WO2017056283A1 - Exploration machine system and management method - Google Patents

Exploration machine system and management method Download PDF

Info

Publication number
WO2017056283A1
WO2017056283A1 PCT/JP2015/077892 JP2015077892W WO2017056283A1 WO 2017056283 A1 WO2017056283 A1 WO 2017056283A1 JP 2015077892 W JP2015077892 W JP 2015077892W WO 2017056283 A1 WO2017056283 A1 WO 2017056283A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
oscillation
epicenter
output
management
Prior art date
Application number
PCT/JP2015/077892
Other languages
French (fr)
Japanese (ja)
Inventor
真生 濱本
上村 哲也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/077892 priority Critical patent/WO2017056283A1/en
Priority to JP2017514711A priority patent/JP6311075B2/en
Publication of WO2017056283A1 publication Critical patent/WO2017056283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/04Details
    • G01V1/06Ignition devices
    • G01V1/08Ignition devices involving time-delay devices

Definitions

  • the present invention relates to an exploration machine system and a management method for acquiring data by reflection seismic exploration.
  • a cable type system is a system in which a plurality of sensors are connected to one cable, and seismic waves received by the sensors are carried in real time to a vehicle called an observation vehicle via the cable. The carried data is stored in the management system inside the observation vehicle.
  • a sensor terminal having a storage connected to a sensor is installed on the ground surface, and seismic wave data received by the sensor is stored. The sensor terminal is collected after the exploration is completed, and the sensor terminal data is stored in the management system.
  • reflected wave data is handled with the oscillation start timing of the artificial seismic source as the reference time zero seconds.
  • the artificial seismic source and the observation vehicle communicate wirelessly, and the observation vehicle can notify the sensor of the oscillation start timing of the artificial seismic source. Therefore, the sensor can start sampling using the oscillation start timing as a trigger, and the sampling timing of the sensor coincides with the oscillation start timing of the artificial seismic source.
  • the sensor terminal there is no way for the sensor terminal to reliably know the oscillation start timing in real time, so the sensor sampling timing does not match the oscillation start timing of the artificial seismic source, In the meantime, a deviation time less than the sampling period of the sensor occurs. This deviation time affects the prediction result of the underground structure, and causes a decrease in the accuracy of the analysis result. That is, seismic wave data with lower quality than the cable type system is acquired.
  • GPS Global Positioning System
  • the exploration machine system of the prior art 1 can guarantee that the sampling timing of the sensor and the oscillation start timing of the artificial seismic source coincide only with a specific exciter.
  • a specific exciter For example, an explorer system that samples at 9: 10: 10.002 seconds, 9: 10: 10.004 seconds when the sensor sampling period is 2 milliseconds, the sensor sampling period is 2 millimeters
  • the oscillation start timing of the artificial seismic source cannot be matched.
  • the exploration machine system can realize the timing coincidence only with the exciter that provides the GPS synchronous oscillation.
  • the shaker that has received the oscillation request signal from the exploration operator starts oscillating after a predetermined time has elapsed since it was received.
  • this is referred to as trigger-synchronized oscillation.
  • the oscillation start timing depends on the timing at which the search operator presses the oscillation button, so the sensor sampling timing and the artificial seismic source oscillation start timing cannot be matched. That is, there is a problem that the exploration system of the prior art 1 cannot match the timing with the shaker already owned by the user and cannot acquire high-quality seismic wave data.
  • An object of the present invention is to make the oscillation start timing of the artificial seismic source coincide with the sampling timing of the sensor regardless of the oscillation characteristics of the artificial seismic source.
  • the present invention provides a source controller that controls an artificial seismic source, a seismic source management unit that transmits and receives signals, and a reflected wave that propagates through the formation accompanying the oscillation of the artificial seismic source.
  • a plurality of sensor terminals that manage sensors that receive vibration according to a cycle and generate vibration data; and a management device that manages the seismic center management unit and each sensor terminal;
  • a first timing including an output timing of an oscillation trigger signal output to the source controller and a reception timing of an oscillation start timing signal output from the source controller after the oscillation trigger signal is output.
  • a delay adjustment unit having a unit for calculating a first timing adjustment amount for adjusting an output timing of the oscillation trigger signal, and the management device is configured to obtain the first obtained by the measurement unit of the epicenter management unit. Determining the oscillation characteristics of the artificial seismic source based on the timing information of 1, and setting the second timing characteristic information in the seismic source management unit according to the determination result, and means for calculating the second timing characteristic information And a second timing adjustment amount for adjusting a sampling timing for the sensor of each sensor terminal based on the second timing characteristic information, and the second timing adjustment amount is calculated based on the second timing characteristic information. It has the means to set to a terminal, It is characterized by the above-mentioned.
  • the oscillation start timing of the artificial seismic source and the sampling timing of the sensor can be matched regardless of the oscillation characteristics of the artificial seismic source.
  • FIG. 1 is a configuration diagram for explaining the outline of a reflection seismic exploration using a shaker and a cableless exploration system.
  • FIG. 1 shows an example in which a shaker is used as an artificial seismic source, dynamite may be used.
  • the seismic reflection survey is performed by the exciter 100 and the explorer system.
  • the exploration machine system includes a management device 110, a plurality of sensor terminals 120, and an epicenter management unit 130.
  • a plurality of sensor terminals 120 are arranged in a distributed manner around the shaker 100, and the shaker management unit 130, the source controller 140, and the actuator 142 are mounted on the shaker 100.
  • the exploration operator operates the oscillation button of the shaker 100 at the planned oscillation position
  • the oscillation request signal 151 is input to the epicenter management unit 130.
  • the epicenter management unit 130 provides the oscillation trigger signal 152 to the source controller 140 in response to the oscillation request signal 151.
  • the source controller 140 In response to the oscillation trigger signal 152, the source controller 140 outputs a control signal 143 to the actuator 142 for oscillating the shaker 100 to drive the actuator 142. At this time, the source controller 140 outputs an oscillation start timing signal 153 to the epicenter management unit 130 at the same timing as the oscillation start by the oscillation of the shaker 100. When detecting the oscillation start timing signal 153, the epicenter management unit 130 records the detection time in the internal storage (storage unit) as the oscillation start time.
  • each sensor terminal 120 receives the reflected wave by a sensor such as a geophone, and stores the received reflected wave as vibration data in an internal storage (storage unit).
  • each sensor terminal 120 is collected, and each collected sensor terminal 120 is transported to a base camp in which the management device 110 is installed.
  • the management device 110 collects the vibration data acquired from each sensor terminal 120 and records the collected vibration data in the internal storage (storage unit). Thereby, it is possible to acquire vibration data of the reflection seismic survey when the cableless type exploration system is used.
  • FIG. 2 is a characteristic diagram for explaining the response delay time characteristic of the trigger synchronous oscillation.
  • the trigger-synchronized oscillation is characterized in that oscillation starts after a predetermined time has elapsed since the source controller 140 received the oscillation trigger signal 152.
  • the source controller 140 sends the epicenter management unit.
  • an oscillation start timing signal 153 indicating the time to start oscillation is output after a predetermined time has elapsed, that is, at time T2 after the response delay time D1.
  • the epicenter management unit 130 outputs the oscillation trigger signal 152 to the source controller 140 at the time T3, after the predetermined time has elapsed from the source controller 140 to the epicenter management unit 130, for example, the response delay time D2 At a later time T4, the oscillation start timing signal 153 is output.
  • FIG. 3 is a characteristic diagram for explaining the response delay time characteristic of GPS synchronous oscillation.
  • the GPS synchronous oscillation is adjusted so that the oscillation start timing of the artificial seismic source coincides with the sampling timing of the sensor used in the sensor terminal 120. Therefore, after the source controller 140 receives the oscillation trigger signal 152, The response delay time until the hypocenter starts to oscillate varies.
  • the source controller 140 determines that the oscillation start timing of the artificial seismic source and the sensor sampling timing are The oscillation start timing signal 153 is output to the epicenter management unit 130 at time T2 so as to match.
  • the source controller 140 determines the response delay time D1 so that the oscillation start timing of the artificial seismic source matches the sensor sampling timing.
  • the oscillation start timing signal 153 is output to the epicenter management unit 130 at time T4.
  • the management device 110 provides a trigger output / timing adjustment amount (adjustment time) (adjustment time for adjusting the timing from when the oscillation request signal 151 is received until the oscillation trigger signal 152 is output) First timing adjustment amount) is set, and for each sensor terminal 120, a sampling timing adjustment amount (second timing adjustment amount) is set as a timing adjustment time for the sensor sampling timing.
  • FIG. 4 is a characteristic diagram for explaining a method of calculating the timing adjustment amount in the case of the trigger synchronous oscillation.
  • the epicenter management unit 300 When the management device 110 determines that the oscillation timing characteristic (response delay time characteristic) of the exciter 100 is the trigger-synchronized oscillation, the epicenter management unit 300 performs the sampling timing and oscillation of the maximum sampling period provided by the explorer system.
  • the output timing of the oscillation trigger signal 152 is adjusted according to the trigger output / timing adjustment amount (first timing adjustment amount) so that the start timing signal 153 is synchronized.
  • the sampling timing adjustment amount for each sensor terminal 120 is set to zero.
  • the oscillation start timing signal 153 is If it is synchronized with the sampling timing of the maximum sampling period provided by the explorer system, it can be synchronized with respect to all the sampling periods provided by the explorer system.
  • the hypocenter management unit 130 receives the oscillation request signal 151 at time T0, and the sampling timing of the sensor that first visits after the response delay time D1 of the source controller 140 elapses from time T0.
  • T2 An example in the case of T2 is shown.
  • the maximum sampling cycle of the sensor is SP_max seconds and the sampling timing of the sensor is 0: 0: 0 + SP_max ⁇ N (where N is an integer)
  • the trigger output / timing adjustment amount (first value)
  • the timing adjustment amount can be obtained by the following equation (1).
  • ⁇ T_trg means a trigger output / timing adjustment amount
  • mod is a remainder operator.
  • the hypocenter management unit 130 waits for the trigger output / timing adjustment amount after receiving the oscillation request signal 151 and outputs the oscillation trigger signal 152 to the source controller 140, thereby sampling the sensor.
  • the timing and the oscillation start timing 153 of the shaker 100 can be matched.
  • FIG. 5 is a characteristic diagram for explaining a method of calculating a timing adjustment amount in the case of GPS synchronous oscillation.
  • the management device 110 determines that the oscillation timing characteristic (response delay time characteristic) of the exciter 100 is GPS synchronous oscillation
  • the sensor terminal 120 causes the sensor sampling timing and the oscillation start timing signal 153 to be synchronized.
  • the sensor sampling timing is adjusted according to the sampling timing adjustment amount.
  • the value of the sampling timing adjustment amount differs for each sampling period set in the sensor.
  • the trigger output / timing adjustment amount set in the epicenter management unit 130 is set to 0 (but may be any value).
  • the oscillation start timing signal 153 output from the source controller 140 after receiving the oscillation trigger signal 152 is output so as to coincide with the sensor sampling timing assumed by the artificial seismic source.
  • the timing at which the oscillation start timing signal 153 can be output is at least 8 milliseconds. Visits periodically at intervals of a power of two or more. In other words, when the sampling period is 1 times the power of 2 in 8 milliseconds, the sampling timing of the sensor and the exciter are adjusted by adjusting the sampling timing of the sensor so that sampling can be performed at the same timing as the time T2.
  • the oscillation start timing of 100 always matches.
  • FIG. 5 shows an example in which the source controller 140 receives the oscillation trigger signal 152 at time T1, and then the source controller 140 outputs the oscillation start timing signal 153 at time T2.
  • the sampling period of the sensor is SP seconds and the sampling timing of the sensor is 0 hour 0 minute 0 second + SP ⁇ N (where N is an integer)
  • the sampling timing adjustment amount (second timing adjustment) (Quantity) can be obtained by the following equation (2).
  • ⁇ T_smp means a sampling timing adjustment amount
  • mod is a remainder operator.
  • the sensor terminal 120 delays the sensor sampling timing by the sampling timing adjustment amount, so that the sensor sampling timing and the oscillation start timing of the exciter 100 (oscillation start timing signal 153). Output timing) can be matched.
  • FIG. 6 is a configuration diagram showing the overall configuration of the cableless exploration system.
  • a cableless type exploration system 10 includes a management device 110, a plurality of sensor terminals 120-a and 120-b (hereinafter sometimes referred to as sensor terminals 120), and an epicenter management unit (seismic source management). Unit) 130, and the management apparatus 110 and each sensor terminal 120 are connected via a network 610.
  • FIG. 6 shows a state in which the management device 110 and the epicenter management unit 130 and the management device 110 and each sensor terminal 120 are connected so as to be able to communicate with each other, but in the search operation phase, the respective connections are disconnected and cannot communicate with each other. It also becomes a configuration.
  • the management device 110 is a computer device that transmits and receives information to and from the epicenter management unit 130 and each sensor terminal 120 via the network 610, and manages the seismic center management unit 130 and each sensor terminal 120, and includes a processing unit 111, The storage unit 112 and a plurality of communication units 113 and 114 are connected to each other via an internal bus 115.
  • the processing unit 111 includes a processor that performs overall control of the entire management apparatus 110, and executes setting processing for each sensor terminal 120 and the epicenter management unit 130.
  • the storage unit 112 is configured as an internal storage, and various information and various programs are stored in the storage unit.
  • the communication unit 113 is configured as a communication interface that communicates with each sensor terminal 120 via the network 610.
  • the communication unit 114 is configured as a communication interface that communicates with the epicenter management unit 130.
  • Each sensor terminal 120 is a terminal that manages a sensor that generates a vibration data by receiving a reflected wave propagating through the formation according to the oscillation of the artificial seismic source according to a sampling timing cycle, and includes a communication unit 121, a control unit 122, a storage unit 123, a GPS reception unit 124, a sensor unit 125, and an antenna unit 126.
  • the communication unit 121 is configured as a communication interface that communicates with the management apparatus 110 via the network 610.
  • the control unit 122 includes a processor that performs overall control of the center terminal 120.
  • the storage unit 123 is configured as an internal storage for storing various information and programs.
  • the sensor unit 125 has a geophone that receives the reflected wave when the vibration generated by the vibration generator 100 is reflected by the underground layer and the reflected wave propagates, and vibration data is received when the reflected wave is received. Is generated and transferred to the control unit 122.
  • the antenna unit 126 receives GPS radio waves
  • the GPS reception unit 124 outputs a time signal to the control unit 122 based on the received radio waves.
  • the control unit 122 executes various processes based on the time obtained from the received radio wave received by the GPS receiving unit 124.
  • the epicenter management unit 130 is a computer unit that transmits and receives signals to and from the source controller 140 that controls the artificial seismic source, and includes a communication unit 131, a control unit 132, a storage unit 133, a GPS reception unit 134, and a delay adjustment.
  • the epicenter management unit 130 outputs the output timing of the oscillation trigger signal 152 to be output to the source controller 140 among the signals to be transmitted and received, and the output from the source controller 140 after the oscillation trigger signal 152 is output.
  • Information including the reception timing of the oscillation start timing signal 153 is managed as belonging to the oscillation timing characteristic information.
  • a touch panel 160 as a display unit is connected to the control unit 132. Note that the touch panel 160 may be connected to the processing unit 111 of the management apparatus 110.
  • the communication unit 131 is configured as a communication interface that communicates with the communication unit 114 of the management apparatus 110.
  • the control unit 132 includes a processor that performs overall control of the entire epicenter management unit 130, and executes various processes based on information and programs stored in the storage unit 133.
  • the storage unit 133 is configured as an internal storage that stores various types of information and programs.
  • the delay adjustment unit 135 When the delay adjustment unit 135 receives the oscillation request signal 151 in response to the operation of the oscillation button 150, the delay adjustment unit 135 performs processing for delaying the trigger signal 152 for a set time, and outputs the processing result to the trigger issuing unit 136. That is, in the case of trigger-synchronized oscillation, the delay adjustment unit 135 performs a process of delaying the timing at which the oscillation trigger signal 152 is output by the trigger output / timing adjustment amount calculated by Equation (1). Parameters necessary for the delay adjustment unit 135 to calculate the trigger output / timing adjustment amount are provided from the control unit 132. The trigger issuing unit 136 outputs the oscillation trigger signal 152 to the source controller 140.
  • the timing reception unit 138 detects the oscillation start timing signal 153 output from the source controller, and stores the detected time in the storage unit 133 as the oscillation start time.
  • the measurement unit 137 takes in the oscillation trigger signal 152 and the oscillation start timing signal 153 at the time of measurement, measures response delay times D1 and D2 from the difference therebetween, and transfers the measurement results to the control unit 132.
  • the control unit 132 stores the measurement result in the storage unit 133 and displays it on the display screen of the touch panel 160, and further displays the measurement result and information stored in the storage unit 133 via the communication unit 131. Transfer to the management apparatus 110.
  • FIG. 7A is a configuration diagram of a storage unit in the management apparatus.
  • the storage unit 112 of the management apparatus 110 stores oscillation timing characteristic table information 701, sampling period setting means 702, oscillation characteristic determination means 703, timing adjustment amount calculation means 704, and sampling timing setting means 705.
  • Trigger output / timing setting means 706, oscillation characteristic determination threshold information 707, and maximum sampling period information 708 are stored.
  • the oscillation timing characteristic table information 701 is composed of a hypocenter identification name, a mode, a representative response delay time, and a representative oscillation start time (see FIG. 7B).
  • the sampling period setting unit 702 is a program for setting a sampling period for each sensor of the sensor terminal 120.
  • the oscillation characteristic determination unit 703 is a program for determining whether the oscillation timing characteristic of the exciter 100 is a GPS synchronous oscillation or a trigger synchronous oscillation based on the measurement result of the measurement unit 137.
  • the timing adjustment amount calculation means 704 is a program for calculating the sampling timing adjustment amount of the sensor according to the equation (2).
  • the sampling timing setting unit 705 is a program for setting the sampling timing for each sensor according to the calculation result of the timing adjustment amount calculation unit 704 (the calculation result of Formula 2).
  • the trigger output / timing setting means 706 stores parameters (that is, representative response delay time information 901 and maximum sampling period information 902) necessary for the delay adjustment unit 135 to calculate the trigger output / timing adjustment amount in the storage unit of the epicenter management unit 130. This is a program for setting to 133.
  • the maximum sampling period information 708 is a maximum sampling period that can be set in the sensor.
  • the oscillation characteristic determination threshold information 707 is information on the threshold Th used when the oscillation timing characteristic determination unit 703 determines the oscillation timing characteristic of the exciter 100. For example, 50 microseconds is used as this information.
  • the processing unit 111 of the management device 110 determines the oscillation characteristics of the artificial seismic source based on the information stored in the storage unit 112 (measurement result information 905 managed by the epicenter management unit), and the oscillation is performed according to the determination result. Information related to oscillation characteristics is added to the timing characteristic table information 701.
  • FIG. 7B is a configuration diagram of oscillation timing characteristic table information.
  • the oscillation timing characteristic table information is a table for managing the oscillation timing characteristics of one or more artificial seismic sources owned by the user.
  • FIG. 7B shows an example in which the oscillation timing characteristics of three types of artificial seismic sources (namely, Source1, Source2, and Source3) are managed.
  • the oscillation timing characteristic table information 701 includes a hypocenter identification name 701A, a mode 701B, a representative response delay time 701C, and a representative oscillation start time 701D.
  • the hypocenter identification name 701A for example, information of “Source1” is stored as the name of the artificial seismic center.
  • information of “Trigger” is stored when the oscillation characteristic of the artificial seismic source is the trigger synchronous oscillation. If the oscillation characteristic of the artificial seismic source of the shaker 100 is GPS synchronous oscillation, “GPS” information is stored.
  • the representative response delay time 701C (represented as D here), in the case of trigger-synchronized oscillation, information “Delay1” is stored as information corresponding to the response delay time D1 measured by the measurement unit 137.
  • FIG. 8 is a configuration diagram of information in the storage unit in the sensor terminal.
  • sampling period information 801 sampling timing adjustment amount information 802, sampling timing adjustment means 803, and sampling means 804 are stored in the storage unit 123 of the sensor terminal 120.
  • Sampling cycle information 801 is information related to the sampling cycle set in each sensor of the sensor terminal 120, and is information such as 2 milliseconds, for example.
  • the sampling timing adjustment amount information 802 is information for adjusting the sampling timing set for each sensor of the sensor terminal 120 and is information calculated by the sampling timing adjustment amount calculation means 704.
  • the sampling timing adjustment unit 803 is a program for adjusting the sampling timing of each sensor of the sensor terminal 120 according to the calculation result of the sampling timing adjustment amount calculation unit 704.
  • the sampling means 804 is a program for each sensor of the sensor terminal 120 to sample vibration data.
  • FIG. 9 is a configuration diagram of information in the storage unit in the epicenter management unit.
  • the storage unit 133 of the epicenter management unit 130 stores representative response delay time information 901, maximum sampling period information 902, basic sampling timing information 903, measurement phase adjustment amount information 904, and measurement result information 905.
  • Oscillation start time information 906, timing error detection means 907, timing error log information 908, oscillation timing characteristic information 909, hypocenter identification name information 910, and representative oscillation start time information 911 are stored.
  • the representative response delay time information 901 is a value of D1 used in Equation 1, and is information indicating the representative response delay time of the selected artificial seismic source among the representative response delay times 701C in the oscillation timing characteristic table information 701. It is. For example, when Source1 is selected, the information is Delay1.
  • the maximum sampling period information 902 is a sampling period set for each sensor of the sensor terminal 120 and is information indicating the maximum period that can be set, for example, 8 milliseconds.
  • the measurement phase adjustment amount information 904 is a value used in the phase adjustment process, and is information indicating, for example, 1 millisecond.
  • the measurement result information 905 is information indicating the measurement result of the measurement unit 137.
  • the oscillation start time information 906 is information indicating the oscillation start time corresponding to the reception time of the oscillation start timing signal 153 received by the timing receiver 138.
  • the timing error detection means 907 is a program for detecting a difference between the reference timing and the generation timing of the oscillation trigger signal 152 in the operation phase (operation time).
  • the timing / error log information 908 is information indicating the detection result of the timing / error detecting means 907.
  • the oscillation timing characteristic information 909 is information indicating whether the oscillation characteristic of the artificial seismic source is a trigger type oscillation or a GPS type oscillation.
  • the epicenter identification name information 910 is information for identifying the name of the artificial seismic center.
  • the representative oscillation start time information 911 is a value of T2 used in Equation 2, and is information indicating the representative oscillation start time of the selected artificial seismic source among the representative oscillation start times 701D in the oscillation timing characteristic table information 701. It is.
  • FIG. 10 is a flowchart for explaining the entire processing of the cableless type exploration system.
  • the process in the cableless type exploration system 10 is composed of three phases.
  • the earthquake source management unit 130 measures the response time and response delay time of the artificial earthquake source (these are also referred to as first timing characteristic information), and based on the measurement result, the earthquake source management unit 130 or the management device 110 determines whether it is a trigger synchronous oscillation or a GPS synchronous oscillation, and calculates the timing adjustment amount (first timing adjustment amount or second timing adjustment amount) based on the determination result.
  • Necessary information is recorded in the oscillation timing characteristic table information 701 of the storage unit 112 together with the identification name of the artificial seismic source (S11).
  • FIG. 11 is a flowchart for explaining the process of the characteristic determination phase of the artificial seismic source. This process is executed as a process when measuring the response delay time.
  • the operator connects the epicenter management unit 130 to the source controller 140 (S21), and sets the operation mode of the epicenter management unit 130 to the measurement mode (S22).
  • the operation mode setting method may be a switch mounted on the device, or may be set on a GUI (Graphical User Interface).
  • the oscillation request signal 151 generated by operating the oscillation button is identified by the epicenter management unit 130 as a measurement start signal for measurement.
  • the oscillation request signal 151 is output to the epicenter management unit 130, and the delay adjustment unit 135 receives the oscillation request signal 151 as a measurement start signal (S23).
  • the oscillation button may be a button attached to the device or a button existing on the GUI.
  • the delay adjustment unit 135 that has received the measurement start signal acquires the reception time at which the measurement start signal was received as the time T1 from the GPS reception unit 134 (S24), stores the acquired time T1, and immediately triggers to the trigger issuing unit 136.
  • a trigger issue signal is output as an issue (S25).
  • the trigger issuing unit 136 that has received the trigger issue signal outputs the oscillation trigger signal 152 to the source controller 140.
  • the timing receiver 138 receives the oscillation start timing signal 153 as a response signal from the source controller 140, and when a response is detected (S26), acquires the detection time from the GPS receiver 134 as time T2. Store (S27).
  • the measuring unit 137 calculates the first response delay time D1 as the delay D1 using the time T2 and the time T1 based on the information stored in the trigger issuing unit 136 and the timing receiving unit 138 (S28). ).
  • information including the response delay time D1 and time T2 is referred to as first timing characteristic information.
  • the control unit 132 executes phase adjustment processing based on the measured phase adjustment amount information 904 and time T1 stored in the storage unit 133, and outputs the processing result to the delay adjustment unit 135 (S29).
  • the delay adjustment unit 135 determines an output time for outputting the next trigger issue signal to the trigger issue unit 136 based on the measurement phase adjustment amount information 904 and the time T1.
  • N is an integer. At this time, for example, 1 millisecond is used as the measurement phase adjustment amount information 904.
  • the delay adjusting unit 135 obtains and stores the time as the time T3 from the GPS receiving unit 134 at the output time Tout (S30), and outputs a trigger issue signal to the trigger issue unit 136 as a trigger issue (S31). . Thereafter, the trigger issuing unit 136 outputs the oscillation trigger signal 152 to the source controller 140.
  • the GPS-synchronized oscillation artificial source is erroneously determined as the trigger-synchronized oscillation artificial source between the first measurement and the second measurement. This is necessary to avoid this.
  • the response delay times D1 and D2 may happen to be the same value. This occurs when the interval between the first and second oscillation trigger signals 152 is an integral multiple of the period at which the artificial seismic source can output the oscillation start timing signal. Since the sampling period of a sensor synchronized with GPS-synchronous oscillation is generally 2 milliseconds, at least the interval between the first and second oscillation trigger signals 152 should not be an integer multiple of 2 milliseconds.
  • the epicenter management unit 130 determines the output timing of the oscillation trigger signal 152 in the second and subsequent measurement processes among the two or more measurement processes as the output timing of the oscillation trigger signal 152 in the first measurement process. Adjustment is made so that the interval from the output timing of the oscillation trigger signal 152 in the measurement process is different from an integer multiple of the sampling timing period for the sensor. That is, an adjustment time of about 1 millisecond is preferable, and the measurement phase adjustment amount information 904 is preferably a value of about 1 millisecond.
  • step S31 when the timing reception unit 138 detects (response detection) the oscillation start timing signal 153 as a response signal from the source controller 140 (S32), the detection time is set as the time T4 from the GPS reception unit 134. Acquire and store the acquired time T4 (S33).
  • the measurement unit 137 calculates the response delay time D2 for the second measurement as the delay D2 using the time T4 and the time T3 (S34).
  • the measurement unit 137 outputs the first and second measurement results to the control unit 132, and the control unit 132 stores each measurement result in the storage unit 133.
  • the first measurement result and the second measurement result are stored in the storage unit 133 as measurement result information 905, respectively.
  • the value of the time T2 detected by the timing receiver 138 is also stored as the oscillation start time information 906.
  • the stored information is transferred by the control unit 132 to the storage unit 112 of the management apparatus 110 via the communication unit 131.
  • This transfer method may be wireless communication such as WiFi, wired communication such as ETHER, or via a USB (Universal Serial Bus) memory.
  • the processing unit 111 of the management apparatus 110 activates the oscillation characteristic determination unit 703 stored in the storage unit 112, and the oscillation characteristic is determined based on the measurement result information 905 stored in the storage unit 112. It is determined whether the oscillation or the trigger synchronous oscillation (S35). Specifically, the processing unit 111 determines whether or not
  • information including the representative response delay time and the representative oscillation start time is referred to as second timing characteristic information.
  • the processing unit 111 records the information generated in step S36 or step S37 in the storage unit 112 (S38), and ends the processing in this routine.
  • the processing unit 111 records the earthquake source identification name (Source name) in the earthquake source identification name 701A of the oscillation timing characteristic table information 701, and the mode 701B includes the GPS synchronous oscillation or the trigger synchronous oscillation.
  • Mode information “Trigger” or “GPS”
  • the representative oscillation start time 701D is recorded as the representative response delay time.
  • the seismic center management unit 130 receives the oscillation request signal 151 input along with the operation of the oscillation button 150 at the time of measurement (when the measurement mode is set), as the timing of the signal to be transmitted and received, First processing for measuring the output timing of the oscillation trigger signal 152 output to the source controller 140, the reception timing of the oscillation start timing signal 153 output from the source controller 140, and the output timing of the oscillation trigger signal 152 And a second process for calculating the response delay time from the difference between the oscillation start timing signal 153 and the reception timing of the oscillation start timing signal 153 is executed at least twice, and each execution result is stored as information belonging to the oscillation timing characteristic information 909. And transfer to the management device 110.
  • the processing unit 111 of the management apparatus 110 has a response delay time calculated in the first measurement process based on the measurement result information 905 including the execution results of two or more times obtained by the measurement process of the epicenter management unit 130. And the response delay time calculated in the second measurement process are equal to each other, it is determined that the oscillation characteristic of the artificial seismic source is a trigger-synchronized oscillation, and the response delay time calculated in the first measurement process is 2 When the response delay times calculated in the second measurement process are different, it is possible to determine that the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation.
  • FIG. 12 is a configuration diagram for explaining a display example of the touch panel.
  • a touch panel 160 is a display device (monitor) or a display unit that can be connected to the control unit 132 of the epicenter management unit 130 or the processing unit 111 of the management device 110.
  • a setting tab 163, a data output tab 164 for switching the operation mode of the epicenter management unit 130 to the data output mode are arranged, a measurement mode button 165 for switching on / off of the measurement mode, and the epicenter management unit 130
  • Measurement start button 16 for instructing the start of measurement Is arranged adjacent to the source identification name (Source name), and an input interface 167 for inputting the hypocenter identification name of the artificial seismic source is arranged. Further, in the lower display area, the epicenter management unit 130 is provided.
  • An output window 168 for displaying a processing result in the measurement processing is arranged.
  • the exploration operation phase process is executed as the operation mode.
  • the measurement tab 162 is clicked, the artificial seismic source characteristic determination phase process is executed as the measurement mode, and the setting tab is displayed.
  • the device setting phase processing is executed.
  • the data output tab 164 is clicked, sensor reception data, data indicating a measurement result, and the like are output.
  • the measurement mode button 165 is a button operated when measuring the oscillation characteristics.
  • the measurement start button 166 is a button used when starting measurement of oscillation characteristics.
  • the input interface 167 receives the hypocenter identification name of the artificial seismic center.
  • the measurement result of the measurement unit 137 for example, the measurement result of the first measurement and the measurement result of the second measurement are displayed, and the determination result of the mode (Mode), that is, the oscillation characteristic of the artificial seismic source is displayed.
  • the determination result of the mode (Mode) that is, the oscillation characteristic of the artificial seismic source is displayed.
  • FIG. 13 is a sequence diagram for explaining processing at the time of measurement.
  • an oscillation request signal 151 is input to the epicenter management unit 130 as a measurement start signal.
  • the hypocenter management unit 130 outputs an oscillation trigger signal 152 to the source controller 140 in response to the measurement start signal.
  • the source controller 140 outputs a control signal to the actuator and also outputs an oscillation start timing signal 153 to the epicenter management unit 130.
  • the epicenter management unit 130 executes a delay time calculation process for calculating the response delay time D1 using the oscillation trigger signal 152 and the oscillation start timing signal 153 (S41).
  • the epicenter management unit 130 outputs the oscillation trigger signal 152 to the source controller 140, and then receives the oscillation start timing signal 153 output from the source controller 140, and receives the second oscillation trigger signal 152 and 2.
  • a delay time calculation process for calculating the response delay time D2 is executed using the first oscillation start timing signal 153 (S42).
  • the epicenter management unit 130 transfers the processing result of each delay time calculation process to the management apparatus 110 as a measurement result.
  • the management device 110 executes an oscillation timing characteristic determination process for determining whether the oscillation characteristic of the artificial seismic source is a trigger synchronization type oscillation or a GPS synchronization type oscillation based on the measurement result (S43), and the processing result is stored in the storage unit 112.
  • the registration process for registering in the oscillation timing characteristic table information 701 is executed (S44).
  • FIG. 14 is a flowchart for explaining processing at the time of setting in the device setting phase.
  • the operator 170 selects an artificial seismic source to be used (S51), and selects a sampling period SP to be applied to the sensor terminal 120 (S52).
  • the management device 110 calculates the sensor sampling timing adjustment amount using Equation 2 (S53), and calculates the calculation result and the sampling period SP.
  • the data is transferred to each sensor terminal 120, and setting write processing for each sensor is executed (S54).
  • the management device 110 transfers the response delay characteristic information to the epicenter management unit 130, executes processing for setting in the epicenter management unit 130 (S55), and ends the processing in this routine.
  • the response delay characteristic information includes a representative response delay time (D), a representative oscillation start time (T), an oscillation timing characteristic (mode), and a hypocenter identification name (Source name).
  • FIG. 15 is a sequence diagram for explaining processing at the time of setting in the device setting phase.
  • the operator 170 selects the artificial seismic source to be used and the sampling period SP that is suitable for the sensor terminal 120. Thereafter, when the oscillation characteristic of the artificial seismic source is the GPS synchronous oscillation, the management device 110 executes a calculation process for calculating the sampling timing adjustment amount of the sensor using Equation 2 (S61), The sampling period SP and the sampling timing adjustment amount are transferred to the sensor terminals 120 (120-a, 120-b) as parameter setting values, and setting change processing for each sensor is executed (S62, S63).
  • the management device 110 transfers the response delay characteristic information to the epicenter management unit 130, and representative response delay time information (D), representative oscillation start time information (T), and oscillation timing characteristic information ( mode), setting change processing for setting the epicenter identification name information (Source name) in the storage unit 133 of the epicenter management unit 130 is executed (S64).
  • FIG. 16 is a flowchart for explaining processing at the time of operation in the search operation phase.
  • the delay adjustment unit 135 of the epicenter management unit 130 receives the oscillation request signal 151 (S71), and acquires the received time as T0 from the GPS reception unit 134. Then, based on the acquired time T0, the trigger output / timing adjustment amount of Equation 1 is calculated (S73), and the trigger output / timing adjustment amount seconds from the acquired time T0 are waited for (S74).
  • the trigger issue signal is output to the trigger issue unit 136.
  • the trigger issue unit 136 outputs the oscillation trigger signal 152 to the source controller 140 (S75).
  • the timing receiving unit 138 receives the oscillation start timing signal 153 from the source controller 140 (S76), and acquires and stores the received time as T2 from the GPS receiving unit 134.
  • control unit 132 executes an error check process based on the information (oscillation timing characteristic information 909) stored in the storage unit 133 (S77), and thereafter determines whether there is an error in the error check process. Determine (S78).
  • the control unit 132 uses the representative oscillation start time T, the current oscillation start time T2, the maximum sampling period SP_max that can be provided by the sensor terminal 120, and the threshold Th.
  • step S78 the control unit 132 writes the error log in the storage unit 133 (S79), and the content of the error log is displayed as a GUI display on the display screen of the touch panel 160. It is displayed (S80). At this time, in step S79, the control unit 132 writes D, D1, T, T2, mode, and source name in the storage unit 133 as a timing error log.
  • step S78 when a negative (No) determination result is obtained in step S78, or as a process after step S80, the control unit 132 records the oscillation start time in the storage unit 133 (S81). The process ends.
  • the output timing of the oscillation trigger signal 152 is set with the set first timing adjustment amount.
  • the oscillation trigger signal 152 is output to the source controller 140 at the adjusted timing, and the output timing of the oscillation trigger signal 152 is recorded, and then the oscillation start timing signal 153 output from the source controller 140 is received.
  • the reception timing at which the oscillation start timing signal 153 is received is recorded, and when the oscillation characteristic of the artificial seismic source is the trigger synchronous oscillation, the current response delay time is calculated from the output timing and the reception timing recorded at the time of operation.
  • FIG. 17 is a sequence diagram for explaining processing at the time of operation in the search operation phase.
  • the epicenter management unit 130 receives the oscillation request signal 151, and acquires the received time as T0 from the GPS reception unit 134 (S91).
  • the epicenter management unit 130 calculates the trigger output / timing adjustment amount based on the acquired time T0 (S92), and waits for the trigger output / timing adjustment amount seconds from the acquired time T0 (S93).
  • the trigger issue signal is output to the trigger issue unit 136.
  • the trigger issuing unit 136 of the epicenter management unit 130 outputs an oscillation trigger signal 152 to the source controller 140 in response to the trigger issuing signal.
  • the source controller 140 drives the actuator and outputs an oscillation start timing signal 153 to the epicenter management unit 130.
  • the epicenter management unit 130 acquires the time at which the oscillation start timing signal 153 was received from the GPS reception unit 134, and executes an error check process based on the acquired time and information stored in the storage unit 133 ( S94). At this time, the epicenter management unit 130 determines that
  • the epicenter management unit 130 uses D, D1, mode, and Source name as timing error information (timing error log), and stores the contents of the timing error log as an operator 170. Is displayed on the display screen of the touch panel 160 managed by the computer, and the oscillation start time is recorded in the storage unit 133 (S95). Note that the operator 170 can be notified of the occurrence of a timing error through the GUI by a pop-up or the like.
  • the oscillation start timing of the artificial seismic source and the sampling timing of the sensor can be matched regardless of the oscillation characteristics of the artificial seismic source, and as a result, high-quality vibration data (seismic wave data) is acquired.
  • high-quality vibration data semiconductor wave data
  • the user can acquire high-quality seismic wave data by utilizing the artificial seismic source already owned by the user.
  • the oscillation start timing and the sampling timing can be matched even if an artificial seismic source not equipped with GPS is used. Therefore, even when used in combination with any cable type exploration system, the quality is high. Seismic wave data can be acquired. For example, when grassland and urban areas are included in the exploration area, the user should be suitable for environmental conditions, such as installing cable type system sensors in the grassland area and installing cableless system sensor terminals in the urban area. Sensors can be installed, and efficient resource exploration can be performed while maintaining high seismic wave data quality.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • each of the above-described configurations, functions, etc. may be realized by hardware by designing a part or all of them, for example, by an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function must be recorded on a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD. Can do.
  • 10 Cableless type exploration system 100 shaker, 110 management device, 111 processing unit, 112 storage unit, 113 communication unit, 114 communication unit, 120 sensor terminal, 121 communication unit, 122 control unit, 123 storage unit, 124 GPS receiver unit, 125 sensor unit, 126 antenna unit, 130 epicenter management unit, 131 communication unit, 132 control unit, 133 storage unit, 134 GPS reception unit, 135 delay adjustment unit, 136 trigger issue unit, 137 measurement unit, 138 timing Receiver, 139 antenna, 140 source controller.

Abstract

The present invention has: an epicenter management unit for transmitting signals to, and receiving signals from, a source controller for controlling an artificial epicenter; a plurality of sensor terminals for managing sensors for receiving reflected waves in accordance with a sampling timing period and generating vibration data; and a management device for managing the epicenter management unit and each of the sensor terminals. During a measurement phase, the epicenter management unit acquires, as first timing characteristics information, information that includes: the output timing of vibration trigger signals being outputted to the source controller among signals to be received and transmitted; and the reception timing of a vibration-start-timing signal subsequently outputted from the source controller. The management device assesses vibration characteristics of the artificial epicenter on the basis of the first timing characteristics information, calculates second timing characteristics information in accordance with the assessment results, configures the epicenter management unit with the second timing characteristics information, calculates the timing adjustment amount used in order to adjust the sampling timing for each of sensor terminals relative to the sensors, and configures each of the sensor terminals with the timing adjustment amount. During an operation phase, the epicenter management unit calculates the timing adjustment amount used in order to adjust the output timing of the vibration trigger signal on the basis of the second timing characteristics information configured from the management device.

Description

探鉱機システム及び管理方法Exploration machine system and management method
 本発明は、反射法地震探査によってデータを取得するための探鉱機システム及び管理方法に関する。 The present invention relates to an exploration machine system and a management method for acquiring data by reflection seismic exploration.
 石油、ガス、鉱物などの地下資源を探査する手法として、反射法地震探査がある。反射法地震探査はダイナマイトや起振車と呼ばれる人工震源を用いて人工的な振動を発生させ、発生した人工振動のうち地下の地層面を反射した振動成分をセンサで受信し、受信した振動データを解析することによって地下構造を予測する探査手法である。ここで、人工震源が発する地震波をデータとして取得するシステムは探鉱機システムと呼ばれる。 As a method of exploring underground resources such as oil, gas, and minerals, there is a reflection seismic survey. In seismic reflection surveys, artificial vibration is generated using an artificial source called dynamite or a shaker, and the vibration component reflected from the underground stratum is received by the sensor, and the received vibration data. It is an exploration technique to predict the underground structure by analyzing Here, a system that acquires seismic waves generated by an artificial seismic source as data is called an exploration machine system.
 探鉱機システムにはケーブル型システムとケーブルレス型システムの2種類がある。ケーブル型システムは1つのケーブルに複数のセンサが接続されたシステムであり、センサが受信した地震波は、ケーブルを介して観測車と呼ばれる車両にリアルタイムに運ばれる。運ばれたデータは観測車内部の管理システムに格納される。一方、ケーブルレス型システムでは、センサにストレージを接続したセンサ端末を地表に設置し、センサが受信した地震波データを格納する。センサ端末は探査終了後に回収され、センサ端末のデータは管理システムに格納される。 There are two types of exploration system: a cable type system and a cableless type system. A cable type system is a system in which a plurality of sensors are connected to one cable, and seismic waves received by the sensors are carried in real time to a vehicle called an observation vehicle via the cable. The carried data is stored in the management system inside the observation vehicle. On the other hand, in a cableless type system, a sensor terminal having a storage connected to a sensor is installed on the ground surface, and seismic wave data received by the sensor is stored. The sensor terminal is collected after the exploration is completed, and the sensor terminal data is stored in the management system.
 現在、反射法地震探査で主に使用されている探鉱機システムはケーブル型システムである。しかし、近年、設置センサ数の増大トレンドに伴い、ケーブル型システムのケーブル設置にかかる作業コスト増大が課題になっている。このような背景から、ケーブル設置作業が必要ないケーブルレス型システムへの要求が徐々に高まっている。 Currently, the exploration system mainly used in the seismic reflection survey is a cable type system. However, in recent years, along with an increasing trend in the number of installed sensors, an increase in work cost for cable installation of a cable type system has become a problem. Against this background, there is a growing demand for cableless systems that do not require cable installation work.
 反射法地震探査では、人工震源の発振開始タイミングを基準時刻ゼロ秒として反射波データを扱う。ケーブル型システムでは人工震源と観測車が無線通信を行っており、観測車はセンサに対して人工震源の発振開始タイミングを通知できる。そのため、センサは発振開始タイミングをトリガとしてサンプリングを開始することができ、センサのサンプリング・タイミングは人工震源の発振開始タイミングと一致する。一方、ケーブルレス型システムでは、センサ端末は発振開始タイミングをリアルタイムに確実に知る方法が無いため、センサのサンプリング・タイミングは人工震源の発振開始タイミングと一致せず、反射波データの基準時刻との間にセンサのサンプリング周期以下のずれ時間が生じる。このずれ時間は、地下構造の予測結果に影響し、解析結果精度を低下させる原因となる。即ち、ケーブル型システムよりも、品質が低い地震波データが取得される。 In reflection seismic exploration, reflected wave data is handled with the oscillation start timing of the artificial seismic source as the reference time zero seconds. In the cable type system, the artificial seismic source and the observation vehicle communicate wirelessly, and the observation vehicle can notify the sensor of the oscillation start timing of the artificial seismic source. Therefore, the sensor can start sampling using the oscillation start timing as a trigger, and the sampling timing of the sensor coincides with the oscillation start timing of the artificial seismic source. On the other hand, in a cableless system, there is no way for the sensor terminal to reliably know the oscillation start timing in real time, so the sensor sampling timing does not match the oscillation start timing of the artificial seismic source, In the meantime, a deviation time less than the sampling period of the sensor occurs. This deviation time affects the prediction result of the underground structure, and causes a decrease in the accuracy of the analysis result. That is, seismic wave data with lower quality than the cable type system is acquired.
 この課題を解決するために、人工震源とセンサ端末にGPS(Global Positioning System)時計を搭載し、センサのサンプリング時刻を予め約束することによって、センサのサンプリング・タイミングでしか人工震源が発振できないように、人工震源の発振開始タイミングを設計する従来技術1がある(特許文献1)。本明細書ではこれをGPS同期型発振と呼ぶこととする。 To solve this problem, GPS (Global Positioning System) clocks are installed in the artificial seismic source and sensor terminal so that the sensor sampling time is promised in advance so that the artificial seismic source can only oscillate at the sensor sampling timing. There is a prior art 1 for designing the oscillation start timing of an artificial seismic source (Patent Document 1). In this specification, this is referred to as GPS synchronous oscillation.
米国特許出願公開第2013/028563号明細書US Patent Application Publication No. 2013/028563
 従来技術1の探鉱機システムは、特定の起振車との間でしか、センサのサンプリング・タイミングと人工震源の発振開始タイミングを一致させることを保証できない。例えば、センサのサンプリング周期が2ミリ秒のとき9時10分10.002秒、9時10分10.004秒、・・・のタイミングでサンプリングする探鉱機システムは、センサのサンプリング周期が2ミリ秒のとき、9時10分10.001秒、9時10分10.003秒、・・・のタイミングでサンプリングすることを前提に設計されている人工震源を用いて、センサのサンプリング・タイミングと人工震源の発振開始タイミングを一致させることはできない。また、探鉱機システムはGPS同期型発振を提供する起振車のみとしか、前記タイミングの一致を実現できない。例えば、GPSが搭載されていない起振車では、探査オペレータによる発振要求信号を受信した起振車は、受信してから所定時間経過後に発振を開始する。本明細書ではこれをトリガ同期型発振と呼ぶ。トリガ同期型発振では、その発振開始タイミングは探査オペレータが発振ボタンを押したタイミングに依存するため、センサのサンプリング・タイミングと人工震源の発振開始タイミングを一致させることはできない。すなわち、従来技術1の探鉱機システムは既にユーザが所有している起振車との間で前記タイミングの一致を行う事が出来ず、品質の高い地震波データを取得できない課題がある。 The exploration machine system of the prior art 1 can guarantee that the sampling timing of the sensor and the oscillation start timing of the artificial seismic source coincide only with a specific exciter. For example, an explorer system that samples at 9: 10: 10.002 seconds, 9: 10: 10.004 seconds when the sensor sampling period is 2 milliseconds, the sensor sampling period is 2 millimeters Using the artificial seismic source designed on the premise of sampling at the timing of 9: 10: 10.001 seconds, 9: 10: 10.003 seconds, ... The oscillation start timing of the artificial seismic source cannot be matched. Further, the exploration machine system can realize the timing coincidence only with the exciter that provides the GPS synchronous oscillation. For example, in a shaker equipped with no GPS, the shaker that has received the oscillation request signal from the exploration operator starts oscillating after a predetermined time has elapsed since it was received. In the present specification, this is referred to as trigger-synchronized oscillation. In trigger-synchronized oscillation, the oscillation start timing depends on the timing at which the search operator presses the oscillation button, so the sensor sampling timing and the artificial seismic source oscillation start timing cannot be matched. That is, there is a problem that the exploration system of the prior art 1 cannot match the timing with the shaker already owned by the user and cannot acquire high-quality seismic wave data.
 本発明の課題は、人工震源の発振特性によらず、人工震源の発振開始タイミングとセンサのサンプリング・タイミングを一致させることにある。 An object of the present invention is to make the oscillation start timing of the artificial seismic source coincide with the sampling timing of the sensor regardless of the oscillation characteristics of the artificial seismic source.
 前記課題を解決するために、本発明は、人工震源を制御するソース・コントローラと信号の送受信を行う震源管理部と、前記人工震源の発振に伴って地層を伝播する反射波を、サンプリング・タイミング周期に従って受信して振動データを生成するセンサを管理する複数のセンサ端末と、前記震源管理部及び前記各センサ端末を管理する管理装置とを有し、前記震源管理部は、前記送受信の対象となる信号のうち前記ソース・コントローラに出力する発振トリガ信号の出力タイミングと、前記発振トリガ信号が出力された後、前記ソース・コントローラから出力される発振開始タイミング信号の受信タイミングを含む第1のタイミング特性情報を取得するための計測手段と、前記管理装置から設定される第2のタイミング特性情報に基づいて前記発振トリガ信号の出力タイミングを調整するための第1のタイミング調整量を算出する手段を有する遅延調整部を有し、前記管理装置は、前記震源管理部の前記計測手段によって得られた前記第1のタイミング情報を基に前記人工震源の発振特性を判定し、当該判定結果に従って、前記第2のタイミング特性情報を算出する手段と、前記第2のタイミング特性情報を前記震源管理部へ設定する手段と、前記第2のタイミング特性情報に基づいて、前記各センサ端末のセンサに対するサンプリング・タイミングを調整するための第2のタイミング調整量を算出し、前記第2のタイミング調整量を前記各センサ端末に設定する手段を有することを特徴とする。 In order to solve the above-described problems, the present invention provides a source controller that controls an artificial seismic source, a seismic source management unit that transmits and receives signals, and a reflected wave that propagates through the formation accompanying the oscillation of the artificial seismic source. A plurality of sensor terminals that manage sensors that receive vibration according to a cycle and generate vibration data; and a management device that manages the seismic center management unit and each sensor terminal; A first timing including an output timing of an oscillation trigger signal output to the source controller and a reception timing of an oscillation start timing signal output from the source controller after the oscillation trigger signal is output. Based on measurement means for acquiring characteristic information and second timing characteristic information set from the management device A delay adjustment unit having a unit for calculating a first timing adjustment amount for adjusting an output timing of the oscillation trigger signal, and the management device is configured to obtain the first obtained by the measurement unit of the epicenter management unit. Determining the oscillation characteristics of the artificial seismic source based on the timing information of 1, and setting the second timing characteristic information in the seismic source management unit according to the determination result, and means for calculating the second timing characteristic information And a second timing adjustment amount for adjusting a sampling timing for the sensor of each sensor terminal based on the second timing characteristic information, and the second timing adjustment amount is calculated based on the second timing characteristic information. It has the means to set to a terminal, It is characterized by the above-mentioned.
 本発明によれば、人工震源の発振特性によらず、人工震源の発振開始タイミングとセンサのサンプリング・タイミングを一致させることができる。 According to the present invention, the oscillation start timing of the artificial seismic source and the sampling timing of the sensor can be matched regardless of the oscillation characteristics of the artificial seismic source.
起振車とケーブルレス型探鉱システムを用いた反射法地震探査の概要を説明するための構成図である。It is a block diagram for demonstrating the outline | summary of the reflection method seismic survey using a shaker and a cableless type exploration system. トリガ同期型発振の応答遅延時間特性を説明するための特性図である。It is a characteristic view for demonstrating the response delay time characteristic of trigger synchronous oscillation. GPS同期型発振の応答遅延時間特性を説明するための特性図である。It is a characteristic view for demonstrating the response delay time characteristic of GPS synchronous oscillation. トリガ同期型発振の場合のタイミング調整量の算出方法を説明するための特性図である。It is a characteristic diagram for demonstrating the calculation method of the timing adjustment amount in the case of trigger synchronous oscillation. GPS同期型発振の場合のタイミング調整量の算出方法を説明するための特性図である。It is a characteristic view for demonstrating the calculation method of the timing adjustment amount in the case of GPS synchronous oscillation. ケーブルレス型探鉱機システムの全体構成を示す構成図である。It is a block diagram which shows the whole structure of a cableless type exploration machine system. 管理装置における記憶部の構成図である。It is a block diagram of the memory | storage part in a management apparatus. 発振タイミング特性テーブル情報の構成図である。It is a block diagram of oscillation timing characteristic table information. センサ端末における記憶部の情報の構成図である。It is a block diagram of the information of the memory | storage part in a sensor terminal. 震源管理部における記憶部の情報の構成図である。It is a block diagram of the information of the memory | storage part in an epicenter management part. ケーブルレス型探鉱機システムの全体の処理を説明するためのフローチャートである。It is a flowchart for demonstrating the whole process of a cableless type explorer system. 人工震源の特性判定フェーズの処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of the characteristic determination phase of an artificial seismic source. タッチパネルの表示例を説明するための構成図である。It is a block diagram for demonstrating the example of a display of a touchscreen. 計測時の処理を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the process at the time of measurement. 機器設定フェーズにおける設定時の処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process at the time of the setting in an apparatus setting phase. 機器設定フェーズにおける設定時の処理を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the process at the time of the setting in an apparatus setting phase. 探査オペレーション・フェーズにおけるオペレーション時の処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process at the time of operation in a search operation phase. 探査オペレーション・フェーズにおけるオペレーション時の処理を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the process at the time of operation in a search operation phase.
 (発明の概要)
 図1は、起振車とケーブルレス型探鉱システムを用いた反射法地震探査の概要を説明するための構成図である。なお、図1では、人工震源として起振車を用いた例を示すが、ダイナマイトを用いてもよい。
(Summary of Invention)
FIG. 1 is a configuration diagram for explaining the outline of a reflection seismic exploration using a shaker and a cableless exploration system. Although FIG. 1 shows an example in which a shaker is used as an artificial seismic source, dynamite may be used.
 図1において、反射法地震探査は、起振車100と、探鉱機システムによって実施される。探鉱機システムは、管理装置110と、複数のセンサ端末120と、震源管理部130から構成される。起振車100の周囲には、複数のセンサ端末120が分散して配置されており、起振車100には、震源管理部130、ソース・コントローラ140、アクチュエータ142が搭載されている。探査オペレータが、発振予定位置で起振車100の発振ボタンを操作すると、震源管理部130に発振要求信号151が入力される。震源管理部130は、発振要求信号151に応答して、発振トリガ信号152をソース・コントローラ140へ与える。ソース・コントローラ140は、発振トリガ信号152に応答して、起振車100を発振させるためのアクチュエータ142に対して制御信号143を出力し、アクチュエータ142を駆動させる。この際、ソース・コントローラ140は、起振車100の発振による発振開始と同じタイミングで発振開始タイミング信号153を震源管理部130へ出力する。震源管理部130は、発振開始タイミング信号153を検出した場合、その検出時刻を発振開始時刻として、内部ストレージ(記憶部)に記録する。 In FIG. 1, the seismic reflection survey is performed by the exciter 100 and the explorer system. The exploration machine system includes a management device 110, a plurality of sensor terminals 120, and an epicenter management unit 130. A plurality of sensor terminals 120 are arranged in a distributed manner around the shaker 100, and the shaker management unit 130, the source controller 140, and the actuator 142 are mounted on the shaker 100. When the exploration operator operates the oscillation button of the shaker 100 at the planned oscillation position, the oscillation request signal 151 is input to the epicenter management unit 130. The epicenter management unit 130 provides the oscillation trigger signal 152 to the source controller 140 in response to the oscillation request signal 151. In response to the oscillation trigger signal 152, the source controller 140 outputs a control signal 143 to the actuator 142 for oscillating the shaker 100 to drive the actuator 142. At this time, the source controller 140 outputs an oscillation start timing signal 153 to the epicenter management unit 130 at the same timing as the oscillation start by the oscillation of the shaker 100. When detecting the oscillation start timing signal 153, the epicenter management unit 130 records the detection time in the internal storage (storage unit) as the oscillation start time.
 起振車100が発振すると、その振動は地中の地層で反射し、その反射波が各センサ端末120に伝播する。各センサ端末120は、その反射波をジオフォンなどのセンサによって受信し、受信した反射波を振動データとして内部ストレージ(記憶部)に記憶する。 When the vibration generator 100 oscillates, the vibration is reflected by the underground layer, and the reflected wave propagates to each sensor terminal 120. Each sensor terminal 120 receives the reflected wave by a sensor such as a geophone, and stores the received reflected wave as vibration data in an internal storage (storage unit).
 反射法地震探査が終了した場合、各センサ端末120は回収され、回収された各センサ端末120は管理装置110が設置されているベースキャンプへと運ばれる。 When the reflection seismic survey is completed, each sensor terminal 120 is collected, and each collected sensor terminal 120 is transported to a base camp in which the management device 110 is installed.
 管理装置110は、各センサ端末120から取得した振動データを回収し、回収した各振動データを内部ストレージ(記憶部)に記録する。これにより、ケーブルレス型探鉱機システムを用いた場合の、反射法地震探査の振動データを取得することができる。 The management device 110 collects the vibration data acquired from each sensor terminal 120 and records the collected vibration data in the internal storage (storage unit). Thereby, it is possible to acquire vibration data of the reflection seismic survey when the cableless type exploration system is used.
 図2は、トリガ同期型発振の応答遅延時間特性を説明するための特性図である。ケーブルレス型探鉱機システムにおける人工震源の発振特性には、トリガ同期型発振とGPS同期型発振の2種類がある。トリガ同期型発振は、ソース・コントローラ140が発振トリガ信号152を受信してから、所定時間経過後に発振を開始する特徴がある。 FIG. 2 is a characteristic diagram for explaining the response delay time characteristic of the trigger synchronous oscillation. There are two types of oscillation characteristics of an artificial seismic source in a cableless type exploration system: trigger synchronization oscillation and GPS synchronization oscillation. The trigger-synchronized oscillation is characterized in that oscillation starts after a predetermined time has elapsed since the source controller 140 received the oscillation trigger signal 152.
 具体的には、図2に示すように、発振要求信号151を受信した震源管理部130が、時刻T1で発振トリガ信号152をソース・コントローラ140に出力した場合、ソース・コントローラ140から震源管理部130に対して、所定時間経過後、すなわち応答遅延時間D1後の時刻T2に、発振を開始する時刻を示す発振開始タイミング信号153が出力される。この後、震源管理部130が、時刻T3で発振トリガ信号152をソース・コントローラ140に出力した場合、ソース・コントローラ140から震源管理部130に対して、所定時間経過後、例えば、応答遅延時間D2後の時刻T4に、発振開始タイミング信号153が出力される。この際、応答遅延時間D1(=T2-T1)、D2(=T4-T3)は等しい関係となる。即ち、トリガ同期型発振の場合、発振トリガ信号152に応答して、ソース・コントローラ140からは、常に一定の応答遅延時間D1後に発振開始タイミング信号153が出力される。 Specifically, as shown in FIG. 2, when the epicenter management unit 130 that has received the oscillation request signal 151 outputs the oscillation trigger signal 152 to the source controller 140 at time T <b> 1, the source controller 140 sends the epicenter management unit. For 130, an oscillation start timing signal 153 indicating the time to start oscillation is output after a predetermined time has elapsed, that is, at time T2 after the response delay time D1. Thereafter, when the epicenter management unit 130 outputs the oscillation trigger signal 152 to the source controller 140 at the time T3, after the predetermined time has elapsed from the source controller 140 to the epicenter management unit 130, for example, the response delay time D2 At a later time T4, the oscillation start timing signal 153 is output. At this time, the response delay times D1 (= T2-T1) and D2 (= T4-T3) have the same relationship. That is, in the case of trigger synchronous oscillation, in response to the oscillation trigger signal 152, the oscillation start timing signal 153 is always output from the source controller 140 after a certain response delay time D1.
 図3は、GPS同期型発振の応答遅延時間特性を説明するための特性図である。GPS同期発振は、人工震源の発振開始タイミングが、センサ端末120に用いるセンサのサンプリング・タイミングと一致するように調整されるので、ソース・コントローラ140が、発振トリガ信号152を受信してから、人工震源が発振を開始するまでの応答遅延時間が変動する特徴がある。 FIG. 3 is a characteristic diagram for explaining the response delay time characteristic of GPS synchronous oscillation. The GPS synchronous oscillation is adjusted so that the oscillation start timing of the artificial seismic source coincides with the sampling timing of the sensor used in the sensor terminal 120. Therefore, after the source controller 140 receives the oscillation trigger signal 152, The response delay time until the hypocenter starts to oscillate varies.
 具体的には、図3に示すように、時刻T1で震源管理部130から発振トリガ信号152が出力された場合、ソース・コントローラ140は、人工震源の発振開始タイミングとセンサのサンプリング・タイミングとが一致するように、時刻T2で発振開始タイミング信号153を震源管理部130に出力する。次に、時刻T3で震源管理部130から発振トリガ信号152が出力された場合、ソース・コントローラ140は、人工震源の発振開始タイミングとセンサのサンプリング・タイミングとが一致するように、応答遅延時間D1とは異なる時間を経過した後、時間T4で発振開始タイミング信号153を震源管理部130に出力する。この場合、応答遅延時間D1(=T2-T1)、D2(=T4-T3)は異なる関係となる。 Specifically, as shown in FIG. 3, when the oscillation trigger signal 152 is output from the seismic center management unit 130 at time T1, the source controller 140 determines that the oscillation start timing of the artificial seismic source and the sensor sampling timing are The oscillation start timing signal 153 is output to the epicenter management unit 130 at time T2 so as to match. Next, when the oscillation trigger signal 152 is output from the seismic center management unit 130 at time T3, the source controller 140 determines the response delay time D1 so that the oscillation start timing of the artificial seismic source matches the sensor sampling timing. After a lapse of time different from, the oscillation start timing signal 153 is output to the epicenter management unit 130 at time T4. In this case, the response delay times D1 (= T2-T1) and D2 (= T4-T3) have different relationships.
 このように、トリガ同期発振とGPS同期発振では応答遅延時間特性が異なるため、ソース・コントローラ140からの応答遅延時間を2回計測し、計測結果から、D1=D2である場合にはトリガ同期型発振と判定し、D1とD2が異なる場合にはGPS同期型発振であると判定し、この判定結果に従ってタイミング調整量を算出し、算出結果を各センサ端末120または震源管理部130へ設定し、センサのサンプリング・タイミングと人工震源の発振開始タイミングとを一致させることとしている。 As described above, since the response delay time characteristics are different between the trigger synchronous oscillation and the GPS synchronous oscillation, the response delay time from the source controller 140 is measured twice, and from the measurement result, when D1 = D2, the trigger synchronous type is used. If it is determined that the oscillation is D1 and D2 are different, it is determined that the oscillation is a GPS-synchronized oscillation, a timing adjustment amount is calculated according to the determination result, and the calculation result is set in each sensor terminal 120 or the epicenter management unit 130. The sampling timing of the sensor and the oscillation start timing of the artificial seismic source are made to coincide.
 この際、管理装置110は、震源管理部130に対しては、発振要求信号151を受信してから発振トリガ信号152を出力するまでのタイミングを調整する調整時間として、トリガ出力・タイミング調整量(第1のタイミング調整量)を設定し、各センサ端末120に対して、センサのサンプリング・タイミングに対するタイミング調整時間として、サンプリング・タイミング調整量(第2のタイミング調整量)を設定する。 At this time, the management device 110 provides a trigger output / timing adjustment amount (adjustment time) (adjustment time for adjusting the timing from when the oscillation request signal 151 is received until the oscillation trigger signal 152 is output) First timing adjustment amount) is set, and for each sensor terminal 120, a sampling timing adjustment amount (second timing adjustment amount) is set as a timing adjustment time for the sensor sampling timing.
 図4は、トリガ同期型発振の場合のタイミング調整量の算出方法を説明するための特性図である。 FIG. 4 is a characteristic diagram for explaining a method of calculating the timing adjustment amount in the case of the trigger synchronous oscillation.
 管理装置110で起振車100の発振タイミング特性(応答遅延時間特性)がトリガ同期型発振と判定された場合、震源管理部300は、探鉱機システムが提供する最大サンプリング周期のサンプリング・タイミングと発振開始タイミング信号153とが同期するように、発振トリガ信号152の出力タイミングをトリガ出力・タイミング調整量(第1のタイミング調整量)に従って調整する。なお、この際、各センサ端末120に対するサンプリング・タイミング調整量は0に設定される。ここで、探鉱機システムのセンサのサンプリング周期は、例えば、2ミリ秒、4ミリ秒、8ミリ秒など、通常2ミリ秒(基本サンプリング周期)の整数倍であるため、発振開始タイミング信号153は、探鉱機システムが提供する最大サンプリング周期のサンプリング・タイミングに同期していれば、探鉱機システムが提供する全てのサンプリング周期に対して同期できる。 When the management device 110 determines that the oscillation timing characteristic (response delay time characteristic) of the exciter 100 is the trigger-synchronized oscillation, the epicenter management unit 300 performs the sampling timing and oscillation of the maximum sampling period provided by the explorer system. The output timing of the oscillation trigger signal 152 is adjusted according to the trigger output / timing adjustment amount (first timing adjustment amount) so that the start timing signal 153 is synchronized. At this time, the sampling timing adjustment amount for each sensor terminal 120 is set to zero. Here, since the sampling period of the sensor of the explorer system is usually an integer multiple of 2 milliseconds (basic sampling period) such as 2 milliseconds, 4 milliseconds, and 8 milliseconds, the oscillation start timing signal 153 is If it is synchronized with the sampling timing of the maximum sampling period provided by the explorer system, it can be synchronized with respect to all the sampling periods provided by the explorer system.
 この際、図4には、震源管理部130が、発振要求信号151を時刻T0で受信し、時刻T0から、ソース・コントローラ140の応答遅延時間D1経過後に、最初に訪れるセンサのサンプリング・タイミングをT2とした場合の例を示している。ここで、センサの最大サンプリング周期をSP_max秒とし、センサのサンプリング・タイミングを0時0分0秒+SP_max×N(ただし、Nは整数)であるとすると、トリガ出力・タイミング調整量(第1のタイミング調整量)は、次の数1式で求めることができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、ΔT_trgは、トリガ出力・タイミング調整量を意味し、modは剰余演算子である。
At this time, in FIG. 4, the hypocenter management unit 130 receives the oscillation request signal 151 at time T0, and the sampling timing of the sensor that first visits after the response delay time D1 of the source controller 140 elapses from time T0. An example in the case of T2 is shown. Here, assuming that the maximum sampling cycle of the sensor is SP_max seconds and the sampling timing of the sensor is 0: 0: 0 + SP_max × N (where N is an integer), the trigger output / timing adjustment amount (first value) The timing adjustment amount can be obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, ΔT_trg means a trigger output / timing adjustment amount, and mod is a remainder operator.
 即ち、トリガ同期型発振では、震源管理部130は、発振要求信号151を受信後に、トリガ出力・タイミング調整量だけ待って発振トリガ信号152をソース・コントローラ140に出力することで、センサのサンプリング・タイミングと起振車100の発振開始タイミング153とを一致させることができる。 That is, in the trigger-synchronized oscillation, the hypocenter management unit 130 waits for the trigger output / timing adjustment amount after receiving the oscillation request signal 151 and outputs the oscillation trigger signal 152 to the source controller 140, thereby sampling the sensor. The timing and the oscillation start timing 153 of the shaker 100 can be matched.
 図5は、GPS同期型発振の場合のタイミング調整量の算出方法を説明するための特性図である。 FIG. 5 is a characteristic diagram for explaining a method of calculating a timing adjustment amount in the case of GPS synchronous oscillation.
 管理装置110で起振車100の発振タイミング特性(応答遅延時間特性)がGPS同期型発振と判定された場合、センサ端末120は、センサのサンプリング・タイミングと発振開始タイミング信号153とが同期するように、センサのサンプリング・タイミングをサンプリング・タイミング調整量に従って調整する。この際、サンプリング・タイミング調整量は、センサに設定されるサンプリング周期毎にその値が異なる。また、震源管理部130に設定されるトリガ出力・タイミング調整量は0(ただし、任意の値でもよい)に設定される。 When the management device 110 determines that the oscillation timing characteristic (response delay time characteristic) of the exciter 100 is GPS synchronous oscillation, the sensor terminal 120 causes the sensor sampling timing and the oscillation start timing signal 153 to be synchronized. In addition, the sensor sampling timing is adjusted according to the sampling timing adjustment amount. At this time, the value of the sampling timing adjustment amount differs for each sampling period set in the sensor. The trigger output / timing adjustment amount set in the epicenter management unit 130 is set to 0 (but may be any value).
 GPS同期型発振の場合、発振トリガ信号152を受信後、ソース・コントローラ140から出力される発振開始タイミング信号153は、人工震源が想定するセンサのサンプリング・タイミングに一致するように出力される。この際、反射法地震探査では、8ミリ秒の2のべき乗の1倍をサンプリング周期として設定するのが一般的であるため、発振開始タイミング信号153が出力され得るタイミングは、少なくとも8ミリ秒の2のべき乗倍以上の間隔で周期的に訪れる。即ち、8ミリ秒の2のべき乗の1倍をサンプリング周期とする場合、時刻T2と同一タイミングでサンプリングできるように、センサのサンプリング・タイミングを調整することによって、センサのサンプリング・タイミングと起振車100の発振開始タイミングとが必ず一致するようになる。 In the case of GPS synchronous oscillation, the oscillation start timing signal 153 output from the source controller 140 after receiving the oscillation trigger signal 152 is output so as to coincide with the sensor sampling timing assumed by the artificial seismic source. At this time, in reflection seismic surveying, it is common to set the sampling period as 1 power of 2 of 8 milliseconds, so the timing at which the oscillation start timing signal 153 can be output is at least 8 milliseconds. Visits periodically at intervals of a power of two or more. In other words, when the sampling period is 1 times the power of 2 in 8 milliseconds, the sampling timing of the sensor and the exciter are adjusted by adjusting the sampling timing of the sensor so that sampling can be performed at the same timing as the time T2. The oscillation start timing of 100 always matches.
 この際、図5には、発振トリガ信号152を時刻T1でソース・コントローラ140が受信し、その後、ソース・コントローラ140が時刻T2で発振開始タイミング信号153を出力した場合の例を示している。ここで、センサのサンプリング周期をSP秒とし、センサのサンプリング・タイミングを0時0分0秒+SP×N(ただし、Nは整数)であるとすると、サンプリング・タイミング調整量(第2のタイミング調整量)は、次の数2式で求めることができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、ΔT_smpは、サンプリング・タイミング調整量を意味し、modは剰余演算子である。
At this time, FIG. 5 shows an example in which the source controller 140 receives the oscillation trigger signal 152 at time T1, and then the source controller 140 outputs the oscillation start timing signal 153 at time T2. Here, assuming that the sampling period of the sensor is SP seconds and the sampling timing of the sensor is 0 hour 0 minute 0 second + SP × N (where N is an integer), the sampling timing adjustment amount (second timing adjustment) (Quantity) can be obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Here, ΔT_smp means a sampling timing adjustment amount, and mod is a remainder operator.
 即ち、GPS同期型発振では、センサ端末120が、センサのサンプリング・タイミングをサンプリング・タイミング調整量だけ遅延させることによって、センサのサンプリング・タイミングと起振車100の発振開始タイミング(発振開始タイミング信号153の出力タイミング)とを一致させることができる。 That is, in the GPS synchronous oscillation, the sensor terminal 120 delays the sensor sampling timing by the sampling timing adjustment amount, so that the sensor sampling timing and the oscillation start timing of the exciter 100 (oscillation start timing signal 153). Output timing) can be matched.
 図6は、ケーブルレス型探鉱機システムの全体構成を示す構成図である。図6において、ケーブルレス型探鉱機システム10は、管理装置110と、複数のセンサ端末120-a、120-b(以下、センサ端末120と称することがある。)と、震源管理部(震源管理ユニット)130とを有し、管理装置110と各センサ端末120がネットワーク610を介して接続される。図6では管理装置110と震源管理部130および管理装置110と各センサ端末120を通信可能なように接続した状態を示しているが、探査オペレーション・フェーズではそれぞれの接続は切り離され、互いに通信できない構成にもなる。 FIG. 6 is a configuration diagram showing the overall configuration of the cableless exploration system. In FIG. 6, a cableless type exploration system 10 includes a management device 110, a plurality of sensor terminals 120-a and 120-b (hereinafter sometimes referred to as sensor terminals 120), and an epicenter management unit (seismic source management). Unit) 130, and the management apparatus 110 and each sensor terminal 120 are connected via a network 610. FIG. 6 shows a state in which the management device 110 and the epicenter management unit 130 and the management device 110 and each sensor terminal 120 are connected so as to be able to communicate with each other, but in the search operation phase, the respective connections are disconnected and cannot communicate with each other. It also becomes a configuration.
 管理装置110は、震源管理部130及び各センサ端末120とネットワーク610を介して情報の送受信を行って、震源管理部130及び各センサ端末120を管理するコンピュータ装置であって、処理部111と、記憶部112と、複数の通信部113、114を有し、各部が内部バス115を介して互いに接続される。 The management device 110 is a computer device that transmits and receives information to and from the epicenter management unit 130 and each sensor terminal 120 via the network 610, and manages the seismic center management unit 130 and each sensor terminal 120, and includes a processing unit 111, The storage unit 112 and a plurality of communication units 113 and 114 are connected to each other via an internal bus 115.
 処理部111は、管理装置110全体を統括制御するプロセッサで構成され、各センサ端末120や震源管理部130に対する設定処理などを実行する。記憶部112は内部ストレージとして構成され、この記憶部には、各種情報や各種プログラムが格納される。通信部113は、ネットワーク610を介して各センサ端末120と通信を行う通信インタフェースとして構成される。通信部114は、震源管理部130と通信を行う通信インタフェースとして構成される。 The processing unit 111 includes a processor that performs overall control of the entire management apparatus 110, and executes setting processing for each sensor terminal 120 and the epicenter management unit 130. The storage unit 112 is configured as an internal storage, and various information and various programs are stored in the storage unit. The communication unit 113 is configured as a communication interface that communicates with each sensor terminal 120 via the network 610. The communication unit 114 is configured as a communication interface that communicates with the epicenter management unit 130.
 各センサ端末120は、人工震源の発振に伴って地層を伝播する反射波を、サンプリング・タイミング周期に従って受信して振動データを生成するセンサを管理する端末であって、通信部121と、制御部122と、記憶部123と、GPS受信部124と、センサ部125と、アンテナ部126から構成される。 Each sensor terminal 120 is a terminal that manages a sensor that generates a vibration data by receiving a reflected wave propagating through the formation according to the oscillation of the artificial seismic source according to a sampling timing cycle, and includes a communication unit 121, a control unit 122, a storage unit 123, a GPS reception unit 124, a sensor unit 125, and an antenna unit 126.
 通信部121は、ネットワーク610を介して管理装置110と通信を行う通信インタフェースとして構成される。制御部122は、センタ端末120を統括制御するプロセッサで構成される。記憶部123は各種情報やプログラムを格納する内部ストレージとして構成される。センサ部125は、起振車100が発する振動が地中の地層で反射し、その反射波が伝播した場合、その反射波を受信するジオフォンを有し、反射波を受信した際に、振動データを生成して制御部122に転送する。GPS受信部124は、アンテナ部126がGPS電波を受信した際に、受信した電波を基に時刻信号を制御部122に出力する。この際、制御部122は、GPS受信部124の受信による受信電波から得られた時刻を基準に各種の処理を実行する。 The communication unit 121 is configured as a communication interface that communicates with the management apparatus 110 via the network 610. The control unit 122 includes a processor that performs overall control of the center terminal 120. The storage unit 123 is configured as an internal storage for storing various information and programs. The sensor unit 125 has a geophone that receives the reflected wave when the vibration generated by the vibration generator 100 is reflected by the underground layer and the reflected wave propagates, and vibration data is received when the reflected wave is received. Is generated and transferred to the control unit 122. When the antenna unit 126 receives GPS radio waves, the GPS reception unit 124 outputs a time signal to the control unit 122 based on the received radio waves. At this time, the control unit 122 executes various processes based on the time obtained from the received radio wave received by the GPS receiving unit 124.
 震源管理部130は、人工震源を制御するソース・コントローラ140と信号の送受信を行うコンピュータユニットであって、通信部131と、制御部132と、記憶部133と、GPS受信部134と、遅延調整部135と、トリガ発行部136と、計測部137と、タイミング受信部138と、アンテナ部139を備えて構成される。この際、震源管理部130は、送受信の対象となる信号のうちソース・コントローラ140に出力する発振トリガ信号152の出力タイミングと、発振トリガ信号152が出力された後、ソース・コントローラ140から出力される発振開始タイミング信号153の受信タイミングを含む情報を発振タイミング特性情報に属するとして管理する。制御部132には、表示部としてのタッチパネル160が接続される。なお、タッチパネル160を管理装置110の処理部111に接続することもできる。 The epicenter management unit 130 is a computer unit that transmits and receives signals to and from the source controller 140 that controls the artificial seismic source, and includes a communication unit 131, a control unit 132, a storage unit 133, a GPS reception unit 134, and a delay adjustment. A unit 135, a trigger issuing unit 136, a measuring unit 137, a timing receiving unit 138, and an antenna unit 139. At this time, the epicenter management unit 130 outputs the output timing of the oscillation trigger signal 152 to be output to the source controller 140 among the signals to be transmitted and received, and the output from the source controller 140 after the oscillation trigger signal 152 is output. Information including the reception timing of the oscillation start timing signal 153 is managed as belonging to the oscillation timing characteristic information. A touch panel 160 as a display unit is connected to the control unit 132. Note that the touch panel 160 may be connected to the processing unit 111 of the management apparatus 110.
 通信部131は、管理装置110の通信部114と通信を行う通信インタフェースとして構成される。制御部132は、震源管理部130全体を統括制御するプロセッサで構成され、記憶部133に記憶された情報やプログラムを基に各種の処理を実行する。記憶部133は、各種情報やプログラムを記憶する内部ストレージとして構成される。GPS受信部134は、アンテナ部139の受信によるGPS電波を受信した際に、受信した電波を基に時刻信号を遅延調整部135とタイミング受信部138に出力する。 The communication unit 131 is configured as a communication interface that communicates with the communication unit 114 of the management apparatus 110. The control unit 132 includes a processor that performs overall control of the entire epicenter management unit 130, and executes various processes based on information and programs stored in the storage unit 133. The storage unit 133 is configured as an internal storage that stores various types of information and programs. When receiving the GPS radio wave received by the antenna unit 139, the GPS receiving unit 134 outputs a time signal to the delay adjusting unit 135 and the timing receiving unit 138 based on the received radio wave.
 遅延調整部135は、発振ボタン150の操作に伴って発振要求信号151を受信した場合、トリガ信号152を設定時間遅延させるための処理を行い、処理結果をトリガ発行部136に出力する。即ち、遅延調整部135は、トリガ同期型発振の場合、数1式で算出されたトリガ出力・タイミング調整量だけ、発振トリガ信号152を出力するタイミングを遅らせる処理を行う。なお,遅延調整部135がトリガ出力・タイミング調整量の算出に必要なパラメータは制御部132から提供される。トリガ発行部136は、発振トリガ信号152をソース・コントローラ140に出力する。タイミング受信部138は、ソース・コントローラから出力される発振開始タイミング信号153を検出し、検出した時刻を発振開始時刻として記憶部133に記憶させる。計測部137は、計測時に、発振トリガ信号152と発振開始タイミング信号153を取り込み、両者の差から応答遅延時間D1、D2を計測し、計測結果を制御部132に転送する。この際、制御部132は、計測結果を記憶部133に記憶するとともに、タッチパネル160の表示画面上に表示し、さらに、計測結果や記憶部133に格納された情報等を通信部131を介して管理装置110に転送する。 When the delay adjustment unit 135 receives the oscillation request signal 151 in response to the operation of the oscillation button 150, the delay adjustment unit 135 performs processing for delaying the trigger signal 152 for a set time, and outputs the processing result to the trigger issuing unit 136. That is, in the case of trigger-synchronized oscillation, the delay adjustment unit 135 performs a process of delaying the timing at which the oscillation trigger signal 152 is output by the trigger output / timing adjustment amount calculated by Equation (1). Parameters necessary for the delay adjustment unit 135 to calculate the trigger output / timing adjustment amount are provided from the control unit 132. The trigger issuing unit 136 outputs the oscillation trigger signal 152 to the source controller 140. The timing reception unit 138 detects the oscillation start timing signal 153 output from the source controller, and stores the detected time in the storage unit 133 as the oscillation start time. The measurement unit 137 takes in the oscillation trigger signal 152 and the oscillation start timing signal 153 at the time of measurement, measures response delay times D1 and D2 from the difference therebetween, and transfers the measurement results to the control unit 132. At this time, the control unit 132 stores the measurement result in the storage unit 133 and displays it on the display screen of the touch panel 160, and further displays the measurement result and information stored in the storage unit 133 via the communication unit 131. Transfer to the management apparatus 110.
 図7Aは、管理装置における記憶部の構成図である。図7Aにおいて、管理装置110の記憶部112には、発振タイミング特性テーブル情報701と、サンプリング周期設定手段702と、発振特性判定手段703と、タイミング調整量算出手段704と、サンプリング・タイミング設定手段705と、トリガ出力・タイミング設定手段706と、発振特性判定閾値情報707と、最大サンプリング周期情報708が格納される。 FIG. 7A is a configuration diagram of a storage unit in the management apparatus. In FIG. 7A, the storage unit 112 of the management apparatus 110 stores oscillation timing characteristic table information 701, sampling period setting means 702, oscillation characteristic determination means 703, timing adjustment amount calculation means 704, and sampling timing setting means 705. Trigger output / timing setting means 706, oscillation characteristic determination threshold information 707, and maximum sampling period information 708 are stored.
 発振タイミング特性テーブル情報701は、震源識別名称、モード、代表応答遅延時間、代表発振開始時刻から構成される(図7B参照)。サンプリング周期設定手段702は、センサ端末120の各センサにサンプリング周期を設定するためのプログラムである。発振特性判定手段703は、計測部137の計測結果を基に起振車100の発振タイミング特性がGPS同期型発振かトリガ同期型発振かを判定するためのプログラムである。タイミング調整量算出手段704は、数2式に従ってセンサのサンプリング・タイミング調整量を算出するためのプログラムである。サンプリング・タイミング設定手段705はタイミング調整量算出手段704の算出結果(数2式の算出結果)に従って各センサにサンプリング・タイミングを設定するためのプログラムである。トリガ出力・タイミング設定手段706は、遅延調整部135がトリガ出力・タイミング調整量の算出に必要なパラメータ(即ち,代表応答遅延時間情報901と最大サンプリング周期情報902)を震源管理部130の記憶部133に設定するためのプログラムである。最大サンプリング周期情報708はセンサへ設定可能な最大サンプリング周期である。発振特性判定閾値情報707は、発振タイミング特性判定手段703が起振車100の発振タイミング特性を判定する際に用いる閾値Thに関する情報である。この情報としては、例えば50マイクロ秒が用いられる。 The oscillation timing characteristic table information 701 is composed of a hypocenter identification name, a mode, a representative response delay time, and a representative oscillation start time (see FIG. 7B). The sampling period setting unit 702 is a program for setting a sampling period for each sensor of the sensor terminal 120. The oscillation characteristic determination unit 703 is a program for determining whether the oscillation timing characteristic of the exciter 100 is a GPS synchronous oscillation or a trigger synchronous oscillation based on the measurement result of the measurement unit 137. The timing adjustment amount calculation means 704 is a program for calculating the sampling timing adjustment amount of the sensor according to the equation (2). The sampling timing setting unit 705 is a program for setting the sampling timing for each sensor according to the calculation result of the timing adjustment amount calculation unit 704 (the calculation result of Formula 2). The trigger output / timing setting means 706 stores parameters (that is, representative response delay time information 901 and maximum sampling period information 902) necessary for the delay adjustment unit 135 to calculate the trigger output / timing adjustment amount in the storage unit of the epicenter management unit 130. This is a program for setting to 133. The maximum sampling period information 708 is a maximum sampling period that can be set in the sensor. The oscillation characteristic determination threshold information 707 is information on the threshold Th used when the oscillation timing characteristic determination unit 703 determines the oscillation timing characteristic of the exciter 100. For example, 50 microseconds is used as this information.
 この際、管理装置110の処理部111は、記憶部112に記憶された情報(震源管理部の管理による計測結果情報905)を基に人工震源の発振特性を判定し、この判定結果に従って、発振タイミング特性テーブル情報701へ発振特性に関する情報を追加する。 At this time, the processing unit 111 of the management device 110 determines the oscillation characteristics of the artificial seismic source based on the information stored in the storage unit 112 (measurement result information 905 managed by the epicenter management unit), and the oscillation is performed according to the determination result. Information related to oscillation characteristics is added to the timing characteristic table information 701.
 図7Bは、発振タイミング特性テーブル情報の構成図である。発振タイミング特性テーブル情報はユーザが所有する1つ以上の人工震源の発振タイミング特性を管理するテーブルである。図7Bでは3種類の人工震源(すなわち、Source1、Source2、Source3)の発振タイミング特性を管理している例を示している。図7Bにおいて、発振タイミング特性テーブル情報701は、震源識別名称701Aと、モード701Bと、代表応答遅延時間701Cと、代表発振開始時刻701Dから構成される。震源識別名称701Aには、人工震源の名称として、例えば「Source1」の情報が格納される。モード701Bには、人工震源の発振特性がトリガ同期型発振の場合、「Trigger」の情報が格納される。なお、起振車100の人工震源の発振特性が、GPS同期型発振である場合には、「GPS」の情報が格納される。代表応答遅延時間701C(ここではDと表現する)には、トリガ同期型発振の場合、計測部137で計測された応答遅延時間D1に相当する情報として、「Delay1」の情報が格納される。代表発振開始時刻701D(ここではTと表現する)には、トリガ同期型発振の場合、発振開始時刻の代表を示す値であって、T=0を示す情報である「0」が格納される。なお、GPS同期型発振の場合、代表応答遅延時間701Cには「0」が格納され、代表発振開始時刻701Dには、計測時にタイミング受信部138が発振開始タイミング信号を受信した時刻T2に相当する情報として、「Time2」が格納される。 FIG. 7B is a configuration diagram of oscillation timing characteristic table information. The oscillation timing characteristic table information is a table for managing the oscillation timing characteristics of one or more artificial seismic sources owned by the user. FIG. 7B shows an example in which the oscillation timing characteristics of three types of artificial seismic sources (namely, Source1, Source2, and Source3) are managed. In FIG. 7B, the oscillation timing characteristic table information 701 includes a hypocenter identification name 701A, a mode 701B, a representative response delay time 701C, and a representative oscillation start time 701D. In the hypocenter identification name 701A, for example, information of “Source1” is stored as the name of the artificial seismic center. In the mode 701B, information of “Trigger” is stored when the oscillation characteristic of the artificial seismic source is the trigger synchronous oscillation. If the oscillation characteristic of the artificial seismic source of the shaker 100 is GPS synchronous oscillation, “GPS” information is stored. In the representative response delay time 701C (represented as D here), in the case of trigger-synchronized oscillation, information “Delay1” is stored as information corresponding to the response delay time D1 measured by the measurement unit 137. In the representative oscillation start time 701D (represented as T here), in the case of trigger-synchronized oscillation, a value indicating the representative oscillation start time and information “0” indicating T = 0 is stored. . In the case of the GPS synchronous oscillation, “0” is stored in the representative response delay time 701C, and the representative oscillation start time 701D corresponds to the time T2 when the timing receiving unit 138 received the oscillation start timing signal at the time of measurement. As the information, “Time 2” is stored.
 図8は、センサ端末における記憶部の情報の構成図である。図8において、センサ端末120の記憶部123には、サンプリング周期情報801と、サンプリング・タイミング調整量情報802と、サンプリング・タイミング調整手段803と、サンプリング手段804が格納される。 FIG. 8 is a configuration diagram of information in the storage unit in the sensor terminal. In FIG. 8, sampling period information 801, sampling timing adjustment amount information 802, sampling timing adjustment means 803, and sampling means 804 are stored in the storage unit 123 of the sensor terminal 120.
 サンプリング周期情報801は、センサ端末120の各センサに設定されるサンプリング周期に関する情報であって、例えば、2ミリ秒などの情報である。サンプリング・タイミング調整量情報802は、センサ端末120の各センサに設定されるサンプリング・タイミングを調整するための情報であって、サンプリング・タイミング調整量算出手段704によって算出された情報である。サンプリング・タイミング調整手段803は、センサ端末120の各センサのサンプリング・タイミングを、サンプリング・タイミング調整量算出手段704の算出結果に従って調整するためのプログラムである。サンプリング手段804は、センサ端末120の各センサが振動データのサンプリングを行うためのプログラムである。 Sampling cycle information 801 is information related to the sampling cycle set in each sensor of the sensor terminal 120, and is information such as 2 milliseconds, for example. The sampling timing adjustment amount information 802 is information for adjusting the sampling timing set for each sensor of the sensor terminal 120 and is information calculated by the sampling timing adjustment amount calculation means 704. The sampling timing adjustment unit 803 is a program for adjusting the sampling timing of each sensor of the sensor terminal 120 according to the calculation result of the sampling timing adjustment amount calculation unit 704. The sampling means 804 is a program for each sensor of the sensor terminal 120 to sample vibration data.
 図9は、震源管理部における記憶部の情報の構成図である。図9において、震源管理部130の記憶部133には、代表応答遅延時間情報901と、最大サンプリング周期情報902と、基本サンプリング・タイミング情報903と、計測位相調整量情報904と、計測結果情報905と、発振開始時刻情報906と、タイミング・エラー検出手段907と、タイミング・エラーログ情報908と、発振タイミング特性情報909と、震源識別名称情報910と、代表発振開始時刻情報911が格納される。 FIG. 9 is a configuration diagram of information in the storage unit in the epicenter management unit. 9, the storage unit 133 of the epicenter management unit 130 stores representative response delay time information 901, maximum sampling period information 902, basic sampling timing information 903, measurement phase adjustment amount information 904, and measurement result information 905. Oscillation start time information 906, timing error detection means 907, timing error log information 908, oscillation timing characteristic information 909, hypocenter identification name information 910, and representative oscillation start time information 911 are stored.
 代表応答遅延時間情報901は、数1式に使用されるD1の値であり、発振タイミング特性テーブル情報701にある代表応答遅延時間701Cのうち、選択された人工震源の代表応答遅延時間を示す情報である。例えば、Source1が選択された場合はDelay1の情報である。最大サンプリング周期情報902は、センサ端末120の各センサに設定されるサンプリング周期であって、設定可能な最大周期を示す情報、例えば、8ミリ秒である。基本サンプリング・タイミング情報903は、GPSが提供する時刻で、センサのサンプリング・タイミングが0時0分0秒+SP×N(ただし、SPはサンプリング周期、Nは整数)である場合、サンプリング・タイミング調整量(数2式)=0の時のサンプリング・タイミングを示す情報である。 The representative response delay time information 901 is a value of D1 used in Equation 1, and is information indicating the representative response delay time of the selected artificial seismic source among the representative response delay times 701C in the oscillation timing characteristic table information 701. It is. For example, when Source1 is selected, the information is Delay1. The maximum sampling period information 902 is a sampling period set for each sensor of the sensor terminal 120 and is information indicating the maximum period that can be set, for example, 8 milliseconds. The basic sampling timing information 903 is the time provided by GPS, and when the sensor sampling timing is 0: 0: 0 + SP × N (where SP is the sampling period and N is an integer), the sampling timing adjustment This is information indicating the sampling timing when the quantity (Equation 2) = 0.
 計測位相調整量情報904は、位相調整処理で用いる値であって、例えば1ミリ秒を示す情報である。計測結果情報905は、計測部137の計測結果を示す情報である。発振開始時刻情報906は、タイミング受信部138が受信した発振開始タイミング信号153の受信時刻に相当する発振開始時刻を示す情報である。タイミング・エラー検出手段907は、オペレーション・フェーズ(オペレーション時)において、基準タイミングと発振トリガ信号152の発生タイミングとの差などを検出するためのプログラムである。タイミング・エラーログ情報908は、タイミング・エラー検出手段907の検出結果を示す情報である。発振タイミング特性情報909は、人工震源の発振特性がトリガ型発振かGPS型発振かを示す情報である。震源識別名称情報910は、人工震源の名称を識別するための情報である。代表発振開始時刻情報911は、数2式に使用されるT2の値であり、発振タイミング特性テーブル情報701にある代表発振開始時刻701Dのうち、選択された人工震源の代表発振開始時刻を示す情報である。 The measurement phase adjustment amount information 904 is a value used in the phase adjustment process, and is information indicating, for example, 1 millisecond. The measurement result information 905 is information indicating the measurement result of the measurement unit 137. The oscillation start time information 906 is information indicating the oscillation start time corresponding to the reception time of the oscillation start timing signal 153 received by the timing receiver 138. The timing error detection means 907 is a program for detecting a difference between the reference timing and the generation timing of the oscillation trigger signal 152 in the operation phase (operation time). The timing / error log information 908 is information indicating the detection result of the timing / error detecting means 907. The oscillation timing characteristic information 909 is information indicating whether the oscillation characteristic of the artificial seismic source is a trigger type oscillation or a GPS type oscillation. The epicenter identification name information 910 is information for identifying the name of the artificial seismic center. The representative oscillation start time information 911 is a value of T2 used in Equation 2, and is information indicating the representative oscillation start time of the selected artificial seismic source among the representative oscillation start times 701D in the oscillation timing characteristic table information 701. It is.
 図10は、ケーブルレス型探鉱機システムの全体の処理を説明するためのフローチャートである。図10において、ケーブルレス型探鉱機システム10における処理は3つのフェーズから構成される。まず、人工震源の特性判定フェーズでは、震源管理部130で人工震源の応答時刻と応答遅延時間(これらを第1のタイミング特性情報とも呼ぶ)を計測し、その計測結果に基づいて、震源管理部130又は管理装置110でトリガ同期型発振かGPS同期型発振かを判定し、この判定結果を基に、タイミング調整量(第1のタイミング調整量又は第2のタイミング調整量)を算出するのに必要な情報を人工震源の識別名称とともに、記憶部112の発振タイミング特性テーブル情報701に記録する(S11)。 FIG. 10 is a flowchart for explaining the entire processing of the cableless type exploration system. In FIG. 10, the process in the cableless type exploration system 10 is composed of three phases. First, in the characteristic determination phase of the artificial earthquake source, the earthquake source management unit 130 measures the response time and response delay time of the artificial earthquake source (these are also referred to as first timing characteristic information), and based on the measurement result, the earthquake source management unit 130 or the management device 110 determines whether it is a trigger synchronous oscillation or a GPS synchronous oscillation, and calculates the timing adjustment amount (first timing adjustment amount or second timing adjustment amount) based on the determination result. Necessary information is recorded in the oscillation timing characteristic table information 701 of the storage unit 112 together with the identification name of the artificial seismic source (S11).
 機器設定フェーズでは、使用する人工震源の識別名称に基づいて、センサ端末120と震源管理部130がタイミング調整を行うために必要な情報を各機器へ設定する(S12)。 In the equipment setting phase, information necessary for the sensor terminal 120 and the epicenter management unit 130 to adjust the timing is set in each equipment based on the identification name of the artificial seismic source to be used (S12).
 探査オペレーション・フェーズでは、センサ端末120のセンサのサンプリング・タイミングと起振車100の発振開始タイミングとを一致させたデータの取得を行い、両者のタイミングが一致しない場合には、アラートを発する処理を行う(S13)。 In the exploration operation phase, data in which the sampling timing of the sensor of the sensor terminal 120 and the oscillation start timing of the shaker 100 are matched is acquired, and if the timings of the two do not match, processing for issuing an alert is performed. Perform (S13).
 図11は、人工震源の特性判定フェーズの処理を説明するためのフローチャートである。この処理は応答遅延時間の計測時の処理として実行される。 FIG. 11 is a flowchart for explaining the process of the characteristic determination phase of the artificial seismic source. This process is executed as a process when measuring the response delay time.
 図11において、オペレータは、ソース・コントローラ140へ震源管理部130を接続し(S21)、震源管理部130の動作モードを計測モードに設定する(S22)。この動作モードの設定方法は、機器上に取り付けられたスイッチであってもよいし、GUI(Graphical User Interface)上で設定してもよい。この計測モードでは、発振ボタンの操作によって発生する発振要求信号151は、計測のための計測開始信号として震源管理部130によって識別される。 In FIG. 11, the operator connects the epicenter management unit 130 to the source controller 140 (S21), and sets the operation mode of the epicenter management unit 130 to the measurement mode (S22). The operation mode setting method may be a switch mounted on the device, or may be set on a GUI (Graphical User Interface). In this measurement mode, the oscillation request signal 151 generated by operating the oscillation button is identified by the epicenter management unit 130 as a measurement start signal for measurement.
 この後、オペレータが発振ボタン150を操作すると、発振要求信号151が震源管理部130へ出力され、遅延調整部135は、発振要求信号151を計測開始信号として受信する(S23)。なお、発振ボタンは、機器に付属するボタンであってもよいし、GUI上に存在するボタンであってもよい。 Thereafter, when the operator operates the oscillation button 150, the oscillation request signal 151 is output to the epicenter management unit 130, and the delay adjustment unit 135 receives the oscillation request signal 151 as a measurement start signal (S23). Note that the oscillation button may be a button attached to the device or a button existing on the GUI.
 計測開始信号を受信した遅延調整部135は、計測開始信号を受信した受信時刻をGPS受信部134から時刻T1として取得し(S24)、取得した時刻T1を記憶し、ただちにトリガ発行部136へトリガ発行としてトリガ発行信号を出力する(S25)。トリガ発行信号を受信したトリガ発行部136は、発振トリガ信号152をソース・コントローラ140へ出力する。 The delay adjustment unit 135 that has received the measurement start signal acquires the reception time at which the measurement start signal was received as the time T1 from the GPS reception unit 134 (S24), stores the acquired time T1, and immediately triggers to the trigger issuing unit 136. A trigger issue signal is output as an issue (S25). The trigger issuing unit 136 that has received the trigger issue signal outputs the oscillation trigger signal 152 to the source controller 140.
 その後、タイミング受信部138は、ソース・コントローラ140からの応答信号として、発振開始タイミング信号153を受信し、応答検出した場合(S26)、その検出時刻を時刻T2としてGPS受信部134から取得して記憶する(S27)。 After that, the timing receiver 138 receives the oscillation start timing signal 153 as a response signal from the source controller 140, and when a response is detected (S26), acquires the detection time from the GPS receiver 134 as time T2. Store (S27).
 この後、計測部137は、トリガ発行部136とタイミング受信部138に記憶された情報を基に計測1回目の応答遅延時間D1を、時刻T2と時刻T1を用いて遅延D1として算出する(S28)。ここで、応答遅延時間D1と時刻T2を含む情報を第1のタイミング特性情報と呼ぶ。 Thereafter, the measuring unit 137 calculates the first response delay time D1 as the delay D1 using the time T2 and the time T1 based on the information stored in the trigger issuing unit 136 and the timing receiving unit 138 (S28). ). Here, information including the response delay time D1 and time T2 is referred to as first timing characteristic information.
 次に、制御部132は、記憶部133に記憶された計測位相調整量情報904と時刻T1を基に位相調整処理を実行し、処理結果を遅延調整部135へ出力する(S29)。この際、遅延調整部135は、計測位相調整量情報904と時刻T1を基に、トリガ発行部136に対して、次のトリガ発行信号を出力する出力時刻を決定する。この出力時刻は、Tout=時刻T1+2ミリ秒×N+(計測位相調整量情報904)で表される。Nは整数である。このとき、計測位相調整量情報904としては、例えば1ミリ秒が用いられる。また遅延調整部135は、出力時刻Toutで、その時刻をGPS受信部134から、時刻T3として取得するとともに記憶し(S30)、トリガ発行としてトリガ発行信号をトリガ発行部136へ出力する(S31)。この後、トリガ発行部136は、発振トリガ信号152をソース・コントローラ140へ出力する。 Next, the control unit 132 executes phase adjustment processing based on the measured phase adjustment amount information 904 and time T1 stored in the storage unit 133, and outputs the processing result to the delay adjustment unit 135 (S29). At this time, the delay adjustment unit 135 determines an output time for outputting the next trigger issue signal to the trigger issue unit 136 based on the measurement phase adjustment amount information 904 and the time T1. This output time is represented by Tout = time T1 + 2 milliseconds × N + (measurement phase adjustment amount information 904). N is an integer. At this time, for example, 1 millisecond is used as the measurement phase adjustment amount information 904. The delay adjusting unit 135 obtains and stores the time as the time T3 from the GPS receiving unit 134 at the output time Tout (S30), and outputs a trigger issue signal to the trigger issue unit 136 as a trigger issue (S31). . Thereafter, the trigger issuing unit 136 outputs the oscillation trigger signal 152 to the source controller 140.
 この計測位相調整量情報904を用いた位相調整処理は、1回目の計測と2回目の計測との間で、GPS同期型発振の人工震源を、トリガ同期型発振の人工震源と誤って判定することを避けるために必要な処理である。GPS同期型発振の場合、2回目の発振トリガ信号152のタイミングの組み合わせによっては、偶然的に、応答遅延時間D1とD2が同じ値になることがあり得る。これは、1回目と2回目の発振トリガ信号152の間隔が、人工震源が発振開始タイミング信号を出力可能な周期の整数倍になった場合に発生する。GPS同期型発振が同期するセンサのサンプリング周期は2ミリ秒が一般的であるため、少なくとも、1回目と2回目の発振トリガ信号152の間隔が、2ミリ秒の整数倍にならないようにすることで、誤った判定を回避できる。この際、震源管理部130では、2回以上の計測処理のうち2回目以降の計測処理における発振トリガ信号152の出力タイミングを、1回目の計測処理における発振トリガ信号152の出力タイミングと2回目の計測処理における発振トリガ信号152の出力タイミングとの間隔が、センサに対するサンプリング・タイミング周期の整数倍とは異なるタイミングとなるように調整する。即ち、1ミリ秒程度の調整時間が好ましく、計測位相調整量情報904は、1ミリ秒程度の値が好ましい。 In the phase adjustment process using the measurement phase adjustment amount information 904, the GPS-synchronized oscillation artificial source is erroneously determined as the trigger-synchronized oscillation artificial source between the first measurement and the second measurement. This is necessary to avoid this. In the case of GPS synchronous oscillation, depending on the combination of timings of the second oscillation trigger signal 152, the response delay times D1 and D2 may happen to be the same value. This occurs when the interval between the first and second oscillation trigger signals 152 is an integral multiple of the period at which the artificial seismic source can output the oscillation start timing signal. Since the sampling period of a sensor synchronized with GPS-synchronous oscillation is generally 2 milliseconds, at least the interval between the first and second oscillation trigger signals 152 should not be an integer multiple of 2 milliseconds. Thus, erroneous determination can be avoided. At this time, the epicenter management unit 130 determines the output timing of the oscillation trigger signal 152 in the second and subsequent measurement processes among the two or more measurement processes as the output timing of the oscillation trigger signal 152 in the first measurement process. Adjustment is made so that the interval from the output timing of the oscillation trigger signal 152 in the measurement process is different from an integer multiple of the sampling timing period for the sensor. That is, an adjustment time of about 1 millisecond is preferable, and the measurement phase adjustment amount information 904 is preferably a value of about 1 millisecond.
 ステップS31の後、タイミング受信部138は、ソース・コントローラ140からの応答信号として、発振開始タイミング信号153を検出(応答検出)した場合(S32)、その検出時刻をGPS受信部134から時刻T4として取得し、取得した時刻T4を記憶する(S33)。 After step S31, when the timing reception unit 138 detects (response detection) the oscillation start timing signal 153 as a response signal from the source controller 140 (S32), the detection time is set as the time T4 from the GPS reception unit 134. Acquire and store the acquired time T4 (S33).
 次に、計測部137は、計測2回目の応答遅延時間D2を、時刻T4と時刻T3を用いて遅延D2として算出する(S34)。この際、計測部137は、制御部132に、1回目と2回目の計測結果を出力し、制御部132は、記憶部133に各計測結果を記憶する。1回目の計測結果と2回目の計測結果はそれぞれ計測結果情報905として記憶部133に記憶される。また、タイミング受信部138が応答検出した時刻T2の値も発振開始時刻情報906として記憶される。その後、それら記憶された情報は制御部132によって通信部131を介して管理装置110の記憶部112に転送される。この転送方法は、Wifiのような無線通信でも、ETHERのような有線通信でも、USB(Universal Serial Bus)メモリ経由でもよい。 Next, the measurement unit 137 calculates the response delay time D2 for the second measurement as the delay D2 using the time T4 and the time T3 (S34). At this time, the measurement unit 137 outputs the first and second measurement results to the control unit 132, and the control unit 132 stores each measurement result in the storage unit 133. The first measurement result and the second measurement result are stored in the storage unit 133 as measurement result information 905, respectively. Further, the value of the time T2 detected by the timing receiver 138 is also stored as the oscillation start time information 906. Thereafter, the stored information is transferred by the control unit 132 to the storage unit 112 of the management apparatus 110 via the communication unit 131. This transfer method may be wireless communication such as WiFi, wired communication such as ETHER, or via a USB (Universal Serial Bus) memory.
 次に、管理装置110の処理部111は、記憶部112に格納された発振特性判定手段703を起動し、記憶部112に格納された計測結果情報905を基に、発振特性が、GPS同期型発振かトリガ同期型発振かを判定する(S35)。具体的には、処理部111は、|D1-D2|が閾値Thよりも小さいか否かを判定し(S35)、このステップS35で肯定(Yes)の判定結果を得た場合、発振特性がトリガ同期型発振であるとして、発振タイミング特性テーブル情報701のモード701Bに格納すべき情報をmode=Triggerとして生成し、代表応答遅延時間701Cに格納すべき情報を、D=D1(Delay1)として生成し、代表発振開始時刻701Dに格納すべき情報を、T=0として生成する(S36)。ここで、代表応答遅延時間と代表発振開始時刻を含む情報を第2のタイミング特性情報と呼ぶ。 Next, the processing unit 111 of the management apparatus 110 activates the oscillation characteristic determination unit 703 stored in the storage unit 112, and the oscillation characteristic is determined based on the measurement result information 905 stored in the storage unit 112. It is determined whether the oscillation or the trigger synchronous oscillation (S35). Specifically, the processing unit 111 determines whether or not | D1-D2 | is smaller than the threshold value Th (S35). If the determination result in step S35 is affirmative (Yes), the oscillation characteristic is Information that should be stored in mode 701B of the oscillation timing characteristic table information 701 is generated as mode = Trigger, and information that should be stored in the representative response delay time 701C is generated as D = D1 (Delay 1), assuming that the oscillation is the trigger-synchronized oscillation Then, information to be stored at the representative oscillation start time 701D is generated as T = 0 (S36). Here, information including the representative response delay time and the representative oscillation start time is referred to as second timing characteristic information.
 一方、ステップS35で否定(No)の判定結果を得た場合、処理部111は、発振特性がGPS同期型発振であるとして、発振タイミング特性テーブル情報701のモード701Bに格納すべき情報としてmode=GPSを生成し、代表応答遅延時間701Cに格納すべき情報として、D=0を生成し、代表発振開始時刻701Dに格納すべき情報として、T=T2(Time2)を生成する(S37)。 On the other hand, when a negative (No) determination result is obtained in step S <b> 35, the processing unit 111 assumes that the oscillation characteristic is GPS synchronous oscillation, and mode = information as information to be stored in the mode 701 </ b> B of the oscillation timing characteristic table information 701. A GPS is generated, D = 0 is generated as information to be stored in the representative response delay time 701C, and T = T2 (Time 2) is generated as information to be stored in the representative oscillation start time 701D (S37).
 次に、処理部111は、ステップS36又はステップS37で生成された情報を記憶部112へ記録し(S38)、このルーチンでの処理を終了する。この際、処理部111は、ステップS38では、発振タイミング特性テーブル情報701の震源識別名称701Aに震源識別名称(Source name)を記録し、モード701Bには、GPS同期型発振かトリガ同期型発振かを示すモード情報(mode=「Trigger」又は「GPS」)を記録し、代表応答遅延時間701Cに、代表応答遅延時間として、D=D1又はD=0を記録し、代表発振開始時刻701Dに、代表発振開始時刻として、T=0又はT=T2を記録する。なお、ステップS35~S37までの処理は、震源管理部130の制御部132で行うこともできる。 Next, the processing unit 111 records the information generated in step S36 or step S37 in the storage unit 112 (S38), and ends the processing in this routine. At this time, in step S38, the processing unit 111 records the earthquake source identification name (Source name) in the earthquake source identification name 701A of the oscillation timing characteristic table information 701, and the mode 701B includes the GPS synchronous oscillation or the trigger synchronous oscillation. Mode information (mode = “Trigger” or “GPS”) is recorded, D = D1 or D = 0 is recorded as the representative response delay time 701C, and the representative oscillation start time 701D is recorded as the representative response delay time. T = 0 or T = T2 is recorded as the representative oscillation start time. Note that the processing from steps S35 to S37 can also be performed by the control unit 132 of the epicenter management unit 130.
 この際、震源管理部130では、計測時(計測モードの設定時)に、発振ボタン150の操作に伴って入力される発振要求信号151を受信した場合、送受信の対象となる信号のタイミングとして、ソース・コントローラ140に出力する発振トリガ信号152の出力タイミングと、その後、ソース・コントローラ140から出力される発振開始タイミング信号153の受信タイミングを計測する第1の処理と、発振トリガ信号152の出力タイミングと発振開始タイミング信号153の受信タイミングとの差から応答遅延時間を算出する第2の処理とを含む計測処理を少なくとも2回以上実行し、各実行結果を発振タイミング特性情報909に属する情報として記憶すると共に管理装置110に転送する。 At this time, the seismic center management unit 130 receives the oscillation request signal 151 input along with the operation of the oscillation button 150 at the time of measurement (when the measurement mode is set), as the timing of the signal to be transmitted and received, First processing for measuring the output timing of the oscillation trigger signal 152 output to the source controller 140, the reception timing of the oscillation start timing signal 153 output from the source controller 140, and the output timing of the oscillation trigger signal 152 And a second process for calculating the response delay time from the difference between the oscillation start timing signal 153 and the reception timing of the oscillation start timing signal 153 is executed at least twice, and each execution result is stored as information belonging to the oscillation timing characteristic information 909. And transfer to the management device 110.
 また、管理装置110の処理部111では、震源管理部130の計測処理で得られた2回以上の実行結果を含む計測結果情報905を基に、1回目の計測処理で算出された応答遅延時間と2回目の計測処理で算出された応答遅延時間が等しい関係にある場合、人工震源の発振特性をトリガ同期型発振であると判定し、1回目の計測処理で算出された応答遅延時間と2回目の計測処理で算出された応答遅延時間が異なる関係にある場合、人工震源の発振特性をGPS同期型発振であると判定することができる。 In addition, the processing unit 111 of the management apparatus 110 has a response delay time calculated in the first measurement process based on the measurement result information 905 including the execution results of two or more times obtained by the measurement process of the epicenter management unit 130. And the response delay time calculated in the second measurement process are equal to each other, it is determined that the oscillation characteristic of the artificial seismic source is a trigger-synchronized oscillation, and the response delay time calculated in the first measurement process is 2 When the response delay times calculated in the second measurement process are different, it is possible to determine that the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation.
 図12は、タッチパネルの表示例を説明するための構成図である。図12において、タッチパネル160は、震源管理部130の制御部132または管理装置110の処理部111に接続可能な表示装置(モニタ)又は表示部であって、タッチパネル130の表示画面には、震源管理部130の動作モードをオペレーションモードに切り替えるためのオペレーションタブ161と、震源管理部130の動作モードを計測モードに切り替えるための計測タブ162と、震源管理部130の動作モードを設定モードに切り替えるための設定タブ163と、震源管理部130の動作モードをデータ出力モードに切り替えるためのデータ出力タブ164が配置されるとともに、計測モードのオン・オフを切り替えるための計測モードボタン165と、震源管理部130に計測開始を指示するための計測開始ボタン166が配置され、震源識別名称(Source name)に隣接して、人工震源の震源識別名称を入力するための入力インタフェース167が配置され、さらに、これらの下側の表示領域には、震源管理部130の計測処理における処理結果を表示するための出力ウィンドウ168が配置される。 FIG. 12 is a configuration diagram for explaining a display example of the touch panel. In FIG. 12, a touch panel 160 is a display device (monitor) or a display unit that can be connected to the control unit 132 of the epicenter management unit 130 or the processing unit 111 of the management device 110. An operation tab 161 for switching the operation mode of the unit 130 to the operation mode, a measurement tab 162 for switching the operation mode of the epicenter management unit 130 to the measurement mode, and a mode for switching the operation mode of the epicenter management unit 130 to the setting mode A setting tab 163, a data output tab 164 for switching the operation mode of the epicenter management unit 130 to the data output mode are arranged, a measurement mode button 165 for switching on / off of the measurement mode, and the epicenter management unit 130 Measurement start button 16 for instructing the start of measurement Is arranged adjacent to the source identification name (Source name), and an input interface 167 for inputting the hypocenter identification name of the artificial seismic source is arranged. Further, in the lower display area, the epicenter management unit 130 is provided. An output window 168 for displaying a processing result in the measurement processing is arranged.
 オペレーションタブ161がクリックされた場合、オペレーションモードとして、探査オペレーション・フェーズの処理が実行され、計測タブ162がクリックされた場合、計測モードとして、人工震源の特性判定フェーズの処理が実行され、設定タブ163がクリックされた場合、機器設定フェーズの処理が実行される。また、データ出力タブ164がクリックされた場合、センサの受信データや計測結果を示すデータなどが出力される。計測モードボタン165は、発振特性を計測するときに操作されるボタンである。計測開始ボタン166は、発振特性の計測を開始するときに用いられるボタンである。入力インタフェース167には、人工震源の震源識別名称が入力される。出力ウィンドウ168には、計測部137の計測結果、例えば、計測1回目の計測結果と計測2回目の計測結果が表示されるとともに、モード(Mode)の判定結果、即ち、人工震源の発振特性が、GPS同期型発振かトリガ同期型発振かを示す情報が表示される。 When the operation tab 161 is clicked, the exploration operation phase process is executed as the operation mode. When the measurement tab 162 is clicked, the artificial seismic source characteristic determination phase process is executed as the measurement mode, and the setting tab is displayed. When 163 is clicked, the device setting phase processing is executed. In addition, when the data output tab 164 is clicked, sensor reception data, data indicating a measurement result, and the like are output. The measurement mode button 165 is a button operated when measuring the oscillation characteristics. The measurement start button 166 is a button used when starting measurement of oscillation characteristics. The input interface 167 receives the hypocenter identification name of the artificial seismic center. In the output window 168, the measurement result of the measurement unit 137, for example, the measurement result of the first measurement and the measurement result of the second measurement are displayed, and the determination result of the mode (Mode), that is, the oscillation characteristic of the artificial seismic source is displayed. Information indicating whether the GPS synchronous oscillation or the trigger synchronous oscillation is displayed.
 図13は、計測時の処理を説明するためのシーケンス図である。図13において、オペレータ170が発振ボタン150を操作すると、発振要求信号151が計測開始信号として震源管理部130に入力される。震源管理部130は、計測開始信号に応答して、発振トリガ信号152をソース・コントローラ140に出力する。その後、ソース・コントローラ140は、アクチュエータに制御信号を出力するとともに、発振開始タイミング信号153を震源管理部130に出力する。このとき、震源管理部130は、発振トリガ信号152と発振開始タイミング信号153を用いて応答遅延時間D1を算出するための遅延時間算出処理を実行する(S41)。 FIG. 13 is a sequence diagram for explaining processing at the time of measurement. In FIG. 13, when the operator 170 operates the oscillation button 150, an oscillation request signal 151 is input to the epicenter management unit 130 as a measurement start signal. The hypocenter management unit 130 outputs an oscillation trigger signal 152 to the source controller 140 in response to the measurement start signal. Thereafter, the source controller 140 outputs a control signal to the actuator and also outputs an oscillation start timing signal 153 to the epicenter management unit 130. At this time, the epicenter management unit 130 executes a delay time calculation process for calculating the response delay time D1 using the oscillation trigger signal 152 and the oscillation start timing signal 153 (S41).
 この後、震源管理部130は、発振トリガ信号152をソース・コントローラ140に出力し、その後、ソース・コントローラ140から出力される発振開始タイミング信号153を受信し、2回目の発振トリガ信号152と2回目の発振開始タイミング信号153を用いて応答遅延時間D2を算出するための遅延時間算出処理を実行する(S42)。 Thereafter, the epicenter management unit 130 outputs the oscillation trigger signal 152 to the source controller 140, and then receives the oscillation start timing signal 153 output from the source controller 140, and receives the second oscillation trigger signal 152 and 2. A delay time calculation process for calculating the response delay time D2 is executed using the first oscillation start timing signal 153 (S42).
 次に、震源管理部130は、各遅延時間算出処理の処理結果を計測結果として管理装置110に転送する。管理装置110は、計測結果を基に、人工震源の発振特性がトリガ同期型発振かGPS同期型発振かを判定するための発振タイミング特性判定処理を実行し(S43)、処理結果を記憶部112の発振タイミング特性テーブル情報701に登録するための登録処理を実行する(S44)。 Next, the epicenter management unit 130 transfers the processing result of each delay time calculation process to the management apparatus 110 as a measurement result. The management device 110 executes an oscillation timing characteristic determination process for determining whether the oscillation characteristic of the artificial seismic source is a trigger synchronization type oscillation or a GPS synchronization type oscillation based on the measurement result (S43), and the processing result is stored in the storage unit 112. The registration process for registering in the oscillation timing characteristic table information 701 is executed (S44).
 図14は、機器設定フェーズにおける設定時の処理を説明するためのフローチャートである。まず、オペレータ170は、使用する人工震源を選択し(S51)、センサ端末120に適用するサンプリング周期SPを選択する(S52)。この後、管理装置110は、人工震源の発振特性がGPS同期型発振である場合、数2式を用いてセンサのサンプリング・タイミング調整量を算出し(S53)、この算出結果とサンプリング周期SPを各センサ端末120に転送し、各センサに対する設定書き込み処理を実行する(S54)。 FIG. 14 is a flowchart for explaining processing at the time of setting in the device setting phase. First, the operator 170 selects an artificial seismic source to be used (S51), and selects a sampling period SP to be applied to the sensor terminal 120 (S52). Thereafter, when the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation, the management device 110 calculates the sensor sampling timing adjustment amount using Equation 2 (S53), and calculates the calculation result and the sampling period SP. The data is transferred to each sensor terminal 120, and setting write processing for each sensor is executed (S54).
 この後、管理装置110は、応答遅延特性情報を震源管理部130へ転送し、震源管理部130に設定するための処理を実行し(S55)、このルーチンでの処理を終了する。ここで、応答遅延特性情報とは、代表応答遅延時間(D)、代表発振開始時刻(T)、発振タイミング特性(mode)、震源識別名称(Source name)である。 Thereafter, the management device 110 transfers the response delay characteristic information to the epicenter management unit 130, executes processing for setting in the epicenter management unit 130 (S55), and ends the processing in this routine. Here, the response delay characteristic information includes a representative response delay time (D), a representative oscillation start time (T), an oscillation timing characteristic (mode), and a hypocenter identification name (Source name).
 図15は、機器設定フェーズにおける設定時の処理を説明するためのシーケンス図である。図15において、オペレータ170は、使用する人工震源とセンサ端末120に適応するサンプリング周期SPを選択する。この後、管理装置110は、人工震源の発振特性がGPS同期型発振である場合、数2式を用いて、センサのサンプリング・タイミング調整量を算出するための算出処理を実行し(S61)、パラメータ設定値として、サンプリング周期SPとサンプリング・タイミング調整量を各センサ端末120(120-a、120-b)に転送し、各センサに対する設定変更処理を実行する(S62、S63)。 FIG. 15 is a sequence diagram for explaining processing at the time of setting in the device setting phase. In FIG. 15, the operator 170 selects the artificial seismic source to be used and the sampling period SP that is suitable for the sensor terminal 120. Thereafter, when the oscillation characteristic of the artificial seismic source is the GPS synchronous oscillation, the management device 110 executes a calculation process for calculating the sampling timing adjustment amount of the sensor using Equation 2 (S61), The sampling period SP and the sampling timing adjustment amount are transferred to the sensor terminals 120 (120-a, 120-b) as parameter setting values, and setting change processing for each sensor is executed (S62, S63).
 この後、管理装置110は、応答遅延特性情報を震源管理部130へ転送し、応答遅延特性情報として、代表応答遅延時間情報(D)、代表発振開始時刻情報(T)、発振タイミング特性情報(mode)、震源識別名称情報(Source name)を震源管理部130の記憶部133に設定するための設定変更処理を実行する(S64)。 Thereafter, the management device 110 transfers the response delay characteristic information to the epicenter management unit 130, and representative response delay time information (D), representative oscillation start time information (T), and oscillation timing characteristic information ( mode), setting change processing for setting the epicenter identification name information (Source name) in the storage unit 133 of the epicenter management unit 130 is executed (S64).
 図16は、探査オペレーション・フェーズにおけるオペレーション時の処理を説明するためのフローチャートである。まず、オペレータ170が発振ボタン150を操作したことを条件に、震源管理部130の遅延調整部135は、発振要求信号151を受信し(S71)、受信した時刻をGPS受信部134からT0として取得し(S72)、取得した時刻T0を基に、数1式のトリガ出力・タイミング調整量を算出し(S73)、取得した時刻T0から、トリガ出力・タイミング調整量秒経過まで待機し(S74)、トリガ発行信号をトリガ発行部136へ出力する。トリガ発行部136は、トリガ発行信号に応答して、ソース・コントローラ140に対して発振トリガ信号152を出力する(S75)。 FIG. 16 is a flowchart for explaining processing at the time of operation in the search operation phase. First, on condition that the operator 170 has operated the oscillation button 150, the delay adjustment unit 135 of the epicenter management unit 130 receives the oscillation request signal 151 (S71), and acquires the received time as T0 from the GPS reception unit 134. Then, based on the acquired time T0, the trigger output / timing adjustment amount of Equation 1 is calculated (S73), and the trigger output / timing adjustment amount seconds from the acquired time T0 are waited for (S74). The trigger issue signal is output to the trigger issue unit 136. In response to the trigger issue signal, the trigger issue unit 136 outputs the oscillation trigger signal 152 to the source controller 140 (S75).
 その後、タイミング受信部138は、ソース・コントローラ140から発振開始タイミング信号153を受信し(S76)、受信した時刻をT2としてGPS受信部134から取得して記憶する。 Thereafter, the timing receiving unit 138 receives the oscillation start timing signal 153 from the source controller 140 (S76), and acquires and stores the received time as T2 from the GPS receiving unit 134.
 この後、制御部132は、記憶部133に記憶された情報(発振タイミング特性情報909)を基に、エラーチェック処理を実行し(S77)、この後、エラーチェック処理でエラーがあったか否かを判定する(S78)。 Thereafter, the control unit 132 executes an error check process based on the information (oscillation timing characteristic information 909) stored in the storage unit 133 (S77), and thereafter determines whether there is an error in the error check process. Determine (S78).
 ここで、人工震源の発振特性がトリガ同期型発振の場合、制御部132は、代表応答遅延時間D、今回の応答遅延時間D1、閾値Th(=50マイクロ秒)を用いて、|D-D1|の値が閾値Thよりも大きいならば、タイミング・エラー有りと判定する。これは、DとD1が一致しない場合、オペレータが機器設定フェーズで誤った機器設定を行った可能性があるためである。人工震源の発振特性がGPS同期型発振の場合、制御部132は、代表発振開始時刻T、今回の発振開始時刻T2、センサ端末120が提供可能な最大サンプリング周期SP_max、閾値Thを用いて、|T-T2| mod SP_maxの値が、閾値Thよりも大きいならば、タイミング・エラー有りと判定する。これは、|T-T2|がSP_maxの整数倍でない場合、探鉱機システムが提供する全てのサンプリング周期についいて人工震源の発振開始タイミングを一致させられることが保証できないためである。 Here, when the oscillation characteristic of the artificial seismic source is the trigger synchronous oscillation, the control unit 132 uses the representative response delay time D, the current response delay time D1, and the threshold Th (= 50 microseconds) to | D−D1 If the value of | is larger than the threshold value Th, it is determined that there is a timing error. This is because if D and D1 do not match, the operator may have set an incorrect device in the device setting phase. When the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation, the control unit 132 uses the representative oscillation start time T, the current oscillation start time T2, the maximum sampling period SP_max that can be provided by the sensor terminal 120, and the threshold Th. If the value of TT2 | mod SP_max is greater than the threshold value Th, it is determined that there is a timing error. This is because if | T−T2 | is not an integral multiple of SP_max, it cannot be guaranteed that the oscillation start timing of the artificial seismic source can be made to coincide for all the sampling periods provided by the explorer system.
 この後、制御部132は、ステップS78で肯定(Yes)の判定結果を得た場合、エラーログを記憶部133に書き込み(S79)、エラーログの内容をタッチパネル160の表示画面上にGUI表示として表示させる(S80)。この際、制御部132は、ステップS79では、D、D1、T、T2、mode、Source nameをタイミング・エラーログとして記憶部133に書き込む。 Thereafter, when the determination result of affirmative (Yes) is obtained in step S78, the control unit 132 writes the error log in the storage unit 133 (S79), and the content of the error log is displayed as a GUI display on the display screen of the touch panel 160. It is displayed (S80). At this time, in step S79, the control unit 132 writes D, D1, T, T2, mode, and source name in the storage unit 133 as a timing error log.
 次に、制御部132は、ステップS78で否定(No)の判定結果を得た場合、或いはステップS80の後の処理として、発振開始時刻を記憶部133に記録し(S81)、このルーチンでの処理を終了する。 Next, when a negative (No) determination result is obtained in step S78, or as a process after step S80, the control unit 132 records the oscillation start time in the storage unit 133 (S81). The process ends.
 この際、震源管理部130では、オペレーション時に、発振ボタン150の操作に伴って入力される発振要求信号151を受信した場合、設定された第1のタイミング調整量で発振トリガ信号152の出力タイミングを調整し、調整されたタイミングで発振トリガ信号152をソース・コントローラ140に出力すると共に、発振トリガ信号152の出力タイミングを記録し、その後、ソース・コントローラ140から出力される発振開始タイミング信号153を受信した場合、発振開始タイミング信号153を受信した受信タイミングを記録し、人工震源の発振特性がトリガ同期発振である場合、オペレーション時に記録された出力タイミングと受信タイミングとから今回の応答遅延時間を算出し、算出された今回の応答遅延時間と代表応答遅延時間901とを比較し、両者の差が閾値Thより大きい場合、タイミング・エラーありと判定すると共に、タイミング・エラーログを記録し、人工震源の発振特性がGPS同期型発振である場合、オペレーション時に記録された、発振開始タイミング信号153の受信タイミングを示す今回の発振開始時刻と代表発振開始時刻911とを比較し、両者の差が閾値Thより大きい場合、タイミング・エラーありと判定すると共に、タイミング・エラーログを記録する。 At this time, when the epicenter management unit 130 receives the oscillation request signal 151 input in response to the operation of the oscillation button 150 during the operation, the output timing of the oscillation trigger signal 152 is set with the set first timing adjustment amount. The oscillation trigger signal 152 is output to the source controller 140 at the adjusted timing, and the output timing of the oscillation trigger signal 152 is recorded, and then the oscillation start timing signal 153 output from the source controller 140 is received. In this case, the reception timing at which the oscillation start timing signal 153 is received is recorded, and when the oscillation characteristic of the artificial seismic source is the trigger synchronous oscillation, the current response delay time is calculated from the output timing and the reception timing recorded at the time of operation. , Calculated response delay time and representative When the response delay time 901 is compared, and the difference between the two is larger than the threshold Th, it is determined that there is a timing error, and a timing error log is recorded, and when the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation, The current oscillation start time, which is recorded at the time of operation and indicates the reception timing of the oscillation start timing signal 153, is compared with the representative oscillation start time 911. If the difference between the two is larger than the threshold Th, it is determined that there is a timing error. Record a timing error log.
 図17は、探査オペレーション・フェーズにおけるオペレーション時の処理を説明するためのシーケンス図である。図17において、オペレータ170が発振ボタン150を操作したことを条件に、震源管理部130は、発振要求信号151を受信し、受信した時刻をGPS受信部134からT0として取得する(S91)。 FIG. 17 is a sequence diagram for explaining processing at the time of operation in the search operation phase. In FIG. 17, on the condition that the operator 170 operates the oscillation button 150, the epicenter management unit 130 receives the oscillation request signal 151, and acquires the received time as T0 from the GPS reception unit 134 (S91).
 次に、震源管理部130は、取得した時刻T0を基に、トリガ出力・タイミング調整量を算出し(S92)、取得した時刻T0から、トリガ出力・タイミング調整量秒経過まで待機し(S93)、トリガ発行信号をトリガ発行部136へ出力する。震源管理部130のトリガ発行部136は、トリガ発行信号に応答して、ソース・コントローラ140に対して発振トリガ信号152を出力する。 Next, the epicenter management unit 130 calculates the trigger output / timing adjustment amount based on the acquired time T0 (S92), and waits for the trigger output / timing adjustment amount seconds from the acquired time T0 (S93). The trigger issue signal is output to the trigger issue unit 136. The trigger issuing unit 136 of the epicenter management unit 130 outputs an oscillation trigger signal 152 to the source controller 140 in response to the trigger issuing signal.
 その後、ソース・コントローラ140は、アクチュエータを駆動すると共に、発振開始タイミング信号153を震源管理部130に出力する。 Thereafter, the source controller 140 drives the actuator and outputs an oscillation start timing signal 153 to the epicenter management unit 130.
 この後、震源管理部130は、発振開始タイミング信号153を受信した時刻をGPS受信部134から取得し、取得した時刻と記憶部133に記憶された情報を基に、エラーチェック処理を実行する(S94)。この際、震源管理部130は、人工震源の発振特性がGPS同期型発振の場合、|T-T2| mod SP_max(SP_maxは最大サンプリング周期)が、閾値Th(=50マイクロ秒)よりも小さいか否かを判定し、トリガ同期型発振の場合には、|D-D1|が、閾値Thよりも小さいか否かを判定し、T2がセンサの最大サンプリング周期のサンプリング・タイミングと同期しているかをチェックする。 Thereafter, the epicenter management unit 130 acquires the time at which the oscillation start timing signal 153 was received from the GPS reception unit 134, and executes an error check process based on the acquired time and information stored in the storage unit 133 ( S94). At this time, the epicenter management unit 130 determines that | T−T2 | Whether or not | D−D1 | is smaller than a threshold value Th, and is T2 synchronized with the sampling timing of the maximum sampling period of the sensor? Check.
 この後、震源管理部130は、エラーチェック処理でエラーがあった場合、D、D1、mode、Source nameをタイミング・エラー情報(タイミング・エラーログ)として、タイミング・エラーログの内容を、オペレータ170が管理するタッチパネル160の表示画面上に表示し、発振開始時刻を記憶部133に記録する(S95)。なお、オペレータ170にはポップアップなどにより、GUIを通してタイミング・エラー発生を通知することができる。 Thereafter, if there is an error in the error check process, the epicenter management unit 130 uses D, D1, mode, and Source name as timing error information (timing error log), and stores the contents of the timing error log as an operator 170. Is displayed on the display screen of the touch panel 160 managed by the computer, and the oscillation start time is recorded in the storage unit 133 (S95). Note that the operator 170 can be notified of the occurrence of a timing error through the GUI by a pop-up or the like.
 本実施例によれば、人工震源の発振特性によらず、人工震源の発振開始タイミングとセンサのサンプリング・タイミングを一致させることができ、結果として、品質の高い振動データ(地震波データ)を取得することができる。即ち、任意の起振車に対し、センサのサンプリング・タイミングと人工震源の発振開始タイミングを一致させることができ、高い信号品質と柔軟性を実現できる。また、ユーザは、既にユーザが所有している人工震源を活用して、品質の高い地震波データを取得できる。 According to the present embodiment, the oscillation start timing of the artificial seismic source and the sampling timing of the sensor can be matched regardless of the oscillation characteristics of the artificial seismic source, and as a result, high-quality vibration data (seismic wave data) is acquired. be able to. That is, it is possible to match the sampling timing of the sensor and the oscillation start timing of the artificial seismic source for an arbitrary shaker, and high signal quality and flexibility can be realized. Also, the user can acquire high-quality seismic wave data by utilizing the artificial seismic source already owned by the user.
 また、本実施例によれば、GPSを搭載しない人工震源を用いても発振開始タイミングとサンプリング・タイミングを一致させることができるため、任意のケーブル型探鉱機システムと併用しても、品質の高い地震波データを取得できる。例えば、草原と市街地を探査エリアに含む場合、草原エリアにはケーブル型システムのセンサを設置し、市街地エリアにはケーブルレス型システムのセンサ端末を設置するなど、ユーザは、環境状況に適するようにセンサを設置することが可能となり、高い地震波データ品質を維持しつつ、効率のよい資源探査を行うことができる。 In addition, according to the present embodiment, the oscillation start timing and the sampling timing can be matched even if an artificial seismic source not equipped with GPS is used. Therefore, even when used in combination with any cable type exploration system, the quality is high. Seismic wave data can be acquired. For example, when grassland and urban areas are included in the exploration area, the user should be suitable for environmental conditions, such as installing cable type system sensors in the grassland area and installing cableless system sensor terminals in the urban area. Sensors can be installed, and efficient resource exploration can be performed while maintaining high seismic wave data quality.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に記録して置くことができる。 Also, each of the above-described configurations, functions, etc. may be realized by hardware by designing a part or all of them, for example, by an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function must be recorded on a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD. Can do.
 10 ケーブルレス型探鉱機システム、100 起振車、110 管理装置、111 処理部、112 記憶部、113 通信部、114 通信部、120 センサ端末、121 通信部、122 制御部、123 記憶部、124 GPS受信部、125 センサ部、126 アンテナ部、130 震源管理部、131 通信部、132 制御部、133 記憶部、134 GPS受信部、135 遅延調整部、136 トリガ発行部、137 計測部、138 タイミング受信部、139 アンテナ部、140 ソース・コントローラ。 10 Cableless type exploration system, 100 shaker, 110 management device, 111 processing unit, 112 storage unit, 113 communication unit, 114 communication unit, 120 sensor terminal, 121 communication unit, 122 control unit, 123 storage unit, 124 GPS receiver unit, 125 sensor unit, 126 antenna unit, 130 epicenter management unit, 131 communication unit, 132 control unit, 133 storage unit, 134 GPS reception unit, 135 delay adjustment unit, 136 trigger issue unit, 137 measurement unit, 138 timing Receiver, 139 antenna, 140 source controller.

Claims (15)

  1.  人工震源を制御するソース・コントローラと信号の送受信を行う震源管理部と、
     前記人工震源の発振に伴って地層を伝播する反射波を、サンプリング・タイミング周期に従って受信して振動データを生成するセンサを管理する複数のセンサ端末と、
     前記震源管理部及び前記各センサ端末とネットワークを介して情報の送受信を行って、前記震源管理部及び前記各センサ端末を管理する管理装置とを有し、
     前記震源管理部は、
     前記送受信の対象となる信号のうち前記ソース・コントローラに出力する発振トリガ信号の出力タイミングと、前記発振トリガ信号が出力された後、前記ソース・コントローラから出力される発振開始タイミング信号の受信タイミングを含む第1のタイミング特性情報を取得するための計測手段と、
     前記管理装置から設定される第2のタイミング特性情報に基づいて前記発振トリガ信号の出力タイミングを調整するための第1のタイミング調整量を算出する手段を有する遅延調整部を有し、
     前記管理装置は、
     前記震源管理部の前記計測手段によって得られた前記第1のタイミング情報を基に前記人工震源の発振特性を判定し、当該判定結果に従って、前記第2のタイミング特性情報を算出する手段と、
     前記第2のタイミング特性情報を前記震源管理部へ設定する手段と、
     前記第2のタイミング特性情報に基づいて、前記各センサ端末のセンサに対するサンプリング・タイミングを調整するための第2のタイミング調整量を算出し、前記第2のタイミング調整量を前記各センサ端末に設定する手段を有することを特徴とする探鉱機システム。
    An epicenter control unit that transmits and receives signals to and from a source controller that controls the artificial seismic center;
    A plurality of sensor terminals that manage the sensors that generate the vibration data by receiving the reflected waves propagating through the formation along with the oscillation of the artificial seismic source according to the sampling timing period;
    Sending and receiving information via the network with the epicenter management unit and each sensor terminal, and having a management device for managing the epicenter management unit and each sensor terminal,
    The epicenter management department
    Of the signals to be transmitted and received, the output timing of the oscillation trigger signal output to the source controller and the reception timing of the oscillation start timing signal output from the source controller after the oscillation trigger signal is output. Measuring means for obtaining first timing characteristic information including:
    A delay adjustment unit having means for calculating a first timing adjustment amount for adjusting the output timing of the oscillation trigger signal based on second timing characteristic information set from the management device;
    The management device
    Means for determining the oscillation characteristics of the artificial seismic source based on the first timing information obtained by the measuring means of the epicenter management unit, and calculating the second timing characteristic information according to the determination result;
    Means for setting the second timing characteristic information in the epicenter management unit;
    Based on the second timing characteristic information, a second timing adjustment amount for adjusting a sampling timing for the sensor of each sensor terminal is calculated, and the second timing adjustment amount is set in each sensor terminal. An exploration machine system comprising means for
  2.  請求項1に記載の探鉱機システムにおいて、
     前記震源管理部は、
     発振ボタンの操作に伴って前記震源管理部に入力される発振要求信号の受信タイミングを基準に、前記発振トリガ信号の出力タイミングを遅延させるための遅延時間として、前記第1のタイミング調整量を算出することを特徴とする探鉱機システム。
    The explorer system according to claim 1,
    The epicenter management department
    The first timing adjustment amount is calculated as a delay time for delaying the output timing of the oscillation trigger signal with reference to the reception timing of the oscillation request signal input to the epicenter management unit in response to the operation of the oscillation button. An exploration system characterized by
  3.  請求項1に記載の探鉱機システムにおいて、
     前記管理装置は、
     前記各センサ端末のセンサに対するサンプリング・タイミングを所定時間遅延させるための遅延時間として、前記第2のタイミング調整量を算出することを特徴とする探鉱機システム。
    The explorer system according to claim 1,
    The management device
    The explorer system characterized in that the second timing adjustment amount is calculated as a delay time for delaying a sampling timing for the sensor of each sensor terminal for a predetermined time.
  4.  請求項1に記載の探鉱機システムにおいて、
     前記震源管理部は、
     人工震源の前記第1のタイミング特性情報を取得するための計測動作モードを備え、前記計測動作モード時に、発振ボタンの操作に伴って入力される発振要求信号を受信した場合、前記ソース・コントローラに出力する発振トリガ信号の出力タイミングと、前記発振トリガ信号が出力された後、前記ソース・コントローラから出力される発振開始タイミング信号の受信タイミングを計測する第1の処理と、前記発振トリガ信号の出力タイミングと前記発振開始タイミング信号の受信タイミングとの差から応答遅延時間を算出する第2の処理とを含む計測処理を少なくとも2回以上実行し、当該実行結果を前記第1のタイミング特性情報として記憶すると共に前記管理装置に転送することを特徴とする探鉱機システム。
    The explorer system according to claim 1,
    The epicenter management department
    A measurement operation mode for acquiring the first timing characteristic information of the artificial seismic source is provided, and when the oscillation request signal input along with the operation of the oscillation button is received in the measurement operation mode, the source controller An output timing of an oscillation trigger signal to be output; a first process for measuring a reception timing of an oscillation start timing signal output from the source controller after the oscillation trigger signal is output; and an output of the oscillation trigger signal A measurement process including a second process for calculating a response delay time from the difference between the timing and the reception timing of the oscillation start timing signal is executed at least twice, and the execution result is stored as the first timing characteristic information. And an exploration machine system that transfers to the management device.
  5.  請求項4に記載の探鉱機システムにおいて、
     前記管理装置は、
     前記2回以上の実行結果を含む第1のタイミング特性情報を基に、1回目の計測処理で算出された応答遅延時間と2回目の計測処理で算出された応答遅延時間が等しい関係にある場合、前記人工震源の発振特性をトリガ同期型発振であると判定し、前記判定の結果と第1のタイミング特性情報に基づいて第2のタイミング特性情報を算出し、
     前記1回目の計測処理で算出された応答遅延時間と前記2回目の計測処理で算出された応答遅延時間が異なる関係にある場合、前記人工震源の発振特性をGPS同期型発振であると判定し、前記判定の結果と第1のタイミング特性情報に基づいて第2のタイミング特性情報を算出することを特徴とする探鉱機システム。
    The explorer system according to claim 4,
    The management device
    When the response delay time calculated in the first measurement process is equal to the response delay time calculated in the second measurement process based on the first timing characteristic information including the execution result of the second or more times , Determining that the oscillation characteristic of the artificial seismic source is a trigger synchronous oscillation, calculating second timing characteristic information based on the result of the determination and the first timing characteristic information,
    When the response delay time calculated in the first measurement process is different from the response delay time calculated in the second measurement process, the oscillation characteristic of the artificial seismic source is determined to be GPS synchronous oscillation. The exploration machine system is characterized in that second timing characteristic information is calculated based on the determination result and the first timing characteristic information.
  6.  請求項4に記載の探鉱機システムにおいて、
     前記震源管理部は、
     前記2回以上の計測処理のうち前記2回目以降の計測処理における発振トリガ信号の出力タイミングを、前記1回目の計測処理における発振トリガ信号の出力タイミングと前記2回目の計測処理における発振トリガ信号の出力タイミングとの間隔が、前記センサに対する前記サンプリング・タイミング周期の整数倍とは異なるタイミングとなるように調整することを特徴とする探鉱機システム。
    The explorer system according to claim 4,
    The epicenter management department
    Of the two or more measurement processes, the output timing of the oscillation trigger signal in the second and subsequent measurement processes is the same as the output timing of the oscillation trigger signal in the first measurement process and the oscillation trigger signal in the second measurement process. An exploration machine system, wherein an interval with an output timing is adjusted to be a timing different from an integer multiple of the sampling timing period for the sensor.
  7.  請求項1に記載の探鉱機システムにおいて、
     前記震源管理部は、
     前記センサ端末によって振動データを取得するためのオペレーション動作モードを備え、前記オペレーション動作モード時に、発振ボタンの操作に伴って入力される発振要求信号を受信した場合、前記設定された第2のタイミング特性情報に基づいて、第1のタイミング調整量を算出して前記発振トリガ信号の出力タイミングを調整し、前記調整されたタイミングで前記発振トリガ信号を前記ソース・コントローラに出力すると共に前記発振トリガ信号の出力タイミングを記録し、前記ソース・コントローラから出力される発振開始タイミング信号を受信した場合、前記発振開始タイミング信号を受信した受信タイミングを記録し、
     前記人工震源の発振特性がトリガ同期発振である場合、前記オペレーション時に記録された前記出力タイミングと前記受信タイミングとから今回の応答遅延時間を算出し、前記算出された今回の応答遅延時間と前記第2のタイミング特性情報として記録された代表応答遅延時間とを比較し、両者の差に基づいて、タイミング・エラーがあるかないかを判定し、タイミング・エラーがあると判定された場合、タイミング・エラーログを記録し、
     前記人工震源の発振特性がGPS同期型発振である場合、前記オペレーション時に記録された前記発振開始タイミング信号の受信タイミングを示す今回の発振開始時刻と前記第2のタイミング特性情報として記録された代表発振開始時刻とを比較し、両者の差に基づいて、タイミング・エラーがあるかないかを判定し、タイミング・エラーログを記録することを特徴とする探鉱機システム。
    The explorer system according to claim 1,
    The epicenter management department
    An operation operation mode for acquiring vibration data by the sensor terminal, and when the oscillation request signal input in response to the operation of the oscillation button is received in the operation operation mode, the set second timing characteristic Based on the information, the first timing adjustment amount is calculated to adjust the output timing of the oscillation trigger signal, and the oscillation trigger signal is output to the source controller at the adjusted timing, and the oscillation trigger signal When the output timing is recorded and the oscillation start timing signal output from the source controller is received, the reception timing at which the oscillation start timing signal is received is recorded,
    When the oscillation characteristic of the artificial seismic source is a trigger synchronous oscillation, a current response delay time is calculated from the output timing and the reception timing recorded during the operation, and the calculated current response delay time and the first response delay time are calculated. 2 is compared with the representative response delay time recorded as the timing characteristic information, and based on the difference between the two, it is determined whether or not there is a timing error. If it is determined that there is a timing error, the timing error Log,
    When the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation, the current oscillation start time indicating the reception timing of the oscillation start timing signal recorded during the operation and the representative oscillation recorded as the second timing characteristic information An exploration system characterized by comparing a start time, determining whether there is a timing error based on the difference between the two, and recording a timing error log.
  8.  請求項4に記載の探鉱機システムにおいて、
     前記震源管理部で管理される情報を表示する表示部を有し、
     前記表示部は、
     前記震源管理部の動作モードを計測動作モードに切り替えるための計測モードタブと、
     前記震源管理部が前記計測動作モードに切り替えられた際に、前記震源管理部に計測開始を指示するための計測開始ボタンと、
     前記人工震源の震源識別名称を入力するための入力インタフェースと、
     前記震源管理部の計測処理における処理結果を表示するための出力ウィンドウと、を有することを特徴とする探鉱機システム。
    The explorer system according to claim 4,
    A display unit that displays information managed by the epicenter management unit;
    The display unit
    A measurement mode tab for switching the operation mode of the epicenter management unit to a measurement operation mode;
    When the epicenter management unit is switched to the measurement operation mode, a measurement start button for instructing the seismic center management unit to start measurement,
    An input interface for inputting an epicenter identification name of the artificial seismic source;
    An exploration machine system comprising: an output window for displaying a processing result in the measurement processing of the epicenter management unit.
  9.  人工震源を制御するソース・コントローラと信号の送受信を行う震源管理部と、
     前記人工震源の発振に伴って地層を伝播する反射波を、サンプリング・タイミング周期に従って受信して振動データを生成するセンサを管理する複数のセンサ端末と、
     前記震源管理部及び前記各センサ端末とネットワークを介して情報の送受信を行って、前記震源管理部及び前記各センサ端末を管理する管理装置とを有する探鉱機システムにおける管理方法であって、
     前記震源管理部が、前記送受信の対象となる信号のうち前記ソース・コントローラに出力する発振トリガ信号の出力タイミングと、前記発振トリガ信号が出力された後、前記ソース・コントローラから出力される発振開始タイミング信号の受信タイミングを含む情報を第1のタイミング特性情報として管理する管理ステップと、
     前記管理装置が、前記震源管理部の管理による第1のタイミング特性情報を基に前記人工震源の発振特性を判定し、当該判定結果に従って、第2のタイミング特性情報を算出して管理する管理ステップと、
     前記管理装置が、第2のタイミング特性情報を前記震源管理部へ設定する設定ステップと、
     前記管理装置が、第2のタイミング特性情報に基づいて、前記各センサ端末のセンサに対するサンプリング・タイミングを調整するための第2のタイミング調整量を算出し、前記第2のタイミング調整量を前記各センサ端末に設定する設定ステップと、
     前記震源管理部が、前記管理装置から設定された第2のタイミング特性情報に基づいて、第2のタイミング特性情報に基づいて前記発振トリガ信号の出力タイミングを調整するための第1のタイミング調整量を算出する算出ステップと、
     を有することを特徴とする管理方法。
    An epicenter control unit that transmits and receives signals to and from a source controller that controls the artificial seismic center;
    A plurality of sensor terminals that manage the sensors that generate the vibration data by receiving the reflected waves propagating through the formation along with the oscillation of the artificial seismic source according to the sampling timing period;
    Transmission and reception of information via the network with the epicenter management unit and each sensor terminal, a management method in a prospecting system having a management device for managing the seismic center management unit and each sensor terminal,
    The source control unit outputs the oscillation trigger signal output to the source controller among the signals to be transmitted / received, and the oscillation start output from the source controller after the oscillation trigger signal is output A management step of managing information including the reception timing of the timing signal as first timing characteristic information;
    A management step in which the management device determines the oscillation characteristics of the artificial seismic source based on the first timing characteristic information managed by the epicenter management unit, and calculates and manages the second timing characteristic information according to the determination result. When,
    A setting step in which the management device sets second timing characteristic information in the epicenter management unit;
    The management device calculates a second timing adjustment amount for adjusting a sampling timing for the sensor of each sensor terminal based on second timing characteristic information, and the second timing adjustment amount is calculated as the second timing adjustment amount. A setting step to set in the sensor terminal;
    A first timing adjustment amount for adjusting the output timing of the oscillation trigger signal based on second timing characteristic information, based on second timing characteristic information set by the management apparatus, A calculating step for calculating
    The management method characterized by having.
  10.  請求項9に記載の管理方法において、
     前記震源管理部は、
     発振ボタンの操作に伴って前記震源管理部に入力される発振要求信号の受信タイミングを基準に、前記発振トリガ信号の出力タイミングを遅延させるための遅延時間として、前記第1のタイミング調整量を算出することを特徴とする管理方法。
    The management method according to claim 9,
    The epicenter management department
    The first timing adjustment amount is calculated as a delay time for delaying the output timing of the oscillation trigger signal with reference to the reception timing of the oscillation request signal input to the epicenter management unit in response to the operation of the oscillation button. A management method characterized by:
  11.  請求項9に記載の管理方法において、
     前記管理装置は、
     前記各センサ端末のセンサに対するサンプリング・タイミングを所定時間遅延させるための遅延時間として、前記第2のタイミング調整量を算出することを特徴とする管理方法。
    The management method according to claim 9,
    The management device
    A management method characterized in that the second timing adjustment amount is calculated as a delay time for delaying a sampling timing for the sensor of each sensor terminal for a predetermined time.
  12.  請求項9に記載の管理方法において、
     前記震源管理部は、
     人工震源の前記第1のタイミング特性情報を取得するための計測動作モードを備え、前記計測動作モード時に、発振ボタンの操作に伴って入力される発振要求信号を受信した場合、前記ソース・コントローラに出力する発振トリガ信号の出力タイミングと、前記発振トリガ信号が出力された後、前記ソース・コントローラから出力される発振開始タイミング信号の受信タイミングを計測する第1の処理と、前記発振トリガ信号の出力タイミングと前記発振開始タイミング信号の受信タイミングとの差から応答遅延時間を算出する第2の処理とを含む計測処理を少なくとも2回以上実行し、当該実行結果を前記第1のタイミング特性情報として記憶すると共に前記管理装置に転送することを特徴とする管理方法。
    The management method according to claim 9,
    The epicenter management department
    A measurement operation mode for acquiring the first timing characteristic information of the artificial seismic source is provided, and when the oscillation request signal input along with the operation of the oscillation button is received in the measurement operation mode, the source controller An output timing of an oscillation trigger signal to be output; a first process for measuring a reception timing of an oscillation start timing signal output from the source controller after the oscillation trigger signal is output; and an output of the oscillation trigger signal A measurement process including a second process for calculating a response delay time from the difference between the timing and the reception timing of the oscillation start timing signal is executed at least twice, and the execution result is stored as the first timing characteristic information. And transferring to the management device.
  13.  請求項12に記載の管理方法において、
     前記管理装置は、
     前記2回以上の実行結果を含む第1のタイミング特性情報を基に、1回目の計測処理で算出された応答遅延時間と2回目の計測処理で算出された応答遅延時間が等しい関係にある場合、前記人工震源の発振特性をトリガ同期型発振であると判定し、前記判定の結果と第1のタイミング特性情報に基づいて第2のタイミング特性情報を算出し、
     前記1回目の計測処理で算出された応答遅延時間と前記2回目の計測処理で算出された応答遅延時間が異なる関係にある場合、前記人工震源の発振特性をGPS同期型発振であると判定し、前記判定の結果と第1のタイミング特性情報に基づいて第2のタイミング特性情報を算出することを特徴とする管理方法。
    The management method according to claim 12,
    The management device
    When the response delay time calculated in the first measurement process is equal to the response delay time calculated in the second measurement process based on the first timing characteristic information including the execution result of the second or more times , Determining that the oscillation characteristic of the artificial seismic source is a trigger synchronous oscillation, calculating second timing characteristic information based on the result of the determination and the first timing characteristic information,
    When the response delay time calculated in the first measurement process is different from the response delay time calculated in the second measurement process, the oscillation characteristic of the artificial seismic source is determined to be GPS synchronous oscillation. And a second timing characteristic information is calculated based on the result of the determination and the first timing characteristic information.
  14.  請求項12に記載の管理方法において、
     前記震源管理部は、
     前記2回以上の計測処理のうち前記2回目以降の計測処理における発振トリガ信号の出力タイミングを、前記1回目の計測処理における発振トリガ信号の出力タイミングと前記2回目の計測処理における発振トリガ信号の出力タイミングとの間隔が、前記センサに対する前記サンプリング・タイミング周期の整数倍とは異なるタイミングとなるように調整することを特徴とする管理方法。
    The management method according to claim 12,
    The epicenter management department
    Of the two or more measurement processes, the output timing of the oscillation trigger signal in the second and subsequent measurement processes is the same as the output timing of the oscillation trigger signal in the first measurement process and the oscillation trigger signal in the second measurement process. A management method comprising adjusting an interval with an output timing to be a timing different from an integer multiple of the sampling timing period for the sensor.
  15.  請求項9に記載の管理方法において、
     前記震源管理部は、
     前記センサ端末によって振動データを取得するためのオペレーション動作モードを備え、前記オペレーション動作モード時に、発振ボタンの操作に伴って入力される発振要求信号を受信した場合、前記設定された第2のタイミング特性情報に基づいて、第1のタイミング調整量を算出して前記発振トリガ信号の出力タイミングを調整し、前記調整されたタイミングで前記発振トリガ信号を前記ソース・コントローラに出力すると共に前記発振トリガ信号の出力タイミングを記録し、前記ソース・コントローラから出力される発振開始タイミング信号を受信した場合、前記発振開始タイミング信号を受信した受信タイミングを記録し、
     前記人工震源の発振特性がトリガ同期発振である場合、前記オペレーション時に記録された前記出力タイミングと前記受信タイミングとから今回の応答遅延時間を算出し、前記算出された今回の応答遅延時間と前記第2のタイミング特性情報として記録された代表応答遅延時間とを比較し、両者の差が閾値より大きい場合、タイミング・エラーがあるかないかを判定し、タイミング・エラーがあると判定された場合、タイミング・エラーログを記録し、
     前記人工震源の発振特性がGPS同期型発振である場合、前記オペレーション時に記録された前記発振開始タイミング信号の受信タイミングを示す今回の発振開始時刻と前記第2のタイミング特性情報として記録された代表発振開始時刻とを比較し、両者の差に基づいて、タイミング・エラーがあるかないかを判定し、タイミング・エラーがあると判定された場合、タイミング・エラーログを記録することを特徴とする管理方法。
    The management method according to claim 9,
    The epicenter management department
    An operation operation mode for acquiring vibration data by the sensor terminal, and when the oscillation request signal input in response to the operation of the oscillation button is received in the operation operation mode, the set second timing characteristic Based on the information, the first timing adjustment amount is calculated to adjust the output timing of the oscillation trigger signal, and the oscillation trigger signal is output to the source controller at the adjusted timing, and the oscillation trigger signal When the output timing is recorded and the oscillation start timing signal output from the source controller is received, the reception timing at which the oscillation start timing signal is received is recorded,
    When the oscillation characteristic of the artificial seismic source is a trigger synchronous oscillation, a current response delay time is calculated from the output timing and the reception timing recorded during the operation, and the calculated current response delay time and the first response delay time are calculated. 2 is compared with the representative response delay time recorded as the timing characteristic information, and if the difference between the two is larger than the threshold value, it is determined whether or not there is a timing error.・ Record error log,
    When the oscillation characteristic of the artificial seismic source is GPS synchronous oscillation, the current oscillation start time indicating the reception timing of the oscillation start timing signal recorded during the operation and the representative oscillation recorded as the second timing characteristic information A management method that compares a start time, determines whether there is a timing error based on a difference between the two, and records a timing error log when it is determined that there is a timing error .
PCT/JP2015/077892 2015-09-30 2015-09-30 Exploration machine system and management method WO2017056283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/077892 WO2017056283A1 (en) 2015-09-30 2015-09-30 Exploration machine system and management method
JP2017514711A JP6311075B2 (en) 2015-09-30 2015-09-30 Exploration machine system and management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077892 WO2017056283A1 (en) 2015-09-30 2015-09-30 Exploration machine system and management method

Publications (1)

Publication Number Publication Date
WO2017056283A1 true WO2017056283A1 (en) 2017-04-06

Family

ID=58422822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077892 WO2017056283A1 (en) 2015-09-30 2015-09-30 Exploration machine system and management method

Country Status (2)

Country Link
JP (1) JP6311075B2 (en)
WO (1) WO2017056283A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107459A (en) * 2001-07-06 2002-04-10 Hakusan Kogyo Kk Data collecting system and method for geophysical exploration
JP2002202378A (en) * 2000-12-28 2002-07-19 Kddi Corp Buried object locating system in unopened-cut excavating
JP2007505289A (en) * 2003-07-17 2007-03-08 ノヴァテル・インコーポレイテッド Seismic measurement system with GPS receiver
JP2010038790A (en) * 2008-08-06 2010-02-18 Kajima Corp Elastic wave probe system
JP2011043409A (en) * 2009-08-21 2011-03-03 Fujita Corp Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202378A (en) * 2000-12-28 2002-07-19 Kddi Corp Buried object locating system in unopened-cut excavating
JP2002107459A (en) * 2001-07-06 2002-04-10 Hakusan Kogyo Kk Data collecting system and method for geophysical exploration
JP2007505289A (en) * 2003-07-17 2007-03-08 ノヴァテル・インコーポレイテッド Seismic measurement system with GPS receiver
JP2010038790A (en) * 2008-08-06 2010-02-18 Kajima Corp Elastic wave probe system
JP2011043409A (en) * 2009-08-21 2011-03-03 Fujita Corp Method for geological exploration during tunnel excavation and tunnel geological exploration apparatus

Also Published As

Publication number Publication date
JPWO2017056283A1 (en) 2017-10-05
JP6311075B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US7974314B2 (en) Synchronization of multiple data source to a common time base
US9176242B2 (en) Practical autonomous seismic recorder implementation and use
US20090327784A1 (en) Energy measurement techniques for computing systems
EA006683B1 (en) A data acquisition unit, system and method for geophysical data
JP2010281771A (en) Synchronous recording system and synchronous recording method
US20180164403A1 (en) Sound source position detection device, sound source position detection method, sound source position detection program, and recording medium
US20200393589A1 (en) Vibration-analysis system and method therefor
JP6280768B2 (en) Tunnel elastic wave exploration method and tunnel elastic wave exploration system used therefor
US20130291637A1 (en) System and Method For Monitoring Mechanically Coupled Structures
CN114096823A (en) Water leakage management system and water leakage position prediction method using same
JP6467181B2 (en) Method and system for dynamic workflow prioritization and tasking
JP6311075B2 (en) Exploration machine system and management method
CN103941281A (en) Distributed mine earthquake detection method and device
JP6915808B2 (en) Multi-point simultaneous measurement system
JP7131887B2 (en) Analysis device, analysis system, analysis method and program
US20140286125A1 (en) Seismic acquisition method and apparatus
Purnomo et al. Development of Atmel SAM-Based Wireless Sensor Node for Bridge Structural Health Monitoring (SHM)
TWI702808B (en) Measuring apparatus, measuring method and program
JP7341018B2 (en) seismic system
US20240125965A1 (en) Characterization system and method for casing loading using entropy analysis
CN112859157B (en) Seismic source control system
Rybushkin et al. Data Logging and Transmission System for Laser Strainmetering Equipment
TW202403336A (en) Clock synchronisation
JP2012068070A (en) Positioning information distribution system, receiving device and positioning information distribution method
JP6064484B2 (en) Position recognition program, position recognition apparatus, and position recognition method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905437

Country of ref document: EP

Kind code of ref document: A1