WO2017057023A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2017057023A1
WO2017057023A1 PCT/JP2016/077286 JP2016077286W WO2017057023A1 WO 2017057023 A1 WO2017057023 A1 WO 2017057023A1 JP 2016077286 W JP2016077286 W JP 2016077286W WO 2017057023 A1 WO2017057023 A1 WO 2017057023A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
anode
light
refractive index
Prior art date
Application number
PCT/JP2016/077286
Other languages
French (fr)
Japanese (ja)
Inventor
周作 金
小島 茂
黒木 孝彰
隼 古川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017543123A priority Critical patent/JPWO2017057023A1/en
Publication of WO2017057023A1 publication Critical patent/WO2017057023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element having a high transmittance and suppressing reflection of light at an interface.
  • organic EL element In a light transmissive organic electroluminescence element (hereinafter also simply referred to as “organic EL element”) having a light transmissive anode and cathode, light transmittance is the most important characteristic. Customer requirements for light transmission are also very high. As such a requirement, specifically, there is a requirement that the visible light average (in the present invention, visible light means light having a wavelength of 400 to 800 nm) is 70% or more.
  • a light-transmitting anode and cathode are used in a conventional organic EL element, there is room for improvement in order to obtain an organic EL element that satisfies the above requirements for light transmittance (for example, Patent Document 1). And Patent Document 2).
  • the main factors that reduce the light transmittance are (i) Fresnel reflection at each interface, (ii) absorption of light by the material constituting each layer, and (iii) use as a cathode. Reflection and absorption of light by metals (Al, Ag) can be mentioned.
  • the present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide an organic electroluminescence element having high light transmittance in which reflection of light at the interface is suppressed.
  • the present inventor provided an intermediate layer between the first gas barrier layer and the anode in the process of examining the cause of the above-mentioned problem, and the refractive index of the first gas barrier layer.
  • the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer satisfy a specific relationship, reflection of light at the interface can be suppressed.
  • the present inventors have found that an organic electroluminescence element having a high light transmittance can be provided, and have reached the present invention. That is, the said subject which concerns on this invention is solved by the following means.
  • An organic electroluminescence device comprising a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode, Having an intermediate layer between the first gas barrier layer and the anode;
  • the refractive index (n 1 ) of the first gas barrier layer, the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer are represented by the following formula (1).
  • An organic electroluminescent element characterized by satisfying Formula (1) n 1 ⁇ n 3 ⁇ n 2 [Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
  • the Fresnel reflection has a difference in the refractive index whether it is a light path from a layer with a high refractive index to a low layer or a light path from a layer with a low refractive index to a high layer. Occurs. That is, Fresnel reflection is caused solely by the difference in refractive index regardless of the light path.
  • the present inventor (i) the first gas barrier layer to suppress Fresnel reflection at each interface; Focused on the anode.
  • the refractive index (n 1 ) of light having a wavelength of 550 nm is 1.60.
  • IZO indium zinc oxide
  • the refractive index (n 2 ) of light having a wavelength of 550 nm is 1.90.
  • the difference between the refractive index n 1 and the refractive index n 2 is relatively large among the layers constituting the organic EL element.
  • the present inventor has a first gas barrier layer, an intermediate layer with a refractive index n 3 which satisfies the above equation (1) between an anode (e.g., MgO (refractive index of light having a wavelength of 550 nm (n 3) 1.74)), the reflection of light at the interface can be suppressed and the light transmittance can be improved, leading to the present invention.
  • the interface having the largest refractive index difference is air (refractive index of light having a wavelength of 550 nm is 1.0) and a transparent support (refractive index of light having a wavelength of 550 nm is 1.6).
  • the Fresnel reflection at the interface can be reduced by applying an antireflection film such as a moth-eye film, and the light transmittance can be improved.
  • the organic electroluminescence device of the present invention includes a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode. And having an intermediate layer between the first gas barrier layer and the anode, the refractive index (n 1 ) of the first gas barrier layer, and the refractive index (n 2 ) of the anode, The refractive index (n 3 ) of the intermediate layer satisfies the relationship represented by the above formula (1).
  • This feature is a technical feature common to or corresponding to the claimed invention.
  • the refractive index (n 3 ) of the intermediate layer is preferably in the range of 1.60 to 1.90 from the viewpoint of manifesting the effects of the present invention.
  • the refractive index (n 3 ) of the intermediate layer is more preferably in the range of 1.70 to 1.80 from the viewpoint of manifesting the effects of the present invention.
  • the intermediate layer contains a plurality of compounds, the refractive index can be adjusted satisfactorily, and consequently, reflection of light at the interface can be effectively suppressed. Since an electroluminescent element can be provided, it is preferable.
  • the intermediate layer according to the present invention is provided only between the first gas barrier layer and the anode, it is difficult to recognize the boundary of the anode during non-light emission, and as a result, the appearance is good. Therefore, it is preferable.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the “light transmittance” means that the average transmittance in the range of spectral transmittance of 400 to 800 nm is 50% or more.
  • the transmittance can be determined, for example, by acquiring linear transmittance data using a U-3300 manufactured by Hitachi, Ltd. as a measuring instrument.
  • the organic electroluminescence device of the present invention includes a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode. Because Having an intermediate layer between the first gas barrier layer and the anode;
  • the refractive index (n 1 ) of the first gas barrier layer, the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer are represented by the following formula (1). It is characterized by satisfying.
  • n 1 ⁇ n 3 ⁇ n 2 Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
  • anode / organic light emitting layer / cathode As an element structure of the organic EL element, for example, anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emission
  • Various types such as layer / electron transport layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc.
  • a structure can be mentioned, it is not limited to this.
  • the layer formed between an anode and a cathode is collectively called an organic functional layer.
  • FIG. 1 shows a schematic cross-sectional view as an example of the organic EL element of the present invention.
  • the organic electroluminescent element 1 includes a transparent support 10, a light-transmitting anode 13 and a cathode 15, and a first gas barrier layer 11 formed between the transparent support 10 and the anode 13. Have. Further, an intermediate layer 12 is further provided between the first gas barrier layer 11 and the anode 13.
  • the organic EL element 1 shown in FIG. 1 includes an organic functional layer 14, a buffer layer 16, an inorganic moisture-proof layer (SiN layer) 17, a sealing adhesive 18, a second gas barrier layer 19, and a sealing member 20. Have.
  • the transparent support constituting the organic electroluminescence element of the present invention is not particularly limited as long as it has light transmissivity, and examples thereof include glass materials, quartz, and transparent resin films.
  • the glass material examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • the surface of these glass materials is subjected to physical treatment such as polishing, or is composed of an inorganic or organic material, if necessary, from the viewpoint of adhesion to a layer formed thereon, durability, and smoothness. You may form an undercoat layer and the hybrid film which combined these physical processes and undercoat layers.
  • transparent resin films examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyethylene polypropylene
  • cellophane cellulose diacetate
  • TAC cellulose triacetate
  • TAC cellulose acetate butyrate
  • cellulose acetate propionate examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate.
  • CAP cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or abortion (trade name, manufactured by Mitsui Chemicals) Examples thereof include resins.
  • the organic EL element may have a configuration in which a third gas barrier layer is further provided on a surface opposite to the surface on which the light emitting layer is laminated, as necessary, on the transparent support described above.
  • the said 3rd gas barrier layer can use the thing similar to the 1st gas barrier layer based on this invention mentioned later.
  • the anode and cathode according to the present invention are light transmissive.
  • the anode satisfies the refractive index n 2 that satisfies the formula (1) according to the present invention.
  • the material of the anode constituting the organic EL element of the present invention is not particularly limited as long as it is a light-transmitting material, and specific examples include metals such as Ag and Au, or alloys containing a metal as a main component. And metal oxides such as CuI or indium-tin composite oxide (ITO), indium / zinc oxide (IZO), SnO 2 and ZnO.
  • the anode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the cathode according to the present invention is an electrode film that functions to supply holes to an organic functional layer such as a light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used.
  • a metal such as Ag or Au or an alloy containing a metal as a main component, a composite oxide of CuI or indium-tin (ITO), a metal oxide such as SnO 2 and ZnO is used.
  • ITO indium-tin
  • SnO 2 and ZnO a metal oxide such as SnO 2 and ZnO
  • the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the cathode is a layer composed mainly of silver.
  • the cathode may be formed of silver alone or an alloy containing silver (Ag).
  • Such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
  • the cathode constituting the organic EL element of the present invention is preferably composed mainly of silver and has a thickness in the range of 2 to 20 nm, more preferably. Has a thickness in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because the amount of the component that absorbs the light from the cathode and the amount of the component that reflects the light can be kept low and high light transmittance is maintained.
  • the layer composed mainly of silver means that the silver content in the cathode is 60% by mass or more, preferably the silver content is 80% by mass or more, more preferably silver. Content is 90 mass% or more, Most preferably, silver content is 98 mass% or more.
  • the cathode may have a structure in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • the cathode in the case where the cathode is composed mainly of silver, it is preferable to provide a base layer underneath from the viewpoint of improving the uniformity of the silver film.
  • a base layer it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a cathode on the said base layer is a preferable aspect.
  • a first gas barrier layer is formed between the transparent support and the anode.
  • the material for forming the first gas barrier layer may be any material that has a function of suppressing the intrusion of water or oxygen that causes deterioration of the organic EL element, such as silicon oxide, silicon dioxide, silicon nitride, etc.
  • Inorganic materials can be used.
  • the organic EL device of the present invention has an intermediate layer between the first gas barrier layer and the anode.
  • the intermediate layer according to the present invention is not particularly limited as long as the refractive index (n 3 ) satisfies the relationship represented by the formula (1) described later and has transparency.
  • the refractive index (n 3 ) of the intermediate layer is preferably in the range of 1.60 to 1.90, more preferably in the range of 1.70 to 1.80, from the viewpoint of manifesting the effects of the present invention. It is.
  • the intermediate layer is preferably provided only between the first gas barrier layer and the anode. This is preferable because the boundary of the anode is hardly recognized when the organic EL element of the present invention does not emit light, and as a result, the appearance is improved.
  • the method for forming the intermediate layer is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the intermediate layer is formed by a vacuum deposition method
  • the following materials can be used.
  • oxide Al 2 O 3, CeO 2 , Cr 2 O 3, HfO 2, La 2 O 3, MgO, Nb 2 O 3, NiO, SiO 2, Ta 2 O 5, TiO 2, Ti 3 O 5 , Y 2 O 3 , WO 3 , ZnO, ZrO 2 and the like.
  • fluoride AlF 3, CaF 2, CeF 3, GdF 3, LaF 3, LiF, MgF 2, NaF, NdF 3, such as YF 3 and the like.
  • sulfides such as ZnS can be used.
  • the following materials can specifically be used. If oxide, Al 2 O 3, CeO 2 , Cr 2 O 3, HfO 2, ITO, La 2 O 3, MgO, Nb 2 O 5, NiO, SiO 2, Ta 2 O 5, TiO, TiO 2 , Ti 3 O 5 , Y 2 O 3 , WO 3 , ZrO 2 , ZrO 2 and the like. If fluoride, AlF 3, CaF 3, CeF 3, GdF 3, LaF 3, LiF, etc. MgF 2, NdF 3, YF 3 and the like. In addition, sulfides such as ZnS can be suitably used.
  • the above-mentioned materials can be used, but the material is not limited to this, and organic materials can also be used suitably.
  • an inorganic material as the material because the intermediate layer can be prevented from being damaged when the anode is formed.
  • middle layer which concerns on this invention what has a lower extinction coefficient is good, Specifically, the extinction coefficient in wavelength 632.8nm is 0.01 or less, More preferably, it is 0.8. What is 001 or less is preferable. The extinction coefficient can be measured using a spectroscopic ellipsometer alpha-SE manufactured by JA Woollam Japan Co., Ltd.
  • the refractive index (n 3 ) of the intermediate layer is more preferably in the range of 1.70 to 1.80, but there are few kinds of inorganic materials having a refractive index. Therefore, the intermediate layer according to the present invention may be a layer formed from a plurality of compounds by using two or more of the above compounds. Thereby, the refractive index (n 3 ) of the intermediate layer can be adjusted to an arbitrary value, for example, within the range of 1.70 to 1.80.
  • the intermediate layer containing a plurality of compounds specifically includes, for example, co-evaporation of MoO having a high refractive index of light having a wavelength of 550 nm and a fluoride having a low refractive index. Can be formed.
  • Table 1 shows the refractive indexes of some of the above materials (compounds) and mixtures thereof.
  • the refractive index of the first gas barrier layer (n 1), the refractive index of the anode and (n 2), the refractive index of the intermediate layer and (n 3) is the following formula (1) The relationship represented by is satisfied.
  • n 1 ⁇ n 3 ⁇ n 2 Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
  • the preferable value of the refractive index (n 3 ) of the intermediate layer is (n 1 ⁇ n 3 ) 2 / (n 1 + n 3 ) 2 + (n 3 ⁇ n 2 ) based on the formula for calculating the Fresnel reflection in the vertical direction.
  • the value of n 3 that minimizes 2 / (n 3 + n 2 ) 2 is preferred. Specifically, for example, when n 1 is 1.60 and n 2 is 1.90, preferable n 3 is 1.74.
  • a commonly used method can be used as a method for measuring the refractive index. Specifically, for example, it can be obtained from the measurement result of the spectral reflectance of a spectrophotometer (such as U-4000 type manufactured by Hitachi, Ltd.) for a sample in which each layer is coated alone. Spectral reflectivity is measured by roughening the back surface of the sample and then performing light absorption treatment with a black spray to prevent light reflection on the back surface and under the conditions of regular reflection at 5 degrees, and reflection of light having a wavelength of 550 nm. The refractive index is obtained from the refractive index.
  • the value of the refractive index according to the present invention is a value measured in an environment of 23 ° C. and 55% RH.
  • Light emitting layer In the light emitting layer, a phosphorescent light emitting compound or a fluorescent compound can be used as the light emitting material. In the present invention, a structure containing a phosphorescent light emitting compound as the light emitting material is particularly preferable.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting layer between each light emitting layer.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the sum of the thicknesses of the light-emitting layers is a thickness including the non-light-emitting layer when a non-light-emitting layer exists between the light-emitting layers.
  • the light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • ⁇ Host compound> As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone or a plurality of types of host compounds may be used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
  • the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer.
  • the hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission.
  • the organic EL element and its industrialization front line June 30, 1998 “Published by TS Co., Ltd.)”, Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. Details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. ing.
  • the electron injection layer is also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • the blocking layer examples include a hole blocking layer and an electron blocking layer.
  • the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • Buffer layer As a method for forming the inorganic moisture-proof layer, a method such as a sputtering method or a CVD method is usually used. In these methods, damage to the layer on which the inorganic moisture-proof layer is formed is relatively large. For this reason, when forming an inorganic moisture-proof layer, in order to relieve the said damage, it is preferable to form a buffer layer and to laminate
  • a buffer layer is not particularly limited as long as it has a material and thickness that can reduce damage caused by a method such as a sputtering method or a CVD method.
  • an inorganic material such as MoO 3 or ⁇ -NPD Organic materials such as
  • the inorganic moisture-proof layer should just be what can protect the layer which comprises an organic EL element from the gas, the water
  • the water vapor transmission coefficient is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 1 g / m 2 / day
  • the oxygen transmission coefficient is 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 ml ⁇ m / m 2.
  • a layer made of a material of about / day is preferable.
  • the material which comprises such an inorganic moisture-proof layer is not specifically limited, For example, it is mentioned that they are ceramic films, such as a metal oxide, a metal nitride, a metal sulfide, and a metal carbide. More specifically, for example, an inorganic oxide is more preferable, and examples include silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, magnesium oxide, zinc oxide, indium oxide, and tin oxide. In particular, a ceramic film such as silicon oxide, silicon nitride (SiN), silicon oxynitride, aluminum oxide, or aluminum oxynitride is preferable.
  • a ceramic film such as silicon oxide, silicon nitride (SiN), silicon oxynitride, aluminum oxide, or aluminum oxynitride is preferable.
  • sealing member As a sealing means used for sealing the organic EL element, for example, a flexible sealing member, a cathode and a transparent support are bonded with a sealing adhesive such as an epoxy thermosetting adhesive. A method (solid sealing) can be mentioned.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape.
  • the second gas barrier layer is the same as the transparent support. It may be a film made of polyethylene terephthalate having
  • a thin film glass plate, a polymer plate, a film, a metal film (metal foil) having flexibility, and the like can be given.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate (PET), polyether sulfide, and polysulfone.
  • the metal film include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing member a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. Furthermore, the polymer film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase.
  • the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
  • the organic functional layer in the organic EL device is completely covered, and the sealing film is formed on the transparent support in a state in which the terminal portions of the anode as the first electrode and the cathode as the second electrode are exposed in the organic EL device. Can also be provided.
  • Such a sealing film is configured using an inorganic material or an organic material, and in particular, a material having a function of suppressing intrusion of moisture, oxygen, or the like, for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride. Used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • sealing films There are no particular limitations on the method for forming these sealing films.
  • An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the sealing member as described above is provided in a state in which the anode and cathode terminal portions in the organic EL element are exposed and at least the light emitting functional layer is covered.
  • a first gas barrier layer, an intermediate layer, an anode, an organic functional layer, and a cathode are laminated on a transparent support.
  • a transparent support As a method for producing the organic EL device of the present invention, a first gas barrier layer, an intermediate layer, an anode, an organic functional layer, and a cathode are laminated on a transparent support.
  • a transparent support is prepared, a first gas barrier layer according to the present invention is provided on the transparent support, and an intermediate layer according to the present invention is formed thereon.
  • a desired electrode substance for example, a material constituting the anode is formed on the intermediate layer by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm. Form.
  • a connection electrode portion connected to an external power source is formed at the anode end portion.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like are sequentially laminated thereon.
  • each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • a cathode is formed on the upper portion by an appropriate formation method such as vapor deposition or sputtering.
  • the cathode After forming the cathode, if necessary, after forming a buffer layer and forming an inorganic moisture-proof layer (SiN layer), these are sealed with a sealing member. At that time, with the terminal portions of the anode and cathode exposed, the transparent support is sealed so as to cover at least the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the like.
  • SiN layer inorganic moisture-proof layer
  • the following polysilazane-containing liquid was applied with a wireless bar so that the average thickness after drying was 300 nm, and dried by heating for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane-containing layer on the transparent support.
  • the transparent support on which the polysilazane-containing layer is formed is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and under the following reforming treatment condition 1
  • a modification treatment was performed to form a polysilazane modified layer (not shown) of 300 nm, and a transparent support provided with a first gas barrier layer was obtained.
  • Polysilazane-containing liquid As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
  • An intermediate layer made of MgO (magnesium oxide) having a thickness of 100 nm was formed on the first gas barrier layer by electron beam evaporation (EB evaporation).
  • EB evaporation electron beam evaporation
  • anode made of an IZO film having a thickness of 150 nm was formed on the intermediate layer by sputtering.
  • an organic functional layer was formed as follows.
  • a hole transport / injection layer that serves both as a hole injection layer and a hole transport layer made of ⁇ -NPD, heated by energizing a heating boat containing ⁇ -NPD represented by the following structural formula as a hole transport injection material was formed on the anode.
  • the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 20 nm.
  • the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were respectively energized independently, and the host material H4 and phosphorescent light emission were emitted.
  • the light emitting layer made of the active compound Ir-4 was formed on the hole transport / injection layer.
  • the thickness was 30 nm.
  • a heating boat containing BAlq represented by the following structural formula as a hole blocking material was energized and heated to form a hole blocking layer made of BAlq on the light emitting layer.
  • the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 10 nm.
  • a transparent support having an organic functional layer formed in another vacuum layer is transferred, fixed to a substrate holder of a commercially available vacuum deposition apparatus, silver (Ag) is placed in a resistance heating boat made of tungsten, and vacuum deposition is performed. Installed in the vacuum chamber of the apparatus.
  • the pressure in the vacuum chamber was reduced to 4 ⁇ 10 ⁇ 4 Pa, and then a heating boat containing silver was energized and heated.
  • a cathode made of silver having a thickness of 10 nm was formed at a deposition rate of 0.1 to 0.2 nm / second.
  • a heating boat containing ⁇ -NPD was energized, and a buffer layer of 60 nm was formed at a film formation rate of 0.1 to 0.2 nm / sec by vacuum evaporation.
  • SiN layer ⁇ Formation of inorganic moisture-proof layer (SiN layer)> An inorganic moisture-proof layer (SiN layer) was formed on the buffer layer by a deposition CVD plasma CVD film forming apparatus under the following conditions.
  • the film thickness of the SiN layer was 300 nm.
  • the SiN layer includes an electrode provided to face the buffer layer, a high-frequency power source that supplies plasma excitation power to the electrode, a bias power source that supplies bias power to the holding member that holds the transparent support,
  • the plasma CVD film-forming apparatus provided with the gas supply means which supplies carrier gas and raw material gas toward an electrode was formed.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas.
  • the supply amounts of these gases were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the electrode was supplied with 3000 W plasma excitation power at a frequency of 13.5 MHz from a high frequency power source. Further, 500 W bias power was supplied to the holding member from a bias power source.
  • a polysilazane-containing liquid similar to the above is applied onto a 50 ⁇ m thick polyethylene terephthalate film (Teijin DuPont Films Co., Ltd., ultra-high transparency PET Type K) and treated with an excimer lamp.
  • a second gas barrier layer was formed to obtain a transparent sealing member with a second gas barrier layer.
  • Adhesion of the transparent sealing member uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, and in a glove box having an oxygen concentration of 10 ppm or less and a water concentration of 10 ppm or less, at 80 ° C. and 0. Under a load of 04 MPa, vacuum pressing was performed under the conditions of suction for 20 seconds and reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) suction.
  • an epoxy thermosetting adhesive Elephan CS manufactured by Yodogawa Paper Co., Ltd.
  • the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes to obtain an organic EL element 1 having the layer configuration shown in FIG.
  • Organic EL elements 2 to 11 were prepared in the same manner as the organic EL element 1 except that the intermediate layer made of MgO was changed to an intermediate layer made of the following materials in the preparation of the organic EL element 1.
  • the organic EL element 11 was produced in the same manner as the organic EL element 1 except that the intermediate layer was not produced in the production of the organic EL element 1.
  • ⁇ -NPD Interlayer consisting of ⁇ -NPD
  • An ⁇ -NPD film is formed on the first gas barrier layer so as to have a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition to form an intermediate layer made of ⁇ -NPD. did.
  • CeF 3 intermediate layer was formed on the first gas barrier layer by depositing CeF 3 at a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
  • Interlayer consisting of MoO 3 and MgF 2 On the first gas barrier layer, MoO 3 and MgF 2 were co-deposited to a film formation rate of 0.1 nm / sec (a rate of 1.1: 1) and a thickness of 100 nm by vacuum deposition. An intermediate layer made of MoO 3 and MgF 2 was formed.
  • An intermediate layer made of MgF 2 was formed on the first gas barrier layer by depositing MgF 2 at a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
  • the intermediate layer made of SiN On the first gas barrier layer, SiN was deposited to a thickness of 100 nm by a deposition CVD plasma CVD deposition apparatus to form an intermediate layer made of SiN.
  • the intermediate layer made of SiN has an electrode provided so as to face the gas barrier layer, a high-frequency power source that supplies plasma excitation power to the electrode, and a holding member that holds the transparent support.
  • the plasma CVD film forming apparatus includes a bias power source that supplies bias power and a gas supply unit that supplies a carrier gas and a raw material gas toward the electrode.
  • Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas.
  • the supply amounts of these gases were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas.
  • the film forming pressure was 50 Pa.
  • the electrode was supplied with 3000 W plasma excitation power at a frequency of 13.5 MHz from a high frequency power source. Further, 500 W bias power was supplied to the holding member from a bias power source.
  • the film formation rate was 3.0 to 6.0 nm / sec.
  • An intermediate layer made of ZnS was formed on the first gas barrier layer by depositing ZnS so as to have a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
  • the refractive indexes of the first gas barrier layer, the intermediate layer, and the anode were measured as follows. The following measurement was performed in an environment of 23 ° C. and 55% RH.
  • the sample was prepared using a spectroscopic ellipsometer alpha-SE manufactured by JA Woollam Japan Co., Ltd. as a sample at the stage where the first gas barrier layer was formed.
  • the refractive index was determined by measuring the spectral reflectance. Specifically, after the back surface of the sample is roughened, light absorption treatment is performed with a black spray to prevent light reflection on the back surface, and measurement is performed under the condition of regular reflection at 5 degrees. The refractive index was obtained from the reflectance.
  • the present invention is suitable for providing an organic electroluminescence element having a high light transmittance in which reflection of light at the interface is suppressed.

Abstract

The present invention addresses the problem of providing an organic electroluminescent element, in which light reflection at an interface is suppressed, and which has high light transmittance. This organic electroluminescent element has: a transparent supporting body; light transmitting anode and cathode; and a first gas barrier layer formed between the transparent supporting body and the anode. The organic electroluminescent element is characterized in that: the organic electroluminescent element has an intermediate layer between the first gas barrier layer and the anode; and the refractive index (n1) of the first gas barrier layer, the refractive index (n2) of the anode, and the refractive index (n3) of the intermediate layer satisfy a specific relationship.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。より詳しくは、本発明は、界面の光の反射を抑制した透過率の高い有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element having a high transmittance and suppressing reflection of light at an interface.
 光透過性の陽極及び陰極を有するような、光透過型の有機エレクトロルミネッセンス素子(以下、単に「有機EL素子」ともいう。)において、光透過率は最も重要な特性であり、このため、当該光透過率に対する顧客の要求も非常に高い。
 このような要求としては、具体的には、可視光平均(本発明において、可視光とは、波長400~800nmまでの光をいう。)で70%以上との要求もある。
 しかしながら、従来の有機EL素子において、光透過性の陽極及び陰極を用いた場合、光透過率についての上記要求を満たす有機EL素子とするためには改善の余地があった(例えば、特許文献1及び特許文献2参照。)。
 そこで、現在、光透過率を向上させるための技術的施策を実施している。
 なお、一般的に、光透過率を低下させている主な要因としては、(i)各界面のフレネル反射、(ii)各層を構成する材料による光の吸収、(iii)陰極として用いている金属(Al、Ag)による光の反射及び吸収、が挙げられる。
In a light transmissive organic electroluminescence element (hereinafter also simply referred to as “organic EL element”) having a light transmissive anode and cathode, light transmittance is the most important characteristic. Customer requirements for light transmission are also very high.
As such a requirement, specifically, there is a requirement that the visible light average (in the present invention, visible light means light having a wavelength of 400 to 800 nm) is 70% or more.
However, when a light-transmitting anode and cathode are used in a conventional organic EL element, there is room for improvement in order to obtain an organic EL element that satisfies the above requirements for light transmittance (for example, Patent Document 1). And Patent Document 2).
Therefore, technical measures are currently being implemented to improve the light transmittance.
In general, the main factors that reduce the light transmittance are (i) Fresnel reflection at each interface, (ii) absorption of light by the material constituting each layer, and (iii) use as a cathode. Reflection and absorption of light by metals (Al, Ag) can be mentioned.
特開2011-146144号公報JP 2011-146144 A 特開2004-014401号公報JP 2004-014401 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、界面における光の反射を抑制した光透過率の高い有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide an organic electroluminescence element having high light transmittance in which reflection of light at the interface is suppressed.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、第1のガスバリアー層と陽極との間に中間層を設け、当該第1のガスバリアー層の屈折率(n)と、当該陽極の屈折率(n)と、当該中間層の屈折率(n)とが、特定の関係を満たすことで、界面での光の反射を抑制することができ、この結果、光透過率の高い有機エレクトロルミネッセンス素子を提供できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above-mentioned problems, the present inventor provided an intermediate layer between the first gas barrier layer and the anode in the process of examining the cause of the above-mentioned problem, and the refractive index of the first gas barrier layer. When (n 1 ), the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer satisfy a specific relationship, reflection of light at the interface can be suppressed. As a result, the present inventors have found that an organic electroluminescence element having a high light transmittance can be provided, and have reached the present invention.
That is, the said subject which concerns on this invention is solved by the following means.
 1.透明支持体と、光透過性の陽極及び陰極と、前記透明支持体及び前記陽極の間に形成された第1のガスバリアー層と、を有する有機エレクトロルミネッセンス素子であって、
 前記第1のガスバリアー層と前記陽極との間に中間層を有し、
 前記第1のガスバリアー層の屈折率(n)と、前記陽極の屈折率(n)と、前記中間層の屈折率(n)とが、下記式(1)で表される関係を満たすことを特徴とする有機エレクトロルミネッセンス素子。
 式(1) n<n<n
 [式(1)中の屈折率n~nは、それぞれ、23℃及び55%RHの環境下における、波長550nmの光の屈折率である。]
1. An organic electroluminescence device comprising a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode,
Having an intermediate layer between the first gas barrier layer and the anode;
The refractive index (n 1 ) of the first gas barrier layer, the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer are represented by the following formula (1). An organic electroluminescent element characterized by satisfying
Formula (1) n 1 <n 3 <n 2
[Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
 2.前記中間層の屈折率(n)が、1.60~1.90の範囲内であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to item 1, wherein the refractive index (n 3 ) of the intermediate layer is in the range of 1.60 to 1.90.
 3.前記中間層の屈折率(n)が、1.70~1.80の範囲内であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device according to item 1 or 2, wherein the refractive index (n 3 ) of the intermediate layer is in the range of 1.70 to 1.80.
 4.前記中間層が、複数の化合物を含有してなることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to any one of Items 1 to 3, wherein the intermediate layer contains a plurality of compounds.
 5.前記中間層が、前記第1のガスバリアー層と前記陽極との間にのみ設けられていることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. The organic electroluminescent element according to any one of claims 1 to 4, wherein the intermediate layer is provided only between the first gas barrier layer and the anode.
 本発明の上記手段により、界面における光の反射を抑制した光透過率の高い有機エレクトロルミネッセンス素子を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
By the above means of the present invention, it is possible to provide an organic electroluminescence element having high light transmittance in which reflection of light at the interface is suppressed.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 フレネル反射は、屈折率が高い層から低い層へと通る光の経路であっても、屈折率が低い層から高い層へと通る光の経路であっても同様に、屈折率に差があると生じる。すなわち、フレネル反射は、光の経路によらず、あくまで屈折率の差によって生じる。
 本発明者は、透明支持体及び陽極の間に第1のガスバリアー層が形成された有機EL素子において、上記(i)各界面のフレネル反射を抑制すべく、第1のガスバリアー層と、陽極とに着目した。
The Fresnel reflection has a difference in the refractive index whether it is a light path from a layer with a high refractive index to a low layer or a light path from a layer with a low refractive index to a high layer. Occurs. That is, Fresnel reflection is caused solely by the difference in refractive index regardless of the light path.
In the organic EL element in which the first gas barrier layer is formed between the transparent support and the anode, the present inventor (i) the first gas barrier layer to suppress Fresnel reflection at each interface; Focused on the anode.
 第1のガスバリアー層として、例えば、公知の材料であるパーヒドロポリシラザン(PHPS)を使用した場合、波長550nmの光の屈折率(n)は1.60である。また、陽極として、例えば、公知の材料であるIZO(インジウム・亜鉛酸化物)を使用した場合、波長550nmの光の屈折率(n)は1.90である。これら屈折率nと屈折率nとの差は有機EL素子を構成する層の中でも比較的大きい。
 そこで、本発明者は、第1のガスバリアー層と、陽極との間に上記式(1)を満たす屈折率nの中間層(例えば、MgO(波長550nmの光の屈折率(n)は1.74))を設けることで、界面の光の反射を抑制し、光透過率を向上できると推察し本発明に至った。
 なお、有機EL素子において、一般に、最も屈折率の差が大きい界面は、空気(波長550nmの光の屈折率は1.0)と透明支持体(波長550nmの光の屈折率は1.6)との界面であるが、当該界面でのフレネル反射については、モスアイフィルムなどの反射防止フィルムを貼ることで、軽減することができ、光透過性を向上できる。
For example, when perhydropolysilazane (PHPS), which is a known material, is used as the first gas barrier layer, the refractive index (n 1 ) of light having a wavelength of 550 nm is 1.60. For example, when IZO (indium zinc oxide) which is a known material is used as the anode, the refractive index (n 2 ) of light having a wavelength of 550 nm is 1.90. The difference between the refractive index n 1 and the refractive index n 2 is relatively large among the layers constituting the organic EL element.
Therefore, the present inventor has a first gas barrier layer, an intermediate layer with a refractive index n 3 which satisfies the above equation (1) between an anode (e.g., MgO (refractive index of light having a wavelength of 550 nm (n 3) 1.74)), the reflection of light at the interface can be suppressed and the light transmittance can be improved, leading to the present invention.
In the organic EL element, generally, the interface having the largest refractive index difference is air (refractive index of light having a wavelength of 550 nm is 1.0) and a transparent support (refractive index of light having a wavelength of 550 nm is 1.6). The Fresnel reflection at the interface can be reduced by applying an antireflection film such as a moth-eye film, and the light transmittance can be improved.
本発明に係る有機エレクトロルミネッセンス素子の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the organic electroluminescence device according to the present invention
 本発明の有機エレクトロルミネッセンス素子は、透明支持体と、光透過性の陽極及び陰極と、前記透明支持体及び前記陽極の間に形成された第1のガスバリアー層と、を有する有機エレクトロルミネッセンス素子であって、前記第1のガスバリアー層と前記陽極との間に中間層を有し、前記第1のガスバリアー層の屈折率(n)と、前記陽極の屈折率(n)と、前記中間層の屈折率(n)とが、上記式(1)で表される関係を満たすことを特徴とする。この特徴は各請求項に係る発明に共通又は対応する技術的特徴である。 The organic electroluminescence device of the present invention includes a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode. And having an intermediate layer between the first gas barrier layer and the anode, the refractive index (n 1 ) of the first gas barrier layer, and the refractive index (n 2 ) of the anode, The refractive index (n 3 ) of the intermediate layer satisfies the relationship represented by the above formula (1). This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施態様としては、中間層の屈折率(n)が、1.60~1.90の範囲内であることが、本発明の効果発現の観点から好ましい。
 また、本発明の実施態様としては、中間層の屈折率(n)が、1.70~1.80の範囲内であることが、本発明の効果発現の観点から更に好ましい。
As an embodiment of the present invention, the refractive index (n 3 ) of the intermediate layer is preferably in the range of 1.60 to 1.90 from the viewpoint of manifesting the effects of the present invention.
As an embodiment of the present invention, the refractive index (n 3 ) of the intermediate layer is more preferably in the range of 1.70 to 1.80 from the viewpoint of manifesting the effects of the present invention.
 本発明においては、中間層が、複数の化合物を含有してなることが、屈折率を良好に調整でき、ひいては、界面の光の反射を効果的に抑制できるため、光透過率のより高い有機エレクトロルミネッセンス素子を提供できるため好ましい。 In the present invention, since the intermediate layer contains a plurality of compounds, the refractive index can be adjusted satisfactorily, and consequently, reflection of light at the interface can be effectively suppressed. Since an electroluminescent element can be provided, it is preferable.
 本発明に係る中間層が、前記第1のガスバリアー層と前記陽極との間にのみ設けられていることが、非発光時において、陽極の境界が認識されにくくなり、この結果、外観が良好になるため好ましい。 When the intermediate layer according to the present invention is provided only between the first gas barrier layer and the anode, it is difficult to recognize the boundary of the anode during non-light emission, and as a result, the appearance is good. Therefore, it is preferable.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 なお、本発明に係る「光透過性」とは、分光透過率400~800nmの範囲での平均の透過率が50%以上であることをいう。透過率は、例えば、測定器として、日立製作所製U-3300を用い直線透過率のデータを取得することで求めることができる。 The “light transmittance” according to the present invention means that the average transmittance in the range of spectral transmittance of 400 to 800 nm is 50% or more. The transmittance can be determined, for example, by acquiring linear transmittance data using a U-3300 manufactured by Hitachi, Ltd. as a measuring instrument.
 ≪有機エレクトロルミネッセンス素子の概要≫
 本発明の有機エレクトロルミネッセンス素子は、透明支持体と、光透過性の陽極及び陰極と、前記透明支持体及び前記陽極の間に形成された第1のガスバリアー層と、を有する有機エレクトロルミネッセンス素子であって、
 前記第1のガスバリアー層と前記陽極との間に中間層を有し、
 前記第1のガスバリアー層の屈折率(n)と、前記陽極の屈折率(n)と、前記中間層の屈折率(n)とが、下記式(1)で表される関係を満たすことを特徴とする。
≪Outline of organic electroluminescence element≫
The organic electroluminescence device of the present invention includes a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode. Because
Having an intermediate layer between the first gas barrier layer and the anode;
The refractive index (n 1 ) of the first gas barrier layer, the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer are represented by the following formula (1). It is characterized by satisfying.
 式(1) n<n<n
 [式(1)中の屈折率n~nは、それぞれ、23℃及び55%RHの環境下における、波長550nmの光の屈折率である。]
Formula (1) n 1 <n 3 <n 2
[Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
 [有機エレクトロルミネッセンス素子の構成]
 有機EL素子の素子構成としては、例えば、陽極/有機発光層/陰極、陽極/正孔輸送層/有機発光層/電子輸送層/陰極、陽極/正孔注入層/正孔輸送層/有機発光層/電子輸送層/陰極、陽極/正孔注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/正孔注入層/有機発光層/電子注入層/陰極、等の各種の構成を挙げることができるが、これに限定されない。
 なお、陽極と陰極との間に形成される層をまとめて有機機能層ともいう。
[Configuration of organic electroluminescence element]
As an element structure of the organic EL element, for example, anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emission Various types such as layer / electron transport layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Although a structure can be mentioned, it is not limited to this.
In addition, the layer formed between an anode and a cathode is collectively called an organic functional layer.
 図1に、本発明の有機EL素子の一例としての概略断面図を示す。
 図1において、有機エレクトロルミネッセンス素子1は、透明支持体10と、光透過性の陽極13及び陰極15と、透明支持体10及び陽極13の間に形成された第1のガスバリアー層11とを有する。また、第1のガスバリアー層11と陽極13との間に中間層12を更に有している。
 図1に示す有機EL素子1は、そのほか、有機機能層14、バッファー層16、無機防湿層(SiN層)17、封止用接着剤18、第2のガスバリアー層19、封止部材20を有する。
FIG. 1 shows a schematic cross-sectional view as an example of the organic EL element of the present invention.
In FIG. 1, the organic electroluminescent element 1 includes a transparent support 10, a light-transmitting anode 13 and a cathode 15, and a first gas barrier layer 11 formed between the transparent support 10 and the anode 13. Have. Further, an intermediate layer 12 is further provided between the first gas barrier layer 11 and the anode 13.
In addition, the organic EL element 1 shown in FIG. 1 includes an organic functional layer 14, a buffer layer 16, an inorganic moisture-proof layer (SiN layer) 17, a sealing adhesive 18, a second gas barrier layer 19, and a sealing member 20. Have.
 以下に、有機EL素子を構成する各層について、詳述する。 Hereinafter, each layer constituting the organic EL element will be described in detail.
 [透明支持体]
 本発明の有機エレクトロルミネッセンス素子を構成する透明支持体としては、光透過性を備えていれば特に制限はなく、例えば、ガラス材料、石英、透明樹脂フィルム等を挙げることができる。
[Transparent support]
The transparent support constituting the organic electroluminescence element of the present invention is not particularly limited as long as it has light transmissivity, and examples thereof include glass materials, quartz, and transparent resin films.
 ガラス材料としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、その上に形成する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理を施す又は無機物又は有機物から構成されるアンダーコート層や、これらの物理的処理やアンダーコート層を組み合わせたハイブリッド被膜を形成しても良い。 Examples of the glass material include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. The surface of these glass materials is subjected to physical treatment such as polishing, or is composed of an inorganic or organic material, if necessary, from the viewpoint of adhesion to a layer formed thereon, durability, and smoothness. You may form an undercoat layer and the hybrid film which combined these physical processes and undercoat layers.
 透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of transparent resin films include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate. (CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, Polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone , Such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Examples thereof include resins.
 有機EL素子においては、上記説明した透明支持体上に、必要に応じて、発光層が積層される面とは反対側の面に第3のガスバリアー層を更に設ける構成であってもよい。なお、当該第3のガスバリアー層は、後述の本発明に係る第1のガスバリアー層と同様のものが使用できる。 The organic EL element may have a configuration in which a third gas barrier layer is further provided on a surface opposite to the surface on which the light emitting layer is laminated, as necessary, on the transparent support described above. In addition, the said 3rd gas barrier layer can use the thing similar to the 1st gas barrier layer based on this invention mentioned later.
 [光透過性の陽極及び陰極]
 本発明に係る陽極及び陰極は、光透過性を有する。
[Light transmissive anode and cathode]
The anode and cathode according to the present invention are light transmissive.
 <陽極>
 陽極は本発明に係る式(1)を満たすような屈折率nを満たす。
 このような本発明の有機EL素子を構成する陽極の材料としては、光透過性の材料であれば特に限定されず、具体例としては、Ag、Au等の金属又は金属を主成分とする合金、CuI又はインジウム-スズの複合酸化物(ITO)、酸化インジウム・亜鉛(IZO)、SnO及びZnO等の金属酸化物を挙げることができる。
 陽極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、シート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。
<Anode>
The anode satisfies the refractive index n 2 that satisfies the formula (1) according to the present invention.
The material of the anode constituting the organic EL element of the present invention is not particularly limited as long as it is a light-transmitting material, and specific examples include metals such as Ag and Au, or alloys containing a metal as a main component. And metal oxides such as CuI or indium-tin composite oxide (ITO), indium / zinc oxide (IZO), SnO 2 and ZnO.
The anode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 <陰極>
 本発明に係る陰極は、発光層等の有機機能層に正孔を供給するために機能する電極膜であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物が用いられる。
 このような、陽極を構成する材料としては、Ag、Au等の金属又は金属を主成分とする合金、CuI又はインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、金属又は金属を主成分とする合金であることが好ましく、更に好ましくは、銀又は銀を主成分とする合金である。
<Cathode>
The cathode according to the present invention is an electrode film that functions to supply holes to an organic functional layer such as a light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used.
As a material constituting such an anode, a metal such as Ag or Au or an alloy containing a metal as a main component, a composite oxide of CuI or indium-tin (ITO), a metal oxide such as SnO 2 and ZnO is used. Although it can mention, It is preferable that it is a metal or an alloy which has a metal as a main component, More preferably, it is silver or an alloy which has silver as a main component.
 陰極を、銀を主成分として構成する場合、銀の純度としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。 When the cathode is composed mainly of silver, the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
 陰極は銀を主成分として構成されている層であるが、具体的には、銀単独で形成しても又は銀(Ag)を含有する合金から構成されていてもよい。そのような合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)などが挙げられる。 The cathode is a layer composed mainly of silver. Specifically, the cathode may be formed of silver alone or an alloy containing silver (Ag). Examples of such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
 上記陰極を構成する各構成材料の中でも、本発明の有機EL素子を構成する陰極としては、銀を主成分として構成し、厚さが2~20nmの範囲内であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、陰極の光を吸収する成分及び光を反射する成分の量を低く抑えられ、高い光透過率が維持されるため好ましい。 Among the constituent materials constituting the cathode, the cathode constituting the organic EL element of the present invention is preferably composed mainly of silver and has a thickness in the range of 2 to 20 nm, more preferably. Has a thickness in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because the amount of the component that absorbs the light from the cathode and the amount of the component that reflects the light can be kept low and high light transmittance is maintained.
 銀を主成分として構成されている層とは、陰極中の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。 The layer composed mainly of silver means that the silver content in the cathode is 60% by mass or more, preferably the silver content is 80% by mass or more, more preferably silver. Content is 90 mass% or more, Most preferably, silver content is 98 mass% or more.
 陰極においては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The cathode may have a structure in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
 また、本発明においては、陰極が、銀を主成分として構成する場合には、銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、陰極を形成する方法が好ましい態様である。 In the present invention, in the case where the cathode is composed mainly of silver, it is preferable to provide a base layer underneath from the viewpoint of improving the uniformity of the silver film. Although there is no restriction | limiting in particular as a base layer, It is preferable that it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a cathode on the said base layer is a preferable aspect.
 [第1のガスバリアー層]
 本発明の有機EL素子は、透明支持体及び陽極の間に、第1のガスバリアー層が形成されている。
[First gas barrier layer]
In the organic EL device of the present invention, a first gas barrier layer is formed between the transparent support and the anode.
 第1のガスバリアー層を形成する材料としては、水分や酸素など、有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物を用いることができる。更に、第1のガスバリアー層の脆弱性を改良するため、これら無機機能層と有機機能層との積層構造を持たせることがより好ましい。無機機能層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させる構成であってもよい。 The material for forming the first gas barrier layer may be any material that has a function of suppressing the intrusion of water or oxygen that causes deterioration of the organic EL element, such as silicon oxide, silicon dioxide, silicon nitride, etc. Inorganic materials can be used. Furthermore, in order to improve the brittleness of the first gas barrier layer, it is more preferable to have a laminated structure of these inorganic functional layers and organic functional layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic functional layer and an organic functional layer, The structure by which both are laminated | stacked alternately several times may be sufficient.
 [中間層]
 本発明の有機EL素子は、第1のガスバリアー層と陽極との間に中間層を有する。
 本発明に係る中間層は、屈折率(n)が、後述の式(1)で表される関係を満たし、かつ、透明性を有するものであれば、特に限定されない。なお、中間層の屈折率(n)は、本発明の効果発現の観点から、好ましくは1.60~1.90の範囲内であり、より好ましくは1.70~1.80の範囲内である。
 また、中間層は、第1のガスバリアー層と前記陽極との間にのみ設けられていることが好ましい。このようにすれば、本発明の有機EL素子の非発光時において、陽極の境界が認識されにくくなり、この結果、外観が良好になるため好ましい。
[Middle layer]
The organic EL device of the present invention has an intermediate layer between the first gas barrier layer and the anode.
The intermediate layer according to the present invention is not particularly limited as long as the refractive index (n 3 ) satisfies the relationship represented by the formula (1) described later and has transparency. The refractive index (n 3 ) of the intermediate layer is preferably in the range of 1.60 to 1.90, more preferably in the range of 1.70 to 1.80, from the viewpoint of manifesting the effects of the present invention. It is.
The intermediate layer is preferably provided only between the first gas barrier layer and the anode. This is preferable because the boundary of the anode is hardly recognized when the organic EL element of the present invention does not emit light, and as a result, the appearance is improved.
 中間層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming the intermediate layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 例えば、中間層を真空蒸着法によって形成する場合、具体的には、下記のような材料(化合物)を使用できる。
 酸化物であれば、Al、CeO、Cr、HfO、La、MgO、Nb、NiO、SiO、Ta、TiO、Ti、Y、WO、ZnO、ZrOなどが挙げられる。
 フッ化物であれば、AlF、CaF、CeF、GdF、LaF、LiF、MgF、NaF、NdF、YFなどが挙げられる。また、これ以外にも、ZnSのような硫化物も使用できる。
For example, when the intermediate layer is formed by a vacuum deposition method, specifically, the following materials (compounds) can be used.
If oxide, Al 2 O 3, CeO 2 , Cr 2 O 3, HfO 2, La 2 O 3, MgO, Nb 2 O 3, NiO, SiO 2, Ta 2 O 5, TiO 2, Ti 3 O 5 , Y 2 O 3 , WO 3 , ZnO, ZrO 2 and the like.
If fluoride, AlF 3, CaF 2, CeF 3, GdF 3, LaF 3, LiF, MgF 2, NaF, NdF 3, such as YF 3 and the like. In addition, sulfides such as ZnS can be used.
 また、中間層をスパッタリング法によって形成する場合、具体的には、下記のような材料(化合物)を使用できる。
 酸化物であれば、Al、CeO、Cr、HfO、ITO、La、MgO、Nb、NiO、SiO、Ta、TiO、TiO、Ti、Y、WO、ZrO、ZrOなどが挙げられる。
 フッ化物であれば、AlF、CaF、CeF、GdF、LaF、LiF、MgF、NdF、YFなどが挙げられる。
 そのほか、ZnSなどの硫化物なども好適に使用できる。
Moreover, when forming an intermediate | middle layer by sputtering method, the following materials (compound) can specifically be used.
If oxide, Al 2 O 3, CeO 2 , Cr 2 O 3, HfO 2, ITO, La 2 O 3, MgO, Nb 2 O 5, NiO, SiO 2, Ta 2 O 5, TiO, TiO 2 , Ti 3 O 5 , Y 2 O 3 , WO 3 , ZrO 2 , ZrO 2 and the like.
If fluoride, AlF 3, CaF 3, CeF 3, GdF 3, LaF 3, LiF, etc. MgF 2, NdF 3, YF 3 and the like.
In addition, sulfides such as ZnS can be suitably used.
 本発明に係る中間層を構成する材料としては、上記のようなものを使用できるが、これに限定されず、有機物なども好適に使用できる。なお、陽極をスパッタリング法で形成する場合は、無機物を材料として使用することが、陽極を形成する際に中間層が損傷を受けることを回避できるため好ましい。
 また、本発明に係る中間層を構成する好ましい材料としては、消衰係数がより低いものがよく、具体的には、波長632.8nmにおける消衰係数が0.01以下、より好ましくは0.001以下であるものが好ましい。なお、消衰係数は、ジェー・エー・ウーラム・ジャパン(株)社製の分光エリプソメーターalpha-SEを用いて計測することができる。
As the material constituting the intermediate layer according to the present invention, the above-mentioned materials can be used, but the material is not limited to this, and organic materials can also be used suitably. Note that when the anode is formed by a sputtering method, it is preferable to use an inorganic material as the material because the intermediate layer can be prevented from being damaged when the anode is formed.
Moreover, as a preferable material which comprises the intermediate | middle layer which concerns on this invention, what has a lower extinction coefficient is good, Specifically, the extinction coefficient in wavelength 632.8nm is 0.01 or less, More preferably, it is 0.8. What is 001 or less is preferable. The extinction coefficient can be measured using a spectroscopic ellipsometer alpha-SE manufactured by JA Woollam Japan Co., Ltd.
 また、上述のように、中間層の屈折率(n)は、1.70~1.80の範囲内であることがより好ましいが、屈折率を持つ無機材料は種類が少ない。そこで、本発明に係る中間層は、上記化合物を2種以上使用するなどして、複数の化合物から形成された層であってもよい。これにより、中間層の屈折率(n)を、例えば1.70~1.80の範囲内にするなど、任意の値に調整できる。
 なお、このような複数の化合物を含有してなる中間層は、具体的には、例えば、波長550nmの光の屈折率が高いMoOと、当該屈折率が低いフッ化物とを共蒸着するなどして形成できる。
As described above, the refractive index (n 3 ) of the intermediate layer is more preferably in the range of 1.70 to 1.80, but there are few kinds of inorganic materials having a refractive index. Therefore, the intermediate layer according to the present invention may be a layer formed from a plurality of compounds by using two or more of the above compounds. Thereby, the refractive index (n 3 ) of the intermediate layer can be adjusted to an arbitrary value, for example, within the range of 1.70 to 1.80.
The intermediate layer containing a plurality of compounds specifically includes, for example, co-evaporation of MoO having a high refractive index of light having a wavelength of 550 nm and a fluoride having a low refractive index. Can be formed.
 上記材料(化合物)やその混合物等の内いくつかについて、表1にその屈折率を記載した。 Table 1 shows the refractive indexes of some of the above materials (compounds) and mixtures thereof.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [屈折率の関係]
 本発明の有機EL素子は、第1のガスバリアー層の屈折率(n)と、陽極の屈折率(n)と、中間層の屈折率(n)とが、下記式(1)で表される関係を満たす。
[Refractive index relationship]
The organic EL device of the present invention, the refractive index of the first gas barrier layer (n 1), the refractive index of the anode and (n 2), the refractive index of the intermediate layer and (n 3) is the following formula (1) The relationship represented by is satisfied.
 式(1) n<n<n
 [式(1)中の屈折率n~nは、それぞれ、23℃及び55%RHの環境下における、波長550nmの光の屈折率である。]
Formula (1) n 1 <n 3 <n 2
[Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
 なお、中間層の屈折率(n)の好ましい値は、垂直方向のフレネル反射を求める式より、(n-n/(n+n+(n-n/(n+nが最少になるnの値が好ましい。具体的には、例えば、nが1.60、nが1.90であれば、好ましいnは1.74となる。 Note that the preferable value of the refractive index (n 3 ) of the intermediate layer is (n 1 −n 3 ) 2 / (n 1 + n 3 ) 2 + (n 3 −n 2 ) based on the formula for calculating the Fresnel reflection in the vertical direction. The value of n 3 that minimizes 2 / (n 3 + n 2 ) 2 is preferred. Specifically, for example, when n 1 is 1.60 and n 2 is 1.90, preferable n 3 is 1.74.
 <屈折率の測定方法>
 本発明において、屈折率の測定方法は、通常用いられている方法を用いることができる。具体的には、例えば、各層を単独で塗設したサンプルについて、分光光度計(日立製作所製U-4000型等)の分光反射率の測定結果から求めることができる。分光反射率の測定はサンプルの裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面の光反射を防止し、5度正反射の条件で行い、波長550nmの光の反射率より屈折率を求める。
 なお、本発明に係る屈折率の値は、23℃及び55%RHの環境下において測定された値である。
<Measurement method of refractive index>
In the present invention, a commonly used method can be used as a method for measuring the refractive index. Specifically, for example, it can be obtained from the measurement result of the spectral reflectance of a spectrophotometer (such as U-4000 type manufactured by Hitachi, Ltd.) for a sample in which each layer is coated alone. Spectral reflectivity is measured by roughening the back surface of the sample and then performing light absorption treatment with a black spray to prevent light reflection on the back surface and under the conditions of regular reflection at 5 degrees, and reflection of light having a wavelength of 550 nm. The refractive index is obtained from the refractive index.
In addition, the value of the refractive index according to the present invention is a value measured in an environment of 23 ° C. and 55% RH.
 [発光層]
 発光層は、発光材料としてリン光発光化合物又は蛍光性化合物を用いることができるが、本発明においては、特に、発光材料としてリン光発光化合物が含有されている構成が好ましい。
[Light emitting layer]
In the light emitting layer, a phosphorescent light emitting compound or a fluorescent compound can be used as the light emitting material. In the present invention, a structure containing a phosphorescent light emitting compound as the light emitting material is particularly preferable.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting layer between each light emitting layer.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の層が存在する場合には、当該非発光性の層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the sum of the thicknesses of the light-emitting layers is a thickness including the non-light-emitting layer when a non-light-emitting layer exists between the light-emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
 また発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 In the light emitting layer, a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 <ホスト化合物>
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
<Host compound>
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく又は複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the efficiency of the organic electroluminescent device can be improved. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
 <発光材料>
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられるが、特に、リン光発光性化合物を用いることが、高い発光効率を得ることができる観点から好ましい。
<Light emitting material>
As the light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (both a fluorescent compound or a fluorescent material) are used. In particular, it is preferable to use a phosphorescent compound from the viewpoint of obtaining high luminous efficiency.
 (リン光発光性化合物)
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(Phosphorescent compound)
A phosphorescent compound is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層が、二種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78, 1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. Examples thereof include compounds described in US Patent No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Application Publication No. 2009/0039776, US Pat. No. 6,687,266, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,396,598, US Patent Application Publication No. 2003/0138667, US Pat. No. 7090928 And the like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Application Publication No. 2005/0260441. U.S. Pat. No. 7,534,505, U.S. Patent Application Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/103874, etc. Mention may also be made of the compounds described.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
 (蛍光発光性化合物)
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
(Fluorescent compound)
Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
 <電荷注入層>
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
<Charge injection layer>
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができるが、透明電極に隣接して電荷注入層を配置させることが好ましい。 In general, the charge injection layer is present between the anode and the light emitting layer or the hole transport layer in the case of a hole injection layer, and between the cathode and the light emitting layer or the electron transport layer in the case of an electron injection layer. However, it is preferable to dispose the charge injection layer adjacent to the transparent electrode.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The hole injection layer is a layer disposed adjacent to the anode, which is a transparent electrode, in order to lower the driving voltage and improve the luminance of light emission. “The organic EL element and its industrialization front line (November 30, 1998 “Published by TS Co., Ltd.)”, Chapter 2, “Electrode Materials” (pages 123 to 166) in the second volume.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylene dioxythiophene): PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極と発光層との間に設けられる層のことである。なお、詳細は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。 The electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. Details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. ing.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq). The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 <正孔輸送層>
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
<Hole transport layer>
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
 <電子輸送層>
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の一種又は二種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 <阻止層>
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
<Blocking layer>
Examples of the blocking layer include a hole blocking layer and an electron blocking layer. In addition to the constituent layers of the organic functional layer described above, the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 <その他の層>
 上述の層の他、本発明の有機EL素子が接着剤によって封止(以下、「固体封止」ともいう。)される場合、陰極における有機機能層が積層される面とは反対側の面にバッファー層を設け、その上にSiNなどからなる無機防湿層を設けていてもよい。このようにすることにより、接着剤に含まれるガスや水分などから、有機EL素子を構成する層を保護することができる。
<Other layers>
In addition to the above-described layers, when the organic EL element of the present invention is sealed with an adhesive (hereinafter also referred to as “solid sealing”), the surface of the cathode opposite to the surface on which the organic functional layer is laminated. A buffer layer may be provided, and an inorganic moisture-proof layer made of SiN or the like may be provided thereon. By doing in this way, the layer which comprises an organic EL element can be protected from the gas, moisture, etc. which are contained in an adhesive agent.
 (バッファー層)
 上記無機防湿層を形成する方法としては、通常スパッタリング法やCVD法といった方法が使用される。これらの方法は、無機防湿層が形成される層に対して与えるダメージが比較的大きい。このため、無機防湿層を形成する場合、当該ダメージを緩和するために、バッファー層を形成し、当該バッファー層上に無機防湿層を積層することが好ましい。
 このようなバッファー層としては、スパッタリング法やCVD法といった方法によるダメージを緩和することができる材料、および厚さであれば、特に制限はなく、例えば、MoOのような無機物や、α-NPDといった有機物であってもよい。
(Buffer layer)
As a method for forming the inorganic moisture-proof layer, a method such as a sputtering method or a CVD method is usually used. In these methods, damage to the layer on which the inorganic moisture-proof layer is formed is relatively large. For this reason, when forming an inorganic moisture-proof layer, in order to relieve the said damage, it is preferable to form a buffer layer and to laminate | stack an inorganic moisture-proof layer on the said buffer layer.
Such a buffer layer is not particularly limited as long as it has a material and thickness that can reduce damage caused by a method such as a sputtering method or a CVD method. For example, an inorganic material such as MoO 3 or α-NPD Organic materials such as
 (無機防湿層)
 無機防湿層は、接着剤に含まれるガスや水分などから、有機EL素子を構成する層を保護することができるものであればよい。具体的には、水蒸気透過係数が1×10-6~1×10-1g・m/m/day、酸素透過係数が1×10-4~1×10-1ml・m/m/day程度の材料からなる層であることが好ましい。このような無機防湿層を構成する材料は特に限定されず、例えば、金属酸化物、金属窒化物、金属硫化物、金属炭化物等のセラミック膜であることが挙げられる。さらに、具体的には、例えば、無機酸化物であることが更に好ましく、酸化ケイ素、酸化アルミニウム、窒化ケイ素、酸窒化ケイ素、酸窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等を挙げることができ、特に酸化ケイ素、窒化ケイ素(SiN)、酸窒化ケイ素、酸化アルミニウム、酸窒化アルミニウム等のセラミック膜であること好ましい。
(Inorganic moisture barrier)
The inorganic moisture-proof layer should just be what can protect the layer which comprises an organic EL element from the gas, the water | moisture content, etc. which are contained in an adhesive agent. Specifically, the water vapor transmission coefficient is 1 × 10 −6 to 1 × 10 −1 g / m 2 / day, and the oxygen transmission coefficient is 1 × 10 −4 to 1 × 10 −1 ml · m / m 2. A layer made of a material of about / day is preferable. The material which comprises such an inorganic moisture-proof layer is not specifically limited, For example, it is mentioned that they are ceramic films, such as a metal oxide, a metal nitride, a metal sulfide, and a metal carbide. More specifically, for example, an inorganic oxide is more preferable, and examples include silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, magnesium oxide, zinc oxide, indium oxide, and tin oxide. In particular, a ceramic film such as silicon oxide, silicon nitride (SiN), silicon oxynitride, aluminum oxide, or aluminum oxynitride is preferable.
 [封止部材]
 有機EL素子を封止するのに用いられる封止手段としては、例えば、フレキシブルな封止部材と、陰極及び透明支持体とをエポキシ系熱硬化型接着剤などの封止用接着剤で接着する方法(固体封止)を挙げることができる。
[Sealing member]
As a sealing means used for sealing the organic EL element, for example, a flexible sealing member, a cathode and a transparent support are bonded with a sealing adhesive such as an epoxy thermosetting adhesive. A method (solid sealing) can be mentioned.
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよく、また、例えば、上記透明支持体と同様に第2のガスバリアー層を有するポリエチレンテレフタレートからなるフィルムであってもよい。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. For example, the second gas barrier layer is the same as the transparent support. It may be a film made of polyethylene terephthalate having
 具体的には、フレキシブル性を備えた薄膜ガラス板、ポリマー板、フィルム、金属フィルム(金属箔)等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート(PET)、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金が挙げられる。 Specifically, a thin film glass plate, a polymer plate, a film, a metal film (metal foil) having flexibility, and the like can be given. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate (PET), polyether sulfide, and polysulfone. Examples of the metal film include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。さらに、ポリマーフィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 In the present invention, as the sealing member, a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. Furthermore, the polymer film has a water vapor transmission rate of 1 × 10 −3 g / m 2 .multidot.m at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h.
 封止部材と有機EL素子の表示領域(発光領域)との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area (light emitting area) of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicon oil is injected in the gas phase and liquid phase. You can also Further, the gap between the sealing member and the display area of the organic EL element can be evacuated, or a hygroscopic compound can be sealed in the gap.
 また、有機EL素子における有機機能層を完全に覆い、かつ有機EL素子における第1電極である陽極と、第2電極である陰極の端子部分を露出させる状態で、透明支持体上に封止膜を設けることもできる。 In addition, the organic functional layer in the organic EL device is completely covered, and the sealing film is formed on the transparent support in a state in which the terminal portions of the anode as the first electrode and the cathode as the second electrode are exposed in the organic EL device. Can also be provided.
 このような封止膜は、無機材料や有機材料を用いて構成され、特に、水分や酸素等の浸入を抑制する機能を有する材料、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。さらに封止膜の脆弱性を改良するために、これら無機材料からなる膜と共に、有機材料からなる膜を用いて積層構造としても良い。 Such a sealing film is configured using an inorganic material or an organic material, and in particular, a material having a function of suppressing intrusion of moisture, oxygen, or the like, for example, an inorganic material such as silicon oxide, silicon dioxide, or silicon nitride. Used. Furthermore, in order to improve the brittleness of the sealing film, a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
 これらの封止膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 There are no particular limitations on the method for forming these sealing films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 以上のような封止部材は、有機EL素子における陽極と、陰極の端子部分を露出させるとともに、少なくとも発光機能層を覆う状態で設けられていることが好ましい。 It is preferable that the sealing member as described above is provided in a state in which the anode and cathode terminal portions in the organic EL element are exposed and at least the light emitting functional layer is covered.
 〔有機EL素子の製造方法〕
 本発明の有機EL素子の製造方法としては、透明支持体上に、第1のガスバリアー層、中間層、陽極、有機機能層、陰極を積層して形成することが挙げられる。
 以下に、有機EL素子の製造方法の具体例を記載する。
[Method for producing organic EL element]
As a method for producing the organic EL device of the present invention, a first gas barrier layer, an intermediate layer, an anode, an organic functional layer, and a cathode are laminated on a transparent support.
Below, the specific example of the manufacturing method of an organic EL element is described.
 まず、透明支持体を準備し、該透明支持体上に、本発明に係る第1のガスバリアー層を設け、その上に本発明に係る中間層を形成する。当該中間層の上に、所望の電極物質、例えば、陽極を構成する材料を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を形成する。同時に、陽極端部に、外部電源と接続する接続電極部を形成する。 First, a transparent support is prepared, a first gas barrier layer according to the present invention is provided on the transparent support, and an intermediate layer according to the present invention is formed thereon. A desired electrode substance, for example, a material constituting the anode is formed on the intermediate layer by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. Form. At the same time, a connection electrode portion connected to an external power source is formed at the anode end portion.
 次に、この上に、正孔注入層及び正孔輸送層、発光層、電子輸送層等を順に積層する。 Next, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like are sequentially laminated thereon.
 これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。 The formation of each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate. The method or spin coating method is particularly preferred. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 to 5 μm.
 以上のようにして電子輸送層を形成した後、この上部に陰極を蒸着法やスパッタ法などの適宜の形成法によって形成する。 After forming the electron transport layer as described above, a cathode is formed on the upper portion by an appropriate formation method such as vapor deposition or sputtering.
 陰極の形成後、必要であればバッファー層を形成した上で無機防湿層(SiN層)を形成した後、これらを封止部材によって封止する。その際、陽極及び陰極の端子部分を露出させた状態で、透明支持体上に、少なくとも正孔注入層、正孔輸送層、発光層や電子輸送層などを覆うように封止する。 After forming the cathode, if necessary, after forming a buffer layer and forming an inorganic moisture-proof layer (SiN layer), these are sealed with a sealing member. At that time, with the terminal portions of the anode and cathode exposed, the transparent support is sealed so as to cover at least the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the like.
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [有機EL素子1の製造]
 (透明支持体の準備)
 厚さ50μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)を透明支持体として準備した。
[Manufacture of organic EL element 1]
(Preparation of transparent support)
A polyethylene terephthalate film having a thickness of 50 μm (manufactured by Teijin DuPont Films, Ltd., ultra-high transparency PET Type K) was prepared as a transparent support.
 下記ポリシラザン含有液を、ワイヤレスバーにて、乾燥後の平均の厚さが300nmとなるように塗布し、温度85℃、湿度55%RHの雰囲気下で1分間加熱処理して乾燥させた。次いで、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、透明支持体上にポリシラザン含有層を形成した。 The following polysilazane-containing liquid was applied with a wireless bar so that the average thickness after drying was 300 nm, and dried by heating for 1 minute in an atmosphere of temperature 85 ° C. and humidity 55% RH. Subsequently, it was kept in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.) for 10 minutes to perform a dehumidification treatment to form a polysilazane-containing layer on the transparent support.
 次に、ポリシラザン含有層を形成した透明支持体を、エキシマ照射装置MECL-M-1-200(株式会社エム・ディ・コム製)の稼動ステージ上に固定し、下記の改質処理条件1で改質処理を行い、300nmからなるポリシラザン改質層(不図示)を形成し、第1のガスバリアー層を設けた透明支持体を得た。 Next, the transparent support on which the polysilazane-containing layer is formed is fixed on the operation stage of an excimer irradiation apparatus MECL-M-1-200 (manufactured by M.D. Com) and under the following reforming treatment condition 1 A modification treatment was performed to form a polysilazane modified layer (not shown) of 300 nm, and a transparent support provided with a first gas barrier layer was obtained.
 (ポリシラザン含有液)
 ポリシラザン含有液としては、パーヒドロポリシラザン(アクアミカ  NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を調製した。
(Polysilazane-containing liquid)
As the polysilazane-containing liquid, a 10% by mass dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was prepared.
  〈改質処理条件1〉
  照射波長:172nm
  ランプ封入ガス:Xe
  エキシマランプ光強度:130mW/cm2(172nm)
  試料と光源の距離:1mm
  ステージ加熱温度:70℃
  照射装置内の酸素濃度:0.5%
  エキシマランプ照射時間:5秒
<Reforming treatment condition 1>
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.5%
Excimer lamp irradiation time: 5 seconds
 <MgOからなる中間層の形成>
 電子ビーム蒸着法(EB蒸着法)により、厚さ100nmのMgO(酸化マグネシウム)からなる中間層を、第1のガスバリアー層上に形成した。
<Formation of intermediate layer made of MgO>
An intermediate layer made of MgO (magnesium oxide) having a thickness of 100 nm was formed on the first gas barrier layer by electron beam evaporation (EB evaporation).
 <陽極の形成>
 前記中間層の上に、スパッタ法により膜厚150nmのIZO膜からなる陽極を、中間層の上に形成した。
<Formation of anode>
On the intermediate layer, an anode made of an IZO film having a thickness of 150 nm was formed on the intermediate layer by sputtering.
 [有機機能層の作製]
 真空蒸着装置の真空層内において、以下のようにして有機機能層を形成した。
[Production of organic functional layer]
In the vacuum layer of the vacuum deposition apparatus, an organic functional layer was formed as follows.
 (正孔輸送・注入層)
 正孔輸送注入材料として下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送・注入層を、陽極上に形成した。この際、蒸着速度0.1nm/秒~0.2nm/秒、膜厚20nmとした。
(Hole transport / injection layer)
A hole transport / injection layer that serves both as a hole injection layer and a hole transport layer made of α-NPD, heated by energizing a heating boat containing α-NPD represented by the following structural formula as a hole transport injection material Was formed on the anode. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the film thickness was 20 nm.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (発光層)
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示す燐光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir-4とよりなる発光層を、正孔輸送・注入層上に形成した。この際、蒸着速度がホスト材料H4:燐光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また厚さ30nmとした。
(Light emitting layer)
Next, the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were respectively energized independently, and the host material H4 and phosphorescent light emission were emitted. The light emitting layer made of the active compound Ir-4 was formed on the hole transport / injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. The thickness was 30 nm.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (正孔阻止層)
 次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に形成した。この際、蒸着速度0.1nm/秒~0.2nm/秒、厚さ10nmとした。
(Hole blocking layer)
Next, a heating boat containing BAlq represented by the following structural formula as a hole blocking material was energized and heated to form a hole blocking layer made of BAlq on the light emitting layer. At this time, the deposition rate was 0.1 nm / second to 0.2 nm / second, and the thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (電子輸送・注入層)
 その後、電子輸送材料として、下記化合物10の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、化合物10とフッ化カリウムとよりなる電子注入層と電子輸送層とを兼ねた電子輸送・注入層を、正孔阻止層上に形成した。この際、蒸着速度が化合物10:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また厚さ30nmとした。
(Electron transport / injection layer)
Thereafter, as an electron transport material, a heating boat containing the following compound 10 and a heating boat containing potassium fluoride were energized independently, and an electron injection layer and an electron transport layer made of the compound 10 and potassium fluoride were respectively supplied. An electron transport / injection layer that also serves as the above was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was compound 10: potassium fluoride = 75: 25. The thickness was 30 nm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (陰極)
 次いで、別の真空層内に有機機能層が形成された透明支持体を移送し、市販の真空蒸着装置の基板ホルダーに固定し、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の真空槽内に取り付けた。
(cathode)
Next, a transparent support having an organic functional layer formed in another vacuum layer is transferred, fixed to a substrate holder of a commercially available vacuum deposition apparatus, silver (Ag) is placed in a resistance heating boat made of tungsten, and vacuum deposition is performed. Installed in the vacuum chamber of the apparatus.
 次に、真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1~0.2nm/秒で厚さ10nmの銀からなる陰極を形成した。 Next, the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, and then a heating boat containing silver was energized and heated. As a result, a cathode made of silver having a thickness of 10 nm was formed at a deposition rate of 0.1 to 0.2 nm / second.
 <バッファー層の形成>
 上記陰極の上に、α-NPDの入った加熱ボートを通電し、真空蒸着法にて成膜レート0.1~0.2nm/secでバッファー層を60nm形成した。
<Formation of buffer layer>
On the cathode, a heating boat containing α-NPD was energized, and a buffer layer of 60 nm was formed at a film formation rate of 0.1 to 0.2 nm / sec by vacuum evaporation.
 <無機防湿層(SiN層)の形成>
 上記バッファー層の上に無機防湿層(SiN層)を、以下の条件で、デポアップ方式のプラズマCVD成膜装置によって形成した。
 SiN層の膜厚は300nmとした。
 SiN層は、バッファー層に対面するように設けられた電極と、この電極にプラズマ励起電力を供給する高周波電源と、透明支持体を保持する保持部材に対してバイアス電力を供給するバイアス電源と、電極に向けてキャリアガスや原料ガスを供給するガス供給手段と、を備えたプラズマCVD成膜装置で形成した。
 成膜ガスは、シランガス(SiH)、アンモニアガス(NH)、窒素ガス(N)及び水素ガス(H)を用いた。これらのガスの供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 電極には、高周波電源から周波数13.5MHzで3000Wのプラズマ励起電力を供給した。さらに、保持部材には、バイアス電源から500Wのバイアス電力を供給した。
<Formation of inorganic moisture-proof layer (SiN layer)>
An inorganic moisture-proof layer (SiN layer) was formed on the buffer layer by a deposition CVD plasma CVD film forming apparatus under the following conditions.
The film thickness of the SiN layer was 300 nm.
The SiN layer includes an electrode provided to face the buffer layer, a high-frequency power source that supplies plasma excitation power to the electrode, a bias power source that supplies bias power to the holding member that holds the transparent support, The plasma CVD film-forming apparatus provided with the gas supply means which supplies carrier gas and raw material gas toward an electrode was formed.
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas. The supply amounts of these gases were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas. The film forming pressure was 50 Pa.
The electrode was supplied with 3000 W plasma excitation power at a frequency of 13.5 MHz from a high frequency power source. Further, 500 W bias power was supplied to the holding member from a bias power source.
 <封止>
 上記透明支持体と同様に、厚さ50μmのポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、極高透明品PET Type K)上に、前記と同様のポリシラザン含有液を塗布し、エキシマランプで処理して第2のガスバリアー層を形成して、第2のガスバリアー層付の透明封止部材を得た。
<Sealing>
Similarly to the transparent support, a polysilazane-containing liquid similar to the above is applied onto a 50 μm thick polyethylene terephthalate film (Teijin DuPont Films Co., Ltd., ultra-high transparency PET Type K) and treated with an excimer lamp. Thus, a second gas barrier layer was formed to obtain a transparent sealing member with a second gas barrier layer.
 (有機EL素子の封止)
 透明封止部材の接着は、接着剤としてエポキシ系熱硬化型接着剤(巴川製紙所社製エレファンCS)を用い、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内で、80℃、0.04MPa荷重下、減圧(1×10-3MPa以下)吸引を20秒、プレスを20秒の条件で、真空プレスした。
(Sealing of organic EL elements)
Adhesion of the transparent sealing member uses an epoxy thermosetting adhesive (Elephan CS manufactured by Yodogawa Paper Co., Ltd.) as an adhesive, and in a glove box having an oxygen concentration of 10 ppm or less and a water concentration of 10 ppm or less, at 80 ° C. and 0. Under a load of 04 MPa, vacuum pressing was performed under the conditions of suction for 20 seconds and reduced pressure (1 × 10 −3 MPa or less) suction.
 その後、グローブボックス内で、110℃のホットプレート上で30分間加熱して接着層を熱硬化させ、図1に記載の層構成を有する有機EL素子1を得た。 Then, in the glove box, the adhesive layer was thermally cured by heating on a hot plate at 110 ° C. for 30 minutes to obtain an organic EL element 1 having the layer configuration shown in FIG.
 [有機EL素子2~11の作製]
 有機EL素子1の作製において、MgOからなる中間層を、下記各材料からなる中間層としたほかは、上記有機EL素子1の作製と同様にして有機EL素子2~11を作製した。
 なお、有機EL素子11については、有機EL素子1の作製において、中間層を作製しなかった以外は有機EL素子1と同様にして作製した。
[Preparation of organic EL elements 2 to 11]
Organic EL elements 2 to 11 were prepared in the same manner as the organic EL element 1 except that the intermediate layer made of MgO was changed to an intermediate layer made of the following materials in the preparation of the organic EL element 1.
The organic EL element 11 was produced in the same manner as the organic EL element 1 except that the intermediate layer was not produced in the production of the organic EL element 1.
 (α-NPDからなる中間層)
 第1のガスバリアー層の上にα-NPDを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してα-NPDからなる中間層を形成した。
(Interlayer consisting of α-NPD)
An α-NPD film is formed on the first gas barrier layer so as to have a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition to form an intermediate layer made of α-NPD. did.
 (CeFからなる中間層)
 第1のガスバリアー層の上にCeFを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してCeFからなる中間層を形成した。
(Interlayer made of CeF 3 )
An CeF 3 intermediate layer was formed on the first gas barrier layer by depositing CeF 3 at a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
 (MoO及びMgFからなる中間層)
 第1のガスバリアー層の上にMoOとMgFをそれぞれ成膜レート0.1nm/sec(レートで1.1:1に)、真空蒸着法にて厚さ100nmとなるよう共蒸着してMoO及びMgFからなる中間層を形成した。
(Interlayer consisting of MoO 3 and MgF 2 )
On the first gas barrier layer, MoO 3 and MgF 2 were co-deposited to a film formation rate of 0.1 nm / sec (a rate of 1.1: 1) and a thickness of 100 nm by vacuum deposition. An intermediate layer made of MoO 3 and MgF 2 was formed.
 (MgFからなる中間層)
 第1のガスバリアー層の上にMgFを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してMgFからなる中間層を形成した。
(Intermediate layer made of MgF 2 )
An intermediate layer made of MgF 2 was formed on the first gas barrier layer by depositing MgF 2 at a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
 (Nbからなる中間層)
 第1のガスバリアー層の上にNbを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してNbからなる中間層を形成した。
(Intermediate layer made of Nb 2 O 5 )
First a Nb 2 O 5 on the gas barrier layer deposition rate 0.1 ~ 0.2nm / sec, the intermediate layer consisting of Nb 2 O 5 was deposited to a thickness of 100nm by vacuum deposition Formed.
 (SiNからなる中間層)
 第1のガスバリアー層の上にSiNを、デポアップ方式のプラズマCVD成膜装置によって、厚さ100nmとなるよう成膜してSiNからなる中間層を形成した。
 具体的には、SiNからなる中間層は、ガスバリアー層に対面するように設けられた電極と、この電極にプラズマ励起電力を供給する高周波電源と、透明支持体を保持する保持部材に対してバイアス電力を供給するバイアス電源と、電極に向けてキャリアガスや原料ガスを供給するガス供給手段と、を備えたプラズマCVD成膜装置で形成した。
 成膜ガスは、シランガス(SiH)、アンモニアガス(NH)、窒素ガス(N)及び水素ガス(H)を用いた。これらのガスの供給量は、シランガスが100sccm、アンモニアガスが200sccm、窒素ガスが500sccm、水素ガスが500sccmとした。また、成膜圧力は50Paとした。
 電極には、高周波電源から周波数13.5MHzで3000Wのプラズマ励起電力を供給した。さらに、保持部材には、バイアス電源から500Wのバイアス電力を供給した。
 なお、成膜レートは3.0~6.0nm/secとした。
(Interlayer made of SiN)
On the first gas barrier layer, SiN was deposited to a thickness of 100 nm by a deposition CVD plasma CVD deposition apparatus to form an intermediate layer made of SiN.
Specifically, the intermediate layer made of SiN has an electrode provided so as to face the gas barrier layer, a high-frequency power source that supplies plasma excitation power to the electrode, and a holding member that holds the transparent support. The plasma CVD film forming apparatus includes a bias power source that supplies bias power and a gas supply unit that supplies a carrier gas and a raw material gas toward the electrode.
Silane gas (SiH 4 ), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and hydrogen gas (H 2 ) were used as the film forming gas. The supply amounts of these gases were 100 sccm for silane gas, 200 sccm for ammonia gas, 500 sccm for nitrogen gas, and 500 sccm for hydrogen gas. The film forming pressure was 50 Pa.
The electrode was supplied with 3000 W plasma excitation power at a frequency of 13.5 MHz from a high frequency power source. Further, 500 W bias power was supplied to the holding member from a bias power source.
The film formation rate was 3.0 to 6.0 nm / sec.
 (Alからなる中間層)
 第1のガスバリアー層の上にAlを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してAlからなる中間層を形成した。
(Intermediate layer made of Al 2 O 3 )
First deposition rate 0.1 ~ 0.2 nm / sec to Al 2 O 3 on the gas barrier layer, an intermediate layer of Al 2 O 3 was deposited to a thickness of 100nm by vacuum deposition Formed.
 (ZnSからなる中間層)
 第1のガスバリアー層の上にZnSを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してZnSからなる中間層を形成した。
(Intermediate layer made of ZnS)
An intermediate layer made of ZnS was formed on the first gas barrier layer by depositing ZnS so as to have a film formation rate of 0.1 to 0.2 nm / sec and a thickness of 100 nm by vacuum deposition.
 (Yからなる中間層)
 第1のガスバリアー層の上にYを成膜レート0.1~0.2nm/sec、真空蒸着法にて厚さ100nmとなるよう成膜してYからなる中間層を形成した。
(Intermediate layer made of Y 2 O 3 )
First Y 2 O 3 film forming rate 0.1 ~ 0.2 nm / sec on the gas barrier layer, an intermediate layer formed from the deposited to a thickness of 100nm by vacuum deposition Y 2 O 3 Formed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [屈折率の測定]
 第1のガスバリアー層、中間層及び陽極の屈折率は、下記のようにして測定した。
 なお、下記測定は、23℃及び55%RHの環境下において行った。
[Measurement of refractive index]
The refractive indexes of the first gas barrier layer, the intermediate layer, and the anode were measured as follows.
The following measurement was performed in an environment of 23 ° C. and 55% RH.
 <第1のガスバリアー層の屈折率の測定>
 上記作製した有機EL素子1~11について、第1のガスバリアー層を形成した段階でサンプルとして、ジェー・エー・ウーラム・ジャパン(株)社製の分光エリプソメーターalpha-SEを用いて、当該サンプルの分光反射率を測定することにより、屈折率を求めた。具体的には、サンプルの裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面の光反射を防止し、5度正反射の条件で測定を行い、波長550nmの光の反射率より屈折率を求めた。
<Measurement of refractive index of first gas barrier layer>
For the organic EL devices 1 to 11 produced as described above, the sample was prepared using a spectroscopic ellipsometer alpha-SE manufactured by JA Woollam Japan Co., Ltd. as a sample at the stage where the first gas barrier layer was formed. The refractive index was determined by measuring the spectral reflectance. Specifically, after the back surface of the sample is roughened, light absorption treatment is performed with a black spray to prevent light reflection on the back surface, and measurement is performed under the condition of regular reflection at 5 degrees. The refractive index was obtained from the reflectance.
 <中間層及び陽極の屈折率の測定>
 上記第1のガスバリアー層の屈折率の測定において、第1のガスバリアー層の代わりに中間層又は陽極を形成した段階でサンプルとしたほかは同様にして中間層及び陽極の屈折率を測定した。
<Measurement of refractive index of intermediate layer and anode>
In the measurement of the refractive index of the first gas barrier layer, the refractive index of the intermediate layer and the anode was measured in the same manner except that the sample was formed at the stage where the intermediate layer or the anode was formed instead of the first gas barrier layer. .
 〔有機EL素子1~11の評価〕
 上記のようにして作製された有機EL素子1~11について、分光光度計(日立製作所製U-3300)を用い、本発明に係る中間層を有さない有機EL素子11をリファレンスとして、分光透過率400~800nmの範囲での平均の光透過率(%)を測定した。
 なお、光透過率の評価基準は下記のとおりとし、○、△を合格とし、×を不合格とした。
[Evaluation of organic EL elements 1 to 11]
For the organic EL elements 1 to 11 manufactured as described above, a spectrophotometer (U-3300 manufactured by Hitachi, Ltd.) is used, and the organic EL element 11 having no intermediate layer according to the present invention is used as a reference for spectral transmission. The average light transmittance (%) in the range of 400 to 800 nm was measured.
In addition, the evaluation criteria of the light transmittance were as follows, (circle) and (triangle | delta) were set as pass, and x was set as rejection.
 ○…有機EL素子11に比べ光透過率が1%以上向上
 △…有機EL素子11に比べ光透過率が0.1%以上1%未満向上
 ×…有機EL素子11に比べ光透過率が0.1%未満向上(又は向上なし若しくは低下)
○: Light transmittance improved by 1% or more compared to the organic EL element 11 Δ: Light transmittance improved by 0.1% or more and less than 1% compared to the organic EL element 11 ×: Light transmittance is 0 compared to the organic EL element 11 Less than 1% improvement (or no improvement or decrease)
 以上のように、本発明は、界面における光の反射を抑制した光透過率の高い有機エレクトロルミネッセンス素子を提供することに適している。 As described above, the present invention is suitable for providing an organic electroluminescence element having a high light transmittance in which reflection of light at the interface is suppressed.
 1  有機エレクトロルミネッセンス素子
 10 透明支持体
 11 第1のガスバリアー層
 12 中間層
 13 陽極
 14 有機機能層
 15 陰極
 16 バッファー層
 17 無機防湿層(SiN層)
 18 封止用接着剤
 19 第2のガスバリアー層
 20 封止部材
DESCRIPTION OF SYMBOLS 1 Organic electroluminescent element 10 Transparent support 11 1st gas barrier layer 12 Intermediate layer 13 Anode 14 Organic functional layer 15 Cathode 16 Buffer layer 17 Inorganic moisture-proof layer (SiN layer)
18 Sealing adhesive 19 Second gas barrier layer 20 Sealing member

Claims (5)

  1.  透明支持体と、光透過性の陽極及び陰極と、前記透明支持体及び前記陽極の間に形成された第1のガスバリアー層と、を有する有機エレクトロルミネッセンス素子であって、
     前記第1のガスバリアー層と前記陽極との間に中間層を有し、
     前記第1のガスバリアー層の屈折率(n)と、前記陽極の屈折率(n)と、前記中間層の屈折率(n)とが、下記式(1)で表される関係を満たすことを特徴とする有機エレクトロルミネッセンス素子。
     式(1) n<n<n
     [式(1)中の屈折率n~nは、それぞれ、23℃及び55%RHの環境下における、波長550nmの光の屈折率である。]
    An organic electroluminescence device comprising a transparent support, a light-transmitting anode and cathode, and a first gas barrier layer formed between the transparent support and the anode,
    Having an intermediate layer between the first gas barrier layer and the anode;
    The refractive index (n 1 ) of the first gas barrier layer, the refractive index (n 2 ) of the anode, and the refractive index (n 3 ) of the intermediate layer are represented by the following formula (1). An organic electroluminescent element characterized by satisfying
    Formula (1) n 1 <n 3 <n 2
    [Refractive indexes n 1 to n 3 in the formula (1) are refractive indexes of light having a wavelength of 550 nm in an environment of 23 ° C. and 55% RH, respectively. ]
  2.  前記中間層の屈折率(n)が、1.60~1.90の範囲内であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the refractive index (n 3 ) of the intermediate layer is in the range of 1.60 to 1.90.
  3.  前記中間層の屈折率(n)が、1.70~1.80の範囲内であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the refractive index (n 3 ) of the intermediate layer is in the range of 1.70 to 1.80.
  4.  前記中間層が、複数の化合物を含有してなることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 3, wherein the intermediate layer contains a plurality of compounds.
  5.  前記中間層が、前記第1のガスバリアー層と前記陽極との間にのみ設けられていることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to any one of claims 1 to 4, wherein the intermediate layer is provided only between the first gas barrier layer and the anode.
PCT/JP2016/077286 2015-09-30 2016-09-15 Organic electroluminescent element WO2017057023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543123A JPWO2017057023A1 (en) 2015-09-30 2016-09-15 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192614 2015-09-30
JP2015-192614 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057023A1 true WO2017057023A1 (en) 2017-04-06

Family

ID=58423426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077286 WO2017057023A1 (en) 2015-09-30 2016-09-15 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2017057023A1 (en)
WO (1) WO2017057023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533521A (en) * 2018-08-16 2021-12-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co., Ltd. Display element sealing structure and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2005327687A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2005353367A (en) * 2004-06-09 2005-12-22 Toshiba Corp Organic electroluminescent element and its manufacturing method
JP2008016347A (en) * 2006-07-06 2008-01-24 Toppan Printing Co Ltd Organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2005327687A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2005353367A (en) * 2004-06-09 2005-12-22 Toshiba Corp Organic electroluminescent element and its manufacturing method
JP2008016347A (en) * 2006-07-06 2008-01-24 Toppan Printing Co Ltd Organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533521A (en) * 2018-08-16 2021-12-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co., Ltd. Display element sealing structure and display device

Also Published As

Publication number Publication date
JPWO2017057023A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US11507649B2 (en) Optical fingerprint authentication device
JP4292246B2 (en) Organic electroluminescent device and manufacturing method thereof
US20080067926A1 (en) Organic light-emitting device
KR100721571B1 (en) Organic light emitting device and fabrication method of the same
JP2006156390A (en) Organic electroluminescent element and its manufacturing method
EP2284921A2 (en) Organic electroluminescence element
US20180212184A1 (en) Organic electroluminescent element
WO2017056682A1 (en) Organic electroluminescence panel
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
WO2017057023A1 (en) Organic electroluminescent element
JP2016177992A (en) Method of manufacturing organic electroluminescence element and organic electroluminescence element
JP6409771B2 (en) Organic electroluminescence device and method for manufacturing the same
JP7336381B2 (en) Light-receiving/light-emitting elements, optical sensors and biosensors
JP2005142122A (en) Organic light emitting element having metal borate or organic boron compound of metal
WO2010110347A1 (en) Organic electroluminescent element and process for manufacturing organic electroluminescent element
CN114203925A (en) Organic light emitting device with low refractive cladding layer
US20200388787A1 (en) Luminescent thin film, luminescent multilayered film, and organic electroluminescent device, and production method therefor
WO2014168102A1 (en) Production method for organic electroluminescent element
WO2018116923A1 (en) Transparent electrode and electronic device
US10243147B2 (en) Organic light-emitting element
WO2018051617A1 (en) Organic electroluminescent element
JP2017154283A (en) Barrier film, method for producing barrier film, and element using the barrier film
WO2014181695A1 (en) Organic electroluminescent element
CN108293279B (en) Light emitting device
WO2018211776A1 (en) Organic electroluminescence element and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851197

Country of ref document: EP

Kind code of ref document: A1