WO2017057092A1 - Polycarbonate resin composition and method for producing same - Google Patents
Polycarbonate resin composition and method for producing same Download PDFInfo
- Publication number
- WO2017057092A1 WO2017057092A1 PCT/JP2016/077679 JP2016077679W WO2017057092A1 WO 2017057092 A1 WO2017057092 A1 WO 2017057092A1 JP 2016077679 W JP2016077679 W JP 2016077679W WO 2017057092 A1 WO2017057092 A1 WO 2017057092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarbonate resin
- resin
- resin composition
- mass
- styrene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Definitions
- the present invention relates to a polycarbonate resin composition and a method for producing the same, and more particularly, a polycarbonate resin composition having excellent mechanical properties and moisture and heat resistance and no mold contamination due to mold deposits, and a method for producing the polycarbonate resin composition with high production efficiency.
- a polycarbonate resin composition having excellent mechanical properties and moisture and heat resistance and no mold contamination due to mold deposits, and a method for producing the polycarbonate resin composition with high production efficiency.
- Polycarbonate resin is a resin excellent in heat resistance, mechanical properties, and electrical characteristics, and is widely used for, for example, automobile materials, electrical and electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields.
- many polymer alloys with other thermoplastic resins have been developed.
- polymer alloys with styrenic resins represented by ABS resins are more cost-effective and have higher moldability and impact resistance than polycarbonate resins. It has been improved and is widely used as a part of various electronic devices such as various computers, personal computers, various portable terminals, printers, copying machines, and OA information devices.
- ABS resin used for the polycarbonate / styrene resin composition those manufactured by emulsion polymerization are often used from the viewpoints of cost, compatibility with various varieties, and easy quality improvement due to high rubber.
- a product produced by bulk polymerization is sometimes used because of its excellent heat and humidity resistance (the same document, claim 8 and paragraph [0024]).
- Styrenic resin by bulk polymerization is expensive, and it is conceivable to use an emulsion polymerization product for cost reduction, but the polycarbonate resin composition containing the emulsion polymerization styrene resin is surely inferior in heat and moisture resistance. Has drawbacks.
- Emulsion polymerization ABS resin usually uses higher fatty acid soap or rosin acid soap as an emulsifier, and performs emulsion polymerization of butadiene with a water-soluble polymerization initiator to obtain a polymer latex, and then the polymer particles and the emulsifier In the presence of water, styrene and acrylonitrile are polymerized to obtain an ABS polymer latex, to which a coagulant such as an inorganic acid or a divalent metal salt is added to separate the polymer, which is washed and dried. Manufactured. From the viewpoint of economy, the emulsifier that has not been completely removed remains in the product because the emulsifier is not completely removed in the washing step.
- the present invention has an object (problem) to provide a polycarbonate resin composition containing an emulsion-polymerized styrene resin, in which the problems of heat and moisture resistance and mold deposit are solved, and a method for producing the same with high production efficiency.
- the inventor is a resin composition containing a specific amount of a polycarbonate resin and a specific emulsion-polymerized styrene resin, and the resin composition is 280 ° C., 10 ° C.
- Polycarbonate / styrene resin composition whose total gas amount when heated for a minute is 3000 mass ppm or less in terms of decane mass is excellent in mechanical properties and heat and humidity resistance, and there is no problem of mold contamination due to mold deposit I found.
- an emulsion-polymerized styrene-based resin which is an additive component and a small amount component compared to the polycarbonate resin, is first added to the root of the extruder.
- the above problem is solved by venting under reduced pressure to devolatilize the gas generating component derived from the emulsifier, and supplying the polycarbonate resin as the main component from the raw material supply port downstream from the vent port and melt-kneading.
- This invention is the manufacturing method of the following polycarbonate resin compositions, its molded article, and the following polycarbonate resin compositions.
- a resin composition comprising 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene-based resin (B) based on a total of 100% by weight of (A) and (B).
- the emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
- a polycarbonate resin composition wherein the total gas amount when the resin composition is heated at 280 ° C.
- the styrene resin (B) is dispersed in an island shape in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 ⁇ m or less, and the styrene resin (B The ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) is in the range of 1.0 to 1.5.
- the polycarbonate resin composition according to the above [1] or [2], wherein the impact strength retention after heat-moisture treatment for 400 hours in an environment of a temperature of 90 ° C and a relative humidity of 95% is 50% or more.
- the emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer, A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C.
- the emulsion-polymerized styrene resin (B) is dispersed in islands in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 ⁇ m or less, and the emulsion-polymerized styrene
- the ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) of the resin (B) is in the range of 1.0 to 1.5.
- the polycarbonate resin composition in any one.
- the extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
- the supply amount of the emulsion polymerization styrene resin (B) is B (1)
- the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1)
- a (2) When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A), From the first raw material supply port, styrene resin (B) and polycarbonate resin (A), Formula: B (1)> A (1) (However, A (1) includes 0.) Supply to meet and After melt-kneading, after degassing the gas component from the vent port under reduced pressure, A method for producing a polycarbonate resin composition, comprising: supplying a polycarbonate resin (A) in an amount of A (2) from a second raw material supply port downstream of the vent port. [12] The method for producing a polycarbonate resin composition according to [11], wherein the gas component includes a gas component derived from an emulsifier.
- a method of manufacturing by melt-kneading with an extruder The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side.
- the supply amount of the emulsion polymerization styrene resin (B) is B (1)
- the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1)
- a (2) When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A), From the first raw material supply port, styrene resin (B) and polycarbonate resin (A), Formula: B (1)> A (1) (However, A (1) includes 0.) Supply to meet and Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port, A method for producing a polycarbonate resin composition, characterized in that the polycarbonate resin (A) is supplied in an amount of A (2) from a second raw material supply port downstream of the vent port.
- the polycarbonate resin composition of the present invention is excellent in mechanical properties and moisture and heat resistance, and has no problem of mold contamination due to mold deposit.
- the method for producing a polycarbonate resin composition of the present invention can produce a polycarbonate resin composition having excellent mechanical properties and heat-and-moisture resistance and no problem of mold contamination due to mold deposits with high productivity.
- FIG. 2 is a SEM photograph (magnification 1500 times) of a core part of a molded product obtained in Example 1.
- FIG. 2 is a SEM photograph (magnification 3000 times) of a core part of a molded product obtained in Example 1.
- FIG. 3 is a SEM photograph (magnification 1500 times) of a core part of a molded product obtained in Comparative Example 1.
- 2 is a SEM photograph (magnification 3000 times) of a core part of a molded product obtained in Comparative Example 1. It is a top view of the drop mold used for evaluation of mold contamination.
- the polycarbonate resin composition of the present invention contains 60 to 95% by weight of the polycarbonate resin (A) and 40 to 5% by weight of the emulsion polymerization styrene resin (B) based on a total of 100% by weight of (A) and (B).
- a resin composition comprising:
- the emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
- the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 mass ppm or less in terms of decane mass.
- the production method of the polycarbonate resin composition of the present invention is based on a total of 100% by mass of (A) and (B), 60 to 95% by mass of the polycarbonate resin (A), and 40 to 5% by mass of the emulsion-polymerized styrene resin (B).
- a polycarbonate resin composition containing 2% by melt-kneading with a vented twin screw extruder The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
- the supply amount of the emulsion polymerization styrene resin (B) is B (1)
- the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1)
- the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A), From the first raw material supply port, styrene resin (B) and polycarbonate resin (A), Formula: B (1)> A (1) (However, A (1) includes 0.) Supply to meet and After melt-kneading, after degassing the gas component from the vent port under reduced pressure, The polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream from the vent port. Furthermore, in the production method of the present invention, it is preferable to perform water injection in the above.
- Polycarbonate resin (A) examples of the polycarbonate resin (A) used in the present invention include aromatic polycarbonate resins, aliphatic polycarbonate resins, and aromatic-aliphatic polycarbonate resins. Preferred are aromatic polycarbonate resins. Specifically, A thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is used.
- Aromatic dihydroxy compounds include 2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A), tetramethylbisphenol A, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone , Resorcinol, 4,4′-dihydroxydiphenyl, and the like. Further, in order to improve flame retardancy, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the aromatic dihydroxy compound described above, a polymer having both ends phenolic OH groups having a siloxane structure, or an oligomer thereof is used. Also good.
- the polycarbonate resin (A) include 2,2-bis (4-hydroxyphenyl) propane as a dihydroxy compound, that is, a polycarbonate resin in which bisphenol A or a combination of bisphenol A and another aromatic dihydroxy compound is used. .
- the polycarbonate resin may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units.
- the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
- the molecular weight of the polycarbonate resin (A) is not limited, but is preferably from 10,000 to 40,000, more preferably from 14,000 to 32,000 in terms of viscosity average molecular weight (Mv). When the viscosity average molecular weight is within this range, the resulting resin composition has good moldability and a molded product having high mechanical strength is easily obtained.
- the most preferred viscosity average molecular weight range of the polycarbonate resin (A) is 16,000 to 30,000.
- the method for producing the polycarbonate resin (A) is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can also be used. Moreover, the polycarbonate resin which performed the post-process which adjusts the amount of terminal OH groups to the polycarbonate resin manufactured by the melting method is also preferable.
- the polycarbonate resin (A) may contain a polycarbonate oligomer.
- the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
- the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
- the polycarbonate resin (A) is not limited to virgin raw materials, but it is also possible to use aromatic polycarbonate resin recycled from used products, so-called material recycled aromatic polycarbonate resin.
- Used products include optical recording media such as optical disks, light guide plates, automotive window glass and automotive headlamp lenses, vehicle transparent members such as windshields, containers such as water bottles, glasses lenses, soundproof walls and glass windows, corrugated plates
- Preferred examples include building members such as
- the recycled polycarbonate resin non-conforming product, pulverized product obtained from sprue or runner, or pellets obtained by melting them can be used.
- Emssion polymerization styrene resin (B) The emulsion polymerization styrene resin (B) used in the present invention uses an emulsion polymer product produced by emulsion polymerization using an emulsifier.
- the content of the emulsion polymerization styrene resin (B) is 40 to 5% by mass based on the total of 100% by mass of (A) and (B), and the polycarbonate resin (A) is 60 to 95% as the main component. % By mass. If the amount of the styrene-based resin (B) is less than 5% by mass, the fluidity at the time of molding is insufficient, and the moldability is lowered.
- the amount of the styrenic resin (B) is preferably 35% by mass or less, preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more.
- the emulsion polymerization styrene resin (B) includes an emulsion polymerization graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer. used.
- Styrene monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, and monobromostyrene.
- Styrene derivatives such as dibromostyrene, fluorostyrene, tribromostyrene and the like, and styrene is particularly preferable. These may be used alone or in combination of two or more.
- vinyl monomers copolymerizable with these styrene monomers include vinyl cyanide monomers and / or alkyl (meth) acrylate monomers.
- (meth) acrylate refers to one or both of “acrylate” and “methacrylate”. The same applies to “(meth) acryl” and “(meth) acrylo”.
- vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like, and acrylonitrile is most preferably used. These can be used alone or in combination of two or more.
- Alkyl (meth) acrylate monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, and dodecyl acrylate.
- Methacrylic acid aryl esters such as phenyl methacrylate and benzyl methacrylate
- alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, cyclohexyl methacrylate, and dodecyl methacrylate
- An epoxy group-containing methacrylic acid ester such as glycidyl methacrylate
- an aryl ester of acrylic acid such as phenyl acrylate and benzyl acrylate.
- copolymerizable vinyl monomers other than the above include maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide; acrylic acid, methacrylic acid, (meth) acrylic Examples include ⁇ , ⁇ -unsaturated carboxylic acids such as glycidyl acid, glycidyl itaconate, maleic acid, maleic anhydride, phthalic acid and itaconic acid, and anhydrides thereof. These vinyl monomers may be used alone or in a combination of two or more.
- a rubber having a glass transition temperature of 10 ° C. or lower is suitable.
- Specific examples of such a rubbery polymer include diene rubber, acrylic rubber, ethylene / propylene rubber, silicon rubber and the like, and preferably, diene rubber and acrylic rubber.
- diene rubber examples include butadiene such as polybutadiene, styrene-butadiene random copolymer and block copolymer, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, and butadiene-methyl methacrylate copolymer.
- -(Meth) acrylic acid lower alkyl ester copolymer polyisoprene, ethylene-isoprene copolymer, butadiene-isoprene copolymer, ethylene-propylene-butadiene copolymer, ethylene-propylene-hexadiene copolymer, etc.
- examples thereof include ethylene, propylene, non-conjugated diene terpolymers, and lower alkyl ester copolymers of butadiene-styrene- (meth) acrylic acid.
- acrylic rubber examples include acrylic acid alkyl ester rubber, and the alkyl group preferably has 1 to 8 carbon atoms.
- alkyl acrylate examples include ethyl acrylate, butyl acrylate, ethyl hexyl acrylate, and the like.
- An ethylenically unsaturated monomer may optionally be used in the acrylic acid alkyl ester rubber.
- such compounds include di (meth) acrylate, divinylbenzene, trivinylbenzene, triallyl cyanurate, allyl (meth) acrylate, butadiene, isoprene and the like.
- acrylic rubber examples include a core-shell type polymer having a crosslinked diene rubber as a core.
- emulsion polymerization styrene resin (B) examples include acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene rubber-styrene copolymer (MBS resin), and methyl methacrylate by emulsion polymerization.
- MABS resin Acrylonitrile-butadiene-styrene copolymer
- MB resin methyl methacrylate-butadiene rubber copolymer
- AS resin acrylonitrile-acrylic rubber-styrene copolymer
- AS resin acrylonitrile- (ethylene / propylene / diene rubber)- Styrene copolymer
- AES resin acrylonitrile-butadiene-styrene- ⁇ -methylstyrene copolymer
- acrylonitrile-butadiene-styrene-N-phenylmaleimide copolymer and the like.
- ABS resin Acrylonitrile-butadiene-styrene copolymer
- MBS resin methyl methacrylate-butadiene rubber-styrene copolymer
- MABS resin methyl methacrylate-acrylonitrile-butadiene-styrene copolymer
- ABS resin is particularly preferable.
- a styrenic resin (B) can also be used individually or in mixture of 2 or more types.
- the styrene resin (B) uses an emulsion polymer product produced by emulsion polymerization, but the method for producing the emulsion polymerized styrene resin (B) is well known. Alternatively, a commercially available emulsion polymerization product may be used.
- an ABS resin As a method for producing an emulsion-polymerized styrene resin (B) by emulsion polymerization, an ABS resin will be described as an example.
- a general method thereof is as follows.
- the emulsifier usually, a rosin acid soap which is a salt of abietic acid or a higher fatty acid soap which is a salt of a saturated or unsaturated fatty acid having 12 to 32 carbon atoms is used, and the diene monomer is potassium peroxodisulfate.
- Emulsion polymerization is carried out using a water-soluble polymerization initiator such as ⁇ -cumyl hydroperoxide to obtain a polymer latex.
- a polymer latex is obtained by polymerizing the polymer particles, the aromatic vinyl monomer and the vinyl cyanide monomer in the presence of a further emulsifier, and an inorganic acid, a divalent metal salt, etc.
- the ABS coagulant is added to separate the ABS resin, washed and dried.
- the above-described emulsifier or a component derived therefrom remains in the emulsion polymerization ABS resin, and abietic acid and / or Alternatively, higher fatty acids or salts thereof are contained in the emulsion polymerized product, and the component derived from such an emulsifier affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance. Oligomer remains, and it is considered that this oligomer component generates gas during molding and becomes mold deposit and causes mold contamination.
- the higher fatty acid is preferably a saturated or unsaturated fatty acid having 12 to 32 carbon atoms, and typical examples thereof include oleic acid, stearic acid, palmitic acid, myristic acid and the like.
- Metal salts particularly sodium salts, potassium salts, ammonium salts and the like are preferred.
- Abietic acid and / or higher fatty acid or a salt thereof will be present as a gas generating component in the resin composition obtained as it is, and gas will be generated at the time of molding, resulting in mold deposits and mold contamination. It affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance.
- oligomers remain in the emulsion-polymerized styrene resin, and the oligomer component is considered to cause mold contamination and gas generation.
- the polycarbonate resin composition of the present invention contains 40 to 5% by mass of the emulsion-polymerized styrene resin (B), and the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes. It is 3000 mass ppm or less in terms of decane mass. When the total gas amount is 3000 mass ppm or less, the polycarbonate resin composition of the present invention is excellent in mechanical properties and wet heat resistance, and can solve the problem of mold contamination due to mold deposits.
- the total gas amount is preferably 2700 mass ppm or less, more preferably 2500 mass ppm or less, and its preferred lower limit is 500 mass ppm. If it is less than 500 ppm by mass, the releasability at the time of molding is extremely deteriorated, and the appearance of the molded product, particularly the surface glossiness, is liable to be impaired.
- the amount of gas derived from the emulsifier can be 380 mass ppm or less in terms of decane mass. By setting it to 380 mass ppm or less, the heat-and-moisture resistance can be made extremely good.
- the gas generating component derived from the emulsifier here refers to an emulsifier component used in the emulsion polymerization of the styrene resin (B). As described above, generally, higher fatty acid soap or rosin acid is used. It is a component derived from soap, and more specifically, is abietic acid and a saturated or unsaturated fatty acid having 12 to 32 carbon atoms or a metal salt thereof.
- the amount of gas generated from the emulsifier is specifically the total gas amount of abietic acid and saturated or unsaturated fatty acid having 12 to 32 carbon atoms as the generated gas when the resin composition is heated at 280 ° C. for 10 minutes.
- decane mass it is preferably 380 mass ppm or less, and the heat and humidity resistance is extremely good by making the total gas amount of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms be 380 mass ppm or less. can do.
- it is 300 mass ppm or less, More preferably, it is 200 mass ppm or less, Furthermore, it is preferable that it is 100 mass ppm or less.
- the preferable lower limit is 50 mass ppm in view of the releasability during molding and the appearance of the molded product.
- the generated gas also contains those derived from the oligomer component remaining in the styrene resins (B) and (C).
- this oligomer component is a problem of mold contamination due to mold deposits and the like. Cause. Therefore, it is particularly preferable that the total gas amount when heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass from the viewpoint of mold contamination and wet heat resistance.
- the polycarbonate resin composition of the present invention may further contain a styrene resin (C) other than the emulsion polymerization styrene resin (B).
- a styrene resin (C) other than the emulsion polymerization styrene resin (B).
- Other styrenic resin (C) is contained in an amount of 0 to 30% by mass.
- suspension polymerization AS resin is a copolymer obtained by suspension polymerization of acrylonitrile and styrene, and may contain other components.
- acrylonitrile preferably occupies 10 to 50 mol%, more preferably 15 to 40 mol%.
- styrene preferably accounts for 50 to 90 mol%, and more preferably 60 to 85 mol%.
- the ABS resin is a resin obtained by copolymerizing a rubbery polymer copolymerizable with a styrene monomer and a vinyl cyanide monomer, and preferably 40 to 80% by mass of a styrene monomer component, cyanide. It comprises 10 to 30% by mass of vinyl fluoride monomer component, 10 to 30% by mass of diene rubber polymer component, and 0 to 30% by mass of other copolymerizable vinyl monomer components.
- these styrene monomers, vinyl cyanide monomers, diene rubber polymers, and other copolymerizable vinyl monomers those described in the emulsion polymerization styrene resin (B) The same can be used in the same way.
- ABS resin as the styrene-based resin (C)
- a block polymerization ABS resin produced by block polymerization is used.
- the bulk polymerization method is well known, and a known method may be applied. Examples thereof include a continuous bulk polymerization method.
- polymerization may be performed in one stage or in multiple stages.
- the polycarbonate resin composition of the present invention is preferably produced by the above-described method for producing a polycarbonate resin composition of the present invention.
- the emulsion polymerization styrene resin (B) which is a small component
- the polycarbonate resin (B) which is the main component
- a polycarbonate resin composition having excellent mechanical properties and heat-and-moisture resistance and no problem of mold contamination due to mold deposit can be produced very efficiently with high productivity.
- a polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on the total of 100% by weight of (A) and (B) is vented.
- the extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
- the supply amount of the styrene resin (B) is B (1)
- the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1)
- the second raw material supply port of the polycarbonate resin (A) is B (1)
- the total amount of A (1) and A (2) is the total amount of polycarbonate resin (A) From the first raw material supply port, styrene resin (B) and polycarbonate resin (A), Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0)
- the extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side.
- the supply amount of the styrene resin (B) is B (1)
- the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1)
- the second raw material supply port of the polycarbonate resin (A) is the total amount of polycarbonate resin (A) From the first raw material supply port, styrene resin (B) and polycarbonate resin (A), Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0), Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port, Manufactured by a method in which the polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream of the vent port.
- a vent type twin screw extruder is used, and both screw rotations can be used in the same direction and in different directions.
- a co-rotating twin-screw extruder is suitable for efficiently removing the gas generating components in the system resin (B).
- the extruder has a first raw material supply port at the root of the uppermost stream and a vent port downstream thereof.
- the emulsion polymerization styrene resin (B) is supplied from the first raw material supply port.
- the emulsion-polymerized styrene resin (B) is heated and melted in the extruder, and then becomes a decompression expansion region connected to the vent port.
- the vent port By connecting the vent port to a vacuum pump and venting under reduced pressure, the emulsion-polymerization styrene resin (B) Can be devolatilized under reduced pressure.
- the position where the vent port is installed may be a melting portion of the emulsion polymerization styrene resin (B).
- Two or more vent ports may be provided as desired.
- the supply amount of the polycarbonate resin (A) at that time is as described above. It is preferable that the formula: B (1)> A (1) is satisfied, that is, less than the supply amount of the emulsion polymerization styrene resin (B).
- B (1)> A (1) is satisfied, that is, less than the supply amount of the emulsion polymerization styrene resin (B).
- the polycarbonate resin (A) is supplied at a supply amount of (A2) from the second raw material supply port located downstream.
- (A2) is the remaining amount obtained by subtracting (A1) from the total supply amount of the polycarbonate resin (A).
- (A1) In the case of 0, (A2) is the total supply amount of the polycarbonate resin (A).
- the polycarbonate resin (A) supplied from the second raw material supply port merges with the molten resin from the upstream, and is further melt-kneaded.
- the polycarbonate resin composition of the present invention is produced by side-feeding the polycarbonate resin (A) as the main component in the polycarbonate resin composition of the present invention. It can be manufactured with good efficiency and very efficiently.
- the polycarbonate resin composition of the present invention preferably contains another styrene resin (C) other than the emulsion polymerization styrene resin.
- C another styrene resin
- it can be supplied from either the first supply port or the second supply port.
- suspension polymerization AS resin or bulk polymerization ABS resin since it does not contain an emulsifier, it may be supplied from the second supply port, but it is preferable to supply from the first supply port in consideration of the residual oligomer.
- the extruder is provided with a first raw material supply port at the most upstream root, an inlet for injecting water downstream thereof, and a vent port further downstream.
- the emulsion-polymerized styrene resin (B) is supplied from the first raw material supply port, and after the styrene resin (B) is heated and melted in the extruder, water is pumped from the water injection port provided in the resin-filled area. It is poured and kneaded.
- the injected water is dispersed in the styrene resin (B).
- a seal ring downstream to increase the pressure.
- the seal ring When passing through the seal ring, it becomes a reduced pressure expansion region connected to the vent port, and the water dispersed in the styrene resin (B) is foamed under reduced pressure.
- the position where the vent port is installed may be a melting part of the styrene resin (B).
- Two or more vent ports may be provided as desired.
- the vacuum degree of the decompression vent is preferably 50 mmHg or less, more preferably 20 mmHg or less, and further preferably 10 mmHg or less.
- the vent type twin screw extruder preferably has a water injection part and a vent port in multiple stages, and it is preferable to perform water injection and vacuum devolatilization in multiple stages.
- the emulsion polymerization styrene resin (B) and the polycarbonate resin (A) are supplied from the first raw material supply port in the first stage in the same manner as described above in the amount of B (1)> A (1).
- water injection, kneading, devolatilization by a vacuum vent, water injection, kneading, and vacuum venting are further performed in the second stage on the downstream side. There may be a plurality of steps of water injection and vacuum devolatilization in the second stage.
- the amount of water to be injected is preferably 0.01 to 5% by mass, more preferably 0 to 100% by mass of the styrene resin (B) and / or the polycarbonate resin (A) that is the target at the time of injection. .1% by mass or more, preferably 0.5% by mass or more, more preferably 3% by mass or less, further 2% by mass or less, and particularly preferably 1% by mass or less.
- the amount of water injected is 0.01% by mass or less, the removal of gas generating components tends to be insufficient, and when it exceeds 5% by mass, the hydrolysis of the polymer proceeds and the physical properties tend to be lowered.
- the resin temperature (or set temperature) when the resin supplied from the first raw material supply port is melt-kneaded is preferably 240 to 350 ° C., more preferably 250 to 350 ° C.
- the resin temperature (or set temperature) downstream from the second raw material supply port is preferably 280 to 360 ° C, more preferably 290 to 350 ° C.
- the amount of water contained in advance is preferably about 0.01 to 5% by mass, similar to the amount of water described above.
- the polycarbonate resin composition of the present invention preferably contains a stabilizer, and the stabilizer is preferably a phosphorus stabilizer or a phenol stabilizer.
- any known one can be used.
- Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.
- Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
- organic phosphite compounds include, for example, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADEKA STAB HP-10” manufactured by ADEKA, “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ JP-360 ”,“ JP-3CP ”,“ Irgaphos 168 ”manufactured by BASF, and the like.
- 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
- the content of the phosphorus stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resins (B) and (C). More preferably, it is 0.03 parts by mass or more, and is usually 1 part by mass or less, preferably 0.7 parts by mass or less, more preferably 0.5 parts by mass or less. If the content of the phosphorus stabilizer is less than the lower limit of the range, the thermal stability effect may be insufficient, and if the content of the phosphorus stabilizer exceeds the upper limit of the range, the effect May stop and become economical.
- phenolic stabilizers include hindered phenolic antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
- phenolic antioxidants include “Irganox 1010”, “Irganox 1076” manufactured by BASF, “Adekastab AO-50”, “Adekastab AO-60” manufactured by ADEKA, and the like. Is mentioned.
- 1 type may contain the phenol type stabilizer, and 2 or more types may contain it by arbitrary combinations and a ratio.
- the content of the phenol-based stabilizer is usually 0.001 part by mass or more, preferably 0.01 part by mass or more with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resin (B) and (C). Moreover, it is 1 mass part or less normally, Preferably it is 0.5 mass part or less.
- the content of the phenol-based stabilizer is less than the lower limit of the range, the effect as the phenol-based stabilizer may be insufficient, and the content of the phenol-based stabilizer exceeds the upper limit of the range. If this is the case, the effect may reach its peak and not economical.
- the polycarbonate resin composition of the present invention preferably contains a release agent.
- the release agent includes at least one compound selected from the group consisting of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000, and polysiloxane silicone oils. Preferably mentioned.
- the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monovalent, divalent or trivalent carboxylic acid.
- the aliphatic carboxylic acid includes alicyclic carboxylic acid.
- preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred.
- aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
- aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol examples of the alcohol include saturated or unsaturated monovalent or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, a monovalent or polyvalent saturated alcohol having 30 or less carbon atoms is preferable, and an aliphatic saturated monohydric alcohol or polyhydric alcohol having 30 or less carbon atoms is more preferable.
- aliphatic includes alicyclic compounds.
- alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Is mentioned.
- esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
- esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate
- examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastea
- Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and ⁇ -olefin oligomer having 3 to 12 carbon atoms.
- the aliphatic hydrocarbon alicyclic hydrocarbon is also included.
- these hydrocarbon compounds may be partially oxidized.
- paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable.
- the number average molecular weight is preferably 200 to 5,000.
- These aliphatic hydrocarbons may be a single substance, or may be a mixture of various constituent components and molecular weights, as long as the main component is within the above range.
- polysiloxane silicone oil examples include dimethyl silicone oil, phenylmethyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone. Two or more of these may be used in combination.
- a release agent When a release agent is used, it is usually 0.05 to 2 parts by mass, preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resin (B) and (C). It is. If the content of the release agent is not less than the above lower limit value, the effect of improving the releasability can be sufficiently obtained, and if it is not more than the above upper limit value, degradation of hydrolysis resistance due to excessive mixing of the release agent, injection Problems such as mold contamination during molding can be prevented.
- the polycarbonate resin composition of the present invention preferably contains a colorant (dye pigment).
- the colorant (dye pigment) include inorganic pigments, organic pigments, and organic dyes.
- examples of inorganic pigments include sulfide pigments such as carbon black, cadmium red, and cadmium yellow; silicate pigments such as ultramarine blue; zinc white, petal, chromium oxide, titanium oxide, iron black, titanium yellow, and zinc- Oxide pigments such as iron-based brown, titanium cobalt-based green, cobalt green, cobalt blue, copper-chromium black, copper-iron-based black; chromic pigments such as yellow lead, molybdate orange; Examples include Russian pigments.
- Organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, and isoindolinone. And condensed polycyclic dyes such as quinophthalone; anthraquinone, heterocyclic, and methyl dyes and the like. Two or more of these may be used in combination. Among these, carbon black, titanium oxide, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
- the content of the colorant (dye pigment) is usually 5 masses with respect to a total of 100 parts by mass of the polycarbonate resin (A), the styrene resin (B), and (C). Part or less, preferably 3 parts by weight or less, more preferably 2 parts by weight or less. When the content of the colorant (dye pigment) exceeds 5 parts by mass, the impact resistance may not be sufficient.
- the polycarbonate resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired.
- examples of other components include resins other than those described above and various resin additives.
- 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.
- thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin
- polyolefin resins such as polyethylene resin and polypropylene resin
- polyamide resins such as polyimide resins; polyetherimide resins
- examples include resins; polyphenylene ether resins; polyphenylene sulfide resins; polysulfone resins and various elastomers.
- 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and ratios.
- the resin additive examples include a flame retardant, an ultraviolet absorber, an antistatic agent, an antifogging agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent.
- 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
- the styrenic resin (B) is island-shaped in the matrix of the polycarbonate resin (A) by side-feeding the polycarbonate resin (A) from the second raw material supply port. It was confirmed to show a morphological structure that was finely dispersed.
- the volume average dispersion diameter (dv) of the styrene resin (B) is characteristically as small as 2.5 ⁇ m.
- the resin composition of the present invention has an excellent impact strength retention (wet heat resistance).
- the Charpy impact strength (according to ISO 179-1 and 179-2, with notch, 23 ° C.) after a wet heat treatment at a temperature of 90 ° C. and a relative humidity of 95% for 400 hours is preferably 50% or more. More preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more.
- the morphology of the polycarbonate resin composition can be observed by observing the cross section of the molded product with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like. Specifically, using a SEM, STEM, or TEM analyzer, the pellet cross section is observed at a magnification of 400 to 10,000 times under an acceleration voltage of 3 kv.
- FIG. 1 and 2 show an example of the morphology of the resin composition of the present invention, and are SEM photographs of the pellet cross section obtained in Example 1 of the present invention.
- 1 is a photograph at a magnification of 1500 times
- FIG. 2 is a photograph at a magnification of 3000 times.
- the white sea is the matrix phase of the polycarbonate resin
- the black islands dispersed in it are the ABS resin phase, which are finely and finely dispersed in the polycarbonate resin phase.
- FIG. 3 (magnification 1500 times) and FIG. 4 (magnification 3000 times) show the morphology of Comparative Example 1, but it can be seen that fine dispersion as shown in FIGS. 1 and 2 cannot be achieved.
- the volume average particle diameter (dv) of the styrene resin in which the styrene resin (B) phase is dispersed in the polycarbonate resin phase is 2.5 ⁇ m or less, preferably 2.2 ⁇ m or less, more preferably 2 0.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and preferably 0.5 ⁇ m or more. If the volume average particle diameter (dv) exceeds 2.5 ⁇ m, the impact strength retention after wet heat of the resin composition tends to be extremely lowered, which is not preferable.
- the ratio (dv / dn) of the volume average particle diameter (dv) and the number average particle diameter (dn) of the styrene resin (B) dispersed in the polycarbonate resin is in the range of 1.0 to 1.5. Preferably, it is 1.1 or more, more preferably 1.15 or more, more preferably 1.45 or less, and further preferably 1.4 or less.
- the meaning of the numerical value of dv / dn means a uniform state in which the dispersed particle diameters of the styrenic resin are uniform when dv / dn is 1, and when the particle diameter is larger than 1, the dispersed particle diameters are not uniform and uneven. It is shown that.
- this dv / dn is closely related to the volume average diameter (dv) of the dispersed styrene resin described above, except that the dispersed particle diameter is simply uniform. That is, even if dv / dn is in the range of 1.0 to 1.5, if the volume average diameter of the dispersed styrene resin is increased, it is difficult to obtain the effect of improving heat and moisture resistance.
- the average particle diameter (dn) and the volume average particle diameter (dv) of the styrene resin (B) are obtained by observing with a scanning electron microscope (SEM). Details thereof are as described in Examples.
- the emulsion-polymerized styrene-based resin (B) exhibits such a volume average particle size (dv) and a morphology having a dv / dn ratio, which means that the emulsion-polymerized styrene-based resin (B) is well melt-kneaded, It can be judged that the devolatilization of the emulsifier-derived component is also highly advanced.
- the polycarbonate resin composition of the present invention is formed by various molding methods, for example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding using a heat insulating mold.
- Method molding method using rapid heating mold, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method It is formed into a molded product by a lamination molding method, a press molding method or the like.
- Examples of molded products include parts such as electrical and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, and lighting equipment. Among these, it is particularly suitable for various parts of vehicle parts, electric / electronic devices, and OA devices.
- parts means “parts by mass” based on mass standards unless otherwise specified.
- the raw material supply port is provided with a side feeder (“TSF-45E” manufactured by Kubota Corporation) and supplied from there.
- the screw arrangement includes a full flight screw portion for conveyance, a kneading screw portion for plasticization, and a kneading screw portion for kneading from the supply portion side, and a full flight screw portion for conveyance corresponding to the second raw material supply port.
- the kneading kneading screw part is provided.
- the emulsion polymerization ABS resin (B1) described in Table 1 was continuously supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass).
- the screw rotation speed is 800 rpm
- the cylinder set temperature is 330 ° C.
- water is supplied from the water inlet provided in the latter half of the kneading screw part at 0.88 kg / hr. (The ratio of 0.25% by mass with respect to the total discharge amount).
- a seal ring is provided further rearward of the kneading screw part, and the mixture with water is kneaded with an increase in pressure in the kneading screw part for kneading, and then the vent port provided downstream thereof is in a reduced pressure state of 20 mmHg. Then, foaming devolatilization was performed while the mixture of the resin and water was foamed while being dispersed. Next, a pre-blend of the polycarbonate resin (A) described in Table 1 and the release agents (D1, D2), stabilizers (E1, E2) and colorant (F) described in Table 1 was supplied to the second supply port. To 245 kg / hr (corresponding to 70 parts by mass).
- D1 and D2 components are 0.10% by mass
- E1 and E2 components are 0.03% by mass and 0.05% by mass, respectively, with respect to 100% by mass of the final resin composition.
- the polycarbonate resin pre-blended product was kneaded while being combined with the devolatilized ABS resin from the upstream at a cylinder set temperature of 330 ° C., and water was again supplied from the water inlet at 0.88 kg / hr (0. 25 mass%).
- the vent port is reduced in pressure to 20 mmHg, foamed and devolatilized, extruded and strand cut to obtain pellets of the resin composition It was.
- the motor current value at the time of extrusion was 236 A
- the resin temperature at the die outlet was 333 ° C.
- the resin pressure at the die tip was 1.1 MPa. Considering the long-term operational stability of the extruder, these are important because the load on the motor is preferably smaller, and in general, the resin temperature tends to be lower in order to suppress the decomposition of the resin composition. It becomes a judgment index.
- Example 2 In Example 1, as described in Table 2, in the same manner as in Example 1 except that the water injection amounts of the first stage and the second stage were both 0.5% by mass, Pellets were obtained.
- Example 3 In Example 1, as described in Table 2, the resin composition was prepared in the same manner as in Example 1 except that the cylinder set temperature was 300 ° C. and the first and second stages of water injection were not performed. Pellets were obtained.
- Example 4 In Example 2, as shown in Table 2, pellets of the resin composition were made in the same manner as in Example 2 except that the second stage water injection was not performed and the degree of vacuum at the vent port was 10 mmHg. Got.
- Example 5 In Example 2, as shown in Table 2, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a feed rate of 87.5 kg / hr (corresponding to 25 parts by mass), and the ABS resin (B1) was 105 kg. / Hr (equivalent to 30 parts by mass), polycarbonate resin is supplied from the second supply port at a rate of 157.5 kg / hr (equivalent to 45 parts by mass), and the degree of vacuum at the vent port is adjusted. Except having set it as 10 mmHg, it carried out similarly to Example 2, and obtained the pellet of the resin composition.
- Example 6 In Example 1, as shown in Table 3, the styrene resin supplied to the first raw material supply port was 52.5 kg / hr (equivalent to 15 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And suspension polymerization AS resin (C1) listed in Table 1 at a supply rate of 52.5 kg / hr (corresponding to 15 parts by mass), and the degree of vacuum at the vent port was 10 mmHg. In the same manner as above, pellets of the resin composition were obtained.
- Example 7 In Example 5, as described in Table 3, the styrene resin supplied to the first raw material supply port was changed to the emulsion polymerization MBS resin (B3) and the suspension polymerization AS resin (C1) described in Table 1. The pellets of the resin composition were obtained in the same manner as in Example 5 except that the amounts of water injected in the first stage and the second stage were both 1.0% by mass. It was.
- Example 8 In Example 1, as described in Table 3, Example 1 except that the emulsion polymerization ABS resin (B1) and the bulk polymerization ABS resin (C2) were supplied from the first raw material supply port in the amounts shown in Table 3. In the same manner as above, pellets of the resin composition were obtained.
- Example 9 In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 140 kg / hr (equivalent to 40 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 1. A pellet of the resin composition was obtained in the same manner as in Example 1 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 210 kg / hr (corresponding to 60 parts by mass).
- Example 10 In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 28 kg / hr (equivalent to 8 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And the polycarbonate resin preliminary blend was supplied from the second raw material supply port at a supply rate of 322 kg / hr (corresponding to 92 parts by mass), and the degree of vacuum at the vent port was 10 mmHg, as in Example 1, A pellet of the resin composition was obtained.
- the styrene resin supplied to the first raw material supply port was 28 kg / hr (equivalent to 8 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1.
- the polycarbonate resin preliminary blend was supplied from the second raw material supply port at a supply rate of 322 kg / hr (corresponding to 92 parts by mass), and the degree of vacuum at the vent port was 10 mmHg, as in Example 1, A pellet of the resin composition was obtained
- Example 1 Comparative Example 1
- the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr.
- the pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
- Example 2 In Example 2, as shown in Table 4, the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr. The pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
- Example 2 (Comparative Examples 3 to 4)
- the cylinder set temperature was 300 ° C.
- the polycarbonate resin pre-blend was fed from the first raw material feed port at a feed rate of 140 kg / hr (corresponding to 40 parts by mass)
- ABS Resin (B1) is supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass)
- polycarbonate resin is supplied from the second supply port at a supply rate of 105 kg / hr (corresponding to 30 parts by mass).
- Pellets of the resin composition were obtained in the same manner except that the water injection amount of the stage and the second stage and the degree of vacuum at the vent port were as shown in Table 3.
- Example 7 In Example 7, as described in Table 4, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a supply rate of 245 kg / hr (corresponding to 70 parts by mass), and from the second supply port. Resin composition pellets were obtained in the same manner as in Example 7 except that the polycarbonate resin was not supplied and the first and second water injection amounts shown in Table 4 were used.
- Comparative Example 6 Comparative Example 6,
- the styrene resin supplied to the first raw material supply port was 175 kg / hr (equivalent to 50 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4, and the second raw material supply port.
- Resin composition pellets were obtained in the same manner as in Comparative Example 2 except that the polycarbonate resin pre-blend was supplied at a supply rate of 175 kg / hr (corresponding to 50 parts by mass).
- Comparative Example 7 In Comparative Example 6, the styrene resin supplied to the first raw material supply port was 10.5 kg / hr (corresponding to 3 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4 and the bulk polymerization ABS resin (C2 ) 112 kg / hr (corresponding to 32 parts by mass), and Comparative Example 6 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 227.5 kg / hr (corresponding to 65 parts by mass). In the same manner as above, pellets of the resin composition were obtained.
- Carrier gas Helium 3ml / min
- the emulsifier origin component the oligomer of the styrene resin, and other components (oligomer of polycarbonate resin, raw material monomer of polycarbonate resin, release agent, etc.) were measured by decane conversion.
- the emulsifier-derived component was measured for the amounts of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms.
- As the fatty acid, oleic acid, stearic acid, palmitic acid or myristic acid was detected in the amounts (unit: mass ppm) shown in Tables 2 to 4.
- the drop mold shown in FIG. 5 is a mold designed so that the resin composition is introduced from the gate G so that the generated gas easily accumulates at the tip.
- the gate G has a width of 1 mm and a thickness of 1 mm.
- the notched Charpy impact strength (unit: kJ / m 2 ) of the test pieces before and after the wet heat treatment was measured at 23 ° C. according to ISO179.
- the obtained pellet was made into a cross-section using an ultramicrotome system UC7 (diamond knife) for section preparation manufactured by Leica, and evaporated to a film thickness of 25 nm using a multi-coater VES-10 manufactured by Vacuum Device Co., Ltd.
- an image obtained by SEM observation (apparatus: SU8020 manufactured by Hitachi High-Tech, measurement condition: 3 kV-400 to 10000 times, direction perpendicular to the flow direction) is used as image analysis software “A Image-kun” manufactured by Asahi Kasei Engineering. Image analysis was performed.
- the diameter (dnj) when converted into a perfect circle from the area of the dispersed particles of the styrene resin is calculated from the following formula, and the number average particle diameter (dn), volume average particle diameter (dv), and volume The ratio (dv / dn) between the average particle diameter (dv) and the number average particle diameter (dn) was determined.
- the calculation formula of the diameter (dnj) when converted into a perfect circle from the area of the dispersed particles of the styrene resin is as follows.
- A is the particle area of the dispersed styrene resin obtained by image analysis of the SEM photograph.
- the calculation formula of the number average particle diameter (dn) of the dispersed styrene resin is as follows.
- the formula for calculating the volume average particle diameter (dv) of the dispersed styrene resin is as follows.
- the polycarbonate resin composition of the present invention is excellent in mechanical properties and heat-and-moisture resistance, and has no problem of mold contamination due to mold deposit. Therefore, electrical and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, It can be widely used for building members, various containers, lighting equipment, and the like, and according to the production method of the present invention, such a polycarbonate resin composition can be produced with high productivity, so that its industrial utility is high. is there.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Provided are: a polycarbonate resin composition which has excellent mechanical properties and wet heat resistance, while being free from the problem of mold contamination due to mold deposit; and a production method which is capable of producing this polycarbonate resin composition with high productivity.
A polycarbonate resin composition which contains 60-95% by mass of a polycarbonate resin (A) and 40-5% by mass of an emulsion polymerized styrene resin (B) based on 100% by mass of the total of the components (A) and (B), and which is characterized in that: the emulsion polymerized styrene resin (B) is a graft copolymer that is obtained from a styrene monomer-vinyl cyanide monomer and/or an alkyl (meth)acrylate monomer-rubbery polymer; and the total amount of gas in cases where the resin composition is heated at 280°C for 10 minutes is 3,000 ppm or less in terms of the mass of decane.
Description
本発明は、ポリカーボネート樹脂組成物及びその製造方法に関し、詳しくは、機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないポリカーボネート樹脂組成物、及びそれを生産効率良く製造する方法に関する。
The present invention relates to a polycarbonate resin composition and a method for producing the same, and more particularly, a polycarbonate resin composition having excellent mechanical properties and moisture and heat resistance and no mold contamination due to mold deposits, and a method for producing the polycarbonate resin composition with high production efficiency. About.
ポリカーボネート樹脂は、耐熱性、機械的物性、電気的特性に優れた樹脂であり、例えば自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。また、他の熱可塑性樹脂とのポリマーアロイが数多く開発されており、中でもABS樹脂に代表されるスチレン系樹脂とのポリマーアロイは、低コスト化とポリカーボネート樹脂の成形加工性、耐衝撃性がより改善され、各種コンピューター、パソコン、各種携帯端末、プリンター、複写機等の電気電子機器やOA情報機器等の部品として広く使用されている。
Polycarbonate resin is a resin excellent in heat resistance, mechanical properties, and electrical characteristics, and is widely used for, for example, automobile materials, electrical and electronic equipment materials, housing materials, and other parts manufacturing materials in industrial fields. In addition, many polymer alloys with other thermoplastic resins have been developed. Above all, polymer alloys with styrenic resins represented by ABS resins are more cost-effective and have higher moldability and impact resistance than polycarbonate resins. It has been improved and is widely used as a part of various electronic devices such as various computers, personal computers, various portable terminals, printers, copying machines, and OA information devices.
ポリカーボネート/スチレン系樹脂組成物に使用するABS樹脂としては、コスト面や多品種への対応、高ゴム化での品質改良が容易という点から乳化重合により製造されたものが使用されるケースが多いが、その一方で特許文献1にも記載されているように、耐湿熱性に優れるという理由から、塊状重合により製造されたものが使用されることもある(同文献、請求項8及び段落[0024]を参照。)。
塊状重合によるスチレン系樹脂は高価であり、低コスト化のためには乳化重合品を使用することが考えられるが、乳化重合スチレン系樹脂を配合したポリカーボネート樹脂組成物は耐湿熱性が確実に劣るという欠点を有する。さらに成形時には、モールドデポジットによる金型汚染が著しく、またガス発生量が多いという問題がある。
かかる問題点は乳化重合で使用された乳化剤由来の成分やスチレン系樹脂に残存するオリゴマー成分に起因しているものと考えられ、その機構の解明は十分ではないが、乳化剤由来の成分がポリカーボネート樹脂の加水分解に影響を及ぼし耐湿熱性を低下させ、またオリゴマー成分は金型汚染やガス発生を起こしているものと考えられる。 As the ABS resin used for the polycarbonate / styrene resin composition, those manufactured by emulsion polymerization are often used from the viewpoints of cost, compatibility with various varieties, and easy quality improvement due to high rubber. On the other hand, as described in Patent Document 1, a product produced by bulk polymerization is sometimes used because of its excellent heat and humidity resistance (the same document,claim 8 and paragraph [0024]). ].
Styrenic resin by bulk polymerization is expensive, and it is conceivable to use an emulsion polymerization product for cost reduction, but the polycarbonate resin composition containing the emulsion polymerization styrene resin is surely inferior in heat and moisture resistance. Has drawbacks. Furthermore, there is a problem that mold contamination due to mold deposits is significant and the amount of gas generated is large during molding.
Such a problem is considered to be caused by the component derived from the emulsifier used in the emulsion polymerization or the oligomer component remaining in the styrene resin. The mechanism is not sufficiently elucidated, but the component derived from the emulsifier is a polycarbonate resin. It is considered that the oligomer component causes mold contamination and gas generation.
塊状重合によるスチレン系樹脂は高価であり、低コスト化のためには乳化重合品を使用することが考えられるが、乳化重合スチレン系樹脂を配合したポリカーボネート樹脂組成物は耐湿熱性が確実に劣るという欠点を有する。さらに成形時には、モールドデポジットによる金型汚染が著しく、またガス発生量が多いという問題がある。
かかる問題点は乳化重合で使用された乳化剤由来の成分やスチレン系樹脂に残存するオリゴマー成分に起因しているものと考えられ、その機構の解明は十分ではないが、乳化剤由来の成分がポリカーボネート樹脂の加水分解に影響を及ぼし耐湿熱性を低下させ、またオリゴマー成分は金型汚染やガス発生を起こしているものと考えられる。 As the ABS resin used for the polycarbonate / styrene resin composition, those manufactured by emulsion polymerization are often used from the viewpoints of cost, compatibility with various varieties, and easy quality improvement due to high rubber. On the other hand, as described in Patent Document 1, a product produced by bulk polymerization is sometimes used because of its excellent heat and humidity resistance (the same document,
Styrenic resin by bulk polymerization is expensive, and it is conceivable to use an emulsion polymerization product for cost reduction, but the polycarbonate resin composition containing the emulsion polymerization styrene resin is surely inferior in heat and moisture resistance. Has drawbacks. Furthermore, there is a problem that mold contamination due to mold deposits is significant and the amount of gas generated is large during molding.
Such a problem is considered to be caused by the component derived from the emulsifier used in the emulsion polymerization or the oligomer component remaining in the styrene resin. The mechanism is not sufficiently elucidated, but the component derived from the emulsifier is a polycarbonate resin. It is considered that the oligomer component causes mold contamination and gas generation.
乳化重合ABS樹脂は、通常、乳化剤として主に高級脂肪酸石鹸やロジン酸石鹸を用い、ブタジエンを水溶性重合開始剤にて乳化重合を行い、重合体ラテックスを得、次いで、この重合体粒子と乳化剤の存在下、スチレンとアクリロニトリル等の重合を行うことによりABS系重合体ラテックスを得、これに無機酸や二価金属塩等の凝固剤を加えて重合体を分離し、これを洗浄、乾燥して製造される。経済性の観点から、洗浄工程では完全な乳化剤の除去は行われず、抜けきらなかった乳化剤は製品中に残存することになる。
使用する乳化重合ABS樹脂原料を予め十分に洗浄することが考えられるが、水やメタノール等の有機溶媒で徹底した洗浄を行っても樹脂中に取り込まれた乳化剤成分は容易には除去できないことが判明した。 Emulsion polymerization ABS resin usually uses higher fatty acid soap or rosin acid soap as an emulsifier, and performs emulsion polymerization of butadiene with a water-soluble polymerization initiator to obtain a polymer latex, and then the polymer particles and the emulsifier In the presence of water, styrene and acrylonitrile are polymerized to obtain an ABS polymer latex, to which a coagulant such as an inorganic acid or a divalent metal salt is added to separate the polymer, which is washed and dried. Manufactured. From the viewpoint of economy, the emulsifier that has not been completely removed remains in the product because the emulsifier is not completely removed in the washing step.
Although it is conceivable that the emulsion polymerization ABS resin raw material to be used is thoroughly washed in advance, the emulsifier component incorporated into the resin cannot be easily removed even after thorough washing with an organic solvent such as water or methanol. found.
使用する乳化重合ABS樹脂原料を予め十分に洗浄することが考えられるが、水やメタノール等の有機溶媒で徹底した洗浄を行っても樹脂中に取り込まれた乳化剤成分は容易には除去できないことが判明した。 Emulsion polymerization ABS resin usually uses higher fatty acid soap or rosin acid soap as an emulsifier, and performs emulsion polymerization of butadiene with a water-soluble polymerization initiator to obtain a polymer latex, and then the polymer particles and the emulsifier In the presence of water, styrene and acrylonitrile are polymerized to obtain an ABS polymer latex, to which a coagulant such as an inorganic acid or a divalent metal salt is added to separate the polymer, which is washed and dried. Manufactured. From the viewpoint of economy, the emulsifier that has not been completely removed remains in the product because the emulsifier is not completely removed in the washing step.
Although it is conceivable that the emulsion polymerization ABS resin raw material to be used is thoroughly washed in advance, the emulsifier component incorporated into the resin cannot be easily removed even after thorough washing with an organic solvent such as water or methanol. found.
本発明は、耐湿熱性とモールドデポジットの問題が解決した、乳化重合スチレン系樹脂含有のポリカーボネート樹脂組成物、及びそれを生産効率良く製造する方法を提供することを目的(課題)とする。
The present invention has an object (problem) to provide a polycarbonate resin composition containing an emulsion-polymerized styrene resin, in which the problems of heat and moisture resistance and mold deposit are solved, and a method for producing the same with high production efficiency.
本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂と、特定の乳化重合スチレン系樹脂を特定量含有する樹脂組成物であって、樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であるポリカーボネート/スチレン系樹脂組成物が機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないことを見出した。
また、乳化重合スチレン系樹脂とポリカーボネート樹脂を溶融混練してポリカーボネート樹脂組成物を製造するに際し、添加成分であってポリカーボネート樹脂に比べ小量成分である乳化重合スチレン系樹脂を、先ず押出機の根元から投入し、減圧ベントして乳化剤に由来するガス発生成分を脱揮し、主成分たるポリカーボネート樹脂はベント口より下流にある原料供給口から供給して溶融混練することにより、前記課題を解決すること、また、スチレン系樹脂の溶融混練の際に水を注入することにより、さらに前記課題が解決でき、しかも生産性良く製造できることを見出し、本発明に到達した。
本発明は、以下のポリカーボネート樹脂組成物及びその成形品、及び以下のポリカーボネート樹脂組成物の製造方法である。 As a result of intensive studies to achieve the above-mentioned problems, the inventor is a resin composition containing a specific amount of a polycarbonate resin and a specific emulsion-polymerized styrene resin, and the resin composition is 280 ° C., 10 ° C. Polycarbonate / styrene resin composition whose total gas amount when heated for a minute is 3000 mass ppm or less in terms of decane mass is excellent in mechanical properties and heat and humidity resistance, and there is no problem of mold contamination due to mold deposit I found.
In addition, when producing a polycarbonate resin composition by melt-kneading an emulsion-polymerized styrene resin and a polycarbonate resin, an emulsion-polymerized styrene-based resin, which is an additive component and a small amount component compared to the polycarbonate resin, is first added to the root of the extruder. The above problem is solved by venting under reduced pressure to devolatilize the gas generating component derived from the emulsifier, and supplying the polycarbonate resin as the main component from the raw material supply port downstream from the vent port and melt-kneading. In addition, by injecting water during the melt-kneading of the styrene-based resin, it was found that the above-mentioned problems can be further solved and the production can be performed with high productivity, and the present invention has been achieved.
This invention is the manufacturing method of the following polycarbonate resin compositions, its molded article, and the following polycarbonate resin compositions.
また、乳化重合スチレン系樹脂とポリカーボネート樹脂を溶融混練してポリカーボネート樹脂組成物を製造するに際し、添加成分であってポリカーボネート樹脂に比べ小量成分である乳化重合スチレン系樹脂を、先ず押出機の根元から投入し、減圧ベントして乳化剤に由来するガス発生成分を脱揮し、主成分たるポリカーボネート樹脂はベント口より下流にある原料供給口から供給して溶融混練することにより、前記課題を解決すること、また、スチレン系樹脂の溶融混練の際に水を注入することにより、さらに前記課題が解決でき、しかも生産性良く製造できることを見出し、本発明に到達した。
本発明は、以下のポリカーボネート樹脂組成物及びその成形品、及び以下のポリカーボネート樹脂組成物の製造方法である。 As a result of intensive studies to achieve the above-mentioned problems, the inventor is a resin composition containing a specific amount of a polycarbonate resin and a specific emulsion-polymerized styrene resin, and the resin composition is 280 ° C., 10 ° C. Polycarbonate / styrene resin composition whose total gas amount when heated for a minute is 3000 mass ppm or less in terms of decane mass is excellent in mechanical properties and heat and humidity resistance, and there is no problem of mold contamination due to mold deposit I found.
In addition, when producing a polycarbonate resin composition by melt-kneading an emulsion-polymerized styrene resin and a polycarbonate resin, an emulsion-polymerized styrene-based resin, which is an additive component and a small amount component compared to the polycarbonate resin, is first added to the root of the extruder. The above problem is solved by venting under reduced pressure to devolatilize the gas generating component derived from the emulsifier, and supplying the polycarbonate resin as the main component from the raw material supply port downstream from the vent port and melt-kneading. In addition, by injecting water during the melt-kneading of the styrene-based resin, it was found that the above-mentioned problems can be further solved and the production can be performed with high productivity, and the present invention has been achieved.
This invention is the manufacturing method of the following polycarbonate resin compositions, its molded article, and the following polycarbonate resin compositions.
[1](A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含む樹脂組成物であって、
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。
[2]ポリカーボネート樹脂(A)のマトリックス中に、スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つスチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある上記[1]に記載のポリカーボネート樹脂組成物。
[3]温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である上記[1]又は[2]に記載のポリカーボネート樹脂組成物。 [1] A resin composition comprising 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene-based resin (B) based on a total of 100% by weight of (A) and (B). ,
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass.
[2] The styrene resin (B) is dispersed in an island shape in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 μm or less, and the styrene resin (B The ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) is in the range of 1.0 to 1.5.
[3] The polycarbonate resin composition according to the above [1] or [2], wherein the impact strength retention after heat-moisture treatment for 400 hours in an environment of a temperature of 90 ° C and a relative humidity of 95% is 50% or more.
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。
[2]ポリカーボネート樹脂(A)のマトリックス中に、スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つスチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある上記[1]に記載のポリカーボネート樹脂組成物。
[3]温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である上記[1]又は[2]に記載のポリカーボネート樹脂組成物。 [1] A resin composition comprising 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene-based resin (B) based on a total of 100% by weight of (A) and (B). ,
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass.
[2] The styrene resin (B) is dispersed in an island shape in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 μm or less, and the styrene resin (B The ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) is in the range of 1.0 to 1.5.
[3] The polycarbonate resin composition according to the above [1] or [2], wherein the impact strength retention after heat-moisture treatment for 400 hours in an environment of a temperature of 90 ° C and a relative humidity of 95% is 50% or more.
[4](A)~(C)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%、乳化重合スチレン系樹脂以外の他のスチレン系樹脂(C)0~30質量%を含む樹脂組成物であって、
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。
[5]他のスチレン系樹脂(C)が、懸濁重合又は塊状重合スチレン系樹脂である上記[4]に記載のポリカーボネート樹脂組成物。
[6]他のスチレン系樹脂(C)が、懸濁重合AS樹脂である上記[4]又は[5]に記載のポリカーボネート樹脂組成物。
[7]他のスチレン系樹脂(C)が、塊状重合ABS樹脂である上記[4]~[6]のいずれかに記載のポリカーボネート樹脂組成物。
[8]ポリカーボネート樹脂(A)のマトリックス中に、乳化重合スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つ乳化重合スチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある上記[1]~[7]のいずれかに記載のポリカーボネート樹脂組成物。
[9]温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である上記[1]~[8]のいずれかに記載のポリカーボネート樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のポリカーボネート樹脂組成物の成形品。 [4] Based on a total of 100 mass% of (A) to (C), polycarbonate resin (A) 60 to 95 mass%, emulsion polymerized styrene resin (B) 40 to 5 mass%, other than emulsion polymerized styrene resin A resin composition containing 0 to 30% by mass of another styrenic resin (C),
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass.
[5] The polycarbonate resin composition according to the above [4], wherein the other styrene resin (C) is a suspension polymerization or a block polymerization styrene resin.
[6] The polycarbonate resin composition according to the above [4] or [5], wherein the other styrenic resin (C) is a suspension polymerization AS resin.
[7] The polycarbonate resin composition according to any one of the above [4] to [6], wherein the other styrenic resin (C) is a block polymerization ABS resin.
[8] The emulsion-polymerized styrene resin (B) is dispersed in islands in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 μm or less, and the emulsion-polymerized styrene The ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) of the resin (B) is in the range of 1.0 to 1.5. The polycarbonate resin composition in any one.
[9] The polycarbonate resin composition according to any one of the above [1] to [8], which has an impact strength retention rate of 50% or more after wet heat treatment in an environment of 90 ° C. and 95% relative humidity for 400 hours .
[10] A molded article of the polycarbonate resin composition according to any one of [1] to [9].
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。
[5]他のスチレン系樹脂(C)が、懸濁重合又は塊状重合スチレン系樹脂である上記[4]に記載のポリカーボネート樹脂組成物。
[6]他のスチレン系樹脂(C)が、懸濁重合AS樹脂である上記[4]又は[5]に記載のポリカーボネート樹脂組成物。
[7]他のスチレン系樹脂(C)が、塊状重合ABS樹脂である上記[4]~[6]のいずれかに記載のポリカーボネート樹脂組成物。
[8]ポリカーボネート樹脂(A)のマトリックス中に、乳化重合スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つ乳化重合スチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある上記[1]~[7]のいずれかに記載のポリカーボネート樹脂組成物。
[9]温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である上記[1]~[8]のいずれかに記載のポリカーボネート樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のポリカーボネート樹脂組成物の成形品。 [4] Based on a total of 100 mass% of (A) to (C), polycarbonate resin (A) 60 to 95 mass%, emulsion polymerized styrene resin (B) 40 to 5 mass%, other than emulsion polymerized styrene resin A resin composition containing 0 to 30% by mass of another styrenic resin (C),
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass.
[5] The polycarbonate resin composition according to the above [4], wherein the other styrene resin (C) is a suspension polymerization or a block polymerization styrene resin.
[6] The polycarbonate resin composition according to the above [4] or [5], wherein the other styrenic resin (C) is a suspension polymerization AS resin.
[7] The polycarbonate resin composition according to any one of the above [4] to [6], wherein the other styrenic resin (C) is a block polymerization ABS resin.
[8] The emulsion-polymerized styrene resin (B) is dispersed in islands in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 μm or less, and the emulsion-polymerized styrene The ratio of the volume average particle diameter (dv) to the number average particle diameter (dn) (dv / dn) of the resin (B) is in the range of 1.0 to 1.5. The polycarbonate resin composition in any one.
[9] The polycarbonate resin composition according to any one of the above [1] to [8], which has an impact strength retention rate of 50% or more after wet heat treatment in an environment of 90 ° C. and 95% relative humidity for 400 hours .
[10] A molded article of the polycarbonate resin composition according to any one of [1] to [9].
[11](A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口から、ポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。
[12]
前記ガス成分が、乳化剤に由来するガス成分を含む上記[11]に記載のポリカーボネート樹脂組成物の製造方法。 [11] A polycarbonate resin composition containing 60 to 95% by weight of polycarbonate resin (A) and 40 to 5% by weight of emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
A method for producing a polycarbonate resin composition, comprising: supplying a polycarbonate resin (A) in an amount of A (2) from a second raw material supply port downstream of the vent port.
[12]
The method for producing a polycarbonate resin composition according to [11], wherein the gas component includes a gas component derived from an emulsifier.
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口から、ポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。
[12]
前記ガス成分が、乳化剤に由来するガス成分を含む上記[11]に記載のポリカーボネート樹脂組成物の製造方法。 [11] A polycarbonate resin composition containing 60 to 95% by weight of polycarbonate resin (A) and 40 to 5% by weight of emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
A method for producing a polycarbonate resin composition, comprising: supplying a polycarbonate resin (A) in an amount of A (2) from a second raw material supply port downstream of the vent port.
[12]
The method for producing a polycarbonate resin composition according to [11], wherein the gas component includes a gas component derived from an emulsifier.
[13]
(A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側の混練部に水注入部とベント口を有し、さらにその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
次いで、混練部に設けた水注入部から水を注入して溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。
[14]
前記ガス成分が、乳化剤に由来するガス成分を含む上記[13]に記載のポリカーボネート樹脂組成物の製造方法。
[15]
前記ベント式二軸押出機が水注入部とベント口を多段で有する押出機であり、水の注入と減圧脱揮を多段で行う上記[13]または[14]に記載のポリカーボネート樹脂組成物の製造方法。
[16]
上記[11]~[15]の製造方法で得られたポリカーボネート樹脂組成物を成形した成形品。 [13]
A polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B). A method of manufacturing by melt-kneading with an extruder,
The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side. And
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port,
A method for producing a polycarbonate resin composition, characterized in that the polycarbonate resin (A) is supplied in an amount of A (2) from a second raw material supply port downstream of the vent port.
[14]
The method for producing a polycarbonate resin composition according to the above [13], wherein the gas component contains a gas component derived from an emulsifier.
[15]
The polycarbonate resin composition according to the above [13] or [14], wherein the vent type twin screw extruder is an extruder having a water injection part and a vent port in multiple stages, and performs water injection and vacuum devolatilization in multiple stages. Production method.
[16]
A molded article obtained by molding the polycarbonate resin composition obtained by the production method of [11] to [15] above.
(A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側の混練部に水注入部とベント口を有し、さらにその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
次いで、混練部に設けた水注入部から水を注入して溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。
[14]
前記ガス成分が、乳化剤に由来するガス成分を含む上記[13]に記載のポリカーボネート樹脂組成物の製造方法。
[15]
前記ベント式二軸押出機が水注入部とベント口を多段で有する押出機であり、水の注入と減圧脱揮を多段で行う上記[13]または[14]に記載のポリカーボネート樹脂組成物の製造方法。
[16]
上記[11]~[15]の製造方法で得られたポリカーボネート樹脂組成物を成形した成形品。 [13]
A polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B). A method of manufacturing by melt-kneading with an extruder,
The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side. And
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port,
A method for producing a polycarbonate resin composition, characterized in that the polycarbonate resin (A) is supplied in an amount of A (2) from a second raw material supply port downstream of the vent port.
[14]
The method for producing a polycarbonate resin composition according to the above [13], wherein the gas component contains a gas component derived from an emulsifier.
[15]
The polycarbonate resin composition according to the above [13] or [14], wherein the vent type twin screw extruder is an extruder having a water injection part and a vent port in multiple stages, and performs water injection and vacuum devolatilization in multiple stages. Production method.
[16]
A molded article obtained by molding the polycarbonate resin composition obtained by the production method of [11] to [15] above.
本発明のポリカーボネート樹脂組成物は、機械的物性と耐湿熱性に優れ、かつモールドデポジットによる金型汚染の問題がない。また、本発明のポリカーボネート樹脂組成物の製造方法は、機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないポリカーボネート樹脂組成物を生産性良く製造することができる。
The polycarbonate resin composition of the present invention is excellent in mechanical properties and moisture and heat resistance, and has no problem of mold contamination due to mold deposit. In addition, the method for producing a polycarbonate resin composition of the present invention can produce a polycarbonate resin composition having excellent mechanical properties and heat-and-moisture resistance and no problem of mold contamination due to mold deposits with high productivity.
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。
なお、本明細書において、「~」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。また、「ppm」とは、特に断りのない限り、質量ppmを意味する。 Hereinafter, although an embodiment, an example thing, etc. are shown and explained in detail about the present invention, the present invention is limited to an embodiment, an example, etc. shown below and is not interpreted.
In the present specification, “˜” is used to mean that the numerical values described before and after it are used as the lower limit and the upper limit unless otherwise specified. “Ppm” means mass ppm unless otherwise specified.
なお、本明細書において、「~」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。また、「ppm」とは、特に断りのない限り、質量ppmを意味する。 Hereinafter, although an embodiment, an example thing, etc. are shown and explained in detail about the present invention, the present invention is limited to an embodiment, an example, etc. shown below and is not interpreted.
In the present specification, “˜” is used to mean that the numerical values described before and after it are used as the lower limit and the upper limit unless otherwise specified. “Ppm” means mass ppm unless otherwise specified.
本発明のポリカーボネート樹脂組成物は、(A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含む樹脂組成物であって、
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とする。 The polycarbonate resin composition of the present invention contains 60 to 95% by weight of the polycarbonate resin (A) and 40 to 5% by weight of the emulsion polymerization styrene resin (B) based on a total of 100% by weight of (A) and (B). A resin composition comprising:
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
The total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 mass ppm or less in terms of decane mass.
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とする。 The polycarbonate resin composition of the present invention contains 60 to 95% by weight of the polycarbonate resin (A) and 40 to 5% by weight of the emulsion polymerization styrene resin (B) based on a total of 100% by weight of (A) and (B). A resin composition comprising:
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
The total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 mass ppm or less in terms of decane mass.
本発明のポリカーボネート樹脂組成物の製造方法は、(A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口から、ポリカーボネート樹脂(A)をA(2)の量で供給することを特徴とする。
さらに、本発明の製造方法は、上記において、水注入を行うことが好ましい。 The production method of the polycarbonate resin composition of the present invention is based on a total of 100% by mass of (A) and (B), 60 to 95% by mass of the polycarbonate resin (A), and 40 to 5% by mass of the emulsion-polymerized styrene resin (B). A polycarbonate resin composition containing 2% by melt-kneading with a vented twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
The polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream from the vent port.
Furthermore, in the production method of the present invention, it is preferable to perform water injection in the above.
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口から、ポリカーボネート樹脂(A)をA(2)の量で供給することを特徴とする。
さらに、本発明の製造方法は、上記において、水注入を行うことが好ましい。 The production method of the polycarbonate resin composition of the present invention is based on a total of 100% by mass of (A) and (B), 60 to 95% by mass of the polycarbonate resin (A), and 40 to 5% by mass of the emulsion-polymerized styrene resin (B). A polycarbonate resin composition containing 2% by melt-kneading with a vented twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
The polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream from the vent port.
Furthermore, in the production method of the present invention, it is preferable to perform water injection in the above.
[ポリカーボネート樹脂(A)]
本発明において使用するポリカーボネート樹脂(A)としては、芳香族ポリカーボネート樹脂、脂肪族ポリカーボネート樹脂、芳香族-脂肪族ポリカーボネート樹脂が挙げられるが、好ましくは、芳香族ポリカーボネート樹脂であり、具体的には、芳香族ジヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体又は共重合体が用いられる。 [Polycarbonate resin (A)]
Examples of the polycarbonate resin (A) used in the present invention include aromatic polycarbonate resins, aliphatic polycarbonate resins, and aromatic-aliphatic polycarbonate resins. Preferred are aromatic polycarbonate resins. Specifically, A thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is used.
本発明において使用するポリカーボネート樹脂(A)としては、芳香族ポリカーボネート樹脂、脂肪族ポリカーボネート樹脂、芳香族-脂肪族ポリカーボネート樹脂が挙げられるが、好ましくは、芳香族ポリカーボネート樹脂であり、具体的には、芳香族ジヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体又は共重合体が用いられる。 [Polycarbonate resin (A)]
Examples of the polycarbonate resin (A) used in the present invention include aromatic polycarbonate resins, aliphatic polycarbonate resins, and aromatic-aliphatic polycarbonate resins. Preferred are aromatic polycarbonate resins. Specifically, A thermoplastic aromatic polycarbonate polymer or copolymer obtained by reacting an aromatic dihydroxy compound with phosgene or a diester of carbonic acid is used.
芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、テトラメチルビスフェノールA、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4’-ジヒドロキシジフェニル等が挙げられる。また、難燃性向上の為に、上述した芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物や、シロキサン構造を有する両末端フェノール性OH基含有ポリマー、またはそのオリゴマーを用いてもよい。
Aromatic dihydroxy compounds include 2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A), tetramethylbisphenol A, α, α'-bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone , Resorcinol, 4,4′-dihydroxydiphenyl, and the like. Further, in order to improve flame retardancy, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the aromatic dihydroxy compound described above, a polymer having both ends phenolic OH groups having a siloxane structure, or an oligomer thereof is used. Also good.
ポリカーボネート樹脂(A)の好ましい例としては、ジヒドロキシ化合物として2,2-ビス(4-ヒドロキシフェニル)プロパン、即ちビスフェノールA、又はビスフェノールAと他の芳香族ジヒドロキシ化合物とを併用したポリカーボネート樹脂が挙げられる。
Preferable examples of the polycarbonate resin (A) include 2,2-bis (4-hydroxyphenyl) propane as a dihydroxy compound, that is, a polycarbonate resin in which bisphenol A or a combination of bisphenol A and another aromatic dihydroxy compound is used. .
ポリカーボネート樹脂は、1種の繰り返し単位からなる単独重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。
The polycarbonate resin may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
ポリカーボネート樹脂(A)の分子量は、制限はないが、粘度平均分子量(Mv)で、好ましくは10,000~40,000、より好ましくは14,000~32,000である。粘度平均分子量がこの範囲であると、得られる樹脂組成物の成形性が良く、且つ機械的強度の大きい成形品が得られやすい。ポリカーボネート樹脂(A)の最も好ましい粘度平均分子量の範囲は16,000~30,000である。
The molecular weight of the polycarbonate resin (A) is not limited, but is preferably from 10,000 to 40,000, more preferably from 14,000 to 32,000 in terms of viscosity average molecular weight (Mv). When the viscosity average molecular weight is within this range, the resulting resin composition has good moldability and a molded product having high mechanical strength is easily obtained. The most preferred viscosity average molecular weight range of the polycarbonate resin (A) is 16,000 to 30,000.
なお、本発明において、ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、20℃にて、ポリカーボネート樹脂のメチレンクロライド溶液の粘度を測定し極限粘度([η])を求め、次のSchnellの粘度式から算出される値である。
[η]=1.23×10-4Mv0.83 In the present invention, the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is determined by measuring the viscosity of the methylene chloride solution of the polycarbonate resin at 20 ° C. using an Ubbelohde viscometer. Is a value calculated from the following Schnell viscosity equation.
[Η] = 1.23 × 10 −4 Mv 0.83
[η]=1.23×10-4Mv0.83 In the present invention, the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is determined by measuring the viscosity of the methylene chloride solution of the polycarbonate resin at 20 ° C. using an Ubbelohde viscometer. Is a value calculated from the following Schnell viscosity equation.
[Η] = 1.23 × 10 −4 Mv 0.83
ポリカーボネート樹脂(A)の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)及び溶融法(エステル交換法)のいずれの方法で製造したポリカーボネート樹脂も使用することができる。また、溶融法で製造したポリカーボネート樹脂に、末端のOH基量を調整する後処理を施したポリカーボネート樹脂も好ましい。
The method for producing the polycarbonate resin (A) is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can also be used. Moreover, the polycarbonate resin which performed the post-process which adjusts the amount of terminal OH groups to the polycarbonate resin manufactured by the melting method is also preferable.
また、ポリカーボネート樹脂(A)は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
The polycarbonate resin (A) may contain a polycarbonate oligomer. The viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less. Furthermore, the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
また、ポリカーボネート樹脂(A)は、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート樹脂、いわゆるマテリアルリサイクルされた芳香族ポリカーボネート樹脂の使用も可能である。使用済みの製品としては、光ディスクなどの光記録媒体、導光板、自動車窓ガラスや自動車ヘッドランプレンズ、風防などの車両透明部材、水ボトルなどの容器、メガネレンズ、防音壁やガラス窓、波板などの建築部材などが好ましく挙げられる。また、再生ポリカーボネート樹脂としては、製品の不適合品、スプルー、またはランナーなどから得られた粉砕品、またはそれらを溶融して得たペレットなども使用可能である。
Also, the polycarbonate resin (A) is not limited to virgin raw materials, but it is also possible to use aromatic polycarbonate resin recycled from used products, so-called material recycled aromatic polycarbonate resin. Used products include optical recording media such as optical disks, light guide plates, automotive window glass and automotive headlamp lenses, vehicle transparent members such as windshields, containers such as water bottles, glasses lenses, soundproof walls and glass windows, corrugated plates Preferred examples include building members such as In addition, as the recycled polycarbonate resin, non-conforming product, pulverized product obtained from sprue or runner, or pellets obtained by melting them can be used.
[乳化重合スチレン系樹脂(B)]
本発明に使用される乳化重合スチレン系樹脂(B)は、乳化剤を用いた乳化重合により製造された乳化重合品を使用する。
乳化重合スチレン系樹脂(B)の含有量は、(A)と(B)の合計100質量%基準で、40~5質量%であり、ポリカーボネート樹脂(A)は主成分であって60~95質量%である。スチレン系樹脂(B)の量が5質量%未満では成形時の流動性が不十分であり、成形加工性が低下してしまう。スチレン系樹脂体(B)の含有量が40質量%を超えると機械的強度や耐熱性が劣ることとなる。スチレン系樹脂(B)の量は、好ましくは35質量%以下であり、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上である。 [Emulsion polymerization styrene resin (B)]
The emulsion polymerization styrene resin (B) used in the present invention uses an emulsion polymer product produced by emulsion polymerization using an emulsifier.
The content of the emulsion polymerization styrene resin (B) is 40 to 5% by mass based on the total of 100% by mass of (A) and (B), and the polycarbonate resin (A) is 60 to 95% as the main component. % By mass. If the amount of the styrene-based resin (B) is less than 5% by mass, the fluidity at the time of molding is insufficient, and the moldability is lowered. If the content of the styrenic resin body (B) exceeds 40% by mass, the mechanical strength and heat resistance will be inferior. The amount of the styrenic resin (B) is preferably 35% by mass or less, preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more.
本発明に使用される乳化重合スチレン系樹脂(B)は、乳化剤を用いた乳化重合により製造された乳化重合品を使用する。
乳化重合スチレン系樹脂(B)の含有量は、(A)と(B)の合計100質量%基準で、40~5質量%であり、ポリカーボネート樹脂(A)は主成分であって60~95質量%である。スチレン系樹脂(B)の量が5質量%未満では成形時の流動性が不十分であり、成形加工性が低下してしまう。スチレン系樹脂体(B)の含有量が40質量%を超えると機械的強度や耐熱性が劣ることとなる。スチレン系樹脂(B)の量は、好ましくは35質量%以下であり、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上である。 [Emulsion polymerization styrene resin (B)]
The emulsion polymerization styrene resin (B) used in the present invention uses an emulsion polymer product produced by emulsion polymerization using an emulsifier.
The content of the emulsion polymerization styrene resin (B) is 40 to 5% by mass based on the total of 100% by mass of (A) and (B), and the polycarbonate resin (A) is 60 to 95% as the main component. % By mass. If the amount of the styrene-based resin (B) is less than 5% by mass, the fluidity at the time of molding is insufficient, and the moldability is lowered. If the content of the styrenic resin body (B) exceeds 40% by mass, the mechanical strength and heat resistance will be inferior. The amount of the styrenic resin (B) is preferably 35% by mass or less, preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more.
乳化重合スチレン系樹脂(B)としては、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなる乳化重合グラフト共重合体が使用される。
The emulsion polymerization styrene resin (B) includes an emulsion polymerization graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer. used.
スチレン系単量体としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p-tert-ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等のスチレン誘導体が挙げられ、特にスチレンが好ましい。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Styrene monomers include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinylxylene, ethylstyrene, dimethylstyrene, p-tert-butylstyrene, vinylnaphthalene, methoxystyrene, and monobromostyrene. , Styrene derivatives such as dibromostyrene, fluorostyrene, tribromostyrene and the like, and styrene is particularly preferable. These may be used alone or in combination of two or more.
これらのスチレン系単量体と共重合可能な他のビニル単量体としては、シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体が好ましく挙げられる。
なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート」と「メタアクリレート」の一方又は双方をさす。「(メタ)アクリル」「(メタ)アクリロ」についても同様である。 Preferred examples of other vinyl monomers copolymerizable with these styrene monomers include vinyl cyanide monomers and / or alkyl (meth) acrylate monomers.
In the present specification, “(meth) acrylate” refers to one or both of “acrylate” and “methacrylate”. The same applies to “(meth) acryl” and “(meth) acrylo”.
なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート」と「メタアクリレート」の一方又は双方をさす。「(メタ)アクリル」「(メタ)アクリロ」についても同様である。 Preferred examples of other vinyl monomers copolymerizable with these styrene monomers include vinyl cyanide monomers and / or alkyl (meth) acrylate monomers.
In the present specification, “(meth) acrylate” refers to one or both of “acrylate” and “methacrylate”. The same applies to “(meth) acryl” and “(meth) acrylo”.
シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル等が挙げられ、アクリロニトリルが最も好ましく用いられる。これらは、1種または2種以上用いることができる。
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like, and acrylonitrile is most preferably used. These can be used alone or in combination of two or more.
アルキル(メタ)アクリレート系単量体としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート等のアクリル酸のアルキルエステル;
フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル;メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート等のメタクリル酸アルキルエステル;
グリシジルメタクリレート等のエポキシ基含有メタクリル酸エステル;フェニルアクリレート、ベンジルアクリレート等のアクリル酸のアリールエステル等が挙げられる。
これらは、1種または2種以上用いることができる。
これらの中でも、アクリル酸アルキルエステル、メタクリル酸アルキルエステルが好ましい。 Alkyl (meth) acrylate monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, and dodecyl acrylate. ;
Methacrylic acid aryl esters such as phenyl methacrylate and benzyl methacrylate; alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, cyclohexyl methacrylate, and dodecyl methacrylate;
An epoxy group-containing methacrylic acid ester such as glycidyl methacrylate; and an aryl ester of acrylic acid such as phenyl acrylate and benzyl acrylate.
These can be used alone or in combination of two or more.
Among these, acrylic acid alkyl ester and methacrylic acid alkyl ester are preferable.
フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル;メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート等のメタクリル酸アルキルエステル;
グリシジルメタクリレート等のエポキシ基含有メタクリル酸エステル;フェニルアクリレート、ベンジルアクリレート等のアクリル酸のアリールエステル等が挙げられる。
これらは、1種または2種以上用いることができる。
これらの中でも、アクリル酸アルキルエステル、メタクリル酸アルキルエステルが好ましい。 Alkyl (meth) acrylate monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, and dodecyl acrylate. ;
Methacrylic acid aryl esters such as phenyl methacrylate and benzyl methacrylate; alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, cyclohexyl methacrylate, and dodecyl methacrylate;
An epoxy group-containing methacrylic acid ester such as glycidyl methacrylate; and an aryl ester of acrylic acid such as phenyl acrylate and benzyl acrylate.
These can be used alone or in combination of two or more.
Among these, acrylic acid alkyl ester and methacrylic acid alkyl ester are preferable.
上記以外の共重合可能な他のビニル単量体としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体;アクリル酸、メタクリル酸、(メタ)アクリル酸グリシジル、イタコン酸グリシジル、マレイン酸、無水マレイン酸、フタル酸、イタコン酸等のα、β-不飽和カルボン酸及びその無水物等が挙げられる。
これらのビニル単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Other copolymerizable vinyl monomers other than the above include maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide; acrylic acid, methacrylic acid, (meth) acrylic Examples include α, β-unsaturated carboxylic acids such as glycidyl acid, glycidyl itaconate, maleic acid, maleic anhydride, phthalic acid and itaconic acid, and anhydrides thereof.
These vinyl monomers may be used alone or in a combination of two or more.
これらのビニル単量体は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Other copolymerizable vinyl monomers other than the above include maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide; acrylic acid, methacrylic acid, (meth) acrylic Examples include α, β-unsaturated carboxylic acids such as glycidyl acid, glycidyl itaconate, maleic acid, maleic anhydride, phthalic acid and itaconic acid, and anhydrides thereof.
These vinyl monomers may be used alone or in a combination of two or more.
また、スチレン系単量体と共重合可能なゴム質重合体としては、ガラス転移温度が10℃以下のゴムが適当である。このようなゴム質重合体の具体例としては、ジエン系ゴム、アクリル系ゴム、エチレン・プロピレンゴム、シリコンゴム等が挙げられ、好ましくは、ジエン系ゴム、アクリル系ゴム等が挙げられる。
As the rubbery polymer copolymerizable with the styrene monomer, a rubber having a glass transition temperature of 10 ° C. or lower is suitable. Specific examples of such a rubbery polymer include diene rubber, acrylic rubber, ethylene / propylene rubber, silicon rubber and the like, and preferably, diene rubber and acrylic rubber.
ジエン系ゴムとしては、例えば、ポリブタジエン、スチレン-ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ブタジエン-メタクリル酸メチル共重合体等のブタジエン-(メタ)アクリル酸の低級アルキルエステル共重合体、ポリイソプレン、エチレン-イソプレン共重合体、ブタジエン-イソプレン共重合体、エチレン-プロピレン-ブタジエン共重合体、エチレン-プロピレン-ヘキサジエン共重合体等のエチレンとプロピレンと非共役ジエンターポリマー、ブタジエン-スチレン-(メタ)アクリル酸の低級アルキルエステル共重合体等が挙げられる。
Examples of the diene rubber include butadiene such as polybutadiene, styrene-butadiene random copolymer and block copolymer, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, and butadiene-methyl methacrylate copolymer. -(Meth) acrylic acid lower alkyl ester copolymer, polyisoprene, ethylene-isoprene copolymer, butadiene-isoprene copolymer, ethylene-propylene-butadiene copolymer, ethylene-propylene-hexadiene copolymer, etc. Examples thereof include ethylene, propylene, non-conjugated diene terpolymers, and lower alkyl ester copolymers of butadiene-styrene- (meth) acrylic acid.
アクリル系ゴムとしては、例えば、アクリル酸アルキルエステルゴムが挙げられ、ここで、アルキル基の炭素数は好ましくは1~8である。アクリル酸アルキルエステルの具体例としては、アクリル酸エチル、アクリル酸ブチル、アクリル酸エチルヘキシル等が挙げられる。アクリル酸アルキルエステルゴムには、任意に、エチレン性不飽和単量体が用いられていてもよい。そのような化合物の具体例としては、ジ(メタ)アクリレート、ジビニルベンゼン、トリビニルベンゼン、シアヌル酸トリアリル、(メタ)アクリル酸アリル、ブタジエン、イソプレン等が挙げられる。アクリル系ゴムとしては、更に、コアとして架橋ジエン系ゴムを有するコア-シェル型重合体が挙げられる。
Examples of the acrylic rubber include acrylic acid alkyl ester rubber, and the alkyl group preferably has 1 to 8 carbon atoms. Specific examples of the alkyl acrylate include ethyl acrylate, butyl acrylate, ethyl hexyl acrylate, and the like. An ethylenically unsaturated monomer may optionally be used in the acrylic acid alkyl ester rubber. Specific examples of such compounds include di (meth) acrylate, divinylbenzene, trivinylbenzene, triallyl cyanurate, allyl (meth) acrylate, butadiene, isoprene and the like. Examples of the acrylic rubber include a core-shell type polymer having a crosslinked diene rubber as a core.
乳化重合スチレン系樹脂(B)の好ましい具体例としては、乳化重合による、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メチルメタクリレート-ブタジエンゴム-スチレン共重合体(MBS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)、メチルメタクリレート-ブタジエンゴム共重合体(MB樹脂)、アクリロニトリル-アクリルゴム-スチレン共重合体(AAS樹脂)、アクリロニトリル-(エチレン・プロピレン・ジエンゴム)-スチレン共重合体(AES樹脂)、アクリロニトリル-ブタジエン-スチレン-α-メチルスチレン共重合体、アクリロニトリル-ブタジエン-スチレン-N-フェニルマレイミド共重合体等が挙げられるが、これらのうち、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、メチルメタクリレート-ブタジエンゴム-スチレン共重合体(MBS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)が耐湿熱性向上、成形時の金型汚染低減効果の面から好適に用いられ、特に好ましくはABS樹脂である。
なお、スチレン系樹脂(B)は単独でも2種以上混合して使用することもできる。 Preferable specific examples of the emulsion polymerization styrene resin (B) include acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene rubber-styrene copolymer (MBS resin), and methyl methacrylate by emulsion polymerization. Acrylonitrile-butadiene-styrene copolymer (MABS resin), methyl methacrylate-butadiene rubber copolymer (MB resin), acrylonitrile-acrylic rubber-styrene copolymer (AAS resin), acrylonitrile- (ethylene / propylene / diene rubber)- Styrene copolymer (AES resin), acrylonitrile-butadiene-styrene-α-methylstyrene copolymer, acrylonitrile-butadiene-styrene-N-phenylmaleimide copolymer, and the like. Acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene rubber-styrene copolymer (MBS resin), and methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS resin) have improved moisture and heat resistance. In view of the effect of reducing mold contamination, ABS resin is particularly preferable.
In addition, a styrenic resin (B) can also be used individually or in mixture of 2 or more types.
なお、スチレン系樹脂(B)は単独でも2種以上混合して使用することもできる。 Preferable specific examples of the emulsion polymerization styrene resin (B) include acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene rubber-styrene copolymer (MBS resin), and methyl methacrylate by emulsion polymerization. Acrylonitrile-butadiene-styrene copolymer (MABS resin), methyl methacrylate-butadiene rubber copolymer (MB resin), acrylonitrile-acrylic rubber-styrene copolymer (AAS resin), acrylonitrile- (ethylene / propylene / diene rubber)- Styrene copolymer (AES resin), acrylonitrile-butadiene-styrene-α-methylstyrene copolymer, acrylonitrile-butadiene-styrene-N-phenylmaleimide copolymer, and the like. Acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene rubber-styrene copolymer (MBS resin), and methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS resin) have improved moisture and heat resistance. In view of the effect of reducing mold contamination, ABS resin is particularly preferable.
In addition, a styrenic resin (B) can also be used individually or in mixture of 2 or more types.
本発明において、スチレン系樹脂(B)は、乳化重合によって製造された乳化重合品を使用するが、乳化重合スチレン系樹脂(B)を製造する方法は公知であり、公知の方法で製造するか、あるいは市販の乳化重合品を使用することでもよい。
In the present invention, the styrene resin (B) uses an emulsion polymer product produced by emulsion polymerization, but the method for producing the emulsion polymerized styrene resin (B) is well known. Alternatively, a commercially available emulsion polymerization product may be used.
乳化重合により乳化重合スチレン系樹脂(B)を製造する方法として、ABS樹脂を例に説明すると、その一般的な方法は以下のとおりである。
乳化剤としては、通常、好ましくはアビエチン酸の塩であるロジン酸石鹸や炭素数12~32の飽和若しくは不飽和脂肪酸の塩である高級脂肪酸石鹸を使用し、ジエン系単量体をペルオキソ二硫酸カリウム、α-クミルヒドロペルオキシド等の水溶性重合開始剤を用いて乳化重合を行い、重合体ラテックスを得る。次に、この重合体粒子と芳香族ビニル単量体及びシアン化ビニル単量体を更なる乳化剤の存在下で重合することにより重合体ラテックスを得、これに無機酸や二価の金属塩等の凝固剤を加えてABS樹脂を分離し、洗浄、乾燥する。 As a method for producing an emulsion-polymerized styrene resin (B) by emulsion polymerization, an ABS resin will be described as an example. A general method thereof is as follows.
As the emulsifier, usually, a rosin acid soap which is a salt of abietic acid or a higher fatty acid soap which is a salt of a saturated or unsaturated fatty acid having 12 to 32 carbon atoms is used, and the diene monomer is potassium peroxodisulfate. Emulsion polymerization is carried out using a water-soluble polymerization initiator such as α-cumyl hydroperoxide to obtain a polymer latex. Next, a polymer latex is obtained by polymerizing the polymer particles, the aromatic vinyl monomer and the vinyl cyanide monomer in the presence of a further emulsifier, and an inorganic acid, a divalent metal salt, etc. The ABS coagulant is added to separate the ABS resin, washed and dried.
乳化剤としては、通常、好ましくはアビエチン酸の塩であるロジン酸石鹸や炭素数12~32の飽和若しくは不飽和脂肪酸の塩である高級脂肪酸石鹸を使用し、ジエン系単量体をペルオキソ二硫酸カリウム、α-クミルヒドロペルオキシド等の水溶性重合開始剤を用いて乳化重合を行い、重合体ラテックスを得る。次に、この重合体粒子と芳香族ビニル単量体及びシアン化ビニル単量体を更なる乳化剤の存在下で重合することにより重合体ラテックスを得、これに無機酸や二価の金属塩等の凝固剤を加えてABS樹脂を分離し、洗浄、乾燥する。 As a method for producing an emulsion-polymerized styrene resin (B) by emulsion polymerization, an ABS resin will be described as an example. A general method thereof is as follows.
As the emulsifier, usually, a rosin acid soap which is a salt of abietic acid or a higher fatty acid soap which is a salt of a saturated or unsaturated fatty acid having 12 to 32 carbon atoms is used, and the diene monomer is potassium peroxodisulfate. Emulsion polymerization is carried out using a water-soluble polymerization initiator such as α-cumyl hydroperoxide to obtain a polymer latex. Next, a polymer latex is obtained by polymerizing the polymer particles, the aromatic vinyl monomer and the vinyl cyanide monomer in the presence of a further emulsifier, and an inorganic acid, a divalent metal salt, etc. The ABS coagulant is added to separate the ABS resin, washed and dried.
前述したように、洗浄工程では経済性を無視してまで乳化剤の完全除去は行われないので、乳化重合ABS樹脂には、上記した乳化剤またはそれに由来する成分が残存しており、アビエチン酸及び/又は高級脂肪酸あるいはその塩が乳化重合品には含有され、このような乳化剤由来の成分が、ポリカーボネート樹脂の加水分解に影響を及ぼし耐湿熱性を低下させたり、また、乳化重合スチレン系樹脂には、オリゴマーが残存しており、このオリゴマー成分が成形時にはガスを発生して、モールドデポジットとなり金型汚染を引き起こすものと考えられる。
高級脂肪酸としては好ましくは炭素数12~32の飽和若しくは不飽和脂肪酸であり、その代表的なものとしては、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸等が好ましく挙げられ、塩としては、アルカリ金属塩、特にナトリウム塩、カリウム塩、アンモニウム塩等が好ましく挙げられる。
アビエチン酸及び/又は高級脂肪酸あるいはその塩は、そのままでは得られる樹脂組成物中にガス発生成分として存在することとなり、成形時にはガスを発生して、モールドデポジットとなり金型汚染を引き起こすこととなり、また、ポリカーボネート樹脂の加水分解に影響を及ぼし耐湿熱性を低下させる。 As described above, since the emulsifier is not completely removed in the washing process until economic efficiency is ignored, the above-described emulsifier or a component derived therefrom remains in the emulsion polymerization ABS resin, and abietic acid and / or Alternatively, higher fatty acids or salts thereof are contained in the emulsion polymerized product, and the component derived from such an emulsifier affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance. Oligomer remains, and it is considered that this oligomer component generates gas during molding and becomes mold deposit and causes mold contamination.
The higher fatty acid is preferably a saturated or unsaturated fatty acid having 12 to 32 carbon atoms, and typical examples thereof include oleic acid, stearic acid, palmitic acid, myristic acid and the like. Metal salts, particularly sodium salts, potassium salts, ammonium salts and the like are preferred.
Abietic acid and / or higher fatty acid or a salt thereof will be present as a gas generating component in the resin composition obtained as it is, and gas will be generated at the time of molding, resulting in mold deposits and mold contamination. It affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance.
高級脂肪酸としては好ましくは炭素数12~32の飽和若しくは不飽和脂肪酸であり、その代表的なものとしては、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸等が好ましく挙げられ、塩としては、アルカリ金属塩、特にナトリウム塩、カリウム塩、アンモニウム塩等が好ましく挙げられる。
アビエチン酸及び/又は高級脂肪酸あるいはその塩は、そのままでは得られる樹脂組成物中にガス発生成分として存在することとなり、成形時にはガスを発生して、モールドデポジットとなり金型汚染を引き起こすこととなり、また、ポリカーボネート樹脂の加水分解に影響を及ぼし耐湿熱性を低下させる。 As described above, since the emulsifier is not completely removed in the washing process until economic efficiency is ignored, the above-described emulsifier or a component derived therefrom remains in the emulsion polymerization ABS resin, and abietic acid and / or Alternatively, higher fatty acids or salts thereof are contained in the emulsion polymerized product, and the component derived from such an emulsifier affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance. Oligomer remains, and it is considered that this oligomer component generates gas during molding and becomes mold deposit and causes mold contamination.
The higher fatty acid is preferably a saturated or unsaturated fatty acid having 12 to 32 carbon atoms, and typical examples thereof include oleic acid, stearic acid, palmitic acid, myristic acid and the like. Metal salts, particularly sodium salts, potassium salts, ammonium salts and the like are preferred.
Abietic acid and / or higher fatty acid or a salt thereof will be present as a gas generating component in the resin composition obtained as it is, and gas will be generated at the time of molding, resulting in mold deposits and mold contamination. It affects the hydrolysis of the polycarbonate resin and lowers the heat and moisture resistance.
また、乳化重合スチレン系樹脂には、オリゴマーが残存しており、オリゴマー成分は金型汚染やガス発生を起こしているものと考えられる。オリゴマーとしては、特に制限されるものではないが、前記したスチレン系樹脂(B)を構成するための単量体、例えば、スチレン系単量体、シアン化ビニル系単量体、アルキル(メタ)アクリレート系単量体等のオリゴマーが挙げられる。
In addition, oligomers remain in the emulsion-polymerized styrene resin, and the oligomer component is considered to cause mold contamination and gas generation. Although it does not restrict | limit especially as an oligomer, The monomer for comprising above-mentioned styrene resin (B), for example, a styrene monomer, a vinyl cyanide monomer, alkyl (meth) Examples include oligomers such as acrylate monomers.
本発明のポリカーボネート樹脂組成物は、前記したように、乳化重合スチレン系樹脂(B)を40~5質量%含有していながら、樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とする。合計ガス量が3000質量ppm以下であることで、本発明のポリカーボネート樹脂組成物は機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題が解決できる。合計ガス量は、好ましくは2700質量ppm以下であり、より好ましくは2500質量ppm以下であり、その好ましい下限は500質量ppmである。500質量ppm未満となると成形時の離型性が極端に悪化したり、成形品の外観、特に表面光沢性が損なわれやすいため好ましくない。
As described above, the polycarbonate resin composition of the present invention contains 40 to 5% by mass of the emulsion-polymerized styrene resin (B), and the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes. It is 3000 mass ppm or less in terms of decane mass. When the total gas amount is 3000 mass ppm or less, the polycarbonate resin composition of the present invention is excellent in mechanical properties and wet heat resistance, and can solve the problem of mold contamination due to mold deposits. The total gas amount is preferably 2700 mass ppm or less, more preferably 2500 mass ppm or less, and its preferred lower limit is 500 mass ppm. If it is less than 500 ppm by mass, the releasability at the time of molding is extremely deteriorated, and the appearance of the molded product, particularly the surface glossiness, is liable to be impaired.
また、この中、乳化剤に由来するガスの発生量がデカン質量に換算して、380質量ppm以下であることも可能となる。380質量ppm以下とすることで耐湿熱性を極めて良好にすることができる。
ここでいう乳化剤に由来するガスの発生成分とは、スチレン系樹脂(B)の乳化重合の際に使用された乳化剤成分をいうが、前述したように、一般的には高級脂肪酸石鹸やロジン酸石鹸に由来する成分であり、より具体的にはアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸またはその金属塩である。乳化剤に由来するガスの発生量は、具体的には、樹脂組成物を280℃、10分間加熱した際の発生ガスとしてアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の合計ガス量がデカン質量に換算して、380質量ppm以下であることが好ましく、アビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の合計ガス量を380質量ppm以下とすることで耐湿熱性を極めて良好にすることができる。好ましくは300質量ppm以下、より好ましくは200質量ppm以下、さらに100質量ppm以下であることが好ましい。その好ましい下限は、成形時の離形性や成形品の外観を考慮すると50質量ppmである。 Of these, the amount of gas derived from the emulsifier can be 380 mass ppm or less in terms of decane mass. By setting it to 380 mass ppm or less, the heat-and-moisture resistance can be made extremely good.
The gas generating component derived from the emulsifier here refers to an emulsifier component used in the emulsion polymerization of the styrene resin (B). As described above, generally, higher fatty acid soap or rosin acid is used. It is a component derived from soap, and more specifically, is abietic acid and a saturated or unsaturated fatty acid having 12 to 32 carbon atoms or a metal salt thereof. The amount of gas generated from the emulsifier is specifically the total gas amount of abietic acid and saturated or unsaturated fatty acid having 12 to 32 carbon atoms as the generated gas when the resin composition is heated at 280 ° C. for 10 minutes. In terms of decane mass, it is preferably 380 mass ppm or less, and the heat and humidity resistance is extremely good by making the total gas amount of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms be 380 mass ppm or less. can do. Preferably it is 300 mass ppm or less, More preferably, it is 200 mass ppm or less, Furthermore, it is preferable that it is 100 mass ppm or less. The preferable lower limit is 50 mass ppm in view of the releasability during molding and the appearance of the molded product.
ここでいう乳化剤に由来するガスの発生成分とは、スチレン系樹脂(B)の乳化重合の際に使用された乳化剤成分をいうが、前述したように、一般的には高級脂肪酸石鹸やロジン酸石鹸に由来する成分であり、より具体的にはアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸またはその金属塩である。乳化剤に由来するガスの発生量は、具体的には、樹脂組成物を280℃、10分間加熱した際の発生ガスとしてアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の合計ガス量がデカン質量に換算して、380質量ppm以下であることが好ましく、アビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の合計ガス量を380質量ppm以下とすることで耐湿熱性を極めて良好にすることができる。好ましくは300質量ppm以下、より好ましくは200質量ppm以下、さらに100質量ppm以下であることが好ましい。その好ましい下限は、成形時の離形性や成形品の外観を考慮すると50質量ppmである。 Of these, the amount of gas derived from the emulsifier can be 380 mass ppm or less in terms of decane mass. By setting it to 380 mass ppm or less, the heat-and-moisture resistance can be made extremely good.
The gas generating component derived from the emulsifier here refers to an emulsifier component used in the emulsion polymerization of the styrene resin (B). As described above, generally, higher fatty acid soap or rosin acid is used. It is a component derived from soap, and more specifically, is abietic acid and a saturated or unsaturated fatty acid having 12 to 32 carbon atoms or a metal salt thereof. The amount of gas generated from the emulsifier is specifically the total gas amount of abietic acid and saturated or unsaturated fatty acid having 12 to 32 carbon atoms as the generated gas when the resin composition is heated at 280 ° C. for 10 minutes. In terms of decane mass, it is preferably 380 mass ppm or less, and the heat and humidity resistance is extremely good by making the total gas amount of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms be 380 mass ppm or less. can do. Preferably it is 300 mass ppm or less, More preferably, it is 200 mass ppm or less, Furthermore, it is preferable that it is 100 mass ppm or less. The preferable lower limit is 50 mass ppm in view of the releasability during molding and the appearance of the molded product.
また、上記発生ガスは、スチレン系樹脂(B)、(C)に残存するオリゴマー成分に由来するものも含有するが、前記したように、このオリゴマー成分はモールドデポジット等による金型汚染の問題の原因となる。従って、上記した280℃で10分間加熱した際の合計ガス量が、デカン質量に換算して3000質量ppm以下とすることは、金型汚染の問題と耐湿熱性の点から特に好ましい。
The generated gas also contains those derived from the oligomer component remaining in the styrene resins (B) and (C). As described above, this oligomer component is a problem of mold contamination due to mold deposits and the like. Cause. Therefore, it is particularly preferable that the total gas amount when heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass from the viewpoint of mold contamination and wet heat resistance.
本発明のポリカーボネート樹脂組成物は、さらに乳化重合スチレン系樹脂(B)以外の他のスチレン系樹脂(C)を含有していてもよい。具体的には(A)~(C)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%、乳化重合スチレン系樹脂以外の他のスチレン系樹脂(C)0~30質量%を含有する。
The polycarbonate resin composition of the present invention may further contain a styrene resin (C) other than the emulsion polymerization styrene resin (B). Specifically, polycarbonate resin (A) 60 to 95% by mass, emulsion polymerized styrene resin (B) 40 to 5% by mass, based on 100% by mass total of (A) to (C), other than emulsion polymerized styrene resin Other styrenic resin (C) is contained in an amount of 0 to 30% by mass.
乳化重合スチレン系樹脂(B)以外の他のスチレン系樹脂(C)としては、懸濁重合又は塊状重合スチレン系樹脂が好ましく、懸濁重合AS樹脂又は塊状重合ABS樹脂が特に好ましい。
懸濁重合AS樹脂は、アクリロニトリルとスチレンを懸濁重合した共重合体であり、他の成分を含んでいてもよい。AS樹脂を構成するモノマーのうち、アクリルニトリルが10~50モル%を占めることが好ましく、15~40モル%を占めることがより好ましい。また、AS樹脂を構成するモノマーのうち、スチレンが50~90モル%を占めることが好ましく、60~85モル%を占めることがより好ましい。 As the styrene resin (C) other than the emulsion polymerization styrene resin (B), suspension polymerization or block polymerization styrene resin is preferable, and suspension polymerization AS resin or block polymerization ABS resin is particularly preferable.
The suspension polymerization AS resin is a copolymer obtained by suspension polymerization of acrylonitrile and styrene, and may contain other components. Of the monomers constituting the AS resin, acrylonitrile preferably occupies 10 to 50 mol%, more preferably 15 to 40 mol%. Of the monomers constituting the AS resin, styrene preferably accounts for 50 to 90 mol%, and more preferably 60 to 85 mol%.
懸濁重合AS樹脂は、アクリロニトリルとスチレンを懸濁重合した共重合体であり、他の成分を含んでいてもよい。AS樹脂を構成するモノマーのうち、アクリルニトリルが10~50モル%を占めることが好ましく、15~40モル%を占めることがより好ましい。また、AS樹脂を構成するモノマーのうち、スチレンが50~90モル%を占めることが好ましく、60~85モル%を占めることがより好ましい。 As the styrene resin (C) other than the emulsion polymerization styrene resin (B), suspension polymerization or block polymerization styrene resin is preferable, and suspension polymerization AS resin or block polymerization ABS resin is particularly preferable.
The suspension polymerization AS resin is a copolymer obtained by suspension polymerization of acrylonitrile and styrene, and may contain other components. Of the monomers constituting the AS resin, acrylonitrile preferably occupies 10 to 50 mol%, more preferably 15 to 40 mol%. Of the monomers constituting the AS resin, styrene preferably accounts for 50 to 90 mol%, and more preferably 60 to 85 mol%.
ABS樹脂は、スチレン系単量体とシアン化ビニル系単量体と共重合可能なゴム質重合体を共重合した樹脂であり、好ましくは、スチレン系単量体成分40~80質量%、シアン化ビニル系単量体成分10~30質量%、ジエン系ゴム質重合体成分10~30質量%及びその他の共重合可能なビニル系単量体成分0~30質量%からなる。
これらスチレン系単量体、シアン化ビニル系単量体、ジエン系ゴム質重合体、及び、その他の共重合可能なビニル系単量体としては、乳化重合スチレン系樹脂(B)において記載したものと同様のものを同じように使用することができる。 The ABS resin is a resin obtained by copolymerizing a rubbery polymer copolymerizable with a styrene monomer and a vinyl cyanide monomer, and preferably 40 to 80% by mass of a styrene monomer component, cyanide. It comprises 10 to 30% by mass of vinyl fluoride monomer component, 10 to 30% by mass of diene rubber polymer component, and 0 to 30% by mass of other copolymerizable vinyl monomer components.
As these styrene monomers, vinyl cyanide monomers, diene rubber polymers, and other copolymerizable vinyl monomers, those described in the emulsion polymerization styrene resin (B) The same can be used in the same way.
これらスチレン系単量体、シアン化ビニル系単量体、ジエン系ゴム質重合体、及び、その他の共重合可能なビニル系単量体としては、乳化重合スチレン系樹脂(B)において記載したものと同様のものを同じように使用することができる。 The ABS resin is a resin obtained by copolymerizing a rubbery polymer copolymerizable with a styrene monomer and a vinyl cyanide monomer, and preferably 40 to 80% by mass of a styrene monomer component, cyanide. It comprises 10 to 30% by mass of vinyl fluoride monomer component, 10 to 30% by mass of diene rubber polymer component, and 0 to 30% by mass of other copolymerizable vinyl monomer components.
As these styrene monomers, vinyl cyanide monomers, diene rubber polymers, and other copolymerizable vinyl monomers, those described in the emulsion polymerization styrene resin (B) The same can be used in the same way.
スチレン系樹脂(C)としてのABS樹脂としては、塊状重合により製造された塊状重合ABS樹脂を使用する。塊状重合の方法は、よく知られており公知の方法を適用すればよいが、連続塊状重合法等が例示される。重合の方法に関しては、一段で重合しても、多段で重合してもよい。
As the ABS resin as the styrene-based resin (C), a block polymerization ABS resin produced by block polymerization is used. The bulk polymerization method is well known, and a known method may be applied. Examples thereof include a continuous bulk polymerization method. Regarding the polymerization method, polymerization may be performed in one stage or in multiple stages.
本発明のポリカーボネート樹脂組成物は、好ましくは、上記した本発明のポリカーボネート樹脂組成物の製造方法により製造される。
本発明のポリカーボネート樹脂組成物の製造方法では、好ましくは、小量成分である乳化重合スチレン系樹脂(B)を先ず溶融混練し、主たる成分であるポリカーボネート樹脂(B)をサイドフィードする方法により製造される。このような方式を採用することにより、機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないポリカーボネート樹脂組成物を、生産性良く極めて効率的に製造することができる。
即ち、(A)と(B)の合計を100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する方法により製造される。 The polycarbonate resin composition of the present invention is preferably produced by the above-described method for producing a polycarbonate resin composition of the present invention.
In the production method of the polycarbonate resin composition of the present invention, preferably, the emulsion polymerization styrene resin (B), which is a small component, is first melt-kneaded and then the polycarbonate resin (B), which is the main component, is side-feeded. Is done. By adopting such a method, a polycarbonate resin composition having excellent mechanical properties and heat-and-moisture resistance and no problem of mold contamination due to mold deposit can be produced very efficiently with high productivity.
That is, a polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on the total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and from the second raw material supply port of the polycarbonate resin (A) The total amount of A (1) and A (2) is the total amount of polycarbonate resin (A)
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0),
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
Manufactured by a method in which the polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream of the vent port.
本発明のポリカーボネート樹脂組成物の製造方法では、好ましくは、小量成分である乳化重合スチレン系樹脂(B)を先ず溶融混練し、主たる成分であるポリカーボネート樹脂(B)をサイドフィードする方法により製造される。このような方式を採用することにより、機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないポリカーボネート樹脂組成物を、生産性良く極めて効率的に製造することができる。
即ち、(A)と(B)の合計を100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する方法により製造される。 The polycarbonate resin composition of the present invention is preferably produced by the above-described method for producing a polycarbonate resin composition of the present invention.
In the production method of the polycarbonate resin composition of the present invention, preferably, the emulsion polymerization styrene resin (B), which is a small component, is first melt-kneaded and then the polycarbonate resin (B), which is the main component, is side-feeded. Is done. By adopting such a method, a polycarbonate resin composition having excellent mechanical properties and heat-and-moisture resistance and no problem of mold contamination due to mold deposit can be produced very efficiently with high productivity.
That is, a polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on the total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and from the second raw material supply port of the polycarbonate resin (A) The total amount of A (1) and A (2) is the total amount of polycarbonate resin (A)
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0),
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
Manufactured by a method in which the polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream of the vent port.
また、発生ガス量低減の効果をさらにより高めるためには、乳化重合スチレン系樹脂(B)を溶融混練する際に水を注入することが好ましい。
即ち、(A)と(B)の合計を100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側の混練部に水注入部とベント口を有し、さらにその下流側に1以上の第2の原料供給口を有しており、
スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)を満たすように供給し、
次いで、混練部に設けた水注入部から水を注入して溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する方法により製造される。 In order to further enhance the effect of reducing the amount of generated gas, it is preferable to inject water when the emulsion-polymerized styrene resin (B) is melt-kneaded.
That is, a polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on the total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side. And
The supply amount of the styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and from the second raw material supply port of the polycarbonate resin (A) The total amount of A (1) and A (2) is the total amount of polycarbonate resin (A)
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0),
Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port,
Manufactured by a method in which the polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream of the vent port.
即ち、(A)と(B)の合計を100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側の混練部に水注入部とベント口を有し、さらにその下流側に1以上の第2の原料供給口を有しており、
スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)を満たすように供給し、
次いで、混練部に設けた水注入部から水を注入して溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する方法により製造される。 In order to further enhance the effect of reducing the amount of generated gas, it is preferable to inject water when the emulsion-polymerized styrene resin (B) is melt-kneaded.
That is, a polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on the total of 100% by weight of (A) and (B) is vented. It is a method of manufacturing by melt-kneading with a twin screw extruder,
The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side. And
The supply amount of the styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and from the second raw material supply port of the polycarbonate resin (A) The total amount of A (1) and A (2) is the total amount of polycarbonate resin (A)
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Supply so as to satisfy the formula: B (1)> A (1) (where A (1) includes 0),
Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port,
Manufactured by a method in which the polycarbonate resin (A) is supplied in an amount of A (2) from the second raw material supply port downstream of the vent port.
本発明のポリカーボネート樹脂組成物の製造方法に用いる減圧ベント口を有する押出機として、ベント型2軸押出機を用い、スクリュー回転が同方向、異方向の両方を用いることができるが、乳化重合スチレン系樹脂(B)中のガス発生成分を効率よく除去するのには、同方向回転2軸押出機が好適である。
As an extruder having a vacuum vent port used in the method for producing a polycarbonate resin composition of the present invention, a vent type twin screw extruder is used, and both screw rotations can be used in the same direction and in different directions. A co-rotating twin-screw extruder is suitable for efficiently removing the gas generating components in the system resin (B).
押出機には最上流の根元部の第1の原料供給口、その下流にはベント口が設置されている。乳化重合スチレン系樹脂(B)は第1の原料供給口から供給される。乳化重合スチレン系樹脂(B)は押出機内で加熱溶融された後、ベント口に繋がる減圧膨張域となり、ベント口に真空ポンプを接続して減圧ベントすることによって、乳化重合スチレン系樹脂(B)を減圧下で、脱揮することができる。ベント口を設置する位置として、乳化重合スチレン系樹脂(B)の溶融部であればよい。また、ベント口は所望により2つ以上設けても良い。
The extruder has a first raw material supply port at the root of the uppermost stream and a vent port downstream thereof. The emulsion polymerization styrene resin (B) is supplied from the first raw material supply port. The emulsion-polymerized styrene resin (B) is heated and melted in the extruder, and then becomes a decompression expansion region connected to the vent port. By connecting the vent port to a vacuum pump and venting under reduced pressure, the emulsion-polymerization styrene resin (B) Can be devolatilized under reduced pressure. The position where the vent port is installed may be a melting portion of the emulsion polymerization styrene resin (B). Two or more vent ports may be provided as desired.
第1の原料供給口には、ポリカーボネート樹脂(A)の一部を供給することも好ましいが、その際のポリカーボネート樹脂(A)の供給量は、前記したように、
式:B(1)>A(1)を満たす、即ち、乳化重合スチレン系樹脂(B)の供給量より少ないことが好ましい。第1供給口でのポリカーボネート樹脂(A)の供給量(A1)が乳化重合スチレン系樹脂(B)の供給量(B1)以上になると、乳化重合スチレン系樹脂(B)中の乳化剤に由来するガス発生成分の脱揮が悪くなる。この理由は定かではないが、ポリカーボネート樹脂(A)がリッチの場合には、乳化重合スチレン系樹脂(B)がポリカーボネート樹脂(A)に取り囲まれる形となるため、乳化重合スチレン系樹脂(B)中からの乳化剤成分の脱揮が進まないものと考察される。 It is also preferable to supply a part of the polycarbonate resin (A) to the first raw material supply port, but the supply amount of the polycarbonate resin (A) at that time is as described above.
It is preferable that the formula: B (1)> A (1) is satisfied, that is, less than the supply amount of the emulsion polymerization styrene resin (B). When the supply amount (A1) of the polycarbonate resin (A) at the first supply port is equal to or greater than the supply amount (B1) of the emulsion polymerization styrene resin (B), it is derived from the emulsifier in the emulsion polymerization styrene resin (B). The devolatilization of gas generating components becomes worse. The reason for this is not clear, but when the polycarbonate resin (A) is rich, the emulsion-polymerized styrene resin (B) is surrounded by the polycarbonate resin (A). It is considered that the devolatilization of the emulsifier component from the inside does not progress.
式:B(1)>A(1)を満たす、即ち、乳化重合スチレン系樹脂(B)の供給量より少ないことが好ましい。第1供給口でのポリカーボネート樹脂(A)の供給量(A1)が乳化重合スチレン系樹脂(B)の供給量(B1)以上になると、乳化重合スチレン系樹脂(B)中の乳化剤に由来するガス発生成分の脱揮が悪くなる。この理由は定かではないが、ポリカーボネート樹脂(A)がリッチの場合には、乳化重合スチレン系樹脂(B)がポリカーボネート樹脂(A)に取り囲まれる形となるため、乳化重合スチレン系樹脂(B)中からの乳化剤成分の脱揮が進まないものと考察される。 It is also preferable to supply a part of the polycarbonate resin (A) to the first raw material supply port, but the supply amount of the polycarbonate resin (A) at that time is as described above.
It is preferable that the formula: B (1)> A (1) is satisfied, that is, less than the supply amount of the emulsion polymerization styrene resin (B). When the supply amount (A1) of the polycarbonate resin (A) at the first supply port is equal to or greater than the supply amount (B1) of the emulsion polymerization styrene resin (B), it is derived from the emulsifier in the emulsion polymerization styrene resin (B). The devolatilization of gas generating components becomes worse. The reason for this is not clear, but when the polycarbonate resin (A) is rich, the emulsion-polymerized styrene resin (B) is surrounded by the polycarbonate resin (A). It is considered that the devolatilization of the emulsifier component from the inside does not progress.
次に、下流にある第2の原料供給口からポリカーボネート樹脂(A)が(A2)の供給量で供給される。(A2)はポリカーボネート樹脂(A)の全供給量から(A1)を引いた残量であり、第1の供給口から乳化重合スチレン系樹脂(B)のみを供給した場合、即ち(A1)=0の場合は、(A2)はポリカーボネート樹脂(A)の全供給量である。第2の原料供給口から供給されたポリカーボネート樹脂(A)は上流からの溶融樹脂と合流し、さらに溶融混練される。
このような本発明のポリカーボネート樹脂組成物の製造方法によれば、本発明のポリカーボネート樹脂組成物における主成分たるポリカーボネート樹脂(A)をサイドフィードすることにより、本発明のポリカーボネート樹脂組成物を、生産性良く極めて効率的に製造することができる。 Next, the polycarbonate resin (A) is supplied at a supply amount of (A2) from the second raw material supply port located downstream. (A2) is the remaining amount obtained by subtracting (A1) from the total supply amount of the polycarbonate resin (A). When only the emulsion polymerization styrene resin (B) is supplied from the first supply port, that is, (A1) = In the case of 0, (A2) is the total supply amount of the polycarbonate resin (A). The polycarbonate resin (A) supplied from the second raw material supply port merges with the molten resin from the upstream, and is further melt-kneaded.
According to such a method for producing a polycarbonate resin composition of the present invention, the polycarbonate resin composition of the present invention is produced by side-feeding the polycarbonate resin (A) as the main component in the polycarbonate resin composition of the present invention. It can be manufactured with good efficiency and very efficiently.
このような本発明のポリカーボネート樹脂組成物の製造方法によれば、本発明のポリカーボネート樹脂組成物における主成分たるポリカーボネート樹脂(A)をサイドフィードすることにより、本発明のポリカーボネート樹脂組成物を、生産性良く極めて効率的に製造することができる。 Next, the polycarbonate resin (A) is supplied at a supply amount of (A2) from the second raw material supply port located downstream. (A2) is the remaining amount obtained by subtracting (A1) from the total supply amount of the polycarbonate resin (A). When only the emulsion polymerization styrene resin (B) is supplied from the first supply port, that is, (A1) = In the case of 0, (A2) is the total supply amount of the polycarbonate resin (A). The polycarbonate resin (A) supplied from the second raw material supply port merges with the molten resin from the upstream, and is further melt-kneaded.
According to such a method for producing a polycarbonate resin composition of the present invention, the polycarbonate resin composition of the present invention is produced by side-feeding the polycarbonate resin (A) as the main component in the polycarbonate resin composition of the present invention. It can be manufactured with good efficiency and very efficiently.
本発明のポリカーボネート樹脂組成物は、前記したように、乳化重合スチレン系樹脂以外の他のスチレン系樹脂(C)を含有することも好ましい。他のスチレン系樹脂(C)を供給する場合は、第1の供給口あるいは第2の供給口のいずれからでも供給することができる。上記した懸濁重合AS樹脂や塊状重合ABS樹脂の場合は乳化剤を含まないので第2の供給口から供給することでもよいが、残留オリゴマーを考慮すると第1の供給口から供給することが好ましい。
As described above, the polycarbonate resin composition of the present invention preferably contains another styrene resin (C) other than the emulsion polymerization styrene resin. When supplying another styrene resin (C), it can be supplied from either the first supply port or the second supply port. In the case of the above-mentioned suspension polymerization AS resin or bulk polymerization ABS resin, since it does not contain an emulsifier, it may be supplied from the second supply port, but it is preferable to supply from the first supply port in consideration of the residual oligomer.
本発明の効果をさらにより高めるため、乳化重合スチレン系樹脂(B)の溶融混練時に水を注入することが好ましい。
この場合、押出機には最上流の根元部の第1の原料供給口、その下流には水を注入する注入口が、さらに下流にはベント口が設置される。乳化重合スチレン系樹脂(B)は第1の原料供給口から供給され、スチレン系樹脂(B)は押出機内で加熱溶融された後、樹脂充満域に設けた水注入口からポンプにて水が注入され混練される。注入された水はスチレン系樹脂(B)中に分散される。この注水分散域には、下流にシールリングを設けて圧力を上昇させることが好ましい。
シールリングを通過するとベント口に繋がる減圧膨張域となり、スチレン系樹脂(B)中に分散した水は減圧下で発泡させられる。ベント口に真空ポンプを接続して減圧ベントすることによって、スチレン系樹脂(B)を減圧下で発泡させ、拡散する表面積を増加させ、揮発成分の分圧を下げることにより平衡濃度を低下させ、脱揮をより促進することができる。ベント口を設置する位置として、スチレン系樹脂(B)の溶融部であればよい。また、ベント口は所望により2つ以上設けても良い。
減圧ベントの真空度は、50mmHg以下であることが好ましく、より好ましくは20mmHg以下、さらには10mmHg以下が好ましい。 In order to further enhance the effects of the present invention, it is preferable to inject water during the melt-kneading of the emulsion polymerization styrene resin (B).
In this case, the extruder is provided with a first raw material supply port at the most upstream root, an inlet for injecting water downstream thereof, and a vent port further downstream. The emulsion-polymerized styrene resin (B) is supplied from the first raw material supply port, and after the styrene resin (B) is heated and melted in the extruder, water is pumped from the water injection port provided in the resin-filled area. It is poured and kneaded. The injected water is dispersed in the styrene resin (B). In this water injection dispersion region, it is preferable to provide a seal ring downstream to increase the pressure.
When passing through the seal ring, it becomes a reduced pressure expansion region connected to the vent port, and the water dispersed in the styrene resin (B) is foamed under reduced pressure. By connecting a vacuum pump to the vent port and venting under reduced pressure, the styrene resin (B) is foamed under reduced pressure, increasing the surface area to diffuse, and lowering the partial pressure of volatile components, thereby reducing the equilibrium concentration, Volatilization can be further promoted. The position where the vent port is installed may be a melting part of the styrene resin (B). Two or more vent ports may be provided as desired.
The vacuum degree of the decompression vent is preferably 50 mmHg or less, more preferably 20 mmHg or less, and further preferably 10 mmHg or less.
この場合、押出機には最上流の根元部の第1の原料供給口、その下流には水を注入する注入口が、さらに下流にはベント口が設置される。乳化重合スチレン系樹脂(B)は第1の原料供給口から供給され、スチレン系樹脂(B)は押出機内で加熱溶融された後、樹脂充満域に設けた水注入口からポンプにて水が注入され混練される。注入された水はスチレン系樹脂(B)中に分散される。この注水分散域には、下流にシールリングを設けて圧力を上昇させることが好ましい。
シールリングを通過するとベント口に繋がる減圧膨張域となり、スチレン系樹脂(B)中に分散した水は減圧下で発泡させられる。ベント口に真空ポンプを接続して減圧ベントすることによって、スチレン系樹脂(B)を減圧下で発泡させ、拡散する表面積を増加させ、揮発成分の分圧を下げることにより平衡濃度を低下させ、脱揮をより促進することができる。ベント口を設置する位置として、スチレン系樹脂(B)の溶融部であればよい。また、ベント口は所望により2つ以上設けても良い。
減圧ベントの真空度は、50mmHg以下であることが好ましく、より好ましくは20mmHg以下、さらには10mmHg以下が好ましい。 In order to further enhance the effects of the present invention, it is preferable to inject water during the melt-kneading of the emulsion polymerization styrene resin (B).
In this case, the extruder is provided with a first raw material supply port at the most upstream root, an inlet for injecting water downstream thereof, and a vent port further downstream. The emulsion-polymerized styrene resin (B) is supplied from the first raw material supply port, and after the styrene resin (B) is heated and melted in the extruder, water is pumped from the water injection port provided in the resin-filled area. It is poured and kneaded. The injected water is dispersed in the styrene resin (B). In this water injection dispersion region, it is preferable to provide a seal ring downstream to increase the pressure.
When passing through the seal ring, it becomes a reduced pressure expansion region connected to the vent port, and the water dispersed in the styrene resin (B) is foamed under reduced pressure. By connecting a vacuum pump to the vent port and venting under reduced pressure, the styrene resin (B) is foamed under reduced pressure, increasing the surface area to diffuse, and lowering the partial pressure of volatile components, thereby reducing the equilibrium concentration, Volatilization can be further promoted. The position where the vent port is installed may be a melting part of the styrene resin (B). Two or more vent ports may be provided as desired.
The vacuum degree of the decompression vent is preferably 50 mmHg or less, more preferably 20 mmHg or less, and further preferably 10 mmHg or less.
ベント式二軸押出機は、好ましくは水注入部とベント口を多段で有しており、水の注入と減圧脱揮を多段で行うことが好ましい。この場合には、先ず1段目で上記と同じく、乳化重合スチレン系樹脂(B)、ポリカーボネート樹脂(A)がB(1)>A(1)の量で、第1の原料供給口から供給され、加熱溶融された後、水注入、混練し、減圧ベントによって脱揮したのち、下流側の2段目で、さらに水注入と混練、減圧ベントを行う。この2段目の水注入と減圧脱揮の工程は複数あってもよい。
The vent type twin screw extruder preferably has a water injection part and a vent port in multiple stages, and it is preferable to perform water injection and vacuum devolatilization in multiple stages. In this case, the emulsion polymerization styrene resin (B) and the polycarbonate resin (A) are supplied from the first raw material supply port in the first stage in the same manner as described above in the amount of B (1)> A (1). Then, after being melted by heating, water injection, kneading, devolatilization by a vacuum vent, water injection, kneading, and vacuum venting are further performed in the second stage on the downstream side. There may be a plurality of steps of water injection and vacuum devolatilization in the second stage.
水の注入量は、注入時の対象であるスチレン系樹脂(B)及び/又はポリカーボネート樹脂(A)の100質量%に対し、0.01~5質量%であることが好ましく、より好ましくは0.1質量%以上、さらには0.5質量%以上が好ましく、より好ましくは3質量%以下、さらには2質量%以下、特に1質量%以下が好ましい。水の注入量が0.01質量%以下であるとガス発生成分の除去が不十分となりやすく、5質量%を超えるとポリマーの加水分解が進行し物性低下を招きやすい。
The amount of water to be injected is preferably 0.01 to 5% by mass, more preferably 0 to 100% by mass of the styrene resin (B) and / or the polycarbonate resin (A) that is the target at the time of injection. .1% by mass or more, preferably 0.5% by mass or more, more preferably 3% by mass or less, further 2% by mass or less, and particularly preferably 1% by mass or less. When the amount of water injected is 0.01% by mass or less, the removal of gas generating components tends to be insufficient, and when it exceeds 5% by mass, the hydrolysis of the polymer proceeds and the physical properties tend to be lowered.
また、第1原料供給口から供給された樹脂を溶融混練する際の樹脂温度(又は設定温度)は240~350℃であることが好ましく、より好ましくは250~350℃である。第2原料供給口より下流での樹脂温度(又は設定温度)は280~360℃であることが好ましく、より好ましくは290~350℃である。
Further, the resin temperature (or set temperature) when the resin supplied from the first raw material supply port is melt-kneaded is preferably 240 to 350 ° C., more preferably 250 to 350 ° C. The resin temperature (or set temperature) downstream from the second raw material supply port is preferably 280 to 360 ° C, more preferably 290 to 350 ° C.
なお、上記で説明した水注入の機能の全部または一部を代替するために、スチレン系樹脂(B)に予め水を含ませておくことも可能である。予め含ませる水の量としては、上記した水の量と同様の0.01~5質量%程度が好ましい。
In addition, in order to replace all or part of the water injection function described above, it is possible to preliminarily include water in the styrene resin (B). The amount of water contained in advance is preferably about 0.01 to 5% by mass, similar to the amount of water described above.
[安定剤]
本発明のポリカーボネート樹脂組成物は、安定剤を含有することが好ましく、安定剤としてはリン系安定剤やフェノール系安定剤が好ましい。 [Stabilizer]
The polycarbonate resin composition of the present invention preferably contains a stabilizer, and the stabilizer is preferably a phosphorus stabilizer or a phenol stabilizer.
本発明のポリカーボネート樹脂組成物は、安定剤を含有することが好ましく、安定剤としてはリン系安定剤やフェノール系安定剤が好ましい。 [Stabilizer]
The polycarbonate resin composition of the present invention preferably contains a stabilizer, and the stabilizer is preferably a phosphorus stabilizer or a phenol stabilizer.
リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
As the phosphorus stabilizer, any known one can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Group 1 or Group 2B metal phosphates such as potassium, sodium phosphate, cesium phosphate and zinc phosphate; organic phosphate compounds, organic phosphite compounds, organic phosphonite compounds, etc. Particularly preferred.
有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
Specific examples of such organic phosphite compounds include, for example, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADEKA STAB HP-10” manufactured by ADEKA, “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ JP-360 ”,“ JP-3CP ”,“ Irgaphos 168 ”manufactured by BASF, and the like.
In addition, 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス168」等が挙げられる。
なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 Organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylene bis (4,6-di- tert-butylphenyl) octyl phosphite and the like.
Specific examples of such organic phosphite compounds include, for example, “ADEKA STAB 1178”, “ADEKA STAB 2112”, “ADEKA STAB HP-10” manufactured by ADEKA, “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., “ JP-360 ”,“ JP-3CP ”,“ Irgaphos 168 ”manufactured by BASF, and the like.
In addition, 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
リン系安定剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)、(C)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量以下、より好ましくは0.5質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
The content of the phosphorus stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resins (B) and (C). More preferably, it is 0.03 parts by mass or more, and is usually 1 part by mass or less, preferably 0.7 parts by mass or less, more preferably 0.5 parts by mass or less. If the content of the phosphorus stabilizer is less than the lower limit of the range, the thermal stability effect may be insufficient, and if the content of the phosphorus stabilizer exceeds the upper limit of the range, the effect May stop and become economical.
フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
Examples of phenolic stabilizers include hindered phenolic antioxidants. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenyl) propionamide], 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a -(Mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl- 4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-) tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6- Bis (octylthio) -1,3,5-triazin-2-ylamino) phenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6 Di -tert- pentylphenyl acrylate.
なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable. Specific examples of such phenolic antioxidants include “Irganox 1010”, “Irganox 1076” manufactured by BASF, “Adekastab AO-50”, “Adekastab AO-60” manufactured by ADEKA, and the like. Is mentioned.
In addition, 1 type may contain the phenol type stabilizer, and 2 or more types may contain it by arbitrary combinations and a ratio.
なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable. Specific examples of such phenolic antioxidants include “Irganox 1010”, “Irganox 1076” manufactured by BASF, “Adekastab AO-50”, “Adekastab AO-60” manufactured by ADEKA, and the like. Is mentioned.
In addition, 1 type may contain the phenol type stabilizer, and 2 or more types may contain it by arbitrary combinations and a ratio.
フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)、(C)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量が前記範囲の下限値未満の場合は、フェノール系安定剤としての効果が不十分となる可能性があり、フェノール系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
The content of the phenol-based stabilizer is usually 0.001 part by mass or more, preferably 0.01 part by mass or more with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resin (B) and (C). Moreover, it is 1 mass part or less normally, Preferably it is 0.5 mass part or less. When the content of the phenol-based stabilizer is less than the lower limit of the range, the effect as the phenol-based stabilizer may be insufficient, and the content of the phenol-based stabilizer exceeds the upper limit of the range. If this is the case, the effect may reach its peak and not economical.
なお、上記した安定剤やその他所望により配合される後記する添加剤やその他の樹脂は、第2の原料供給口からポリカーボネート樹脂(A)と共に供給することが好ましい。
In addition, it is preferable to supply the above-mentioned stabilizer and other additives and other resins to be blended as desired together with the polycarbonate resin (A) from the second raw material supply port.
[離型剤]
本発明のポリカーボネート樹脂組成物は、離型剤を含有することが好ましい。離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルの群から選ばれる少なくとも1種の化合物が好ましく挙げられる。 [Release agent]
The polycarbonate resin composition of the present invention preferably contains a release agent. The release agent includes at least one compound selected from the group consisting of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000, and polysiloxane silicone oils. Preferably mentioned.
本発明のポリカーボネート樹脂組成物は、離型剤を含有することが好ましい。離型剤としては、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルの群から選ばれる少なくとも1種の化合物が好ましく挙げられる。 [Release agent]
The polycarbonate resin composition of the present invention preferably contains a release agent. The release agent includes at least one compound selected from the group consisting of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15000, and polysiloxane silicone oils. Preferably mentioned.
脂肪族カルボン酸としては、飽和又は不飽和の脂肪族1価、2価又は3価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で、好ましい脂肪族カルボン酸は、炭素数6~36の1価又は2価カルボン酸であり、炭素数6~36の脂肪族飽和1価カルボン酸が更に好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
Examples of the aliphatic carboxylic acid include saturated or unsaturated aliphatic monovalent, divalent or trivalent carboxylic acid. Here, the aliphatic carboxylic acid includes alicyclic carboxylic acid. Among these, preferred aliphatic carboxylic acids are monovalent or divalent carboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monovalent carboxylic acids having 6 to 36 carbon atoms are more preferred. Specific examples of such aliphatic carboxylic acids include palmitic acid, stearic acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, mellicic acid, tetrariacontanoic acid, montanic acid, adipine Examples include acids and azelaic acid.
脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、飽和又は不飽和の1価又は多価アルコールを挙げることができる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の1価又は多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和1価アルコール又は多価アルコールが更に好ましい。ここで脂肪族とは、脂環式化合物も含有する。係るアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
As the aliphatic carboxylic acid in the ester of an aliphatic carboxylic acid and an alcohol, the same aliphatic carboxylic acid as that described above can be used. On the other hand, examples of the alcohol include saturated or unsaturated monovalent or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, a monovalent or polyvalent saturated alcohol having 30 or less carbon atoms is preferable, and an aliphatic saturated monohydric alcohol or polyhydric alcohol having 30 or less carbon atoms is more preferable. Here, aliphatic includes alicyclic compounds. Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Is mentioned.
脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
Specific examples of esters of aliphatic carboxylic acids and alcohols include beeswax (a mixture based on myricyl palmitate), stearyl stearate, behenyl behenate, stearyl behenate, glycerin monopalmitate, glycerin monostearate Examples thereof include rate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.
数平均分子量200~15000の脂肪族炭化水素としては、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャートロプシュワックス、炭素数3~12のα-オレフィンオリゴマー等が挙げられる。ここで、脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素化合物は部分酸化されていてもよい。これらの中では、パラフィンワックス、ポリエチレンワックス又はポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスが更に好ましい。数平均分子量は、好ましくは200~5000である。これらの脂肪族炭化水素は単一物質であっても、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であればよい。
Examples of the aliphatic hydrocarbon having a number average molecular weight of 200 to 15000 include liquid paraffin, paraffin wax, microwax, polyethylene wax, Fischer-Tropsch wax, and α-olefin oligomer having 3 to 12 carbon atoms. Here, as the aliphatic hydrocarbon, alicyclic hydrocarbon is also included. Moreover, these hydrocarbon compounds may be partially oxidized. Among these, paraffin wax, polyethylene wax, or a partial oxide of polyethylene wax is preferable, and paraffin wax and polyethylene wax are more preferable. The number average molecular weight is preferably 200 to 5,000. These aliphatic hydrocarbons may be a single substance, or may be a mixture of various constituent components and molecular weights, as long as the main component is within the above range.
ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。これらは2種類以上を併用してもよい。
Examples of the polysiloxane silicone oil include dimethyl silicone oil, phenylmethyl silicone oil, diphenyl silicone oil, and fluorinated alkyl silicone. Two or more of these may be used in combination.
離型剤を用いる場合、ポリカーボネート樹脂(A)とスチレン系樹脂(B)、(C)の合計100質量部に対して、通常0.05~2質量部、好ましくは0.1~1質量部である。離型剤の含有量が上記下限値以上であると離型性改善の効果を十分に得ることができ、上記上限値以下であると離型剤の過剰配合による耐加水分解性の低下、射出成形時の金型汚染などの問題を防止することができる。
When a release agent is used, it is usually 0.05 to 2 parts by mass, preferably 0.1 to 1 part by mass with respect to 100 parts by mass in total of the polycarbonate resin (A) and the styrene resin (B) and (C). It is. If the content of the release agent is not less than the above lower limit value, the effect of improving the releasability can be sufficiently obtained, and if it is not more than the above upper limit value, degradation of hydrolysis resistance due to excessive mixing of the release agent, injection Problems such as mold contamination during molding can be prevented.
[着色剤(染顔料)]
本発明のポリカーボネート樹脂組成物は、着色剤(染顔料)を含有することも好ましい。着色剤(染顔料)としては、無機顔料、有機顔料、有機染料などが挙げられる。
無機顔料としては、例えば、カーボンブラック、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;亜鉛華、弁柄、酸化クロム、酸化チタン、鉄黒、チタンイエロー、亜鉛-鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅-クロム系ブラック、銅-鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料が挙げられる。
有機顔料及び有機染料としては、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。これらは2種以上を併用してもよい。これらの中では、熱安定性の点から、カーボンブラック、酸化チタン、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。 [Colorant (dyeing pigment)]
The polycarbonate resin composition of the present invention preferably contains a colorant (dye pigment). Examples of the colorant (dye pigment) include inorganic pigments, organic pigments, and organic dyes.
Examples of inorganic pigments include sulfide pigments such as carbon black, cadmium red, and cadmium yellow; silicate pigments such as ultramarine blue; zinc white, petal, chromium oxide, titanium oxide, iron black, titanium yellow, and zinc- Oxide pigments such as iron-based brown, titanium cobalt-based green, cobalt green, cobalt blue, copper-chromium black, copper-iron-based black; chromic pigments such as yellow lead, molybdate orange; Examples include Russian pigments.
Organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, and isoindolinone. And condensed polycyclic dyes such as quinophthalone; anthraquinone, heterocyclic, and methyl dyes and the like. Two or more of these may be used in combination. Among these, carbon black, titanium oxide, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
本発明のポリカーボネート樹脂組成物は、着色剤(染顔料)を含有することも好ましい。着色剤(染顔料)としては、無機顔料、有機顔料、有機染料などが挙げられる。
無機顔料としては、例えば、カーボンブラック、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;亜鉛華、弁柄、酸化クロム、酸化チタン、鉄黒、チタンイエロー、亜鉛-鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅-クロム系ブラック、銅-鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料が挙げられる。
有機顔料及び有機染料としては、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。これらは2種以上を併用してもよい。これらの中では、熱安定性の点から、カーボンブラック、酸化チタン、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。 [Colorant (dyeing pigment)]
The polycarbonate resin composition of the present invention preferably contains a colorant (dye pigment). Examples of the colorant (dye pigment) include inorganic pigments, organic pigments, and organic dyes.
Examples of inorganic pigments include sulfide pigments such as carbon black, cadmium red, and cadmium yellow; silicate pigments such as ultramarine blue; zinc white, petal, chromium oxide, titanium oxide, iron black, titanium yellow, and zinc- Oxide pigments such as iron-based brown, titanium cobalt-based green, cobalt green, cobalt blue, copper-chromium black, copper-iron-based black; chromic pigments such as yellow lead, molybdate orange; Examples include Russian pigments.
Organic pigments and organic dyes include phthalocyanine dyes such as copper phthalocyanine blue and copper phthalocyanine green; azo dyes such as nickel azo yellow; thioindigo, perinone, perylene, quinacridone, dioxazine, and isoindolinone. And condensed polycyclic dyes such as quinophthalone; anthraquinone, heterocyclic, and methyl dyes and the like. Two or more of these may be used in combination. Among these, carbon black, titanium oxide, cyanine-based, quinoline-based, anthraquinone-based, and phthalocyanine-based compounds are preferable from the viewpoint of thermal stability.
着色剤(染顔料)を含有する場合、着色剤(染顔料)の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)、(C)の合計100質量部に対して、通常5質量部以下、好ましくは3質量部以下、更に好ましくは2質量部以下である。着色剤(染顔料)の含有量が5質量部を超える場合は耐衝撃性が十分でない場合がある。
When a colorant (dye pigment) is contained, the content of the colorant (dye pigment) is usually 5 masses with respect to a total of 100 parts by mass of the polycarbonate resin (A), the styrene resin (B), and (C). Part or less, preferably 3 parts by weight or less, more preferably 2 parts by weight or less. When the content of the colorant (dye pigment) exceeds 5 parts by mass, the impact resistance may not be sufficient.
[その他の成分]
本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 [Other ingredients]
The polycarbonate resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired. Examples of other components include resins other than those described above and various resin additives. In addition, 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.
本発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 [Other ingredients]
The polycarbonate resin composition of the present invention may contain other components in addition to those described above as necessary, as long as the desired physical properties are not significantly impaired. Examples of other components include resins other than those described above and various resin additives. In addition, 1 type may contain other components and 2 or more types may contain them by arbitrary combinations and ratios.
<その他の樹脂>
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂、各種のエラストマー等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 <Other resins>
Examples of other resins include thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polyolefin resins such as polyethylene resin and polypropylene resin; polyamide resins; polyimide resins; polyetherimide resins; Examples include resins; polyphenylene ether resins; polyphenylene sulfide resins; polysulfone resins and various elastomers.
In addition, 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and ratios.
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂、各種のエラストマー等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 <Other resins>
Examples of other resins include thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polyolefin resins such as polyethylene resin and polypropylene resin; polyamide resins; polyimide resins; polyetherimide resins; Examples include resins; polyphenylene ether resins; polyphenylene sulfide resins; polysulfone resins and various elastomers.
In addition, 1 type may contain other resin and 2 or more types may contain it by arbitrary combinations and ratios.
<樹脂添加剤>
樹脂添加剤としては、例えば、難燃剤、紫外線吸収剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 <Resin additive>
Examples of the resin additive include a flame retardant, an ultraviolet absorber, an antistatic agent, an antifogging agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent. In addition, 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
樹脂添加剤としては、例えば、難燃剤、紫外線吸収剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。 <Resin additive>
Examples of the resin additive include a flame retardant, an ultraviolet absorber, an antistatic agent, an antifogging agent, an antiblocking agent, a fluidity improver, a plasticizer, a dispersant, and an antibacterial agent. In addition, 1 type may contain resin additive and 2 or more types may contain it by arbitrary combinations and a ratio.
本発明のポリカーボネート樹脂組成物は、上記したとおり、ポリカーボネート樹脂(A)を第2の原料供給口からサイドフィードすることにより、スチレン系樹脂(B)がポリカーボネート樹脂(A)のマトリックス中に島状に細かく分散するモルフォロジー構造を示すことが確認された。そして、そのスチレン系樹脂(B)の体積平均分散径(dv)は2.5μmと小さいことが特徴的である。
As described above, in the polycarbonate resin composition of the present invention, the styrenic resin (B) is island-shaped in the matrix of the polycarbonate resin (A) by side-feeding the polycarbonate resin (A) from the second raw material supply port. It was confirmed to show a morphological structure that was finely dispersed. The volume average dispersion diameter (dv) of the styrene resin (B) is characteristically as small as 2.5 μm.
このように体積平均分散径が小さいことに起因して、本発明の樹脂組成物は優れた耐衝撃強度保持率(耐湿熱性)を有する。具体的には、温度90℃、相対湿度95%下で400時間湿熱処理した後のシャルピー衝撃強度(ISO179-1及び179-2に準拠、ノッチ付き、23℃)保持率が好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上の値を有する。
Thus, due to the small volume average dispersion diameter, the resin composition of the present invention has an excellent impact strength retention (wet heat resistance). Specifically, the Charpy impact strength (according to ISO 179-1 and 179-2, with notch, 23 ° C.) after a wet heat treatment at a temperature of 90 ° C. and a relative humidity of 95% for 400 hours is preferably 50% or more. More preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more.
なお、ポリカーボネート樹脂組成物のモルフォロジーの観察は、光学顕微鏡、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)等により成形品断面を観察することで測定できる。
具体的には、SEM、STEM、TEM分析装置を用い、ペレット断面を、3kvの加速電圧下で、倍率400~10000倍の倍率により観察される。 The morphology of the polycarbonate resin composition can be observed by observing the cross section of the molded product with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like.
Specifically, using a SEM, STEM, or TEM analyzer, the pellet cross section is observed at a magnification of 400 to 10,000 times under an acceleration voltage of 3 kv.
具体的には、SEM、STEM、TEM分析装置を用い、ペレット断面を、3kvの加速電圧下で、倍率400~10000倍の倍率により観察される。 The morphology of the polycarbonate resin composition can be observed by observing the cross section of the molded product with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like.
Specifically, using a SEM, STEM, or TEM analyzer, the pellet cross section is observed at a magnification of 400 to 10,000 times under an acceleration voltage of 3 kv.
図1及び図2は、本発明の樹脂組成物のモルフォロジーの一例を示すものであって、本発明の実施例1で得られたペレット断面のSEM写真である。図1は1500倍、図2は3000倍の倍率の写真である。
図1中、白い海となっているのがポリカーボネート樹脂のマトリックス相であり、その中に分散している黒い島状物がABS樹脂相であり、ポリカーボネート樹脂相中に細かく綺麗に分散して存在していることが分かる。一方、図3(倍率1500倍)、図4(倍率3000倍)は比較例1のモルフォロジーを示すものであるが、図1、図2のような微分散が達成できていないことが分かる。 1 and 2 show an example of the morphology of the resin composition of the present invention, and are SEM photographs of the pellet cross section obtained in Example 1 of the present invention. 1 is a photograph at a magnification of 1500 times, and FIG. 2 is a photograph at a magnification of 3000 times.
In FIG. 1, the white sea is the matrix phase of the polycarbonate resin, and the black islands dispersed in it are the ABS resin phase, which are finely and finely dispersed in the polycarbonate resin phase. You can see that On the other hand, FIG. 3 (magnification 1500 times) and FIG. 4 (magnification 3000 times) show the morphology of Comparative Example 1, but it can be seen that fine dispersion as shown in FIGS. 1 and 2 cannot be achieved.
図1中、白い海となっているのがポリカーボネート樹脂のマトリックス相であり、その中に分散している黒い島状物がABS樹脂相であり、ポリカーボネート樹脂相中に細かく綺麗に分散して存在していることが分かる。一方、図3(倍率1500倍)、図4(倍率3000倍)は比較例1のモルフォロジーを示すものであるが、図1、図2のような微分散が達成できていないことが分かる。 1 and 2 show an example of the morphology of the resin composition of the present invention, and are SEM photographs of the pellet cross section obtained in Example 1 of the present invention. 1 is a photograph at a magnification of 1500 times, and FIG. 2 is a photograph at a magnification of 3000 times.
In FIG. 1, the white sea is the matrix phase of the polycarbonate resin, and the black islands dispersed in it are the ABS resin phase, which are finely and finely dispersed in the polycarbonate resin phase. You can see that On the other hand, FIG. 3 (magnification 1500 times) and FIG. 4 (magnification 3000 times) show the morphology of Comparative Example 1, but it can be seen that fine dispersion as shown in FIGS. 1 and 2 cannot be achieved.
ポリカーボネート樹脂相中におけるスチレン系樹脂(B)相の分散したスチレン系樹脂の体積平均粒子径(dv)は、前記したように2.5μm以下であり、好ましくは2.2μm以下、より好ましくは2.0μm以下、さらに好ましくは1.5μm以下であり、また、好ましくは0.5μm以上である。体積平均粒子径(dv)が2.5μmを超えると、樹脂組成物の湿熱後の衝撃強度保持率が極端に低下する傾向となるため好ましくない。
As described above, the volume average particle diameter (dv) of the styrene resin in which the styrene resin (B) phase is dispersed in the polycarbonate resin phase is 2.5 μm or less, preferably 2.2 μm or less, more preferably 2 0.0 μm or less, more preferably 1.5 μm or less, and preferably 0.5 μm or more. If the volume average particle diameter (dv) exceeds 2.5 μm, the impact strength retention after wet heat of the resin composition tends to be extremely lowered, which is not preferable.
また、ポリカーボネート樹脂中に分散したスチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)は、1.0~1.5の範囲にあることが好ましく、より好ましくは1.1以上、さらに好ましくは1.15以上であり、より好ましくは1.45以下、さらには1.4以下であることが好ましい。
ここでいう、dv/dnの数値の意味は、dv/dnが1のときスチレン系樹脂の分散粒子径が揃った均一な状態を示し、1より大きくなると分散粒子径が不揃いで不均一な状態であることを示している。
また、このdv/dnは単に分散粒子径が均一であること以外に、前述した分散したスチレン系樹脂の体積平均径(dv)と密接に関係がある。即ち、dv/dnが1.0~1.5の範囲内であっても、分散したスチレン系樹脂の体積平均径が大きくなった場合、耐湿熱性の向上効果は得られにくい。
なお、スチレン系樹脂(B)の平均粒子径(dn)及び体積平均粒子径(dv)は走査電子顕微鏡(SEM)で観察して求める。その詳細は実施例にて記載されるとおりである。 The ratio (dv / dn) of the volume average particle diameter (dv) and the number average particle diameter (dn) of the styrene resin (B) dispersed in the polycarbonate resin is in the range of 1.0 to 1.5. Preferably, it is 1.1 or more, more preferably 1.15 or more, more preferably 1.45 or less, and further preferably 1.4 or less.
Here, the meaning of the numerical value of dv / dn means a uniform state in which the dispersed particle diameters of the styrenic resin are uniform when dv / dn is 1, and when the particle diameter is larger than 1, the dispersed particle diameters are not uniform and uneven. It is shown that.
Further, this dv / dn is closely related to the volume average diameter (dv) of the dispersed styrene resin described above, except that the dispersed particle diameter is simply uniform. That is, even if dv / dn is in the range of 1.0 to 1.5, if the volume average diameter of the dispersed styrene resin is increased, it is difficult to obtain the effect of improving heat and moisture resistance.
In addition, the average particle diameter (dn) and the volume average particle diameter (dv) of the styrene resin (B) are obtained by observing with a scanning electron microscope (SEM). Details thereof are as described in Examples.
ここでいう、dv/dnの数値の意味は、dv/dnが1のときスチレン系樹脂の分散粒子径が揃った均一な状態を示し、1より大きくなると分散粒子径が不揃いで不均一な状態であることを示している。
また、このdv/dnは単に分散粒子径が均一であること以外に、前述した分散したスチレン系樹脂の体積平均径(dv)と密接に関係がある。即ち、dv/dnが1.0~1.5の範囲内であっても、分散したスチレン系樹脂の体積平均径が大きくなった場合、耐湿熱性の向上効果は得られにくい。
なお、スチレン系樹脂(B)の平均粒子径(dn)及び体積平均粒子径(dv)は走査電子顕微鏡(SEM)で観察して求める。その詳細は実施例にて記載されるとおりである。 The ratio (dv / dn) of the volume average particle diameter (dv) and the number average particle diameter (dn) of the styrene resin (B) dispersed in the polycarbonate resin is in the range of 1.0 to 1.5. Preferably, it is 1.1 or more, more preferably 1.15 or more, more preferably 1.45 or less, and further preferably 1.4 or less.
Here, the meaning of the numerical value of dv / dn means a uniform state in which the dispersed particle diameters of the styrenic resin are uniform when dv / dn is 1, and when the particle diameter is larger than 1, the dispersed particle diameters are not uniform and uneven. It is shown that.
Further, this dv / dn is closely related to the volume average diameter (dv) of the dispersed styrene resin described above, except that the dispersed particle diameter is simply uniform. That is, even if dv / dn is in the range of 1.0 to 1.5, if the volume average diameter of the dispersed styrene resin is increased, it is difficult to obtain the effect of improving heat and moisture resistance.
In addition, the average particle diameter (dn) and the volume average particle diameter (dv) of the styrene resin (B) are obtained by observing with a scanning electron microscope (SEM). Details thereof are as described in Examples.
乳化重合スチレン系樹脂(B)がこのような体積平均粒子径(dv)とdv/dn比を有するモルフォロジーを示すということは、乳化重合スチレン系樹脂(B)の溶融混練が良好に行われ、乳化剤由来成分の脱揮も高度に進行していると判断できる。
The emulsion-polymerized styrene-based resin (B) exhibits such a volume average particle size (dv) and a morphology having a dv / dn ratio, which means that the emulsion-polymerized styrene-based resin (B) is well melt-kneaded, It can be judged that the devolatilization of the emulsifier-derived component is also highly advanced.
[成形体]
本発明のポリカーボネート樹脂組成物は、各種の成形法、例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などにより、成形品とされる。 [Molded body]
The polycarbonate resin composition of the present invention is formed by various molding methods, for example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding using a heat insulating mold. Method, molding method using rapid heating mold, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method It is formed into a molded product by a lamination molding method, a press molding method or the like.
本発明のポリカーボネート樹脂組成物は、各種の成形法、例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などにより、成形品とされる。 [Molded body]
The polycarbonate resin composition of the present invention is formed by various molding methods, for example, injection molding method, ultra-high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding using a heat insulating mold. Method, molding method using rapid heating mold, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method It is formed into a molded product by a lamination molding method, a press molding method or the like.
成形品の例を挙げると、電気電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、照明機器等の部品が挙げられる。これらの中でも、特に車輌部品や電気電子機器、OA機器の各種部品に特に好適である。
Examples of molded products include parts such as electrical and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, building members, various containers, and lighting equipment. Among these, it is particularly suitable for various parts of vehicle parts, electric / electronic devices, and OA devices.
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において[部]とは、特に断らない限り質量基準に基づく「質量部」を表す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In the following description, “parts” means “parts by mass” based on mass standards unless otherwise specified.
以下の実施例及び比較例に使用した各成分は、以下の表1のとおりである。
Each component used in the following Examples and Comparative Examples is as shown in Table 1 below.
(実施例1)
日本製鋼所社製同方向回転スクリュー式二軸押出機「TEX-44αII型」(スクリュー直径47mm、L/D=59.5)を使用した。このものは、その根元に第1の原料供給口、混練域に水注入口、ベント口を有し、ついで、第2の原料供給口と水注入口とベント口を有しており、第2原料供給口にはサイドフィーダー(クボタ株式会社製「TSF-45E」)が備えられ、これから供給される。スクリューアレンジは、供給部側から、搬送用フルフライトスクリュー部、可塑化用ニーディングスクリュー部、混練用ニーディングスクリュー部を備え、さらに第2の原料供給口に対応して搬送用フルフライトスクリュー部、混練用ニーディングスクリュー部を備えている。 Example 1
A twin-screw extruder “TEX-44α II type” (screw diameter 47 mm, L / D = 59.5) manufactured by Nippon Steel Works was used. This has a first raw material supply port at the base, a water injection port and a vent port in the kneading zone, and then has a second raw material supply port, a water injection port and a vent port. The raw material supply port is provided with a side feeder (“TSF-45E” manufactured by Kubota Corporation) and supplied from there. The screw arrangement includes a full flight screw portion for conveyance, a kneading screw portion for plasticization, and a kneading screw portion for kneading from the supply portion side, and a full flight screw portion for conveyance corresponding to the second raw material supply port. The kneading kneading screw part is provided.
日本製鋼所社製同方向回転スクリュー式二軸押出機「TEX-44αII型」(スクリュー直径47mm、L/D=59.5)を使用した。このものは、その根元に第1の原料供給口、混練域に水注入口、ベント口を有し、ついで、第2の原料供給口と水注入口とベント口を有しており、第2原料供給口にはサイドフィーダー(クボタ株式会社製「TSF-45E」)が備えられ、これから供給される。スクリューアレンジは、供給部側から、搬送用フルフライトスクリュー部、可塑化用ニーディングスクリュー部、混練用ニーディングスクリュー部を備え、さらに第2の原料供給口に対応して搬送用フルフライトスクリュー部、混練用ニーディングスクリュー部を備えている。 Example 1
A twin-screw extruder “TEX-44α II type” (screw diameter 47 mm, L / D = 59.5) manufactured by Nippon Steel Works was used. This has a first raw material supply port at the base, a water injection port and a vent port in the kneading zone, and then has a second raw material supply port, a water injection port and a vent port. The raw material supply port is provided with a side feeder (“TSF-45E” manufactured by Kubota Corporation) and supplied from there. The screw arrangement includes a full flight screw portion for conveyance, a kneading screw portion for plasticization, and a kneading screw portion for kneading from the supply portion side, and a full flight screw portion for conveyance corresponding to the second raw material supply port. The kneading kneading screw part is provided.
第1の原料供給口から、表1に記載した乳化重合ABS樹脂(B1)を105kg/hrの供給速度(30質量部に相当)で連続的に供給した。スクリュー回転数は800rpm、シリンダー設定温度は330℃として、可塑化用ニーディングスクリュー部で溶融状態となった状態で、ニーディングスクリュー部の後半に設けた水注入口から水を0.88kg/hr(総吐出量に対し0.25質量%の割合)で注入した。ニーディングスクリュー部のさらに後方にはシールリングが設けられ、水との混合物は混練用ニーディングスクリュー部で圧力上昇を伴いながら混練された後、その下流側に設けたベント口を20mmHgの減圧状態にし、樹脂と水の混合物は分散しながら発泡した状態で発泡脱揮を行った。
次いで、表1に記載のポリカーボネート樹脂(A)と表1に記載の離型剤(D1、D2)、安定剤(E1、E2)および着色剤(F)の予備ブレンド物を第2の供給口から245kg/hr(70質量部に相当)の供給速度で連続的に供給した。なお、この予備ブレンド物は、最終の樹脂組成物100質量%に対してD1、D2成分は、それぞれ0.10質量%、E1、E2成分はそれぞれ0.03質量%、0.05質量%、F成分が0.5質量%となるような量でブレンドされている。
ポリカーボネート樹脂予備ブレンド物を、シリンダー設定温度330℃とし、脱揮された上流からのABS樹脂と合流させながら混練し、水注入口から再度水を0.88kg/hr(総吐出量に対し0.25質量%の割合)で注入した。水との混合物を混練用ニーディングスクリュー部で圧力上昇を伴いながら混練した後、ベント口を20mmHgの減圧状態にして発泡脱揮を行ない、押出してストランドカットして、樹脂組成物のペレットを得た。
押出し時のモーター電流値は236A、ダイ出口の樹脂温度は333℃、また、ダイ先端の樹脂圧力は1.1MPaであった。これらは、押出機の長期運転安定性を考えた場合、モーターへの負荷は小さい方が好ましく、また樹脂組成物の分解抑制には一般的に樹脂温度は低い方が好ましい傾向にあるため重要な判断指標となる。 From the first raw material supply port, the emulsion polymerization ABS resin (B1) described in Table 1 was continuously supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass). The screw rotation speed is 800 rpm, the cylinder set temperature is 330 ° C., and in the state of being melted in the plasticizing kneading screw part, water is supplied from the water inlet provided in the latter half of the kneading screw part at 0.88 kg / hr. (The ratio of 0.25% by mass with respect to the total discharge amount). A seal ring is provided further rearward of the kneading screw part, and the mixture with water is kneaded with an increase in pressure in the kneading screw part for kneading, and then the vent port provided downstream thereof is in a reduced pressure state of 20 mmHg. Then, foaming devolatilization was performed while the mixture of the resin and water was foamed while being dispersed.
Next, a pre-blend of the polycarbonate resin (A) described in Table 1 and the release agents (D1, D2), stabilizers (E1, E2) and colorant (F) described in Table 1 was supplied to the second supply port. To 245 kg / hr (corresponding to 70 parts by mass). In this preliminary blend, D1 and D2 components are 0.10% by mass, E1 and E2 components are 0.03% by mass and 0.05% by mass, respectively, with respect to 100% by mass of the final resin composition. Blended in such an amount that the F component is 0.5 mass%.
The polycarbonate resin pre-blended product was kneaded while being combined with the devolatilized ABS resin from the upstream at a cylinder set temperature of 330 ° C., and water was again supplied from the water inlet at 0.88 kg / hr (0. 25 mass%). After kneading the mixture with water with a kneading kneading screw part with an increase in pressure, the vent port is reduced in pressure to 20 mmHg, foamed and devolatilized, extruded and strand cut to obtain pellets of the resin composition It was.
The motor current value at the time of extrusion was 236 A, the resin temperature at the die outlet was 333 ° C., and the resin pressure at the die tip was 1.1 MPa. Considering the long-term operational stability of the extruder, these are important because the load on the motor is preferably smaller, and in general, the resin temperature tends to be lower in order to suppress the decomposition of the resin composition. It becomes a judgment index.
次いで、表1に記載のポリカーボネート樹脂(A)と表1に記載の離型剤(D1、D2)、安定剤(E1、E2)および着色剤(F)の予備ブレンド物を第2の供給口から245kg/hr(70質量部に相当)の供給速度で連続的に供給した。なお、この予備ブレンド物は、最終の樹脂組成物100質量%に対してD1、D2成分は、それぞれ0.10質量%、E1、E2成分はそれぞれ0.03質量%、0.05質量%、F成分が0.5質量%となるような量でブレンドされている。
ポリカーボネート樹脂予備ブレンド物を、シリンダー設定温度330℃とし、脱揮された上流からのABS樹脂と合流させながら混練し、水注入口から再度水を0.88kg/hr(総吐出量に対し0.25質量%の割合)で注入した。水との混合物を混練用ニーディングスクリュー部で圧力上昇を伴いながら混練した後、ベント口を20mmHgの減圧状態にして発泡脱揮を行ない、押出してストランドカットして、樹脂組成物のペレットを得た。
押出し時のモーター電流値は236A、ダイ出口の樹脂温度は333℃、また、ダイ先端の樹脂圧力は1.1MPaであった。これらは、押出機の長期運転安定性を考えた場合、モーターへの負荷は小さい方が好ましく、また樹脂組成物の分解抑制には一般的に樹脂温度は低い方が好ましい傾向にあるため重要な判断指標となる。 From the first raw material supply port, the emulsion polymerization ABS resin (B1) described in Table 1 was continuously supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass). The screw rotation speed is 800 rpm, the cylinder set temperature is 330 ° C., and in the state of being melted in the plasticizing kneading screw part, water is supplied from the water inlet provided in the latter half of the kneading screw part at 0.88 kg / hr. (The ratio of 0.25% by mass with respect to the total discharge amount). A seal ring is provided further rearward of the kneading screw part, and the mixture with water is kneaded with an increase in pressure in the kneading screw part for kneading, and then the vent port provided downstream thereof is in a reduced pressure state of 20 mmHg. Then, foaming devolatilization was performed while the mixture of the resin and water was foamed while being dispersed.
Next, a pre-blend of the polycarbonate resin (A) described in Table 1 and the release agents (D1, D2), stabilizers (E1, E2) and colorant (F) described in Table 1 was supplied to the second supply port. To 245 kg / hr (corresponding to 70 parts by mass). In this preliminary blend, D1 and D2 components are 0.10% by mass, E1 and E2 components are 0.03% by mass and 0.05% by mass, respectively, with respect to 100% by mass of the final resin composition. Blended in such an amount that the F component is 0.5 mass%.
The polycarbonate resin pre-blended product was kneaded while being combined with the devolatilized ABS resin from the upstream at a cylinder set temperature of 330 ° C., and water was again supplied from the water inlet at 0.88 kg / hr (0. 25 mass%). After kneading the mixture with water with a kneading kneading screw part with an increase in pressure, the vent port is reduced in pressure to 20 mmHg, foamed and devolatilized, extruded and strand cut to obtain pellets of the resin composition It was.
The motor current value at the time of extrusion was 236 A, the resin temperature at the die outlet was 333 ° C., and the resin pressure at the die tip was 1.1 MPa. Considering the long-term operational stability of the extruder, these are important because the load on the motor is preferably smaller, and in general, the resin temperature tends to be lower in order to suppress the decomposition of the resin composition. It becomes a judgment index.
(実施例2)
実施例1において、表2に記載するように、第1段と第2段目の水注入量をいずれも0.5質量%にした以外は、実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 2)
In Example 1, as described in Table 2, in the same manner as in Example 1 except that the water injection amounts of the first stage and the second stage were both 0.5% by mass, Pellets were obtained.
実施例1において、表2に記載するように、第1段と第2段目の水注入量をいずれも0.5質量%にした以外は、実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 2)
In Example 1, as described in Table 2, in the same manner as in Example 1 except that the water injection amounts of the first stage and the second stage were both 0.5% by mass, Pellets were obtained.
(実施例3)
実施例1において、表2に記載するように、シリンダー設定温度を300℃とし第1段と第2段目の水注入を行わなかった以外は、実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 3)
In Example 1, as described in Table 2, the resin composition was prepared in the same manner as in Example 1 except that the cylinder set temperature was 300 ° C. and the first and second stages of water injection were not performed. Pellets were obtained.
実施例1において、表2に記載するように、シリンダー設定温度を300℃とし第1段と第2段目の水注入を行わなかった以外は、実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 3)
In Example 1, as described in Table 2, the resin composition was prepared in the same manner as in Example 1 except that the cylinder set temperature was 300 ° C. and the first and second stages of water injection were not performed. Pellets were obtained.
(実施例4)
実施例2において、表2に記載するように、第2段目の水注入を行わず、またベント口の減圧度を10mmHgとした以外は、実施例2と同様にして、樹脂組成物のペレットを得た。 Example 4
In Example 2, as shown in Table 2, pellets of the resin composition were made in the same manner as in Example 2 except that the second stage water injection was not performed and the degree of vacuum at the vent port was 10 mmHg. Got.
実施例2において、表2に記載するように、第2段目の水注入を行わず、またベント口の減圧度を10mmHgとした以外は、実施例2と同様にして、樹脂組成物のペレットを得た。 Example 4
In Example 2, as shown in Table 2, pellets of the resin composition were made in the same manner as in Example 2 except that the second stage water injection was not performed and the degree of vacuum at the vent port was 10 mmHg. Got.
(実施例5)
実施例2において、表2に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を87.5kg/hrの供給速度(25質量部に相当)、ABS樹脂(B1)を105kg/hr(30質量部に相当)の供給速度で供給し、第2の供給口からポリカーボネート樹脂を157.5kg/hrの供給速度(45質量部に相当)で供給し、ベント口の減圧度を10mmHgとした以外は、実施例2と同様にして、樹脂組成物のペレットを得た。 (Example 5)
In Example 2, as shown in Table 2, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a feed rate of 87.5 kg / hr (corresponding to 25 parts by mass), and the ABS resin (B1) was 105 kg. / Hr (equivalent to 30 parts by mass), polycarbonate resin is supplied from the second supply port at a rate of 157.5 kg / hr (equivalent to 45 parts by mass), and the degree of vacuum at the vent port is adjusted. Except having set it as 10 mmHg, it carried out similarly to Example 2, and obtained the pellet of the resin composition.
実施例2において、表2に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を87.5kg/hrの供給速度(25質量部に相当)、ABS樹脂(B1)を105kg/hr(30質量部に相当)の供給速度で供給し、第2の供給口からポリカーボネート樹脂を157.5kg/hrの供給速度(45質量部に相当)で供給し、ベント口の減圧度を10mmHgとした以外は、実施例2と同様にして、樹脂組成物のペレットを得た。 (Example 5)
In Example 2, as shown in Table 2, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a feed rate of 87.5 kg / hr (corresponding to 25 parts by mass), and the ABS resin (B1) was 105 kg. / Hr (equivalent to 30 parts by mass), polycarbonate resin is supplied from the second supply port at a rate of 157.5 kg / hr (equivalent to 45 parts by mass), and the degree of vacuum at the vent port is adjusted. Except having set it as 10 mmHg, it carried out similarly to Example 2, and obtained the pellet of the resin composition.
(実施例6)
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B2)を52.5kg/hr(15質量部に相当)、及び表1に記載の懸濁重合AS樹脂(C1)を52.5kg/hr(15質量部に相当)の供給速度で供給し、ベント口の減圧度を10mmHgとした以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 6)
In Example 1, as shown in Table 3, the styrene resin supplied to the first raw material supply port was 52.5 kg / hr (equivalent to 15 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And suspension polymerization AS resin (C1) listed in Table 1 at a supply rate of 52.5 kg / hr (corresponding to 15 parts by mass), and the degree of vacuum at the vent port was 10 mmHg. In the same manner as above, pellets of the resin composition were obtained.
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B2)を52.5kg/hr(15質量部に相当)、及び表1に記載の懸濁重合AS樹脂(C1)を52.5kg/hr(15質量部に相当)の供給速度で供給し、ベント口の減圧度を10mmHgとした以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 6)
In Example 1, as shown in Table 3, the styrene resin supplied to the first raw material supply port was 52.5 kg / hr (equivalent to 15 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And suspension polymerization AS resin (C1) listed in Table 1 at a supply rate of 52.5 kg / hr (corresponding to 15 parts by mass), and the degree of vacuum at the vent port was 10 mmHg. In the same manner as above, pellets of the resin composition were obtained.
(実施例7)
実施例5において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載した乳化重合MBS樹脂(B3)と懸濁重合AS樹脂(C1)に変更して表2に記載の量で供給し、第1段と第2段目の水注入量をいずれも1.0質量%にした以外は実施例5と同様にして、樹脂組成物のペレットを得た。 (Example 7)
In Example 5, as described in Table 3, the styrene resin supplied to the first raw material supply port was changed to the emulsion polymerization MBS resin (B3) and the suspension polymerization AS resin (C1) described in Table 1. The pellets of the resin composition were obtained in the same manner as in Example 5 except that the amounts of water injected in the first stage and the second stage were both 1.0% by mass. It was.
実施例5において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載した乳化重合MBS樹脂(B3)と懸濁重合AS樹脂(C1)に変更して表2に記載の量で供給し、第1段と第2段目の水注入量をいずれも1.0質量%にした以外は実施例5と同様にして、樹脂組成物のペレットを得た。 (Example 7)
In Example 5, as described in Table 3, the styrene resin supplied to the first raw material supply port was changed to the emulsion polymerization MBS resin (B3) and the suspension polymerization AS resin (C1) described in Table 1. The pellets of the resin composition were obtained in the same manner as in Example 5 except that the amounts of water injected in the first stage and the second stage were both 1.0% by mass. It was.
(実施例8)
実施例1において、表3に記載するように、乳化重合ABS樹脂(B1)及び塊状重合ABS樹脂(C2)を表3に記載の量で第1の原料供給口から供給した以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 8)
In Example 1, as described in Table 3, Example 1 except that the emulsion polymerization ABS resin (B1) and the bulk polymerization ABS resin (C2) were supplied from the first raw material supply port in the amounts shown in Table 3. In the same manner as above, pellets of the resin composition were obtained.
実施例1において、表3に記載するように、乳化重合ABS樹脂(B1)及び塊状重合ABS樹脂(C2)を表3に記載の量で第1の原料供給口から供給した以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 8)
In Example 1, as described in Table 3, Example 1 except that the emulsion polymerization ABS resin (B1) and the bulk polymerization ABS resin (C2) were supplied from the first raw material supply port in the amounts shown in Table 3. In the same manner as above, pellets of the resin composition were obtained.
(実施例9)
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B1)を140kg/hr(40質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を210kg/hr(60質量部に相当)の供給速度で供給した以外は実施例1と同様にして、樹脂組成物のペレットを得た。 Example 9
In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 140 kg / hr (equivalent to 40 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 1. A pellet of the resin composition was obtained in the same manner as in Example 1 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 210 kg / hr (corresponding to 60 parts by mass).
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B1)を140kg/hr(40質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を210kg/hr(60質量部に相当)の供給速度で供給した以外は実施例1と同様にして、樹脂組成物のペレットを得た。 Example 9
In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 140 kg / hr (equivalent to 40 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 1. A pellet of the resin composition was obtained in the same manner as in Example 1 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 210 kg / hr (corresponding to 60 parts by mass).
(実施例10)
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B2)を28kg/hr(8質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を322kg/hr(92質量部に相当)の供給速度で供給し、ベント口の減圧度を10mmHgとした以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 10)
In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 28 kg / hr (equivalent to 8 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And the polycarbonate resin preliminary blend was supplied from the second raw material supply port at a supply rate of 322 kg / hr (corresponding to 92 parts by mass), and the degree of vacuum at the vent port was 10 mmHg, as in Example 1, A pellet of the resin composition was obtained.
実施例1において、表3に記載するように、第1の原料供給口に供給するスチレン系樹脂を表1に記載の乳化重合ABS樹脂(B2)を28kg/hr(8質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を322kg/hr(92質量部に相当)の供給速度で供給し、ベント口の減圧度を10mmHgとした以外は実施例1と同様にして、樹脂組成物のペレットを得た。 (Example 10)
In Example 1, as described in Table 3, the styrene resin supplied to the first raw material supply port was 28 kg / hr (equivalent to 8 parts by mass) of the emulsion polymerization ABS resin (B2) described in Table 1. And the polycarbonate resin preliminary blend was supplied from the second raw material supply port at a supply rate of 322 kg / hr (corresponding to 92 parts by mass), and the degree of vacuum at the vent port was 10 mmHg, as in Example 1, A pellet of the resin composition was obtained.
(比較例1)
実施例3において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)、ABS樹脂(B1)を105kg/hrの供給速度(30質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給しない以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Example 1)
In Example 3, as shown in Table 4, the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr. The pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
実施例3において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)、ABS樹脂(B1)を105kg/hrの供給速度(30質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給しない以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Example 1)
In Example 3, as shown in Table 4, the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr. The pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
(比較例2)
実施例2において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)、ABS樹脂(B1)を105kg/hrの供給速度(30質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給しない以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Example 2)
In Example 2, as shown in Table 4, the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr. The pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
実施例2において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)、ABS樹脂(B1)を105kg/hrの供給速度(30質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給しない以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Example 2)
In Example 2, as shown in Table 4, the polycarbonate resin pre-blend from the first raw material supply port was supplied at a feed rate of 245 kg / hr (corresponding to 70 parts by mass), and the ABS resin (B1) was 105 kg / hr. The pellets of the resin composition were obtained in the same manner except that the polycarbonate resin was not supplied from the second supply port.
(比較例3~4)
実施例2において、表4に記載するように、シリンダー設定温度を300℃とし、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を140kg/hrの供給速度(40質量部に相当)、ABS樹脂(B1)を105kg/hr(30質量部に相当)の供給速度で供給し、第2の供給口からポリカーボネート樹脂を105kg/hrの供給速度(30質量部に相当)で供給し、第1段と第2段目の水注入量及びベント口の減圧度を表3に記載の通りとした以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Examples 3 to 4)
In Example 2, as shown in Table 4, the cylinder set temperature was 300 ° C., the polycarbonate resin pre-blend was fed from the first raw material feed port at a feed rate of 140 kg / hr (corresponding to 40 parts by mass), ABS Resin (B1) is supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass), and polycarbonate resin is supplied from the second supply port at a supply rate of 105 kg / hr (corresponding to 30 parts by mass). Pellets of the resin composition were obtained in the same manner except that the water injection amount of the stage and the second stage and the degree of vacuum at the vent port were as shown in Table 3.
実施例2において、表4に記載するように、シリンダー設定温度を300℃とし、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を140kg/hrの供給速度(40質量部に相当)、ABS樹脂(B1)を105kg/hr(30質量部に相当)の供給速度で供給し、第2の供給口からポリカーボネート樹脂を105kg/hrの供給速度(30質量部に相当)で供給し、第1段と第2段目の水注入量及びベント口の減圧度を表3に記載の通りとした以外は同様にして、樹脂組成物のペレットを得た。 (Comparative Examples 3 to 4)
In Example 2, as shown in Table 4, the cylinder set temperature was 300 ° C., the polycarbonate resin pre-blend was fed from the first raw material feed port at a feed rate of 140 kg / hr (corresponding to 40 parts by mass), ABS Resin (B1) is supplied at a supply rate of 105 kg / hr (corresponding to 30 parts by mass), and polycarbonate resin is supplied from the second supply port at a supply rate of 105 kg / hr (corresponding to 30 parts by mass). Pellets of the resin composition were obtained in the same manner except that the water injection amount of the stage and the second stage and the degree of vacuum at the vent port were as shown in Table 3.
(比較例5)
実施例7において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給せず、表4に記載した第1段と第2段目の水注入量とした以外は、実施例7と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 5)
In Example 7, as described in Table 4, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a supply rate of 245 kg / hr (corresponding to 70 parts by mass), and from the second supply port. Resin composition pellets were obtained in the same manner as in Example 7 except that the polycarbonate resin was not supplied and the first and second water injection amounts shown in Table 4 were used.
実施例7において、表4に記載するように、第1の原料供給口から前記ポリカーボネート樹脂予備ブレンド物を245kg/hrの供給速度(70質量部に相当)で供給し、第2の供給口からポリカーボネート樹脂を供給せず、表4に記載した第1段と第2段目の水注入量とした以外は、実施例7と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 5)
In Example 7, as described in Table 4, the polycarbonate resin pre-blend was supplied from the first raw material supply port at a supply rate of 245 kg / hr (corresponding to 70 parts by mass), and from the second supply port. Resin composition pellets were obtained in the same manner as in Example 7 except that the polycarbonate resin was not supplied and the first and second water injection amounts shown in Table 4 were used.
(比較例6)
比較例2において、第1の原料供給口に供給するスチレン系樹脂を表4に記載の乳化重合ABS樹脂(B1)を175kg/hr(50質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を175kg/hr(50質量部に相当)の供給速度で供給した以外は比較例2と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 6)
In Comparative Example 2, the styrene resin supplied to the first raw material supply port was 175 kg / hr (equivalent to 50 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4, and the second raw material supply port. Resin composition pellets were obtained in the same manner as in Comparative Example 2 except that the polycarbonate resin pre-blend was supplied at a supply rate of 175 kg / hr (corresponding to 50 parts by mass).
比較例2において、第1の原料供給口に供給するスチレン系樹脂を表4に記載の乳化重合ABS樹脂(B1)を175kg/hr(50質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を175kg/hr(50質量部に相当)の供給速度で供給した以外は比較例2と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 6)
In Comparative Example 2, the styrene resin supplied to the first raw material supply port was 175 kg / hr (equivalent to 50 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4, and the second raw material supply port. Resin composition pellets were obtained in the same manner as in Comparative Example 2 except that the polycarbonate resin pre-blend was supplied at a supply rate of 175 kg / hr (corresponding to 50 parts by mass).
(比較例7)
比較例6において、第1の原料供給口に供給するスチレン系樹脂を表4に記載の乳化重合ABS樹脂(B1)を10.5kg/hr(3質量部に相当)及び塊状重合ABS樹脂(C2)を112kg/hr(32質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を227.5kg/hr(65質量部に相当)の供給速度で供給した以外は比較例6と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 7)
In Comparative Example 6, the styrene resin supplied to the first raw material supply port was 10.5 kg / hr (corresponding to 3 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4 and the bulk polymerization ABS resin (C2 ) 112 kg / hr (corresponding to 32 parts by mass), and Comparative Example 6 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 227.5 kg / hr (corresponding to 65 parts by mass). In the same manner as above, pellets of the resin composition were obtained.
比較例6において、第1の原料供給口に供給するスチレン系樹脂を表4に記載の乳化重合ABS樹脂(B1)を10.5kg/hr(3質量部に相当)及び塊状重合ABS樹脂(C2)を112kg/hr(32質量部に相当)、及び第2の原料供給口からポリカーボネート樹脂予備ブレンド物を227.5kg/hr(65質量部に相当)の供給速度で供給した以外は比較例6と同様にして、樹脂組成物のペレットを得た。 (Comparative Example 7)
In Comparative Example 6, the styrene resin supplied to the first raw material supply port was 10.5 kg / hr (corresponding to 3 parts by mass) of the emulsion polymerization ABS resin (B1) described in Table 4 and the bulk polymerization ABS resin (C2 ) 112 kg / hr (corresponding to 32 parts by mass), and Comparative Example 6 except that the polycarbonate resin pre-blend was supplied from the second raw material supply port at a supply rate of 227.5 kg / hr (corresponding to 65 parts by mass). In the same manner as above, pellets of the resin composition were obtained.
[樹脂組成物中のガス成分量の測定]
上記で得られた樹脂組成物のペレット約20mgを石英ガラスのサンプル管に入れ、島津製作所製GCMSサーマルデソープションシステムTD-20を用い、ヘリウム気流下(60ml/min)、280℃、10分間加熱し、発生したガスをテナックス管に冷却捕集、加熱脱着して、GC-2010Plus及びGCMS-QP2010Ultraからなるガスクロマトグラフ質量分析計GC/MSで分析した。
分離カラム:フロンティア・ラボ製UA-5
昇温条件:10℃/minの条件で、50℃から380℃
キャリアガス:ヘリウム3ml/min
得られたガスについて、デカン換算によって、乳化剤由来成分、スチレン系樹脂のオリゴマー、その他成分(ポリカーボネート樹脂のオリゴマー、ポリカーボネート樹脂の原料モノマー、離型剤等)を測定した。尚、乳化剤由来成分はアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の量を測定した。脂肪酸としてはオレイン酸、ステアリン酸、パルミチン酸又はミリスチン酸が表2~表4に記載の量(単位:質量ppm)で検出された。 [Measurement of amount of gas component in resin composition]
About 20 mg of pellets of the resin composition obtained above are put in a quartz glass sample tube, and using a Shimadzu GCMS thermal desorption system TD-20, under a helium stream (60 ml / min), 280 ° C., 10 minutes. After heating, the generated gas was cooled and collected in a Tenax tube, heated and desorbed, and analyzed by a gas chromatograph mass spectrometer GC / MS consisting of GC-2010Plus and GCMS-QP2010Ultra.
Separation column: UA-5 from Frontier Laboratories
Temperature rising condition: 50 ° C. to 380 ° C. at 10 ° C./min.
Carrier gas: Helium 3ml / min
About the obtained gas, the emulsifier origin component, the oligomer of the styrene resin, and other components (oligomer of polycarbonate resin, raw material monomer of polycarbonate resin, release agent, etc.) were measured by decane conversion. The emulsifier-derived component was measured for the amounts of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms. As the fatty acid, oleic acid, stearic acid, palmitic acid or myristic acid was detected in the amounts (unit: mass ppm) shown in Tables 2 to 4.
上記で得られた樹脂組成物のペレット約20mgを石英ガラスのサンプル管に入れ、島津製作所製GCMSサーマルデソープションシステムTD-20を用い、ヘリウム気流下(60ml/min)、280℃、10分間加熱し、発生したガスをテナックス管に冷却捕集、加熱脱着して、GC-2010Plus及びGCMS-QP2010Ultraからなるガスクロマトグラフ質量分析計GC/MSで分析した。
分離カラム:フロンティア・ラボ製UA-5
昇温条件:10℃/minの条件で、50℃から380℃
キャリアガス:ヘリウム3ml/min
得られたガスについて、デカン換算によって、乳化剤由来成分、スチレン系樹脂のオリゴマー、その他成分(ポリカーボネート樹脂のオリゴマー、ポリカーボネート樹脂の原料モノマー、離型剤等)を測定した。尚、乳化剤由来成分はアビエチン酸及び炭素数12~32の飽和若しくは不飽和脂肪酸の量を測定した。脂肪酸としてはオレイン酸、ステアリン酸、パルミチン酸又はミリスチン酸が表2~表4に記載の量(単位:質量ppm)で検出された。 [Measurement of amount of gas component in resin composition]
About 20 mg of pellets of the resin composition obtained above are put in a quartz glass sample tube, and using a Shimadzu GCMS thermal desorption system TD-20, under a helium stream (60 ml / min), 280 ° C., 10 minutes. After heating, the generated gas was cooled and collected in a Tenax tube, heated and desorbed, and analyzed by a gas chromatograph mass spectrometer GC / MS consisting of GC-2010Plus and GCMS-QP2010Ultra.
Separation column: UA-5 from Frontier Laboratories
Temperature rising condition: 50 ° C. to 380 ° C. at 10 ° C./min.
Carrier gas: Helium 3ml / min
About the obtained gas, the emulsifier origin component, the oligomer of the styrene resin, and other components (oligomer of polycarbonate resin, raw material monomer of polycarbonate resin, release agent, etc.) were measured by decane conversion. The emulsifier-derived component was measured for the amounts of abietic acid and saturated or unsaturated fatty acids having 12 to 32 carbon atoms. As the fatty acid, oleic acid, stearic acid, palmitic acid or myristic acid was detected in the amounts (unit: mass ppm) shown in Tables 2 to 4.
[金型汚染性]
住友重機械工業社製ミニマットM8/7A成形機を用い、図5に示すような、しずく型金型を用いて、シリンダー温度260℃、金型温度60℃、射出速度10mm/秒、成形サイクル9秒、保圧75MPaで1.5秒、冷却時間2秒で100ショット連続成形し、終了後金型付着物の状態を肉眼で観察し、下記の◎~×の4段階の基準で評価した。
図5のしずく型金型は、ゲートGから樹脂組成物を導入し、尖端部分に発生ガスが溜まり易くなるように設計した金型である。ゲートGの幅は1mm、厚みは1mmであり、図1において、幅h1は14.5mm、長さh2は7mm、長さh3は27mmであり、成形部の厚みは3mmである。
<金型付着物の状態>
◎:金型付着物が殆ど少なく、金型汚染性は極めて良好
○:金型付着物が少しあるものの、金型汚染性は良
△:金型付着物が多く、金型汚染性が不良
×:金型付着物が全体に及び、金型汚染性が極めて不良 [Mold contamination]
Using a mini mat M8 / 7A molding machine manufactured by Sumitomo Heavy Industries, Ltd., using a drop mold as shown in FIG. 5, cylinder temperature 260 ° C., mold temperature 60 ° C., injection speed 10 mm / second, molding cycle 100 seconds of continuous molding for 9 seconds, holding pressure of 75 MPa for 1.5 seconds, and cooling time of 2 seconds. After completion, the state of the deposit on the mold was observed with the naked eye, and evaluated according to the following four criteria of A to X. .
The drop mold shown in FIG. 5 is a mold designed so that the resin composition is introduced from the gate G so that the generated gas easily accumulates at the tip. The gate G has a width of 1 mm and a thickness of 1 mm. In FIG. 1, the width h1 is 14.5 mm, the length h2 is 7 mm, the length h3 is 27 mm, and the thickness of the molded part is 3 mm.
<State of mold deposit>
◎: Almost no deposits on the mold and very good mold contamination ○: Although there is a small amount of mold deposits, the mold contamination is good △: There are many deposits on the mold and the mold contamination is poor × : Dust deposits on the whole and mold contamination is extremely poor
住友重機械工業社製ミニマットM8/7A成形機を用い、図5に示すような、しずく型金型を用いて、シリンダー温度260℃、金型温度60℃、射出速度10mm/秒、成形サイクル9秒、保圧75MPaで1.5秒、冷却時間2秒で100ショット連続成形し、終了後金型付着物の状態を肉眼で観察し、下記の◎~×の4段階の基準で評価した。
図5のしずく型金型は、ゲートGから樹脂組成物を導入し、尖端部分に発生ガスが溜まり易くなるように設計した金型である。ゲートGの幅は1mm、厚みは1mmであり、図1において、幅h1は14.5mm、長さh2は7mm、長さh3は27mmであり、成形部の厚みは3mmである。
<金型付着物の状態>
◎:金型付着物が殆ど少なく、金型汚染性は極めて良好
○:金型付着物が少しあるものの、金型汚染性は良
△:金型付着物が多く、金型汚染性が不良
×:金型付着物が全体に及び、金型汚染性が極めて不良 [Mold contamination]
Using a mini mat M8 / 7A molding machine manufactured by Sumitomo Heavy Industries, Ltd., using a drop mold as shown in FIG. 5, cylinder temperature 260 ° C., mold temperature 60 ° C., injection speed 10 mm / second, molding cycle 100 seconds of continuous molding for 9 seconds, holding pressure of 75 MPa for 1.5 seconds, and cooling time of 2 seconds. After completion, the state of the deposit on the mold was observed with the naked eye, and evaluated according to the following four criteria of A to X. .
The drop mold shown in FIG. 5 is a mold designed so that the resin composition is introduced from the gate G so that the generated gas easily accumulates at the tip. The gate G has a width of 1 mm and a thickness of 1 mm. In FIG. 1, the width h1 is 14.5 mm, the length h2 is 7 mm, the length h3 is 27 mm, and the thickness of the molded part is 3 mm.
<State of mold deposit>
◎: Almost no deposits on the mold and very good mold contamination ○: Although there is a small amount of mold deposits, the mold contamination is good △: There are many deposits on the mold and the mold contamination is poor × : Dust deposits on the whole and mold contamination is extremely poor
[離型性評価]
上記の成形条件での離型性を以下の3段階の基準で評価した。
○:50ショット以上、不良発生無く連続成形できる
△:10ショット以上50ショット未満で離型不良が発生する
(成形品がエジェクターピンから自重で落下しない)
×:連続成形できるのが1ショット以上10ショット未満である
[外観評価]
上記の成形条件で得られた成形品について目視にて以下の基準で判定し、外観の評価を行った。
○:表面光沢性に優れ良好
△:表面光沢性がやや劣る
×:表面光沢が低く、肌荒れや反りが発生している [Release evaluation]
The releasability under the above molding conditions was evaluated according to the following three criteria.
○: Continuous molding with 50 shots or more and no defects △: Demolding failure occurs with 10 shots or more and less than 50 shots (molded product does not fall from the ejector pin due to its own weight)
X: 1 to more than 10 shots can be continuously formed
[Appearance evaluation]
The molded product obtained under the above molding conditions was visually judged according to the following criteria, and the appearance was evaluated.
○: Excellent surface gloss and good △: Slightly inferior surface gloss ×: Low surface gloss, rough skin and warping
上記の成形条件での離型性を以下の3段階の基準で評価した。
○:50ショット以上、不良発生無く連続成形できる
△:10ショット以上50ショット未満で離型不良が発生する
(成形品がエジェクターピンから自重で落下しない)
×:連続成形できるのが1ショット以上10ショット未満である
[外観評価]
上記の成形条件で得られた成形品について目視にて以下の基準で判定し、外観の評価を行った。
○:表面光沢性に優れ良好
△:表面光沢性がやや劣る
×:表面光沢が低く、肌荒れや反りが発生している [Release evaluation]
The releasability under the above molding conditions was evaluated according to the following three criteria.
○: Continuous molding with 50 shots or more and no defects △: Demolding failure occurs with 10 shots or more and less than 50 shots (molded product does not fall from the ejector pin due to its own weight)
X: 1 to more than 10 shots can be continuously formed
[Appearance evaluation]
The molded product obtained under the above molding conditions was visually judged according to the following criteria, and the appearance was evaluated.
○: Excellent surface gloss and good △: Slightly inferior surface gloss ×: Low surface gloss, rough skin and warping
[耐湿熱性]
耐湿熱性の評価は、湿熱処理による以下の湿熱処理後衝撃強度保持率に基づいて評価した。
上記の製造方法で得られたペレットを100℃で5時間乾燥した後、射出成形機(住友重機械工業社製、サイキャップM-2、型締め力75T)を用い、シリンダー温度250℃、金型温度70℃の条件で、ISO多目的試験片(3mm厚)を製造した。
<湿熱処理後衝撃強度保持率>
上記のISO多目的試験片(3mm厚)について、温度90℃、相対湿度95%の環境下で400時間の湿熱処理を実施した。湿熱処理前後の試験片についてISO179に準じてノッチ付きシャルピー衝撃強度(単位:kJ/m2)を、23℃にて測定した。
湿熱処理後衝撃強度保持率は、下記式に基づいて算出した。
湿熱処理後衝撃強度保持率(%)=
{(湿熱処理後の衝撃強度)/(湿熱処理前の衝撃強度)}×100(%) [Moisture and heat resistance]
The evaluation of wet heat resistance was based on the following impact strength retention after wet heat treatment by wet heat treatment.
After drying the pellets obtained by the above production method at 100 ° C. for 5 hours, using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., Cycap M-2, clamping force 75T), cylinder temperature 250 ° C., gold Under the condition of a mold temperature of 70 ° C., an ISO multipurpose test piece (3 mm thick) was manufactured.
<Impact strength retention after wet heat treatment>
The above ISO multi-purpose test piece (3 mm thick) was subjected to a wet heat treatment for 400 hours in an environment of a temperature of 90 ° C. and a relative humidity of 95%. The notched Charpy impact strength (unit: kJ / m 2 ) of the test pieces before and after the wet heat treatment was measured at 23 ° C. according to ISO179.
The impact strength retention after wet heat treatment was calculated based on the following formula.
Impact strength retention after wet heat treatment (%) =
{(Impact strength after wet heat treatment) / (Impact strength before wet heat treatment)} × 100 (%)
耐湿熱性の評価は、湿熱処理による以下の湿熱処理後衝撃強度保持率に基づいて評価した。
上記の製造方法で得られたペレットを100℃で5時間乾燥した後、射出成形機(住友重機械工業社製、サイキャップM-2、型締め力75T)を用い、シリンダー温度250℃、金型温度70℃の条件で、ISO多目的試験片(3mm厚)を製造した。
<湿熱処理後衝撃強度保持率>
上記のISO多目的試験片(3mm厚)について、温度90℃、相対湿度95%の環境下で400時間の湿熱処理を実施した。湿熱処理前後の試験片についてISO179に準じてノッチ付きシャルピー衝撃強度(単位:kJ/m2)を、23℃にて測定した。
湿熱処理後衝撃強度保持率は、下記式に基づいて算出した。
湿熱処理後衝撃強度保持率(%)=
{(湿熱処理後の衝撃強度)/(湿熱処理前の衝撃強度)}×100(%) [Moisture and heat resistance]
The evaluation of wet heat resistance was based on the following impact strength retention after wet heat treatment by wet heat treatment.
After drying the pellets obtained by the above production method at 100 ° C. for 5 hours, using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., Cycap M-2, clamping force 75T), cylinder temperature 250 ° C., gold Under the condition of a mold temperature of 70 ° C., an ISO multipurpose test piece (3 mm thick) was manufactured.
<Impact strength retention after wet heat treatment>
The above ISO multi-purpose test piece (3 mm thick) was subjected to a wet heat treatment for 400 hours in an environment of a temperature of 90 ° C. and a relative humidity of 95%. The notched Charpy impact strength (unit: kJ / m 2 ) of the test pieces before and after the wet heat treatment was measured at 23 ° C. according to ISO179.
The impact strength retention after wet heat treatment was calculated based on the following formula.
Impact strength retention after wet heat treatment (%) =
{(Impact strength after wet heat treatment) / (Impact strength before wet heat treatment)} × 100 (%)
[耐湿熱性]
耐湿熱性の評価を、湿熱処理前後でのMFR値の上昇率により評価した。
即ち、樹脂組成物のペレットを100℃で5時間以上乾燥した後、ISO1133に準拠して測定温度250℃、荷重2.16kgfの条件で温度90℃、相対湿度95%の環境下で400時間の湿熱処理した後のMFR(メルトフローレイト、単位:g/10分)を測定し、以下の式により湿熱処理後MFR上昇率(単位:%)を求めた。
湿熱処理後MFR上昇率(%)=
{(湿熱処理後のMFR)/(湿熱処理前のMFR)}×100-100(%)
湿熱処理後MFR上昇率(%)が小さいほど、耐湿熱性に優れることを意味する。 [Moisture and heat resistance]
The evaluation of wet heat resistance was evaluated by the rate of increase in MFR value before and after wet heat treatment.
That is, after the pellets of the resin composition are dried at 100 ° C. for 5 hours or more, in accordance with ISO 1133, the measurement temperature is 250 ° C., the load is 2.16 kgf, the temperature is 90 ° C., and the relative humidity is 95%. The MFR (melt flow rate, unit: g / 10 minutes) after the wet heat treatment was measured, and the MFR increase rate (unit:%) after the wet heat treatment was determined by the following formula.
MFR increase rate after wet heat treatment (%) =
{(MFR after wet heat treatment) / (MFR before wet heat treatment)} × 100-100 (%)
It means that it is excellent in heat-and-moisture resistance, so that MFR increase rate (%) after wet heat processing is small.
耐湿熱性の評価を、湿熱処理前後でのMFR値の上昇率により評価した。
即ち、樹脂組成物のペレットを100℃で5時間以上乾燥した後、ISO1133に準拠して測定温度250℃、荷重2.16kgfの条件で温度90℃、相対湿度95%の環境下で400時間の湿熱処理した後のMFR(メルトフローレイト、単位:g/10分)を測定し、以下の式により湿熱処理後MFR上昇率(単位:%)を求めた。
湿熱処理後MFR上昇率(%)=
{(湿熱処理後のMFR)/(湿熱処理前のMFR)}×100-100(%)
湿熱処理後MFR上昇率(%)が小さいほど、耐湿熱性に優れることを意味する。 [Moisture and heat resistance]
The evaluation of wet heat resistance was evaluated by the rate of increase in MFR value before and after wet heat treatment.
That is, after the pellets of the resin composition are dried at 100 ° C. for 5 hours or more, in accordance with ISO 1133, the measurement temperature is 250 ° C., the load is 2.16 kgf, the temperature is 90 ° C., and the relative humidity is 95%. The MFR (melt flow rate, unit: g / 10 minutes) after the wet heat treatment was measured, and the MFR increase rate (unit:%) after the wet heat treatment was determined by the following formula.
MFR increase rate after wet heat treatment (%) =
{(MFR after wet heat treatment) / (MFR before wet heat treatment)} × 100-100 (%)
It means that it is excellent in heat-and-moisture resistance, so that MFR increase rate (%) after wet heat processing is small.
[モルフォロジー観察]
得られたペレットを、ライカ社製切片作製用ウルトラミクロトームシステムUC7(ダイヤモンドナイフ)を使用して、断面を作製し、真空デバイス社製マルチコーターVES-10を用い、C源で膜厚25nmに蒸着した後に、SEM観察(装置:日立ハイテク製SU8020、測定条件:3kV-400~10000倍、流動方向に直角な方向)して取得した画像を、旭化成エンジニアリング社製画像解析ソフト「A像くん」を用いて画像解析を行った。
画像解析の結果、スチレン系樹脂の分散粒子の面積から真円換算した場合の直径(dnj)を、下記の式から算出し、数平均粒子径(dn)、体積平均粒子径(dv)及び体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)を求めた。 [Morphological observation]
The obtained pellet was made into a cross-section using an ultramicrotome system UC7 (diamond knife) for section preparation manufactured by Leica, and evaporated to a film thickness of 25 nm using a multi-coater VES-10 manufactured by Vacuum Device Co., Ltd. After that, an image obtained by SEM observation (apparatus: SU8020 manufactured by Hitachi High-Tech, measurement condition: 3 kV-400 to 10000 times, direction perpendicular to the flow direction) is used as image analysis software “A Image-kun” manufactured by Asahi Kasei Engineering. Image analysis was performed.
As a result of image analysis, the diameter (dnj) when converted into a perfect circle from the area of the dispersed particles of the styrene resin is calculated from the following formula, and the number average particle diameter (dn), volume average particle diameter (dv), and volume The ratio (dv / dn) between the average particle diameter (dv) and the number average particle diameter (dn) was determined.
得られたペレットを、ライカ社製切片作製用ウルトラミクロトームシステムUC7(ダイヤモンドナイフ)を使用して、断面を作製し、真空デバイス社製マルチコーターVES-10を用い、C源で膜厚25nmに蒸着した後に、SEM観察(装置:日立ハイテク製SU8020、測定条件:3kV-400~10000倍、流動方向に直角な方向)して取得した画像を、旭化成エンジニアリング社製画像解析ソフト「A像くん」を用いて画像解析を行った。
画像解析の結果、スチレン系樹脂の分散粒子の面積から真円換算した場合の直径(dnj)を、下記の式から算出し、数平均粒子径(dn)、体積平均粒子径(dv)及び体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)を求めた。 [Morphological observation]
The obtained pellet was made into a cross-section using an ultramicrotome system UC7 (diamond knife) for section preparation manufactured by Leica, and evaporated to a film thickness of 25 nm using a multi-coater VES-10 manufactured by Vacuum Device Co., Ltd. After that, an image obtained by SEM observation (apparatus: SU8020 manufactured by Hitachi High-Tech, measurement condition: 3 kV-400 to 10000 times, direction perpendicular to the flow direction) is used as image analysis software “A Image-kun” manufactured by Asahi Kasei Engineering. Image analysis was performed.
As a result of image analysis, the diameter (dnj) when converted into a perfect circle from the area of the dispersed particles of the styrene resin is calculated from the following formula, and the number average particle diameter (dn), volume average particle diameter (dv), and volume The ratio (dv / dn) between the average particle diameter (dv) and the number average particle diameter (dn) was determined.
スチレン系樹脂の分散粒子の面積から真円換算した場合の直径(dnj)の計算式は、以下の通りである。
上記式中、Aは、SEM写真を画像解析して求めた分散したスチレン系樹脂の粒子面積である。
The calculation formula of the diameter (dnj) when converted into a perfect circle from the area of the dispersed particles of the styrene resin is as follows.
In the above formula, A is the particle area of the dispersed styrene resin obtained by image analysis of the SEM photograph.
分散したスチレン系樹脂の数平均粒子径(dn)の計算式は、以下の通りである。
The calculation formula of the number average particle diameter (dn) of the dispersed styrene resin is as follows.
分散したスチレン系樹脂の体積平均粒子径(dv)の計算式は、以下の通りである。
The formula for calculating the volume average particle diameter (dv) of the dispersed styrene resin is as follows.
本発明のポリカーボネート樹脂組成物は、機械的物性と耐湿熱性に優れ、モールドデポジットによる金型汚染の問題がないので、電気電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、照明機器等に広く利用でき、また、本発明の製造方法によれば、このようなポリカーボネート樹脂組成物を生産性良く製造できるので、その産業上の利用性は高いものがある。
The polycarbonate resin composition of the present invention is excellent in mechanical properties and heat-and-moisture resistance, and has no problem of mold contamination due to mold deposit. Therefore, electrical and electronic equipment, OA equipment, information terminal equipment, machine parts, home appliances, vehicle parts, It can be widely used for building members, various containers, lighting equipment, and the like, and according to the production method of the present invention, such a polycarbonate resin composition can be produced with high productivity, so that its industrial utility is high. is there.
Claims (16)
- (A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含む樹脂組成物であって、
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。 (A) and (B) based on a total of 100% by mass, a resin composition comprising 60 to 95% by mass of a polycarbonate resin (A) and 40 to 5% by mass of an emulsion-polymerized styrene resin (B),
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass. - ポリカーボネート樹脂(A)のマトリックス中に、スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つスチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある請求項1に記載のポリカーボネート樹脂組成物。 In the matrix of the polycarbonate resin (A), the styrene resin (B) is dispersed in an island shape, the volume average dispersion diameter (dv) is 2.5 μm or less, and the volume of the styrene resin (B). The polycarbonate resin composition according to claim 1, wherein the ratio (dv / dn) of the average particle diameter (dv) to the number average particle diameter (dn) is in the range of 1.0 to 1.5.
- 温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である請求項1又は2に記載のポリカーボネート樹脂組成物。 3. The polycarbonate resin composition according to claim 1, wherein the impact strength retention after heat-moisture treatment for 400 hours in an environment of a temperature of 90 ° C. and a relative humidity of 95% is 50% or more.
- (A)~(C)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%、乳化重合スチレン系樹脂以外の他のスチレン系樹脂(C)0~30質量%を含む樹脂組成物であって、
乳化重合スチレン系樹脂(B)が、スチレン系単量体-シアン化ビニル系単量体及び/又はアルキル(メタ)アクリレート系単量体-ゴム質重合体からなるグラフト共重合体であり、
樹脂組成物を280℃、10分間加熱した際の合計ガス量がデカン質量に換算して、3000質量ppm以下であることを特徴とするポリカーボネート樹脂組成物。 (A) to (C) based on a total of 100% by mass, polycarbonate resin (A) 60 to 95% by mass, emulsion-polymerized styrene resin (B) 40 to 5% by mass, other styrene other than emulsion-polymerized styrene-based resin A resin composition containing 0 to 30% by mass of a resin based resin (C),
The emulsion polymerization styrene resin (B) is a graft copolymer comprising a styrene monomer-vinyl cyanide monomer and / or an alkyl (meth) acrylate monomer-rubber polymer,
A polycarbonate resin composition, wherein the total gas amount when the resin composition is heated at 280 ° C. for 10 minutes is 3000 ppm by mass or less in terms of decane mass. - 他のスチレン系樹脂(C)が、懸濁重合又は塊状重合スチレン系樹脂である請求項4に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 4, wherein the other styrene resin (C) is a suspension polymerization or a block polymerization styrene resin.
- 他のスチレン系樹脂(C)が、懸濁重合AS樹脂である請求項4又は5に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 4 or 5, wherein the other styrene resin (C) is a suspension polymerization AS resin.
- 他のスチレン系樹脂(C)が、塊状重合ABS樹脂である請求項4~6のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 4 to 6, wherein the other styrene-based resin (C) is a block polymerization ABS resin.
- ポリカーボネート樹脂(A)のマトリックス中に、乳化重合スチレン系樹脂(B)が島状に分散しており、その体積平均分散径(dv)が2.5μm以下であり、且つ乳化重合スチレン系樹脂(B)の体積平均粒子径(dv)と数平均粒子径(dn)との比(dv/dn)が1.0~1.5の範囲にある請求項1~7のいずれかに記載のポリカーボネート樹脂組成物。 The emulsion-polymerized styrene resin (B) is dispersed in islands in the matrix of the polycarbonate resin (A), the volume average dispersion diameter (dv) is 2.5 μm or less, and the emulsion-polymerized styrene resin ( The polycarbonate according to any one of claims 1 to 7, wherein the ratio (dv / dn) of the volume average particle diameter (dv) to the number average particle diameter (dn) of B) is in the range of 1.0 to 1.5. Resin composition.
- 温度90℃、相対湿度95%の環境下で400時間湿熱処理した後の衝撃強度保持率が50%以上である請求項1~8のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 8, which has an impact strength retention rate of 50% or more after wet-heat treatment for 400 hours in an environment of a temperature of 90 ° C and a relative humidity of 95%.
- 請求項1~9のいずれかに記載のポリカーボネート樹脂組成物の成形品。 A molded article of the polycarbonate resin composition according to any one of claims 1 to 9.
- (A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口から、ポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。 A polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B). A method of manufacturing by melt-kneading with an extruder,
The extruder has a first raw material supply port on the upstream side and one or more second raw material supply ports on the downstream side thereof,
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
After melt-kneading, after degassing the gas component from the vent port under reduced pressure,
A method for producing a polycarbonate resin composition, comprising: supplying a polycarbonate resin (A) in an amount of A (2) from a second raw material supply port downstream of the vent port. - 前記ガス成分が、乳化剤に由来するガス成分を含む請求項11に記載のポリカーボネート樹脂組成物の製造方法。 The method for producing a polycarbonate resin composition according to claim 11, wherein the gas component contains a gas component derived from an emulsifier.
- (A)と(B)の合計100質量%基準で、ポリカーボネート樹脂(A)60~95質量%、乳化重合スチレン系樹脂(B)40~5質量%を含むポリカーボネート樹脂組成物をベント付二軸押出機にて溶融混練して製造する方法であって、
前記押出機は、上流側にある第1の原料供給口とその下流側の混練部に水注入部とベント口を有し、さらにその下流側に1以上の第2の原料供給口を有しており、
乳化重合スチレン系樹脂(B)の供給量をB(1)、ポリカーボネート樹脂(A)の第1の原料供給口からの供給量をA(1)、ポリカーボネート樹脂(A)の第2の原料供給口からの供給量をA(2)とした時、A(1)とA(2)の合計はポリカーボネート樹脂(A)の全供給量であり、
第1の原料供給口から、スチレン系樹脂(B)及びポリカーボネート樹脂(A)を、
式:B(1)>A(1) (但し、A(1)は0を含む。)
を満たすように供給し、
次いで、混練部に設けた水注入部から水を注入して溶融混練した後、ベント口からガス成分を減圧脱揮した後、
上記ベント口より下流にある第2の原料供給口からポリカーボネート樹脂(A)をA(2)の量で供給する
ことを特徴とするポリカーボネート樹脂組成物の製造方法。 A polycarbonate resin composition containing 60 to 95% by weight of a polycarbonate resin (A) and 40 to 5% by weight of an emulsion-polymerized styrene resin (B) based on a total of 100% by weight of (A) and (B). A method of manufacturing by melt-kneading with an extruder,
The extruder has a first raw material supply port on the upstream side and a water injection part and a vent port in the kneading part on the downstream side, and further has one or more second raw material supply ports on the downstream side. And
The supply amount of the emulsion polymerization styrene resin (B) is B (1), the supply amount of the polycarbonate resin (A) from the first raw material supply port is A (1), and the second raw material supply of the polycarbonate resin (A). When the supply amount from the mouth is A (2), the sum of A (1) and A (2) is the total supply amount of the polycarbonate resin (A),
From the first raw material supply port, styrene resin (B) and polycarbonate resin (A),
Formula: B (1)> A (1) (However, A (1) includes 0.)
Supply to meet and
Then, after injecting water from the water injection part provided in the kneading part and melt-kneading, after degassing the gas component from the vent port,
A method for producing a polycarbonate resin composition, characterized in that the polycarbonate resin (A) is supplied in an amount of A (2) from a second raw material supply port downstream of the vent port. - 前記ガス成分が、乳化剤に由来するガス成分を含む請求項13に記載のポリカーボネート樹脂組成物の製造方法。 The method for producing a polycarbonate resin composition according to claim 13, wherein the gas component contains a gas component derived from an emulsifier.
- 前記ベント式二軸押出機が水注入部とベント口を多段で有する押出機であり、水の注入と減圧脱揮を多段で行う請求項13または14に記載のポリカーボネート樹脂組成物の製造方法。 The method for producing a polycarbonate resin composition according to claim 13 or 14, wherein the vent type twin screw extruder is an extruder having a water injection part and a vent port in multiple stages, and water injection and vacuum devolatilization are performed in multiple stages.
- 請求項11~15の製造方法で得られたポリカーボネート樹脂組成物を成形した成形品。 A molded product obtained by molding the polycarbonate resin composition obtained by the production method of claims 11 to 15.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/580,400 US10385207B2 (en) | 2015-10-02 | 2016-09-20 | Polycarbonate resin composition and method for producing same |
CN201680049306.3A CN107922723B (en) | 2015-10-02 | 2016-09-20 | Polycarbonate resin composition and method for producing same |
KR1020187003603A KR102071812B1 (en) | 2015-10-02 | 2016-09-20 | Polycarbonate resin composition and method for producing same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015196835 | 2015-10-02 | ||
JP2015-196835 | 2015-10-02 | ||
JP2015204209 | 2015-10-16 | ||
JP2015-204209 | 2015-10-16 | ||
JP2016145675A JP2017075297A (en) | 2015-10-16 | 2016-07-25 | Polycarbonate resin composition |
JP2016-145676 | 2016-07-25 | ||
JP2016-145675 | 2016-07-25 | ||
JP2016145676A JP6114447B2 (en) | 2015-10-02 | 2016-07-25 | Method for producing polycarbonate resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057092A1 true WO2017057092A1 (en) | 2017-04-06 |
Family
ID=58423676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077679 WO2017057092A1 (en) | 2015-10-02 | 2016-09-20 | Polycarbonate resin composition and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017057092A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292053A (en) * | 1997-02-18 | 1998-11-04 | Asahi Chem Ind Co Ltd | Preparation of resin composition |
JP2002154114A (en) * | 2000-09-08 | 2002-05-28 | Asahi Kasei Corp | Method for manufacturing fire-retardant polycarbonate resin composition |
JP2003511506A (en) * | 1999-10-04 | 2003-03-25 | バイエル アクチェンゲゼルシャフト | Method and apparatus for continuous production of thermoplastic polymer blends and uses thereof |
JP2006182841A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Dow Ltd | Thermoplastic resin composition and molded product using the same |
JP2012518063A (en) * | 2009-02-19 | 2012-08-09 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | Kneading method for producing a polymer composition having a reduced content of volatile organic compounds |
-
2016
- 2016-09-20 WO PCT/JP2016/077679 patent/WO2017057092A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292053A (en) * | 1997-02-18 | 1998-11-04 | Asahi Chem Ind Co Ltd | Preparation of resin composition |
JP2003511506A (en) * | 1999-10-04 | 2003-03-25 | バイエル アクチェンゲゼルシャフト | Method and apparatus for continuous production of thermoplastic polymer blends and uses thereof |
JP2002154114A (en) * | 2000-09-08 | 2002-05-28 | Asahi Kasei Corp | Method for manufacturing fire-retardant polycarbonate resin composition |
JP2006182841A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Dow Ltd | Thermoplastic resin composition and molded product using the same |
JP2012518063A (en) * | 2009-02-19 | 2012-08-09 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | Kneading method for producing a polymer composition having a reduced content of volatile organic compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1527138B1 (en) | Flame-resistant polycarbonate moulding compounds | |
CN110088200B (en) | Polycarbonate resin composition and molded article | |
KR20010080581A (en) | Polycarbonate resin composition for gas assist injection molding, process for producing blow-molded article, and blow-molded article | |
JP6438634B2 (en) | Polycarbonate resin composition | |
JP7106191B2 (en) | Thermoplastic resin composition | |
JP6114447B2 (en) | Method for producing polycarbonate resin composition | |
JP6810637B2 (en) | Polycarbonate resin composition and molded product | |
KR102092980B1 (en) | Impact-modified polycarbonate compositions for the simplified production of low-temperature resistant components with high-gloss and matt component sections | |
JP2017075297A (en) | Polycarbonate resin composition | |
WO2017057092A1 (en) | Polycarbonate resin composition and method for producing same | |
JP6817018B2 (en) | Method for manufacturing polycarbonate resin composition | |
JP2012131908A (en) | Aromatic polycarbonate resin composition, molding including the same, and method for manufacturing the molding | |
KR102071812B1 (en) | Polycarbonate resin composition and method for producing same | |
JP2020172635A (en) | Polycarbonate resin composition and molding of the same | |
CN114667314A (en) | Thermoplastic resin composition, method for producing thermoplastic resin composition, and molded article comprising thermoplastic resin composition | |
JP2021084942A (en) | Polycarbonate resin composition and molding | |
JP2013133361A (en) | Aromatic polycarbonate resin composition and molded article | |
JP2020076028A (en) | Polycarbonate resin composition and method for producing polycarbonate resin composition pellet | |
JP2016060152A (en) | Thermoplastic resin composition for supercritical foam molding and molded article | |
JP6284863B2 (en) | Thermoplastic resin composition for supercritical foam molding and molded article | |
JP5258131B2 (en) | Polycarbonate-based colored flame-retardant resin composition and process for producing the same | |
WO2015001895A1 (en) | Thermoplastic resin composition | |
KR20180078891A (en) | Resin compositions and articles using the same | |
JP2016060863A (en) | Thermoplastic resin composition for supercritical foam molding and molded article | |
JP2023094527A (en) | Resin composition and molded article of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851266 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187003603 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851266 Country of ref document: EP Kind code of ref document: A1 |