    The peptide of the following (a) or (b).
    (A) a peptide comprising an amino acid sequence comprising the sequence represented by SEQ ID NO: 1,
    (B) a peptide consisting of an amino acid sequence comprising a sequence whose identity to the sequence represented by SEQ ID NO: 1 is 60% or more, and having an accumulation property specific to biliary tract cancer
  2.  環状構造である請求項1に記載のペプチド。 The peptide according to claim 1, which has a cyclic structure.
  3.  さらに、N末端及びC末端にシステイン残基を備える請求項1又は2に記載のペプチド。 The peptide according to claim 1 or 2, further comprising cysteine residues at the N-terminus and C-terminus.
  4.  D体アミノ酸に置換したRetro-Inverso型である請求項1~3のいずれか一項に記載のペプチド。 The peptide according to any one of claims 1 to 3, which is a retro-inverso type substituted with a D-form amino acid.
  5.  請求項1~4のいずれか一項に記載のペプチドをコードすることを特徴とする核酸。 A nucleic acid encoding the peptide according to any one of claims 1 to 4.
  6.  請求項5に記載の核酸を含むことを特徴とするベクター。 A vector comprising the nucleic acid according to claim 5.
  7.  請求項1~4のいずれか一項に記載のペプチドを含むことを特徴とするキャリア。 A carrier comprising the peptide according to any one of claims 1 to 4.
  8.  さらに、標識物質又は修飾物質を備える請求項7に記載のキャリア。 The carrier according to claim 7, further comprising a labeling substance or a modifying substance.
  9.  前記標識物質が、安定同位体、放射性同位体又は蛍光物質である請求項8に記載のキャリア。 The carrier according to claim 8, wherein the labeling substance is a stable isotope, a radioactive isotope or a fluorescent substance.
  10.  前記修飾物質が、糖鎖又はポリエチレングリコールである請求項8又は9に記載のキャリア。 The carrier according to claim 8 or 9, wherein the modifying substance is a sugar chain or polyethylene glycol.
  11.  請求項7~10のいずれか一項に記載のキャリアと生理活性物質とを備えることを特徴とする医薬組成物。 A pharmaceutical composition comprising the carrier according to any one of claims 7 to 10 and a physiologically active substance.
  12.  胆道癌治療用又は診断用である、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, which is for biliary tract cancer treatment or diagnosis.
PCT/JP2016/078607 2015-10-01 2016-09-28 Peptide that specifically accumulates in biliary tract cancer, and use thereof WO2017057450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543480A JP6839447B2 (en) 2015-10-01 2016-09-28 Peptides with accumulation specific to biliary tract cancer and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015196227 2015-10-01
JP2015-196227 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017057450A1 true WO2017057450A1 (en) 2017-04-06

Family

ID=58423835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078607 WO2017057450A1 (en) 2015-10-01 2016-09-28 Peptide that specifically accumulates in biliary tract cancer, and use thereof

Country Status (2)

Country Link
JP (1) JP6839447B2 (en)
WO (1) WO2017057450A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529333A (en) * 2006-03-09 2009-08-20 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Compositions and methods related to profiling of multiple cell lines based on peptide bonds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529333A (en) * 2006-03-09 2009-08-20 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Compositions and methods related to profiling of multiple cell lines based on peptide bonds

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EISAKU KONDO ET AL.: "Tando Gan Kyushusei Kanjoka Peptide ni yoru Shuyo Imaging", DAI 19 KAI THE JAPANESE ASSOCIATION FOR MOLECULAR TARGET THERAPY OF CANCER GAKUJUTSU SHUKAI, 31 May 2015 (2015-05-31), pages 90 *
HIGA, M. ET AL.: "Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 457, 2015, pages 206 - 212, XP029165382 *
KAMIDE K ET AL.: "Isolation of novel cell - penetrating peptides from a random peptide library using i n vitro virus and their modifications", INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, vol. 25, 2010, pages 41 - 51, XP055370739 *
KEN SAITO ET AL.: "Tando Gan Imaging Tool to shite no Saibo Tokasei Peptide no Tansaku", NIPPON BYORI GAKKAI KAISHI, vol. 103, no. 1, 26 March 2014 (2014-03-26), pages 270 *
KEN SAITO ET AL.: "Tando Gan Tokasei Peptide no Tansaku", DAI 18 KAI THE JAPANESE ASSOCIATION FOR MOLECULAR TARGET THERAPY OF CANCER GAKUJUTSU SHUKAI PROGRAM . SHOROKUSHU, vol. 134, 29 May 2014 (2014-05-29), pages 12 - 2 *
KONDO, E. ET AL.: "Tumour lineage-homing cell - penetrating peptides as anticancer molecular delivery systems", NATURE COMMUNICATIONS, vol. 3, no. 951, 17 July 2012 (2012-07-17), pages 1 - 13, XP055370747 *

Also Published As

Publication number Publication date
JP6839447B2 (en) 2021-03-10
JPWO2017057450A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
Kuil et al. Imaging agents for the chemokine receptor 4 (CXCR4)
Ding et al. Robust anticancer efficacy of a biologically synthesized tumor acidity-responsive and autophagy-inducing functional Beclin 1
JP2018507865A (en) Targeted transplantation of mitochondria into hepatocytes
WO2019028469A1 (en) Polymer-functionalized mitochondrial compositions and methods of use in cellular transplantation and for altering metabolic phenotype
JP6612063B2 (en) Malignant glioma molecule targeting peptide
KR20210090157A (en) cell penetrating peptide
WO2017086090A1 (en) Peptide having accumulation specific to pancreatic cancer, and use of said peptide
WO2017057450A1 (en) Peptide that specifically accumulates in biliary tract cancer, and use thereof
US20220213165A1 (en) Therapeutic peptides
WO2017073485A1 (en) Peptide having property of specifically accumulating in glioma, and use thereof
WO2020195504A1 (en) Peptide and use thereof
TWI812706B (en) Peptide and use thereof
CN112979764B (en) Polypeptide specifically binding to human CD47 molecule and application thereof
NL2027653B1 (en) Targeting system with improved uptake
CN113784735A (en) Method for diagnosing lung cancer
KR20200135224A (en) Nanocarrier with micelle structure and uses thereof
EP4199907A1 (en) Targeted antigen delivery system and uses thereof
KR20210091117A (en) cell penetrating peptide
JP2020531478A (en) New peptide-based cancer contrast agent
TW201627011A (en) Lung cancer specific peptides for targeted drug delivery and molecular imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851621

Country of ref document: EP

Kind code of ref document: A1