WO2017056802A1 - Image projection device - Google Patents

Image projection device Download PDF

Info

Publication number
WO2017056802A1
WO2017056802A1 PCT/JP2016/074838 JP2016074838W WO2017056802A1 WO 2017056802 A1 WO2017056802 A1 WO 2017056802A1 JP 2016074838 W JP2016074838 W JP 2016074838W WO 2017056802 A1 WO2017056802 A1 WO 2017056802A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
image
light beam
area
projection
Prior art date
Application number
PCT/JP2016/074838
Other languages
French (fr)
Japanese (ja)
Inventor
荒川泰彦
菅原充
鈴木誠
Original Assignee
株式会社Qdレーザ
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ, 国立大学法人東京大学 filed Critical 株式会社Qdレーザ
Priority to JP2017504439A priority Critical patent/JP6209705B2/en
Publication of WO2017056802A1 publication Critical patent/WO2017056802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to an image projection apparatus, for example, an image projection apparatus which projects an image directly onto a user's retina.
  • an image projection apparatus such as a head mounted display (HMD) which directly projects an image onto a user's retina using a light beam emitted from a light source (Patent Document 1).
  • HMD head mounted display
  • a method called Maxwell vision is used. In Maxwell vision, the rays forming the image are focused near the pupil and the image is projected onto the retina.
  • Patent Document 2 There is known an image projection apparatus that detects light reflected by the cornea and adjusts the in-focus position so that a light beam is focused on the retina.
  • Patent Documents 3 and 4 There is also known an image projection apparatus that reflects light emitted from a light source with two mirrors having different curvatures in a plane and irradiates the user's retina.
  • the present invention has been made in view of the above problems, and an object thereof is to set the in-focus position to an appropriate position.
  • a scanning unit for scanning a light beam emitted from a light source in a two-dimensional direction, an optical component for reflecting or transmitting the light beam scanned by the scanning unit, and an optical component disposed in front of a user's eye
  • a first mirror for projecting an image onto the retina by reflecting or transmitting a light beam reflected or transmitted to the retina of the eye, the first mirror having a first area and a second area
  • the first region of the first mirror is positioned in a direction in which the light beam is incident from the second region, and the optical component irradiates the first region of the light beam scanned by the scanning unit.
  • the condensing power in the third region for reflecting or transmitting one light beam is determined from the condensing power in the fourth region for reflecting or transmitting the second light beam irradiated to the second region among the light beams scanned by the scanning unit.
  • Big An image projection apparatus characterized by Kusuru.
  • a first position at which the first light beam is focused and a first distance between the retina, and a second distance between the second light beam and the second position at which the second light beam is focused are respectively:
  • the configuration may be smaller than the first distance and the second distance when it is assumed that the condensing powers in the third region and the fourth region are the same.
  • the optical component may be a second mirror, and a curvature of the second mirror in the third region may be larger than a curvature of the second mirror in the fourth region.
  • the optical component may be a diffraction grating, and a pitch of the diffraction grating in the third region may be larger than a pitch of the diffraction grating in the fourth region.
  • the light collection power of the first mirror in the first region may be smaller than the light collection power of the first mirror in the second region.
  • the first area and the second area may be located on both sides in the light beam incident direction with respect to a position corresponding to the center of the image in the first mirror. it can.
  • the distance between the first region and the second region in the first mirror may be larger than the distance between the third region and the fourth region in the optical component.
  • the optical corresponding to a pair of positions in the first mirror that is in a symmetrical relationship with respect to a line extending in a direction in which the light beam is incident through a position corresponding to the center of the image in the first mirror.
  • the focused powers at a pair of locations in the component can be of substantially equal configuration.
  • the present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit.
  • Control unit a scanning mirror for scanning the image light beam, a reflection mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the reflection mirror on the retina of the eyeball of the user
  • a projection mirror, the surface of the projection mirror having a free-form surface, and the surface of the reflection mirror being an image projector having a free-form surface corresponding to a change in curvature of the free-form surface of the projection mirror.
  • the free curved surface of the reflection mirror can be configured to include a concave surface and a convex surface.
  • the free curved surface of the projection mirror has regions with different curvatures, and the image light rays reflected by the concave surface and the convex surface of the reflection mirror are respectively irradiated to the different regions of the projection mirror and reflected by the concave surface And the concave curved surface of the reflecting mirror so that the projected image light beam is irradiated to the area of the projection mirror whose curvature is smaller than the curvature of the area of the projection mirror to which the image light beam reflected by the convex curved surface is irradiated.
  • a convex curved surface can be set.
  • the present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit.
  • Control unit a scanning mirror for scanning the image light beam, a reflection mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the reflection mirror on the retina of the eyeball of the user
  • a projection mirror, the surface of the projection mirror having a free-form surface, and the reflection mirror being an image projector including a reflective diffraction element corresponding to a change in curvature of the free-form surface of the projection mirror.
  • the reflection type diffractive element can be configured to have a phase distribution with different phase pitches.
  • the free curved surface of the projection mirror has regions of different curvatures, and the image light rays reflected by the wide region of the phase pitch and the region of the narrow phase pitch of the reflective diffractive element differ in the curvature of the projection mirror.
  • the image light rays respectively irradiated to the area and reflected in the wide area of the phase pitch are smaller in curvature than the curvature of the area of the projection mirror to which the image light rays reflected in the narrow area of the phase pitch are irradiated.
  • the phase pitch of the reflective diffraction element may be set so as to illuminate the area of the mirror.
  • the present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit.
  • Control unit a scanning mirror for scanning the image light beam, a transmission mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the transmission mirror on the retina of the eyeball of the user
  • a projection mirror, the surface of the projection mirror having a free-form surface, and the transmission mirror is an image projector including a transmission type diffractive element corresponding to a change in curvature of the free-form surface of the projection mirror.
  • the transmission type diffractive element can be configured to have a phase distribution with different phase pitches.
  • the free-form surface of the projection mirror has regions of different curvatures, and the image light rays transmitted by the region of wide phase pitch and the region of narrow phase pitch of the transmissive diffraction element differ in curvature of the projection mirror.
  • the image rays respectively irradiated to the area and transmitted in the wide area of the phase pitch have the curvature smaller than the curvature of the area of the projection mirror to which the image light transmitted in the narrow area of the phase pitch is irradiated.
  • the configuration may be such that the phase pitch of the transmissive diffraction element is set so as to irradiate the area of the mirror.
  • the in-focus position can be set to an appropriate position.
  • FIG. 1 is a top view of the image projection apparatus according to the comparative example and the first embodiment.
  • FIG. 2 is a view showing an optical path of a light beam in the image projector according to the comparative example.
  • Fig.3 (a) is a figure which shows the optical path of the light ray in the image projector which concerns on Example 1
  • FIG.3 (b) is an enlarged view of reflective mirror vicinity of Fig.3 (a).
  • FIG. 4A is a perspective view showing the unevenness on the surface of the reflection mirror in Example 1
  • FIG. 4B is a view showing Z in the X direction of the reflection mirror.
  • FIG. 5 is a diagram showing contour lines in the reflection mirror of the first embodiment.
  • FIG. 6A is a view showing an optical path of a light beam in the image projection apparatus according to the second embodiment, and FIG. 6B is an enlarged view of the vicinity of the reflective diffraction element in FIG. 6A.
  • FIG. 7 is a diagram showing equal phase lines in the reflective diffraction element of Example 2.
  • FIG. 8A is a view showing an optical path of a light beam in the image projection apparatus according to the third embodiment, and FIG. 8B is an enlarged view of the vicinity of the transmissive diffraction element in FIG. 8A.
  • FIG. 9 is a diagram showing equal phase lines in the transmission type diffraction element of Example 3.
  • FIG. 1 is a top view of the image projection apparatus according to the comparative example and the first embodiment.
  • a traveling direction in the projection mirror 24 of a light beam incident on the projection mirror 24 is taken as an X direction, and a direction orthogonal to the X direction at the projection mirror 24 is taken as a Y direction.
  • the X direction is horizontal.
  • the image projection device is of the glasses type.
  • the glasses have a temple 10 and a lens 20.
  • a light source 12, a scanning mirror 14 and a reflecting mirror 18 are provided on the temple 10 of the glasses.
  • the light source 12 emits, for example, laser light 34 of a single or a plurality of wavelengths.
  • the scanning mirror 14 scans the laser beam 34 emitted from the light source 12 in a two-dimensional direction.
  • the reflection mirror 18 reflects the scanned laser beam 34.
  • Image data is input to the image input unit 15 from a camera and / or a recording device.
  • the control unit 16 controls the emission of the laser beam 34 from the light source 12 based on the input image data. That is, the image signal is converted by the light source 12 (light source unit) into a laser beam which is an image beam.
  • the control unit 16 is, for example, a processor such as a CPU (Central Processing Unit).
  • the control unit 16 may not be provided, for example, in the glasses, but may be provided in an external device (for example, a portable terminal), or may be provided in the temple 10 of the glasses.
  • the scanning mirror 14 two-dimensionally scans the laser beam 34 emitted from the light source 12 and uses it as projection light for projecting an image on the retina 26 of the eye 22 of the user (user).
  • the scanning mirror 14 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror, and scans laser light in two dimensions in the horizontal direction and the vertical direction.
  • MEMS Micro Electro Mechanical Systems
  • the direction which scans a laser beam is made into the X direction and the Y direction, you may scan a laser beam in directions other than a X direction and a Y direction.
  • the reflection mirror 18 reflects the laser beam 34 scanned by the scanning mirror 14 toward the lens 20.
  • a projection mirror 24 is provided on the surface of the lens 20 on the eyeball 22 side of the user.
  • the projection mirror 24 projects an image on the retina 26 by irradiating the retina 26 of the eyeball 22 with the laser beam 34 scanned by the scanning mirror 14 and reflected by the reflection mirror 18. That is, the user can recognize an image by the afterimage effect of the laser light projected onto the retina 26.
  • the projection mirror 24 is designed such that the focal position of the laser beam 34 scanned by the scanning mirror 14 is the pupil 28 of the eye 22.
  • the laser beam 34 is incident on the projection mirror 24 almost immediately (that is, approximately in the ⁇ X direction).
  • FIG. 2 is a view showing an optical path of a light beam in the image projector according to the comparative example.
  • light beams L0 to L2 are light beams scanned in the horizontal direction by the scanning mirror 14, and are irradiated to the projection mirror 24 from the ⁇ X direction.
  • a ray L0 is a ray corresponding to the center of the image
  • rays L1 and L2 are rays corresponding to the edge of the image.
  • the rays L0 to L2 are reflected at the regions R0 to R2 of the projection mirror 24, respectively.
  • the reflected light rays L 0 to L 2 converge at the pupil 28 located at the center of the iris 29, pass through the lens 30, and reach the retina 26.
  • Region R0 is a region that reflects light ray L0 corresponding to the center of the image.
  • the region R1 is a region from the region R0 in the -X direction (the direction in which the light beams L0 to L2 are incident).
  • the region R2 is a region in the + X direction from the region R0.
  • rays L0 to L2 will intersect near the pupil 28.
  • the in-focus positions F0 to F2 of the respective light beams L0 to L2 deviate from the retina 26.
  • the light beam L 0 reflected by the projection mirror 24 is incident on the lens 30 as substantially parallel light and is focused near the retina 26.
  • the light beam L1 reflected by the projection mirror 24 enters the lens 30 as diffused light.
  • the light beam L 1 is focused farther than the retina 26.
  • the light beam L2 reflected by the projection mirror 24 enters the lens 30 as convergent light.
  • the light beam L2 is focused closer to the retina 26.
  • the in-focus position F1 is farther from the projection mirror 24 than the retina 26. This is the distance D1 between the in-focus position F1 and the retina 26.
  • the in-focus position F2 is closer to the projection mirror 24 than the retina 26.
  • the distance D2 between the in-focus position F2 and the retina 26 is obtained.
  • the in-focus positions F0 to F2 differ in this way is that the curvature of the regions R0 to R2 of the projection mirror 24 is X when focusing light rays L0 to L2 incident on the projection mirror 24 from the -X direction on the pupil 28. This is because they differ in direction and / or cause an optical path difference of the light beams L0 to L2.
  • the region R2 has a curvature larger than that of R1. That is, the region R2 has a larger condensing power than R1. Therefore, the in-focus position F2 is closer to the light source than F1.
  • the projection mirror 24 is arranged parallel to the face, the light path of the light ray L2 is longer than the light ray L1.
  • the in-focus position F2 is closer to the light source than F1.
  • the optical system in the Y direction is substantially symmetrical with respect to the X axis, and in the Y direction, the shift of the in-focus position as in the X direction is less likely to occur.
  • the first embodiment is an example in which the reflection mirror 18 is used as an optical component.
  • Fig.3 (a) is a figure which shows the optical path of the light ray in the image projector which concerns on Example 1
  • FIG.3 (b) is an enlarged view of reflective mirror vicinity of Fig.3 (a).
  • FIGS. 3A and 3B light beams L0 to L2 applied to the regions R0 to R2 of the projection mirror 24 are reflected at the regions S0 to S2 in the reflection mirror 18, respectively.
  • the reflection mirror 18 has a free-form surface.
  • the other configuration is the same as that of Comparative Example 1, and the description thereof is omitted.
  • FIG. 4A is a perspective view showing the unevenness on the surface of the reflection mirror in Example 1
  • FIG. 4B is a view showing the height Z in the X direction of the reflection mirror.
  • the X direction and the Y direction are directions corresponding to the X direction and the Y direction in the projection mirror 24.
  • the height at the reflection mirror 18 is in the Z direction.
  • the Z direction is shown by enlarging the unevenness of the surface of the reflection mirror 18.
  • the surface of the reflection mirror 18 is substantially flat, in the area S1 the surface of the reflection mirror 18 is concave, and in the area S2, the surface of the reflection mirror 18 is It is convex.
  • the collected power is approximately 0 in the region S0, the collected power is positive in the region S1, and the collected power is negative in the region S2. Therefore, the in-focus position F0 of the light ray L0 does not change from the comparative example.
  • the in-focus position F1 of the light beam L1 is closer to the light source as compared with FIG. 2 of the comparative example, and the in-focus position F2 of the light beam L2 is farther from the light source than in FIG. Thereby, the in-focus positions F0 to F2 are in the vicinity of the retina 26.
  • Z on the surface of the reflection mirror 18 be a free-form surface expressed by the following equation.
  • Z ⁇ a ij ⁇ X i ⁇ Y j
  • a ij is a coefficient.
  • at least one of the coefficients a ij in which i is an odd-numbered term is set to a finite value (other than 0).
  • the collected power in the Y direction at the projection mirror 24 is symmetrical with respect to the X axis. Therefore, the coefficient a ij in which j is an odd term is set to 0.
  • the coefficients a 30 and a 12 be finite. Thereby, a free-form surface as shown in FIG. 4 can be realized.
  • the coefficients a 10 and / or a 20 may be a finite value.
  • higher order coefficients may be finite values.
  • FIG. 5 is a diagram showing contour lines in the reflection mirror of the first embodiment.
  • the distance between contour lines is 11.6 ⁇ m.
  • Z decreases in the + X direction, and increases in the -X direction.
  • FIG. 5 is circular because it is simulated based on the retina. What cut out a part of the circle in FIG. 5 as a square corresponds to FIG. 4 (a).
  • the surface of the reflection mirror 18 is set to a free-form surface such as a flat surface, a concave surface, or a convex surface in accordance with the change in the curvature of the free-form surface of the projection mirror 24.
  • a light beam reflected by the convex surface of the reflecting mirror 18 with large collected power is irradiated to a region where the curvature of the projection mirror 24 is large, and it is reflected by a concave surface of the reflecting mirror 18 with small collected power in the region where the curvature of the projection mirror 24 is small. Irradiate the light beam.
  • the light beams L0 to L2 can be focused in the vicinity of the retina 26.
  • the optical system including the projection mirror 24 is designed with the reflection mirror 18 as a plane without considering the focus positions F0 to F2 of the light beams L0 to L2. Thereafter, the surface of the reflection mirror 18 is designed as a free-form surface without changing the design of the projection mirror 24.
  • the in-focus positions F0 to F2 of the light beams L0 to L2 are adjusted. Since the condensing powers given by the reflection mirror 18 to the respective light beams L0 to L2 are weak, the in-focus positions F0 to F2 can be adjusted with almost no influence on the trajectories of the light beams L0 to L2. Therefore, the optical system can be designed easily.
  • FIG. 6A is a view showing an optical path of a light beam in the image projection apparatus according to the second embodiment
  • FIG. 6B is an enlarged view of the vicinity of the reflective diffraction element in FIG. 6A.
  • a reflective diffraction element 18a is used as an optical component.
  • the other configuration is the same as that of the first embodiment, and the description is omitted.
  • FIG. 7 is a diagram showing equal phase lines in the reflective diffraction element of Example 2.
  • the spacing between the lines is 50 ⁇ 2 ⁇ rad.
  • the spacing of the equiphase lines corresponds to the pitch of the diffractive elements 18a.
  • Example 2 even if the reflective diffraction element 18a is used, the condensing power of the region S0 is almost 0, the condensing power of the region S1 is positive, and the condensing power of the region S2 is negative. it can.
  • FIG. 8A is a view showing an optical path of a light beam in the image projection apparatus according to the third embodiment
  • FIG. 8B is an enlarged view of the vicinity of the transmissive diffraction element in FIG. 8A.
  • a transmissive diffraction element 18b is used as an optical component.
  • the light beams L0 to L2 reflected by the scanning mirror 14 pass through the regions S0 to S2 of the diffractive element 18b, respectively.
  • the other configuration is the same as that of the first embodiment, and the description is omitted.
  • FIG. 9 is a diagram showing equal phase lines in the transmission type diffraction element of Example 3.
  • the spacing between the lines is 7.5 ⁇ 2 ⁇ rad.
  • the condensing power of the region S0 is substantially zero, the condensing power of the region S1 is positive, and the condensing power of the region S2 is negative. it can.
  • the projection mirror 24 (first mirror) is disposed in front of the eye 22 of the user.
  • the projection mirror 24 projects an image on the retina 26 by reflecting a light beam incident from the ⁇ X direction and irradiating the retina 26 of the eyeball 22.
  • an optical component that reflects or transmits the light beam scanned by the scanning mirror 14 (scanning unit) 18a or a transmissive diffractive element 18b).
  • the projection mirror 24 illuminates the light beams L0 to L2 reflected or transmitted by the optical component.
  • the optical components are arranged.
  • the optical component is configured to focus light power in a region S1 (third region) that reflects or passes the light beam L1 irradiated to the region R1 (first region) among the light beams scanned by the scanning mirror 14 into a region R2 (second region) Is made larger than the condensing power in the region S2 (fourth region) which reflects or passes the light beam L2 (second light beam) irradiated to the.
  • the in-focus position F1 of the light beam L1 approaches the projection mirror 24, and the in-focus position F2 of the light beam L2 moves away from the projection mirror 24. Therefore, the in-focus positions F0 to F2 of the light beams L0 to L2 can be made near the retina 26. Therefore, the in-focus positions F0 to F2 can be set as appropriate positions.
  • the second distance) is smaller than the distance D1 and the distance D2 when it is assumed that the condensing powers in the region S1 and the region S2 are the same, respectively.
  • the in-focus positions F0 to F2 of the light beams L0 to L2 can be made near the retina 26.
  • the optical component is a reflection mirror 18 (second mirror).
  • the curvature of the reflection mirror 18 in the region S1 is made larger than the curvature of the reflection mirror 18 in the region S2.
  • region S1 can be made larger than the condensing power in area
  • the concave surface is positive as in the region S1 of FIGS. 4A and 4B, and the convex surface is negative as the region S2.
  • the reflection mirror 18 as an optical component, even when the light beams L0 to L2 include a plurality of wavelengths, it is possible to set the condensing power of the light beams L0 to L2 of each wavelength with a single curved surface.
  • the free curved surface of the reflection mirror 18 includes a concave curved surface and a convex curved surface, and the free curved surface of the projection mirror 24 has a region with different curvatures. doing.
  • the image rays reflected by the concave surface and the convex surface of the reflection mirror 18 are respectively irradiated to different regions of the projection mirror 24.
  • the image ray reflected by the concave surface (area S1) is set to the area R1 of the projection mirror 24 whose curvature is smaller than the curvature of the area R2 of the projection mirror 24 to which the image ray reflected by the convex surface (area S2) is irradiated.
  • the concave curved surface and the convex curved surface of the reflection mirror 18 are set so as to be irradiated. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
  • the optical components may be diffractive elements 18a and 18b.
  • the pitch of the diffraction elements 18a and 18b in the region S1 is made larger than the pitch of the diffraction elements 18a and 18b in the region S2.
  • region S1 can be made larger than the condensing power in area
  • the condensing power can be set more accurately.
  • the collected power of the diffractive elements 18a and 18b is wavelength dependent. For this reason, it is preferable that the light beams L0 to L2 be light of a single wavelength. When the light beams L0 to L2 include light of a plurality of wavelengths, it is preferable to stack diffractive elements corresponding to the respective wavelengths.
  • the reflection mirror includes the reflection type diffraction element 18 a corresponding to the change of the curvature of the free curved surface of the projection mirror 24.
  • the reflective diffraction element 18a has a phase distribution with different phase pitches.
  • the image rays reflected by the wide region S2 of the phase pitch of the reflection type diffraction element 18a and the narrow region S1 of the phase pitch are respectively irradiated to the regions R2 and R1 having different curvatures of the projection mirror 24.
  • the phase pitch of the reflective diffraction element 18a is set so that the image light beam reflected by the region S2 is irradiated to the region R2 whose curvature is smaller than the curvature of the region R1 to which the image light beam reflected by the region S1 is irradiated. It is done. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
  • the transmission mirror includes the transmission type diffraction element 18 b corresponding to the change in curvature of the free curved surface of the projection mirror 24.
  • the transmissive diffraction element 18 b has a phase distribution with different phase pitches.
  • the image rays transmitted through the wide region S2 of the phase pitch of the transmission type diffraction element 18b and the narrow region S1 of the phase pitch are respectively irradiated to the regions R2 and R1 having different curvatures of the projection mirror 24.
  • the image light beam transmitted in the region S2 is irradiated to the region R2 having a smaller curvature than the curvature of the region R1 of the projection mirror 24 to which the image light beam transmitted in the region S1 is irradiated.
  • the phase pitch is set. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
  • the projection mirror 24 may be a diffractive element. In order to allow the light beams L0 to L2 to pass through the pupil 28, it is preferable that the focusing power of the projection mirror 24 in the region R1 is smaller than the focusing power of the projection mirror 24 in the region R2.
  • the projection mirror 24 may be a total reflection mirror.
  • the regions R1 and R2 are located on both sides of the light beams L0 to L2 with respect to the position (region R0) corresponding to the center of the image in the projection mirror 24.
  • the regions R0 to R2 are positioned, in the comparative example 1, the shift from the focusing position F0 to the focus position F2 from the retina 26 becomes large. Therefore, it is preferable to make the condensing powers of the regions S0 to S2 different.
  • the distance between the region R1 and the region R2 in the projection mirror 24 is larger than the distance between the region S1 and the region S2 in the optical component.
  • the condensing powers of the regions R1 and R2 will be largely different.
  • the optical paths of the light beams L0 to L2 are largely different.
  • the in-focus positions F1 and F2 are largely deviated from the retina 26 as shown in FIG. Therefore, in such an optical system, it is preferable to use optical components having different condensing powers in the regions S1 and S2.
  • the optical system of the light beams L0 to L2 is substantially symmetrical with respect to the Y-axis direction. Therefore, the collected power at a pair of positions in the optical component corresponding to a pair of positions in the projection mirror 24 symmetrical to a line extending in the X direction through a position corresponding to the center of the image in the projection mirror 24 is substantially Is preferably equal.
  • the glasses-type HMD has been described as an example of the image projector, an image projector other than the HMD may be used.
  • the scanning mirror 14 has been described as an example of the scanning unit, the scanning unit may be capable of scanning a light beam.
  • other components such as potassium tantalate niobate (KTN) crystal which is an electro-optical material may be used as a scanning unit.
  • KTN potassium tantalate niobate
  • the laser beam is described as an example of the light beam, light other than the laser beam may be used.
  • the condensing powers in the regions S1 and S2 of the optical component may be either positive or negative.
  • the incident directions of the light beams L0 to L2 to the projection mirror 24 have been described taking the horizontal direction as an example, the light beams L0 to L2 may be incident from the vertical direction or the oblique direction.

Abstract

An image projection device provided with a scanning unit for scanning, in a 2D direction, light rays emitted from a light source, an optical component for reflecting or transmitting the light rays scanned by the scanning unit, and a first mirror (24) that is disposed in front of an eyeball of user and that projects an image onto the retina by reflecting the light rays incident from the lateral direction and reflected or transmitted by the optical component and irradiating the light rays onto the retina of the eyeball, the first mirror having a first region (R1) and a second region (R2), the first region being positioned from the second region in the direction in which the light rays are incident on the first mirror, and the optical component makes the condensing power in a third region S1, which reflects or transmits, among the light rays scanned by the scanning unit, first light rays (L1) irradiated at the first region, to be greater than the condensing power in a fourth region (S2), which reflects or transmits, among the light rays scanned by the scanning unit, second light rays (L2) irradiated at the second region.

Description

画像投影装置Image projection device
 本発明は、画像投影装置に関し、例えばユーザの網膜に画像を直接投影する画像投影装置に関する。 The present invention relates to an image projection apparatus, for example, an image projection apparatus which projects an image directly onto a user's retina.
 光源から出射された光線を用いユーザの網膜に画像を直接投影するヘッドマウントディスプレイ(HMD)等の画像投影装置が知られている(特許文献1)。このような画像投影装置では、マックスウエル視といわれる方法が用いられる。マックスウエル視では、画像を形成する光線を瞳孔近傍で集束させ、網膜に画像を投影する。 There is known an image projection apparatus such as a head mounted display (HMD) which directly projects an image onto a user's retina using a light beam emitted from a light source (Patent Document 1). In such an image projection apparatus, a method called Maxwell vision is used. In Maxwell vision, the rays forming the image are focused near the pupil and the image is projected onto the retina.
 光線が網膜で合焦するように、角膜で反射した光を検出し、合焦位置を調整する画像投影装置が知られている(特許文献2)。また、光源から出射された光を、面内で曲率の異なる2つのミラーで反射させ、ユーザの網膜に照射する画像投影装置が知られている(特許文献3、4)。 There is known an image projection apparatus that detects light reflected by the cornea and adjusts the in-focus position so that a light beam is focused on the retina (Patent Document 2). There is also known an image projection apparatus that reflects light emitted from a light source with two mirrors having different curvatures in a plane and irradiates the user's retina (Patent Documents 3 and 4).
国際公開第2014/192479号International Publication No. 2014/192479 特開2009-258686号公報JP, 2009-258686, A 特開2008-46253号公報JP 2008-46253 A 国際公開第2004/029693号WO 2004/029693
 ユーザの眼球の前にミラーを配置し、マックスウエル視のため画像を形成する光線を瞳孔近傍で集束させると、画像内において合焦位置が網膜から大きく外れる領域が発生する。例えば、特許文献2のような方法で合焦位置を調整しようとすると、画像を形成するため走査する光線に同期して合焦位置を調整することになるが、焦点調整を高速に行なうことが難しい。 When a mirror is placed in front of the user's eye and light rays forming the image are focused near the pupil for Maxwell's vision, an area in which the in-focus position largely deviates from the retina occurs in the image. For example, if it is attempted to adjust the in-focus position by the method as described in Patent Document 2, the in-focus position is adjusted in synchronization with the scanning light beam to form an image. difficult.
 本発明は、上記課題に鑑みなされたものであり、合焦位置を適切な位置とすることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to set the in-focus position to an appropriate position.
 本発明は、光源から出射された光線を2次元方向に走査する走査部と、前記走査部が走査した光線を反射または透過させる光学部品と、ユーザの眼球の前に配置され、前記光学部品が反射または透過させた光線を反射し前記眼球の網膜に照射することにより、画像を前記網膜に投影する第1ミラーと、を具備し、前記第1ミラーは、第1領域および第2領域を有し、前記第1ミラーにおいて前記第1領域は前記第2領域より前記光線の入射する方向に位置し、前記光学部品は、前記走査部が走査した前記光線のうち前記第1領域に照射する第1光線を反射または通過させる第3領域における集光パワーを、前記走査部が走査した前記光線のうち前記第2領域に照射される第2光線を反射または通過させる第4領域における集光パワーより大きくすることを特徴とする画像投影装置である。 According to the present invention, a scanning unit for scanning a light beam emitted from a light source in a two-dimensional direction, an optical component for reflecting or transmitting the light beam scanned by the scanning unit, and an optical component disposed in front of a user's eye And a first mirror for projecting an image onto the retina by reflecting or transmitting a light beam reflected or transmitted to the retina of the eye, the first mirror having a first area and a second area The first region of the first mirror is positioned in a direction in which the light beam is incident from the second region, and the optical component irradiates the first region of the light beam scanned by the scanning unit. The condensing power in the third region for reflecting or transmitting one light beam is determined from the condensing power in the fourth region for reflecting or transmitting the second light beam irradiated to the second region among the light beams scanned by the scanning unit. Big An image projection apparatus characterized by Kusuru.
 上記構成において、前記第1光線が合焦する第1位置と前記網膜との第1距離と、前記第2光線が合焦する第2位置と前記網膜との第2距離と、は、それぞれ、前記第3領域および前記第4領域における集光パワーが同じと仮定したときの前記第1距離および前記第2距離より小さい構成とすることができる。 In the above configuration, a first position at which the first light beam is focused and a first distance between the retina, and a second distance between the second light beam and the second position at which the second light beam is focused are respectively: The configuration may be smaller than the first distance and the second distance when it is assumed that the condensing powers in the third region and the fourth region are the same.
 上記構成において、前記光学部品は第2ミラーであり、前記第3領域における前記第2ミラーの曲率は前記第4領域における前記第2ミラーの曲率より大きい構成とすることができる。 In the above configuration, the optical component may be a second mirror, and a curvature of the second mirror in the third region may be larger than a curvature of the second mirror in the fourth region.
 上記構成において、前記光学部品は回折格子であり、前記第3領域における前記回折格子のピッチは前記第4領域における前記回折格子のピッチより大きい構成とすることができる。 In the above configuration, the optical component may be a diffraction grating, and a pitch of the diffraction grating in the third region may be larger than a pitch of the diffraction grating in the fourth region.
 上記構成において、前記第1領域における前記第1ミラーの集光パワーは前記第2領域における前記第1ミラーの集光パワーより小さい構成とすることができる。 In the above-described configuration, the light collection power of the first mirror in the first region may be smaller than the light collection power of the first mirror in the second region.
 上記構成において、前記第1領域および前記第2領域は、前記第1ミラー内の前記画像の中心に対応する位置に対し、前記光線の入射する方向における両側に位置している構成とすることができる。 In the above configuration, the first area and the second area may be located on both sides in the light beam incident direction with respect to a position corresponding to the center of the image in the first mirror. it can.
 上記構成において、前記第1ミラーにおける前記第1領域と前記第2領域との距離は、前記光学部品における前記第3領域と前記第4領域との距離より大きい構成とすることができる。 In the above configuration, the distance between the first region and the second region in the first mirror may be larger than the distance between the third region and the fourth region in the optical component.
 上記構成において、前記第1ミラー内の前記画像の中心に対応する位置を通り前記光線の入射する方向に延伸する線に対し対称関係にある前記第1ミラー内の一対の位置に対応する前記光学部品内の一対の位置における集光パワーは実質的に等しい構成とすることができる。 In the above configuration, the optical corresponding to a pair of positions in the first mirror that is in a symmetrical relationship with respect to a line extending in a direction in which the light beam is incident through a position corresponding to the center of the image in the first mirror. The focused powers at a pair of locations in the component can be of substantially equal configuration.
 本発明は、光線を出射する光源部と、画像データを入力する画像入力部と、入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、前記画像光線を走査する走査ミラーと、前記走査ミラーで走査された画像光線を反射する反射ミラーと、前記反射ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、を具備し、前記投影ミラーの表面は自由曲面を有し、前記反射ミラーの表面は前記投影ミラーの自由曲面の曲率変化に対応した自由曲面を有する画像投影装置である。 The present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit. Control unit, a scanning mirror for scanning the image light beam, a reflection mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the reflection mirror on the retina of the eyeball of the user A projection mirror, the surface of the projection mirror having a free-form surface, and the surface of the reflection mirror being an image projector having a free-form surface corresponding to a change in curvature of the free-form surface of the projection mirror.
 上記構成において、前記反射ミラーの自由曲面は、凹曲面と凸曲面を含む構成とすることができる。 In the above configuration, the free curved surface of the reflection mirror can be configured to include a concave surface and a convex surface.
 上記構成において、前記投影ミラーの自由曲面は曲率の異なる領域を有し、前記反射ミラーの凹曲面および凸曲面で反射した画像光線が前記投影ミラーの異なる領域にそれぞれ照射され、前記凹曲面で反射された画像光線は、前記凸曲面で反射された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記反射ミラーの凹曲面及び凸曲面が設定されている構成とすることができる。 In the above configuration, the free curved surface of the projection mirror has regions with different curvatures, and the image light rays reflected by the concave surface and the convex surface of the reflection mirror are respectively irradiated to the different regions of the projection mirror and reflected by the concave surface And the concave curved surface of the reflecting mirror so that the projected image light beam is irradiated to the area of the projection mirror whose curvature is smaller than the curvature of the area of the projection mirror to which the image light beam reflected by the convex curved surface is irradiated. A convex curved surface can be set.
 本発明は、光線を出射する光源部と、画像データを入力する画像入力部と、入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、前記画像光線を走査する走査ミラーと、前記走査ミラーで走査された画像光線を反射する反射ミラーと、前記反射ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、を具備し、前記投影ミラーの表面は自由曲面を有し、前記反射ミラーは前記投影ミラーの自由曲面の曲率変化に対応した反射型回折素子を含む画像投影装置である。 The present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit. Control unit, a scanning mirror for scanning the image light beam, a reflection mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the reflection mirror on the retina of the eyeball of the user A projection mirror, the surface of the projection mirror having a free-form surface, and the reflection mirror being an image projector including a reflective diffraction element corresponding to a change in curvature of the free-form surface of the projection mirror.
 上記構成において、前記反射型回折素子は、位相ピッチの異なる位相分布を有する構成とすることができる。 In the above configuration, the reflection type diffractive element can be configured to have a phase distribution with different phase pitches.
 上記構成において、前記投影ミラーの自由曲面は曲率の異なる領域を有し、前記反射型回折素子の位相ピッチの広い領域と位相ピッチの狭い領域とで反射した画像光線が前記投影ミラーの曲率の異なる領域にそれぞれ照射され、前記位相ピッチの広い領域で反射された画像光線は、前記位相ピッチの狭い領域で反射された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記反射型回折素子の位相ピッチが設定されている構成とすることができる。 In the above configuration, the free curved surface of the projection mirror has regions of different curvatures, and the image light rays reflected by the wide region of the phase pitch and the region of the narrow phase pitch of the reflective diffractive element differ in the curvature of the projection mirror. The image light rays respectively irradiated to the area and reflected in the wide area of the phase pitch are smaller in curvature than the curvature of the area of the projection mirror to which the image light rays reflected in the narrow area of the phase pitch are irradiated. The phase pitch of the reflective diffraction element may be set so as to illuminate the area of the mirror.
 本発明は、光線を出射する光源部と、画像データを入力する画像入力部と、入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、前記画像光線を走査する走査ミラーと、前記走査ミラーで走査された画像光線を反射する透過ミラーと、前記透過ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、を具備し、前記投影ミラーの表面は自由曲面を有し、前記透過ミラーは前記投影ミラーの自由曲面の曲率変化に対応した透過型回折素子を含む画像投影装置である。 The present invention generates an image light beam based on a light source unit for emitting a light beam, an image input unit for inputting image data, and the input image data, and controls emission of the image light beam from the light source unit. Control unit, a scanning mirror for scanning the image light beam, a transmission mirror for reflecting the image light beam scanned by the scanning mirror, and an image light beam reflected by the transmission mirror on the retina of the eyeball of the user A projection mirror, the surface of the projection mirror having a free-form surface, and the transmission mirror is an image projector including a transmission type diffractive element corresponding to a change in curvature of the free-form surface of the projection mirror.
 上記構成において、前記透過型回折素子は、位相ピッチの異なる位相分布を有する構成とすることができる。 In the above configuration, the transmission type diffractive element can be configured to have a phase distribution with different phase pitches.
 上記構成において、前記投影ミラーの自由曲面は曲率の異なる領域を有し、前記透過型回折素子の位相ピッチの広い領域と位相ピッチの狭い領域とで透過した画像光線が前記投影ミラーの曲率の異なる領域にそれぞれ照射され、前記位相ピッチの広い領域で透過された画像光線は、前記位相ピッチの狭い領域で透過された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記透過型回折素子の位相ピッチが設定されている構成とすることができる。 In the above configuration, the free-form surface of the projection mirror has regions of different curvatures, and the image light rays transmitted by the region of wide phase pitch and the region of narrow phase pitch of the transmissive diffraction element differ in curvature of the projection mirror. The image rays respectively irradiated to the area and transmitted in the wide area of the phase pitch have the curvature smaller than the curvature of the area of the projection mirror to which the image light transmitted in the narrow area of the phase pitch is irradiated. The configuration may be such that the phase pitch of the transmissive diffraction element is set so as to irradiate the area of the mirror.
 本発明によれば、合焦位置を適切な位置とすることができる。 According to the present invention, the in-focus position can be set to an appropriate position.
図1は、比較例および実施例1に係る画像投影装置を上方から見た図である。FIG. 1 is a top view of the image projection apparatus according to the comparative example and the first embodiment. 図2は、比較例に係る画像投影装置における光線の光路を示す図である。FIG. 2 is a view showing an optical path of a light beam in the image projector according to the comparative example. 図3(a)は、実施例1に係る画像投影装置における光線の光路を示す図、図3(b)は、図3(a)の反射ミラー付近の拡大図である。Fig.3 (a) is a figure which shows the optical path of the light ray in the image projector which concerns on Example 1, FIG.3 (b) is an enlarged view of reflective mirror vicinity of Fig.3 (a). 図4(a)は、実施例1における反射ミラー表面の凹凸を示す斜視図、図4(b)は、反射ミラーのX方向におけるZを示す図である。FIG. 4A is a perspective view showing the unevenness on the surface of the reflection mirror in Example 1, and FIG. 4B is a view showing Z in the X direction of the reflection mirror. 図5は、実施例1の反射ミラーにおける等高線を示す図である。FIG. 5 is a diagram showing contour lines in the reflection mirror of the first embodiment. 図6(a)は、実施例2に係る画像投影装置における光線の光路を示す図、図6(b)は、図6(a)の反射型回折素子付近の拡大図である。FIG. 6A is a view showing an optical path of a light beam in the image projection apparatus according to the second embodiment, and FIG. 6B is an enlarged view of the vicinity of the reflective diffraction element in FIG. 6A. 図7は、実施例2の反射型回折素子における等位相線を示す図である。FIG. 7 is a diagram showing equal phase lines in the reflective diffraction element of Example 2. FIG. 図8(a)は、実施例3に係る画像投影装置における光線の光路を示す図、図8(b)は、図8(a)の透過型回折素子付近の拡大図である。FIG. 8A is a view showing an optical path of a light beam in the image projection apparatus according to the third embodiment, and FIG. 8B is an enlarged view of the vicinity of the transmissive diffraction element in FIG. 8A. 図9は、実施例3の透過型回折素子における等位相線を示す図である。FIG. 9 is a diagram showing equal phase lines in the transmission type diffraction element of Example 3.
 以下、図面を参照しつつ、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、比較例および実施例1に係る画像投影装置を上方から見た図である。投影ミラー24に入射した光線の投影ミラー24内の進行方向をX方向、投影ミラー24におけるX方向に直交する方向をY方向とする。以下の例では、X方向を水平方向としている。図1に示すように、画像投影装置は、メガネ型である。メガネはツル10とレンズ20を有する。メガネのツル10に、光源12、走査ミラー14および反射ミラー18が設けられている。光源12は例えば単一または複数の波長のレーザ光34を出射する。走査ミラー14は、光源12から出射されたレーザ光34を2次元方向に走査する。反射ミラー18は、走査されたレーザ光34を反射する。 FIG. 1 is a top view of the image projection apparatus according to the comparative example and the first embodiment. A traveling direction in the projection mirror 24 of a light beam incident on the projection mirror 24 is taken as an X direction, and a direction orthogonal to the X direction at the projection mirror 24 is taken as a Y direction. In the following example, the X direction is horizontal. As shown in FIG. 1, the image projection device is of the glasses type. The glasses have a temple 10 and a lens 20. A light source 12, a scanning mirror 14 and a reflecting mirror 18 are provided on the temple 10 of the glasses. The light source 12 emits, for example, laser light 34 of a single or a plurality of wavelengths. The scanning mirror 14 scans the laser beam 34 emitted from the light source 12 in a two-dimensional direction. The reflection mirror 18 reflects the scanned laser beam 34.
 画像入力部15には、カメラおよび/または録画機器から画像データが入力される。制御部16は、入力された画像データに基づいて、光源12からのレーザ光34の出射を制御する。つまり、画像信号は、光源12(光源部)によって画像光線であるレーザ光に変換される。制御部16は、例えばCPU(Central Processing Unit)等のプロセッサである。制御部16は、例えばメガネには設けられずに、外部装置(例えば携帯端末)に設けられていてもよいし、メガネのツル10に設けられていてもよい。 Image data is input to the image input unit 15 from a camera and / or a recording device. The control unit 16 controls the emission of the laser beam 34 from the light source 12 based on the input image data. That is, the image signal is converted by the light source 12 (light source unit) into a laser beam which is an image beam. The control unit 16 is, for example, a processor such as a CPU (Central Processing Unit). The control unit 16 may not be provided, for example, in the glasses, but may be provided in an external device (for example, a portable terminal), or may be provided in the temple 10 of the glasses.
 走査ミラー14は、光源12から出射されたレーザ光34を2次元に走査して、ユーザ(利用者)の眼球22の網膜26に画像を投影させるための投影光とする。走査ミラー14は、例えばMEMS(Micro Electro Mechanical Systems)ミラーであり、水平方向及び垂直方向の2次元にレーザ光を走査する。以下の例では、レーザ光を走査する方向をX方向およびY方向としているが、X方向およびY方向以外の方向にレーザ光を走査してもよい。 The scanning mirror 14 two-dimensionally scans the laser beam 34 emitted from the light source 12 and uses it as projection light for projecting an image on the retina 26 of the eye 22 of the user (user). The scanning mirror 14 is, for example, a MEMS (Micro Electro Mechanical Systems) mirror, and scans laser light in two dimensions in the horizontal direction and the vertical direction. In the following example, although the direction which scans a laser beam is made into the X direction and the Y direction, you may scan a laser beam in directions other than a X direction and a Y direction.
 反射ミラー18は、走査ミラー14で走査されたレーザ光34をレンズ20に向かって反射させる。レンズ20のユーザの眼球22側の面には、投射ミラー24が設けられている。投影ミラー24は、走査ミラー14で走査され、反射ミラー18で反射されたレーザ光34を眼球22の網膜26に照射することにより、網膜26に画像を投影する。つまり、ユーザは、網膜26に投射されたレーザ光の残像効果によって、画像を認識することができる。投射ミラー24は、走査ミラー14で走査されたレーザ光34の集束位置が、眼球22の瞳孔28となるように設計されている。レーザ光34は投影ミラー24にほぼ真横(すなわちほぼ-X方向)から入射する。 The reflection mirror 18 reflects the laser beam 34 scanned by the scanning mirror 14 toward the lens 20. A projection mirror 24 is provided on the surface of the lens 20 on the eyeball 22 side of the user. The projection mirror 24 projects an image on the retina 26 by irradiating the retina 26 of the eyeball 22 with the laser beam 34 scanned by the scanning mirror 14 and reflected by the reflection mirror 18. That is, the user can recognize an image by the afterimage effect of the laser light projected onto the retina 26. The projection mirror 24 is designed such that the focal position of the laser beam 34 scanned by the scanning mirror 14 is the pupil 28 of the eye 22. The laser beam 34 is incident on the projection mirror 24 almost immediately (that is, approximately in the −X direction).
 図2は、比較例に係る画像投影装置における光線の光路を示す図である。図2において、光線L0からL2は、走査ミラー14により水平方向に走査された光線であり、-X方向から投影ミラー24に照射される。光線L0は画像の中心に相当する光線、光線L1、L2は画像の端に相当する光線である。光線L0からL2はそれぞれ投影ミラー24の領域R0からR2で反射される。反射した光線L0からL2は、虹彩29の中央部に位置する瞳孔28において集束し、水晶体30を透過し網膜26に至る。領域R0は画像の中心に相当する光線L0を反射する領域である。領域R1は領域R0より-X方向(光線L0からL2が入射される方向)の領域である。領域R2は領域R0より+X方向の領域である。マックスウエル視のためには光線L0からL2は瞳孔28近傍で交差することになる。しかし、各光線L0からL2の合焦位置F0からF2は網膜26からずれてしまう。 FIG. 2 is a view showing an optical path of a light beam in the image projector according to the comparative example. In FIG. 2, light beams L0 to L2 are light beams scanned in the horizontal direction by the scanning mirror 14, and are irradiated to the projection mirror 24 from the −X direction. A ray L0 is a ray corresponding to the center of the image, and rays L1 and L2 are rays corresponding to the edge of the image. The rays L0 to L2 are reflected at the regions R0 to R2 of the projection mirror 24, respectively. The reflected light rays L 0 to L 2 converge at the pupil 28 located at the center of the iris 29, pass through the lens 30, and reach the retina 26. Region R0 is a region that reflects light ray L0 corresponding to the center of the image. The region R1 is a region from the region R0 in the -X direction (the direction in which the light beams L0 to L2 are incident). The region R2 is a region in the + X direction from the region R0. For Maxwell viewing, rays L0 to L2 will intersect near the pupil 28. However, the in-focus positions F0 to F2 of the respective light beams L0 to L2 deviate from the retina 26.
 図2では、投影ミラー24で反射された光線L0はほぼ平行光として水晶体30に入射し、網膜26近傍で合焦する。投影ミラー24で反射された光線L1は、拡散光として水晶体30に入射する。このため、光線L1は網膜26より遠くで合焦する。投影ミラー24で反射された光線L2は、収束光として水晶体30に入射する。このため、光線L2は網膜26より近くで合焦する。このように、光線L0を網膜26近傍で合焦させると、合焦位置F1は網膜26より投影ミラー24から遠い位置となる。合焦位置F1と網膜26との距離D1となる。合焦位置F2は網膜26より投影ミラー24に近い位置となる。合焦位置F2と網膜26との距離D2となる。 In FIG. 2, the light beam L 0 reflected by the projection mirror 24 is incident on the lens 30 as substantially parallel light and is focused near the retina 26. The light beam L1 reflected by the projection mirror 24 enters the lens 30 as diffused light. For this reason, the light beam L 1 is focused farther than the retina 26. The light beam L2 reflected by the projection mirror 24 enters the lens 30 as convergent light. For this reason, the light beam L2 is focused closer to the retina 26. As described above, when the light beam L0 is focused near the retina 26, the in-focus position F1 is farther from the projection mirror 24 than the retina 26. This is the distance D1 between the in-focus position F1 and the retina 26. The in-focus position F2 is closer to the projection mirror 24 than the retina 26. The distance D2 between the in-focus position F2 and the retina 26 is obtained.
 このように合焦位置F0からF2が異なるのは、-X方向から投影ミラー24に入射した光線L0からL2を瞳孔28で集束させようとすると、投影ミラー24の領域R0からR2の曲率がX方向で異なる、および/または光線L0からL2の光路差が生じるためである。例えば、領域R2はR1より曲率が大きい。すなわち、領域R2はR1より集光パワーが大きい。このため、合焦位置F2はF1より光源側となる。また、投影ミラー24を顔に平行に配置しようとすると、光線L2の光路は光線L1より長くなる。これにより、合焦位置F2はF1よりさらに光源側となる。このように、比較例では、マックスウエル視のため光線L0からL2を瞳孔28近傍で集束させると、画像内において合焦位置が網膜26から大きく外れる領域が発生する。なお、Y方向の光学系は、X軸に対しほぼ対称であり、Y方向ではX方向のような合焦位置のずれは生じにくい。 The reason that the in-focus positions F0 to F2 differ in this way is that the curvature of the regions R0 to R2 of the projection mirror 24 is X when focusing light rays L0 to L2 incident on the projection mirror 24 from the -X direction on the pupil 28. This is because they differ in direction and / or cause an optical path difference of the light beams L0 to L2. For example, the region R2 has a curvature larger than that of R1. That is, the region R2 has a larger condensing power than R1. Therefore, the in-focus position F2 is closer to the light source than F1. In addition, when the projection mirror 24 is arranged parallel to the face, the light path of the light ray L2 is longer than the light ray L1. Thus, the in-focus position F2 is closer to the light source than F1. As described above, in the comparative example, when the light beams L0 to L2 are focused in the vicinity of the pupil 28 for Maxwell vision, a region in which the in-focus position largely deviates from the retina 26 occurs in the image. The optical system in the Y direction is substantially symmetrical with respect to the X axis, and in the Y direction, the shift of the in-focus position as in the X direction is less likely to occur.
 実施例1は、光学部品として反射ミラー18を用いる例である。図3(a)は、実施例1に係る画像投影装置における光線の光路を示す図、図3(b)は、図3(a)の反射ミラー付近の拡大図である。図3(a)および図3(b)に示すように、投影ミラー24の領域R0からR2に照射される光線L0からL2は反射ミラー18内のそれぞれ領域S0からS2において反射される。反射ミラー18は自由曲面を有する。その他の構成は比較例1と同じであり説明を省略する。 The first embodiment is an example in which the reflection mirror 18 is used as an optical component. Fig.3 (a) is a figure which shows the optical path of the light ray in the image projector which concerns on Example 1, FIG.3 (b) is an enlarged view of reflective mirror vicinity of Fig.3 (a). As shown in FIGS. 3A and 3B, light beams L0 to L2 applied to the regions R0 to R2 of the projection mirror 24 are reflected at the regions S0 to S2 in the reflection mirror 18, respectively. The reflection mirror 18 has a free-form surface. The other configuration is the same as that of Comparative Example 1, and the description thereof is omitted.
 図4(a)は、実施例1における反射ミラー表面の凹凸を示す斜視図、図4(b)は、反射ミラーのX方向における高さZを示す図である。X方向およびY方向は、投影ミラー24におけるX方向およびY方向に対応する方向である。反射ミラー18における高さがZ方向である。図4(a)では、Z方向は、反射ミラー18の表面の凹凸を拡大して示している。図4(a)および図4(b)に示すように、領域S0では反射ミラー18の表面はほぼ平面であり、領域S1では反射ミラー18表面は凹面であり、領域S2では反射ミラー18表面は凸面である。これにより、領域S0では集光パワーはほぼ0であり、領域S1では集光パワーが正となり、領域S2では集光パワーが負となる。よって、光線L0の合焦位置F0は比較例から変化しない。光線L1の合焦位置F1は比較例の図2に比べ光源に近づき、光線L2の合焦位置F2は図2に比べ光源から遠くなる。これにより、合焦位置F0からF2が網膜26近傍となる。 FIG. 4A is a perspective view showing the unevenness on the surface of the reflection mirror in Example 1, and FIG. 4B is a view showing the height Z in the X direction of the reflection mirror. The X direction and the Y direction are directions corresponding to the X direction and the Y direction in the projection mirror 24. The height at the reflection mirror 18 is in the Z direction. In FIG. 4A, the Z direction is shown by enlarging the unevenness of the surface of the reflection mirror 18. As shown in FIGS. 4A and 4B, in the area S0, the surface of the reflection mirror 18 is substantially flat, in the area S1 the surface of the reflection mirror 18 is concave, and in the area S2, the surface of the reflection mirror 18 is It is convex. As a result, the collected power is approximately 0 in the region S0, the collected power is positive in the region S1, and the collected power is negative in the region S2. Therefore, the in-focus position F0 of the light ray L0 does not change from the comparative example. The in-focus position F1 of the light beam L1 is closer to the light source as compared with FIG. 2 of the comparative example, and the in-focus position F2 of the light beam L2 is farther from the light source than in FIG. Thereby, the in-focus positions F0 to F2 are in the vicinity of the retina 26.
 反射ミラー18の表面のZを次式で現される自由曲面とする。
Z=Σaij×X×Y
原点(X=0、Y=0)は画像中心に相当し、例えば領域S0付近に相当する。aijは係数である。X方向の集光パワーを異ならせるためには、iが奇数の項の係数aijの少なくとも1つを有限の値(0以外)とする。投影ミラー24におけるY方向の集光パワーは、X軸に対し対称である。よって、jが奇数の項の係数aijを0とする。例えば、係数a30およびa12を有限とする。これにより、図4のような自由曲面を実現できる。反射ミラー18の自由曲面をより調整するため、係数a10および/またはa20を有限の値としてもよい。さらに、高次の係数を有限の値としてもよい。
Let Z on the surface of the reflection mirror 18 be a free-form surface expressed by the following equation.
Z = Σa ij × X i × Y j
The origin (X = 0, Y = 0) corresponds to the center of the image, for example, around the area S0. a ij is a coefficient. In order to make the collected power in the X direction different, at least one of the coefficients a ij in which i is an odd-numbered term is set to a finite value (other than 0). The collected power in the Y direction at the projection mirror 24 is symmetrical with respect to the X axis. Therefore, the coefficient a ij in which j is an odd term is set to 0. For example, let the coefficients a 30 and a 12 be finite. Thereby, a free-form surface as shown in FIG. 4 can be realized. To further adjust the free-form surface of the reflecting mirror 18, the coefficients a 10 and / or a 20 may be a finite value. Furthermore, higher order coefficients may be finite values.
 レーザ光34を網膜26で合焦させるため、反射ミラー18表面の等高線をシミュレーションした。図5は、実施例1の反射ミラーにおける等高線を示す図である。図5において、中心(X,Y)=(0,0)のZを0としている。等高線の間隔は11.6μmである。+X方向に行くに従いZは小さくなり、-X方向に行くに従いZは大きくなる。図5は網膜を基準にシミュレーションしているため、円形である。図5の円形内の一部を四角形として切り出したものが図4(a)に相当する。 In order to focus the laser light 34 on the retina 26, the contours on the surface of the reflection mirror 18 were simulated. FIG. 5 is a diagram showing contour lines in the reflection mirror of the first embodiment. In FIG. 5, Z at center (X, Y) = (0, 0) is 0. The distance between contour lines is 11.6 μm. Z decreases in the + X direction, and increases in the -X direction. FIG. 5 is circular because it is simulated based on the retina. What cut out a part of the circle in FIG. 5 as a square corresponds to FIG. 4 (a).
 実施例1では、投影ミラー24の自由曲面の曲率の変化に対応させて、反射ミラー18の表面が平面、凹面または凸面などの自由曲面に設定されている。投影ミラー24の曲率が大きい領域には集光パワーの大きい反射ミラー18の凸面で反射した光線を照射させ、投影ミラー24の曲率が小さい領域には集光パワーの小さい反射ミラー18の凹面で反射した光線を照射させる。これにより、図3のように、光線L0からL2を網膜26近傍で合焦させることができる。例えば、光線L0からL2の合焦位置F0からF2を考慮せずに反射ミラー18を平面として投影ミラー24を含む光学系の設計を行なう。その後、投影ミラー24の設計を変更せずに、反射ミラー18の表面を自由曲面として設計する。これにより、光線L0からL2の合焦位置F0からF2を調整する。反射ミラー18が各光線L0からL2に付与する集光パワーは微弱なため、光線L0からL2の軌跡にほとんど影響することなく、合焦位置F0からF2を調整できる。よって、簡単に光学系を設計できる。 In the first embodiment, the surface of the reflection mirror 18 is set to a free-form surface such as a flat surface, a concave surface, or a convex surface in accordance with the change in the curvature of the free-form surface of the projection mirror 24. A light beam reflected by the convex surface of the reflecting mirror 18 with large collected power is irradiated to a region where the curvature of the projection mirror 24 is large, and it is reflected by a concave surface of the reflecting mirror 18 with small collected power in the region where the curvature of the projection mirror 24 is small. Irradiate the light beam. Thereby, as shown in FIG. 3, the light beams L0 to L2 can be focused in the vicinity of the retina 26. For example, the optical system including the projection mirror 24 is designed with the reflection mirror 18 as a plane without considering the focus positions F0 to F2 of the light beams L0 to L2. Thereafter, the surface of the reflection mirror 18 is designed as a free-form surface without changing the design of the projection mirror 24. Thus, the in-focus positions F0 to F2 of the light beams L0 to L2 are adjusted. Since the condensing powers given by the reflection mirror 18 to the respective light beams L0 to L2 are weak, the in-focus positions F0 to F2 can be adjusted with almost no influence on the trajectories of the light beams L0 to L2. Therefore, the optical system can be designed easily.
 図6(a)は、実施例2に係る画像投影装置における光線の光路を示す図、図6(b)は、図6(a)の反射型回折素子付近の拡大図である。図6(a)および図6(b)に示すように、光学部品として反射型回折素子18aを用いる。その他の構成は実施例1と同じであり説明を省略する。 FIG. 6A is a view showing an optical path of a light beam in the image projection apparatus according to the second embodiment, and FIG. 6B is an enlarged view of the vicinity of the reflective diffraction element in FIG. 6A. As shown in FIGS. 6 (a) and 6 (b), a reflective diffraction element 18a is used as an optical component. The other configuration is the same as that of the first embodiment, and the description is omitted.
 レーザ光34を網膜26で合焦させるため、回折素子18aにおける位相分布をシミュレーションした。図7は、実施例2の反射型回折素子における等位相線を示す図である。図7において、各線の間隔は50×2πradである。等位相線の間隔は、回折素子18aのピッチに対応する。実施例2のように、反射型の回折素子18aを用いても領域S0の集光パワーをほぼ0とし、領域S1の集光パワーを正とし、領域S2の集光パワーを負とすることができる。 In order to focus the laser beam 34 on the retina 26, the phase distribution in the diffractive element 18a was simulated. FIG. 7 is a diagram showing equal phase lines in the reflective diffraction element of Example 2. FIG. In FIG. 7, the spacing between the lines is 50 × 2π rad. The spacing of the equiphase lines corresponds to the pitch of the diffractive elements 18a. As in Example 2, even if the reflective diffraction element 18a is used, the condensing power of the region S0 is almost 0, the condensing power of the region S1 is positive, and the condensing power of the region S2 is negative. it can.
 図8(a)は、実施例3に係る画像投影装置における光線の光路を示す図、図8(b)は、図8(a)の透過型回折素子付近の拡大図である。図8(a)および図8(b)に示すように、光学部品として透過型回折素子18bを用いる。走査ミラー14が反射した光線L0からL2は回折素子18bのそれぞれ領域S0からS2を透過する。その他の構成は実施例1と同じであり説明を省略する。 FIG. 8A is a view showing an optical path of a light beam in the image projection apparatus according to the third embodiment, and FIG. 8B is an enlarged view of the vicinity of the transmissive diffraction element in FIG. 8A. As shown in FIGS. 8 (a) and 8 (b), a transmissive diffraction element 18b is used as an optical component. The light beams L0 to L2 reflected by the scanning mirror 14 pass through the regions S0 to S2 of the diffractive element 18b, respectively. The other configuration is the same as that of the first embodiment, and the description is omitted.
 レーザ光34を網膜26で合焦させるため、回折素子18bにおける位相分布をシミュレーションした。図9は、実施例3の透過型回折素子における等位相線を示す図である。図9において、各線の間隔は7.5×2πradである。実施例3のように、透過型の回折素子18bを用いても領域S0の集光パワーをほぼ0とし、領域S1の集光パワーを正とし、領域S2の集光パワーを負とすることができる。 In order to focus the laser beam 34 on the retina 26, the phase distribution in the diffractive element 18b was simulated. FIG. 9 is a diagram showing equal phase lines in the transmission type diffraction element of Example 3. In FIG. 9, the spacing between the lines is 7.5 × 2π rad. As in the third embodiment, even if the transmission type diffraction element 18b is used, the condensing power of the region S0 is substantially zero, the condensing power of the region S1 is positive, and the condensing power of the region S2 is negative. it can.
 図2のように比較例1では、投影ミラー24(第1ミラー)は、ユーザの眼球22の前に配置されている。投影ミラー24は、-X方向から入射する光線を反射し眼球22の網膜26に照射することにより、画像を網膜26に投影する。このような配置では、図2において説明したように、光線L0からL2の合焦位置F0からF2を網膜26近傍とすることが難しい。 In Comparative Example 1 as shown in FIG. 2, the projection mirror 24 (first mirror) is disposed in front of the eye 22 of the user. The projection mirror 24 projects an image on the retina 26 by reflecting a light beam incident from the −X direction and irradiating the retina 26 of the eyeball 22. In such an arrangement, as described with reference to FIG. 2, it is difficult to set the in-focus positions F0 to F2 of the light beams L0 to L2 in the vicinity of the retina 26.
 そこで、実施例1から3によれば、図3、図6および図8のように、走査ミラー14(走査部)が走査した光線を反射または透過させる光学部品(反射ミラー18、反射型回折素子18aまたは透過型回折素子18b)を設ける。光学部品が反射または透過させた光線L0からL2を投影ミラー24照射する。このように、光学部品を配置する。 Therefore, according to the first to third embodiments, as shown in FIG. 3, FIG. 6, and FIG. 8, an optical component that reflects or transmits the light beam scanned by the scanning mirror 14 (scanning unit) 18a or a transmissive diffractive element 18b). The projection mirror 24 illuminates the light beams L0 to L2 reflected or transmitted by the optical component. Thus, the optical components are arranged.
 光学部品は、走査ミラー14が走査した光線のうち領域R1(第1領域)に照射する光線L1を反射または通過させる領域S1(第3領域)における集光パワーを、領域R2(第2領域)に照射される光線L2(第2光線)を反射または通過させる領域S2(第4領域)における集光パワーより大きくする。 The optical component is configured to focus light power in a region S1 (third region) that reflects or passes the light beam L1 irradiated to the region R1 (first region) among the light beams scanned by the scanning mirror 14 into a region R2 (second region) Is made larger than the condensing power in the region S2 (fourth region) which reflects or passes the light beam L2 (second light beam) irradiated to the.
 これにより、光線L1の合焦位置F1は、投射ミラー24に近づき、光線L2の合焦位置F2は投影ミラー24から遠ざかる。よって、光線L0からL2の合焦位置F0からF2を網膜26近傍とすることができる。よって、合焦位置F0からF2を適切な位置とすることができる。 Thereby, the in-focus position F1 of the light beam L1 approaches the projection mirror 24, and the in-focus position F2 of the light beam L2 moves away from the projection mirror 24. Therefore, the in-focus positions F0 to F2 of the light beams L0 to L2 can be made near the retina 26. Therefore, the in-focus positions F0 to F2 can be set as appropriate positions.
 また、光線L1が合焦する位置F1(第1位置)と網膜26との距離D1(第1距離)と、光線L2が合焦する位置F2(第2位置)と網膜26との距離D2(第2距離)と、は、それぞれ、領域S1および領域S2における集光パワーが同じと仮定したときの距離D1および距離D2より小さい。これにより、光線L0からL2の合焦位置F0からF2を網膜26近傍とすることができる。 A distance D1 (first distance) between the position F1 (first position) where the light beam L1 is in focus and the retina 26 and a distance D2 between the position F2 (second position) where the light beam L2 is in focus and the retina 26 The second distance) is smaller than the distance D1 and the distance D2 when it is assumed that the condensing powers in the region S1 and the region S2 are the same, respectively. As a result, the in-focus positions F0 to F2 of the light beams L0 to L2 can be made near the retina 26.
 領域S1およびS2における集光パワーを設定する方法として、実施例1のように、光学部品を反射ミラー18(第2ミラー)とする。領域S1における反射ミラー18の曲率を領域S2における反射ミラー18の曲率より大きくする。これにより、領域S1における集光パワーを領域S2における集光パワーより大きくできる。なお、曲率は、図4(a)および図4(b)の領域S1のように凹面を正、領域S2のように凸面を負とする。また、光学部品として反射ミラー18を用いることにより、光線L0からL2が複数の波長を含む場合においても単一の曲面で各波長の光線L0からL2の集光パワーを設定できる。 As a method of setting the condensing power in the regions S1 and S2, as in the first embodiment, the optical component is a reflection mirror 18 (second mirror). The curvature of the reflection mirror 18 in the region S1 is made larger than the curvature of the reflection mirror 18 in the region S2. Thereby, the condensing power in area | region S1 can be made larger than the condensing power in area | region S2. In the curvature, the concave surface is positive as in the region S1 of FIGS. 4A and 4B, and the convex surface is negative as the region S2. Further, by using the reflection mirror 18 as an optical component, even when the light beams L0 to L2 include a plurality of wavelengths, it is possible to set the condensing power of the light beams L0 to L2 of each wavelength with a single curved surface.
 すなわち、実施例1によれば、図3(a)から図5のように、反射ミラー18の自由曲面は、凹曲面と凸曲面を含み、投影ミラー24の自由曲面は曲率の異なる領域を有している。反射ミラー18の凹曲面および凸曲面で反射した画像光線が投影ミラー24の異なる領域にそれぞれ照射される。凹曲面(領域S1)で反射された画像光線は、凸曲面(領域S2)で反射された画像光線が照射される投影ミラー24の領域R2の曲率よりも曲率の小さな投影ミラー24の領域R1に照射されるように、反射ミラー18の凹曲面および凸曲面が設定されている。これにより、合焦位置F0からF2を適切な位置とすることができる。 That is, according to the first embodiment, as shown in FIG. 3A to FIG. 5, the free curved surface of the reflection mirror 18 includes a concave curved surface and a convex curved surface, and the free curved surface of the projection mirror 24 has a region with different curvatures. doing. The image rays reflected by the concave surface and the convex surface of the reflection mirror 18 are respectively irradiated to different regions of the projection mirror 24. The image ray reflected by the concave surface (area S1) is set to the area R1 of the projection mirror 24 whose curvature is smaller than the curvature of the area R2 of the projection mirror 24 to which the image ray reflected by the convex surface (area S2) is irradiated. The concave curved surface and the convex curved surface of the reflection mirror 18 are set so as to be irradiated. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
 実施例2および3のように、光学部品は回折素子18aおよび18bでもよい。領域S1における回折素子18aおよび18bのピッチを領域S2における回折素子18aおよび18bのピッチより大きくする。これにより、領域S1における集光パワーを領域S2における集光パワーより大きくできる。光学部品として、回折素子18aおよび18bを用いることにより、集光パワーをより精度よく設定できる。回折素子18aおよび18bの集光パワーは波長依存性がある。このため、光線L0からL2は単一の波長の光であることが好ましい、光線L0からL2が複数の波長の光を含む場合、各波長に対応した回折素子を積層することが好ましい。 As in Examples 2 and 3, the optical components may be diffractive elements 18a and 18b. The pitch of the diffraction elements 18a and 18b in the region S1 is made larger than the pitch of the diffraction elements 18a and 18b in the region S2. Thereby, the condensing power in area | region S1 can be made larger than the condensing power in area | region S2. By using the diffraction elements 18a and 18b as optical components, the condensing power can be set more accurately. The collected power of the diffractive elements 18a and 18b is wavelength dependent. For this reason, it is preferable that the light beams L0 to L2 be light of a single wavelength. When the light beams L0 to L2 include light of a plurality of wavelengths, it is preferable to stack diffractive elements corresponding to the respective wavelengths.
 すなわち、実施例2によれば、図6(a)から図7のように、反射ミラーは投影ミラー24の自由曲面の曲率変化に対応した反射型回折素子18aを含む。反射型回折素子18aは、位相ピッチの異なる位相分布を有する。反射型回折素子18aの位相ピッチの広い領域S2と位相ピッチの狭い領域S1とで反射した画像光線が投影ミラー24の曲率の異なる領域R2およびR1にそれぞれ照射される。領域S2で反射された画像光線は、領域S1で反射された画像光線が照射される領域R1の曲率よりも曲率の小さな領域R2に照射されるように、反射型回折素子18aの位相ピッチが設定されている。これにより、合焦位置F0からF2を適切な位置とすることができる。 That is, according to the second embodiment, as shown in FIG. 6A to FIG. 7, the reflection mirror includes the reflection type diffraction element 18 a corresponding to the change of the curvature of the free curved surface of the projection mirror 24. The reflective diffraction element 18a has a phase distribution with different phase pitches. The image rays reflected by the wide region S2 of the phase pitch of the reflection type diffraction element 18a and the narrow region S1 of the phase pitch are respectively irradiated to the regions R2 and R1 having different curvatures of the projection mirror 24. The phase pitch of the reflective diffraction element 18a is set so that the image light beam reflected by the region S2 is irradiated to the region R2 whose curvature is smaller than the curvature of the region R1 to which the image light beam reflected by the region S1 is irradiated. It is done. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
 また、実施例3によれば、図8(a)から図9のように、透過ミラーは投影ミラー24の自由曲面の曲率変化に対応した透過型回折素子18bを含む。透過型回折素子18bは、位相ピッチの異なる位相分布を有する。透過型回折素子18bの位相ピッチの広い領域S2と位相ピッチの狭い領域S1とで透過した画像光線が投影ミラー24の曲率の異なる領域R2およびR1にそれぞれ照射される。領域S2で透過された画像光線は、領域S1で透過された画像光線が照射される投影ミラー24の領域R1の曲率よりも曲率の小さな領域R2に照射されるように、透過型回折素子18bの位相ピッチが設定されている。これにより、合焦位置F0からF2を適切な位置とすることができる。 Further, according to the third embodiment, as shown in FIG. 8A to FIG. 9, the transmission mirror includes the transmission type diffraction element 18 b corresponding to the change in curvature of the free curved surface of the projection mirror 24. The transmissive diffraction element 18 b has a phase distribution with different phase pitches. The image rays transmitted through the wide region S2 of the phase pitch of the transmission type diffraction element 18b and the narrow region S1 of the phase pitch are respectively irradiated to the regions R2 and R1 having different curvatures of the projection mirror 24. The image light beam transmitted in the region S2 is irradiated to the region R2 having a smaller curvature than the curvature of the region R1 of the projection mirror 24 to which the image light beam transmitted in the region S1 is irradiated. The phase pitch is set. Thereby, the in-focus positions F0 to F2 can be set as appropriate positions.
 投影ミラー24の曲率がX方向で異なる例を説明したが、投影ミラー24は回折素子でもよい。光線L0からL2を瞳孔28を通過させるため、領域R1における投影ミラー24の集光パワーは領域R2における投影ミラー24の集光パワーより小さいことが好ましい。投影ミラー24はレンズ20に設けられたハーフミラーの例を説明したが、投影ミラー24は全反射ミラーでもよい。 Although the example in which the curvature of the projection mirror 24 differs in the X direction has been described, the projection mirror 24 may be a diffractive element. In order to allow the light beams L0 to L2 to pass through the pupil 28, it is preferable that the focusing power of the projection mirror 24 in the region R1 is smaller than the focusing power of the projection mirror 24 in the region R2. Although the example of the half mirror with which the projection mirror 24 was provided in the lens 20 was demonstrated, the projection mirror 24 may be a total reflection mirror.
 領域R1および領域R2は、投影ミラー24内の画像の中心に対応する位置(領域R0)に対し、光線L0からL2の入射する方向における両側に位置している。このように領域R0からR2が位置する場合、比較例1では、合焦位置F0からF2の網膜26からのずれが大きくなる。よって、領域S0からS2の集光パワーを異ならせることが好ましい。 The regions R1 and R2 are located on both sides of the light beams L0 to L2 with respect to the position (region R0) corresponding to the center of the image in the projection mirror 24. Thus, when the regions R0 to R2 are positioned, in the comparative example 1, the shift from the focusing position F0 to the focus position F2 from the retina 26 becomes large. Therefore, it is preferable to make the condensing powers of the regions S0 to S2 different.
 さらに、投影ミラー24における領域R1と領域R2との距離は、光学部品における領域S1と領域S2との距離より大きい。このように領域R1とR2との距離が大きな光学系では、光線L0からL2を瞳孔28近傍で集束させようとすると、領域R1およびR2の集光パワーを大きく異ならせることになる。また、光線L0からL2の光路が大きく異なる。これにより、図2のように合焦位置F1およびF2が網膜26から大きくずれる。よって、このような光学系において、領域S1とS2において集光パワーの異なる光学部品を用いることが好ましい。 Furthermore, the distance between the region R1 and the region R2 in the projection mirror 24 is larger than the distance between the region S1 and the region S2 in the optical component. As described above, in the optical system in which the distance between the regions R1 and R2 is large, if it is attempted to focus the light beams L0 to L2 in the vicinity of the pupil 28, the condensing powers of the regions R1 and R2 will be largely different. In addition, the optical paths of the light beams L0 to L2 are largely different. Thereby, the in-focus positions F1 and F2 are largely deviated from the retina 26 as shown in FIG. Therefore, in such an optical system, it is preferable to use optical components having different condensing powers in the regions S1 and S2.
 光線L0からL2の光学系はY軸方向に対してほぼ対称である。よって、投影ミラー24内の画像の中心に対応する位置を通りX方向に延伸する線に対し対称な投影ミラー24内の一対の位置に対応する光学部品内の一対の位置における集光パワーは実質的に等しいことが好ましい。例えば図5において、Y=0の直線(X軸)に対称な位置の曲率は同じである。図7および図9において、Y=0の直線に対称な回折素子のピッチは同じである。 The optical system of the light beams L0 to L2 is substantially symmetrical with respect to the Y-axis direction. Therefore, the collected power at a pair of positions in the optical component corresponding to a pair of positions in the projection mirror 24 symmetrical to a line extending in the X direction through a position corresponding to the center of the image in the projection mirror 24 is substantially Is preferably equal. For example, in FIG. 5, the curvatures at positions symmetrical to the Y = 0 straight line (X axis) are the same. In FIGS. 7 and 9, the pitches of the diffractive elements symmetrical to the Y = 0 line are the same.
 画像投影装置としてめがね型のHMDを例に説明したが、HMD以外の画像投影装置でもよい。片方の眼球22の網膜26に画像を投影させる例を示したが、両方の眼球22の網膜26に画像を投影させてもよい。走査部として走査ミラー14を例に説明したが、走査部は光線を走査可能であればよい。例えば、走査部として、電気光学材料であるタンタル酸ニオブ酸カリウム(KTN)結晶等、その他の部品を用いてもよい。光線としてレーザ光を例に説明したが、レーザ光以外の光でもよい。光学部品の領域S1およびS2における集光パワーはいずれも正でもよく、いずれも負でもよい。投影ミラー24への光線L0からL2の入射する方向を水平方向を例に説明したが、光線L0からL2は垂直方向または斜め方向から入射されてもよい。 Although the glasses-type HMD has been described as an example of the image projector, an image projector other than the HMD may be used. Although an example in which the image is projected on the retina 26 of one eyeball 22 has been shown, the image may be projected on the retina 26 of both eyes 22. Although the scanning mirror 14 has been described as an example of the scanning unit, the scanning unit may be capable of scanning a light beam. For example, other components such as potassium tantalate niobate (KTN) crystal which is an electro-optical material may be used as a scanning unit. Although the laser beam is described as an example of the light beam, light other than the laser beam may be used. The condensing powers in the regions S1 and S2 of the optical component may be either positive or negative. Although the incident directions of the light beams L0 to L2 to the projection mirror 24 have been described taking the horizontal direction as an example, the light beams L0 to L2 may be incident from the vertical direction or the oblique direction.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to such a specific embodiment, and various modifications may be made within the scope of the subject matter of the present invention described in the claims. Changes are possible.
 10 ツル
 12 光源
 14 走査ミラー
 16 制御部
 18 反射ミラー
 18a、18b 回折素子
 20 レンズ
 22 眼球
 24 投影ミラー
 26 網膜
 28 瞳孔
 29 虹彩
 30 水晶体
 34 レーザ光
DESCRIPTION OF SYMBOLS 10 crane 12 light source 14 scanning mirror 16 control part 18 reflection mirror 18a, 18b diffraction element 20 lens 22 eyeball 24 projection mirror 26 retina 28 pupil 29 iris 30 lens 34 laser beam

Claims (17)

  1.  光源から出射された光線を2次元方向に走査する走査部と、
     前記走査部が走査した光線を反射または透過させる光学部品と、
     ユーザの眼球の前に配置され、前記光学部品が反射または透過させた光線を反射し前記眼球の網膜に照射することにより、画像を前記網膜に投影する第1ミラーと、
     を具備し、
     前記第1ミラーは、第1領域および第2領域を有し、前記第1ミラーにおいて前記第1領域は前記第2領域より前記光線の入射する方向に位置し、
     前記光学部品は、前記走査部が走査した前記光線のうち前記第1領域に照射する第1光線を反射または通過させる第3領域における集光パワーを、前記走査部が走査した前記光線のうち前記第2領域に照射される第2光線を反射または通過させる第4領域における集光パワーより大きくすることを特徴とする画像投影装置。
    A scanning unit that scans a light beam emitted from a light source in a two-dimensional direction;
    An optical component that reflects or transmits the light beam scanned by the scanning unit;
    A first mirror disposed in front of a user's eye, and reflecting the light beam reflected or transmitted by the optical component onto the retina of the eye to project an image onto the retina;
    Equipped with
    The first mirror has a first area and a second area, and in the first mirror, the first area is located in a direction in which the light beam is incident from the second area,
    The optical component is a part of the light beam scanned by the scanning unit in a third area that reflects or passes the first light beam irradiated to the first region among the light beams scanned by the scanning unit. An image projector characterized in that it is made larger than the condensing power in the fourth area which reflects or passes the second light beam irradiated to the second area.
  2.  前記第1光線が合焦する第1位置と前記網膜との第1距離と、前記第2光線が合焦する第2位置と前記網膜との第2距離と、は、
     それぞれ、前記第3領域および前記第4領域における集光パワーが同じと仮定したときの前記第1距離および前記第2距離より小さいことを特徴とする請求項1記載の画像投影装置。
    The first position at which the first light beam is focused and the first distance between the retina, and the second distance between the second light beam at which the second light beam is focused and the retina,
    The image projection apparatus according to claim 1, wherein the first distance and the second distance are smaller than the first distance when it is assumed that the condensing powers in the third region and the fourth region are the same.
  3.  前記光学部品は第2ミラーであり、
     前記第3領域における前記第2ミラーの曲率は前記第4領域における前記第2ミラーの曲率より大きいことを特徴とする請求項1または2記載の画像投影装置。
    The optical component is a second mirror,
    The image projection apparatus according to claim 1, wherein a curvature of the second mirror in the third area is larger than a curvature of the second mirror in the fourth area.
  4.  前記光学部品は回折格子であり、
     前記第3領域における前記回折格子のピッチは前記第4領域における前記回折格子のピッチより大きいことを特徴とする請求項1または2記載の画像投影装置。
    The optical component is a diffraction grating,
    3. The image projector according to claim 1, wherein a pitch of the diffraction grating in the third area is larger than a pitch of the diffraction grating in the fourth area.
  5.  前記第1領域における前記第1ミラーの集光パワーは前記第2領域における前記第1ミラーの集光パワーより小さいことを特徴とする請求項1から4のいずれか一項記載の画像投影装置。 The image projection apparatus according to any one of claims 1 to 4, wherein a condensing power of the first mirror in the first area is smaller than a condensing power of the first mirror in the second area.
  6.  前記第1領域および前記第2領域は、前記第1ミラー内の前記画像の中心に対応する位置に対し、前記光線の入射する方向における両側に位置していることを特徴とする請求項1から5のいずれか一項記載の画像投影装置。 The first area and the second area are located on both sides of the light incident direction with respect to a position corresponding to the center of the image in the first mirror. The image projector of any one of 5.
  7.  前記第1ミラーにおける前記第1領域と前記第2領域との距離は、前記光学部品における前記第3領域と前記第4領域との距離より大きいことを特徴とする請求項1から6のいずれか一項記載の画像投影装置。 The distance between the first area and the second area in the first mirror is larger than the distance between the third area and the fourth area in the optical component. An image projector according to any one of the preceding claims.
  8.  前記第1ミラー内の前記画像の中心に対応する位置を通り前記光線の入射する方向に延伸する線に対し対称関係にある前記第1ミラー内の一対の位置に対応する前記光学部品内の一対の位置における集光パワーは実質的に等しいことを特徴とする請求項1から7のいずれか一項記載の画像投影装置。 A pair in the optical component corresponding to a pair of positions in the first mirror that are in a symmetrical relationship with respect to a line extending in a direction in which the light beam is incident through a position corresponding to the center of the image in the first mirror. The image projection apparatus according to any one of claims 1 to 7, characterized in that the condensing powers at the position of are substantially equal.
  9.  光線を出射する光源部と、
     画像データを入力する画像入力部と、
     入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、
     前記画像光線を走査する走査ミラーと、
     前記走査ミラーで走査された画像光線を反射する反射ミラーと、
     前記反射ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、
    を具備し、
     前記投影ミラーの表面は自由曲面を有し、前記反射ミラーの表面は前記投影ミラーの自由曲面の曲率変化に対応した自由曲面を有する画像投影装置。
    A light source unit that emits a light beam;
    An image input unit for inputting image data;
    A control unit that generates an image light beam based on the input image data and controls emission of the image light beam from the light source unit;
    A scanning mirror for scanning the image beam;
    A reflecting mirror that reflects the image light beam scanned by the scanning mirror;
    A projection mirror that projects the image light beam reflected by the reflection mirror onto the retina of the user's eye;
    Equipped with
    The surface of the said projection mirror has a free-form surface, The surface of the said reflective mirror has the free-form surface corresponding to the curvature change of the free-form surface of the said projection mirror.
  10.  前記反射ミラーの自由曲面は、凹曲面と凸曲面を含む請求項9記載の画像投影装置。 The image projection apparatus according to claim 9, wherein the free curved surface of the reflection mirror includes a concave curved surface and a convex curved surface.
  11.  前記投影ミラーの自由曲面は曲率の異なる領域を有し、
     前記反射ミラーの凹曲面および凸曲面で反射した画像光線が前記投影ミラーの異なる領域にそれぞれ照射され、
     前記凹曲面で反射された画像光線は、前記凸曲面で反射された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記反射ミラーの凹曲面及び凸曲面が設定されている請求項10記載の画像投影装置。
    The free-form surface of the projection mirror has regions of different curvature,
    The image rays reflected by the concave surface and the convex surface of the reflection mirror are respectively irradiated to different regions of the projection mirror;
    The image light beam reflected by the concave surface is reflected such that the image light beam reflected by the convex surface is emitted to the area of the projection mirror whose curvature is smaller than the curvature of the area of the projection mirror to be irradiated 11. The image projection apparatus according to claim 10, wherein concave and convex surfaces of the mirror are set.
  12.  光線を出射する光源部と、
     画像データを入力する画像入力部と、
     入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、
     前記画像光線を走査する走査ミラーと、
     前記走査ミラーで走査された画像光線を反射する反射ミラーと、
     前記反射ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、
    を具備し、
     前記投影ミラーの表面は自由曲面を有し、前記反射ミラーは前記投影ミラーの自由曲面の曲率変化に対応した反射型回折素子を含む画像投影装置。
    A light source unit that emits a light beam;
    An image input unit for inputting image data;
    A control unit that generates an image light beam based on the input image data and controls emission of the image light beam from the light source unit;
    A scanning mirror for scanning the image beam;
    A reflecting mirror that reflects the image light beam scanned by the scanning mirror;
    A projection mirror that projects the image light beam reflected by the reflection mirror onto the retina of the user's eye;
    Equipped with
    An image projector comprising: a surface of the projection mirror having a free-form surface; and the reflection mirror including a reflective diffractive element corresponding to a change in curvature of the free-form surface of the projection mirror.
  13.  前記反射型回折素子は、位相ピッチの異なる位相分布を有する請求項12記載の画像投影装置。 The image projection apparatus according to claim 12, wherein the reflective diffraction element has a phase distribution with different phase pitches.
  14.  前記投影ミラーの自由曲面は曲率の異なる領域を有し、
     前記反射型回折素子の位相ピッチの広い領域と位相ピッチの狭い領域とで反射した画像光線が前記投影ミラーの曲率の異なる領域にそれぞれ照射され、
     前記位相ピッチの広い領域で反射された画像光線は、前記位相ピッチの狭い領域で反射された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記反射型回折素子の位相ピッチが設定されている請求項13記載の画像投影装置。
    The free-form surface of the projection mirror has regions of different curvature,
    The image light rays reflected by the wide area of the phase pitch and the narrow area of the phase pitch of the reflection type diffractive element are respectively irradiated to the areas of different curvatures of the projection mirror;
    The image light beam reflected in the wide area of the phase pitch is irradiated to the area of the projection mirror whose curvature is smaller than the curvature of the area of the projection mirror to which the image light beam reflected in the narrow area of the phase pitch is irradiated. The image projection device according to claim 13, wherein the phase pitch of the reflection type diffraction element is set to
  15.  光線を出射する光源部と、
     画像データを入力する画像入力部と、
     入力された前記画像データに基づいた画像光線を生成して、前記光源部からの前記画像光線の出射制御を行う制御部と、
     前記画像光線を走査する走査ミラーと、
     前記走査ミラーで走査された画像光線を反射する透過ミラーと、
     前記透過ミラーで反射された画像光線を利用者の眼球の網膜に投影する投影ミラーと、
    を具備し、
     前記投影ミラーの表面は自由曲面を有し、前記透過ミラーは前記投影ミラーの自由曲面の曲率変化に対応した透過型回折素子を含む画像投影装置。
    A light source unit that emits a light beam;
    An image input unit for inputting image data;
    A control unit that generates an image light beam based on the input image data and controls emission of the image light beam from the light source unit;
    A scanning mirror for scanning the image beam;
    A transmission mirror that reflects the image beam scanned by the scanning mirror;
    A projection mirror that projects the image light beam reflected by the transmission mirror onto the retina of the user's eye;
    Equipped with
    An image projector comprising: a surface of the projection mirror having a free-form surface; and the transmission mirror including a transmission type diffractive element corresponding to a change in curvature of the free-form surface of the projection mirror.
  16.  前記透過型回折素子は、位相ピッチの異なる位相分布を有する請求項15記載の画像投影装置。 The image projection apparatus according to claim 15, wherein the transmission type diffractive element has a phase distribution with different phase pitches.
  17.  前記投影ミラーの自由曲面は曲率の異なる領域を有し、
     前記透過型回折素子の位相ピッチの広い領域と位相ピッチの狭い領域とで透過した画像光線が前記投影ミラーの曲率の異なる領域にそれぞれ照射され、
     前記位相ピッチの広い領域で透過された画像光線は、前記位相ピッチの狭い領域で透過された画像光線が照射される前記投影ミラーの領域の曲率よりも曲率の小さな前記投影ミラーの領域に照射されるように、前記透過型回折素子の位相ピッチが設定されている請求項16記載の画像投影装置。
    The free-form surface of the projection mirror has regions of different curvature,
    The image rays transmitted through the wide region of the phase pitch and the narrow region of the phase pitch of the transmissive diffraction element are respectively irradiated to the regions of different curvatures of the projection mirror;
    The image light beam transmitted in the wide area of the phase pitch is irradiated on the area of the projection mirror whose curvature is smaller than the curvature of the area of the projection mirror to which the image light beam transmitted in the narrow area of the phase pitch is irradiated. The image projection apparatus according to claim 16, wherein a phase pitch of the transmission type diffractive element is set.
PCT/JP2016/074838 2015-09-29 2016-08-25 Image projection device WO2017056802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017504439A JP6209705B2 (en) 2015-09-29 2016-08-25 Image projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191782 2015-09-29
JP2015-191782 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056802A1 true WO2017056802A1 (en) 2017-04-06

Family

ID=58423185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074838 WO2017056802A1 (en) 2015-09-29 2016-08-25 Image projection device

Country Status (2)

Country Link
JP (1) JP6209705B2 (en)
WO (1) WO2017056802A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209662B1 (en) * 2016-10-13 2017-10-04 株式会社Qdレーザ Image projection device
WO2018225322A1 (en) * 2017-06-06 2018-12-13 株式会社Qdレーザ Image projection device
CN114051592A (en) * 2019-06-27 2022-02-15 株式会社理光 Optical device, image display and optometry apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160650A (en) * 1997-11-27 1999-06-18 Nec Corp Picture display device
JP5216761B2 (en) * 2007-09-26 2013-06-19 パナソニック株式会社 Beam scanning display device
JP2014048498A (en) * 2012-08-31 2014-03-17 Olympus Corp Eccentric optical system, image projection device using eccentric optical system, and image pickup device using eccentric optical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373892B2 (en) * 2009-04-09 2013-12-18 パナソニック株式会社 Beam scanning display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160650A (en) * 1997-11-27 1999-06-18 Nec Corp Picture display device
JP5216761B2 (en) * 2007-09-26 2013-06-19 パナソニック株式会社 Beam scanning display device
JP2014048498A (en) * 2012-08-31 2014-03-17 Olympus Corp Eccentric optical system, image projection device using eccentric optical system, and image pickup device using eccentric optical system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209662B1 (en) * 2016-10-13 2017-10-04 株式会社Qdレーザ Image projection device
JP2018063365A (en) * 2016-10-13 2018-04-19 株式会社Qdレーザ Image projector
WO2018070236A1 (en) * 2016-10-13 2018-04-19 株式会社Qdレーザ Image projection device
US10924716B2 (en) 2016-10-13 2021-02-16 Qd Laser, Inc. Image projection device
WO2018225322A1 (en) * 2017-06-06 2018-12-13 株式会社Qdレーザ Image projection device
JP2018205574A (en) * 2017-06-06 2018-12-27 株式会社Qdレーザ Image projection device
US10921598B2 (en) 2017-06-06 2021-02-16 Qd Laser, Inc. Image projection device
CN114051592A (en) * 2019-06-27 2022-02-15 株式会社理光 Optical device, image display and optometry apparatus

Also Published As

Publication number Publication date
JPWO2017056802A1 (en) 2017-10-05
JP6209705B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
CN109804296B (en) Image projection apparatus
US10627631B2 (en) Image projection device and projection device
US8582206B2 (en) Laser-scanning virtual image display
CN106716230B (en) Image display device
WO2018225322A1 (en) Image projection device
JP2019109435A (en) Display unit
CN110753876B (en) Image projection apparatus
WO2018135046A1 (en) Image projection device
KR102047612B1 (en) Optical system for laser optical rectification and wave front control
JP2016161670A (en) Image display device
US20170304114A1 (en) Device for Processing Eye Tissue by Means of a Pulsed Laser Beam
WO2017056802A1 (en) Image projection device
US9566190B2 (en) Device for processing eye tissue by means of a pulsed laser beam
JP7078985B2 (en) Image projection device
JP2019184752A (en) Virtual image display device
JP2021067895A (en) Laser scanning device
US20130155375A1 (en) Device for processing eye tissue by means of a pulsed laser beam
JP2005309264A (en) Image display apparatus
JP2022151880A (en) image projection device
TW202300983A (en) Head-mounted display
JP2019109434A (en) Display unit
JP2020204669A (en) Image display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017504439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850978

Country of ref document: EP

Kind code of ref document: A1