WO2017057076A1 - Method for obtaining nucleated erythrocytes and method for identifying nucleated erythrocytes - Google Patents

Method for obtaining nucleated erythrocytes and method for identifying nucleated erythrocytes Download PDF

Info

Publication number
WO2017057076A1
WO2017057076A1 PCT/JP2016/077555 JP2016077555W WO2017057076A1 WO 2017057076 A1 WO2017057076 A1 WO 2017057076A1 JP 2016077555 W JP2016077555 W JP 2016077555W WO 2017057076 A1 WO2017057076 A1 WO 2017057076A1
Authority
WO
WIPO (PCT)
Prior art keywords
red blood
blood cells
nucleated red
cell
cells
Prior art date
Application number
PCT/JP2016/077555
Other languages
French (fr)
Japanese (ja)
Inventor
中津 雅治
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017057076A1 publication Critical patent/WO2017057076A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for obtaining nucleated red blood cells and a method for identifying nucleated red blood cells, and more particularly to a method for obtaining nucleated red blood cells and a method for identifying nucleated red blood cells for examining nucleated red blood cells in pregnant maternal blood.
  • maternal fetal cells migrate into the blood of a pregnant mother (hereinafter also simply referred to as “maternal”), and these fetal cells circulate in the mother together with blood.
  • maternal blood there is a demand for using maternal blood to reliably analyze fetal cell chromosome DNA (deoxyribonucleic acid) in maternal blood with high reproducibility.
  • nucleated red blood cells that are fetal cells from maternal blood
  • a method of concentrating nucleated red blood cells for example, a technique of removing plasma components and unnecessary red blood cell components using density gradient centrifugation.
  • a technique for separating blood cells by fluorescence or magnetism labeled with the antibody FACS method: Fluorescence Activated Cell Sorting, MACS method: Magnetic Activated Cell Sorting Etc.
  • nucleated red blood cells which are fetal cells in maternal blood, are obtained by combining the method of utilizing the difference in resistance to hemolysis or pH between maternal red blood cells and fetal red blood cells, alone or in combination. Yes.
  • cell fixation processing is performed to stabilize cell morphology and tissue structure.
  • cell fixation is performed by concentrating cells and then suspending them in paraformaldehyde. It is also described that it may be performed in a suspended state on a slide glass.
  • Patent Document 2 describes that as a method for preparing a sample of cells having micronuclei, it can be maintained in a stable state by being suspended in glutaraldehyde and can be made into a non-slide sample.
  • Patent Document 3 discloses a method for concentrating nucleated red blood cells as a method for obtaining nucleated red blood cells, which are fetal cells in maternal blood, for example, plasma components and maternal red blood cells using density gradient centrifugation.
  • Technology that removes components, antibody that specifically immunoreacts with proteins on the surface of leukocytes, magnetic separation of maternal leukocytes (MACS method), antibodies that specifically immunoreact with the gamma chain of fetal hemoglobin It describes that cells are fixed after concentration using a technique (FACS method) or the like that separates fetal nucleated red blood cells using a fluorescent dye.
  • FACS method technique
  • the present invention has been made in view of such circumstances, and a method for obtaining nucleated red blood cells and a method for preventing the loss of cells when concentrating cells and capable of reliably analyzing the target cells.
  • An object is to provide a method for identifying nuclear red blood cells.
  • the present invention provides a fixing step for cell-fixing maternal blood collected from a pregnant mother, a concentration step for concentrating the maternal blood after the fixing step, and maternal blood concentrated by the concentration step. And a method for identifying the nucleated red blood cells.
  • nucleated red blood cells of the present invention since the maternal blood is concentrated after the cell fixing treatment, cell aggregation, cell disruption, centrifugation by operations such as centrifugation and pipetting in the concentration step are performed. Cell loss due to cell adhesion to the wall of the tube or the wall of the microtube can be prevented. Therefore, target nucleated red blood cells can be stably obtained.
  • the cell fixing treatment solution used in the fixing step contains at least one of a glutaraldehyde solution and a paraformaldehyde solution.
  • a cell fixing treatment solution containing at least one of a glutaraldehyde solution and a paraformaldehyde solution, it is possible to fix cells without agglutinating blood cells.
  • resistance to various stresses on blood cells in the operation of concentration treatment in the concentration step can be imparted to blood cells. Therefore, cell loss during the concentration step can be prevented, and target nucleated red blood cells can be reliably obtained.
  • the concentration step is preferably performed by density gradient centrifugation.
  • the concentration of nucleated red blood cells in the maternal blood can be increased efficiently.
  • a fraction enriched with nucleated red blood cells by cell sorting using an antigen-antibody reaction after concentration by density gradient centrifugation.
  • nucleated red blood cells can be further concentrated efficiently by performing cell sorting using antigen-antibody reaction after concentration by density gradient centrifugation.
  • the identification step preferably includes a step of identifying fetal nucleated red blood cells, and is performed by identifying an antibody that specifically reacts with fetal cells.
  • fetal-derived nucleated red blood cells can be identified in the identifying step by performing the identifying step using an antibody that specifically reacts with fetal-derived cells.
  • the method has a washing step of washing maternal blood with a washing solution containing the first cell treatment agent after at least one of the fixing step and the concentration step,
  • the cell treatment agent is preferably at least one selected from albumin, polyethylene glycol, polyvinyl alcohol, and polyvinyl pyrrolidone.
  • the cytoplasm is prevented from being destroyed during each treatment operation by washing with the washing solution containing the first cell treatment agent either after the fixing step or after the concentration step. Can do. Therefore, target nucleated red blood cells can be stably obtained.
  • the first cell treatment agent the above-mentioned cell treatment agent can be preferably used.
  • the washing solution contains a second cell treatment agent, and the second cell treatment agent is at least one selected from sucrose, melezitose, trehalose, and arginine. preferable.
  • the second cell treatment agent can be contained in the blood cells by including the second cell treatment agent in the washing liquid. Therefore, even if the water content of the maternal blood decreases during the treatment operation, the blood cells contain the second cell treatment agent, so that physical damage can be reduced. Furthermore, in the analysis after cell isolation, inhibition of DNA amplification can be reduced, and gene analysis can be reliably performed.
  • the second cell treatment agent the above-mentioned cell treatment agent can be preferably used.
  • the present invention has an analysis process for genetic analysis of nucleated red blood cells obtained by the method for obtaining nucleated red blood cells described above, and in all steps from the fixing process to the analysis process, A method for identifying nucleated red blood cells handled in a solution is provided.
  • blood cells undergo a dry state by handling the cells in a solution in all the steps up to the analysis step for genetic analysis of maternal blood collected from a pregnant mother. And genetic analysis can be performed. Therefore, since physical damage of blood cells can be reduced, gene analysis can be reliably performed.
  • the concentration step is performed, so that the enucleation and the cells in the concentration step are performed.
  • the concentration step is performed, so that the enucleation and the cells in the concentration step are performed.
  • nucleated red blood cells including extremely rare fetal nucleated erythrocytes can be reliably obtained from the maternal blood, and as a result, the acquisition rate of fetal nucleated red blood cells can be increased.
  • FIG. 1 is a flowchart showing a procedure of a method for identifying nucleated red blood cells.
  • FIG. 1 is a flowchart showing a procedure of a method for identifying nucleated red blood cells.
  • the identification method of nucleated red blood cells includes a preparation step (step S12) for collecting maternal blood from a pregnant mother, a fixing step (step S14) for performing cell fixation processing on the maternal blood collected in the preparation step, and a mother body after the fixing step.
  • the method for obtaining nucleated red blood cells includes three steps from the fixing step (step S14) to the identifying step (step S18).
  • the method for identifying nucleated red blood cells includes the fixing step (step S14) to the analyzing step (step S14). It consists of five steps of step S22). Hereinafter, each step will be described.
  • the preparation step is a step of collecting maternal blood from a pregnant mother and preparing the mother blood as a sample for cell fixation treatment.
  • the maternal blood is preferably peripheral blood of a pregnant mother with low invasiveness.
  • Maternal peripheral blood includes maternal eosinophils, neutrophils, basophils, monocytes, lymphocytes and other white blood cells, nucleated red blood cells, maternal nucleated red blood cells, and fetal origin Nucleated red blood cells and the like.
  • Fetal nucleated red blood cells are said to be present in maternal blood from about 6 weeks after pregnancy.
  • the peripheral blood of the mother is examined after about 6 weeks after pregnancy.
  • Examples of cells having a nucleus in the peripheral blood include maternally derived white blood cells, nucleated red blood cells, and rare fetal-derived nucleated red blood cells.
  • Fetal nucleated red blood cells are red blood cell precursors that pass through the placenta and are present in the maternal blood. Since the erythrocytes have chromosomes, fetal chromosomes and fetal genes can be obtained by means of low invasiveness. The fetal nucleated red blood cells are said to be present in a ratio of about 1 in 10 6 cells in the maternal blood, and the existence probability is very low in the peripheral blood of the maternal blood.
  • the pregnant maternal blood can be collected in a blood collection tube containing an anticoagulant.
  • the collected maternal blood can be diluted to about 1.5 to 10 times with physiological saline or phosphate buffered saline (PBS).
  • staining dyes and antibodies can be added to and retained in maternal blood (including diluted ones), or pH can be adjusted.
  • the concentration step is performed after the fixing step, thereby preventing cell alteration during the concentration step and minimizing changes in morphological characteristics. Do not perform blood cell concentration (separation) operations (before the fixation step).
  • ⁇ Fixing step (Step S14)>
  • maternal blood cell fixing processing is performed.
  • Cell fixation treatment is generally performed for the purpose of stabilizing cell morphology and tissue structure, strengthening a cell sample, improving staining properties, inactivating proteolytic enzymes, contamination of microorganisms, and inhibiting corrosion. It is possible to coagulate and dehydrate the cytoplasm and proteins in the nucleus to prevent cell alteration and minimize changes in morphological characteristics.
  • the fixing step of the present embodiment is performed mainly for the purpose of stopping the differentiation of erythroid cells including nucleated red blood cells and strengthening the cell structure.
  • immobilization methods include chemical immobilization for molecular cross-linking and protein insolubilization, and physical immobilization for drying and freezing. After perfusion with physiological saline, perfusion method to quickly fix in deep tissue by perfusing fixative, soak in cryogenic freezing embedding agent (OCT (OptimalCutting Temperature) compound etc.) and freeze A freezing method in which the sample is stored in liquid nitrogen, a drying method in which a sample is air-dried and then heated and fixed on a substrate with a flame or the like can be used.
  • OCT OptimalCutting Temperature
  • any fixing method can be used, but it is necessary to simply fix the cells without aggregating blood cells in the solution.
  • each step up to the analysis step is preferably performed in a solution in order to reduce physical damage of blood cells, and the fixing step is performed by an immersion method or a perfusion method. Preferably it is done.
  • the cell fixing treatment solution used in the immersion method or perfusion method preferably contains at least one of a glutaraldehyde solution and a paraformaldehyde solution.
  • concentration of the cell fixing treatment agent is preferably 0.0001% to 25% by weight with respect to the weight of the cell fixing treatment solution (physiological saline or phosphate buffered saline solvent). More preferably, they are 0.001% or more and 10% or less, More preferably, they are 0.01% or more and 6% or less.
  • the treatment time for the cell fixation treatment can be 5 minutes or longer, but can be set as appropriate according to the concentration of the cell fixation treatment solution.
  • the cell fixing treatment temperature is preferably 1 ° C. or more and 25 ° C. or less, more preferably 2 ° C. or more and 15 ° C. or less, and further preferably 3 ° C. or more and 10 ° C. or less.
  • nucleated red blood cells in the maternal blood subjected to cell fixation treatment in the fixing step are concentrated. Since there are very few nucleated red blood cells contained in maternal blood, it is necessary to concentrate the maternal blood to increase the abundance ratio of nucleated red blood cells.
  • the tube or the tube wall of the microtube in the concentration step Therefore, a fraction containing more nucleated red blood cells can be obtained with certainty.
  • methods used for concentrating maternal blood include known methods such as density gradient centrifugation, cell sorting using antigen-antibody reaction (for example, FACS method and MACS method), lectin method, Alternatively, a filter filtration method or the like can be used.
  • density gradient centrifugation for example, FACS method and MACS method
  • lectin method for example, lectin a filter filtration method or the like
  • the density gradient centrifugation method is a method of separating using the difference in density of components in blood. Density gradient centrifugation is a method that does not use a separation medium, a method that uses one type of separation medium to separate the top and bottom of the separation medium, or uses two types of separation media. Collecting target components (nucleated erythrocytes including fetal nucleated erythrocytes in this embodiment) using a method of separating the density region of the target component so as to be sandwiched between separation media. Can do. Then, nucleated red blood cells can be concentrated from the maternal blood by collecting a fraction containing the target component.
  • the blood sample maternal blood (which may be diluted)
  • the target component is collected to collect nucleated red blood cells. Concentration can be performed.
  • a separation medium is injected into the bottom of a centrifuge tube (or a centrifuge tube), and maternal blood (which may be diluted) is a blood sample on the separation medium. Centrifugation is carried out after laminating the nucleated cells, and nucleated red blood cells can be concentrated by collecting the upper part of the separation medium after centrifugation (which may include a part of the separation medium).
  • the first separation medium is injected into the bottom of the centrifuge tube, the second separation medium is laminated on the first separation medium, and the second separation medium is then separated.
  • the maternal blood (which may be diluted) is laminated on the medium for centrifugation, and then centrifuged, and the layer between the first separation medium and the second separation medium after the centrifugation (first layer)
  • the nucleated red blood cells can be concentrated by collecting a part of one separation medium and / or a part of the second separation medium).
  • the centrifuge tube in which the first separation medium is stacked is cooled before the second separation medium is stacked, mixing in the boundary region between the first and second separation media can be suppressed.
  • the density of maternal blood including fetal nucleated red blood cells is about 1.065 to 1.095 g / mL
  • the density of maternal blood cells is about 1.070 to 1.120 g / mL for red blood cells.
  • Acidocytes are about 1.090 to 1.110 g / mL
  • neutrophils are about 1.075 to 1.100 g / mL
  • basophils are about 1.070 to 1.080 g / mL
  • lymphocytes are about 1.060.
  • About 1.080 g / mL and monocytes are about 1.060-1.070 g / mL.
  • the density of the separation medium to be stacked is set to separate fetal nucleated red blood cells having a density of about 1.060 to 1.100 g / mL from other blood cell components in the mother body.
  • the density of the center of fetal nucleated red blood cells is about 1.080 g / mL. Therefore, two different separation media (1 0.080 g / mL density separation medium and 1.080 g / mL density separation medium), and adjacent layers are stacked to collect nucleated red blood cells derived from the desired fetus at the interface It becomes possible.
  • the density of the first separation medium is set to 1.075 g / mL or more and 1.105 g / mL or less
  • the density of the second separation medium is set to 1.025 g / mL or more and 1.075 g / mL or less.
  • the density of the first separation medium is 1.080 g / mL or more and 1.100 g / mL or less
  • the density of the second separation medium is 1.030 g / mL or more and 1.075 g / mL or less.
  • the first separation medium and the second separation medium may be the same type or different types as long as the effect of the present invention can be realized.
  • Separation media used for density gradient centrifugation include Histopaque (registered trademark) which is a solution containing polysucrose and sodium diatrizoate, OptiPrep (registered trademark) which is a solution containing iodixanol, and a diameter of 15 to 30 nm coated with polyvinylpyrrolidone.
  • a separation medium such as Percoll (registered trademark), which is a solution containing silica sol, and Ficoll-Paque (registered trademark), which is a neutral hydrophilic polymer solution rich in side chains made from sucrose, may be used. it can.
  • Histopaque or OptiPrep and a mixture thereof can be preferably used.
  • the method using the antigen-antibody reaction may be performed alone, but in this embodiment, the antigen-antibody reaction is performed after concentration treatment by density gradient centrifugation in combination with concentration treatment by density gradient centrifugation. It is preferable to carry out a method using
  • the method using the antigen-antibody reaction is a method in which components on the blood cell surface or inside are used as antigens to react with antibodies and used for separation and concentration of blood cells.
  • anti-CD45 antibody for leukocytes for leukocytes
  • anti-CD235a antibody for erythrocytes for erythrocytes
  • anti-CD71 antibody for young blood cells antibodies that specifically react with ⁇ or ⁇ chains of fetal hemoglobin
  • anti-i antibodies that react with fetal blood cells etc. Used to separate and concentrate blood cells by detecting fluorescent dye (FACS), magnetic substance (MACS), polymer beads or the like labeled on the antibody.
  • FACS fluorescent dye
  • MCS magnetic substance
  • the antigen-antibody reaction is preferably performed before the immobilization treatment when a blood cell surface antigen is used.
  • the antigen-antibody reaction can be performed in a preparation step (step S12).
  • the concentration step (step S16) is performed after the fixing step (step S14)
  • the concentration operation using the antigen-antibody reaction is performed after the fixing step.
  • a cell membrane permeation treatment or the like may be required to promote the entry of the labeled antibody into the cell. In this case, it can be carried out before the concentration treatment operation.
  • a known technique using a cell membrane permeabilizing agent such as Triton (registered trademark) X-100 or NP-40 can be used for the cell membrane permeabilizing treatment.
  • an antibody to be used it can be used by appropriately selecting from known antibodies. For example, many antibody reagents are sold on behalf of BD Biosciences.
  • Fluorescent dyes labeled on antibodies can be optimally combined using known techniques depending on the relative fluorescence intensity, antigen density, detection system or number (type) of labels. For example, a large number of fluorescent reagents are sold on behalf of Molecular®Probes (registered trademark).
  • ⁇ Washing process> it is preferable to have a cleaning process for cleaning maternal blood.
  • the washing process can be performed in any of the preparation process (step S12) to the identification process (step S18), but is preferably performed after the fixing process, after the concentration process, or after specimen preparation.
  • cleaning process is not limited to 1 time, It can also carry out after each process. By performing after the fixing step, the fixing processing solution can be removed.
  • phosphate buffer Phosphate Buffered Saline
  • the first cell treatment agent is contained in the washing solution, and the maternal blood can be washed with the washing solution containing the first cell treatment agent.
  • the cytoplasm can be protected by washing with a washing solution containing the first cell treatment agent, the occurrence of a nuclear shadow can be reduced when a blood cell smear sample is prepared.
  • Nucleus is a number of traces in the blood cell smear that the contents of the collapsed cells appear to have spread to the ground, and the nucleated blood cells are broken in the blood cell smear and the nucleus is attached to the ground. it is conceivable that.
  • the nuclear shadow causes contamination in cell isolation, and causes variation in the results of genetic analysis after isolation.
  • At least one selected from albumin, polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) can be used. It is preferable to use albumin, and bovine serum albumin (BSA: Bovine Serum Albumin) is more preferred.
  • the concentration of the first cell treatment agent in the washing liquid is preferably 1.5% by mass or more and 9.0% by mass or less, and more preferably 2.0% by mass or more and 5.0% by mass or less. .
  • concentration is 1.5% by mass or more, the nuclear shadow can be almost eliminated.
  • concentration of a component into the said range.
  • the washing treatment can be performed by containing the second cell treatment agent in the washing solution.
  • the second cell treatment agent at least one selected from sucrose, melezitose, trehalose, and arginine is preferably used, and trehalose is particularly preferable.
  • the concentration of the second cell treatment agent in the washing liquid is preferably 1.2% by mass or more and 9.0% by mass or less, and more preferably 2.0% by mass or more and 5.0% by mass or less. .
  • the concentration of the second cell treatment agent in the washing liquid is preferably 1.2% by mass or more and 9.0% by mass or less, and more preferably 2.0% by mass or more and 5.0% by mass or less. .
  • the content concentration of the second cell treatment agent is preferably 1.2% by mass or more, DNA amplification can be ensured.
  • the nucleated red blood cells are identified in the maternal blood fraction in which the nucleated red blood cells are concentrated by the concentration step.
  • the identification step preferably includes identification of the presence or absence of stained or labeled cell nuclei, identification of fetal or maternal cells, and identification of erythrocytes by observation of hemoglobin spectral information or blood cell morphology. Identification of cell nuclei, fetal or maternal cells, and erythrocytes can be performed by fluorescence observation, bright field observation, or a combination thereof. This identifies nucleated red blood cell candidates that are likely to be of fetal origin.
  • the red blood cell system means red blood cells or nucleated red blood cells.
  • sample preparation it is preferable to handle maternal blood in a solution in all steps from the collection of maternal blood from the pregnant mother to the analysis step of performing genetic analysis.
  • maternal blood in solution blood cells can perform genetic analysis without going through a dry state, so physical damage to blood cells can be reduced. it can.
  • the fraction enriched with nucleated red blood cells after the concentration step can be fractionated into a microwell plate or a microtube.
  • a maternal blood fraction enriched with nucleated red blood cells obtained in the concentration step can be smeared on a substrate to produce a smear, and the identification step can be performed.
  • a method for preparing a smear it can be performed by a known technique.
  • the treatment is performed by bringing a solution containing the second cell treatment agent into contact with blood cells of maternal blood at the time of preparing a smear. be able to. Moreover, you may perform the process by a 2nd cell processing agent in both the washing
  • the treatment of the second cell treatment agent in smearing can be used in addition to the maternal blood fraction immediately before smearing the concentrated maternal blood fraction on the substrate. Moreover, it can carry out by making the solution containing a 2nd cell processing agent contact the smear sample by which the fraction of the concentrated maternal blood was smeared on the board
  • the concentration of the second cell treatment agent in the maternal blood fraction is 1.2. It is preferable to add so that it may become mass% or more and 9.0 mass% or less, More preferably, it is 2.0 mass% or more and 5.0 mass% or less.
  • the concentration of the second cell treatment agent is 1.2 mass% or more and 9.0 mass% or less. It can be processed by contacting with a method of loading a buffer such as a certain phosphate buffer or a method of immersing in a buffer.
  • the smear After the smearing of the maternal blood fraction on the substrate, the smear is dried.
  • the smear can be dried by air drying or the like.
  • damage to the cells due to the drying can be reduced. Since the second cell treatment agent only needs to be present when the smear is air-dried, it can be brought into contact with blood cells either in the washing step and before or after smearing the fraction on the substrate. Good.
  • staining of cell nuclei with a staining dye can be used. Staining is to stain cells using dyes or pigments so that cells in maternal blood, particularly cells having cell nuclei, can be identified by light information.
  • a fluorescent dye or a general dye can be used as the nuclear dye.
  • Fluorescent dyes are dyes that emit light by absorbing irradiated light energy, and are often used for cell staining.
  • the following nuclear staining fluorescent dye can be appropriately selected and used.
  • 7-AAD (7-amino-actinomycin D), ACMA (9-Amino-6-chloro-2-methoxyacridine), Acridine homodimer, Acridine orange, Actinomycin D, BCECF-AM, CyTRAK Orange, DAPI (4 ', 6- diamidino-2-phenylindole), Dihydroethidium, DRAQ5, DRAQ7, Ethidium bromide, Ethidium homodimer-1 (EthD-1), Ethidium homodimer-2 (EthD-2), Ethidium monoazide, Ethidium Monoazide Bromide (ech), (Registered trademark) 33258 (bis-benzimide), Hoechst 33342, Hoechst 34580, Hydroxystilbamidine, LDS 751,
  • a known dye can be used as a general dye.
  • a dye component having absorption in the wavelength region overlapping with the hemoglobin absorber is included as a staining dye component, there may be a negative effect that the ability to detect hemoglobin decreases, and it may be difficult to identify the desired nucleated red blood cell. is there. Therefore, it is preferable to use a staining dye that does not overlap the absorption wavelength region of hemoglobin as the staining dye component.
  • nuclear hematoxylin, toluidine blue, methylene blue, azure blue, cresyl violet, propidium iodide, methyl green, and nuclea fast red can be used.
  • These dyes can be preferably used because they have substantially no adverse effect on the ability to detect hemoglobin.
  • Staining of cell nuclei can be performed in any step from the preparation step (step S12) to the concentration step (step S16) and after preparation of the specimen.
  • fetal cells can be identified by observing a label of an antibody that specifically reacts with fetal cells when concentration is performed using an antigen-antibody reaction.
  • nucleated red blood cells are identified, and the obtained nucleated red blood cells are genetically analyzed, so that fetal nucleated red blood cells or mothers are analyzed. It can be distinguished from nucleated red blood cells of origin.
  • red blood cells and other blood cells can be distinguished using light absorption of hemoglobin present in red blood cells.
  • the red blood cells and cells are hemoglobin. It is possible to distinguish blood cells other than red blood cells that are not absorbed.
  • morphological observation in a bright field using a blue filter or the like is preferable because stronger confirmation that it is an erythrocyte system can be obtained.
  • Step S20 The nucleated red blood cells identified in the identification step are preferably recovered in the acquisition step, and more preferably only the nucleated red blood cells to be analyzed are isolated and recovered.
  • a method for isolating and recovering nucleated red blood cells a known method can be used, and in particular, it is preferable to use a micromanipulation (MM) method or a laser microdissection (LMD) method.
  • MM micromanipulation
  • LMD laser microdissection
  • the micromanipulation system can be combined with various micromanipulators of Narishige Co., Ltd., for example.
  • the laser microdissection system for example, a commercially available system such as a laser microdissection system PALM MicroBeam manufactured by ZEISS can be used.
  • the amplification step is a step of amplifying nucleic acid contained in the chromosome of the nucleated red blood cell identified by the identification step or at least the fetal nucleated red blood cell.
  • DNA is extracted from cells isolated from a microwell plate or a smear, and genome amplification is performed. Genomic amplification can be performed using a commercially available kit.
  • the obtained cells are eluted from the cells through a general method of cell lysis using a surfactant, proteolysis step using protease K, etc.
  • the genomic DNA obtained by the above is used.
  • reagents based on polymerase chain reaction PCR: PolymerasePoChain Reaction
  • PicoPLEX WGA kit New England Biolabs
  • GenomePlex Single Cell Whole Genome Amplification kit Sigma-Aldrich
  • MALBAC Multiple Annealing and Looping
  • PCR PolymerasePoChain Reaction
  • reagents GenomiPhi GE Healthcare
  • REPLI-g Qiagen
  • the amplification product of DNA obtained by whole genome amplification can be confirmed for amplification by agarose gel electrophoresis or the like. Furthermore, it is preferable to purify the whole genome amplification product using QIAquick® PCR® Purification® Kit (QIAGEN).
  • the concentration of the amplification product of DNA obtained by whole genome amplification can be measured using NanoDrop (Thermo Fisher Scientific), Quantus Fluorometer (Promega), BioAnalyzer (Agilent), TapeStation (Agilent). Is possible.
  • nucleated red blood cells or in the case where fetal-derived cells are identified in the identification step, amplify DNA, which is a nucleic acid present at least in the chromosome of fetal-derived nucleated red blood cells.
  • the number of fetal nucleated red blood cells may be at least one, but it is preferable to amplify nucleic acids obtained from a plurality of fetal nucleated red blood cells.
  • the chromosome of the nucleated red blood cell derived from the mother without the numerical abnormality may be selected as a reference for comparing the amount of the amplified product. This is a preferred embodiment.
  • nucleic acid of the chromosome of the nucleated erythrocytes derived from the mother is also a preferred embodiment.
  • confirmation process the amount of amplification product of nucleated red blood cells amplified in the amplification step is confirmed, and fetal nucleated red blood cells are confirmed from the nucleated red blood cells by gene analysis, or the fetal origin existence identified in the identification step. This is a step of confirming nuclear red blood cells.
  • DNA microarray for gene analysis, DNA microarray, digital PCR, next-generation sequencer, and nCounter System (NanoString) can be used.
  • the accuracy and speed of analysis are the number of samples that can be processed at one time. It is preferable to use a next-generation sequencer from the standpoint of a large number of items.
  • next-generation sequencer means a sequencer classified in comparison with a capillary sequencer (called a first generation sequencer) using the Sanger method.
  • Next generation sequencers include second generation, third generation, fourth generation, and sequencers that will be developed in the future.
  • the most popular next-generation sequencer at present is a sequencer based on the principle of determining a base sequence by capturing fluorescence or light emission linked to complementary strand synthesis by DNA polymerase or complementary strand binding by DNA ligase. Specific examples include MiSeq (Illumina), HiSeq2000 (Illumina, HiSeq is a registered trademark), Roche454 (Roche).
  • Burrows-Wheeler TM Aligner can be used as a means for aligning sequence data obtained by a next-generation sequencer, and it is preferable to map sequence data to a known human genome sequence by BWA.
  • means for analyzing genes include SAMtools and BEDtools, and it is preferable to analyze gene polymorphisms, gene mutations, and chromosome numbers using these analysis means.
  • nucleated red blood cells are fetal nucleated red blood cells by determining the allele sequence.
  • the amount of amplification product of DNA having a sequence of a predetermined region of 100 to 150 bp (base pair) with respect to the chromosome is determined with a sequencer.
  • the chromosomes to be examined are preferably chromosome 13, chromosome 18, chromosome 21, and chromosome X.
  • Fetal nucleated red blood cells usually inherit one pair of chromosomes from their father and mother, and have two chromosomes except for sex chromosomes.
  • nucleated erythrocyte is a fetal nucleated erythrocyte or a maternal nucleated erythrocyte.
  • the nucleated red blood cell can be selected as a fetus-derived nucleated red blood cell.
  • the maternal cell to be subjected to genetic analysis is not particularly limited, but it is preferable to perform DNA analysis from leukocytes present in maternal blood.
  • SNPs Single nucleotide Polymorphism
  • CNP copy number polymorphism
  • STR Short Tandem Repeat
  • Fetal genes inherit a pair of genes from their parents, and genetic information is recorded as a sequence of four types of chemical substances. In the case of humans, there are about 3 billion bases, but there is a sequence portion that varies depending on individuals at a ratio of 1 to 1000-2000, and this is called a single nucleotide polymorphism. If this single nucleotide polymorphism is analyzed and compared with leukocytes, which are maternally derived cells, if the single nucleotide polymorphism sequence can be confirmed in nucleated red blood cells, it will be confirmed that the nucleated red blood cells are of fetal origin. be able to.
  • the copy number polymorphism and tandem repetitive sequence is a region in which a DNA sequence is one unit and this DNA sequence is repeatedly arranged in series, and this is a repetitive region. Since fetuses inherit copy number variation and tandem repeats from fathers and mothers, nucleated red blood cells that have copy number variation and tandem repeats that differ from maternal white blood cells are fetal nucleated red blood cells. Can be confirmed.
  • the Y chromosome exists only in males, it does not exist in nucleated red blood cells derived from the mother. Therefore, when the fetus is a boy, if the presence of the Y chromosome can be confirmed, the nucleated red blood cells can be confirmed to be fetal nucleated red blood cells.
  • the determination step is a step of determining the presence or absence of a numerical abnormality of the fetal chromosome by comparing the amount of the amplified DNA product of fetal nucleated red blood cells determined in the determination step.
  • a chromosome other than the target chromosome to be examined for the numerical abnormality is selected and has a predetermined 100-150 bp region sequence
  • the amount of amplification of the DNA amplification product is determined with a sequencer.
  • the reference chromosome is an embodiment in which at least one of the chromosomes other than the target chromosome to be examined for the numerical abnormality of the chromosome of fetal nucleated red blood cells, or a maternally derived nucleated red blood cell. Is selected from the embodiments in which the chromosomes present in the identified cells are selected. In the present embodiment, it is preferable to select a chromosome present in a cell identified as a maternally derived nucleated red blood cell.
  • the amount of the amplification product of the chromosomal DNA derived from the fetus relative to the amount of the chromosomal DNA amplification product derived from the maternal when the normal fetus is pregnant, collected from a plurality of pregnancy mothers in advance.
  • Example 1 By the following method, the preparation process (step S12) to the concentration process (step S16) were performed to prepare a smear.
  • Step S12 After giving informed consent from a pregnant woman, 14 mL of peripheral blood was obtained in two 7 mL vacuum blood collection tubes containing EDTA-2Na (disodium ethylenediaminetetraacetate) as an anticoagulant.
  • EDTA-2Na sodium ethylenediaminetetraacetate
  • the obtained maternal blood was diluted with 4 ° C. diluent (D-PBS ( ⁇ ) + 0.06 mass% EDTA (ethylenediaminetetraacetic acid) +0.1 mass% BSA (bovine serum albumin; Wako Pure Chemical Industries, Ltd.)). Diluted twice.
  • the prepared sample was stored at 4 ° C. until the concentration step.
  • Step S14 The glutaraldehyde solution was added to the maternal blood diluted 2-fold in the preparation step so that the mass concentration after addition was 0.05%, and roller stirring (10 rpm) was performed at 4 ° C. for 30 minutes.
  • step S16 A Histopaque (Sigma Aldrich) was used as a density gradient centrifugation medium, and a separation medium having a density of 1.095 g / mL was prepared. The prepared separation medium (3.0 mL) was pipetted into a centrifuge tube.
  • the upper part of the separation medium injected into the centrifuge tube was overlaid with 5.0 mL of maternal blood that had been fixed for 30 minutes, and centrifuged at 22 ° C. and 1430 rpm for 30 minutes. After completion of the centrifugation, the upper part containing about 2.0 mL of the separation medium was pipetted and transferred to a centrifuge tube to obtain a concentrated maternal blood fraction.
  • the concentrated maternal blood fraction was dispersed as 15 mL with a diluent, and washed by centrifugation at 22 ° C., 2000 rpm for 5 minutes. After completion of the centrifugation, the supernatant was removed with an aspirator.
  • the maternal blood fraction from which the supernatant was removed was washed again under the same conditions, and then the supernatant was removed with an aspirator to obtain a 100 ⁇ L concentrated fraction.
  • the concentrated liquid fraction was collected with a micropipette, spotted on a slide glass, uniformly smeared by a drag glass method, and air-dried to prepare a maternal blood smear.
  • the dried smear was immersed in an 80% ethanol aqueous solution saturated with trehalose for 20 minutes and then air-dried. After the smear was dried, it was immersed in a toluidine blue aqueous solution (containing 0.002% by mass toluidine blue and 3% by mass trehalose) for 5 minutes, then immersed in a 3% by mass trehalose aqueous solution for 5 minutes, and then air-dried.
  • a toluidine blue aqueous solution containing 0.002% by mass toluidine blue and 3% by mass trehalose
  • Example 2 A sample was prepared in the same manner as in Example 1 except that the glutaraldehyde solution in the fixing step was changed to a paraformaldehyde solution in Example 1.
  • Step S12 After giving informed consent from a pregnant woman, 14 mL of peripheral blood was obtained in two 7 mL vacuum blood collection tubes containing EDTA-2Na (disodium ethylenediaminetetraacetate) as an anticoagulant.
  • EDTA-2Na sodium ethylenediaminetetraacetate
  • the obtained maternal blood was diluted at 4 ° C. (D-PBS ( ⁇ ) (Wako Pure Chemical Industries, Ltd.) + 0.06 mass% EDTA + 0.1 mass% BSA (bovine serum albumin; Wako Pure Chemical Industries, Ltd.) ))).
  • the prepared sample was stored at 4 ° C. until the concentration step.
  • step S16 A Histopaque (Sigma Aldrich) was used as a density gradient centrifugation medium, and a separation medium having a density of 1.095 g / mL was prepared. The prepared separation medium (3.0 mL) was pipetted into a centrifuge tube.
  • the top of the separation medium injected into the centrifuge tube was overlaid with 5.0 mL of maternal blood that had been fixed for 30 minutes, and centrifuged at 22 ° C., 1430 rpm for 30 minutes. After completion of the centrifugation, the upper part containing about 2.0 mL of the separation medium was pipetted and transferred to a centrifuge tube to obtain a concentrated maternal blood fraction.
  • the concentrated maternal blood fraction was dispersed as 15 mL with a diluent, and washed by centrifugation at 22 ° C., 2000 rpm for 5 minutes. After completion of the centrifugation, the supernatant was removed with an aspirator.
  • the maternal blood fraction from which the supernatant was removed was washed again under the same conditions, and then the supernatant was removed with an aspirator to obtain a 100 ⁇ L concentrated fraction.
  • Triton X-100 (Sigma Aldrich) was allowed to act at 4 ° C. for 4 minutes.
  • the prepared concentrated liquid fraction dispersion was fractionated into a microtube containing 4 ⁇ L of D-PBS ( ⁇ ) in advance.
  • the nucleated red blood cell fraction collected in a microtube was collected with a micropipette and spotted on a slide glass, and then evenly smeared by the drag glass method and air-dried to prepare a maternal blood smear.
  • the dried smear was immersed in an 80% by weight ethanol aqueous solution saturated with trehalose for 20 minutes and then air-dried.
  • Example 4 Concentrated fraction dispersion prepared in Example 3 (liquid after addition of SYTOX 10 ⁇ L) was added to a fraction corresponding to nucleated red blood cells using Cell Sorter SH800, and 384 wells containing 4 ⁇ L of D-PBS ( ⁇ ) in advance. Sorted into plates.
  • Example 1 A sample was prepared in the same manner as in Example 1 except that the sample was prepared by changing the order of the fixing step and the concentration step in Example 1.
  • nucleated red blood cell candidate cells were identified.
  • nucleated red blood cells were extracted by confirming the presence of hemoglobin by detecting the nucleus in the bright field and observing the blue filter.
  • Examples 3 and 4 extract fetal hemoglobin by fluorescence observation of APC, nuclei by fluorescence observation of SYTOX (registered trademark), and nucleated red blood cells by confirming the presence of hemoglobin by blue filter observation in bright field did.
  • Table 1 shows the results of the number of nucleated red blood cells obtained.
  • the number of nucleated red blood cells shown in Table 1 is a comparison of the number of nucleated red blood cells in maternal blood 2.5 mL of a pregnant woman with the numerical value of Comparative Example 1 being 100. Comparing Example 1 and Comparative Example 1, nucleated red blood cells identified in Example 1 in which the fixing step was performed before the concentration step were compared with Comparative Example 1 in which the fixing step was performed after the concentration step. It was confirmed that the number increased. In Example 2 where the cell fixing solution was a paraformaldehyde solution, the number of nucleated red blood cells identified was equivalent to that in Example 1. Furthermore, from the comparison between Example 1 and Example 3, the number of nucleated red blood cells identified by carrying out cell sorting using antigen-antibody reaction after density gradient centrifugation as cell concentration treatment It was confirmed that there will be more.
  • Step S20 The nucleated red blood cells to be isolated were determined from the information obtained by the identification process. Ten cells were collected in a microtube using a micromanipulator from a maternal blood smear (Examples 1 to 3, Comparative Example 1) or a well plate (Example 4).
  • the obtained amplification product was purified using QIAquick PCR Purification Kit (QIAGEN), and then the concentration of the amplification product was measured using Quantus Fluorometer dsDNA System (Promega).
  • Multiplex PCR Primers used for multiplex PCR were prepared from a plurality of chromosomal positions for the purpose of analyzing fetal cells and analyzing numerical abnormalities of chromosomes.
  • Primers were prepared so that the PCR-amplified base length of each detection region was 100 to 150 base pairs, and the positions of the primers were designed so that each detection region contained a genetic polymorphism. 46 types of primers were mixed so that the final concentration of each primer was 25 nmol / L.
  • the multiplex PCR was performed using a Multiplex PCR Assay kit (manufactured by Takara Bio Inc.). As reaction conditions, 10 ng of whole genome amplification product obtained from each of fetal nucleated erythrocyte candidate cells as a template, 8 ⁇ L of 46 mixed primers, 0.125 ⁇ L ⁇ Multiplex PCR Mix1, 12.5 ⁇ L Multiplex PCR Mix2 The reaction was carried out with 25 ⁇ L final solution with water.
  • the reaction was carried out in 30 cycles of 94 ° C. for 30 seconds, 60 ° C. for 90 seconds, and 72 ° C. for 30 seconds.
  • the obtained PCR product was purified using QIAquick® PCR® Purification® Kit (manufactured by QIAGEN).
  • D501-F (SEQ ID NO: 47), D701-R (SEQ ID NO: 48), D702-R (SEQ ID NO: 49), D703-R (SEQ ID NO: 50), D704-R (SEQ ID NO: 51), D705 -R (SEQ ID NO: 52) and D706-R (SEQ ID NO: 53) were each used at a concentration of 1.25 ⁇ mol / L, and PCR was performed using a Multiplex PCR PCR Assay kit.
  • the reaction was carried out in 5 cycles of 94 ° C. for 45 seconds, 50 ° C. for 60 seconds, 72 ° C. for 30 seconds, 94 ° C. for 45 seconds, and 55 ° C. for 60 seconds. The reaction was performed in 11 cycles of 30 seconds at 72 ° C.
  • the obtained PCR product was purified using AMPure® XP® Kit (manufactured by BECKMAN® COULTER), and the concentration was measured using BioAnalyzer.
  • quantification was performed using KAPA Library Quantification Kits manufactured by Nippon Genetics.
  • Example 4 in which cells were handled in a solution in all steps from obtaining maternal blood from a pregnant mother to genetic analysis, gene analysis was improved compared to Examples 1 to 3 and Comparative Example 1. It was confirmed that

Abstract

Provided are a method for obtaining nucleated erythrocytes and a method for identifying nucleated erythrocytes allowing for reliable analysis of targeted cells. The method for obtaining nucleated erythrocytes comprises: a fixing step of subjecting maternal blood taken from a pregnant mother to a cell fixation process; a concentration step of concentrating the maternal blood after the fixing step; and an identification step of identifying the nucleated erythrocytes in maternal blood, which was concentrated by the concentration step. The method for identifying nucleated erythrocytes comprises an analysis step of genetically analyzing the nucleated erythrocytes, and all of the steps are handled in a solution.

Description

有核赤血球の取得方法および有核赤血球の識別方法Nucleated red blood cell acquisition method and nucleated red blood cell identification method
 本発明は、有核赤血球の取得方法および有核赤血球の識別方法に係り、特に、妊娠母体血中の有核赤血球を検査するための有核赤血球の取得方法および有核赤血球の識別方法に関する。 The present invention relates to a method for obtaining nucleated red blood cells and a method for identifying nucleated red blood cells, and more particularly to a method for obtaining nucleated red blood cells and a method for identifying nucleated red blood cells for examining nucleated red blood cells in pregnant maternal blood.
 出生前診断としては、従来より羊水穿刺、絨毛検査、臍帯穿刺などが行われている。 As a prenatal diagnosis, amniocentesis, villus examination, umbilical cord puncture, and the like have been conventionally performed.
 一方、妊娠母体(以下、単に「母体」ともいう)の血液中に胎児細胞が移行し、この胎児細胞が母体中を血液とともに循環していることが知られている。そこで、母体血を用いて、母体血中の胎児細胞の染色体のDNA(デオキシリボ核酸:deoxyribonucleic acid)を再現性よく確実に分析することが求められている。 On the other hand, it is known that fetal cells migrate into the blood of a pregnant mother (hereinafter also simply referred to as “maternal”), and these fetal cells circulate in the mother together with blood. Thus, there is a demand for using maternal blood to reliably analyze fetal cell chromosome DNA (deoxyribonucleic acid) in maternal blood with high reproducibility.
 しかしながら、母体血液中に存在する胎児細胞(有核赤血球)は、母体血数mL中に数個程度しか存在しないと言われており、この非常に少ない胎児細胞を確実に取得することが、母体血を利用した出生前診断を行う上での大きな課題となっている。 However, it is said that there are only a few fetal cells (nucleated erythrocytes) present in maternal blood in a few milliliters of maternal blood. This is a major issue in conducting prenatal diagnosis using blood.
 母体血中から胎児細胞である有核赤血球を取得する方法として、有核赤血球を濃縮する方法、例えば、密度勾配遠心分離を用いて、血漿成分、および不要な赤血球成分を取り除く技術がある。また、血球の表面や内部に特異的に免疫反応する抗体を用いて、抗体に標識された蛍光や磁気等により血球を分離する技術(FACS法:Fluorescence Activated Cell Sorting、MACS法:Magnetic Activated Cell Sorting等)、母体の赤血球と胎児の赤血球の溶血あるいはpHに対する抵抗性の差異を利用する方法等が単独あるいは組み合わされて、母体血中の胎児細胞である有核赤血球を取得することが行われている。 As a method of obtaining nucleated red blood cells that are fetal cells from maternal blood, there is a method of concentrating nucleated red blood cells, for example, a technique of removing plasma components and unnecessary red blood cell components using density gradient centrifugation. In addition, using an antibody that specifically immunoreacts on the surface or inside of a blood cell, a technique for separating blood cells by fluorescence or magnetism labeled with the antibody (FACS method: Fluorescence Activated Cell Sorting, MACS method: Magnetic Activated Cell Sorting Etc.), nucleated red blood cells, which are fetal cells in maternal blood, are obtained by combining the method of utilizing the difference in resistance to hemolysis or pH between maternal red blood cells and fetal red blood cells, alone or in combination. Yes.
 これらの方法は、血液中の胎児由来の有核赤血球の濃度を増加させ、目的の細胞を取得する確率を高めるのに有用な技術である。しかしながら、これらの技術は、目的の細胞の確率を高めることはできても、確実に短時間で胎児由来の有核赤血球を取得するには不十分であった。 These methods are useful techniques for increasing the concentration of fetal nucleated red blood cells in the blood and increasing the probability of obtaining the target cells. However, although these techniques can increase the probability of the target cell, they are not sufficient for reliably obtaining fetal nucleated red blood cells in a short time.
 また、細胞の形態や組織構造の安定化などのため、細胞の固定処理が行われている。例えば、下記の特許文献1には、胎児の遺伝子的特徴を同定するための細胞の取得方法として、細胞の固定を、細胞を濃縮した後にパラホルムアルデヒドに懸濁させること、また、細胞の固定は、スライドガラス上でも懸濁した状態で行ってもよいことが記載されている。特許文献2には、小核を有する細胞の標本作製方法として、グルタルアルデヒドに懸濁することで安定した状態に保つことができ、非スライド標本とすることができることが記載されている。また、特許文献3には、母体血中の胎児細胞である有核赤血球を取得する方法として、有核赤血球を濃縮する方法、例えば、密度勾配遠心分離を用いて、血漿成分、および母親の赤血球成分を取り除く技術、白血球の表面の蛋白質に特異的に免疫反応する抗体を用いて、磁気により母親の白血球を分離する技術(MACS法)、胎児ヘモグロビンのγ鎖に特異的に免疫反応する抗体と蛍光色素を用いて胎児の有核赤血球を分離する技術(FACS法)などを用い、濃縮後に細胞の固定を行うことが記載されている。 Also, cell fixation processing is performed to stabilize cell morphology and tissue structure. For example, in Patent Document 1 below, as a method for obtaining cells for identifying fetal genetic characteristics, cell fixation is performed by concentrating cells and then suspending them in paraformaldehyde. It is also described that it may be performed in a suspended state on a slide glass. Patent Document 2 describes that as a method for preparing a sample of cells having micronuclei, it can be maintained in a stable state by being suspended in glutaraldehyde and can be made into a non-slide sample. Patent Document 3 discloses a method for concentrating nucleated red blood cells as a method for obtaining nucleated red blood cells, which are fetal cells in maternal blood, for example, plasma components and maternal red blood cells using density gradient centrifugation. Technology that removes components, antibody that specifically immunoreacts with proteins on the surface of leukocytes, magnetic separation of maternal leukocytes (MACS method), antibodies that specifically immunoreact with the gamma chain of fetal hemoglobin It describes that cells are fixed after concentration using a technique (FACS method) or the like that separates fetal nucleated red blood cells using a fluorescent dye.
特表平7-509136号公報Japanese National Patent Publication No. 7-509136 特開2001-149098号公報JP 2001-149098 A 特表2010-525832号公報Special table 2010-525832 gazette
 しかしながら、上記の特許文献に記載されているいずれの方法においても、標的とする細胞を取得する場合に、細胞を濃縮する過程で、遠心分離やピペッティング等による細胞凝集や細胞崩壊、遠心管壁やマイクロチューブ壁への細胞付着による細胞のロス等が生じていた。母体血中の胎児由来の細胞等のように、非常に希少な細胞を探索する場合には、目的の細胞を失うことは極力避ける必要がある。また、目的の細胞を取得した後にDNA増幅を行うが、DNA増幅を確実に行う必要がある。 However, in any of the methods described in the above-mentioned patent documents, in the process of concentrating cells when obtaining target cells, cell aggregation or cell disruption by centrifugation, pipetting, etc. In addition, cell loss due to cell attachment to the microtube wall occurred. When searching for extremely rare cells such as fetal cells in maternal blood, it is necessary to avoid losing the target cells as much as possible. Moreover, although DNA amplification is performed after acquiring the target cell, it is necessary to perform DNA amplification reliably.
 本発明はこのような事情に鑑みてなされたものであり、細胞を濃縮する際の細胞のロスを防止し、目的となる細胞の解析を確実に行うことができる有核赤血球の取得方法および有核赤血球の識別方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for obtaining nucleated red blood cells and a method for preventing the loss of cells when concentrating cells and capable of reliably analyzing the target cells. An object is to provide a method for identifying nuclear red blood cells.
 本発明は上記目的を達成するために、妊娠母体から採取された母体血を細胞固定処理する固定工程と、固定工程後の母体血を濃縮する濃縮工程と、濃縮工程により濃縮された母体血中の有核赤血球を識別する識別工程と、を有する有核赤血球の取得方法を提供する。 In order to achieve the above object, the present invention provides a fixing step for cell-fixing maternal blood collected from a pregnant mother, a concentration step for concentrating the maternal blood after the fixing step, and maternal blood concentrated by the concentration step. And a method for identifying the nucleated red blood cells.
 本発明の有核赤血球の取得方法によれば、細胞固定処理を行った後、母体血の濃縮を行っているので、濃縮工程における遠心分離やピペッティングなどの操作による細胞凝集や細胞崩壊、遠心管の壁やマイクロチューブの壁への細胞付着による細胞のロスなどを防止することができる。したがって、目的となる有核赤血球を安定して取得することができる。 According to the method for obtaining nucleated red blood cells of the present invention, since the maternal blood is concentrated after the cell fixing treatment, cell aggregation, cell disruption, centrifugation by operations such as centrifugation and pipetting in the concentration step are performed. Cell loss due to cell adhesion to the wall of the tube or the wall of the microtube can be prevented. Therefore, target nucleated red blood cells can be stably obtained.
 本発明の別の態様においては、固定工程に用いられる細胞固定処理液が、グルタルアルデヒド溶液、および、パラホルムアルデヒド溶液の少なくともいずれか1つを含むことが好ましい。 In another aspect of the present invention, it is preferable that the cell fixing treatment solution used in the fixing step contains at least one of a glutaraldehyde solution and a paraformaldehyde solution.
 この態様によれば、グルタルアルデヒド溶液、および、パラホルムアルデヒド溶液の少なくともいずれか1つを含む細胞固定処理液を用いることで、血球細胞を凝集させることなく細胞固定をすることができる。また、濃縮工程での濃縮処理の操作における血球細胞への様々なストレスに対する耐性を血球細胞に付与することができる。したがって、濃縮工程時の細胞のロスを防止することができ、目的となる有核赤血球を確実に取得することができる。 According to this aspect, by using a cell fixing treatment solution containing at least one of a glutaraldehyde solution and a paraformaldehyde solution, it is possible to fix cells without agglutinating blood cells. In addition, resistance to various stresses on blood cells in the operation of concentration treatment in the concentration step can be imparted to blood cells. Therefore, cell loss during the concentration step can be prevented, and target nucleated red blood cells can be reliably obtained.
 本発明の別の態様においては、濃縮工程は、密度勾配遠心分離法により行われることが好ましい。 In another aspect of the present invention, the concentration step is preferably performed by density gradient centrifugation.
 この態様によれば、濃縮工程を密度勾配遠心分離法により行うことで、効率的に母体血中の有核赤血球の濃度を高くすることができる。 According to this aspect, by performing the concentration step by density gradient centrifugation, the concentration of nucleated red blood cells in the maternal blood can be increased efficiently.
 本発明の別の態様においては、密度勾配遠心分離法により濃縮を行った後、抗原抗体反応を利用した細胞分取により、有核赤血球が濃縮された画分を得ることが好ましい。 In another embodiment of the present invention, it is preferable to obtain a fraction enriched with nucleated red blood cells by cell sorting using an antigen-antibody reaction after concentration by density gradient centrifugation.
 この態様によれば、密度勾配遠心分離法により濃縮を行った後、抗原抗体反応を利用した細胞分取を行うことで、さらに、有核赤血球の濃縮を効率的に行うことができる。 According to this aspect, nucleated red blood cells can be further concentrated efficiently by performing cell sorting using antigen-antibody reaction after concentration by density gradient centrifugation.
 本発明の別の態様においては、識別工程は、胎児由来の有核赤血球を識別する工程を有し、胎児由来の細胞に特異的に反応する抗体を識別することで行うことが好ましい。 In another aspect of the present invention, the identification step preferably includes a step of identifying fetal nucleated red blood cells, and is performed by identifying an antibody that specifically reacts with fetal cells.
 この態様によれば、胎児由来の細胞に特異的に反応する抗体を用いて識別工程を行うことで、識別工程において、胎児由来の有核赤血球の識別を行うことができる。 According to this aspect, fetal-derived nucleated red blood cells can be identified in the identifying step by performing the identifying step using an antibody that specifically reacts with fetal-derived cells.
 本発明の別の態様においては、固定工程後、または、濃縮工程後の少なくともいずれか一方において、母体血を第1の細胞処理剤を含有する洗浄液で洗浄する洗浄工程を有し、第1の細胞処理剤が、アルブミン、ポリエチレングリコール、ポリビニルアルコール、および、ポリビニルピロリドン、から選ばれる少なくとも1つであることが好ましい。 In another aspect of the present invention, the method has a washing step of washing maternal blood with a washing solution containing the first cell treatment agent after at least one of the fixing step and the concentration step, The cell treatment agent is preferably at least one selected from albumin, polyethylene glycol, polyvinyl alcohol, and polyvinyl pyrrolidone.
 この態様によれば、固定工程後、または、濃縮工程後のいずれか一方において第1の細胞処理剤を含む洗浄液で洗浄することで、各処理操作中に細胞質が破壊されることを防止することができる。したがって、目的となる有核赤血球を安定して取得することができる。第1の細胞処理剤としては、上記の細胞処理剤を好ましく用いることができる。 According to this aspect, the cytoplasm is prevented from being destroyed during each treatment operation by washing with the washing solution containing the first cell treatment agent either after the fixing step or after the concentration step. Can do. Therefore, target nucleated red blood cells can be stably obtained. As the first cell treatment agent, the above-mentioned cell treatment agent can be preferably used.
 本発明の別の態様においては、洗浄液中に、第2の細胞処理剤を含有し、第2の細胞処理剤が、スクロース、メレジトース、トレハロース、および、アルギニンから選ばれる少なくとも1つであることが好ましい。 In another aspect of the present invention, the washing solution contains a second cell treatment agent, and the second cell treatment agent is at least one selected from sucrose, melezitose, trehalose, and arginine. preferable.
 この態様によれば、洗浄液中に第2の細胞処理剤を含有することで、血球細胞に第2の細胞処理剤を含ませることができる。したがって、処理操作中に母体血の水分が少なくなっても血球細胞が第2の細胞処理剤を含むことで、物理的ダメージを減らすことができる。さらに、細胞単離後の解析において、DNA増幅性阻害を低減することができ、遺伝子解析を確実に行うことができる。第2の細胞処理剤としては、上記の細胞処理剤を好ましく用いることができる。 According to this aspect, the second cell treatment agent can be contained in the blood cells by including the second cell treatment agent in the washing liquid. Therefore, even if the water content of the maternal blood decreases during the treatment operation, the blood cells contain the second cell treatment agent, so that physical damage can be reduced. Furthermore, in the analysis after cell isolation, inhibition of DNA amplification can be reduced, and gene analysis can be reliably performed. As the second cell treatment agent, the above-mentioned cell treatment agent can be preferably used.
 本発明の別の態様においては、識別工程で識別された有核赤血球を回収する取得工程を有することが好ましい。 In another aspect of the present invention, it is preferable to have an acquisition step of collecting the nucleated red blood cells identified in the identification step.
 この態様によれば、識別工程で識別した有核赤血球を回収することで、遺伝子解析などの操作を容易に行うことができる。 According to this aspect, by collecting the nucleated red blood cells identified in the identification step, operations such as gene analysis can be easily performed.
 本発明は上記目的を達成するために、上記記載の有核赤血球の取得方法により取得した有核赤血球を遺伝子解析する解析工程を有し、固定工程から解析工程までの全工程において、母体血を溶液中で取り扱う有核赤血球の識別方法を提供する。 In order to achieve the above object, the present invention has an analysis process for genetic analysis of nucleated red blood cells obtained by the method for obtaining nucleated red blood cells described above, and in all steps from the fixing process to the analysis process, A method for identifying nucleated red blood cells handled in a solution is provided.
 本発明の有核赤血球の識別方法によれば、妊娠母体から採取された母体血を遺伝子解析する解析工程までの全工程において、細胞を溶液中で取り扱うことで、血球細胞が乾燥状態を経ることなく、遺伝子解析を行うことができる。したがって、血球細胞の物理的ダメージを低減することができるので、遺伝子解析を確実に行うことができる。 According to the method for identifying nucleated red blood cells of the present invention, blood cells undergo a dry state by handling the cells in a solution in all the steps up to the analysis step for genetic analysis of maternal blood collected from a pregnant mother. And genetic analysis can be performed. Therefore, since physical damage of blood cells can be reduced, gene analysis can be reliably performed.
 本発明の有核赤血球の取得方法および有核赤血球の識別方法によれば、母体血を細胞固定処理する固定工程を行った後、濃縮工程を行うことで、濃縮工程時における、脱核、細胞凝集、細胞崩壊、ピペッティング、遠心分離等による細胞へのストレス、遠心管やマイクロチューブ管壁への細胞付着による細胞ロスとその懸念が不要であり、安心して血液処理操作を行うことができる。また、母体血中から極希少な胎児由来の有核赤血球を含む有核赤血球を確実に取得することができ、結果的に胎児由来の有核赤血球の取得率を上げることができる。 According to the method for obtaining nucleated red blood cells and the method for identifying nucleated red blood cells of the present invention, after performing the fixing step of fixing the maternal blood to the cells, the concentration step is performed, so that the enucleation and the cells in the concentration step are performed. There is no need for stress on cells due to aggregation, cell disruption, pipetting, centrifugation, etc., cell loss due to cell adhesion to the wall of a centrifuge tube or a microtube tube, and its concerns, and blood processing operations can be performed with confidence. In addition, nucleated red blood cells including extremely rare fetal nucleated erythrocytes can be reliably obtained from the maternal blood, and as a result, the acquisition rate of fetal nucleated red blood cells can be increased.
図1は、有核赤血球の識別方法の手順を示したフローチャート図である。FIG. 1 is a flowchart showing a procedure of a method for identifying nucleated red blood cells.
 以下、添付図面に従って、本発明の有核赤血球の取得方法および有核赤血球の識別方法について説明する。なお、本明細書において「~」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。 Hereinafter, the method for obtaining nucleated red blood cells and the method for identifying nucleated red blood cells of the present invention will be described with reference to the accompanying drawings. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 図1は、有核赤血球の識別方法の手順を示したフローチャート図である。有核赤血球の識別方法は、妊娠母体から母体血を採取する準備工程(ステップS12)と、準備工程で採取された母体血を細胞固定処理する固定工程(ステップS14)と、固定工程後の母体血を濃縮する濃縮工程(ステップS16)と、濃縮工程後の母体血中の有核赤血球を識別する識別工程(ステップS18)と、識別工程で識別された有核赤血球を回収する取得工程(ステップS20)と、取得工程により取得した有核赤血球を遺伝子解析する解析工程(ステップS22)と、を有する。本実施形態の有核赤血球の取得方法は、固定工程(ステップS14)から識別工程(ステップS18)の3つの工程からなり、有核赤血球の識別方法は、固定工程(ステップS14)から解析工程(ステップS22)の5つの工程からなる。以下、各工程について説明する。 FIG. 1 is a flowchart showing a procedure of a method for identifying nucleated red blood cells. The identification method of nucleated red blood cells includes a preparation step (step S12) for collecting maternal blood from a pregnant mother, a fixing step (step S14) for performing cell fixation processing on the maternal blood collected in the preparation step, and a mother body after the fixing step. A concentration step (step S16) for concentrating blood, an identification step for identifying nucleated red blood cells in the maternal blood after the concentration step (step S18), and an acquisition step (step for collecting the nucleated red blood cells identified in the identification step) S20) and an analysis step (step S22) for genetic analysis of the nucleated red blood cells acquired in the acquisition step. The method for obtaining nucleated red blood cells according to the present embodiment includes three steps from the fixing step (step S14) to the identifying step (step S18). The method for identifying nucleated red blood cells includes the fixing step (step S14) to the analyzing step (step S14). It consists of five steps of step S22). Hereinafter, each step will be described.
 <準備工程(ステップS12)>
 準備工程は、妊娠母体から母体血を採取し、その母体血を細胞固定処理するサンプルとして準備する工程である。
<Preparation process (step S12)>
The preparation step is a step of collecting maternal blood from a pregnant mother and preparing the mother blood as a sample for cell fixation treatment.
 母体血としては、侵襲性の低い妊娠母体の末梢血であることが好ましい。母体の末梢血には、母体由来の好酸球、好中球、好塩基球、単球、リンパ球等の白血球、核のない赤血球等に加えて、母体由来の有核赤血球、そして胎児由来の有核赤血球等が含まれる。胎児由来の有核赤血球は、妊娠後、6週程度から母体血中に存在すると言われている。出生前診断を行う本実施形態においては、妊娠後6週程度以降の母体の末梢血を検査する。この末梢血中で核を有する細胞としては、母体由来の白血球と有核赤血球および希少な胎児由来の有核赤血球等が存在する。 The maternal blood is preferably peripheral blood of a pregnant mother with low invasiveness. Maternal peripheral blood includes maternal eosinophils, neutrophils, basophils, monocytes, lymphocytes and other white blood cells, nucleated red blood cells, maternal nucleated red blood cells, and fetal origin Nucleated red blood cells and the like. Fetal nucleated red blood cells are said to be present in maternal blood from about 6 weeks after pregnancy. In this embodiment in which prenatal diagnosis is performed, the peripheral blood of the mother is examined after about 6 weeks after pregnancy. Examples of cells having a nucleus in the peripheral blood include maternally derived white blood cells, nucleated red blood cells, and rare fetal-derived nucleated red blood cells.
 胎児由来の有核赤血球は、胎盤を通過して母体の血液中に存在する赤血球前駆体である。この赤血球には染色体が存在するため、侵襲性が低い手段で、胎児由来の染色体および胎児遺伝子の入手が可能となる。この胎児由来の有核赤血球は、母体血中の細胞の10個に1個の割合程度で存在していると言われており、母体の末梢血中には非常に存在確率が低い。 Fetal nucleated red blood cells are red blood cell precursors that pass through the placenta and are present in the maternal blood. Since the erythrocytes have chromosomes, fetal chromosomes and fetal genes can be obtained by means of low invasiveness. The fetal nucleated red blood cells are said to be present in a ratio of about 1 in 10 6 cells in the maternal blood, and the existence probability is very low in the peripheral blood of the maternal blood.
 妊娠母体から母体血を採取する際、妊娠母体血は、抗凝固剤を含有する採血管に採取することができる。採血された母体血は、生理食塩水又はリン酸緩衝生理食塩水(PBS:Phosphate Buffered Saline)で1.5~10倍程度に希釈することができる。また、母体血(希釈されたものを含む)には染色色素や抗体等の添加と保持、あるいはpHの調節を行うことができる。なお、本実施形態においては、固定工程を行った後に、濃縮工程を行うことで、濃縮工程時の細胞の変質などを防ぎ、形態学的特徴の変化を最小限に抑えているので、準備工程(固定工程の前)で血球の濃縮(分離)操作を行ってはならない。 When collecting maternal blood from a pregnant mother, the pregnant maternal blood can be collected in a blood collection tube containing an anticoagulant. The collected maternal blood can be diluted to about 1.5 to 10 times with physiological saline or phosphate buffered saline (PBS). In addition, staining dyes and antibodies can be added to and retained in maternal blood (including diluted ones), or pH can be adjusted. In this embodiment, the concentration step is performed after the fixing step, thereby preventing cell alteration during the concentration step and minimizing changes in morphological characteristics. Do not perform blood cell concentration (separation) operations (before the fixation step).
 <固定工程(ステップS14)>
 次に、固定工程において、母体血の細胞固定処理を行う。細胞固定処理は、一般的には、細胞の形態や組織構造の安定化、細胞サンプルの強化、染色性向上、タンパク質分解酵素の不活性化、微生物のコンタミネーション及び腐食の抑制を目的に行う。細胞質や、核内のタンパク質の凝固及び脱水を行い、細胞の変質を防ぎ、形態学的特徴の変化を最小限に止めることが可能である。本実施形態の固定工程は、有核赤血球を含む赤血球系の血球細胞の分化を止め、細胞構造を強化することを主目的に行うものである。
<Fixing step (Step S14)>
Next, in the fixing step, maternal blood cell fixing processing is performed. Cell fixation treatment is generally performed for the purpose of stabilizing cell morphology and tissue structure, strengthening a cell sample, improving staining properties, inactivating proteolytic enzymes, contamination of microorganisms, and inhibiting corrosion. It is possible to coagulate and dehydrate the cytoplasm and proteins in the nucleus to prevent cell alteration and minimize changes in morphological characteristics. The fixing step of the present embodiment is performed mainly for the purpose of stopping the differentiation of erythroid cells including nucleated red blood cells and strengthening the cell structure.
 固定処理方法としては、分子架橋やタンパク質不溶化を行う化学的固定、乾燥や凍結を行う物理的固定などがあり、具体的には、サンプルを固定液に浸けて固定化する浸漬法、採取して生理食塩水を潅流した後、固定液を潅流することで、深部組織に迅速に固定化する潅流法、低温凍結用包理剤(OCT(Optimal Cutting Temperature)コンパウンド等)に浸してから凍結して液体窒素中で保存する凍結法、サンプルを風乾してから炎等により基板上に加熱固定する乾燥法等により行うことができる。 Examples of immobilization methods include chemical immobilization for molecular cross-linking and protein insolubilization, and physical immobilization for drying and freezing. After perfusion with physiological saline, perfusion method to quickly fix in deep tissue by perfusing fixative, soak in cryogenic freezing embedding agent (OCT (OptimalCutting Temperature) compound etc.) and freeze A freezing method in which the sample is stored in liquid nitrogen, a drying method in which a sample is air-dried and then heated and fixed on a substrate with a flame or the like can be used.
 本実施形態においては、いずれの固定処理方法も使用することができるが、溶液中で血球を凝集させることなく簡便に固定を行うことが必要である。この場合、細胞固定処理液はグルタルアルデヒド溶液あるいはパラホルムアルデヒド溶液を使用することが好ましい。また、後述するように、本実施形態においては、解析工程までの各工程を、血球細胞の物理的ダメージを軽減するため、溶液中で行うことが好ましく、固定工程は、浸漬法または潅流法で行うことが好ましい。 In this embodiment, any fixing method can be used, but it is necessary to simply fix the cells without aggregating blood cells in the solution. In this case, it is preferable to use a glutaraldehyde solution or a paraformaldehyde solution as the cell fixing treatment solution. As will be described later, in this embodiment, each step up to the analysis step is preferably performed in a solution in order to reduce physical damage of blood cells, and the fixing step is performed by an immersion method or a perfusion method. Preferably it is done.
 浸漬法、または、潅流法で用いられる細胞固定処理液としては、グルタルアルデヒド溶液、および、パラホルムアルデヒド溶液の少なくともいずれか1つを含むことが好ましい。細胞固定処理剤の濃度は、細胞固定処理液(生理食塩水、あるいはリン酸緩衝生理食塩水の溶媒)の重量に対して、重量濃度で、0.0001%以上25%以下とすることが好ましく、より好ましくは、0.001%以上10%以下であり、さらに好ましくは、0.01%以上6%以下である。 The cell fixing treatment solution used in the immersion method or perfusion method preferably contains at least one of a glutaraldehyde solution and a paraformaldehyde solution. The concentration of the cell fixing treatment agent is preferably 0.0001% to 25% by weight with respect to the weight of the cell fixing treatment solution (physiological saline or phosphate buffered saline solvent). More preferably, they are 0.001% or more and 10% or less, More preferably, they are 0.01% or more and 6% or less.
 また、細胞固定処理の処理時間は、5分以上とすることができるが、細胞固定処理液の濃度に応じて、適宜設定することができる。細胞固定処理の温度は、1℃以上25℃以下とすることが好ましく、より好ましくは、2℃以上15℃以下であり、さらに好ましくは、3℃以上10℃以下である。 The treatment time for the cell fixation treatment can be 5 minutes or longer, but can be set as appropriate according to the concentration of the cell fixation treatment solution. The cell fixing treatment temperature is preferably 1 ° C. or more and 25 ° C. or less, more preferably 2 ° C. or more and 15 ° C. or less, and further preferably 3 ° C. or more and 10 ° C. or less.
 <濃縮工程(ステップS16)>
 次に、濃縮工程により、固定工程で細胞固定処理した母体血中の有核赤血球の濃縮を行う。母体血中に含まれる有核赤血球は極めて少ないことから、母体血を濃縮して有核赤血球の存在比率を上げることが必要となる。本実施形態においては、濃縮工程の前に固定工程を行うことにより、濃縮工程において、脱核、細胞凝集、細胞崩壊、ピペッティング、遠心分離などによる細胞へのストレス、遠心管又はマイクロチューブ管壁への細胞付着ロスを減らすことができるので、有核赤血球をより多く含有する画分を確実に得ることができる。
<Concentration step (step S16)>
Next, in the concentration step, nucleated red blood cells in the maternal blood subjected to cell fixation treatment in the fixing step are concentrated. Since there are very few nucleated red blood cells contained in maternal blood, it is necessary to concentrate the maternal blood to increase the abundance ratio of nucleated red blood cells. In the present embodiment, by performing a fixing step before the concentration step, stress in the cell due to enucleation, cell aggregation, cell disruption, pipetting, centrifugation, etc., the tube or the tube wall of the microtube in the concentration step Therefore, a fraction containing more nucleated red blood cells can be obtained with certainty.
 濃縮工程において、母体血の濃縮に用いられる方法としては、公知の方法、例えば、密度勾配遠心分離法、抗原抗体反応を利用した細胞分取法(例えば、FACS法やMACS法等)、レクチン法、あるいは、フィルタ濾過法等を用いることができる。本実施形態においては、血球細胞の特性を利用した簡便な濃縮方法として、密度勾配遠心分離法により濃縮処理を行うことが好ましい。 In the concentration step, methods used for concentrating maternal blood include known methods such as density gradient centrifugation, cell sorting using antigen-antibody reaction (for example, FACS method and MACS method), lectin method, Alternatively, a filter filtration method or the like can be used. In the present embodiment, it is preferable to perform concentration treatment by density gradient centrifugation as a simple concentration method utilizing the characteristics of blood cells.
 [密度勾配遠心分離法]
 密度勾配遠心分離法について説明する。密度勾配遠心分離法は、血液中の成分の密度の差を利用して分離する方法である。密度勾配遠心分離法は、分離用媒体を使用しない方法、また、1種の分離用媒体を使用してその分離用媒体の上下で分離する方法、あるいは、2種の分離用媒体を使用して目的の成分の密度領域を分離用媒体の間に挟み込むように分離する方法等を利用して、目的の成分(本実施形態においては、胎児由来の有核赤血球を含む有核赤血球)を集めることができる。そして、目的の成分を含む画分を採取することで、母体血から有核赤血球を濃縮することができる。
[Density gradient centrifugation]
The density gradient centrifugation method will be described. The density gradient centrifugation method is a method of separating using the difference in density of components in blood. Density gradient centrifugation is a method that does not use a separation medium, a method that uses one type of separation medium to separate the top and bottom of the separation medium, or uses two types of separation media. Collecting target components (nucleated erythrocytes including fetal nucleated erythrocytes in this embodiment) using a method of separating the density region of the target component so as to be sandwiched between separation media. Can do. Then, nucleated red blood cells can be concentrated from the maternal blood by collecting a fraction containing the target component.
 分離用媒体を使用しない方法としては、血液試料である母体血(希釈されていてもよい)を遠心管に充填して遠心分離を行った後に、目的の成分を採取することで有核赤血球の濃縮を行うことができる。 As a method that does not use a separation medium, the blood sample, maternal blood (which may be diluted), is filled into a centrifuge tube and centrifuged, and then the target component is collected to collect nucleated red blood cells. Concentration can be performed.
 1種の分離用媒体を使用する方法としては、遠心管(あるいは遠沈管)の底部に分離用媒体を注入し、分離用媒体の上に血液試料である母体血(希釈されていてもよい)を積層した後に遠心分離を行い、遠心分離後の分離用媒体の上部(分離用媒体の一部を含んでもよい)を採取することで有核赤血球の濃縮を行うことができる。 As a method of using one kind of separation medium, a separation medium is injected into the bottom of a centrifuge tube (or a centrifuge tube), and maternal blood (which may be diluted) is a blood sample on the separation medium. Centrifugation is carried out after laminating the nucleated cells, and nucleated red blood cells can be concentrated by collecting the upper part of the separation medium after centrifugation (which may include a part of the separation medium).
 2種の分離用媒体を使用する方法では、遠心管の底部に第1の分離用媒体を注入し、第1の分離用媒体の上に第2の分離用媒体を積層し、第2の分離用媒体の上に血液試料である母体血(希釈されていてもよい)を積層した後に遠心分離にかけ、遠心分離後の第1の分離用媒体と第2の分離用媒体の間の層(第1の分離用媒体および/または第2の分離用媒体のそれぞれ一部を含んでもよい)を採取することで有核赤血球の濃縮を行うことができる。なお、第1の分離用媒体を積層した遠心管を第2の分離用媒体を積層する前に冷却すると、第1と第2の分離用媒体の境界領域での混合を抑制できる。 In the method using two types of separation media, the first separation medium is injected into the bottom of the centrifuge tube, the second separation medium is laminated on the first separation medium, and the second separation medium is then separated. The maternal blood (which may be diluted) is laminated on the medium for centrifugation, and then centrifuged, and the layer between the first separation medium and the second separation medium after the centrifugation (first layer) The nucleated red blood cells can be concentrated by collecting a part of one separation medium and / or a part of the second separation medium). In addition, when the centrifuge tube in which the first separation medium is stacked is cooled before the second separation medium is stacked, mixing in the boundary region between the first and second separation media can be suppressed.
 国際公開WO2012/023298号公報には、胎児由来の有核赤血球を含めた母体の血液の密度が記載されている。その記載によると、想定される胎児由来の有核赤血球の密度は、1.065~1.095g/mL程度、母体の血球の密度は、赤血球が1.070~1.120g/mL程度、好酸球は1.090~1.110g/mL程度、好中球は1.075~1.100g/mL程度、好塩基球が1.070~1.080g/mL程度、リンパ球が1.060~1.080g/mL程度、単球が1.060~1.070g/mL程度である。 International publication WO2012 / 023298 describes the density of maternal blood including fetal nucleated red blood cells. According to the description, the density of nucleated red blood cells derived from fetuses is about 1.065 to 1.095 g / mL, and the density of maternal blood cells is about 1.070 to 1.120 g / mL for red blood cells. Acidocytes are about 1.090 to 1.110 g / mL, neutrophils are about 1.075 to 1.100 g / mL, basophils are about 1.070 to 1.080 g / mL, and lymphocytes are about 1.060. About 1.080 g / mL and monocytes are about 1.060-1.070 g / mL.
 積層する分離用媒体の密度は、密度が1.060~1.100g/mL程度の胎児由来の有核赤血球を、母体中の他の血球成分と分離するために設定される。例えば、2種の分離用媒体を使用する方法では、胎児由来の有核赤血球の中心の密度は、1.080g/mL程度であるため、この密度を挟む2つの異なる密度の分離用媒体(1.080g/mL未満の密度の分離用媒体と1.080g/mLを越える密度の分離用媒体)を作製し、隣接して重層することで、その界面に所望の胎児由来の有核赤血球を集めることが可能となる。好ましくは、第1の分離用媒体の密度を1.075g/mL以上1.105g/mL以下、第2の分離用媒体の密度を1.025g/mL以上1.075g/mL以下として設定することが好ましい。更に好ましくは、第1の分離用媒体の密度を1.080g/mL以上1.100g/mL以下、第2の分離用媒体の密度を1.030g/mL以上1.075g/mL以下とする。本実施形態では、第1の分離用媒体と第2の分離用媒体は同じ種類でも、異なる種類でも、本発明の効果を実現できる限りにおいて制限はない。 The density of the separation medium to be stacked is set to separate fetal nucleated red blood cells having a density of about 1.060 to 1.100 g / mL from other blood cell components in the mother body. For example, in the method using two types of separation media, the density of the center of fetal nucleated red blood cells is about 1.080 g / mL. Therefore, two different separation media (1 0.080 g / mL density separation medium and 1.080 g / mL density separation medium), and adjacent layers are stacked to collect nucleated red blood cells derived from the desired fetus at the interface It becomes possible. Preferably, the density of the first separation medium is set to 1.075 g / mL or more and 1.105 g / mL or less, and the density of the second separation medium is set to 1.025 g / mL or more and 1.075 g / mL or less. Is preferred. More preferably, the density of the first separation medium is 1.080 g / mL or more and 1.100 g / mL or less, and the density of the second separation medium is 1.030 g / mL or more and 1.075 g / mL or less. In the present embodiment, the first separation medium and the second separation medium may be the same type or different types as long as the effect of the present invention can be realized.
 密度勾配遠心分離に用いる分離用媒体としては、ポリスクロースとジアトリゾ酸ナトリウムを含む溶液であるHistopaque(登録商標)、イオジキサノールを含む溶液であるOptiPrep(登録商標)、ポリビニルピロリドンをコーティングした直径15~30nmのシリカゾルを含む溶液であるPercoll(登録商標)、ショ糖から作られた側鎖に富んだ中性の親水性ポリマー溶液であるFicoll-Paque(登録商標)等の分離用媒体を使用することができる。本実施形態では、HistopaqueあるいはOptiPrepおよびその混合物を好ましく使用することができる。 Separation media used for density gradient centrifugation include Histopaque (registered trademark) which is a solution containing polysucrose and sodium diatrizoate, OptiPrep (registered trademark) which is a solution containing iodixanol, and a diameter of 15 to 30 nm coated with polyvinylpyrrolidone. A separation medium such as Percoll (registered trademark), which is a solution containing silica sol, and Ficoll-Paque (registered trademark), which is a neutral hydrophilic polymer solution rich in side chains made from sucrose, may be used. it can. In the present embodiment, Histopaque or OptiPrep and a mixture thereof can be preferably used.
 [抗原抗体反応を利用する方法]
 次に、抗原抗体反応を利用する方法について説明する。抗原抗体反応を利用する方法は単独で行っても良いが、本実施形態においては、密度勾配遠心分離法による濃縮処理と併用し、密度勾配遠心分離法による濃縮処理を行った後、抗原抗体反応を利用する方法を行うことが好ましい。
[Method using antigen-antibody reaction]
Next, a method using an antigen-antibody reaction will be described. The method using the antigen-antibody reaction may be performed alone, but in this embodiment, the antigen-antibody reaction is performed after concentration treatment by density gradient centrifugation in combination with concentration treatment by density gradient centrifugation. It is preferable to carry out a method using
 抗原抗体反応を利用する方法は、血球表面あるいは内部の成分を抗原として、これに抗体を反応させ、血球の分離濃縮に利用する方法である。例えば、白血球に抗CD45抗体、赤血球に抗CD235a抗体、幼弱な血球に抗CD71抗体、胎児ヘモグロビンのγあるいはε鎖等に特異的に反応する抗体、胎児由来血球に反応する抗i抗体等を用い、抗体に標識された蛍光色素(FACS)や磁性体(MACS)あるいはポリマービーズ等を検出することによって血球を分離して濃縮する。 The method using the antigen-antibody reaction is a method in which components on the blood cell surface or inside are used as antigens to react with antibodies and used for separation and concentration of blood cells. For example, anti-CD45 antibody for leukocytes, anti-CD235a antibody for erythrocytes, anti-CD71 antibody for young blood cells, antibodies that specifically react with γ or ε chains of fetal hemoglobin, anti-i antibodies that react with fetal blood cells, etc. Used to separate and concentrate blood cells by detecting fluorescent dye (FACS), magnetic substance (MACS), polymer beads or the like labeled on the antibody.
 抗原抗体反応は、血球の表面抗原を利用する場合、固定処理を行う前に実施することが好ましく、この場合、準備工程(ステップS12)にて実施することができる。しかしながら、本発明においては、固定工程(ステップS14)を行った後、濃縮工程(ステップS16)を行うため、抗原抗体反応を利用する濃縮操作は、固定工程後に実施する。 The antigen-antibody reaction is preferably performed before the immobilization treatment when a blood cell surface antigen is used. In this case, the antigen-antibody reaction can be performed in a preparation step (step S12). However, in the present invention, since the concentration step (step S16) is performed after the fixing step (step S14), the concentration operation using the antigen-antibody reaction is performed after the fixing step.
 また、血球内部の抗原を利用する場合には、標識を付けた抗体の細胞内への進入を促進させるために、細胞膜透過処理などを必要とする場合がある。この場合、濃縮処理の操作を行う前に実施することができる。細胞膜透過処理には、Triton(登録商標) X-100やNP-40などの細胞膜透過処理剤を用いた公知の技術を使用することができる。 In addition, when using an antigen inside a blood cell, a cell membrane permeation treatment or the like may be required to promote the entry of the labeled antibody into the cell. In this case, it can be carried out before the concentration treatment operation. A known technique using a cell membrane permeabilizing agent such as Triton (registered trademark) X-100 or NP-40 can be used for the cell membrane permeabilizing treatment.
 使用する抗体としては、公知の抗体から適切に選択して使用することができ、例えば、BD Biosciences社を代表として、多数の抗体試薬が販売されている。 As an antibody to be used, it can be used by appropriately selecting from known antibodies. For example, many antibody reagents are sold on behalf of BD Biosciences.
 また、抗体に標識される蛍光色素は、相対蛍光強度、抗原密度、検出系あるいは標識数(種類)等により、公知の技術を使用して最適に組み合わせることができる。例えば、Molecular Probes(登録商標)を代表として、多数の蛍光試薬が販売されている。 Fluorescent dyes labeled on antibodies can be optimally combined using known techniques depending on the relative fluorescence intensity, antigen density, detection system or number (type) of labels. For example, a large number of fluorescent reagents are sold on behalf of Molecular®Probes (registered trademark).
 <洗浄工程>
 本実施形態においては、母体血を洗浄処理する洗浄工程を有することが好ましい。洗浄工程は、準備工程(ステップS12)から識別工程(ステップS18)のいずれの工程においても行うことができるが、固定工程の後、濃縮工程の後、または、標本作製後に行うことが好ましい。また、洗浄工程は、1度に限定されず、各工程後に行うこともできる。固定工程の後で行うことで、固定処理液の除去を行うこともできる。
<Washing process>
In the present embodiment, it is preferable to have a cleaning process for cleaning maternal blood. The washing process can be performed in any of the preparation process (step S12) to the identification process (step S18), but is preferably performed after the fixing process, after the concentration process, or after specimen preparation. Moreover, a washing | cleaning process is not limited to 1 time, It can also carry out after each process. By performing after the fixing step, the fixing processing solution can be removed.
 母体血の洗浄を行う場合には、洗浄液としてリン酸緩衝液(PBS:Phosphate Buffered Saline)を用い、洗浄液を母体血、または母体血の画分に添加し、血球を分散後、遠心分離を行うことで、洗浄することができる。 When washing maternal blood, use phosphate buffer (PBS: Phosphate Buffered Saline) as the washing solution, add the washing solution to the maternal blood or maternal blood fraction, disperse the blood cells, and then centrifuge It can be washed.
 本実施形態においては、洗浄液中に第1の細胞処理剤を含有し、第1の細胞処理剤を含む洗浄液で母体血の洗浄を行うこともできる。 In the present embodiment, the first cell treatment agent is contained in the washing solution, and the maternal blood can be washed with the washing solution containing the first cell treatment agent.
 第1の細胞処理剤を含む洗浄液を用いて洗浄を行うことで、細胞質を保護することができるので、血球塗抹試料を作製した場合に核影の発生を低減させることができる。核影とは、血球細胞の塗抹標本において、崩壊した細胞の内容物が下地に広がったと思われる多数の痕跡のことであり、血球塗抹において有核血球が壊れて、核が下地に付着したものと考えられる。核影は、細胞単離においてコンタミネーションの原因となり、単離後の遺伝子解析結果のバラツキの原因となる。第1の細胞処理剤を含む洗浄液を用いて洗浄を行うことで、細胞の保護を行うことができ、塗抹での核影の発生を低減させることができる。 Since the cytoplasm can be protected by washing with a washing solution containing the first cell treatment agent, the occurrence of a nuclear shadow can be reduced when a blood cell smear sample is prepared. Nucleus is a number of traces in the blood cell smear that the contents of the collapsed cells appear to have spread to the ground, and the nucleated blood cells are broken in the blood cell smear and the nucleus is attached to the ground. it is conceivable that. The nuclear shadow causes contamination in cell isolation, and causes variation in the results of genetic analysis after isolation. By washing with a washing liquid containing the first cell treatment agent, cells can be protected and the occurrence of nuclear shadows in smears can be reduced.
 第1の細胞処理剤としては、アルブミン、ポリエチレングリコール(PEG:Polyethylene glycol)、ポリビニルアルコール(PVA:Polyvinyl alcohol)、ポリビニルピロリドン(PVP:Polyvinylpyrrolidone)から選ばれる少なくとも1つを用いることができ、なかでもアルブミンを用いることが好ましく、牛血清アルブミン(BSA:Bovine Serum Albumin)が更に好ましい。 As the first cell treatment agent, at least one selected from albumin, polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) can be used. It is preferable to use albumin, and bovine serum albumin (BSA: Bovine Serum Albumin) is more preferred.
 洗浄液中の第1の細胞処理剤の含有濃度は、1.5質量%以上9.0質量%以下であることが好ましく、2.0質量%以上5.0質量%以下であることがより好ましい。含有濃度が1.5質量%以上であると、核影をほぼ無くすことができる。また、9.0質量%以下とすることで、核影を無くすという効果を有しつつ、第1の細胞処理剤の含有量が過剰量とはならないため好ましい。なお、第1の細胞処理剤として、複数の成分を洗浄液中に含んで使用する場合は、成分の合計濃度を上記範囲内とすることが好ましい。 The concentration of the first cell treatment agent in the washing liquid is preferably 1.5% by mass or more and 9.0% by mass or less, and more preferably 2.0% by mass or more and 5.0% by mass or less. . When the concentration is 1.5% by mass or more, the nuclear shadow can be almost eliminated. Moreover, it is preferable to set it to 9.0 mass% or less because the content of the first cell treatment agent does not become an excessive amount while having the effect of eliminating the nuclear shadow. In addition, when using a several component as a 1st cell treatment agent in a washing | cleaning liquid, it is preferable to make the total density | concentration of a component into the said range.
 また、洗浄液中に第2の細胞処理剤を含有させ、洗浄処理を行うこともできる。第2の細胞処理剤としては、スクロース、メレジトース、トレハロース、アルギニンから選ばれる少なくとも1つを用いることが好ましく、なかでもトレハロースを用いることが好ましい。第2の細胞処理剤で処理することで、識別工程を、塗抹標本を作製して行った場合、塗抹標本から単離した細胞のDNA増幅を確実に行うことができ、解析を確実に行うことができる。基板上に塗抹した細胞が乾燥するときに、第2の細胞処理剤を含む水溶液が細胞内に浸透して、細胞内に第2の細胞処理剤が存在する状態で乾燥される。第2の細胞処理剤が存在しない状態で乾燥が進むと、乾燥によりDNAが損傷する場合があるが、第2の細胞処理剤が存在する状態で乾燥を行うことで、第2の細胞が水の代わりとなり、乾燥によるDNAへの損傷を低減できると推測される。 Also, the washing treatment can be performed by containing the second cell treatment agent in the washing solution. As the second cell treatment agent, at least one selected from sucrose, melezitose, trehalose, and arginine is preferably used, and trehalose is particularly preferable. By treating with the second cell treatment agent, when the identification step is performed by preparing a smear, the DNA isolated from the smear can be reliably amplified, and the analysis can be performed reliably. Can do. When the cells smeared on the substrate are dried, the aqueous solution containing the second cell treatment agent penetrates into the cells and is dried in a state where the second cell treatment agent is present in the cells. If drying proceeds in a state where the second cell treatment agent is not present, DNA may be damaged by the drying. However, when the second cell treatment agent is present, the second cell is washed with water. It is assumed that damage to DNA due to drying can be reduced.
 洗浄液中の第2の細胞処理剤の含有濃度は、1.2質量%以上9.0質量%以下であることが好ましく、2.0質量%以上5.0質量%以下であることがより好ましい。第2の細胞処理剤の含有濃度を1.2質量%以上とすることで、DNA増幅性を確保することができる。また、9.0質量%以下とすることで、DNA増幅性の確保という効果を有しつつ、第2の細胞処理剤の含有量が過剰量とならないため好ましい。なお、第2の細胞処理剤として、複数の成分を洗浄液中に含んで使用する場合は、成分の合計濃度を上記濃度範囲内とすることが好ましい。 The concentration of the second cell treatment agent in the washing liquid is preferably 1.2% by mass or more and 9.0% by mass or less, and more preferably 2.0% by mass or more and 5.0% by mass or less. . By setting the content concentration of the second cell treatment agent to 1.2% by mass or more, DNA amplification can be ensured. Moreover, it is preferable to set it to 9.0 mass% or less because the content of the second cell treatment agent does not become excessive while having the effect of ensuring DNA amplification. In addition, when using as a 2nd cell treatment agent including a some component in a washing | cleaning liquid, it is preferable to make the total density | concentration of a component into the said density | concentration range.
 <識別工程(ステップS18)>
 次に、濃縮工程により有核赤血球が濃縮された母体血の画分において有核赤血球の識別をする。識別工程としては、染色あるいは標識された細胞核の有無の識別、胎児由来または母体由来の細胞の識別、および、ヘモグロビンの分光情報あるいは血球形態の観察による赤血球系の識別を含むことが好ましい。細胞核、胎児由来または母体由来の細胞、および、赤血球系の識別は、蛍光観察、明視野観察あるいはその組み合わせで行うことができる。これにより、胎児由来である可能性が高い有核赤血球の候補を識別する。ここで赤血球系とは赤血球あるいは有核赤血球のことをいう。
<Identification process (step S18)>
Next, the nucleated red blood cells are identified in the maternal blood fraction in which the nucleated red blood cells are concentrated by the concentration step. The identification step preferably includes identification of the presence or absence of stained or labeled cell nuclei, identification of fetal or maternal cells, and identification of erythrocytes by observation of hemoglobin spectral information or blood cell morphology. Identification of cell nuclei, fetal or maternal cells, and erythrocytes can be performed by fluorescence observation, bright field observation, or a combination thereof. This identifies nucleated red blood cell candidates that are likely to be of fetal origin. Here, the red blood cell system means red blood cells or nucleated red blood cells.
 [標本作製]
 本実施形態においては、妊娠母体から母体血を採取してから遺伝子解析を行う解析工程までの全工程において、母体血を溶液中で取り扱うことが好ましい。母体血を溶液中で取り扱うことで、血球細胞が乾燥状態を経ることなく遺伝子解析を行うことができるので、血球細胞の物理的ダメージを低減することができるので、遺伝子解析を確実に行うことができる。
[Sample preparation]
In the present embodiment, it is preferable to handle maternal blood in a solution in all steps from the collection of maternal blood from the pregnant mother to the analysis step of performing genetic analysis. By handling maternal blood in solution, blood cells can perform genetic analysis without going through a dry state, so physical damage to blood cells can be reduced. it can.
 溶液中で識別工程を行う場合は、濃縮工程後の有核赤血球が濃縮された画分を、マイクロウエルプレート、または、マイクロチューブに分取して行うことができる。 When the identification step is performed in a solution, the fraction enriched with nucleated red blood cells after the concentration step can be fractionated into a microwell plate or a microtube.
 また、濃縮工程で得られた有核赤血球が濃縮された母体血の画分を基板に塗抹し、塗抹標本を作製し、識別工程を行うこともできる。塗抹標本の作製方法としては、公知の技術により行うことができる。 Also, a maternal blood fraction enriched with nucleated red blood cells obtained in the concentration step can be smeared on a substrate to produce a smear, and the identification step can be performed. As a method for preparing a smear, it can be performed by a known technique.
 また、洗浄工程において、洗浄液中に第2の細胞処理剤を含まない場合は、塗抹標本作製時に、第2の細胞処理剤を含有する溶液を母体血の血球細胞に接触させることによって処理を行うことができる。また、洗浄工程と塗抹標本の作製時の両方において、第2の細胞処理剤による処理を行ってもよい。 Further, in the washing step, when the second cell treatment agent is not included in the washing solution, the treatment is performed by bringing a solution containing the second cell treatment agent into contact with blood cells of maternal blood at the time of preparing a smear. be able to. Moreover, you may perform the process by a 2nd cell processing agent in both the washing | cleaning process and the time of preparation of a smear.
 塗抹における第2の細胞処理剤の処理は、濃縮された母体血の画分を基板に塗抹する直前に、母体血の画分に加えて使用することができる。また、濃縮された母体血の画分が基板に塗抹された塗抹標本に、第2の細胞処理剤を含有する溶液を接触させることで行うことができる。 The treatment of the second cell treatment agent in smearing can be used in addition to the maternal blood fraction immediately before smearing the concentrated maternal blood fraction on the substrate. Moreover, it can carry out by making the solution containing a 2nd cell processing agent contact the smear sample by which the fraction of the concentrated maternal blood was smeared on the board | substrate.
 塗抹前に、第2の細胞処理剤を母体血の画分に加える場合は、母体血の画分中(または、画分の希釈液中)の第2の細胞処理剤の濃度が1.2質量%以上9.0質量%以下となるように添加することが好ましく、より好ましくは2.0質量%以上5.0質量%以下である。 When the second cell treatment agent is added to the maternal blood fraction before smearing, the concentration of the second cell treatment agent in the maternal blood fraction (or in the dilution of the fraction) is 1.2. It is preferable to add so that it may become mass% or more and 9.0 mass% or less, More preferably, it is 2.0 mass% or more and 5.0 mass% or less.
 また、母体血の画分が塗抹された基板を第2の細胞処理剤を含有する溶液に接触させる場合、第2の細胞処理剤の濃度が1.2質量%以上9.0質量%以下であるリン酸緩衝液等のバッファーを積載する方法、あるいはバッファーに浸漬させる方法により接触させることで処理することができる。 Further, when the substrate on which the maternal blood fraction is smeared is brought into contact with the solution containing the second cell treatment agent, the concentration of the second cell treatment agent is 1.2 mass% or more and 9.0 mass% or less. It can be processed by contacting with a method of loading a buffer such as a certain phosphate buffer or a method of immersing in a buffer.
 母体血の画分の基板上への塗抹終了後、塗抹標本を乾燥する。塗抹標本の乾燥は、風乾などにより行うことができる。この乾燥の際、第2の細胞処理剤が血球細胞中に存在することで、乾燥による細胞へのダメージを低減することができる。第2の細胞処理剤は、塗抹標本の風乾時に存在すればよいため、洗浄工程、および、基板に画分を塗抹する前、または、塗抹後のいずれかにおいて、血球細胞に接触させることができればよい。 After the smearing of the maternal blood fraction on the substrate, the smear is dried. The smear can be dried by air drying or the like. When the second cell treatment agent is present in the blood cells at the time of drying, damage to the cells due to the drying can be reduced. Since the second cell treatment agent only needs to be present when the smear is air-dried, it can be brought into contact with blood cells either in the washing step and before or after smearing the fraction on the substrate. Good.
 次に、細胞核の識別、胎児由来細胞の識別、および、赤血球系の識別について説明する。 Next, the identification of cell nuclei, the identification of fetal cells, and the identification of erythrocytes will be described.
 [細胞核の識別]
 細胞核の有無の識別には、細胞核の染色色素による染色を利用することができる。染色とは、母体血中の細胞、特に、細胞核を有する細胞を光の情報で識別可能にするために染料、あるいは、色素を用いて細胞を染めることである。
[Identification of cell nucleus]
For the identification of the presence or absence of cell nuclei, staining of cell nuclei with a staining dye can be used. Staining is to stain cells using dyes or pigments so that cells in maternal blood, particularly cells having cell nuclei, can be identified by light information.
 本実施形態においては、核染色色素として蛍光色素あるいは一般的な染色色素を使用することができる。 In this embodiment, a fluorescent dye or a general dye can be used as the nuclear dye.
 蛍光色素とは、照射された光エネルギーを吸収して発光する色素のことであり、細胞染色によく用いられている。本実施形態においては、以下の核染色蛍光色素を適切に選択して使用することができる。7-AAD (7-amino-actinomycin D)、ACMA(9-Amino-6-chloro-2-methoxyacridine)、Acridine homodimer、Acridine orange、Actinomycin D、BCECF-AM、CyTRAK Orange、DAPI(4',6-diamidino-2-phenylindole)、Dihydroethidium、DRAQ5、DRAQ7、Ethidium bromide、Ethidium homodimer-1 (EthD-1)、Ethidium homodimer-2 (EthD-2)、Ethidium monoazide、Ethidium Monoazide Bromide (EMA)、Hexidium iodide、Hoechst(登録商標) 33258 (bis-benzimide)、Hoechst 33342、Hoechst 34580、Hydroxystilbamidine、LDS 751、NeuroTrace(登録商標)、Nile blue、Nuclear yellow、NucRedR Live 647、Propidium iodide (PI)、SYBR(登録商標) Green、SYTO(登録商標)、SYTOX(登録商標)、TO-PRO(登録商標)-1Iodide、TO-PRO(登録商標)-3 Iodide、TOTO(登録商標)-1 Iodide、TOTO(登録商標)-3 Iodide、YO-PRO(登録商標)-1 Iodide、YO-PRO(登録商標)-3 Iodide、YOYO(登録商標)-1 Iodide、YOYO(登録商標)-3 Iodide。 Fluorescent dyes are dyes that emit light by absorbing irradiated light energy, and are often used for cell staining. In the present embodiment, the following nuclear staining fluorescent dye can be appropriately selected and used. 7-AAD (7-amino-actinomycin D), ACMA (9-Amino-6-chloro-2-methoxyacridine), Acridine homodimer, Acridine orange, Actinomycin D, BCECF-AM, CyTRAK Orange, DAPI (4 ', 6- diamidino-2-phenylindole), Dihydroethidium, DRAQ5, DRAQ7, Ethidium bromide, Ethidium homodimer-1 (EthD-1), Ethidium homodimer-2 (EthD-2), Ethidium monoazide, Ethidium Monoazide Bromide (ech), (Registered trademark) 33258 (bis-benzimide), Hoechst 33342, Hoechst 34580, Hydroxystilbamidine, LDS 751, NeuroTrace (registered trademark), Nile blue, Nuclear yellow, NucRedR Live 647, Propidium iodide (PI), SYBR (registered trademark) Green , SYTO (registered trademark), SYTOX (registered trademark), TO-PRO (registered trademark) -1Iodide, TO-PRO (registered trademark) -3 Iodide, TOTO (registered trademark) -1 Iodide, TOTO (registered trademark) -3 Iodide, YO-PRO (registered trademark) -1 Iodide, YO-PRO (registered trademark) -3 Iodide, YOYO (registered trademark) -1 Iodide, YOYO (registered trademark) -3 Iodide.
 また、一般的な染色色素として公知の色素を使用することができる。しかしながら、染色色素成分としてヘモグロビンの吸収体と重なる波長領域に吸収をもつ色素成分を含む場合、ヘモグロビンの検出能力が低下する弊害が生じる場合があり、求める有核赤血球の識別が困難となる場合がある。したがって、染色色素成分は、ヘモグロビンが有する吸収波長領域と重ならない染色色素を用いることが好ましい。 In addition, a known dye can be used as a general dye. However, when a dye component having absorption in the wavelength region overlapping with the hemoglobin absorber is included as a staining dye component, there may be a negative effect that the ability to detect hemoglobin decreases, and it may be difficult to identify the desired nucleated red blood cell. is there. Therefore, it is preferable to use a staining dye that does not overlap the absorption wavelength region of hemoglobin as the staining dye component.
 本実施形態においては、核ヘマトキシリン、トルイジンブルー、メチレンブルー、アズールブルー、クレシルバイオレット、ヨウ化プロピジウム、メチルグリーン、ヌクレアファストレッドを使用することができる。これらの染色色素は、ヘモグロビン検出能力を低下させる弊害が実質的にないため好ましく使用できる。 In this embodiment, nuclear hematoxylin, toluidine blue, methylene blue, azure blue, cresyl violet, propidium iodide, methyl green, and nuclea fast red can be used. These dyes can be preferably used because they have substantially no adverse effect on the ability to detect hemoglobin.
 細胞核の染色は、準備工程(ステップS12)から濃縮工程(ステップS16)のいずれかの工程、および標本作製後において行うことができる。 Staining of cell nuclei can be performed in any step from the preparation step (step S12) to the concentration step (step S16) and after preparation of the specimen.
 [胎児由来細胞の識別]
 胎児由来細胞の識別は、濃縮工程において、抗原抗体反応を利用して濃縮を行った場合、胎児細胞に特異的に反応する抗体の標識を観察することで行うことができる。
[Identification of fetal cells]
In the concentration step, fetal cells can be identified by observing a label of an antibody that specifically reacts with fetal cells when concentration is performed using an antigen-antibody reaction.
 濃縮工程において、光源抗体反応を利用する方法を用いない場合は、識別工程においては、有核赤血球の識別を行い、取得した有核赤血球を遺伝子解析することで、胎児由来の有核赤血球あるいは母体由来の有核赤血球に識別することができる。 In the concentration step, when a method using a light source antibody reaction is not used, in the identification step, nucleated red blood cells are identified, and the obtained nucleated red blood cells are genetically analyzed, so that fetal nucleated red blood cells or mothers are analyzed. It can be distinguished from nucleated red blood cells of origin.
 [赤血球系識別]
 本実施形態においては、赤血球中に存在するヘモグロビンが有する光吸収を利用して、赤血球系とそれ以外の血球を識別することができる。濃縮工程により有核赤血球が濃縮された母体血の画分に対して、最大ピーク波長が380nmから470nmの波長の光を照射してその透過画像を取得することにより、赤血球系と、細胞にヘモグロビン吸収の無い赤血球以外の血球と、を識別することができる。また、ブルーフィルターなどを用いた明視野における形態観察は、赤血球系であることのより強い確証を得ることができるので好ましい。
[Red blood cell identification]
In the present embodiment, red blood cells and other blood cells can be distinguished using light absorption of hemoglobin present in red blood cells. By irradiating the fraction of maternal blood in which nucleated red blood cells are concentrated in the concentration step with light having a maximum peak wavelength of 380 nm to 470 nm to obtain a transmission image, the red blood cells and cells are hemoglobin. It is possible to distinguish blood cells other than red blood cells that are not absorbed. In addition, morphological observation in a bright field using a blue filter or the like is preferable because stronger confirmation that it is an erythrocyte system can be obtained.
 <取得工程(ステップS20)>
 識別工程で識別された有核赤血球を取得工程で回収することが好ましく、解析の対象となる有核赤血球のみを単離して回収することが更に好ましい。有核赤血球の単離回収方法としては、公知の方法を用いることができ、特に、マイクロマニピュレーション(MM:micromanipulation)法あるいはレーザーマイクロダイセクション(LMD:laser microdissection)法を用いることが好ましい。
<Acquisition Step (Step S20)>
The nucleated red blood cells identified in the identification step are preferably recovered in the acquisition step, and more preferably only the nucleated red blood cells to be analyzed are isolated and recovered. As a method for isolating and recovering nucleated red blood cells, a known method can be used, and in particular, it is preferable to use a micromanipulation (MM) method or a laser microdissection (LMD) method.
 マイクロマニピュレーションシステムは、例えば、株式会社ナリシゲ社の各種マイクロマニピュレーターを組み合せることができる。また、レーザーマイクロダイセクションシステムは、例えば、ZEISS社のレーザーマイクロダイセクションシステムPALM MicroBeam等の市販されているシステムを使用することができる。 The micromanipulation system can be combined with various micromanipulators of Narishige Co., Ltd., for example. As the laser microdissection system, for example, a commercially available system such as a laser microdissection system PALM MicroBeam manufactured by ZEISS can be used.
 <解析工程(ステップS22)>
 解析工程は、取得工程で単離回収した有核赤血球の染色体に含まれる核酸を増幅する増幅工程と、増幅した有核赤血球の増幅産物の量を確定するとともに、遺伝子解析により胎児由来の有核赤血球であることを確認する確定工程と、胎児由来の有核赤血球のDNAの増幅産物の量を比較することで、胎児由来の染色体の数的異常の存在の有無を決定する決定工程からなる。
<Analysis process (step S22)>
In the analysis step, the amplification step of amplifying the nucleic acid contained in the chromosome of the nucleated erythrocyte isolated and recovered in the acquisition step, the amount of the amplified product of the nucleated erythrocyte is determined, and the nucleated nuclei derived from the fetus by gene analysis It consists of a determination step for confirming the presence of red blood cells and a determination step for determining the presence or absence of a numerical abnormality of fetal chromosomes by comparing the amount of amplified DNA of fetal nucleated red blood cells.
 [増幅工程]
 増幅工程は、識別工程により識別された有核赤血球、または、少なくとも胎児由来の有核赤血球の染色体に含まれる核酸を増幅する工程である。増幅工程は、マイクロウエルプレートなど、または、塗抹標本から単離された細胞からDNAを抽出して、ゲノム増幅を行う。ゲノム増幅は、市販のキットを用いて行うことが可能である。
[Amplification process]
The amplification step is a step of amplifying nucleic acid contained in the chromosome of the nucleated red blood cell identified by the identification step or at least the fetal nucleated red blood cell. In the amplification step, DNA is extracted from cells isolated from a microwell plate or a smear, and genome amplification is performed. Genomic amplification can be performed using a commercially available kit.
 本実施形態で用いるゲノム増幅法としては、取得した細胞から、一般的な方法である界面活性剤を用いた細胞溶解、プロテアーゼK等を用いたタンパク質分解工程を経ることで、細胞から溶出することにより得られたゲノムDNAを用いる。 As the genome amplification method used in this embodiment, the obtained cells are eluted from the cells through a general method of cell lysis using a surfactant, proteolysis step using protease K, etc. The genomic DNA obtained by the above is used.
 全ゲノム増幅試薬としては、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)に基づく試薬PicoPLEX WGA kit(New England Biolabs社)、GenomePlex Single Cell Whole Genome Amplification kit(Sigma-Aldrich社)、MALBAC(Multiple Annealing and Looping-Based Amplification Cycles)法(国際公開WO2012/166425A2号公報に掲載)を用いることができる。また、鎖置換型DNA合成反応に基づく試薬GenomiPhi(GEヘルスケア社)、REPLI-g(Qiagen社)も同様に用いることができる。本実施形態では、PicoPLEX WGA kit(New England Biolabs社)を用いることが好ましい。 As a whole genome amplification reagent, reagents based on polymerase chain reaction (PCR: PolymerasePoChain Reaction) PicoPLEX WGA kit (New England Biolabs), GenomePlex Single Cell Whole Genome Amplification kit (Sigma-Aldrich), MALBAC (Multiple Annealing and Looping) -Based (Amplification Cycles) method (published in International Publication WO2012 / 166425A2) can be used. Further, reagents GenomiPhi (GE Healthcare) and REPLI-g (Qiagen) based on strand displacement DNA synthesis reaction can be used in the same manner. In this embodiment, it is preferable to use PicoPLEX WGA kit (New England Biolabs).
 全ゲノム増幅により得られたDNAの増幅産物は、アガロースゲル電気泳動などにより増幅有無を確認することが可能である。更に、全ゲノム増幅産物をQIAquick PCR Purification Kit(QIAGEN社)を用いて精製することが好ましい。 The amplification product of DNA obtained by whole genome amplification can be confirmed for amplification by agarose gel electrophoresis or the like. Furthermore, it is preferable to purify the whole genome amplification product using QIAquick® PCR® Purification® Kit (QIAGEN).
 また、全ゲノム増幅により得られたDNAの増幅産物の濃度について、NanoDrop(Thermo Fisher Scientific社)、Quantus Fluorometer(Promega社)、BioAnalyzer(Agilent社)、TapeStation(Agilent社)を用いて測定することが可能である。 In addition, the concentration of the amplification product of DNA obtained by whole genome amplification can be measured using NanoDrop (Thermo Fisher Scientific), Quantus Fluorometer (Promega), BioAnalyzer (Agilent), TapeStation (Agilent). Is possible.
 増幅工程においては、有核赤血球、または、識別工程において胎児由来細胞の識別をしている場合は、少なくとも胎児由来の有核赤血球の染色体に存在する核酸であるDNAを増幅する。胎児由来の有核赤血球の数は、少なくとも1つでよいが、複数の胎児由来の有核赤血球から取得した核酸を増幅することが好ましい。更には、後の決定工程で胎児の染色体の数的異常を決定するために、増幅産物の量を比較する基準として、数的異常が存在しない母体由来の有核赤血球の染色体を選択することも好ましい態様である。母体由来の有核赤血球を基準として比較する場合、母体由来の有核赤血球の染色体の核酸を増幅することも好ましい態様の一つである。 In the amplification step, nucleated red blood cells, or in the case where fetal-derived cells are identified in the identification step, amplify DNA, which is a nucleic acid present at least in the chromosome of fetal-derived nucleated red blood cells. The number of fetal nucleated red blood cells may be at least one, but it is preferable to amplify nucleic acids obtained from a plurality of fetal nucleated red blood cells. In addition, in order to determine the numerical abnormality of the fetal chromosome in the subsequent determination step, the chromosome of the nucleated red blood cell derived from the mother without the numerical abnormality may be selected as a reference for comparing the amount of the amplified product. This is a preferred embodiment. When comparing nucleated erythrocytes derived from the mother, the nucleic acid of the chromosome of the nucleated erythrocytes derived from the mother is also a preferred embodiment.
 [確定工程]
 確定工程は、増幅工程により増幅した有核赤血球の増幅産物の量を確定するとともに、遺伝子解析により有核赤血球から胎児由来の有核赤血球を確認する、あるいは、識別工程で識別した胎児由来の有核赤血球を確認する工程である。
[Confirmation process]
In the confirmation step, the amount of amplification product of nucleated red blood cells amplified in the amplification step is confirmed, and fetal nucleated red blood cells are confirmed from the nucleated red blood cells by gene analysis, or the fetal origin existence identified in the identification step. This is a step of confirming nuclear red blood cells.
 〔遺伝子解析〕
 遺伝子解析は、DNAマイクロアレイ、デジタルPCR、次世代シーケンサー、nCounter System(NanoString社)を用いることが可能であるが、本実施形態においては、解析の精度及び速さ、1度に処理可能な試料数の多さ等の点で次世代シーケンサーを用いることが好ましい。
[Gene analysis]
For gene analysis, DNA microarray, digital PCR, next-generation sequencer, and nCounter System (NanoString) can be used. In this embodiment, the accuracy and speed of analysis are the number of samples that can be processed at one time. It is preferable to use a next-generation sequencer from the standpoint of a large number of items.
 本実施形態において次世代シーケンサーとは、サンガー法を利用したキャピラリーシーケンサー(第一世代シーケンサーと呼ばれる)に対比して分類されるシーケンサーを意味する。次世代シーケンサーは、第二世代、第三世代、第四世代、及び今後開発されるシーケンサーを含む。現時点で最も普及している次世代シーケンサーは、DNAポリメラーゼによる相補鎖合成又はDNAリガーゼによる相補鎖結合に連動した蛍光又は発光をとらえ塩基配列を決定する原理のシーケンサーである。具体的には、MiSeq(Illumina社)、HiSeq2000(Illumina社、HiSeqは登録商標)、Roche454(Roche社)などが挙げられる。 In the present embodiment, the next-generation sequencer means a sequencer classified in comparison with a capillary sequencer (called a first generation sequencer) using the Sanger method. Next generation sequencers include second generation, third generation, fourth generation, and sequencers that will be developed in the future. The most popular next-generation sequencer at present is a sequencer based on the principle of determining a base sequence by capturing fluorescence or light emission linked to complementary strand synthesis by DNA polymerase or complementary strand binding by DNA ligase. Specific examples include MiSeq (Illumina), HiSeq2000 (Illumina, HiSeq is a registered trademark), Roche454 (Roche).
 増幅工程で得られたDNAの増幅産物を次世代シーケンサーで解析する場合、全ゲノムシーケンス、エキソームシーケンス、アンプリコンシーケンスを用いることが可能である。 When analyzing amplification products of DNA obtained in the amplification process using a next-generation sequencer, it is possible to use whole genome sequences, exome sequences, and amplicon sequences.
 次世代シーケンサーで得られた配列データをアライメントする手段としては、Burrows-Wheeler Aligner(BWA)が挙げられ、BWAによって既知のヒトゲノム配列へ配列データをマッピングすることが好ましい。遺伝子を解析する手段としては、SAMtools及びBEDtoolsが挙げられ、これらの解析手段により遺伝子多型、遺伝子変異、及び染色体数を解析することが好ましい。 Burrows-Wheeler ™ Aligner (BWA) can be used as a means for aligning sequence data obtained by a next-generation sequencer, and it is preferable to map sequence data to a known human genome sequence by BWA. Examples of means for analyzing genes include SAMtools and BEDtools, and it is preferable to analyze gene polymorphisms, gene mutations, and chromosome numbers using these analysis means.
 《対立遺伝子による分析》
 増幅工程により全ゲノム増幅を行った後、対立遺伝子の配列を決定することで、有核赤血球が胎児由来の有核赤血球であることを確認することができる。
《Allele analysis》
After performing whole genome amplification by the amplification step, it is possible to confirm that the nucleated red blood cells are fetal nucleated red blood cells by determining the allele sequence.
 識別工程において有核赤血球として識別された細胞あるいは胎児由来の有核赤血球として同定された細胞で、ポリメラーゼ連鎖反応(増幅工程)により増幅されたDNAであって、数的異常を検査する対象となる染色体に対して、あらかじめ決定された100~150bp(base pair:ベースペア)の領域の配列を有するDNAの増幅産物の量をシーケンサーで求める。本実施形態においては、検査する対象となる染色体は、13番染色体、18番染色体、21番染色体、X染色体であることが好ましい。胎児由来の有核赤血球は、通常、父親および母親から1組ずつの染色体を受け継いでおり、性染色体を除き、2本ずつの染色体を有している。これらの1組の染色体の対立遺伝子を分析し、父親由来の遺伝子の存在を確認することで、有核赤血球が胎児由来の有核赤血球か母体由来の有核赤血球かを選別することができる。 A cell identified as a nucleated red blood cell in the identification step or a cell identified as a fetus-derived nucleated red blood cell, amplified by the polymerase chain reaction (amplification step), and subjected to numerical abnormality inspection The amount of amplification product of DNA having a sequence of a predetermined region of 100 to 150 bp (base pair) with respect to the chromosome is determined with a sequencer. In the present embodiment, the chromosomes to be examined are preferably chromosome 13, chromosome 18, chromosome 21, and chromosome X. Fetal nucleated red blood cells usually inherit one pair of chromosomes from their father and mother, and have two chromosomes except for sex chromosomes. By analyzing the alleles of these one set of chromosomes and confirming the presence of the gene derived from the father, it is possible to select whether the nucleated erythrocyte is a fetal nucleated erythrocyte or a maternal nucleated erythrocyte.
 父親由来の遺伝子の存在の確認は、母親由来の細胞についても同時に遺伝子解析を行い、母親由来の細胞にはない対立遺伝子が存在する場合に、この対立遺伝子が父親由来の遺伝子であると認定することができる。父親由来の遺伝子が確認された場合、その有核赤血球は胎児由来の有核赤血球であると選別することができる。遺伝子解析を行う母親由来の細胞は、特に限定されないが、母体血中に存在する白血球からのDNA分析を行うことが好ましい。 Confirmation of the presence of the gene derived from the father is also performed on the mother-derived cell at the same time, and if there is an allele that does not exist in the cell derived from the mother, this allele is recognized as a gene derived from the father. be able to. When a gene derived from a father is confirmed, the nucleated red blood cell can be selected as a fetus-derived nucleated red blood cell. The maternal cell to be subjected to genetic analysis is not particularly limited, but it is preferable to perform DNA analysis from leukocytes present in maternal blood.
 分析する対立遺伝子は、一塩基多型(SNP(SNPs):Single Nucleotide Polymorphism)、または、コピー数多型(CNP(CNPs)Copy Number Polymorphism),縦列型反復配列(STR:Short Tandem Repeat)を分析することが好ましい。 Alleles to be analyzed are single nucleotide polymorphisms (SNPs (SNPs): Single Nucleotide Polymorphism) or copy number polymorphisms (CNP (CNPs) Copy Number Polymorphism), tandem repeats (STR: Short Tandem Repeat) It is preferable to do.
 胎児の遺伝子は、両親から一対ずつの遺伝子を受け継いでおり、遺伝情報は4種類の塩基の化学物質の配列で記録されている。ヒトの場合には、約30億個の塩基があるが、1000~2000個に1個の割合で、個人によって異なる配列部分が存在し、これを一塩基多型という。この一塩基多型を分析し、母体由来の細胞である白血球と比較することで、有核赤血球に一塩基多型の配列を確認することができれば、有核赤血球は胎児由来であると確認することができる。 Fetal genes inherit a pair of genes from their parents, and genetic information is recorded as a sequence of four types of chemical substances. In the case of humans, there are about 3 billion bases, but there is a sequence portion that varies depending on individuals at a ratio of 1 to 1000-2000, and this is called a single nucleotide polymorphism. If this single nucleotide polymorphism is analyzed and compared with leukocytes, which are maternally derived cells, if the single nucleotide polymorphism sequence can be confirmed in nucleated red blood cells, it will be confirmed that the nucleated red blood cells are of fetal origin. be able to.
 コピー数多型、縦列型反復配列とは、DNAの中に、あるDNA配列が一つの単位となり、このDNA配列が直列に、繰り返し並んでいる領域があり、この繰り返し領域のことである。胎児は、コピー数多型、縦列型反復配列を父親および母親から引き継ぐため、母体由来の白血球と異なるコピー数多型、縦列型反復配列を有する有核赤血球は胎児由来の有核赤血球であると確認することができる。 The copy number polymorphism and tandem repetitive sequence is a region in which a DNA sequence is one unit and this DNA sequence is repeatedly arranged in series, and this is a repetitive region. Since fetuses inherit copy number variation and tandem repeats from fathers and mothers, nucleated red blood cells that have copy number variation and tandem repeats that differ from maternal white blood cells are fetal nucleated red blood cells. Can be confirmed.
 《Y染色体による分析》
 胎児が男児である場合、増幅工程により全ゲノム増幅を行った後、Y染色体の存在の有無を確認することで、有核赤血球が胎児由来の有核赤血球であるかを確認することができる。
<< Analysis by Y chromosome >>
When the fetus is a boy, it is possible to confirm whether the nucleated red blood cells are nucleated red blood cells derived from the fetus by confirming the presence or absence of the Y chromosome after performing whole genome amplification by the amplification process.
 Y染色体は、男性にしか存在しないため、母体由来の有核赤血球には存在しない。したがって、胎児が男児である場合、Y染色体の存在を確認することができれば、有核赤血球は胎児由来の有核赤血球であると確認することができる。 Since the Y chromosome exists only in males, it does not exist in nucleated red blood cells derived from the mother. Therefore, when the fetus is a boy, if the presence of the Y chromosome can be confirmed, the nucleated red blood cells can be confirmed to be fetal nucleated red blood cells.
 [決定工程]
 決定工程は、確定工程により確定した胎児由来の有核赤血球のDNAの増幅産物の量を比較することで、胎児由来の染色体の数的異常の存在の有無を決定する工程である。
[Decision process]
The determination step is a step of determining the presence or absence of a numerical abnormality of the fetal chromosome by comparing the amount of the amplified DNA product of fetal nucleated red blood cells determined in the determination step.
 胎児由来の染色体の数的異常の存在の有無を決定する基準(あるいは参照)として、数的異常を検査する対象染色体以外の染色体を選択し、予め決定された100~150bpの領域の配列を有するDNAの増幅産物の増幅量をシーケンサーで求める。基準となる染色体(基準染色体)としては、胎児由来の有核赤血球の染色体の数的異常を検査する対象染色体以外の染色体の少なくとも1つを選択する態様、または、母体由来の有核赤血球であると同定された細胞に存在する染色体を選択する態様から選ばれる。本実施形態においては、母体由来の有核赤血球であると同定された細胞に存在する染色体を選択することが好ましい。 As a standard (or reference) for determining the presence or absence of a numerical abnormality of a fetal chromosome, a chromosome other than the target chromosome to be examined for the numerical abnormality is selected and has a predetermined 100-150 bp region sequence The amount of amplification of the DNA amplification product is determined with a sequencer. The reference chromosome (reference chromosome) is an embodiment in which at least one of the chromosomes other than the target chromosome to be examined for the numerical abnormality of the chromosome of fetal nucleated red blood cells, or a maternally derived nucleated red blood cell. Is selected from the embodiments in which the chromosomes present in the identified cells are selected. In the present embodiment, it is preferable to select a chromosome present in a cell identified as a maternally derived nucleated red blood cell.
 次に、数的異常の検査の対象染色体のDNAの増幅産物の量と、基準染色体のDNAの増幅産物の量との比率により、胎児由来の染色体に数的異常が存在するか決定する。胎児が正常な状態であれば、数的異常を検査する胎児由来の対象染色体のDNAの増幅産物の量と、基準染色体のDNAの増幅産物の量とは、ほぼ、1:1の量比となると予想される。正常であれば2本である染色体が、3本存在するトリソミーである数的異常である場合には、1.0:1.5(あるいは2:3)の比になると予想される。 Next, it is determined whether there is a numerical abnormality in the chromosome derived from the fetus based on the ratio between the amount of amplification product of the DNA of the target chromosome to be examined for the numerical abnormality and the amount of amplification product of the DNA of the reference chromosome. If the fetus is in a normal state, the amount of amplification product of the target chromosome DNA derived from the fetus to be examined for numerical abnormality and the amount of amplification product of the reference chromosome DNA are approximately 1: 1. Expected to be. If there is a numerical abnormality that is a trisomy in which there are three chromosomes if normal, the ratio is expected to be 1.0: 1.5 (or 2: 3).
 また、決定工程に先立って、予め、複数の妊娠母体から採取した、正常な胎児を妊娠した場合の母体由来の染色体のDNAの増幅産物の量に対する胎児由来の染色体のDNAの増幅産物の量の比を複数求めた結果の分布と、トリソミーの胎児を妊娠した母体の、母親由来のDNAの増幅産物の量に対する胎児由来のDNAの増幅産物の量の比を複数求めた結果の分布とを求め、この2つの分布が重ならない領域にカットオフ値を設定しておき、このカットオフ値と、DNAの増幅産物の量の比を比較して数的異常が存在するかどうかを決定することも可能である。この場合、DNAの増幅産物の量の比がカットオフ値以下であれば、胎児は正常であり、カットオフ値以上であれば、トリソミーである数的異常であると、検査結果を解釈することができる。 In addition, prior to the determination step, the amount of the amplification product of the chromosomal DNA derived from the fetus relative to the amount of the chromosomal DNA amplification product derived from the maternal when the normal fetus is pregnant, collected from a plurality of pregnancy mothers in advance. Obtain the distribution of the results of multiple ratios, and the distribution of the results of multiple ratios of the amount of amplified DNA products from the fetus to the amount of amplified DNA from the mother in the mother of the trisomy fetus. It is also possible to set a cut-off value in a region where these two distributions do not overlap and compare the cut-off value with the ratio of the amount of DNA amplification product to determine whether a numerical abnormality exists. Is possible. In this case, if the ratio of the amount of DNA amplification products is less than or equal to the cutoff value, the fetus is normal, and if the ratio is greater than or equal to the cutoff value, the test result is interpreted as a numerical abnormality that is trisomy. Can do.
 以下に実施例を挙げ、本発明をより詳細に説明する。ただし、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this embodiment.
 <実施例1>
 以下の方法により、準備工程(ステップS12)から濃縮工程(ステップS16)を行い、塗抹標本を作製した。
<Example 1>
By the following method, the preparation process (step S12) to the concentration process (step S16) were performed to prepare a smear.
 [準備工程(ステップS12)]
 ボランティアの妊婦から、インフォームドコンセントを行った後に、抗凝固剤としてEDTA-2Na(エチレンジアミン四酢酸二ナトリウム)を含む7mL真空採血管2本に、末梢血14mLを得た。
[Preparation process (step S12)]
After giving informed consent from a pregnant pregnant woman, 14 mL of peripheral blood was obtained in two 7 mL vacuum blood collection tubes containing EDTA-2Na (disodium ethylenediaminetetraacetate) as an anticoagulant.
 取得した母体血は、4℃の希釈液(D-PBS(-)+0.06質量%EDTA(ethylenediaminetetraacetic acid)+0.1質量%BSA(ウシ血清アルブミン;和光純薬工業(株)))で2倍希釈した。 The obtained maternal blood was diluted with 4 ° C. diluent (D-PBS (−) + 0.06 mass% EDTA (ethylenediaminetetraacetic acid) +0.1 mass% BSA (bovine serum albumin; Wako Pure Chemical Industries, Ltd.)). Diluted twice.
 準備した試料は濃縮工程を行うまで4℃で保存した。 The prepared sample was stored at 4 ° C. until the concentration step.
 [固定工程(ステップS14)]
 準備工程で2倍に希釈した母体血に、グルタルアルデヒド溶液を、添加後の質量濃度が0.05%となるように添加し、4℃で30分間、ローラー撹拌(10rpm)を行った。
[Fixing Step (Step S14)]
The glutaraldehyde solution was added to the maternal blood diluted 2-fold in the preparation step so that the mass concentration after addition was 0.05%, and roller stirring (10 rpm) was performed at 4 ° C. for 30 minutes.
 [濃縮工程(ステップS16)]
 密度勾配遠心分離用媒体としてHistopaque(シグマアルドリッチ社)を使用し、密度1.095g/mLの分離用媒体を調製した。調製した分離用媒体3.0mLをピペットで遠心管に分注した。
[Concentration step (step S16)]
A Histopaque (Sigma Aldrich) was used as a density gradient centrifugation medium, and a separation medium having a density of 1.095 g / mL was prepared. The prepared separation medium (3.0 mL) was pipetted into a centrifuge tube.
 遠心管に注入した分離用媒体の上部に、30分間の固定処理を行なった母体血5.0mLをピペットで重層し、22℃、1430rpm、30分間で遠心分離を行った。遠心分離終了後、分離用媒体約2.0mLを含む上部をピペットで採取して遠心管に移し、濃縮した母体血の画分を得た。 The upper part of the separation medium injected into the centrifuge tube was overlaid with 5.0 mL of maternal blood that had been fixed for 30 minutes, and centrifuged at 22 ° C. and 1430 rpm for 30 minutes. After completion of the centrifugation, the upper part containing about 2.0 mL of the separation medium was pipetted and transferred to a centrifuge tube to obtain a concentrated maternal blood fraction.
 濃縮した母体血の画分を希釈液で15mLとして分散し、22℃、2000rpm、5分間の遠心分離を行い、洗浄を行った。遠心分離終了後、アスピレーターで上清を取り除いた。 The concentrated maternal blood fraction was dispersed as 15 mL with a diluent, and washed by centrifugation at 22 ° C., 2000 rpm for 5 minutes. After completion of the centrifugation, the supernatant was removed with an aspirator.
 上清を除去した母体血の画分を再度同様の条件で洗浄した後、アスピレーターで上清を取り除き、100μLの濃縮液画分とした。 The maternal blood fraction from which the supernatant was removed was washed again under the same conditions, and then the supernatant was removed with an aspirator to obtain a 100 μL concentrated fraction.
 (標本の作製)
 濃縮液画分をマイクロピペットで採取してスライドガラスに点着し、引きガラス法で均一に一層塗抹して風乾し、母体血の塗抹標本を作製した。
(Preparation of specimen)
The concentrated liquid fraction was collected with a micropipette, spotted on a slide glass, uniformly smeared by a drag glass method, and air-dried to prepare a maternal blood smear.
 乾燥させた塗抹標本を、トレハロースで飽和させた80%エタノール水溶液に20分間浸漬後、風乾した。塗抹標本の乾燥後、トルイジンブルー水溶液(0.002質量%トルイジンブルー、3質量%トレハロースを含む)に5分間浸漬後、3質量%トレハロース水溶液に5分間浸漬させた後、風乾した。 The dried smear was immersed in an 80% ethanol aqueous solution saturated with trehalose for 20 minutes and then air-dried. After the smear was dried, it was immersed in a toluidine blue aqueous solution (containing 0.002% by mass toluidine blue and 3% by mass trehalose) for 5 minutes, then immersed in a 3% by mass trehalose aqueous solution for 5 minutes, and then air-dried.
 <実施例2>
 実施例1において、固定工程のグルタルアルデヒド溶液をパラホルムアルデヒド溶液に変更した以外は、実施例1と同様の方法により、標本を作製した。
<Example 2>
A sample was prepared in the same manner as in Example 1 except that the glutaraldehyde solution in the fixing step was changed to a paraformaldehyde solution in Example 1.
 <実施例3>
 以下の方法により、準備工程(ステップS12)から濃縮工程(ステップS16)を行い、塗抹標本を作製した。
<Example 3>
By the following method, the preparation process (step S12) to the concentration process (step S16) were performed to prepare a smear.
 [準備工程(ステップS12)]
 ボランティアの妊婦から、インフォームドコンセントを行った後に、抗凝固剤としてEDTA-2Na(エチレンジアミン四酢酸二ナトリウム)を含む7mL真空採血管2本に、末梢血14mLを得た。
[Preparation process (step S12)]
After giving informed consent from a pregnant pregnant woman, 14 mL of peripheral blood was obtained in two 7 mL vacuum blood collection tubes containing EDTA-2Na (disodium ethylenediaminetetraacetate) as an anticoagulant.
 取得した母体血は、4℃の希釈液(D-PBS(-)(和光純薬工業(株)社)+0.06質量%EDTA+0.1質量%BSA(ウシ血清アルブミン;和光純薬工業(株)))で2倍希釈した。 The obtained maternal blood was diluted at 4 ° C. (D-PBS (−) (Wako Pure Chemical Industries, Ltd.) + 0.06 mass% EDTA + 0.1 mass% BSA (bovine serum albumin; Wako Pure Chemical Industries, Ltd.) ))).
 2倍に希釈した母体血5.0mLに、PE(phycoerythrin)が標識された抗CD45抗体(BDバイオサイエンス社)200μLを添加し、4℃で30分間のインキュベートを行った。 200 μL of anti-CD45 antibody (BD Bioscience) labeled with PE (phycoerythrin) was added to 5.0 mL of maternal blood diluted 2-fold, and incubated at 4 ° C. for 30 minutes.
 準備した試料は、濃縮工程を行うまで4℃で保存した。 The prepared sample was stored at 4 ° C. until the concentration step.
 [固定工程(ステップS14)]
 インキュベート後、グルタルアルデヒド溶液を、添加後の質量濃度が0.05質量%となるように添加し、4℃で30分間、ローラー撹拌(10rpm)を行った。
[Fixing Step (Step S14)]
After the incubation, the glutaraldehyde solution was added so that the mass concentration after addition was 0.05% by mass, and roller agitation (10 rpm) was performed at 4 ° C. for 30 minutes.
 [濃縮工程(ステップS16)]
 密度勾配遠心分離用媒体としてHistopaque(シグマアルドリッチ社)を使用し、密度1.095g/mLの分離用媒体を調製した。調製した分離用媒体3.0mLをピペットで遠心管に分注した。
[Concentration step (step S16)]
A Histopaque (Sigma Aldrich) was used as a density gradient centrifugation medium, and a separation medium having a density of 1.095 g / mL was prepared. The prepared separation medium (3.0 mL) was pipetted into a centrifuge tube.
 遠心管に注入した分離用媒体の上部に、30分間の固定処理を行なった母体血5.0mLをピペットで重層し、22℃、1430rpm、30分間で遠心分離した。遠心分離終了後、分離用媒体約2.0mLを含む上部をピペットで採取して遠心管に移し、濃縮した母体血の画分を得た。 The top of the separation medium injected into the centrifuge tube was overlaid with 5.0 mL of maternal blood that had been fixed for 30 minutes, and centrifuged at 22 ° C., 1430 rpm for 30 minutes. After completion of the centrifugation, the upper part containing about 2.0 mL of the separation medium was pipetted and transferred to a centrifuge tube to obtain a concentrated maternal blood fraction.
 濃縮した母体血の画分を希釈液で15mLとして分散し、22℃、2000rpm、5分間の遠心分離を行い、洗浄を行った。遠心分離終了後、アスピレーターで上清を取り除いた。 The concentrated maternal blood fraction was dispersed as 15 mL with a diluent, and washed by centrifugation at 22 ° C., 2000 rpm for 5 minutes. After completion of the centrifugation, the supernatant was removed with an aspirator.
 上清を除去した母体血の画分を再度同様の条件で洗浄した後、アスピレーターで上清を取り除き、100μLの濃縮液画分とした。 The maternal blood fraction from which the supernatant was removed was washed again under the same conditions, and then the supernatant was removed with an aspirator to obtain a 100 μL concentrated fraction.
 濃縮液画分について、0.1質量% Triton X-100(シグマアルドリッチ社)を4℃で4分間作用させた。 For the concentrated liquid fraction, 0.1 mass% Triton X-100 (Sigma Aldrich) was allowed to act at 4 ° C. for 4 minutes.
 続いて、APC(Allophycocyanin)が標識された抗胎児ヘモグロビン抗体(サーモフィッシャーサイエンティフィック社)200μLを添加し、4℃で30分間のインキュベートを行った。 Subsequently, 200 [mu] L of anti-fetal hemoglobin antibody (Thermo Fisher Scientific) labeled with APC (Allophycocyanin) was added and incubated at 4 [deg.] C. for 30 minutes.
 続いて、SYTOX(登録商標)(サーモフィッシャーサイエンティフィック社)10μLを添加した。 Subsequently, 10 μL of SYTOX (registered trademark) (Thermo Fisher Scientific) was added.
 調製した濃縮液画分分散液を、Cell Sorter SH800を用いて有核赤血球に相当する画分を、あらかじめD-PBS(-)4μLを入れたマイクロチューブに分取した。 Using the Cell Sorter SH800, the prepared concentrated liquid fraction dispersion was fractionated into a microtube containing 4 μL of D-PBS (−) in advance.
 (標本の作製)
 マイクロチューブに分取した有核赤血球画分液をマイクロピペットで採取してスライドガラスに点着し、引きガラス法で均一に一層塗抹して風乾し、母体血の塗抹標本を作製した。
(Preparation of specimen)
The nucleated red blood cell fraction collected in a microtube was collected with a micropipette and spotted on a slide glass, and then evenly smeared by the drag glass method and air-dried to prepare a maternal blood smear.
 乾燥させた塗抹標本を、トレハロースで飽和させた80質量%エタノール水溶液に20分間浸漬後、風乾した。 The dried smear was immersed in an 80% by weight ethanol aqueous solution saturated with trehalose for 20 minutes and then air-dried.
 <実施例4>
 実施例3で調整した濃縮液画分分散液(SYTOX10μL添加後の液)を、Cell Sorter SH800を用いて有核赤血球に相当する画分を、あらかじめD-PBS(-)4μLを入れた384ウエルプレートに分取した。
<Example 4>
Concentrated fraction dispersion prepared in Example 3 (liquid after addition of SYTOX 10 μL) was added to a fraction corresponding to nucleated red blood cells using Cell Sorter SH800, and 384 wells containing 4 μL of D-PBS (−) in advance. Sorted into plates.
 <比較例1>
 実施例1において、固定工程と濃縮工程の順番を変更して標本を作製した以外は、実施例1と同様の方法により標本を作製した。
<Comparative Example 1>
A sample was prepared in the same manner as in Example 1 except that the sample was prepared by changing the order of the fixing step and the concentration step in Example 1.
 [識別工程(ステップS18)]
 上記の実施例1~4および比較例1の試料について、有核赤血球の候補細胞を識別した。実施例1、2および比較例1は、明視野での核検出とブルーフィルター観察でのヘモグロビンの存在を確認することで有核赤血球を抽出した。実施例3および4は、APCの蛍光観察で胎児ヘモグロビンを、SYTOX(登録商標)の蛍光観察で核を、明視野でのブルーフィルター観察でのヘモグロビンの存在を確認することで有核赤血球を抽出した。
[Identification Step (Step S18)]
With respect to the samples of Examples 1 to 4 and Comparative Example 1 above, nucleated red blood cell candidate cells were identified. In Examples 1 and 2 and Comparative Example 1, nucleated red blood cells were extracted by confirming the presence of hemoglobin by detecting the nucleus in the bright field and observing the blue filter. Examples 3 and 4 extract fetal hemoglobin by fluorescence observation of APC, nuclei by fluorescence observation of SYTOX (registered trademark), and nucleated red blood cells by confirming the presence of hemoglobin by blue filter observation in bright field did.
 有核赤血球の取得数の結果を、表1に示す。表1に示す有核赤血球の数は、妊婦の母体血2.5mLにおける有核赤血球の数を、比較例1の数値を100として比較したものである。実施例1と比較例1を比較すると、濃縮工程の前に固定工程を行った実施例1は、濃縮工程を行った後に固定工程を行った比較例1と比較し、識別される有核赤血球数が多くなることが確認できた。また、細胞固定液をパラホルムアルデヒド溶液とした実施例2においても、識別される有核赤血球の数は、実施例1と同等であった。さらに、実施例1と実施例3の比較から、細胞濃縮処理として、密度勾配遠心分離を行った後、抗原抗体反応を利用した細胞分取を実施することで、識別される有核赤血球の数が多くなることが確認できた。 Table 1 shows the results of the number of nucleated red blood cells obtained. The number of nucleated red blood cells shown in Table 1 is a comparison of the number of nucleated red blood cells in maternal blood 2.5 mL of a pregnant woman with the numerical value of Comparative Example 1 being 100. Comparing Example 1 and Comparative Example 1, nucleated red blood cells identified in Example 1 in which the fixing step was performed before the concentration step were compared with Comparative Example 1 in which the fixing step was performed after the concentration step. It was confirmed that the number increased. In Example 2 where the cell fixing solution was a paraformaldehyde solution, the number of nucleated red blood cells identified was equivalent to that in Example 1. Furthermore, from the comparison between Example 1 and Example 3, the number of nucleated red blood cells identified by carrying out cell sorting using antigen-antibody reaction after density gradient centrifugation as cell concentration treatment It was confirmed that there will be more.
 [取得工程(ステップS20)]
 識別工程によって得られた情報から、単離する有核赤血球を決定した。母体血の塗抹標本(実施例1~3、比較例1)あるいはウエルプレート(実施例4)からマイクロマニピュレーターを用いて、10細胞ずつをマイクロチューブに回収した。
[Acquisition Step (Step S20)]
The nucleated red blood cells to be isolated were determined from the information obtained by the identification process. Ten cells were collected in a microtube using a micromanipulator from a maternal blood smear (Examples 1 to 3, Comparative Example 1) or a well plate (Example 4).
 [増幅工程〔全ゲノム増幅〕]
 単離したそれぞれの細胞に対して、PicoPLEX WGA kit(New England Biolabs社製)を用いて全ゲノム増幅を行い、説明書記載に則り細胞中の微量なゲノムDNAを約100万倍に増幅した。
[Amplification process [whole genome amplification]]
Each isolated cell was subjected to whole genome amplification using a PicoPLEX WGA kit (manufactured by New England Biolabs), and a minute amount of genomic DNA in the cell was amplified about 1 million times according to the description in the manual.
 得られた増幅産物をQIAquick PCR Purification Kit(QIAGEN社製)を用いて精製した後、Quantus Fluorometer dsDNA System(Promega社製)を用いて増幅産物の濃度を測定した。 The obtained amplification product was purified using QIAquick PCR Purification Kit (QIAGEN), and then the concentration of the amplification product was measured using Quantus Fluorometer dsDNA System (Promega).
 (マルチプレックスPCR)
 胎児細胞の分析、染色体の数的異常を分析する目的で、複数箇所の染色体位置からマルチプレックスPCRに用いるプライマーを作製した。
(Multiplex PCR)
Primers used for multiplex PCR were prepared from a plurality of chromosomal positions for the purpose of analyzing fetal cells and analyzing numerical abnormalities of chromosomes.
 各検出領域のPCR増幅塩基長としては、100~150塩基対となるようにプライマーを作製、また、各検出領域内は遺伝的多型を含有するようにプライマーの位置を設計した。46種類のプライマーは、各プライマーの終濃度が25nmol/Lとなるように混合した。 Primers were prepared so that the PCR-amplified base length of each detection region was 100 to 150 base pairs, and the positions of the primers were designed so that each detection region contained a genetic polymorphism. 46 types of primers were mixed so that the final concentration of each primer was 25 nmol / L.
 マルチプレックスPCRは、Multiplex PCR Assay kit(タカラバイオ(株)社製)を用いて反応を行った。反応条件としては、鋳型として胎児由来の有核赤血球の候補細胞の各細胞から得られた全ゲノム増幅産物を10ng、46種類混合プライマーを8μL、0.125μL Multiplex PCR Mix1、12.5μL Multiplex PCR Mix2および水で25μLの最終液量で反応を行った。 The multiplex PCR was performed using a Multiplex PCR Assay kit (manufactured by Takara Bio Inc.). As reaction conditions, 10 ng of whole genome amplification product obtained from each of fetal nucleated erythrocyte candidate cells as a template, 8 μL of 46 mixed primers, 0.125 μLμMultiplex PCR Mix1, 12.5 µL Multiplex PCR Mix2 The reaction was carried out with 25 μL final solution with water.
 PCR条件としては、94℃、60秒で変性した後、94℃で30秒、60℃で90秒、72℃で30秒を30サイクルで反応を行った。 As PCR conditions, after denaturation at 94 ° C. for 60 seconds, the reaction was carried out in 30 cycles of 94 ° C. for 30 seconds, 60 ° C. for 90 seconds, and 72 ° C. for 30 seconds.
 得られたPCR産物は、QIAquick PCR Purification Kit(QIAGEN社製)を用いて精製した。 The obtained PCR product was purified using QIAquick® PCR® Purification® Kit (manufactured by QIAGEN).
 次に、Miseqを用いたシーケンス反応を行う為に、サンプル識別用のインデックス配列、フローセル結合用P5、P7配列をマルチプレックスPCR産物の両末端へ付加を行った。 Next, in order to perform a sequence reaction using Miseq, an index sequence for sample identification and P5 and P7 sequences for flow cell binding were added to both ends of the multiplex PCR product.
 プライマーとしては、D501-F(配列番号47)、D701-R(配列番号48)、D702-R(配列番号49)、D703-R(配列番号50)、D704-R(配列番号51)、D705-R(配列番号52)およびD706-R(配列番号53)を各1.25μmol/L濃度で用いて、Multiplex PCR Assay kitを用いてPCRを行った。 As primers, D501-F (SEQ ID NO: 47), D701-R (SEQ ID NO: 48), D702-R (SEQ ID NO: 49), D703-R (SEQ ID NO: 50), D704-R (SEQ ID NO: 51), D705 -R (SEQ ID NO: 52) and D706-R (SEQ ID NO: 53) were each used at a concentration of 1.25 μmol / L, and PCR was performed using a Multiplex PCR PCR Assay kit.
 PCR条件としては、94℃、3分で変性した後、94℃で45秒、50℃で60秒、72℃で30秒を5サイクルで反応した後、94℃で45秒、55℃で60秒、72℃で30秒を11サイクルで反応を行った。 As PCR conditions, after denaturation at 94 ° C. for 3 minutes, the reaction was carried out in 5 cycles of 94 ° C. for 45 seconds, 50 ° C. for 60 seconds, 72 ° C. for 30 seconds, 94 ° C. for 45 seconds, and 55 ° C. for 60 seconds. The reaction was performed in 11 cycles of 30 seconds at 72 ° C.
 得られたPCR産物は、AMPure XP Kit(BECKMAN COULTER社製)を用いて精製し、BioAnalyzerを用いて濃度を測定した。 The obtained PCR product was purified using AMPure® XP® Kit (manufactured by BECKMAN® COULTER), and the concentration was measured using BioAnalyzer.
 さらに正確な増幅産物の定量として、日本ジェネティクス(株)社製のKAPA Library Quantification Kitsを用いて定量を行った。 Furthermore, as a more accurate quantification of amplification products, quantification was performed using KAPA Library Quantification Kits manufactured by Nippon Genetics.
 (DNA増幅性の評価)
 遺伝子解析性は、全ゲノム増幅により得られたDNAの増幅産物の有無と増幅サイズについて、アガロースゲル電気泳動で確認し、マイクロマニピュレーターで回収した各10細胞のそれぞれに対して6つのプライマーのバンド発現数を評価した。比較例1を100とした場合の平均値を表1に示す。
(Evaluation of DNA amplification)
In the gene analysis, the presence or absence and size of DNA amplification products obtained by whole genome amplification were confirmed by agarose gel electrophoresis, and six primer bands were expressed for each of 10 cells collected by a micromanipulator. Number was evaluated. Table 1 shows the average value when Comparative Example 1 is 100.
 妊娠母体から母体血を取得して以降、遺伝子解析までの全工程において、細胞を溶液中で取り扱った実施例4は、実施例1から3、比較例1に対して遺伝子解析性が向上していることが確認できた。 In Example 4 in which cells were handled in a solution in all steps from obtaining maternal blood from a pregnant mother to genetic analysis, gene analysis was improved compared to Examples 1 to 3 and Comparative Example 1. It was confirmed that
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  妊娠母体から採取された母体血を細胞固定処理する固定工程と、
     前記固定工程後の母体血を濃縮する濃縮工程と、
     前記濃縮工程により濃縮された母体血中の有核赤血球を識別する識別工程と、を有する有核赤血球の取得方法。
    A fixing process for fixing cells of maternal blood collected from the pregnant mother;
    A concentration step of concentrating the maternal blood after the fixing step;
    An identification step of identifying nucleated red blood cells in the maternal blood concentrated by the concentration step.
  2.  前記固定工程に用いられる細胞固定処理液が、グルタルアルデヒド溶液、および、パラホルムアルデヒド溶液の少なくともいずれか1つを含む請求項1に記載の有核赤血球の取得方法。 The method for obtaining nucleated red blood cells according to claim 1, wherein the cell fixing treatment solution used in the fixing step contains at least one of a glutaraldehyde solution and a paraformaldehyde solution.
  3.  前記濃縮工程は、密度勾配遠心分離法により行われる請求項1または2に記載の有核赤血球の取得方法。 The method for obtaining nucleated red blood cells according to claim 1 or 2, wherein the concentration step is performed by density gradient centrifugation.
  4.  前記密度勾配遠心分離法により濃縮を行った後、抗原抗体反応を利用した細胞分取により、有核赤血球が濃縮された画分を得る請求項3に記載の有核赤血球の取得方法。 The method for obtaining nucleated red blood cells according to claim 3, wherein after concentration by the density gradient centrifugation method, a fraction enriched with nucleated red blood cells is obtained by cell sorting using an antigen-antibody reaction.
  5.  前記識別工程は、胎児由来の有核赤血球を識別する工程を有し、
     胎児由来の細胞に特異的に反応する抗体を識別することで行う請求項1から4のいずれか1項に記載の有核赤血球の取得方法。
    The identifying step comprises identifying fetal nucleated red blood cells,
    The method for obtaining nucleated red blood cells according to any one of claims 1 to 4, which is carried out by identifying an antibody that specifically reacts with fetal cells.
  6.  前記固定工程後、または、前記濃縮工程後の少なくともいずれか一方において、前記母体血を第1の細胞処理剤を含有する洗浄液で洗浄する洗浄工程を有し、
     前記第1の細胞処理剤が、アルブミン、ポリエチレングリコール、ポリビニルアルコール、および、ポリビニルピロリドン、から選ばれる少なくとも1つである請求項1から5のいずれか1項に記載の有核赤血球の取得方法。
    A washing step of washing the maternal blood with a washing solution containing a first cell treatment agent after at least one of the fixing step and the concentration step;
    The method for obtaining nucleated red blood cells according to any one of claims 1 to 5, wherein the first cell treatment agent is at least one selected from albumin, polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone.
  7.  前記洗浄液中に、第2の細胞処理剤を含有し、
     前記第2の細胞処理剤が、スクロース、メレジトース、トレハロース、および、アルギニンから選ばれる少なくとも1つである請求項6に記載の有核赤血球の取得方法。
    The washing solution contains a second cell treatment agent,
    The method for obtaining nucleated red blood cells according to claim 6, wherein the second cell treatment agent is at least one selected from sucrose, melezitose, trehalose, and arginine.
  8.  前記識別工程で識別された前記有核赤血球を回収する取得工程を有する請求項1から7のいずれか1項に記載の有核赤血球の取得方法。 The method for acquiring nucleated red blood cells according to any one of claims 1 to 7, further comprising an acquisition step of collecting the nucleated red blood cells identified in the identification step.
  9.  請求項1から8のいずれか1項に記載の有核赤血球の取得方法により取得した有核赤血球を遺伝子解析する解析工程を有し、
     前記固定工程から前記解析工程までの全工程において、前記母体血を溶液中で取り扱う有核赤血球の識別方法。
    An analysis step of genetic analysis of nucleated red blood cells obtained by the method for obtaining nucleated red blood cells according to any one of claims 1 to 8,
    A method for identifying nucleated red blood cells in which the maternal blood is handled in a solution in all steps from the fixing step to the analysis step.
PCT/JP2016/077555 2015-09-28 2016-09-16 Method for obtaining nucleated erythrocytes and method for identifying nucleated erythrocytes WO2017057076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-189956 2015-09-28
JP2015189956 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057076A1 true WO2017057076A1 (en) 2017-04-06

Family

ID=58423662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077555 WO2017057076A1 (en) 2015-09-28 2016-09-16 Method for obtaining nucleated erythrocytes and method for identifying nucleated erythrocytes

Country Status (1)

Country Link
WO (1) WO2017057076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250969A1 (en) * 2021-05-27 2022-12-01 Prp Concepts, Inc. Methods and systems for preparation of mononuclear-platelet rich fibrin matrix, and compounds thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500010A (en) * 1995-02-14 1999-01-06 ニュー イングランド メディカル センター ホスピタルズ インク. Methods for labeling cytoplasmic molecules
US5861253A (en) * 1992-07-17 1999-01-19 Aprogenex, Inc. Intracellular antigens for identifying fetal cells in maternal blood
JP2000506608A (en) * 1996-02-16 2000-05-30 ユニヴァーシティー オブ ノッチンガム Methods for analyzing fetal cells
JP2001502805A (en) * 1996-10-21 2001-02-27 アプライド イメージング,インコーポレイティド Use of anti-embryonic hemoglobin antibodies to identify fetal cells
US20060105353A1 (en) * 2004-11-16 2006-05-18 Jalal Syed M Non-invasive prenatal fetal cell diagnostic method
US20110311960A1 (en) * 2010-03-11 2011-12-22 Bhairavi Parikh Method and Device for Identification of Nucleated Red Blood Cells from a Maternal Blood Sample
WO2013168767A1 (en) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 Process for removing red blood cells and centrifugal tube for blood collection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861253A (en) * 1992-07-17 1999-01-19 Aprogenex, Inc. Intracellular antigens for identifying fetal cells in maternal blood
JPH11500010A (en) * 1995-02-14 1999-01-06 ニュー イングランド メディカル センター ホスピタルズ インク. Methods for labeling cytoplasmic molecules
JP2000506608A (en) * 1996-02-16 2000-05-30 ユニヴァーシティー オブ ノッチンガム Methods for analyzing fetal cells
JP2001502805A (en) * 1996-10-21 2001-02-27 アプライド イメージング,インコーポレイティド Use of anti-embryonic hemoglobin antibodies to identify fetal cells
US20060105353A1 (en) * 2004-11-16 2006-05-18 Jalal Syed M Non-invasive prenatal fetal cell diagnostic method
US20110311960A1 (en) * 2010-03-11 2011-12-22 Bhairavi Parikh Method and Device for Identification of Nucleated Red Blood Cells from a Maternal Blood Sample
WO2013168767A1 (en) * 2012-05-10 2013-11-14 コニカミノルタ株式会社 Process for removing red blood cells and centrifugal tube for blood collection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DHALLAN R. ET AL.: "A non-invasive test for prenatal diagnosis based on fetal DNA present in maternal blood: a preliminary study.", LANCET, vol. 369, no. 9560, 2007, pages 474 - 481, XP005879775 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250969A1 (en) * 2021-05-27 2022-12-01 Prp Concepts, Inc. Methods and systems for preparation of mononuclear-platelet rich fibrin matrix, and compounds thereof

Similar Documents

Publication Publication Date Title
AU2020200418B2 (en) Generating cell-free DNA libraries directly from blood
ITTO20070307A1 (en) METHOD AND DEVICE FOR NON-INVASIVE PRENATAL DIAGNOSIS
CN107893116B (en) Primer pair combination and kit for detecting gene mutation and method for constructing library
US7790368B1 (en) Method for analyzing nucleic acid
US20230063987A1 (en) A method of detecting and/or quantitating an analyte of interest in a plurality of biological liquid samples
CN111218502B (en) Composition for improving qPCR detection performance, reaction solution, application and method
Huang et al. Isolation of circulating fetal trophoblasts by a four-stage inertial microfluidic device for single-cell analysis and noninvasive prenatal testing
CN109790570B (en) Method for obtaining single-cell base sequence information derived from vertebrate
WO2017057076A1 (en) Method for obtaining nucleated erythrocytes and method for identifying nucleated erythrocytes
Stray et al. Isolation of cell-free DNA from maternal plasma
WO2016152672A1 (en) Method for isolating nucleated red blood cell candidate cells
JP2016067268A (en) Non-invasive methods for determining fetal chromosomal aneuploidy
WO2016042830A1 (en) Method for analyzing fetal chromosome
CN108473955B (en) Method for separating target cells from blood sample and application thereof
WO2016038929A1 (en) Method for detecting presence/absence of fetal chromosomal aneuploidy
Williams et al. The development of a method of suspension RNA-FISH for forensically relevant epithelial cells using LNA probes
JP6312835B2 (en) Method for sorting nucleated red blood cells
US20120035060A1 (en) Highly multiplexed genotyping using leukoreduced blood samples
WO2016052405A1 (en) Noninvasive method and system for determining fetal chromosomal aneuploidy
JP2016186452A (en) Selection method for nucleated erythrocytes
JP2017067524A (en) Method and device for screening for nucleated erythrocytes
Corbin A Comparison of Collection Materials and Differential DNA Extraction Methods Used to Extract Sperm and Buccal Cell Mixtures
WO2024058850A1 (en) Rna-facs for rare cell isolation and detection of genetic variants
JPWO2016021310A1 (en) Method for examining fetal chromosomes
JPWO2016021309A1 (en) Method for sorting nucleated red blood cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP